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Abstract

In this paper, we present an algebraic perspective of the de Rham transform of a binary subdivision scheme and
propose an elegant strategy for constructing dual m-ary approximating subdivision schemes of de Rham-type, starting
from two primal schemes of arity m and 2, respectively. On the one hand, this new strategy allows us to show
that several existing dual corner-cutting subdivision schemes fit into a unified framework. On the other hand, the
proposed strategy provides a straightforward algorithm for constructing new dual subdivision schemes having higher
smoothness and higher polynomial reproduction capabilities with respect to the two given primal schemes.
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1. Introduction

Univariate subdivision schemes are iterative methods for representing smooth curves via the specification of a
coarse polygon f(0) := { f (0)

i , i ∈ Z} and a set of refinement rules mapping the sequence of points f(k), k ≥ 0, into the
denser sequence of points f(k+1). If the k-th refinement step consists of m refinement rules, the subdivision scheme is
said to be of arity m and, if the refinement rules are linear combinations of the coarser points, the subdivision scheme
is called linear. Let ai, i ∈ Z, be the coefficients appearing in the linear combination. Then, for each k ≥ 0 the m
refinement rules read as

f (k+1)
mi+ℓ :=

∑
j∈Z

am(i− j)+ℓ f (k)
j , ℓ = 0, · · · ,m − 1.

The set of coefficients {ai, i ∈ Z} is called subdivision mask and is denoted by a. The associated subdivision scheme is
denoted by S a and can be equivalently seen as the repeated application of the subdivision matrix S = {s(i, j) = ai−m j :
i, j ∈ Z}. To establish a notion of convergence, we associate to the sequence of refined data {f(k), k ≥ 0} a sequence
of parameter values t(k) = {t(k)

i , i ∈ Z} with t(k)
i+1 − t(k)

i = m−k, and we define the piecewise linear function F(k) that
interpolates the data f(k) at the parameters t(k). If, for every initial data f(0), the sequence {F(k), k ≥ 0} is convergent to
a continuous function gf(0) , then the subdivision scheme is said to be C0-convergent. Moreover, the scheme is said to
be Cr-convergent if gf(0) is a Cr(R) function. In this paper, we only consider subdivision schemes that are convergent
and non-singular, so that gf(0) = 0 if and only if f(0) = 0. Assuming that the support of the subdivision mask a is
[0,N] ∩ Z ( i.e. ai = 0 for i < 0 and i > N as well as a0, aN , 0), then the support of the limit function is given by[
0, N

m−1

]
(see for example [8, Section 1]).

Support size and smoothness are considered mutually conflicting properties of a subdivision scheme because a high
degree of smoothness generally requires a large support, thus leading to a more global influence of each initial data
value on the limit function. Raising the arity of the subdivision scheme provides a way to overcome this dilemma
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to some extents. For example, the ternary and quaternary 4-point schemes discussed in [18, 21] and [23], respec-
tively, have smaller support and higher smoothness than the classical binary 4-point scheme in [15, 17], and all three
schemes reproduce cubic polynomials by construction. The latter means that, whenever starting from data on a cubic
polynomial, their limits are exactly that cubic polynomial. So, subdivision schemes of arity m > 2, although much
less known in the literature, are potentially more useful because smoother but with smaller support than their binary
counterparts.
Another way of increasing the smoothness of a subdivision scheme in exchange of a slight increase of its support
width is to use dual subdivision schemes instead of primal ones. From a geometric point of view, primal schemes are
those that retain or modify the old vertices and create m−1 new vertices at each old edge of the control polygon. Dual
schemes, instead, create m new points at the old edges and discard the old vertices. The importance of dual schemes
in practical applications is due to the fact that they can be smoother than the primal schemes having the same degree
of polynomial reproduction, in exchange of a slight increase of the support width. This is the case, for instance, of
the dual C2 four-point subdivision scheme presented in [14]. In fact, the support width of its subdivision mask is
increased only by one with respect to that of the interpolatory (primal) C1 four-point scheme in [15, 17], and they both
reproduce cubic polynomials.
The first univariate, linear subdivision scheme appeared in the literature is the arity-2 (binary) scheme having mask

a = [w, 1 − w, 1 − w, w] with w ∈
(
0,

1
2

)
. (1)

The particular choice of w = 1
3 corresponds to the de Rham scheme [11] and that of w = 1

4 to the Chaikin’s scheme
[1]. Since the refinement rules associated to (1) are

f (k+1)
2i = (1 − w) f (k)

i + w f (k)
i+1, f (k+1)

2i+1 = w f (k)
i + (1 − w) f (k)

i+1, k ≥ 0, i ∈ Z,

the (k + 1)-level new vertices f (k+1)
2i and f (k+1)

2i+1 are constructed at points w and 1 −w of the way along each edge of the
k-level control polygon and so each line segment connecting f (k)

i and f (k)
i+1 is partitioned with the ratio w : (1− 2w) : w.

The mask in (1) thus provides a family of 2-point corner-cutting subdivision schemes.
In the recent paper [12], Dubuc observed that a single step of the binary subdivision scheme having mask (1) with
w = 1

4 can be seen as the subsequent application of two steps of the linear binary B-spline scheme with mask [ 1
2 , 1, 1

2 ],
followed by the selection of the obtained points with odd index only (see Figure 1, first row). Prompted by this
observation, Dubuc also defined the de Rham transform of a binary subdivision scheme with matrix S = {s(i, j) :
i, j ∈ Z} as the subdivision scheme with matrix S̃ = {s2(2i + 1, j) : i, j ∈ Z}, where s2(i, j) are the entries of S 2. He
observed that, for any binary subdivision scheme, we can define its de Rham transform which generalizes the de Rham
and Chaikin corner cutting. In particular, in [12] he applies the de Rham transform to three families of interpolatory
subdivision schemes and shows that, although the interpolatory property is lost, the de Rham transform can provide
subdivision schemes that are smoother than the original ones. In [13], this idea was originally applied to binary
interpolatory Hermite subdivision schemes in order to define new smoother non-interpolatory Hermite schemes.
Exploiting the notion of subdivision symbol, in this paper we provide an algebraic perspective of the de Rham trans-
form. More precisely, denoted by a(z) =

∑
i∈Z aizi, z ∈ C\{0} the symbol of the binary subdivision scheme S a with

mask a = {ai, i ∈ Z}, we can show that the symbol of the de Rham transform of S a is the product of two special
Laurent polynomial factors. In fact, for a given sequence of vertices f(k) = { f (k)

i , i ∈ Z}, the double application of
the subdivision operator S a provides the points f̃i =

∑
j∈Z ai−2 j

(∑
ℓ∈Z a j−2ℓ f (k)

ℓ

)
, i ∈ Z. Thus, defining the sequence of

points at level k + 1 as the subset of the odd-indexed points f̃2i+1, we get

f(k+1) =

 f (k+1)
i =

∑
ℓ∈Z

∑
j∈Z

a2i+1−4ℓ−2 j a j

 f (k)
ℓ
, i ∈ Z

 .
Hence, denoting by S c the de Rham transform of S a, i.e. the subdivision scheme mapping f(k) into f(k+1), it turns out
that the subdivision mask of S c is given by c =

{
ci =

∑
j∈Z a2i+1−2 j a j, i ∈ Z

}
and its symbol is

c(z) =
∑
i∈Z

cizi =
∑
r∈Z

a2r+1zr
∑
j∈Z

a jz j = aodd(z)a(z).
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This algebraic interpretation of the de Rham transform allows us to extend the results in [12] in two different direc-
tions: firstly, we replace the double step of a primal binary scheme by the subsequent application of two different
binary schemes; secondly, we allow one of the two primal schemes to be of arity different from 2. The so obtained
extended de Rham-type strategy provides a corner cutting scheme of arbitrary arity. For example, the ternary scheme
in [24, pag.53] (known as the “neither” scheme), is a corner cutting scheme which can be interpreted as a de Rham-
type scheme obtained by applying first a linear ternary B-spline scheme, then a linear binary B-spline scheme, both
followed by a selection of the odd entries only (see Figure 1, second row).

Figure 1: First row: interpretation of Chaikin’s scheme as the subsequent application of two steps of the linear binary B-spline scheme, followed
by the selection of the obtained points with odd index only. Second row: interpretation of the ternary “neither” scheme as a de Rham-type scheme
obtained by applying first a linear ternary B-spline scheme, then a linear binary B-spline scheme, both followed by a selection of the odd entries
only.

In this paper we will show that any de Rham-type m-ary subdivision scheme is dual by construction and each subdivi-
sion step of such a scheme can be obtained by applying to the k-level vertices first a primal m-ary subdivision operator
S b, then a primal binary subdivision operator S a, both followed by a decimation step consisting in the selection of
the odd elements only of the refined sequence. The symbol of the de Rham-type subdivision scheme is thus given
by aodd(z)b(z). This clearly provides a generalization of the de Rham transform in [12] which offers the following
advantages. Firstly, it establishes an algebraic interpretation of the de Rham transform, which turns out to be useful
to derive the refinement rules of de Rham-type schemes at a very low computational cost. Secondly, it allows us to
describe many existing dual corner-cutting schemes in a unified way: for instance, Chaikin’s scheme in [1] and more
generally all binary schemes associated to degree-(2k+2) B-splines, the dual 4-point schemes in [14] and [4], the dual
ν-point (ν ≥ 3) schemes in [20], the ternary “neither” scheme in [24, pag.53] and the quaternary 4-point approximat-
ing schemes in [23]. Finally, it provides a long needed tool for constructing new approximating subdivision schemes
of arbitrary arity with required smoothness and reproduction capabilities.

The paper is organized as follows. Section 2 is devoted to a detailed description of the de Rham-type strategy for
the construction of dual approximating m-ary subdivision schemes starting from two primal subdivision schemes of
arity m and 2, respectively. For the sake of clarity the sketch of an algorithm is also given. While convergence and
smoothness of de Rham-type subdivision schemes is discussed in Section 3 together with their polynomial repro-
duction properties, in Section 4 the derived theoretical results are exploited to define novel dual m-ary subdivision
schemes of arity 2, 3 and 4, respectively, as well as to revisit some known approximating schemes via the de Rham
approach. Conclusions are drawn in Section 5.

2. An algorithm for the construction of dual de Rham-type m-ary approximating schemes

To describe our construction of a dual de Rham-type m-ary approximating scheme, we first need to introduce the
notion of parametrization of a subdivision scheme. According to [16], the parametrization of a symmetric subdivision
scheme may be either primal or dual, and this provides a useful criterion to classify subdivision schemes. From a
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geometric point of view, primal schemes are those that retain or modify the old vertices and create m−1 new vertices at
each old edge of the control polygon. Dual schemes, instead, create m new points at the old edges and discard the old
vertices. For example, the binary cubic B-spline scheme is primal, while Chaikin’s scheme for generating quadratic B-
splines is dual. The reason why mostly no other parametrizations are considered is due to the fact that dual and primal
parametrizations are the only ones that guarantee reproduction of linear polynomials for a symmetric, convergent
subdivision scheme generating linear polynomials (see [8, Corollary 5.7]). Reproduction of linear polynomials means
that, if the starting sequence f(0) is sampled from a linear polynomial, its limit is exactly that polynomial, while the
generation of polynomials means that the limit can be any linear polynomial.
Following [8], the sets of parameters t(k) := {t(k)

i , i ∈ Z} providing the so-called parametrization of a convergent,
m-ary subdivision scheme are defined as

t(k)
i := m−k

(
i +

τ

m − 1

)
, i ∈ Z, k ≥ 0 , (2)

where τ ∈ R is a shift parameter given by

τ =
(D1a(z))|z=1

m
.

There follows that, in case of a primal parametrization, τ = 0 and thus

t(k)
i := m−k i, i ∈ Z, k ≥ 0 .

As a consequence,

t(k+1)
mi+ℓ =

m − ℓ
m

t(k)
i +

ℓ

m
t(k)
i+1, ℓ = 0, · · · ,m − 1 , i ∈ Z, k ≥ 0 .

Accordingly, each subdivision step replaces the old vertices f (k)
i attached to t(k)

i by the new vertices f (k+1)
mi attached

to t(k+1)
mi , and inserts the new vertices f (k+1)

mi+ℓ , ℓ = 1, · · · ,m − 1 uniformly between the old vertices, i.e., with relative
distance 1

m of the distance between the neighbors f (k)
i and f (k)

i+1.

On the contrary, for a dual parametrization, τ = − 1
2 and thus

t(k)
i := m−k

(
i − 1

2(m − 1)

)
, i ∈ Z, k ≥ 0 . (3)

It follows that the relationship between parameters of consecutive levels is therefore

t(k+1)
mi+ℓ =

2m − 1 − 2ℓ
2m

t(k)
i +

1 + 2ℓ
2m

t(k)
i+1, ℓ = 0, · · · ,m − 1 , i ∈ Z, k ≥ 0.

This means that, a dual subdivision scheme at each subdivision step replaces the old vertices f (k)
i attached to t(k)

i by
the two new vertices f (k+1)

mi−1 and f (k+1)
mi attached to t(k+1)

mi−1 and t(k+1)
mi , respectively (that is one to the left, the other to the

right of f (k)
i , and both at 1

2m the distance to the neighboring vertices f (k)
i−1 and f (k)

i+1). It also inserts m − 2 new vertices
uniformly between the old vertices f (k)

i and f (k)
i+1, i.e., with relative distance 1

m of the distance between the neighbors
f (k)
i and f (k)

i+1.
Corner-cutting schemes are therefore associated to a dual parametrization.

Remark 1. We remark that, any scheme with shift parameter τ = n is also primal since multiplication of the symbol
by z−n yields a scheme with τ = 0. Similarly, any scheme with shift parameter τ = − 1

2 + n is dual (see [8, Corollary
5.1]).

In the following we will show that a dual corner-cutting subdivision scheme S c of arity m can be obtained by gener-
ating the new sequence of points f(k+1) from the previous one f(k), in the following way:

1. apply a primal m-ary subdivision scheme S b to the k-level data f(k);

2. apply a primal binary subdivision scheme S a to the data obtained in step 1.;
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3. select from the result of step 2. only the data with odd indices, and let the obtained subset be the (k + 1)-level
data f(k+1).

In fact, given a sequence of vertices f(k) associated to the parameters t(k), since we first apply the primal subdivision
scheme S b of arity m, the elements of f̃(k+1) := S bf(k) are attached to the parameters

t̃(k+1)
mi+ℓ =

m − ℓ
m

t(k)
i +

ℓ

m
t(k)
i+1, ℓ = 0, · · · ,m − 1, i ∈ Z, k ≥ 0.

Next, since we apply the primal binary subdivision scheme S a to the resulting sequence f̃(k+1), the elements of f̃(k+2) :=
S a f̃(k+1) = S a S bf(k) are attached to the parameters

t̃(k+2)
2(mi+ℓ) = t̃(k+1)

mi+ℓ =
m−ℓ

m t(k)
i +

ℓ
m t(k)

i+1 ,

t̃(k+2)
2(mi+ℓ)+1 =

1
2 t̃(k+1)

mi+ℓ +
1
2 t̃(k+1)

mi+ℓ+1 =
m−ℓ
2m t(k)

i +
ℓ

2m t(k)
i+1 +

m−ℓ−1
2m t(k)

i +
ℓ+1
2m t(k)

i+1 =
2m−1−2ℓ

2m t(k)
i +

2ℓ+1
2m t(k)

i+1 ,

i ∈ Z, k ≥ 0.

The sequence f̃(k+2) is then decimated by taking the odd entries only, so providing f(k+1), which is therefore associated
to the dual parameter values

t(k+1)
mi+ℓ =

2m − 1 − 2ℓ
2m

t(k)
i +

2ℓ + 1
2m

t(k)
i+1, ℓ = 0, · · · ,m − 1, i ∈ Z, k ≥ 0 ,

meaning that the corresponding subdivision scheme is dual in the sense of (3). In terms of values we have

f̃ (k+1)
i =

∑
j∈Z

bi−m j f (k)
j , f̃ (k+2)

i =
∑
j∈Z

ai−2 j f̃ (k+1)
j , f (k+1)

i = f̃ (k+2)
2i+1 , i ∈ Z.

Therefore, there is an underlined m-ary subdivision scheme such that

f (k+1)
i =

∑
r∈Z

ci−mr f (k)
r ,

where
ci =

∑
j∈Z

a2i+1−2 j b j, i ∈ Z. (4)

In fact,

f (k+1)
i = f̃ (k+2)

2i+1 =
∑
j∈Z

a2i+1−2 j

∑
r∈Z

b j−mr f (k)
r =

∑
r∈Z

∑
j∈Z

a2i+1−2 j b j−mr

 f (k)
r =

∑
r∈Z

∑
j∈Z

a2i+1−2mr−2 j b j

 f (k)
r =

∑
r∈Z

ci−mr f (k)
r .

In order to construct from the subdivision mask c = {ci, i ∈ Z} the Laurent polynomial c(z) =
∑

i∈Z ci zi, z ∈ C\{0}, we
recall that any symbol a(z) can be decomposed as

a(z) = aeven(z2) + z aodd(z2)

with
aodd(z) =

∑
i∈Z

a2i+1 zi and aeven(z) =
∑
i∈Z

a2i zi.

Hence, from (4) we write∑
i∈Z

ci zi =
∑
i∈Z

∑
j∈Z

a2i+1−2 j b j

 zi =
∑
i∈Z

∑
j∈Z

a2(i− j)+1 zi− j

 b jz j =
∑
r∈Z

a2r+1 zr
∑
j∈Z

b j z j,

that is
c(z) = aodd(z) b(z) . (5)

Therefore, the de Rham-type strategy, previously described in terms of generated sequences of points, offers the
following simple algebraic perspective in terms of subdivision symbols.
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Algorithm for the construction of a dual de Rham-type m-ary approximating scheme

Input: a(z) symbol of a primal, binary scheme; b(z) symbol of a primal, m-ary scheme;

1. Decompose a(z) as a(z) = aeven(z2) + zaodd(z2);
2. Extract the odd sub-symbol aodd(z);
3. Construct the new symbol c(z) = aodd(z)b(z);

Output: c(z), symbol of a dual, m-ary scheme.

Remark 2. Note that, even if aodd(z) is not the odd rule of a primal subdivision scheme S a but simply an odd-degree
Laurent polynomial, the above algorithm still produces a dual m-ary subdivision scheme.

As a side effect, the proposed de Rham-type strategy allows to put existing isolated constructions of dual approximat-
ing schemes (e.g. [1, 4, 14, 20, 23]) in a general framework. In Table 1 we show the odd sub-symbol of the binary
subdivision schemes S a and the symbol of the m-ary subdivision scheme S b that should be given as input to generate
these existing corner-cutting schemes via the above algorithm.

Existing corner-cutting schemes m aodd(z) b(z)
Chaikin’s scheme in [1] 2 z−1 1+z

2 z−1 (1+z)2

2

degree-(2k + 2) B-splines, k ≥ 0 2 z−1 1+z
2 z−(k+1) (1+z)2k+2

22k+1

dual 4-point schemes in [4] 2 z−1 1+z
2 z−3

(
1+z

2

)2 −16wz4+(64w−3)z3+(14−96w)z2+(64w−3)z−16w
4 , w ∈ R

dual 4-point scheme in [14] 2 z−1 1+z
2 z−3

(
1+z

2

)4 −5+18z−5z2

4

dual ν-point (ν ≥ 3) schemes in [20] 2 z−1 1+z
2 z−(ν−1)

(
1+z

2

)2ν−4 −(2ν−3)+2(2ν+1)z−(2ν−3)z2

4

“neither” scheme in [24, pag.53] 3 z−1 1+z
2 z−2 (z2+z+1)2

3

4-point approximating schemes in [23] 4 1
4 z−2(z + 1)(z2 + 1) z−6 (z+1)4(z2+1)3

32

(
2(1 − w)z2 + (4w − 3)z + 2(1 − w)

)
, w ∈ R

Table 1: Classification of existing corner-cutting schemes as de Rham-type subdivision schemes.

In Section 4, the well-known reproduction and smoothness properties of all the subdivision schemes included in Table
1 will be revisited in relationship to the corresponding properties of the subdivision schemes S a and S b that originate
them. We will see that dual de Rham-type subdivision schemes not only can possess higher regularity with respect to
the primal schemes used in their construction, but they can also reproduce polynomials of higher degree.

3. Properties of de Rham-type subdivision schemes

3.1. Preliminary notions
The notion of polynomial reproduction (see also [10]) is directly related to the approximation order of a subdivision

scheme. Indeed, if a scheme reproduces the space of polynomials of degree d (hereinafter denoted by Πd), then it has
approximation order d + 1 (see [22]).

Definition 1. A subdivision scheme S a reproduces polynomials of degree d if it is convergent and if gf(0) = p for initial
data f (0)

i = p
(
t(0)
i

)
, i ∈ Z and for any polynomial p ∈ Πd. Instead, a subdivision scheme S a generates polynomials of

degree d if, for the initial data f (0)
i = p

(
t(0)
i

)
, i ∈ Z, p ∈ Πd, it is convergent and gf(0) = p̃ with p̃ ∈ Πd, p − p̃ ∈ Πd−1.

Polynomial reproduction can be checked via algebraic conditions on the subdivision symbol a(z) as the following
proposition shows. For the sake of conciseness, we first introduce the following definition of frequent use in the
remainder of the paper.
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Definition 2. We denote by ζ j
m = exp

( 2πi
m j

)
, j = 1, . . . ,m − 1 the m-th roots of unity.

Proposition 1. [8, Theorem 4.3] A convergent subdivision scheme S a reproduces polynomials of degree d with respect
to the parametrization in (2) if and only if

a(1) = m, (Dna(z))|z=1 = m
n−1∏
l=0

(τ − l) for n = 1, . . . , d,

(Dna(z))|z=ζ j
m
= 0 ∀ j = 1, . . . ,m − 1 for n = 0, . . . , d,

with ζ j
m as in Definition 2.

We continue by presenting an important theoretical result concerning the properties of subdivision sub-symbols. It
connects two types of sub-symbols, associated with a subdivision symbol a(z), i.e.,

aℓ(z) =
∑
i∈Z

ami+ℓ zi , ℓ = 0, · · · ,m − 1, see, for example, [2, 3, 5, 7] (6)

and
ãℓ(z) =

∑
i∈Z

ami+ℓ zmi+ℓ , ℓ = 0, · · · ,m − 1, see, for example, [8, 16].

These sub-symbols, both used in the literature, are obviously related by the equations ãℓ(z) = zℓ aℓ(zm), ℓ = 0, · · · ,m−
1, z ∈ C\{0}.

Lemma 1. Assume ζ j
m, j = 1, · · · ,m − 1 as in Definition 2. The n-th derivative of a subdivision symbol a(z) satisfies

(Dna(z))|z=ζ j
m
= 0, ∀ j = 1, . . . ,m − 1,

if and only if the n-th derivative of all its sub-symbols aℓ(z) in (6) assume the same value at z = 1, namely

(Dnaℓ(z))|z=1 =
(−1)n

m

n∑
i=0

(
n
i

)
pm,i(ℓ) pm,n−i(−1) (Dn−ia(z))|z=1, ∀ℓ = 0, . . . ,m − 1 , (7)

where

pm,0(x) := 1, ∀x ∈ R and pm,i(x) :=
i−1∏
l=0

( x
m
+ l

)
, ∀i ≥ 1. (8)

Proof. From ãℓ(z) = zℓaℓ(zm) we can easily write aℓ(z) = z−
ℓ
m ãℓ(z

1
m ) so that, using Leibniz rule we have

Dnaℓ(z) =

n∑
i=0

(
n
i

)
Diz−

ℓ
m Dn−iãℓ(z

1
m ) =

n∑
i=0

(
n
i

)
(−1)i pm,i(ℓ) z−

ℓ
m−i

(
Dn−iãℓ(y)

) ∣∣∣∣
y=z

1
m

Dn−iz
1
m

=

n∑
i=0

(
n
i

)
(−1)i pm,i(ℓ) z−

ℓ
m−i

(
Dn−iãℓ(y)

) ∣∣∣∣
y=z

1
m

(−1)n−i · pm,n−i(−1) z
1
m−n+i ,

and therefore, evaluating at z = 1,

(Dnaℓ(z))|z=1 = (−1)n
n∑

i=0

(
n
i

)
pm,i(ℓ) pm,n−i(−1) (Dn−iãℓ(y))|y=1 .

Now, taking into account that in view of [8, Lemma 2.1] the condition (Dn−ia(z))|z=ζ j
m
= 0 ∀ j = 1, . . . ,m − 1, is

equivalent to

(Dn−iãℓ(z))|z=1 =
1
m

(Dn−ia(z))|z=1, ∀ℓ = 0, · · · ,m − 1 ,

the proof is completed.
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Remark 3. We remark that, accordingly to the sub-symbol notation in (6), for a binary subdivision scheme aeven(z) ≡
a0(z) and aodd(z) ≡ a1(z). Though, since we believe that the use of aeven(z) and aodd(z) is simpler and more consistent
with the existing literature of binary subdivision schemes, in this paper we have opted for this notation. We also
observe that in case a(z) contains a shift factor z−n, the shift factor in aodd(z) becomes z−

n
2 for n even, and z−

n+1
2 for n

odd.

The auxiliary result in Lemma 1 will be used in the next subsection to show that the subdivision operator S c
(associated to the symbol in (5)) reproduce linear polynomials with respect to the dual parametrization.

3.2. Analysis of de Rham-type subdivision schemes
We start by investigating the capability of de Rham-type subdivision schemes of reproducing polynomials.

Proposition 2. Let a(z) = aeven(z2) + zaodd(z2) be the symbol of a primal binary subdivision scheme reproducing
linear polynomials, and let b(z) be the symbol of a convergent, primal m-ary subdivision scheme also reproducing
linear polynomials. The correct parametrization for the m-ary subdivision scheme with symbol c(z) = aodd(z) b(z) is
the dual one.

Proof. We start by observing that S c generates linear polynomials, namely (Dkc(z))|z=ζℓm = 0 for ℓ = 1, · · · ,m − 1,
k = 0, 1, since S b generates linear polynomials. Denoted by τb the shift parameter characterizing the parametrization
of S b, from Proposition 1 we know also that b(1) = m and (D1b(z))|z=1 = m τb. Moreover, τc is the correct parameter
for c(z) if and only if τc =

1
m (D1c(z))|z=1. Since c(z) has the expression in (5), we have D1c(z) = (D1aodd(z)) b(z) +

aodd(z) (D1b(z)), which evaluated at z = 1 yields

(D1c(z))|z=1 = (D1aodd(z))|z=1 b(1) + aodd(1) (D1b(z))|z=1,

that is τc = (D1aodd(z))|z=1 + aodd(1) τb. Now, since a(z) reproduces constants, aodd(1) = 1, while due to Lemma 1,
we obtain from (7)-(8) with n = 1, m = 2 and ℓ = 1 that (D1aodd(z))|z=1 =

τa
2 −

1
2 . Therefore, τc = τb +

τa
2 −

1
2 . At

this point, taking into account that S a and S b are primal subdivision schemes reproducing linear functions, we have
τa = τb = 0, from which τc = − 1

2 follows and thus the claim is shown.

In view of Proposition 1, we can also show that, when the dual parametrization is assumed, a de Rham-type sub-
division scheme reproduces polynomials whose degree is at least the minimum between the polynomial reproduction
degrees of the two primal schemes it originates from.

Proposition 3. Let S a be a primal binary subdivision scheme reproducing polynomials up to degree da ≥ 0 with
respect to the parameter τa = 0. Let S b be a primal m-ary subdivision scheme reproducing polynomials up to degree
db ≥ 0 with respect to the parameter τb = 0. Then the de Rham subdivision scheme S c, with symbol c(z) as in (5),
reproduces polynomials up to degree dc = min{da, db} with respect to the parameter τc = − 1

2 .

Proof. We start by observing that

(D jc(z))|z=ζℓm = 0, j = 0, · · · , db, ℓ = 1, · · · ,m − 1,

since (D jb(z))|z=ζℓm = 0, j = 0, · · · , db, ℓ = 1, · · · ,m − 1. Then, we observe that being aodd(1) = 1 and b(1) = m,
we get c(1) = aodd(1)b(1) = m. In addition, using Leibniz rule, we can write the j-th derivative of c(z) = aodd(z)b(z)
evaluated at z = 1 as

(D jc(z))|z=1 =

j∑
i=0

(
j
i

)
(Diaodd(z))|z=1 (D j−ib(z))|z=1 .

Recalling that, by assumption, b(1) = m and (Dkb(z))|z=1 = 0, k = 1, · · · , db (since τb = 0), only the term i = j is left
in the sum so that

(D jc(z))|z=1 = (D jaodd(z))|z=1 m .

Now, in view of Lemma 1, from (7)-(8) with m = 2 we have

(D jaodd(z))|z=1 =
(−1) j

2

j∑
i=0

(
j
i

)
p2,i(1)p2, j−i(−1) (D j−ia(z))|z=1 ,
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so that, due to the reproduction properties of S a, i.e. a(1) = 2, (Dka(z))|z=1 = 0, k = 1, · · · , da, by setting τc = − 1
2 ,

we get

(D jc(z))|z=1 = m(−1) j p2, j(1) = m
j−1∏
l=0

(τc − l), j = 1, · · · , da,

which shows the claim.

In the next section we will show that, when dealing with special case studies, the assumptions in Proposition 3 can
be relaxed to show that the polynomial reproduction degree of S c can be even higher.
Now, we continue by investigating the convergence and smoothness properties of de Rham-type subdivision schemes
in relationship to the analogous properties of the primal schemes they are originated from.

Proposition 4. Let S a, S b be a primal binary and a primal m-ary subdivision scheme, respectively. Let a(z), b(z) be
the associated subdivision symbols such that for a fixed r ≥ 1

b(z) =
(1 + z + · · · + zm−1)r

mr−1 b[r](z) with b[r](1) = 1

and a(z), satisfying a(1) = 2, a(−1) = 0, is decomposed as

a(z) = aeven(z2) + zaodd(z2) .

If one of the following conditions is satisfied,

(i) ∥aodd∥1 · ∥S b[r]∥∞ < 1 , with ∥aodd∥1 =
∑

i∈Z |a2i+1| and ∥S b[r]∥∞ = max{∑i∈Z |b[r]
2i |,

∑
i∈Z |b[r]

2i+1|},

(ii) ∥v∥1 · ∥S 2
b[r]∥∞ < 1 , with v(z) = aodd(z)aodd(zm) and v the associated mask,

then the de Rham-type subdivision scheme with symbol c(z) = aodd(z) b(z) is Cr−1.

Proof. The symbol of the de Rham-type subdivision scheme can be written as

c(z) =
(1 + z + · · · + zm−1)r

mr−1 c[r](z), c[r](z) = aodd(z)b[r](z) .

Therefore, the associated subdivision operator S c satisfies the necessary conditions for convergence c(1) = m, c(ζℓm) =
0, ℓ = 1, · · · ,m − 1. Moreover, since c[r]

i =
∑

j∈Z a2 j+1 b[r]
i− j, in case (i) we have that for all ℓ = 1, · · · ,m − 1

∑
i∈Z |c[r]

mi+ℓ | =
∑

i∈Z

∣∣∣∣∑ j∈Z a2 j+1 b[r]
mi+ℓ− j

∣∣∣∣ ≤ ∥aodd∥1 · ∥S b[r]∥∞ ,

from which the claim follows. Differently, in case (ii), after setting

w(z) := b(z)b(zm) =

m−1∑
i=0

zi


r m−1∑

j=0

zm j


r

m2(r−1) b[r](z) b[r](zm),

we consider the subdivision scheme S q of arity m2 having symbol

q(z) = v(z)w(z) =

m−1∑
i=0

zi


r m−1∑

j=0

zm j


r

m2(r−1) v(z) w[r](z)

with w[r](z) = b[r](z) b[r](zm), w[r](1) = 1. Thus, if ∥v∥1 · ∥S 2
b[r]∥∞ = ∥v∥1 · ∥S w[r]∥∞ < 1, in view of the same arguments

used to show (i), we can conclude that the subdivision scheme S q of arity m2 is Cr−1, that is the subdivision scheme
S c of arity m is Cr−1 too.
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We conclude the discussion concerning the convergence and smoothness properties of de Rham-type subdivision
schemes with a useful proposition dealing with the interesting case when aodd(z) is a smoothing factor for the m-ary
subdivision scheme S b. As observed in Remark 2, being a(z) primal, the highest power of aodd(z) turns out to be odd.
Since the proof of this result is very simple and well-known in the theory of subdivision, it is omitted.

Proposition 5. Let a(z), b(z) be the symbols of the schemes S a, S b satisfying the hypotheses of Proposition 4 that are
in common to the (i) − (ii) cases. Moreover, let a(z) be such that, for a fixed s ≥ 1,

aodd(z) = z−
s(m−1)+1

2
(1 + z + · · · + zm−1)s

ms ,

where s(m − 1) is odd due to the fact that S a is primal.
If there exists L ≥ 1 such that ∥S L

b[r]∥∞ < 1 , then the de Rham-type subdivision scheme with symbol c(z) = aodd(z) b(z)
is Cr+s−1.

4. Applications and examples

Aim of this section is to exploit the strategy proposed in Section 2 to construct new dual approximating subdivi-
sion schemes of arity m, and to show that the generation and reproduction properties of any de Rham-type subdivision
scheme S c are related with those of the two primal schemes S a, S b used for its construction. In some cases, the special
choice of these primal schemes even allows to increase the degree of polynomial reproduction of the corresponding
dual de Rham-type scheme. Of course, the reproduction properties of the de Rham-type scheme S c could be also an-
alyzed by checking directly the algebraic conditions in [8] on the associated symbol c(z). However, the understanding
of the link between the properties of c(z) and the symbols of the two primal schemes used to construct it, is certainly
more interesting.
In particular, in the next two propositions we illustrate how to choose the primal schemes in order to construct a
de Rham-type subdivision scheme reproducing polynomials up to degree 3. While the first proposition provides the
mutual relationship that, for any choice of m, the derivatives of the symbols of the two primal schemes should satisfy,
the second proposition identifies the algebraic conditions that, for an even m, the symbol of the m-ary scheme S b has
to satisfy when aodd(z) is its smoothing factor.

Proposition 6. Let S b be a primal m-ary subdivision scheme reproducing linear polynomials with respect to the
parameter τb = 0 and generating cubic polynomials. Assume also that

aodd(1) = 1, (D1aodd(z))|z=1 = −
1
2
.

Then the de Rham subdivision scheme S c with symbol c(z) = aodd(z)b(z) reproduces linear polynomials with respect
to the parameter τc = − 1

2 . Moreover, if the second and third derivatives of b(z) and aodd(z) are such that

(D2b(z))|z=1 = m
(

3
4
− (D2aodd(z))|z=1

)
,

(D3b(z))|z=1 = −m
(

3
4
+

3
2

(D2aodd(z))|z=1 + (D3aodd(z))|z=1

)
,

the de Rham subdivision scheme S c reproduces cubic polynomials with respect to the parameter τc = − 1
2 .

Proposition 7. Let S b be a primal m-ary (with m even) subdivision scheme reproducing linear polynomials with
respect to the parameter τb = 0, and denote by (i) and (ii) the following conditions on the second and third derivative
of the symbol b(z):

(i) (D2b(z))|z=1 =
m
12 (1 − m2),

(ii) (D2b(z))|z=ζ j
m
= 0, j = 1, · · · ,m − 1 and (D3b(z))|z=1 = −m

4 (1 − m2).
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Assuming that

aodd(z) = z−
m
2

1 + z + · · · + zm−1

m
= m−1 z−

m
2

1 − zm

1 − z
,

if condition (i) is satisfied then the de Rham subdivision scheme S c with symbol c(z) = aodd(z)b(z) reproduces quadratic
polynomials with respect to the parameter τc = − 1

2 , while if conditions (i) and (ii) are both satisfied, then it reproduces
also cubic polynomials.

The proofs of Propositions 6 and 7 are technical (essentially based on the use of Leibniz rule) but trivial, and
therefore omitted. In the next subsections these two results will be exploited to analyze the reproduction properties of
the derived de Rham-type subdivision schemes.

4.1. Dual binary de Rham-type subdivision schemes

We start by reading dual binary B-spline subdivision schemes (even-degree B-splines) as de Rham-type subdivi-
sion schemes originated from a linear B-spline and a primal (odd-degree) B-spline. In fact, for k ≥ 0, taking

a(z) = z−1 (1 + z)2

2
and b(z) = z−(k+1) (1 + z)2k+2

22k+1 ,

the dual de Rham-type subdivision scheme has symbol

c(z) = aodd(z) b(z) = z−(k+2) (1 + z)2k+3

22k+2 , (9)

which is the symbol of the C2k+1 degree-(2k + 2) B-spline. From Proposition 4-(i), since ∥aodd∥1 · ∥S b[2k+1]∥∞ = 1
2 , we

know that S c is at least C2k. On the other hand, since aodd(z) = z−1 1+z
2 is a smoothing factor, by Proposition 5 we

have that S c is actually C2k+1. In addition, from Proposition 3 we know that S c reproduces Π1 with respect to the shift
parameter τc = − 1

2 .

Other interesting examples of de Rham-type subdivision schemes are the dual ν-point (ν ≥ 3) subdivision schemes
in [20]. They can be obtained combining the linear B-spline symbol with a parameter dependent symbol, given
respectively by

a(z) = z−1 (1 + z)2

2
,

and

b(z) = z−(ν−1)
(

1 + z
2

)2ν−4 −(2ν − 3) + 2(2ν + 1)z − (2ν − 3)z2

4
,

with S a and S b both reproducing Π1 with respect to the shift parameter τ = 0. Since, for v(z) = aodd(z)aodd(z2), it
results ∥v∥1 · ∥S 2

b[ν−2]∥∞ < 1, the dual scheme S c with symbol

c(z) = aodd(z) b(z) = z−ν
(

1 + z
2

)2ν−3 −(2ν − 3) + 2(2ν + 1)z − (2ν − 3)z2

4
, (10)

for any ν ≥ 3 is Cν−3 and reproduces Π1 (at least) in view of Proposition 4-(ii) and Proposition 3, respectively. Yet,
once again aodd(z) = z−1 z+1

2 is a smoothing factor, so that due to Proposition 5 S c is indeed Cν−2 for all ν ≥ 3.
We conclude by observing that, since (D2b(z))|z=1 = − 1

2 , then in view of Proposition 7 (with m = 2) S c reproduces
Π2. Moreover, since when ν ≥ 4 the subdivision scheme S b generates polynomials of degree 2ν − 5 ≥ 3 and
(D3b(z))|z=1 =

3
2 , applying Proposition 7 (with m = 2) we are able to show that the de Rham subdivision scheme S c

reproduces Π3 with respect to the shift parameter τc = − 1
2 whenever ν ≥ 4.

In Figure 2 the basic limit functions of the dual ν-point de Rham-type subdivision schemes corresponding to (10) with
ν = 3, 4 are illustrated.
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Figure 2: Basic limit function of the dual binary ν-point de Rham-type subdivision scheme having symbol (10) with ν = 3 (left) and ν = 4 (right).

As a last interesting example, we show how to exploit the de Rham approach to define a new family of dual 4-point
subdivision schemes depending on two free parameters. More precisely, starting from the primal schemes S a and S b
having symbols

a(z) = z−1 (1 + z)2

2
and

b(z) = z−3
(

1 + z
2

)2 1
4

(
− 16wz4 − (2v − 3)z3 + 2(2v + 1 + 16w)z2 − (2v − 3)z − 16w

)
, v,w ∈ R,

respectively, being aodd(z) = z−1 1+z
2 , we obtain

c(z) = aodd(z) b(z) = z−4
(

1 + z
2

)3 1
4

(
− 16wz4 − (2v − 3)z3 + 2(2v + 1 + 16w)z2 − (2v − 3)z − 16w

)
, v,w ∈ R. (11)

Since S a and S b both reproduce Π1 with respect to the shift parameter τ = 0, in view of Proposition 3, S c also
reproduces Π1 with respect to the shift parameter τ = − 1

2 , independently of the value of v and w. As to higher
reproduction capabilities, we fix one of the two free parameters in such a way that the resulting one-parameter family
presents interesting features. First, for v = 3−32w, condition (i) of Proposition 7 (m = 2) is satisfied, and therefore S c
reproduces Π2, even if S b reproduces only Π1. With this choice of the parameter v the de Rham subdivision scheme
coincides with the one-parameter family of dual 4-point schemes proposed in [4]. If we further assume w = 5

64 , then
condition (ii) of Proposition 7 (m = 2) is satisfied too, and S c reproduces Π3. This family member coincides exactly
with the dual 4-point scheme proposed in [14], whose basic limit function is displayed in Figure 2(right). Concerning
the regularity, when v = 3−32w S c is C2 for all w ∈

(
1

192 (35−
√

433), 1
128 (−13+3

√
97)

)
. In fact, with w in this range,

introducing the symbol v(z) = aodd(z)aodd(z2), the inequality ∥v∥1 · ∥S 2
b[2]∥∞ < 1 is verified and thus, taking into account

that aodd(z) is a smoothing factor, we can use Proposition 4-(ii) and Proposition 5. We now fix v = 1
2 (3−32w) such that

S b reduces to the interpolatory 4-point scheme with free parameter proposed in [15], which is C1 for w ∈ (0, 0.19273)
[19]. As a consequence, by means of Proposition 5, the de Rham scheme S c is C2 for w in the same range. The only
dual 4-point scheme of this one-parameter family being capable of reproducing quadratic polynomials is obtained by
w = 3

32 . In fact, this is the only value such that condition (i) of Proposition 7 is satisfied. Note that this value of w is
inside the range (0, 0.19273), and so the resulting scheme is C2. In Figure 3(left) we illustrate the basic limit function
of such a scheme.
As a last case study we set v = 1

2 . Whenever w ∈
(
− 3

16 ,
1

16

)
, by means of Propositions 4-(i) and 5 we can prove that

the resulting de Rham-type subdivision scheme is a one-parameter family of C3 dual 4-point subdivision schemes. In
Figure 3(right) the basic limit function corresponding to the choice v = 1

2 and w = − 1
8 is illustrated. As already shown

in general, this one-parameter family reproduces Π1. The only way of reproducing polynomials of degree higher
than 1 is setting w = 5

64 . As previously pointed out, this choice provides the dual 4-point scheme in [14] which is
Π3-reproducing, but only C2.
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Figure 3: Basic limit function of the dual binary 4-point de Rham-type subdivision scheme having symbol (11) with w = 3
32 , v = 0 (left) and v = 1

2 ,
w = − 1

8 (right).

4.2. Dual ternary de Rham-type subdivision schemes
In the ternary setting we start by applying the de Rham strategy to the primal schemes associated to binary linear

B-splines and ternary B-splines of degree k ≥ 0, having symbols

a(z) = z−1 (z + 1)2

2
and b(z) = z−(k+1) (z2 + z + 1)k+1

3k ,

respectively. The associated subdivision schemes S a and S b reproduce Π1 only, with respect to the parameter τ = 0.
The dual de Rham subdivision scheme resulting from them has symbol

c(z) = aodd(z) b(z) = z−(k+2) 1
2 3k (z + 1)(z2 + z + 1)k+1 , (12)

and, due to Proposition 4-(i), since ∥aodd∥1 · ∥S b[k]∥∞ < 1 we already know that S c is Ck−1. But, though aodd(z) is not
a smoothing factor for the ternary scheme S b, it plays somehow the same role, and S c turns out to be actually Ck (in
fact, the subdivision scheme associated to the symbol c(z) zk+2 3k

(z2+z+1)k+1 =
1
2 (z + 1) is certainly contractive). Moreover, from

Proposition 3 we are able to show that S c is Π1-reproducing with respect to the shift parameter τc = − 1
2 .

In Figure 4 we plot the basic limit function of the dual ternary de Rham-type subdivision schemes having symbol (12)
with k = 1, 2, 3.

Figure 4: Basic limit function of the dual ternary de Rham-type subdivision schemes having symbol (12) with k = 1 (left), k = 2 (center), k = 3
(right).

As a second example, we apply the de Rham strategy to the binary primal subdivision scheme S a having symbol

a(z) = z−3(z2 + z + 1)
(
αz4 +

1
2

z3 − 2αz2 +
1
2

z + α
)
, α ∈ R,

and the ternary primal subdivision scheme S b associated to cubic B-splines, whose symbol is given by

b(z) = z−4 (z2 + z + 1)4

27
.
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It is not difficult to see that S a is C0 for α ∈
(
− 1

2 ,
1
2

)
and that

aodd(z) = z−2
(
α +

(
1
2
− α

)
z +

(
1
2
− α

)
z2 + αz3

)
= z−2 (z + 1)

(
α +

(
1
2
− 2α

)
z + αz2

)
satisfies aodd(1) = 1, (D1aodd(z))|z=1 = − 1

2 for all α ∈ R. On the other hand, as it is well-known, S b is C2 and
Π1-reproducing. The resulting de Rham-type dual subdivision scheme is a new ternary dual scheme with symbol

c(z) = aodd(z)b(z) = z−6 (z2 + z + 1)4

27
(z + 1)

(
α +

(
1
2
− 2α

)
z + αz2

)
. (13)

In view of Proposition 4-(i), since ∥aodd∥1 · ∥S b[3]∥∞ < 1, we know that S c is C2 for all α ∈ R, and due to Proposition
3 we are able to show that S c is Π1-reproducing, at least. Yet, suitably setting the parameter α, we can achieve
higher smoothness and higher degrees of polynomial reproduction. For example, for any α ∈

(
− 1

2 ,
1
2

)
, the de Rham

subdivision scheme S c is still Π1-reproducing but C3-continuous because c(z) z6 27
(z2+z+1)4 = (z + 1)(α +

(
1
2 − 2α

)
z + αz2) is

contractive. Differently, for α = − 35
48 , the de Rham scheme has symbol

c(z) = z−6 1
1296

(z + 1)(−35z2 + 94z − 35)(z2 + z + 1)4,

which is C2-continuous and Π3-reproducing. This can be shown by using Proposition 6 with m = 3.
Figure 5 shows the basic limit functions of the dual ternary de Rham-type subdivision schemes having symbol (13)
with α = 1

32 and α = − 35
48 , respectively.

Figure 5: Basic limit function of the dual ternary de Rham-type subdivision scheme having symbol (13) with α = 1
32 (left) and α = − 35

48 (right).

4.3. Dual quaternary de Rham-type subdivision schemes

This last subsection is devoted to the construction of quaternary dual de Rham-type subdivision schemes. In this
case, we observe that if the final goal is the construction of a subdivision scheme S c which is smoother than the two
primal schemes S a, S b it is built upon, we can select a(z) so that aodd(z) is a smoothing factor for the quaternary
scheme S b. This is possible by taking

a(z) = z−3
(1
4

z6 + αz5 +
1
4

z4 + βz3 +
1
4

z2 + γz +
1
4

)
,

with α, β, γ ∈ R, α + β + γ = 1. With the above observation in mind, we select γ = α and β = 1 − 2α, so obtaining

a(z) = z−3 1
4

(z + 1)2
(
z4 + 2(2α − 1)z3 + 4(1 − 2α)z2 + 2(2α − 1)z + 1

)
, α ∈ R ,

that is
aodd(z) = z−2 1

4
(1 + z + z2 + z3) =

1
4

z−2(z + 1)(z2 + 1).
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Next we choose b(z) as

b(z) =
1
32

z−6(z + 1)4(z2 + 1)3
(
2(1 − w)z2 + (4w − 3)z + 2(1 − w)

)
, with w ∈ R.

The resulting dual quaternary de Rham-type subdivision scheme has symbol

c(z) =
1

128
z−8(z + 1)5(z2 + 1)4

(
2(1 − w)z2 + (4w − 3)z + 2(1 − w)

)
, w ∈ R, (14)

and thus coincides with the family of approximating schemes recently proposed in [23]. Applying Proposition 4-(i),
since ∥aodd∥1 · ∥S b[2]∥∞ < 1 for all w ∈ (− 3

2 ,
5
2 ) and ∥aodd∥1 · ∥S b[3]∥∞ < 1 for all w ∈ (0, 3

2 ), we can show that S c is C1 for
all w ∈ (− 3

2 ,
5
2 ) and C2 for all w ∈ (0, 3

2 ). Due to the fact that aodd(z) is a smoothing factor for the quaternary scheme
S b, the de Rham scheme S c turns out to be actually C2 for w ∈ (− 3

2 ,
5
2 ) and C3 for w ∈ (0, 3

2 ), in view of Proposition 5.
Moreover, since aodd(1) = 1, (D1aodd(z))|z=1 = − 1

2 and S b is Π1-reproducing for all w ∈ R, due to Proposition 6
S c is at least Π1-reproducing. Furthermore, for w = 37

16 S b generates quadratic polynomials and (D2b(z))|z=1 = −5,
(D3b(z))|z=1 = 15. Thus, using Proposition 7 with m = 4 we have that S c is even Π3-reproducing.
In Figure 6 we display the basic limit function of the de Rham scheme with symbol (14) corresponding to the choice
w = 1

2 and w = 37
16 .

Figure 6: Basic limit function of the dual quaternary de Rham-type subdivision scheme having symbol (14) with w = 1
2 (left) and w = 37

16 (right).

5. Conclusions

In this paper we generalize the de Rham transform of a binary subdivision scheme presented in [12], to construct
dual approximating subdivision schemes of arity m via the step-by-step application of a primal m-ary subdivision
operator followed by a primal binary one, and successively by a decimation step aimed at discarding all even-indexed
points from the obtained sequence. Dual de Rham-type subdivision schemes generated by this construction are usually
smoother than the two primal schemes they are built upon, in exchange of a slight increase of the support width.
This is particularly true when we start from interpolatory subdivision schemes, as shown in the numerical examples.
Furthermore, de Rham-type subdivision schemes can also achieve a degree of polynomial reproduction that is higher
than that of the two primal schemes they are built upon, by simply requiring that the symbols associated to the given
primal schemes satisfy certain algebraic properties.
We conclude by mention that the proposed de Rham-type strategy could also be easily applied in the non-stationary
setting to construct dual approximating non-stationary subdivision schemes, for example starting from known primal
interpolatory non-stationary subdivision schemes [6, 9].
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