
Università degli Studi di Milano - Bicocca

FACOLTÀ DI ECONOMIA

Corso di Dottorato di Ricerca in Statistica e Applicazioni XXV ciclo

Machine Learning Methods for Feature Selection and Rule
Extraction in Genome-wide Association Studies (GWASs).

Discussant:

Stefano Nembrini

Matricola 734383

Supervisor:

Prof. Paola Zuccolotto

Co-supervisors:

Dott. Cristian Pattaro
Dott. Marco Sandri

Academic Year 2011 – 2012

Contents

Introduction 1

1 Preliminary Concepts 1

1.1 Introduction . 1

1.2 Definitions . 6

1.3 Model Selection . 8

1.4 (Variable) Relevance . 11

1.5 Feature-Selection Algorithms . 16

1.5.1 Filters . 16

1.5.2 Wrappers . 17

1.5.3 Embedded Methods . 18

2 Ensemble Generation 19

2.1 Perturbation Sampling Methods 24

2.2 Why Ensembles Work . 27

3 Classification and Regression Trees (CART) 29

3.1 Impurity Reduction . 31

3.2 CART Properties . 33

3.3 CART Limitations . 33

4 Random Forests 35

4.1 Random Forest Algorithm . 35

4.1.1 Generalization Erorr . 37

4.1.2 Implementation and Tuning Parameters 39

4.2 Variable Importance Measures (VIMs) 41

4.2.1 Gini Importance . 41

4.2.2 Permutation Importance 42

i

CONTENTS

4.2.3 Bias and Conditional Permutation Variable Impor-

tance Measure . 43

4.2.4 Permutation Importance by Meng 45

4.3 The Proximity Matrix . 46

4.3.1 Clustering Data . 46

4.3.2 Imputing Missing Values 46

4.3.3 Detecting Outliers . 47

5 Variable Selection Methods 49

5.1 Random Forest Recursive Feature Elimination 49

5.2 Feature Selection with the Boruta Package 55

5.3 Gini VIM Correction Procedure 59

6 Selection of Clinical Variables 65

6.1 Prediction Purposes and Dataset Description 65

6.2 Random Forest Recursive Feature Elimination 70

6.3 Gini VIM Correction Procedure 73

6.4 Feature Selection with the Boruta Package 74

6.5 Results . 75

7 Selection of SNPs 77

7.1 Screening Phase . 78

7.2 Feature Selection Phase . 81

7.2.1 Random Forest Recursive Feature Elimination 81

7.2.2 Gini VIM Correction Procedure 83

7.2.3 Selection through Boruta Algorithm 85

7.3 Results . 86

8 Rule Extraction 99

8.1 Partial Dependence Plots . 99

8.2 Variable Importances . 100

8.3 Fitting Estimation . 101

8.4 Node Harvest . 102

8.5 Rule Extraction for Clinical Variables 106

8.5.1 Partial Dependence Plots for Clinical Variables 106

8.5.2 Variable Importances for Clinical Variables 108

8.6 Rule Extraction for SNPs . 115

ii

CONTENTS

8.6.1 Partial Dependence Plots for SNPs 115

8.6.2 Variable Importances for SNPs 118

8.6.3 Fitting Estimation for SNPs 118

8.6.4 Node Harvest for SNPs 122

9 Concluding Remarks 129

Appendix 133

Bibliography 134

iii

List of Figures

1.1 A view of feature set relevance 16

3.1 A CART example: The root is split according to X1 and its

cutting point a into left and right node. Right node is again

split according to variable X2 and cutting point b. 30

6.1 RMSE for RF-RFE obtained for a 10-fold cross-validation

repeated ten times. At each step a single variable is dropped. 70

6.2 Inclusion Probability for Clinical Variables 71

6.3 Gini Correction for clinical variables 73

6.4 Boruta Selection for clinical variables 74

7.1 Plots showing variable importances for the highest ranking

100 variables: Gini VIM (top left), Permutation VIM (top

right), and Meng Permutation VIM (bottom). 79

7.2 RMSE for RF-RFE obtained for a 10-fold cross-validation

repeated ten times. At each step 20% of SNPs are dropped:

on the x-axis the number of SNPs used is shown. 81

7.3 Inclusion Probability for SNPs. 82

7.4 Gini Correction for SNPs. 83

7.5 z-score distribution of attributes marked as confirmed in the

Algorithm . 85

7.6 RMSE for different SNPs selections 87

7.7 RMSE for clinical variables and clinical variables with the

addition of the 50 selected SNPs 90

7.8 RMSE distribution for clinical variables (dotted cline) and for

clinical variables with the addition of SNPs (solid line) 91

v

LIST OF FIGURES

8.1 Partial Dependence Plots for clinical variables 1:16 106

8.2 Partial Dependence Plots for clinical variables 17:28 107

8.3 Gini VIM for clinical variables 108

8.4 Gini VIM for clinical variables - except age 109

8.5 Principal Components of VIM’s for clinical variables 111

8.6 Principal Components of VIM’s for clinical variables - except

age . 112

8.7 Partial dependence plot for age 113

8.8 Partial dependence plot for schmitz urea 114

8.9 Smoothed partial dependence plot for age, schmitz urea, bmi,

and schmitz igf 1. 115

8.10 Partial Dependence Plots for SNPs 1:25 116

8.11 Partial Dependence Plots for SNPs 26:48 117

8.12 Ranking and PC value of SNPs 118

8.13 Fitting Estimation showing overfitting (left), and Fitting Es-

timation (right) . 120

8.14 Fitting Estimation procedure showing cutting points and SNP

names. 121

8.15 Tuning of node harvest interaction depth. 122

8.16 Node Harvest for SNPs selected. 124

9.1 Summary Schema . 129

vi

List of Tables

1.1 Machine Learning Terms . 6

5.1 Contingency table obtained by splitting on variable Xi at

node j. 60

6.1 Datasets used throughout this work 66

6.2 List of clinical variables 1:30 . 68

6.3 List of clinical variables 31:68 69

6.4 Summary of the selection of clinical variables 75

7.1 mtry values . 78

7.2 Number of SNPs used for each RF model. 86

7.3 Average RMSE comparison for different SNPs selections . . . 88

7.4 Computational Times of feature selection algorithms. 88

7.5 Average RMSE comparing the two subsets. 90

7.6 SNPs selected 3/2 times plus p-values and GWAS(MICROS)

rank in regression . 91

7.7 SNPs selected once plus p-values and GWAS(MICROS) rank

in regression . 92

7.8 Inclusion frequency greater than or equal to 0.1 in trees in RJ

and rankings . 93

7.9 Inclusion frequency less than 0.1 in trees in RJ and rankings 94

7.10 SNPs summary (1:25) . 96

7.11 SNPs summary (26:50) . 97

8.1 Median VIM values for clinical variable age 108

8.2 Ranking and PC value of clinical variables 110

8.3 Ranking and first PC value of SNPs 119

vii

LIST OF TABLES

8.4 Fitting Estimation description, * indicates terminal node . . . 123

8.5 Inclusion frequencies of SNPs in the Fitting Estimation that

also appear in the Node Harvest solution. 125

8.6 Node Harvest Estimator for SNPs: nodes 1-27 126

8.7 Node Harvest Estimator for SNPs: nodes 28-54 127

8.8 Node Harvest Estimator for SNPs: nodes 55-82 128

viii

Chapter 1

Preliminary Concepts

1.1 Introduction

The genetics and heredity of human complex traits have been studied for

more than a century now, and many genes have been found to be implicated

in such traits.

Recent advances in biotechnology, in particular in microarray technol-

ogy, allow hundreds of thousands of measurements of a biosample, making

genome-wide association studies (GWAS) possible. These were conceived

with the purpose to study the association between common genetic variation

and complex human traits using high-throughout platforms which measured

hundreds of thousands of common single-nucleotide polymorphisms (SNPs).

Thanks to these studies many novel genetic loci associated with com-

plex traits have been successfully identified primarily using a univariate

regression-based approach.

In biological systems, proteins, DNA, RNA, and metabolites frequently

interact to perform their biological function, and to respond to environmen-

tal factors.

The traditional regression-based methods usually provide a cozy frame-

work to work upon, in that they are quite well established in the genetic

field and produce a fairly understandable output, but they are limited to

address the complex interaction among the hundreds of thousands of SNPs

and their environment.

Many human traits and diseases display a high heritability, showing a

1

CHAPTER 1. PRELIMINARY CONCEPTS

strong genetic element connected with such traits and diseases. The genetic

studies in human populations have estimated the heritability and identified

genetic loci linked to these human traits and diseases.

Although over 2000 genetic variants have been successfully identified

associated with human diseases by GWAS using univariate approaches, these

findings have been able to explain only a small portion of the heritability of

most complex diseases (e.g. Chronic kidney disease (CKD)).

Many explanations of this missing heritability have been suggested (Mano-

lio et al., 2009):

1. Larger numbers of variants of smaller effects should be included in

GWAS studies.

In the last few years, a number of consortia have been created with

the purpose of discovering novel genetic variants, this has brought a

growth in sample sizes capable of detecting novel loci associated with

human diseases, yet this loci - having small effects - contribute to

explain additional variability to a limited extent.

2. Rarer variants (possibly with larger effects), that are inadequately de-

tected by available current arrays, should be included.

’Next-generation’ sequencing (NGS) technologies - allowing full DNA

sequencing - will facilitate the comprehensive catalogue of variants

with minor allele frequency (MAF) that should account for larger vari-

ations of the study outcomes.

3. Structural variants that contribute to the basis of the disease, but are

incompletely assessed by commercial SNP genotyping arrays, should

be accounted for.

Several approaches have been developed for taking into account such

structural variation, e.g. integrating analysis of copy number variants

into GWAS.

4. Low power to detect gene-gene and gene-environment interactions.

The purpose of this study focuses on this latter and consists in looking

deeper into already available data, focusing on the use of different statistical

models hopefully capable of detecting such interactions, with the prospect

of explaining some additional variability or of giving a better insight of the

underlying mechanisms.

2

1.1. INTRODUCTION

The main reason is that, although most complex diseases involve multi-

ple genes and their interactions, existing studies are mainly based on lim-

ited single-locus approaches, detecting SNPs essentially according to their

marginal associations with phenotypes (Li et al., 2011).

Rather than functioning linearly and independently, genes and their pro-

tein products function as interactive complexes in biological pathways, net-

works, and systems. The genetic architecture involves these higher order

genetic interactions and their relationship with the environmental factors

(Moore and Dunlap, 2010).

While on the one hand, the large amount of genotypic and phenotypic

measurements on large samples from GWAS allows us to better understand

the genetic architecture of complex diseases, on the other, large datasets

(even millions of predictors and thousands of individuals) present hard com-

putational challenges both in data management as well as in statistical anal-

ysis. To search for additional genetics effects of complex diseases and to

improve the prediction of diseases, some alternative methods have been pro-

posed to complement the classic statistical genetic methods, e.g. tree ensem-

bles, which have recently gained popularity in GWAS due to their ability to

capture the complex interaction effects that classical regression models lack

of, e.g. random forests (Breiman, 2001) and Gradient Boosting Machines

(Friedman, 2002).

The use of such methods is not new. Successful applications were con-

ducted in various studies (see Chang et al. (2008), Bureau et al. (2005),

Jiang et al. (2009), Sun et al. (2007)). For instance Lunetta et al. (2004)

use random forests as an exploratory tool for genomic studies: they suggest

the use of random forest when little is known about the genetic architecture

of the trait (i.e. response) at hand. If interactions among SNPs exist, vari-

able importance measures provided by the method will reflect this. If this is

the case, they claim the random forest approach will outperform a univariate

ranking method (Fisher Exact test in this case) when one is interested in

screening large numbers of SNPs among a large number of irrelevant SNPs.

It is however important to note that, in the before mentioned studies, the

dimensions of the problem at hand were restricted, for example the num-

ber of samples ranged from a hundred to around 2000, while the number of

SNPs ranged from 200 up to 100000, but in this latter case, the number of

samples was extremely small (around a hundred), such was due to the big

3

CHAPTER 1. PRELIMINARY CONCEPTS

computational demands of the algorithm for large datasets.

It was not until recent years, that RF were able to be applied to full

datasets, i.e. the same dataset to which univariate techniques are applied.

For instance (Goldstein et al., 2010) apply random forest to a multiple scle-

rosis (MS) case-control dataset (n ≅ 3000, p ≅ 300000), and show that such

method can provide results that can be compatible with previous studies

based on univariate rankings, yet they are able to detect new SNPs associ-

ated with the outcome of interest.

Data from GWAS studies usually show common issues, these are shown

below along with the benefits ensemble methods provide:

1. Multicollinearity

SNPs are mostly independent, but SNPs close to each other may

be strongly correlated. Ensemble learning methods are usually able

to build good predictors even when multicollinearity is present (Li-

akhovitski et al., 2010).

2. Large number of variables (hundreds of thousands) compared

to that of observations (some thousands).

Ensemble learning methods have emerged as a tool to analyze high-

dimensional biomedical data, where this problem is quite common

(Dı́az-Uriarte and De Andres, 2006).

3. Large number of observed covariates, but small number of

informative covariates.

Having to deal with a great amount of variables requires some kind

of preselection: the huge number of predictors can be usually tack-

led through some dimension reduction technique like the combina-

torial partitioning method (Nelson et al., 2001), restricted partition

method (Culverhouse et al., 2004), set association (Wille et al., 2003),

multifactor dimensionality reduction (Hahn et al., 2003) or a variable

screening procedure (Culverhouse et al., 2004; Fan and Lv, 2008). En-

semble methods have shown stable performance and insensitivity to

uninformative predictors, nevertheless, in order to provide more accu-

rate results, a modification of the classic RF algorithm was proposed

by Amaratunga et al. (2008),by the name Enriched Random Forest,

4

1.1. INTRODUCTION

i.e. a random forest where the contribution of trees whose nodes are

populated by non-informative features is reduced. It is well known

that the reduction of noisy variables can convey great improvements

in the predictive ability. For instance, since Random Forests has been

demonstrated to be robust if the signal-to-noise ratio is not extremely

small, a prefiltering procedure may reduce the impact of the non in-

formative predictors by reducing the search space.

4. Necessity to select relevant genes.

Usual approaches use univariate rankings of gene relevance and arbi-

trary thresholds to identify relevant genes (Hindorff et al., 2009): this

approach clearly lacks a global view. Variable selection performed by

an ensemble method is achieved according to multivariate rankings,

i.e. the ranking of a gene is performed according to the whole set of

genes.

5. Gene-gene, gene-environment interactions and complex rela-

tionships

These algorithms allow dropping usual linear assumptions and are par-

ticularly suited to discover higher order and non-linear effects, but they

often referred to as black boxes - and therefore criticized - in that their

outcome may be difficult to understand. In order to help interpret their

results, we think a rule extraction method may come in handy, which

is a technique meant for improving the interpretability of these meth-

ods. These techniques can either build a transparent model (Barakat

and Diederich, 2004; Johansson et al., 2010), thus easily interpreted,

or simplify the interpretability of an ensemble method by selecting just

a few nodes from a large initial large number of nodes (Meinshausen,

2010), which is a desirable outcome in the biological and medical field.

6. High computational burden due to a large number of covari-

ates.

The packages that implement ensemble algorithms are usually unable

to handle high-dimensional data, or not optimized for large datasets.

The Random Jungle package, on the other hand, was specifically cre-

ated for the fast analysis of GWAS data and will be extremely useful in

our work, specially in the SNP screening phase (Schwarz et al., 2010).

5

CHAPTER 1. PRELIMINARY CONCEPTS

7. Variables can be continuous, categorical (ordinal and nomi-

nal) and binary.

Ensemble algorithms are meant for dealing with all these types of vari-

ables.

8. Clustered observations.

Studies can be based on related individuals, i.e. observations are not

independent. This can be solved running a mixed linear model, and

taking the residuals of that model as the new outcome. This is further

analyzed later on.

1.2 Definitions

In machine learning, there exists a use of terms that may differ from those

commonly used in statistics. Therefore, some of these are summarized in

table 1.1.

Table 1.1: Machine Learning Terms

term synonyms

dependent variable decision attribute, outcome, response, target (variable)
independent variables predictors, attributes, features, predictor variables

dataset (information) system

In this section, some definitions can be found, that can be useful to

understand some biological terms used in the present work (King et al.,

2006; Moore and Dunlap, 2010).

Character/Trait/Phenotype.

Any detectable phenotypic property of an organism; synonymous with phe-

notype, trait. The observable characteristics of a cell or an organism, such

as its size and shape, its metabolic functions, and its behavior. The geno-

type is the underlying basis of the phenotype, and the term is commonly

used to describe the effect a particular gene produces, in comparison with

its mutant alleles. Some genes control the behavior of the organism, which

in turn generates an artefact outside the body.

6

1.2. DEFINITIONS

Complex disease.

A complex disease is caused by a combination of genetic, environmental,

and lifestyle factors, most of which have not yet been identified.

Gene.

The definition of a gene changes as more of its properties are revealed. In the

classical literature it is defined as a hereditary unit that occupies a specific

position (locus) within the genome or chromosome; a unit that has one or

more specific effects upon the phenotype of the organism; and a unit that

recombines with other such units.

Genetic Architecture.

It refers to the complete genetic basis, which includes various types of genetic

effects, underlying a given trait.

GWAS.

A genome-wide association study is an examination of the association be-

tween genetic variation across a whole genome and a given trait.

Locus (plural loci).

A locus is the position that a gene occupies in a chromosome or within a

segment of genomic DNA.

Nucleotide.

It is one of the monomeric units from which DNA or RNA polymers are

constructed, consisting of a purine or pyrimidine base, a pentose, and a

phosphoric acid group. The nucleotides of DNA are deoxyadenylic acid,

thymidylic acid, deoxyguanilic acid, and deoxycytidylic acid. The corre-

sponding nucleotides of RNA are adenylic acid, uridylic acid, guanylic acid,

and cytidylic acid.

Single-nucleotide polymorphisms.

7

CHAPTER 1. PRELIMINARY CONCEPTS

Single-nucleotide polymorphisms (SNPs) are small variations in DNA se-

quence in which at any given position a single nucleotide is replaced by one

of the other three nucleotides.

1.3 Model Selection

Statistical learning plays an important role in many areas of science when we

need to learn from data, specially in the fields of statistics, data mining, and

artificial intelligence (Friedman et al., 2001). Due to the huge improvements

both in data collection and in computational performances, in the last few

decades we have seen many innovative techniques used to solve large-scale

data problems, such as kernel methods, neural networks, support vector

machines and ensemble methods. In such scenario, one is usually interested

in learning from data as to be able to build models which will prove useful

for the prediction of future outcomes. In the next pages we follow the work

of Guyon et al. (2010) to present a unified approach to model selection.

The problem of statistical learning is often decomposed into the tasks of

fitting parameters to some training data, and then choosing the best model

according to some criteria, which is known as model selection. By this

name, one usually refers to a set of techniques used to select a model, that

best explains the data at hand or best predicts future data. From a purely

statistical point of view, we are concerned with supervised learning. The

goal of supervised learning is to predict a target variable y from a domain

Y, which may be either continuous or categorical. The former case yields

a regression problem, while the latter yields a classification problem. The

predictions are produced using a p-dimensional variable x from a domain X ,

and the data pairs (x, y), independent and identically distributed, are drawn

from an unknown, but fixed, probability distribution P (x, y). A number

of n pairs are drawn from that distribution and form the training data

D = {xi, yi}
n
1 , while X = [xij] , i = 1, . . . n, j = 1, . . . p is a n × p-dimensional

design matrix whose rows are the training observations and whose columns

are the features. Finally, we denote by y the a n × 1-dimensional column

8

1.3. MODEL SELECTION

vector containing the target values yi. The supervised learning problem can

be formulated as follows (Guyon et al., 2010):

� Function approximation (induction) methods seek a function

f (called model or learning machine) belonging to a class of models

F , which closely matches a target function, i.e. minimizes a speci-

fied risk function or maximizes some utility function. The goal is to

minimize an expected risk R (f) = ∫ L (f (x) , y)dP (x, y) also called

generalization error, where L (f (x) , y) is a loss function measuring

the discrepancy between f (x) and y. Since P (x, y) is unknown, only

estimates of R (f) can be computed, called evaluation functions or

estimators.

� Bayesian and ensemble methods make predictions according to

model averages that are convex combinations of models f ∈ F , i.e. that

belong to the convex closure of the model class F∗. Bayesian methods

approximate Ef (y∣x) = ∫f∈F f (x)dP (f), an expectation taken over

a class of models F , using an unknown probability distribution P (f)

over the models; starting from a prior distribution which is translated

into a posterior once data have been taken into account. Ensem-

ble methods approximate ED (f (x,D)), where f (x,D) is a function

from the model class F , trained with m examples and ED (⋅) is the

mathematical expectation over all training sets of size m. The idea

behind ensembles is to generate a variety of functions, providing differ-

ent perspectives over the problem at hand, then creating a consensus

through the ensemble itself.

A single model can be parametrized as f (x;α,θ), where α are the param-

eters, while θ are the hyper-parameters of the model (Guyon et al., 2010).

The latter can include: indicators of the presence/absence of features, choice

of pre/postprocessing, choice of the algorithm (e.g. linear models, neural

networks, kernel methods, etc.), algorithm parameters (e.g. number of lay-

ers in a neural network). The tuning of model parameters is referred to as

the first level of inference: data are split in several subsets of size mtr for

the purpose of training the models. The validation sample of size mva is

that part of the data used to adjust the hyper-parameters θ at the second

level of inference. Lastly, mte is the number of samples used to evaluate the

9

CHAPTER 1. PRELIMINARY CONCEPTS

final model. Thus the empirical estimates of the expected risk are called:

training error (Rtr (f)), validation error (Rva (f)), and test error (Rte (f)).

There is a clear connection between the problem of model selection and

that of performance prediction. Performance prediction is the problem of

estimating the expected risk or generalization error R (f). Model selection

is the problem of adjusting the capacity of the models to the training data

available in order to avoid either under-fitting or over-fitting. Solving the

performance prediction problem would also solve the model selection prob-

lem, but model selection is an easier problem. What is common among the

various views of model selection is the idea of multiple levels of inference,

each level corresponding to one set of parameters or hyper-parameters.

Consider a two-level case for a model class f (x;α,θ) parameterized by

one set of parameters and one set of hyperparameters. From a frequentist

point of view, one creates a hierarchy of optimization problems:

f∗∗ = argminθR2 (f
∗,D) , such that f∗ = argminαR1 (f,D) (1.1)

More generally, we define a multi-level inference problem as a learning prob-

lem organized into a hierarchy of learning problems. Formally, consider

a machine learning toolkit which includes a choice of learning machines

A [B,R] where B is a model space of functions f (x;θ) of parameters θ and

R is an evaluation function (e.g. a risk function). A [B,R] can be thought

of not as a procedure but as an object, as intended in the object oriented

programming context, equipped with a method train, which processes data

according to a training algorithm

f∗∗ = train (A [B,R2] ,D) (1.2)

This framework embodies the second level of inference of equation (1.1).

The solution f∗∗ belongs to B∗, the convex closure of B. To implement the

first level of inference, B can be considered as a learning machine itself - and

not just a model space. Its model space F includes functions f (x;α,θ) of

variable parameters α(θ is fixed), which are adjusted by the train method

of B:

f∗ = train (B [F ,R1] ,D) (1.3)

10

1.4. (VARIABLE) RELEVANCE

The solution f∗ belongs to F∗, the convex closure of F . The method train

of A should call the method train of B as a subroutine, because of the nested

nature of the learning problem of equation (1.1). Note that for fixed values

of θ, the problem of learning a can be formulated as a convex optimization

problem, with a single unique solution, for which powerful mathematical

programming packages are available, while the overall optimization of α

and θ is nonconvex.

After assessing the importance of model selection inside a statistical

learning perspective, it is of interest to outline that ensemble methods (e.g.

random forest, and boosted trees) can be seen as a way of avoiding such

model selection by averaging among models rather than choosing a single

model. On the one hand, model selection algorithms are the best choice in

application where model simplicity and insight of the phenomenon are the

aim of the analysis, on the other hand, ensembles - especially after the latest

computational power growth - have proved to be cutting edge solution for

prediction.

1.4 (Variable) Relevance

As stated above, model selection algorithms are chosen when interpretability

is a key aspect to be taken into account, and can be agreed on that they

should be used whenever possible, especially when the number of features is

small. The extensive enhancement in data storage has allowed a dramatic

increase in the number of features that can be included, resulting in the

great dilemma interpretability vs. performance. Therefore, there has been

a large increase in the study of relevant features, particularly in the data

mining and machine learning areas for feature subset selection. Such subset

should contain features good enough to describe the training data as well as

to predict future cases. Following Bell and Wang (2000), we provide some

formalizations of the concept of relevance.

Gärdenfors (1978) states that - when judging the probability of a state-

ment r, the relevance relation is defined with the aid of a given probability

measure P as: p is relevant to r on prior evidence e iff P (r∣p&e) ≠ P (r∣e),

11

CHAPTER 1. PRELIMINARY CONCEPTS

while p is irrelevant to r on evidence e iff P (r∣p&e) = P (r∣e). This means

that if the probability of statement r is changed by adding p to e, p is

said to be relevant on the evidence e - otherwise it is declared irrelevant.

Moreover, relevance in this sense can be divided into both positive and

negative relevance, where p is positively relevant to r on the evidence e

P (r∣p&e) > P (r∣e) and negatively relevant if P (r∣p&e) < P (r∣e).

According to the work of Pearl (1988), irrelevance can be identified with

conditional independence, while relevance comes from the negation of irrel-

evance. The properties of conditional independence are the following:

Let X , Y, and Z be three disjoint sets of variables. If F (X ,Z,Y) stands

for the relation X is independent of Y given Z in some probability distribu-

tion p, then F must satisfy the following conditions:

� Symmetry: F (X ,Z,Y)⇐⇒ F (Y,Z,X);

� Decomposition: F (Y,Z,X ∪W)⇒ F (X ,Z,Y) and F (X ,Z,W);

� Weak Union: F (Y,Z,X ∪W)⇒ F (Z,X ∪W,Y);

� Contraction: F (X ,Z,Y) and F (X ,Z ∪Y,W)⇒ F (X ,Z,Y ∪W).

The main contribution in the definition of relevance within a machine

learning context is due to John et al. (1994) and Kohavi (1994). Their main

definition differentiates between strong and weak relevance. Let Si be the

set of all features except Xi, i.e. Si = {X1, . . . ,Xi−1,Xi+1, . . . ,Xm}, and let

Y be a decision attribute not in Si. Denote by si a value-assignment to all

features Si, then Xi is strongly relevant to Y iff there exist some xi, y, and

si with P (Xi = xi, Si = si) > 0 such that

P (Y = y∣Si = si,Xi = xi) ≠ P (Y = y∣Si = si) . (1.4)

A feature Xi is weakly relevant to Y iff it is not strongly relevant, and

there exists a subset of features S
′
i of Si for which there exists some xi, y,

and s
′
i with P (Xi = xi, S

′
i = s

′
i) > 0 such that

P (Y = y∣Xi = xi, S
′
i = s

′
i) ≠ P (Y = y∣S

′
i = s

′
i) . (1.5)

12

1.4. (VARIABLE) RELEVANCE

These definitions imply that Xi is strongly relevant if the probability of

the outcome Y (given all features) can change if the knowledge about the

value of Xi is eliminated, and thus, it cannot be removed without perfor-

mance degradation of the predicting algorithm. On the other hand, Xi is

weakly relevant if it is not strongly relevant, but can sometimes contribute

to prediction accuracy.

All the above definitions provide a more qualitative definition of rele-

vance. In the following lines, we provide a more quantitative definition of

relevance which complies with the commonsense meaning that is usable for

the purpose of variable selection.

According to Bell and Wang (2000), the relevance of a variable with

respect to another (target) variable one is defined in terms of information

theory as the mutual information between the two variables relative to the

entropy of the target variable, i.e. the relative reduction of uncertainty of

one variable due to the knowledge of another.

First, let us recall two basic notions of information theory: entropy and

mutual information (Cover and Thomas, 2006). The entropy of a random

variable X with a probability mass function p (x) is defined by

H (X) = −∑
x

p (x) log2p (x) (1.6)

The entropy is a measure of the average uncertainty in the random vari-

able. While entropy is the uncertainty of a single random variable, condi-

tional entropy H(X ∣Y) is the entropy of a random variable conditional on

the knowledge of another random variable. The reduction in uncertainty

due to another random variable is called the mutual information.

For two random variables X and Y the mutual information is defined

13

CHAPTER 1. PRELIMINARY CONCEPTS

as:

I (X,Y) =H (X) −H (X ∣Y) =∑
x,y

p (x, y) log
p (x, y)

p (x)p (y)
. (1.7)

Such quantity measures the dependence between the two random vari-

ables. It is symmetric in X and Y , always non-negative, and is equal to zero

iff X and Y are independent.

More generally, given three sets of variables X , Y, and Z (where a sin-

gle variable X, Y , or Z is regarded as a singleton set of variables) with a

joint probability distribution p, let I (X ;Y, ∣Z) be the mutual information

between X and Y given Z, and let H (X ∣Y) be the entropy of of X given

Y. If H (Y ∣Z) ≠ 0, then the variable relevance of X to Y given Z, denoted

rp (X ,Y ∣Z), is defined as

rp (X ,Y ∣Z) =
I (X ,Y ∣Z)

H (Y ∣Z)
=
H (Y ∣Z) −H (Y ∣X ,Z)

H (Y ∣Z)
(1.8)

If H (Y ∣Z) = 0, then rp (X ,Y ∣Z) = 0.

In order to define the problem of Feature Subset Selection (FSS) in the

context of machine learning, we remind that X = {X1,X2, . . . ,Xp} is the

set of features and Y the decision attribute. Given a dataset D (X , Y), the

learning task of the algorithm is to deduce the (unknown) structure between

X and Y so that this relation can be used to predict future cases. This rela-

tionship can be referred to as learning information, whose natural measure

is the mutual information, defined as I (X , Y) (Cover and Thomas, 2006).

A good feature subset should retain the learning information contained in

the dataset.

For a given feature subset Π ⊆ X , if I (Π, Y) = I (X ,Y), Π is said to

preserve the learning information and is defined a sufficient feature subset

(SFS). Therefore, removing all other features Σ = X ∖Π will not result in a

loss of learning information, i.e. Y is conditionally independent of Σ given

Π.

Given a specific dataset, there may be more than one SFS, although they

14

1.4. (VARIABLE) RELEVANCE

may not be equally good for prediction purposes. To solve this multiplicity

problem, we can introduce the empirical principle known as Occam’s razor,

also known as the principle of parsimony. In machine learning, it can be

formulated as: given two models that are both consistent with the training

data, the simpler one should perform better on future examples. In other

words, Occam’s razor is a way to build (hopefully) optimal generalizers

(Wolpert, 1990). In order to define model simplicity, one can take advantage

of some measure of simplicity (or complexity), e.g. the number of neurons

in a neural network, the number of leaf nodes in a CART, or the number of

degrees of freedom in a linear model. The above mentioned measures are all

model dependent, and change depending on the algorithm used. In order to

achieve a generalized definition of FSS that is not model-dependent, Bell and

Wang (2000) suggest choosing Shannon’s entropy measure as a simplicity

measure in the sense of the encoding length measure seen in (Schweitzer,

1995). Therefore, Π ⊆ X is an occam-optimal feature subset iff Π is an SFS

and there is no Σ such that H (Σ, Y) < H (Π, Y), i.e. Π is an SFS that

minimizes the joint entropy of the features and the decision attribute that

at the same time preserves mutual information. Such conditions can be re-

stated in terms of relevance as I (Π, Y) = I (X , Y) ⇐⇒ r (Π, Y) = r (X , Y)

for any Π ⊆ X , so any Π which preserves learning information in fact also

maximizes the relevance r (X , Y). Let Π and Σ be SFSs. By definition, we

have I (Π, Y) = I (Σ, Y) = I (X ,Y), and then

H (Π;Y) ≤H (Σ;Y)⇐⇒H (Π) ≤H (Σ)⇐⇒
I (Π;Y)

H (Π)
≥
I (Σ;Y)

H (Σ)
(1.9)

Therefore, an occam-optimal FS Π would be the SFS which maximizes

the relevance r (X , Y). An important question is that an occam-optimal FS

may not be unique, due to fact that redundant features - as measured by

the average inter-correlation between features - can act as surrogates and

replace each other in a feature subset. Moreover, finding this optimal FS is a

typical NP-hard problem, hence one must turn to some heuristic algorithm

that can provide (hopefully) quasi-optimal solutions.

In real life cases, it is usually desirable to obtain the smallest feature

subset that gives the best prediction. Another question arises if we would like

to understand the underlying mechanism of the phenomenon at hand - as it

15

CHAPTER 1. PRELIMINARY CONCEPTS

Totally Irrelevant Features

Weakly Relevant Features

Strongly Relevant Features

Figure 1.1: A view of feature set relevance

is in the case of genetic studies, where one wants to discover all possible SNPs

that map to genes which are related to the outcome of interest (typically a

disease). For the above reason, it can be useful to group together weakly

(redundant and non-redundant) and strongly relevant features, yielding a

so-called all-relevant problem, thus, focusing on the removal of irrelevant

ones.

1.5 Feature-Selection Algorithms

Algorithms that deal with datasets containing large numbers of irrelevant

attributes are generally referred to as feature-selection Algorithms. These

can be grouped into three classes: filters, wrappers, and embedded methods

(Kohavi and John, 1997).

1.5.1 Filters

The simplest type of feature selection algorithms are filters. These methods

include a broad class of techniques that aim at the reduction of the model

space F before training the learning machine, and can be seen as some kind

of preprocessing step. Some of the methods that are encompassed in this

class can be Wilcoxon tests, t-tests, ANOVA methods, χ2-tests, Spearman’s

rank correlation coefficient, Pearson’s correlation coefficient, and mutual in-

formation measures.

16

1.5. FEATURE-SELECTION ALGORITHMS

This filtering can be thought both on a univariate scale as well on a multi-

variate scale. In this latter case, one can include methods like the FOCUS

algorithm (Almuallim and Dietterich, 1991), which exhaustively examines

all the subsets of features and selects the minimal one that is sufficient

to distinguish between two classes in the training data, or the Relief al-

gorithm (Kira and Rendell, 1992), which uses an approach based on the

K-nearest-neighbor algorithm to assign an importance measure to a feature

from randomly sampled subsets of the training set.

As for other filtering approaches, one could perform some dimensionality

reduction, such as Principal Components Analysis or a Clustering Method,

in order to select some variables to feed the inductive algorithm.

This approach works well in domains where there is little interaction

among relevant attributes, in the opposite case such method can lead a

relevant feature in isolation to look no more useful that an irrelevant one

Blum and Langley (1997). The main drawback of this approach is that it

ignores the effect of the selected feature subset on the performance of the

induction algorithm whatsoever, in the sense that the selection process and

the induction algorithm are performed on two different levels.

1.5.2 Wrappers

Wrapper methods consider learning machines as black boxes capable of in-

ternally tuning their parameters α given some data D and some hyper-

parameters θ. Wrappers use either a search algorithm or a sampling al-

gorithm (e.g. Monte-Carlo Markov Chain methods) to explore the hyper-

parameter space and an evaluation function or a posterior probability to

assess the performance of the trained machine, and finally select either one

single (best) model or create an ensemble to make predictions. In this case,

feature selection algorithm performs a search for a good subset using the

induction algorithm itself as a part of the evaluation function. For fre-

quentist approaches, the most commonly used evaluation function is the

cross-validation estimator (for bagging methods, the bootstrap estimator

is a natural choice). Two of the most famous wrappers are the sequential

forward selection and backward elimination. The former begins the search

with the empty set of features, while the latter begins with the full set of

features.

The main (and straight) drawback of wrappers over filters is the former’s

17

CHAPTER 1. PRELIMINARY CONCEPTS

computational demands. But this approach has to be preferred over the

former, in case we are dealing with features that interact to some extent.

1.5.3 Embedded Methods

Embedded methods are similar to wrappers in the sense that they need an

evaluation function and a search strategy to explore the hyper-parameter

space. In contrast to filter and wrappers, embedded methods do not separate

the learning from the feature selection process.

These methods have been drawing some attention in the machine learn-

ing field lately. Among these, one can include the LASSO (Tibshirani, 1996),

or the elastic net (Zou and Hastie, 2005). Other examples include decision

trees, which select relevant features using top-down, hierarchical partition-

ing schemes, where the output is a model that uses only a subset of features,

i.e. those that appear in the nodes of the tree. Among these, we find CART

(Breiman et al., 1984), CHAID (Kass, 1980), and C4.5 (Quinlan, 1993).

When the underlying phenomenon at hand presents interactions between

features, it is strongly advised to avoid filters. Therefore, all the methods

used in this work as variable selection tools can be encompassed in the

definition of wrappers around the random forest function, which uses the

CART recursive partitioning function as base learner. Such methods are

described later on.

18

Chapter 2

Ensemble Generation

In the following chapter, we present an algorithm for the generic ensemble

generation as proposed in Friedman et al. (2003), which provides a general

framework in which one can include classic ensemble methods like bagging,

random forests, and gradient boosting.

From previous section we recall that the purpose of supervised learning

is to predict the values of a response variable y using the known joint values

of a covariate set x = (x1, x2, . . . , xp). Predictions take the form ŷ = F (x),

where F (x) is a function that maps the input variables x to a value of

the output variable y. The purpose of supervised learning is to produce an

accurate mapping, and lack of accuracy is defined by the prediction risk

R (F) = ExyL (y,F (x)) (2.1)

where L (y, ŷ) is a loss function that characterizes the cost of predicting

a value ŷ when the true value is y, and the expected value is over the joint

distribution (x, y) of all variables for the data to be predicted. In this case,

the optimal mapping function is the one that minimizes the prediction risk

F ∗
(x) = arg min

F (x)
ExyL (y,F (x)) (2.2)

In the supervised learning case, one is given a collection of observed

19

CHAPTER 2. ENSEMBLE GENERATION

cases {xi, yi}
N
1 , where for each observation the values of all the variables

have been determined. Thus, an approximation F (x) to F ∗ (x) is obtained

by applying a learning method to the training data, which are often regarded

as a random sample of some probability distribution.

Ensemble methods have the following structural form

F (x) = a0 +
M

∑
m=1

amfm (x) (2.3)

where M is the size of the ensemble and fm (x) is a different function

of the input variables x derived from the training data, called base learner.

The prediction provided by the ensemble is a linear combination of the

predictions given by each base learner, with {am}
M
0 being the parameters

that define the particular linear combination. Ensembles differ in the choice

of particular base learners, how they are derived from the data, and how the

parameters {am}
M
1 are obtained. Popular base learners include, for example,

multivariate spline functions (Friedman, 1991), where the parameters are the

knots on the corresponding variables, and CARTs (Breiman et al., 1984),

where the parameters are the splitting variables, the values defining the

partition of the covariate space, and the values assigned to the terminal

nodes. Given a set of base learners {fm (x)}M1 , the parameters of the linear

combination are obtained by a regularized linear regression on the training

data

{âm}
M
0 = arg min

{am}M0

N

∑
i=1

L(yi, a0 +
M

∑
m=1

amfm (xi)) + λ ⋅
M

∑
m=1

∣am∣ . (2.4)

The first term in (2.4) measures the prediction risk on the training data,

while the second is a regularization term that penalizes the coefficients of

the base learners. The amount of regularization is given by λ ≥ 0. Usually

larger values of λ produce more overall shrinkage, with a larger number of

parameters being set to zero (Tibshirani, 1996). The value of λ should be the

one minimizing the future prediction risk based on future samples, which

is usually determining via cross-validation. The base learners {fm (x)}M1
are randomly generated by means of the perturbation sampling technique

accurately described in (Friedman et al., 2003) and presented later in this

20

chapter, and are taken to be a simple function of the covariate set x indexed

by a set of parameters {p = p1, p2, . . .}, as

fm (x) = f (x;pm) (2.5)

where pm represents a set of parameters indexing a specific function

fm (x) from a the parametrized class f (x;pm).

Friedman et al. (2003) make a connection to numerical integration, and

view the mapping function F (x) in the form

F (x, a) = a0 + ∫
P
a (p) f (x;p)dp, (2.6)

where f (x;p) is the single base learner, indexed by a set of parameters

p = (p1, p2, . . . , pK) and a (p) is its corresponding coefficient in the linear

model (2.6).

Because most useful base learners f (x;p) involve several parameters,

the integration problem in (2.6) is high dimensional. To solve this integral,

numerical quadrature is carried out as in (2.3) and (2.4). The evaluation

points p = (p1, p2, . . . , pM) are drawn at random from some probability dis-

tribution r (p) defined on the parameter space p ∈ P . One way to do so is to

choose r (p) to be constant so that each point is equally likely to be selected

at each of the M draws. Thus, equation (2.6) is computed through Monte

Carlo integration and can be approximated by the average of the function

evaluated at a set of evaluation points p = (p1, p2, . . . , pM). On the other

hand, it could be useful to recognize that certain values of these evaluation

points have more impact on the accuracy of the integral being estimated,

and therefore, it should be advisable to sample more frequently around these

important values.

In Monte Carlo integration, point importance can be measured in single

or group fashion. In the former case, the relevance of each point is de-

termined without taking into account other points being evaluated in the

quadrature rule, while in the latter, importance is assigned to groups of

points together, rather than separately to individually sampled points. The

former situation requires pure Monte Carlo methods, while the latter re-

quires quasi Monte Carlo techniques. This typically depends on the type

21

CHAPTER 2. ENSEMBLE GENERATION

of ensemble being used: parallel ensembles like Bagging or Random For-

est require single importance sampling, while other methods like Gradient

Boosting take advantage of group importance sampling.

Given a single evaluation point p ∈ P , this idea of importance is formally

defined by its lack of relevance:

J (p) = min
α0,α

ExyL (y,α0 + αf (x;p)) (2.7)

If a single base learner were to be selected (e.g. a tree), it would be the

global minimizer

p∗ = arg min
p∈P

J (p) (2.8)

This value is unlikely for this optimal single point to produce as accurate

results as one involving many evaluation points, but this is the usual praxis,

e.g. when a single tree or linear regression model is used. The assumption

is that a collection of evaluation points, each having small values of J (p),

will produce an integration rule with higher accuracy than that provided by

the best single point rule (or even than that of a similar sized collection of

evaluation points sampled with constant probability).

As to apply Monte Carlo sampling as stated above, a sampling probabil-

ity r (p) that gives high probability to points p ∈ P providing smaller values

of J (p). That is

r (p) = g (J (p)) (2.9)

where g (⋅) is a monotonically decreasing function of its argument. The

density r (p) will be centered at or near p∗ and have correspondingly de-

creasing values for points increasingly distant from p∗. Introducing random-

ness in the selection of the evaluation points produces less optimal values

with J (p) ≥ J (p)
∗. The relevant distance measure is

d (p,p∗) = J (p) − J (p∗) . (2.10)

22

The sampling distribution is characterized by a scale parameter defined

as

σ = ∫
P
d (p,p∗) r (p)dp. (2.11)

A σ with a large value means a large spread of the base learners f (x;p)

with many possible irrelevant cases, resulting in a decrease in the accuracy

of the integration rule. Very large values can be assimilated to the naive

case of Monte Carlo sampling with constant probability.

A σ with a small value means that each sampled point provides little infor-

mation added to that provided by other nearby points, and the base learners

f (x;p) perform quite similarly, while the extreme case of σ = 0 indicates

that the integration rule provides the same accuracy as the best single point.

The value of σ in real life cases depends on M and varies depending on the

joint distribution of (xi, yi)
N
1 and the choice of the base learners f (x;p).

(Breiman, 2001) noticed that the performance of random forest depended

empirically on the strength of the individual trees in the forest and the

correlation between them. This concept stands for every ensemble, and is

connected with the width of the sampling distribution r (p). The strength

of a base learner f (x;p) is directly related to its partial importance, i.e.

inversely related to J (p).

1. An ensemble composed of strong base learners {f (x;p)}
M
1 all having

J (pm) ≃ J (p∗) is known to perform poorly, because the sampling

distribution with a small width σ leads to an ensemble of base learners

all having a similar strength to the strongest one f (x;p∗), providing

similarly highly correlated predictions;

2. An ensemble consisting of very weak base learners J (pm) ≫ J (p∗)
is also known to perform quite poorly, because its corresponding sam-

pling distribution with large width produces highly diverse base learn-

ers, most of which have large values of J (p) and less correlated pre-

dictions.

3. The best results come from an ensemble of moderately strong base

learners whose predictions are not too correlated, which corresponds

to finding a good correlation-strength trade-off for the ensemble mem-

23

CHAPTER 2. ENSEMBLE GENERATION

bers. This can be achieved by seeking an appropriate width for an

importance sampling distribution.

2.1 Perturbation Sampling Methods

Because finding a suitable sampling distribution r (p) on the parameter

space p ∈ P may be hard, the process can be indirectly approximated by

repeatedly modifying or perturbing some aspect of the problem at hand

in a random way. The magnitude of these perturbations then affects the

width σ of the corresponding sampling distribution r (p). This heuristic

used to simulate the process of sampling from r (p) is called perturbation

sampling. The aspects of the problem that can undertake a perturbation

are the following:

1. Perturbations of the loss function.

A first choice can be the repeated perturbation of the loss criterion by

Lm (y, ŷ) = L (y, ŷ) + η ⋅ lm (y, ŷ) (2.12)

where lm (y, ŷ) is a different randomly constructed function of its ar-

guments. The sample points are obtained by

{pm = arg min
α0,α,p∈P

ExyLm (y,α0 + αf (x;p))}

M

1

. (2.13)

2. Perturbations of the argument of the loss function.

An option over the perturbation of the loss criterion is the modification

of the argument of such function, for example taking

{pm = arg min
α0,α,p∈P

ExyL (y,α0 + αf (x;p) + ηgm (x))}

M

1

(2.14)

where gm (x) is a different randomly constructed function of x. This is

for instance the approach used in Gradient Boosting (Friedman, 2001).

24

2.1. PERTURBATION SAMPLING METHODS

In these two cases, the expected size of the perturbation is induced by

the value of η, which controls the width of the corresponding sampling

distribution.

3. Perturbations of the joint distribution of variables.

Another approach is that of modifying the joint distribution of vari-

ables by random reweighing

{x, y}m = {x, y} ⋅ [wm {x, y}]η (2.15)

where wm {x, y} is a different randomly constructed (weighting) func-

tion of {x, y}, as it happens to be in the Adaboost algorithm (Freund

and Schapire, 1995). Thus, the evaluation points {pm}
M
1 are the so-

lution to

{pm = arg min
α0,α,p∈P

E{xy}mL (y,α0 + αf (x;p))}

M

1

. (2.16)

As in the two previous cases, the expected size of the perturbation is

induced by the value of η, which controls the width of the correspond-

ing sampling distribution.

4. Perturbations of the search algorithm.

One other option is to randomly modify the search algorithm used to

solve p∗ = arg min
p∈P

J (p).

Examples of this approach can be found for instance in randomized

trees (Dietterich, 2000), where the optimal spit in each node is chosen

uniformly at random among k best splits, as well as in the random

forest algorithm, where the optimal split is chosen among a set of

randomly chosen subset of predictor variables or in the Extra-Trees

algorithm of (Geurts et al., 2006) that splits nodes by choosing cut-

points fully at random, instead of choosing the best split for each

predictor variable as in the random forest algorithm. For instance,

for randomized trees, the width σ of the sampling distribution r (p)

depends on the value of k, while for random forests, the size of the

subsets inversely controls the width of the sampling distribution.

The generic ensemble generation algorithm (see Algorithm 1) starts the

ensemble F0 with some constant (line 1), it could be zero or another suitable

25

CHAPTER 2. ENSEMBLE GENERATION

Algorithm 1: Generic Ensemble Generation

1 F0 (x) = arg min
α

∑
N
i=1L (yi, α);

2 for m = 1 to M do

3 pm = arg min
p

Ei∈Sm(η)L (yi, Fm−1 (x) + f (xi;p));

4 fm (x) = fm (x;pm);

5 Fm (x) = Fm−1 (x) + ν ⋅ fm (x);

6 Ensemble = {fm (x)}M1 .

constant, then at each iteration a new base learner is created and added to

the collection (line 3). Sm (η) represents a different subsample of data of size

η < N randomly drawn at random without replacement from the original

data Sm (η) ⊂ {xi, yi}
N
1 , with small values of η creating more diverse base

learners {fm (x)}M1 as well as reducing computational times. At each step,

the memory function

Fm−1 (x) = F0 (x) + ν ⋅
m−1

∑
k=1

fk (x) (2.17)

contains partial information about the previously built base learners

{fk (x)}
m−1
1 , and ν is a shrinkage parameter 0 ≤ ν ≤ 1. Setting ν = 0 cre-

ates a parallel ensemble, because it causes each base learner to be generated

independently of previously generated base learners, while ν = 1 maximizes

their influence. Thus, setting ν to intermediate values 0 < ν < 1 varies the

degree to which base learners are created with regards to the others previ-

ously created. Several known ensemble methods can be seen as special cases

of Algorithm 1, for instance:

� Bagging is obtained by using a squared loss function L (y, ŷ) = (y − ŷ)2,

setting ν = 0, and choosing Sm to be a bootstrap sample of data.

Random Forest introduces additional dispersion by randomizing the

tree generation algorithm. Friedman et al. (2003) show that choosing

a bootstrap sample of data is roughly equivalent to setting η = N/2, as

opposed to the original algorithm of Bagging and Random Forest. In

both cases, the coefficients are set to a0 = 0 and {am = 1
M

}
M

1
so that

predictions are simple averages of those included in the base learners

26

2.2. WHY ENSEMBLES WORK

in the whole ensemble.

� Adaboost uses exponential loss L (y, ŷ) = exp (−y ⋅ ŷ) for y ∈ {−1,1},

and is equivalent to setting ν = 1 and η = N . Predictions are obtained

as the sign of the final memory function FM (x), ŷ = sign (FM (x)).

� Gradient Boosting is a generalization of the Adaboost algorithm for

both regression and classification: it uses using a variety of loss func-

tions (e.g., least squares, absolute-deviations, logistic, etc.), and ν = 0.1

and η = N/2, while predictions are given by FM (x).

� MART (Multiple Additive Regression Trees) is the implementation of

Gradient Boosting when the base learners are trees. When using trees

as base learners, one has the option of controlling the size of each tree,

namely selecting the number of terminal nodes J , which corresponds

to setting the interaction depth allowed for predictor variables. For

instance, main effects are obtained setting J = 2, while two-interaction

effects are included by letting J = 3.

It is of interest to note that all these ensembles can be implemented

using R: namely Bagging is implemented in the ipred package, Random

Forest in the randomForest package, while Adaboost, Gradient Boosting,

and MART in the gbm package.

2.2 Why Ensembles Work

Dietterich (1997) gives three reasons to understand why ensembles can im-

prove performance and why it may be difficult or impossible for single clas-

sifiers to provide similarly well.

� Large hypothesis space. The first reason may be found in the fact

that machine-learning algorithms work by searching a space of possible

hypotheses for the most accurate hypothesis (i.e. the hypothesis that

best approximates the unknown function f). The training data might

not provide enough information for choosing a single best base learner.

Machine learning algorithms consider very large hypothesis spaces, so

- even after the elimination of many hypotheses, there may be many

others left, i.e. there may be many learners performing equally well

on the training data. From these set of remaining hypotheses, one

27

CHAPTER 2. ENSEMBLE GENERATION

can construct an ensemble of classifiers, and combining them may be

a better choice.

� The search process may be imperfect. Another problem arises when

the learning algorithms used are sub-optimal, which is often due to

the fact that the problem at hand is usually NP-hard, thus practical

ways to solve problems are carried out through heuristics. Thus, run-

ning the search algorithms with a slightly different training sample or

injected noise may be useful to find a different (suboptimal) hypoth-

esis. Therefore, ensembles can be seen as a way to compensate for

imperfect search processes.

� The hypothesis space being searched might not contain the true target

function. A third reason may be due to the fact that our hypothesis

space might not contain the true function f , but it may include several

equally good approximations of f . Thus, taking weighted combina-

tions of these approximations, one might be able to represent classi-

fiers that lie outside the search hypothesis space, with ensembles giving

some good approximation of it. For instance, if the true boundary be-

tween two classes is a diagonal line, using a single decision tree (whose

boundaries are line segments parallel to the coordinate axes) cannot

lead to a good result, while a good approximation can be achieved by

combining a set of decision trees.

In the present work we propose the use of ensembles based on trees,

focusing on random forests. Such algorithm is an example of a parallel

ensemble, meaning that it can be easily parallelized, which is a key feature

considering the huge amount of variables we need to deal with.

28

Chapter 3

Classification and Regression

Trees (CART)

CART (Breiman et al., 1984) are a top-down algorithm that iteratively splits

the training data into disjoint subsets according to a sequence of conditions

involving a single covariate at a time. The algorithm starts with the whole

dataset D = {yi,xi}
N
1 (called root), browses all the input space X in search

of a covariate, along with its cutting point c, that meets some criterion,

and splits such data into two disjoint subsets (called daughter nodes), each

defining a region Rj , j = 1,2, . . . , J of the input space X . Such nodes are

treated in a similar fashion, i.e. split according to a single covariate, along

with its cutting point c, meeting a given criterion. The algorithm keeps on

partitioning the training data until some stopping rule is met, e.g. the min-

imum number of observations to include in either child node, and terminal

nodes (called leaves) are obtained.

In each terminal node a simple model (e.g. a constant) is fitted. Thus,

each terminal node can be expressed as:

ŷ =
J

∑
j=1

ĉjIR̂j
(x) (3.1)

where I is the indicator function which equals 1 if the i-th variable is

used to split Rj and 0 otherwise.

The resulting model can be represented as a binary tree, where observa-

tions satisfying the above mentioned condition at each step are assigned to

29

CHAPTER 3. CLASSIFICATION AND REGRESSION TREES (CART)

the left branch, and others to the right branch (see Figure 3.1).

Root

Node

Leaf Leaf

Leaf

𝑋1 ≤ a 𝑋1 > a

𝑋2 > b 𝑋2 ≤ b

Figure 3.1: A CART example: The root is split according to X1 and its
cutting point a into left and right node. Right node is again split according
to variable X2 and cutting point b.

Because all these regions are disjoint, every possible input x belongs

in a single one, and the tree model can be though of as the sum of all

these regions. Trees accommodate different loss functions quite easily. For

example in the regression case, two of the most used are the squared loss

and the absolute loss. In the former case, the optimal constant ĉj is the

mean, while in the letter it is the median of the data points within region

Rj . In the binary classification case, where p is the proportion in the second

class, the most used measures are the following:

� the misclassification error: 1 −max (1,1 − p);

� the Gini index: 2p (1 − p);

� the cross entropy or deviance: −plogp − (1 − p) log (1 − p).

If we choose the squared loss, the search problem, i.e. finding the tree

30

3.1. IMPURITY REDUCTION

with the lowest prediction risk, can be formulated as:

{ĉj , R̂j}
J

1
= arg min
{cj ,Rj}J1

N

∑
i=1

(yi − ŷi)
2
= arg min
{cj ,Rj}J1

N

∑
i=1

⎛

⎝
yi −

J

∑
j=1

cjIRj (xi)
⎞

⎠

2

. (3.2)

To solve, one searches over the space of all possible constants and region

minimize the selected loss function. Because unrestricted optimization with

respect to {Rj}
J
1 is very difficult, such partitions can be chosen to be axis-

parallel. Similarly, because the joint optimization with respect to {Rj}
J
1

and {cj}
J
1 is NP-complete (Hyafil and Rivest, 1976), a greedy approach is

adopted, i.e. optimization is carried out at each step according to a single

covariate. Standard implementation of CART algorithm are available in the

packages tree and rpart in R.

3.1 Impurity Reduction

Let (Y,X): Ω → (DY ×DX1 × . . . ×DXp) ≡ D be a vector random variable

defined on a probability space (Ω,F , P), where X = {X1, . . . ,Xp} is a set of

covariates and Y is the response variable. The binary recursive partitioning

nature of CART provides a hierarchical partitioning of the domain X into

J disjoint (hyper-)rectangles (i.e. regions) Rj ⊂ D, j = 1,2, . . . , J . Each

rectangle is generated in D by splitting a parent rectangle in two parts

through a binary split of the domain of a given covariate Xi. The impurity

reduction yielded in Rj by Xi at the cutpoint s, is given by

dsij = ∆HY (Xi,Rj) = pj ⋅ {HY − (pjLHY ∣Xi≤s + pjRHY ∣Xi>s)} , (3.3)

where pj = P (Rj), pjL = (Xi ≤ s∣Rj), and pjR = (Xi > s∣Rj). HY ,

HY ∣Xi≤s, and HY ∣Xi>s are the heterogeneity indexes of Y in the j-th rectangle

and in the left and right splits of Rj . Let dij be the maximum heterogeneity

reduction provided by Xi in the j-th rectangle, for all possible cutpoints

s ∈DXi ∣Rj :

dij = max
s∈DXi ∣Rj

dsij . (3.4)

31

CHAPTER 3. CLASSIFICATION AND REGRESSION TREES (CART)

In CARTs, in a given Rj the splitting variable Xi, along with its cutting

point s, is chosen so that the heterogeneity of Y is maximally reduced.

Heterogeneity indexes for CART are the Gini index, and variance in case of

regression. In the regression case dsij can be rewritten as:

dsij = ∆σ2
Y (Xi,Rj) = pj ⋅ {σ

2
Y − (pjLσ

2
Y ∣Xi≤s + pjRσ

2
Y ∣Xi>s)} , (3.5)

where σ2
Y , σ2

Y ∣Xi≤s, and σ2
Y ∣Xi>s are the variances of Y in Rj and in the left

and right splits. When a tree t is built with sample size N , these quantities

are estimated by:

d̂sij = ∆̂HY (Xi) =
nj

N
⋅ {ĤY − (

njL

N
ĤY ∣Xi≤s +

njR

N
ĤY ∣Xi>s)} , (3.6)

where ĤY , ĤY ∣Xi≤s, and ĤY ∣Xi>s are the estimated heterogeneities of Y

in the j-th rectangle and in the left and right splits, while nj , njL, and njR

are the sample size in node j and in the left and right splits. Similarly, dij

is estimated by:

d̂ij = max
s∈Sij

d̂sij (3.7)

where Sij is the set of available cutpoints for variable Xi at node j. In

the regression case, dsij is estimated using the sample variance σ̂2:

d̂sij = ∆σ̂2
Y (Xi) =

nj

N
{σ̂2

Y − (
njL

N
σ̂2
Y ∣Xi≤s +

njR

N
σ̂2
Y ∣Xi>s)}

=
nj

N
{
DEVtotal (j)

nj
−
DEVwithin (jL, jR)

nj
}

= N−1DEVbetween (jL, jR) , (3.8)

where DEVwithin and DEVbetween are the within-node and between-node

deviances.

32

3.2. CART PROPERTIES

3.2 CART Properties

The binary recursive partitioning in CARTs feature the following character-

istics.

1. Capability of dealing with irrelevant features. As quickly men-

tioned before, CARTs belong to the class of feature selection algo-

rithms known as embedded methods. This is due to the fact that

at every node, the input space is inspected and, at the end of the

procedure, only a limited number of variables are selected in the tree.

2. Data do not need preprocessing. CARTs can handle numeric, bi-

nary, and categorical variables without the need of preprocessing (e.g.

scaling), because splits are not affected by monotonic transformations.

3. Scalability. CARTs are very fast to compute, with approximate time

complexity of O (pN logN) (Seni and Elder, 2010).

4. Capability of dealing with missing values. If the predictor vari-

ables have missing values, CART handles them via a mechanism called

surrogate splits. This method exploits the correlation between predic-

tors to try and ease the problem of missingness. When considering

a predictor for a split, only the observations for which that predictor

is not missing are used. When the primary (best) predictor - and its

corresponding splitting point - is selected, a list of surrogate variables

- along with their split points - can be created. The first surrogate

variable is the predictor - along with its split - that best mimics the

primary split. The second surrogate variable is the predictor - along

with its split - that does second best, and so on.

5. Interpretability. The main charm of CARTs is their output that

makes the model clearly interpretable.

3.3 CART Limitations

Although CARTs show desirable properties, they suffer from some limita-

tions, some of which are as follows:

1. Lack of smoothness. A first limitation of CARTs is the lack of

smoothness of the prediction surface, which is particularly true in the

33

CHAPTER 3. CLASSIFICATION AND REGRESSION TREES (CART)

regression case where the underlying function to be approximated is

expected to be smooth.

2. Difficulty capturing additive structure. The binary partitioning

nature of CART may need many splits to recreate such structure, and

thus needing a dataset with a large sample size.

3. Instability. The greedy search strategy causes high variance, which

means that small change in the data, e.g. due to sampling fluctuations,

can cause big changes in the resulting model.

34

Chapter 4

Random Forests

In the following chapter, we present the Random Forest algorithm along

with its main characteristics.

4.1 Random Forest Algorithm

Random forests (RF) are a well-established machine learning tool, first in-

troduced by (Breiman, 2001). They are an ensemble method that uses

classification and regression trees as base learners (Breiman et al., 1984).

The main drawback of CARTs is the fact that they produce results that are

data dependent, i.e. tiny changes in the input data may result in completely

different trees. In order to correct such behavior, Breiman (1996) proposed

bagging, i.e. an ensemble of CARTs grown on different bootstrap samples of

the dataset, the resulting aggregation being a more stable classifier. In bag-

ging, the variance reduction is limited by the high correlation between trees.

This latter issue was resolved by Breiman adopting the random subspace

method by (Ho, 1998), i.e. instead of searching the whole feature space for

the optimal split, only a small (random) subset of features is selected.

The main charm of Random Forests is the fact that they provide good

prediction accuracy, importance of predictor variables accounting for both

main effects and interactions, internal estimation of error (out-of-bag error

rates) working as a suitable surrogate for cross validation, robustness to

noise, and the fact that predictors are allowed to be related to the outcome

in a nonlinear fashion.

35

CHAPTER 4. RANDOM FORESTS

The algorithm works as follows:

1. Let D = {yi,xi}
n
1 be the training data, containing a set of predictor

variables X with dimensions n× p, and n× 1 response vector y, where

p is the number of predictor variables and n is the sample size.

2. A boostrap sample D∗ with size n is drawn with replacement from the

original sample D. Note that a fraction of the observations are not

sampled, these are referred to as out-of-bag observations, and are used

for prediction purposes.

3. A classification or regression tree t is grown to its largest extent using

D∗. At each node a random subset is drawn (without replacement)

from the p predictor variables in order to determine the best split.

The number of variables randomly selected is held constant during

the whole procedure.

4. For each tree t, the out-of-bag prediction error is computed.

5. The previous steps are repeated to grow a prespecified number of trees,

T . Results are aggregated in the forest, i.e. samples are predicted as

simple averages in the regression case, while they are predicted through

a majority vote in the classification case.

6. The overall performance of the forest is computed: in the regression

case - as the amount of variance explained= 1−(MSEOOB/σ̂2
y), where

MSEOOB = n−1
∑
n
1 (yi − ŷ

OOB
i)

2
; while - in the classification case - the

misclassification error rate is computed.

As suggested by Liaw and Wiener (2002), default parameters work just fine

for most problems. On the other hand, it is advisable to tune the number

of variables randomly selected at each split in order to obtain the smallest

error rate, and to set the number of trees T large enough for the error to

stabilize.

Another characteristic of random forest is the calculation of proximities

between observations, i.e. for the observations assigned to the same node in

a tree their pairwise proximity is increased by one. Once the forest has been

created, a proximity matrix is obtained, which allows the identification of

outliers, and missing values imputation.

36

4.1. RANDOM FOREST ALGORITHM

4.1.1 Generalization Erorr

In his seminal paper, Breiman (2001) discusses bounds on the generalization

error. It depends on the correlation between single trees and the prediction

error provided by each one of them. To describe this in a formal way, let us

give some theoretical definitions.

Given a random variable (Y,X), where Y is categorical and X is a

set of categorical or numeric variables, with realization (y,x), a classifier

h (x) is a statistical tool capable of predicting y given the input x. A ran-

dom classifier h (x,Θ) is a classifier whose prediction about y depend on

both the input x and on a random vector Θ from a known distribution.

A random forest is a classifier consisting of a collection of tree-structured

classifiers {h (x,Θk) , k = 1, . . .} where {Θk} are independent and identically

distributed random vectors from a known distribution, each predicting the

values of y given x. By definition a RF consists of an infinite number of

classifiers, but from an operational point of view a finite set of classifiers

{h (x,Θ1) , . . . , h (x,Θk)} is used. The random forest prediction for y corre-

sponds to the most popular prediction of the collection of the classifiers. RF

for regression are formed by growing trees depending on a random vector Θ

from a known distribution, such that the tree prediction h (x,Θ) takes on

numerical values instead of class labels. The mean-squared generalization

error for any numerical predictor h (x) is

EX,Y (Y − h (X))
2 . (4.1)

The random forest predictor is formed by taking the average over k trees

{h (x,Θk)}.

Theorem 1. As the number of trees in the forest goes to infinity, almost

surely

EX,Y (Y − avkh (X,Θk))
2
→ EX,Y (Y −EΘh (X,Θ))

2 . (4.2)

Proof. see Appendix I in Breiman (2001).

The right hand side of the equation is the generalizing error of the forest,

37

CHAPTER 4. RANDOM FORESTS

defined as PE∗ (forest). Let us define the average generalization error of a

tree as:

PE∗
(tree) = EΘEX,Y [Y − h (X,Θ)]

2 . (4.3)

Theorem 2. Assume that for all Θ, EY = EXh (X,Θ). Then

PE∗
(forest) ≤ ρ̄PE∗

(tree) (4.4)

where ρ̄ is the weighted correlation between the residuals Y − h (X,Θ)

and Y − h (X,Θ′), where Θ and Θ′ are independent.

Proof.

PE∗
(forest) = EX,Y [Y − h (X,Θ)]

2

= EΘEΘ′EX,Y (Y − h (X,Θ)) (Y − h (X,Θ′)) (4.5)

the term on the right is a covariance and can be written as:

EΘEΘ′ (ρ (Θ,Θ′) sd (Θ) sd (Θ′)) (4.6)

where sd =
√

EX,Y (Y − h (X,Θ))
2. The weighted correlation is defined

as:

ρ̄ = EΘEΘ′ (ρ (Θ,Θ′) sd (Θ) sd (Θ)) / (EΘsd (Θ))
2 . (4.7)

Then

PE∗
(forest) = ρ̄ (EΘsd (Θ))

2
≤ ρ̄PE∗

(tree) . (4.8)

As a result, the requirements for an accurate regression forest are: low

correlation between residuals and low error trees. Thus, the randomization

process needs to aim at low correlation. Although in Breiman’s words The

38

4.1. RANDOM FOREST ALGORITHM

generalization error for forests converges a.s. to a limit as the number of

trees in the forest becomes large, some works show that the random forest

classifier is not universally consistent (Biau et al., 2008; Traskin, 2007). This

result is nonetheless important because it indicates that random forest does

not overfit as more trees are grown, with more trees being generally better

than fewer trees because the true value of the generalization error will be

more accurately approximated.

Similarly, Lin and Jeon (2006) derive lower bounds for the mean-squared

error for a regression forest under random splitting by drawing analogies

with adaptive nearest-neighbor methods. Meinshausen (2006) proved con-

sistency for quantile regression forests, Biau et al. (2008) proved consistency

of random forest for classification under the assumption of random splitting,

while Ishwaran and Kogalur (2010) proved uniform consistency of random

survival forests.

4.1.2 Implementation and Tuning Parameters

The random forest algorithm is implemented in the randomForest pack-

age in R. Although there is a large number of tuning parameters, random

forests are known to work just fine in practice with default parameters. The

parameters that may undergo some tuning are the following:

1. Node Size: The number of observations the terminal nodes. Although

in a single CART, a very small number can lead to overfitting, the idea

in random forest is to grow trees to their largest extent, in order to

have as little bias as possible. In a similar way to Bagging, the large

variance is mitigated through the averaging process over all trees.

In the R implementation of random forests, default sample sizes are

one for classification and five for regression.

2. Number of Trees: A random forest can easily grow some hundreds

to some thousands trees. In practice, the default value of ntree=500

is a good compromise. It is strongly advisable to grow a number of

trees which is large enough for the OOB error to converge, while larger

ntree values lead to slightly more stable values of variable importances

(Dı́az-Uriarte and De Andres, 2006).

39

CHAPTER 4. RANDOM FORESTS

3. Number of randomly selected predictors: The number of randomly

selected variables at each split is maybe the most important parameter

in random forest. As already mentioned, it affects the ability of the

ensemble to create more diverse base learners. Usually - although

maybe surprising - very few predictors can be sampled at each split,

and - with a sufficient number of trees - each predictor will be able

to contribute. It is generally recommended to tune the number of

randomly selected predictors (mtry in the R implementation), in order

to obtain the smallest OOB error. This can be achieved through the

tuneRF function in the randomForest package in R, alhtough one must

bear in mind to be careful not to overtune the algorithm and introduce

the overfitting that the algorithm should prevent. Alternatively, one

can use the train function in the caret package, which does the same

but exploiting cross-validation.

4. The size(s) of sample to be drawn: As a default, the probability of

an observation being drawn in the bootstrap sample is equal to 1 −

(1 − 1/n)n ≈ .632, so that on average 1/3 of training data is not used.

These are referred to as out-of-bag sample, and this is the part of the

observations used for prediction purposes. This can be modified using

the parameter sampsize in the randomForest package in R.

Different implementations are present in different packages, e.g. in the

STATISTICA software, a given percentage of the dataset is heldout for

testing purposes (default Random test data proportion=30%), and the

subsample proportion to be used for drawing the bootstrap samples can be

tuned (default Subsample proportion=50%), while default the default pa-

rameter for the number of predictors randomly sampled is set to log2 (p + 1).

It is worth stating that the before mentioned variations of random forests

can be briefly described as follows:

� Random Survival Forest is a modification for the analysis of right-

censored survival data (implemented in the randomSurvivalForest

package in R),

� Quantile Regression Forest is a generalization of the random forest

algorithm for quantile regression (implemented in the quantregForest

package in R).

40

4.2. VARIABLE IMPORTANCE MEASURES (VIMS)

4.2 Variable Importance Measures (VIMs)

Random Forests are frequently treated as a black-box model, in the sense

that they can be seen in terms of input-output without any knowledge of its

internal workings, mainly because of the large number of trees involved, as

opposed to linear models or CART. However, they provide some metrics that

aid in interpretation. A key feature of RF is that the importance of each

predictor can be measured. The standard VIMs are the Gini importance

(aka resubstitution measure) and the permutation importance.

4.2.1 Gini Importance

The Gini importance of a predictor variable Xi is the so-called total decrease

in node impurity (TDNI). It is obtained as the summation of the impurity

decrease of all nodes in a forest, where predictor variable Xi is used for

splitting. Let dij be the decrease in the heterogeneity index allowed by

variable Xi at node j ∈ J . The Gini importance for variable Xi for a single

tree t is given by:

g(Xi;t) =∑
j∈J

dijIij (4.9)

where I is the indicator function which equals 1 if the i-th variable is used

to split Rj and 0 otherwise. This quantity measures the reduction in the

heterogeneity of the outcome variable given by Xi each time that particular

predictor variable is used to define a partitioning of the data. In the case

of regression, the heterogeneity is defined in terms of deviance, while in the

case of classification, various measures can be used: the misclassification

error, the Gini index, and the cross-entropy or deviance. For instance in

the case of two class prediction, if p is the proportion in the second class,

these quantities are defined as 1 − max (p,1 − p), 2p (1 − p), and −plogp −

(1 − p) log (1 − p).

For the whole RF ensemble the Gini importance is given by the average

of g (Xi; t) over the set of T trees:

g(Xi) =
1

T

T

∑
t=1

g(Xi,t) (4.10)

41

CHAPTER 4. RANDOM FORESTS

4.2.2 Permutation Importance

This forecasting measure uses the OOB observations. The first version of

this measure is called unscaled permutation importance, which is the mean

decrease of accuracy for a prediction variable. This measure is computed for

predictor Xi for each tree t in the forest: compute the prediction accuracy

At using the OOB observations, then the observations of Xi are shuffled,

and the prediction accuracy A∗
t is recomputed using the OOB observations.

The quantity (At −A
∗
t) is then averaged over all trees in the forest, and

gives the unscaled (or raw) permutation importance of predictor Xi

d̄(Xi) =
1

T

T

∑
t=1

(At −A
∗
t) (4.11)

Shuffling an important predictor then leads to a decrease in accuracy, as

a result a positive measure follows. Sometimes it is possible that the accu-

racy slightly increases when a predictor is randomized, as a result a negative

measure follows. Negative permutation importance measures can be treated

as no decline in accuracy. The terms At and A∗
t are not generally defined in

(4.11): one could use forecasting errors, the percentage of cases forecasted

incorrectly, or some other measure (see for instance Breiman (2002)). Cur-

rently, the standard measures are the proportion (or percentage) of cases

misclassified for classification, and the increase in mean square error (MSE)

for regression.

A slightly different version of this measure is the scaled permutation

importance (called z-score), which is calculated by diving the mean decrease

in accuracy by its standard error

z(Xi) =
d̄(Xi)
√

s2

T

(4.12)

where s2 is the sample variance estimator of the quantity (At −A
∗
t) over

all the trees in the forest. The s2 estimator is defined as

s2
=

1

T

T

∑
t=1

(At −A
∗
t)

2
− d̄2
(Xi). (4.13)

42

4.2. VARIABLE IMPORTANCE MEASURES (VIMS)

The permutation measure, defined as Measure 1 by Breiman (2002) as

opposed to the Gini measure called Measure 4, was thought of a solution to

the well-known biased conveyed by the in-sample Gini measure.

4.2.3 Bias and Conditional Permutation Variable Importance

Measure

The Gini importance is well known to show a bias for predictors providing

more splits, and this is analyzed later on in this work. A lot of attention

has been drawn on the permutation VIM as being a possible source of a

similar bias. Strobl et al. (2007a) noticed that if predictor variables are of

different type, e.g. different scales of measurement, different numbers of

categories, while there is no effect in the mean values of the distributions of

the permutation importance measures, i.e. close to zero for uninformative

variables, there are notable differences in the variance of these values. This

means that in a single run of the random forest algorithm, one could be

induced to a sever over- or underestimation of the importance of variables

that have more categories, even though they are no more or less informative

than the other variables. For this reason, Strobl et al. (2007b) provide an

unbiased variable selection for random forests within the framework of con-

dition inference trees (Hothorn et al., 2006), in this case the deviation of the

permutation importance measure over the simulation runs does not increase

substantially with the number of categories or scale of measurement of the

predictors. That is implemented through the cforest unbiased function in

the R package party. The implementation of the permutation importance

in the cforest function is slightly different from that in the randomForest

function, in that the randomization is carried out not shuffling the values of

the variable of interest, but randomly assigning observations to child nodes

of splits in such variable, as explained in (Hapfelmeier et al., 2011) in order

to allow for missing values in the explanatory variables.

Another source of bias in the permutation VIM is due to the correlation

among predictors. Nicodemus and Malley (2009) show that - under the

null model - permutation VIM obtained with RF with the Gini index as the

splitting criterion show larger standard deviation for uncorrelated predictors,

while on average it provides an unbiased estimate of the importance of a

43

CHAPTER 4. RANDOM FORESTS

predictor. In this case conditional inference forests were more reliable. This

again indicates that it is advisable to run the algorithm multiple times to

obtain a measure of central tendency and variability for VIMs. Therefore the

authors advise that one should avoid using Gini VIMs because they show a

substantial bias under predictor correlation, while permutation based VIM is

unbiased, although the one provided by RF implementing Gini based splits

show a larger variability, and are therefore less reliable.

On the other hand Strobl et al. (2008) showed that permutation impor-

tance overestimates the importance of correlated predictor variables, and

identify two possible causes for this bias: (i) a preference for the selection

of correlated predictors in early splits in the tree building process, and (ii)

the particular permutation scheme employed in the computation of the per-

mutation VIM. This bias is particularly important in cases where spurious

correlation between the predictors and the outcome is present. A solution to

this problem is the conditional permutation importance: in this case, a sin-

gle predictor variable is again shuffled - as in the regular permutation VIM -

but within groups of observations of other predictor variables. This permu-

tation scheme allows to preserve the correlation structures among predictor

variables and detects any spurious correlation among predictors.

This being said, Nicodemus et al. (2010) provide some power-case simu-

lations to support the fact that permutation VIM provides larger measures

for correlated predictors, and propose the use of the conditional permutation

VIM. In both cases, they measure some bias. In the case of the permutation

VIM they detect higher measures for correlated predictors, while as for the

conditional VIM, they detect larger measures for uncorrelated predictors,

although according to them, the larger variability of the conditional VIM,

makes the inflation less pronounced.

The conditional VIM is available in the party package though the func-

tion varimp(obj,conditional = TRUE), but according to the authors it

is extremely computationally intensive: Nicodemus et al. (2010) state they

were able to compute (un)scaled VIMs on the full set of observations (n=2000),

44

4.2. VARIABLE IMPORTANCE MEASURES (VIMS)

whereas they were only able to calculate the conditional VIM on a subset (n

= 500) of observations. For this reason, they suggest the use of the permuta-

tion VIM in large-scale screening studies, such as genome wide association

studies, for which the original permutation VIM may be better suited to

identify regions of markers containing influential predictors, because in this

case correlation is usually a consequence of physical proximity of loci and

thus may help localize causal variants; while they suggest one should use the

conditional permutation VIM in small studies where the aim is to uncover

spurious correlations and identify a set of truly influential predictors among

a set of correlated ones.

4.2.4 Permutation Importance by Meng

In GWAS studies, it is still not known how and to what extent Linkage

Disequilibrium (LD, i.e. correlation) between non-causal SNPs and true

risk SNPs influences the ability of RF to correctly identify the true risk

SNPs. According to Meng et al. (2009), the correlation would cause the

importance of each risk SNP that has non-causal SNPs correlated with it to

be reduced. Meng et al. (2009) proposed a revised RF algorithm:

1. change the tree-building algorithm by building each tree in an RF only

with SNPs in Linkage Equilibrium (LE, i.e. uncorrelated),

2. modify the permutation importance measure as follows

d̄ MENG
(Xi) =

1

TXi

∑
T
t=1 (At −A

∗
t) (4.14)

which means that the decrease in accuracy is not averaged over all T

trees in the RF, but only over TXi , i.e. over the total number of trees

in which variable Xi appears.

The authors found out that novel permutation importance in combina-

tion of the revised method was sometimes inflated (as the number of SNPs

in LD with the causal variant increased), and suggest the use of the revised

importance measure in combination with the original RF for most stable

performance when the genetic model and the number of SNPs in LD with

risk SNPs are unknown.

45

CHAPTER 4. RANDOM FORESTS

4.3 The Proximity Matrix

In addition to variable importance measures and partial dependence plots

(analyzed later in this work), which show the importance of each predictor,

and provide a description of how each predictor is related to the response,

the random forest algorithm provides some additional features. It can be

useful to determine the extent to which observations tend to be predicted

similarly. This can be carried out thought the proximity matrix, which is

constructed as follows:

Algorithm 2: Proximity Matrix Construction

1 for Each each tree do

2 Grow a tree as usual;

3 Drop observations down the tree;

4 For all possible pairs of cases, if a pair ends in the same terminal

node, increase their proximity by one;

5 Normalize by dividing by the number of trees

Note that the data used to compute the proximity matrix (line 3) can

either be all the observations or only the OOB data. The result is an n × n

matrix with each cell showing the proportion of trees for which each pair of

observations is placed in the same terminal node. The higher that propor-

tion, the more proximate these observations are. This proximity matrix can

be used for three basic applications.

4.3.1 Clustering Data

The proximity matrix can be treated as a similarity matrix and a multidi-

mensional scaling can be applied. Usual plots of the observations in the first

two dimensions can be used as an exploratory tool, and one can see if the

data tend to cluster in the space defined by predictors.

4.3.2 Imputing Missing Values

There are two ways in which random forest can impute missing data. The

first and quick method (na.roughfix in R) relies on a measure of location.

For numerical predictors, the median of the available values is used, for cat-

egorical predictors, the mode category of the available data is used. For

46

4.3. THE PROXIMITY MATRIX

small amounts of missing values, this method can suffice, considering the

computational requests of the second.

The second method exploits the proximity matrix. First, missing values

are imputed through the rough method mentioned above, then the weighted

average of the values of the nonmissing cases for that variable is used (numer-

ical variable), or - for categorical predictors - the inputed value is the most

common nonmissing value for the variable, with the frequencies weighted by

proximity. The step using proximity values is then iterated several times,

usually four to six times.

Two important remarks about this procedure must be made: first, it

could be computationally too demanding for some datasets, and imputed

values tend to make OOB estimates a bit too optimistic. Therefore, one

must consider whether imputing missing values should be carried out using

one method or the other.

4.3.3 Detecting Outliers

The proximity matrix can also be used to detect outliers. The basic idea

is that outliers are observations whose proximities are small. Currently

the procedure is implemented in R through the outlier function, but only

for a categorical response variable, for which outliers are defined within its

categories.

Algorithm 3: Outlier Detection in Random Forest

1 for Each each category of the response do

2 For each observation, compute the inverse of the sum of the

squared proximities with all of the other observations in the same

outcome class (unstandardized values);

3 Compute the median and mean absolute deviation around the

median of these values;

4 Subtract the median and divide by the mean absolute deviation

to obtain the standardized values (negative values are set to 0);

A large value will indicate that on average the proximities of a given

observation are small, i.e. that observation may be considered an outlier.

Although random forest is known to be robust against outliers, it can be

47

CHAPTER 4. RANDOM FORESTS

advisable to drop the outliers from the training data, specially in case the

overall number of observations is modest (e.g. less than 100).

48

Chapter 5

Variable Selection Methods

In the following pages, we present three methods that can be generally used

for variable selection purposes, although their focus in this work is that of

SNP selection for GWAS studies. All can be encompassed in the definition

of wrappers around the random forest algorithm.

5.1 Random Forest Recursive Feature Elimination

Dı́az-Uriarte and De Andres (2006) suggest the use of Random Forests for

the selection of relevant genes, which is a common task in gene expression

studies. In this scenario, one is usually interested in one of the following

objectives:

1. To identify relevant genes for further research, which involves obtaining

a (probably) large set of genes that are related to the outcome of

interest, and this set should include genes performing similar biological

functions, which can be highly correlated.

2. To obtain the smallest possible set of genes that provide good pre-

dictive performance, which could be used for diagnostic purposes in

clinical practice (thus, highly correlated genes should not be selected).

The aim of RF-RFE is the latter. The main advantage of this method is that

it returns a very small set of genes that retain a high predictive accuracy.

Dı́az-Uriarte and De Andres (2006) compare this method to others used in

the field (e.g. Support Vector Machines, Nearest Neighbor, Diagonal Linear

49

CHAPTER 5. VARIABLE SELECTION METHODS

Discriminant Analysis, and Shrunken Centroids) and both simulations and

the use on real data set show that it is competitive.

Variable selection with microarray data can lead to many solutions that

are equally good from the point of view of prediction capabilities, but that

share few common genes. This issue is referred to as the multiplicity/lack

of stability/lack of uniqueness problem, and is not necessarily a bad thing

if the purpose of the analysis is solely focused on prediction. This unfortu-

nately shifts the relevance away from the selection of particular genes, and,

as emphasized in (Somorjai et al., 2003), one must bear in mind the med-

ical/biological interpretability of the problem at hand. One method that

does not evaluate the stability of its results leads to a false sense of trust on

the interpretability of the output obtained.

Loosely speaking, the algorithm iteratively fits a random forest elimi-

nating a fraction of the least important variables - ranked according to the

permutation importance measure - at each step. After fitting all the forests,

the OOB error is inspected, and one selects the number of genes providing

the smallest prediction error. Note that because of the iterative nature of

this algorithm, the OOB error is biased down, and cannot be used to asses

the overall error rate, therefore Dı́az-Uriarte and De Andres (2006) suggest

the use of the bootstrap to assess prediction error rates. The reasons why

the OOB error should be avoided are similar to those leading to selection

bias (Ambroise and McLachlan, 2002), although Dı́az-Uriarte and De An-

dres (2006) suggest that using error rates is not necessarily a bad procedure

from the point of view of selecting the final set of genes, as suggested in

(Braga-Neto et al., 2004), where it is shown that - in certain cases - resub-

stitution performs as well as cross-validation, and a priori it is not clear if it

is less appropriate than cross-validation for the purpose of ranking feature

sets.

This is coherent with what Ambroise and McLachlan (2002) suggest,

namely, in order to assess and correct for selection bias, one can either

perform a crossvalidation or apply the bootstrap external to the selection

process. Thus, a resampling scheme has to be included in the algorithm, and

50

5.1. RANDOM FOREST RECURSIVE FEATURE ELIMINATION

after all the forests have been fitted, one selects the solution with the smallest

number of genes whose error rate is within u standard errors: setting u = 0

results in selecting the set of genes that leads to the smallest error rate, while

setting u = 1 is similar to the common one s.e. rule suggested by Breiman

(2001) and leads to solutions with fewer genes.

Ambroise and McLachlan (2002) recommend 10-fold rather than leave-

one-out cross-validation, and concerning the bootstrap, suggest using the so-

called .632+ bootstrap (Efron and Tibshirani, 1997) error estimate designed

to handle overfitted prediction rules. The .632+ bootstrap method uses an

average of the resubstitution error (the error when a classifier is applied to

the training data) and the error on samples not used to train the predictor

(the leave-one-out bootstrap error) weighted by a quantity that reflects the

amount of overfitting. Dı́az-Uriarte and De Andres (2006) opted for the use

of the .632+ bootstrap method to obtain an honest estimate of the error rate,

as to evaluate the stability of the variable selection procedure in the original

sample: they investigate the frequency with which the genes selected in the

original sample appear among the genes selected in the bootstrap samples.

They report that the genes selected in the original sample are seldom selected

in more than 50% of the bootstrap samples, which results are not affected

by changes in the parameters, i.e. the number of trees to be grown (between

2000 and 5000), the number of randomly selected predictors, or the node

size, while the use of the one s.e. rule can lead, in some cases, to a more

stable solution. The number of variables to be dropped at each iteration

can be adjusted to modify the resolution of the number of variables selected:

smaller values yield a finer resolution in the examination of the number of

genes, but are more computationally demanding. The procedure devised by

Dı́az-Uriarte and De Andres (2006) is implementable through the R package

varSelRF - although only classification is allowed. It additionally provides

the use of selection probability plots to evaluate the stability and confidence

on the selection of relevant genes as proposed in (Pepe et al., 2003). If the

task is to rank genes and to select the top genes for further study, one can

quantify the degree of confidence of choosing the gth gene among the top k:

Pg(k) = P [gene granked in the top k] = P [Rank(g) ≤ k] (5.1)

51

CHAPTER 5. VARIABLE SELECTION METHODS

The value of Pg(k) may be of particular interest for k equal to a prede-

termined number of genes to be selected.

The R package caret proposes a general framework for variable selection

through recursive feature elimination. First, the algorithm fits the model

with all predictors. Each predictor is ranked using its importance to the

model. Let S1 > S2 > . . . > Ss be an ordered sequence indicating the number

of predictors to retain. At each iteration of feature selection, the Si top raked

predictors are retained, the model is refit and performance is assessed. The

value of Si with the best performance is determined and the top Si predictors

are used to fit the final model. This procedure is described in Algorithm 4

Algorithm 4: Recursive Feature Elimination

1 Tune/train the model on the training set using all predictors;

2 Calculate model performance;

3 Calculate variable importance or rankings;

4 for Each subset size Si,i = 1, . . . , s do

5 Keep the Si most important variables;

6 [Optional] Pre-process the data;

7 Tune/train the model on the training set using Si predictors;

8 Calculate model performance;

9 [Optional] Recalculate the rankings for each predictor;

10 Calculate the performance profile over the Si predictors;

11 Determine the appropriate number of predictors;

12 Determine the final ranks of each predictor;

13 Fit the final model based on the optimal Si predictors.

The algorithm has an optional step (line 9) where the predictor rankings

are recomputed on the model on the reduced feature set. Svetnik et al.

(2004) showed that, for random forest models, there was a decrease in per-

formance when the rankings were recomputed at every step, as well as that

this reranking procedure was more prone to overfitting. However, in other

cases, when the initial rankings are not good (e.g. linear models with highly

collinear predictors), recalculation can slightly improve performance. One

potential issue of such algorithm is the overfitting to the predictor set such

52

5.1. RANDOM FOREST RECURSIVE FEATURE ELIMINATION

that the wrapper procedure could focus on nuances of the training data that

are not found in future samples (i.e. overfitting to predictors and samples).

For example, suppose a very large number of uninformative predictors were

collected and one such predictor randomly correlated with the outcome. The

RFE algorithm would give a good rank to this variable and the prediction

error (on the same data set) would be lowered. It would take a different

test/validation to find out that this predictor was uninformative. This was

referred to as selection bias by Ambroise and McLachlan (2002). In the

current RFE algorithm, the training data is being used for at least three

purposes: predictor selection, model fitting and performance evaluation.

Unless the number of samples is large, especially in relation to the number

of variables, one static training set may not be able to fulfill these needs.

Since feature selection is part of the model building process, resampling

methods (e.g. cross-validation or the bootstrap) should factor in the vari-

ability caused by feature selection when calculating performance. To get

performance estimates that incorporate the variation due to feature selec-

tion, it is suggested that the steps in Algorithm 4 be encapsulated inside an

outer layer of resampling (e.g. 10-fold crossvalidation). Algorithm 5 shows

a version of the algorithm that uses resampling.

Granitto et al. (2006) and Svetnik et al. (2004) applied this recursive

method in various fields, even outside genetics, e.g. pharmaceutical and

agroindustrial, suggesting cross-validation as the proper resampling method.

While Svetnik et al. (2004) suggest the use of repeated (twenty times) 5-fold

cross validation, Pang et al. (2012) go for 10 times 10-fold cross validation,

while Granitto et al. (2006) opt for 100 times leave-group-out cross valida-

tion/random subsampling, i.e. they recursively split the data into train/test

set with a 75%/25% proportion.

We have opted for a 10-fold cross-validation - which shows a good tradeoff

between bias and variability - and repeated it ten times in order to have

the same conditions shown in Granitto et al. (2006), i.e. instead of selecting

genes on the original sample - like in Dı́az-Uriarte and De Andres (2006) -

and then inspecting their inclusion probabilities in the resampling, we in-

53

CHAPTER 5. VARIABLE SELECTION METHODS

Algorithm 5: Recursive Feature Elimination incorporating resam-

pling

1 for Each Resampling Iteration do

2 Partition data into training and test/held back set via resampling;

3 Tune/train the model on the training set using all predictors;

4 Predict the held back samples;

5 Calculate variable importance or rankings;

6 for Each subset size Si,i = 1, . . . , s do

7 Keep the Si most important variables;

8 [Optional] Pre-process the data;

9 Tune/train the model on the training set using Si predictors;

10 Predict the held back samples;

11 [Optional] Recalculate the rankings for each predictor;

12 Calculate the performance profile over the Si using the heldback

samples;

13 Determine the appropriate number of predictors;

14 Estimate the final list of predictors to keep in the final model;

15 Fit the final model based on the optimal Si using the original

training set.

54

5.2. FEATURE SELECTION WITH THE BORUTA PACKAGE

spect those directly in the resampling: we check how many times (out of 100)

a particular SNP is selected in the optimal solution using the training set.

We have preferred repeated cross-validation over repeated subsampling be-

cause - generally speaking - in the latter some observations may be selected

more than once while some others may be included in multiple resamplings

(i.e. the tests sets may overlap). Kim (2009) suggest the use of repeated

cross-validation estimator, for it outperforms the non-repeated one by re-

ducing the variability of the estimator. Such results apply to large samples

(i.e. n ∼ 1000), while in the opposite case, different resampling approaches

may prove more suitable (see Berrar et al. (2006)).

5.2 Feature Selection with the Boruta Package

To some abstract extent, variable selection can be done by simply looking at

the permutation importance obtained after a single run of the random forest

algorithm. It has become normal practice to compute random forest variable

importances and to retain the first k variables and to rerun the algorithm

in order to delete the least important/noisy variables. Very optimistically,

assuming the raw scores are independent from tree to tree, we can compute a

straightforward estimate of the standard error. Following Breiman’s advice -

backed by his empirical studies using many different types of data sets, which

show that a good case can be made for independence - one could compute

a z-score by dividing the raw score by the estimated standard error.

Because the individual raw scores are computed from T independent

bootstrap samples, a simple test for the relevance of variable Xi could be

constructed based on the central limit theorem for the mean importance

d(Xi). If each individual variable importance d(Xi) has standard deviation s,

the mean importance from T replications has standard error s/
√
T . Hence,

under the null hypothesis of zero variable importance, the z-score is asymp-

totically standard normal: which means that in practice, whenever z(Xi)
exceeds the α-quantile of the standard normal distribution, the null hypoth-

esis of zero importance would be rejected. Simulation studies (Strobl and

Zeileis, 2008), show that the power of the test against the null hypothesis

of zero importance does indeed increase with the relevance of the predictor

variable (as expected), yet it increases with the number of trees grown in

the forest, i.e. the power increases according to a tuning parameter that

55

CHAPTER 5. VARIABLE SELECTION METHODS

can be increased at the user’s will. Moreover, the authors show that the

power decreases with increasing sample size. Conversely, the unscaled score

for a given variable increase with the relevance of the predictor variable and

with the sample size as expected, while there is no effect of the number of

trees on the average importance. The reason for such behavior is reckoned

to be a result induced by the scaling process, which induces a dependence

on the number of trees but at the same time inverts the dependence on

the sample size. To support this, Rudnicki et al. (2006) have observed

that, even if all attributes are completely random and thus not related to

the outcome variable, relative strong correlations between some attributes

and the outcome variable may appear by chance. As a consequence, these

noisy attributes get z-scores that suggest strong, non random dependence

on the decision attribute. Unfortunately, being Breiman’s distributive as-

sumption on z-scores false, one needs some reference which can help identify

truly important attributes from non important ones. The solution proposed

through the Boruta algorithm arises from the spirit of random forest, i.e.

adding more randomness to the system. Essentially, the algorithm creates a

randomized copy of the original system and consequently builds a classifier

for this extended system. The importance of a single attribute is assessed

in comparison with those of the randomized ones. Only variables whose im-

portance is systematically higher than randomized variables are considered

important (Kursa et al., 2010). The procedure is shown in Algorithm 6

The information system is always extended by at least 5 shadow at-

tributes (line 3), even if the number of attributes in the original set is lower

than 5: the values of the replicated variables are randomly permuted across

objects (line 4). The added attributes are randomized so that the correla-

tions between the replicated attributes and the outcome variable is random

by design. A predefined number of random forest runs on the extended

information system is performed and the z-scores are gathered, the repli-

cated variables are randomized before each run so that the random part of

the system is different for each forest (line 5). For all attributes a statis-

tical test is performed (line 7): the null hypothesis is that importance of

the single attribute is equal to the MIRA. The test is a two-sided equality

test: the hypothesis may be rejected either when the importance of the at-

tribute is significantly higher or lower than MIRA. For each attribute, one

can compute how many times the importance of the attribute was higher

56

5.2. FEATURE SELECTION WITH THE BORUTA PACKAGE

Algorithm 6: Boruta Algorithm

1 Set all attributes as undetermined ;

2 while importance is undetermined for all the predictors, or algorithm

does not reach a predefined number of iterations do

3 Extend the dataset by adding copies of all predictor variables;

4 Shuffle such variables (shadow attributes) in order to remove the

correlation with the response variable;

5 Run a random forest on the extended dataset and gather the

z-scores;

6 Find the maximal importance (z-score) of all randomized

attributes (MIRA), and then assign a hit to every attribute that

scored better than MIRA;

7 Count the number of hits collected for each attribute and then

perform a binomial test: if the null hypothesis of equality is

rejected, declare the predictor variables which have importance

significantly higher (lower) than MIRA as important

(unimportant), otherwise leave undetermined ;

8 Remove shadow attributes.

57

CHAPTER 5. VARIABLE SELECTION METHODS

than MIRA (a hit is recorder for the variable). The expected number of

hits for N runs is E(N) = 0.5N with standard deviation S =
√

0.25N : i.e.

a binomial distribution with p = q = 0.5. A variable is deemed important

(i.e. accepted) when the number of hits is significantly higher than the ex-

pected value (the converse is true for unimportant variables) (line 7). The

procedure is repeated for a previously defined number of times or until all

attributes are either rejected or conclusively deemed important. In case the

algorithm reaches an end before all attributes have been confirmed or re-

jected, they are left tentative, which means they can be ignored in further

analysis, or the number of maximal iterations can be increased in order to

solve such doubtful cases.

In practice this algorithm is preceded by a warm-up phase during which

the attributes are compared to the fifth, third, and second best shadow

attribute, and the test for rejection is performed at the end of each initial

round, while the test for confirmation is not. Such procedure is introduced

to cope with the high fluctuations of z-scores when the number of attributes

is large at the beginning of the whole procedure.

This procedure is implemented in the Boruta package in R, and has been

already applied to genetic data (Kursa and Rudnicki, 2011) and seems to be

quite flexible in the sense that - although as default z-scores are used - various

types of variable importances from different algorithms can be used: e.g.

the authors show how to implement variable importances from the package

rferns that implements random ferns, i.e. an ensemble of Naive Bayes

classifiers. It is interesting to note that in an early version of the algorithm

(see Rudnicki et al. (2006)), the comparison of each variable importance

with that of random attributes was performed through a t-test, and that

was justified by the fact that - if the number of iterations in the algorithm is

sufficiently large - the averages could be assumed to be normally distributed.

Nevertheless, neither a given number of iterations was suggested nor was a

test for normality requested for the distribution of each variable importance.

It seems quite reasonable that the authors shifted from a parametric to a

non parametric approach. The authors claim that the time complexity in

real cases is approximately O (p ∗ n), where p is the number of variables,

while n is the number of observations. We have noticed that this method

is actually highly scalable, namely we have tried with some datasets, and

even with p ≅ 4000 and n = 1000 the whole procedure is feasible on a single

58

5.3. GINI VIM CORRECTION PROCEDURE

CPU (AMD V 1.4 processor, 2.3 GHz) within a few hours of computation.

Such is a great result, considering the current need for parallel processing

due to extremely CPU consuming task that are requested in a resampling or

even in a recursive scenario: so being able to select relevant attributes on an

ordinary machine like a notebook, where standard analyses can be carried

out in few hours or even overnight. In most cases the default parameters of

randomForest can be used, and can suffice in most cases since random forest

performance has a rather weak dependence on its parameters. In different

scenarios, one can tune the parameters mtry and ntree in order to obtain

the minimum OOB error.

5.3 Gini VIM Correction Procedure

As mentioned above, one of the two random forest VI measures is the total

heterogeneity reduction produced by a covariate on the response obtained

by adding all the decreases of the heterogeneity in all the tree nodes where

such covariate is selected. It has been known for long now that this measure

- along all other so-called total decrease in node impurity measures (TDNI)

(e.g. entropy) - is biased in favor of variables that offer more (potential)

cutting points: e.g. have more distinct numeric values or less missing values.

As already seen, variable relevance, or importance, results as the summa-

tion, over the set J of nonterminal nodes of the tree t, of the heterogeneity

reductions due to the splits made by that variable along the whole tree. Let

dij be the decrease in heterogeneity allowed by Xi at the node j in J . Xi

is used to split at a node j if the decrease it provides is greater than any

provided by the other covariates. Thus, the variable importance of Xi for

the t-th tree is defined as:

V̂IXi (t) =∑
j∈J

dijIij (5.2)

where Iij is the indicator function which equals 1 if the i-th variable is

used to split Rj , and 0 otherwise. Dobra and Gehrke (2001) state that a split

criterion is unbiased if it is only based on the strength of the dependency

between the predictor variable Xi (i.e. its importance) selected and the

response variable, regardless of other characteristics of Xi. In the case of a

binary response variable Y which can take on the values Y = 0 and Y = 1,

59

CHAPTER 5. VARIABLE SELECTION METHODS

let x = (X1, . . . ,Xp) denote the random vector of continuous predictors,

and D = {yi,xi}
N
1 is a sample of N independent and identically distributed

observations of Y and X. For a given cutting point s due to variable Xi at

a given node j, the following contingency table can be specified (as seen in

Sandri and Zuccolotto (2008)):

Table 5.1: Contingency table obtained by splitting on variable Xi at node
j.

L R
Xi ≤ s Xi > s Σ

Y = 0 n0 N0 − n0 N0

Y = 1 n1 N1 − n1 N1

Σ NL NR = N −NL N

where N is the sample size at node j, NL and NR the number of units in

the left and right nodes after splitting, while N0 and N1 are the number of

units with response Y = 0 and Y = 1 inside the node. In this special case, the

empirical Gini Index (Breiman 1984) is defined as Ĝ = 2p̂ (1 − p̂), p̂ = N1/N

and the Gini gain, i.e. the impurity reduction obtained by splitting through

variable Xi at cutpoint s, which defines the difference in impurity before

and after splitting, is defined as:

∆̂G = Ĝ − (
NL

N
ĜL +

NR

N
ĜR) (5.3)

where ĜL and ĜR are the Gini indexes for the left and right nodes. Strobl

et al. (2007b) indicate three important sources of selection bias imputable

to such measure:

1. Estimation effects, namely:

� The empirical Gini index underestimates the true index by a fac-

tor equal to N−1
N G as shown below:

E (Gj) = E(2
N1

N
(1 −

N1

N
))

= 2p (1 − p)2
N

N
(1 − p))

=
N − 1

N
G (5.4)

60

5.3. GINI VIM CORRECTION PROCEDURE

Which means that the empirical Gini index is a negatively biased

estimator and its bias is equal to Bias (Ĝ) = -G/N .

� The variance of Ĝ can be written as:

Var (Ĝ) = 4
G

N
(

1

2
G) +O (

1

N2
) . (5.5)

The variance of the empirical Gini index depends on the true

index and increases when G moves away from its maximum value

1/2 or from its minimum value and for small sample sizes. These

two effects lead to a preference of variables with many missing

values.

2. A multiple comparison effect. The common problem of multiple com-

parison refers to the inflation of type I errors connected to the number

of statistical tests performed. In the case of split selection, a type

I error occurs when a variable is selected for splitting even if it is

not informative. This effect leads to a preference of variables with

many possible splits: with more values for numerical variables (i.e.

less missing values and/or less ties), with more categories for categor-

ical/ordinal variables. For instance, for numerical variables with no

ties the possible cutpoints to be evaluated is equal to N − 1, a cate-

gorical variable with k categories has 2k − 1 possible cutpoints, while

an ordinal variable with k levels offers at most k − 1 splitting points.

Before introducing the correction procedure, let us define the notion of

(un)informative splits. Let us suppose that the predictor space X has been

recursively split into J rectangles. If Xi and Y are stochastically indepen-

dent, they continue to be independent in each rectangle Rj , while if some

association exists, they could be dependent or conditionally independent in

a given Rj . This means that uninformative covariates (i.e. stochastically

independent of Y) remain uninformative in each subset of the sample space.

Informative covariates, on the other hand, can either continue to be infor-

mative or become uninformative in a given Rj . Let us consider growing a

tree using a sample N with at least one covariate associated with Y . In this

case the heterogeneity reductions on informative covariates will be typically

greater than those provided by uninformative ones, and thus, an informa-

tive covariate will be chosen as splitting variable. This can be defined as

61

CHAPTER 5. VARIABLE SELECTION METHODS

an informative split. On the other hand, when within a node there are

no informative covariates, only uninformative covariates and/or informative

covariates which have become uninformative can be chosen as a splitting

variable. This can be defined as an uninformative split.

In informative splits, the heterogeneity reduction of a splitting variable

is directly connected to its importance, while in an uninformative split it

is due to chance. The importance estimation of a given variable Xi can be

expresses as:

V̂Ii (t) = ∑
j∈JI

d̂ij ⋅ Iij + ∑
j∈JU

d̂ij ⋅ Iij = µ̂i (t) + εi (t) (5.6)

where JI and JU are the sets of nodes where informative and uninfor-

mative splits take place, µ̂i (t) is the part of importance measure due to

informative splits and thus directly connected to the true importance of Xi,

while εi (t) is a noise term due to uninformative splits and thus a bias source.

Let us now describe the correction procedure proposed by Sandri and

Zuccolotto (2008) based on the use of pseudocovariates. Consider a sample

of the data (Y,X), where Y is the response variable of dimension N × 1

and X is the set of covariates of size N × p. We permute the rows of X

obtaining another set of variables Z = {Z1, . . . , Zp} - called pseudocovariates

- which are added to the original set of p covariates X. The addition of Z

does not affect informative splits, for they only compete in uninformative

splits. Let V̂IXi (Y,X,Z) be the measure of the importance of Xi which

derives from a tree-based ensemble on the extended dataset (Y,X,Z). The

following algorithm is based on the assumption that for each (un)informative

covariate Xi, there is a corresponding pseudovariable Zi, which has the same

probability of winning the competition in uninformative splits. For the above

62

5.3. GINI VIM CORRECTION PROCEDURE

reasons, after a large enough number of replications R, the quantity

V̂I
∗
Xi

=
1

R

R

∑
r=1

(V̂I
(r)
Xi

(Y,X,Z) − V̂I
(r)
Zi

(Y,X,Z)) (5.7)

can be used as an unbiased VIM for Xi. The algorithm for the correction

of TDNI measures in tree-based ensembles is the following.

Algorithm 7: TDNI measure correction Algorithm

1 for R times do
2 Create a set of pseudocovariates Z either permuting the values of

a single variable Xi or permuting the rows of X ;
3 Run a tree-based ensemble on the extended dataset (Y,X,Z);
4 Compute variable importance measures for each Xi and Zi;

5 Compute the unbiased importance measure V̂I
∗
Xi

for each predictor
as in equation (5.7);

While one either decides to permute each Xi or to permute the rows of

X, the pseudocovariates are stochastically independent of Y and each Zi

has the same distribution of its corresponding Xi, while in the latter case

the sample multiple relationships existing among the p variables in X are

left unchanged when creating the corresponding pseudovariables. According

to simulation studies, Sandri and Zuccolotto (2008) suggest this latter.

63

CHAPTER 5. VARIABLE SELECTION METHODS

64

Chapter 6

Selection of Clinical

Variables

6.1 Prediction Purposes and Dataset Description

The dataset used in this work comes from a study carried out by Pattaro

et al. (2007). The MICROS study is a population-based survey on three

small, isolated villages, characterized by: old settlement, small number of

founders, high endogamy rates, slow/null population expansion. The dataset

we have used is a result of screening questionnaires, clinical measurements,

blood and urine samples, and DNA collection. We have focused our analysis

on the prediction of the glomerular filtration rate (GFR).

Such measure is accepted as the best overall measure of kidney function

(Stevens et al., 2006), and its variation is a crucial determinant of renal

function. GFR is usually estimated through equations which include vari-

ables such as age, sex, race, and body size, in addition to serum creatinine, as

surrogates for muscle mass. Some of these include the Cockcroft-Gault for-

mula (Cockcroft and Gault, 1976), the Modification of Diet in Renal Disease

(MDRD) study equation (Levey et al., 1999), and the CKD-EPI (Chronic

Kidney Disease Epidemiology Collaboration) formula (Levey et al., 2009). In

the MICROS study, GFR based on serum creatinine was estimated through

the MDRD Study equation.

Some observations had to be removed because of missing values on the

response variable, while missing values of clinical variables were imputed

using the quick method relying on a measure of location (na.roughfix in

65

CHAPTER 6. SELECTION OF CLINICAL VARIABLES

the randomForest package), while missing values of SNPs had previously

been resolved through imputation methods using HapMap (Johnson et al.,

2008; Gibbs et al., 2003). The resulting dataset has 1201 observations, 68

clinical variables, and ∼ 300000 genetic variables (i.e. SNPs) 1.

The following analyses are carried out for clinical variables only, the

same variable selection methods will be carried out on genetic variables as

well, and then the results put together in order to judge the joint perfor-

mance of a random forest classifier. Tables 6.2 and 6.3 show the clinical

variables used in this section. Note that all variables are numeric except the

following categorical variables: DM (cat:2), sex (cat:2), and village (cat:3).

Genetic variables are single-nucleotide polymorphisms (SNPs), which are or-

dered categorical variables taking on values 0-1-2. Namely, the homozygous

dominant genotype is coded by 0, the heterozygous genotype by 1, and the

homozygous recessive genotype by 2.

Table 6.1: Datasets used throughout this work

dataset dimensions variables

X n × p p = 290319 SNPs
X1 n × p1 p1 = 2048 SNPs
X2 n × p2 p2 = 50 SNPs
X3 n × q q = 68 clinical
X4 n × q1 q1 = 28 clinical
X5 n × (p2 + q1) (p2 + q1) = 78 clinical+SNPs

As shown in Table 6.1, the datasets in this work can be described as

follows (all contain n = 1201 samples):

1. X is the dataset containing all the SNPs to be used in the screening

phase;

2. X1 is the dataset containing the SNPs selected after the screening

procedure, and used in the feature selection algorithms;

3. X2 is the dataset containing the union of the SNPs resulting from the

1Note that the dataset featured individuals related through a multigenerational pedi-
gree: therefore a linear mixed model using a kinship matrix (as explained in the Appendix)
was used, and the new response variable is the residuals from such fit.

66

6.1. PREDICTION PURPOSES AND DATASET DESCRIPTION

feature selection algorithms;

4. X3 is the dataset containing the clinical variables used in the feature

selection algorithms;

5. X4 is the dataset containing the union of the clinical variables resulting

from the feature selection algorithms;

6. X5 is the dataset containing both the clinical variables and SNPs re-

sulting from the feature selection algorithms.

67

CHAPTER 6. SELECTION OF CLINICAL VARIABLES

Table 6.2: List of clinical variables 1:30

symbol description

age age
basophil basophils

bmi body mass index
calcium calcium

chlor chloride
cholest cholesterol

dbp diastolic bloodpressure
DM diabetes mellitus

eosinoph eosinophils
ferritin ferritin

ft4 free thyroxine
ggt gamma-glutamyltransferase

glucose glucose
got glutamic oxaloacetic transaminase
gpt glutamate pyruvate transaminase
hct hematocrit
hdl high-density lipoprotein

height height
hgb hemoglobin
inr international normalized ratio

kalium potassium
ldl low-density lipoprotein

lymphoz lymphocytes
mch mean corpuscular hemoglobin
mchc mean corpuscular hemoglobin concentration
mcv mean corpuscular volume

monoz monocytes
mpv mean platelet volume

natrium sodium
neutroph neutrophil granulocytes

68

6.1. PREDICTION PURPOSES AND DATASET DESCRIPTION

Table 6.3: List of clinical variables 31:68

symbol description

neutroph neutrophil granulocytes
pct procalcitonin
pdw platelet distribution width
plt platelet hematocrit

pttime activated partial thromboplastin time
pttratio activated partial thromboplastin time ratio
pttsec prothrombintime

rbc red blood cell count
rdw red blood cell distribution width

rrpuls pulse pressure during RR interval
sbp systolic bloodpressure

schmitz adiponectin adiponectin
schmitz albumin albumin
schmitz apo ai apolipoprotein A1
schmitz apo b apolipoprotein B
schmitz apo ci apolipoprotein C1
schmitz apo cii apolipoprotein C2
schmitz apo ciii apolipoprotein C3
schmitz apo e apolipoprotein E
schmitz cicp procollagen I C-Terminal Propeptide
schmitz crp c-reactive protein
schmitz ictp carboxyterminalTelopeptide of Type I Collagen
schmitz ige immunoglobulin E

schmitz igf 1 insulin-like growth factor1
schmitz iron iron

schmitz leptin leptin
schmitz nt probnp n-terminal pro b-type natriuretic peptide

schmitz opg osteoprotegerin
schmitz srankl soluble receptor activator of nuclear factor kappa-B ligand

schmitz stfr soluble transferrin receptor
schmitz transferrin transferrin

schmitz urea urea
sex sex

trigly triglycerides
tsh thyroid-stimulating hormone

uric acid uric acid
village village
wbc white blood cells

weight weight

69

CHAPTER 6. SELECTION OF CLINICAL VARIABLES

6.2 Random Forest Recursive Feature Elimination

In the following section, we used the feature selection algorithm described in

section 5.1 to dataset X3 as explained in Table 6.1. We have iteratively fitted

a random forest dropping a single variable (least ranking) at each iteration

until only two were retained (in order to retain a multivariate approach).

Such procedure was feasible due to the size of the feature space, which is

already quite small (i.e. 68 variables). This procedure was encapsulated

inside a ten-fold cross validation which was repeated ten times. A single

iteration took around 16 minutes on a single CPU. Subsequently, the root

mean squared error (RMSE) was computed for each subset solution along

with its correspondent standard deviation.

0 10 20 30 40 50 60

5.
80

5.
85

5.
90

5.
95

6.
00

6.
05

Variables

R
M

S
E

Figure 6.1: RMSE for RF-RFE obtained for a 10-fold cross-validation re-
peated ten times. At each step a single variable is dropped.

The smallest value of RMSE (5.779, see Figure 6.2) is reached at 27

variables, but moving within one standard deviation we can obtain the

smallest subset available (i.e. two variables). Taking the union of all the

two-variable solutions, we obtain a subset of four variables, namely age,

70

6.2. RANDOM FOREST RECURSIVE FEATURE ELIMINATION

schmitz nt probnp, schmitz urea, and uric acid, with inclusion probability of

100%, 65%, 34%, and 1% respectively. This result falls within the framework

of aggressive variable selection, as proposed in (Dı́az-Uriarte and De Andres,

2006). Although the 1 s.e. approach is indeed a consolidated practice, and

usually provides a good approach to standard variable selection, there are

cases in which it provides too restrictive a solution, as it is in the current

case, where a single variable (i.e. age) has got an effect on GFR so big that -

in terms of prediction error - we would not be able move to a richer solution

in terms of number of variables selected. Inspecting the error plot in Figure

6.2, one could argue that up to eight variables there is a consistent gain

in error, and after that elbow the addition of one single variable does not

provide a reduction big enough to justify the inclusion of other variables.

ag
e

sc
hm

itz
_n

t_
pr

ob
np

sc
hm

itz
_u

re
a

ur
ic_

ac
id

sc
hm

itz
_ic

tp

sc
hm

itz
_o

pg

sc
hm

itz
_ig

f_
1

bm
i

ch
ole

st rb
c

hd
l

tsh ldl
tri

gly

sc
hm

itz
_le

pt
in

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 6.2: Inclusion Probability for Clinical Variables

Thus the solution with eight variables was selected. Subsequently, we

computed the selection frequency of each of the 68 variables, i.e. how

many times (out of 100) each clinical variable was selected in the eight-

variable solution. The barplot in Figure 6.2 summarizes the inclusion prob-

71

CHAPTER 6. SELECTION OF CLINICAL VARIABLES

ability of the following variables being selected: age (100%), schmitz urea

(100%), schmitz nt probnp (100%), uric acid (100%), schmitz ictp (96%),

schmitz opg (95%), schmitz igf 1 (93%), bmi (50%), cholest (20%), rbc

(9%), hdl (8%), tsh (8%), ldl (6%), trigly (4%), schmitz leptin (3%). Se-

lecting a threshold at 10% (i.e. we select as important variables that in the

resampling have been selected among the first six more than ten out of 100

times) we can discard: rbc (9%), hdl (8%), tsh (8%), ldl (6%), trigly (4%),

schmitz leptin (3%). The procedure allows to eliminate 86.76% of initial

variables.

72

6.3. GINI VIM CORRECTION PROCEDURE

6.3 Gini VIM Correction Procedure

In the following section, we use the feature selection algorithm described in

section 5.3 to dataset X3 as explained in Table 6.1. The plot of Figure 6.3

shows a Gini correction procedure carried out with 1000 iterations: we have

identified a group of three highly important (dark green: age [not shown in

plot due to its large VIM value], schmitz nt probnp, schmitz urea,), a group

of three middle important (green: schmitz igf 1, schmitz opg, uric acid),

and a group of four slightly important clinical variables (light green: ft4,

bmi, cholest, schmitz ictp).

sc
hm

itz
_n

t_
pr

ob
np

sc
hm

itz
_u

re
a

sc
hm

itz
_i

gf
_1

sc
hm

itz
_o

pg
ur

ic
_a

ci
d ft4 bm
i

ch
ol

es
t

sc
hm

itz
_i

ct
p

sb
p

ts
h ld
l

sc
hm

itz
_l

ep
tin

rr
pu

ls
tr

ig
ly

w
ei

gh
t

rb
c

db
p

gl
uc

os
e

hd
l

sc
hm

itz
_a

lb
um

in
sc

hm
itz

_c
rp go

t
ca

lc
iu

m gg
t

hg
b

sc
hm

itz
_a

po
_b

m
on

oz
sc

hm
itz

_i
ge

sc
hm

itz
_i

ro
n

fe
rr

iti
n

gp
t

he
ig

ht in
r

sc
hm

itz
_t

ra
ns

fe
rr

in
ch

lo
r

pd
w

m
ch

c
sc

hm
itz

_a
po

_a
i

sc
hm

itz
_s

tfr
pt

tr
at

io hc
t

pt
ts

ec
ne

ut
ro

ph
pt

tim
e

na
tr

iu
m

D
M pc
t

sc
hm

itz
_c

ic
p

rd
w

sc
hm

itz
_a

po
_c

i
se

x
ka

liu
m

sc
hm

itz
_a

po
_e

sc
hm

itz
_s

ra
nk

l
m

pv
ly

m
ph

oz
sc

hm
itz

_a
po

_c
iii

m
ch

w
bc

eo
si

no
ph

m
cv

sc
hm

itz
_a

di
po

ne
ct

in pl
t

vi
lla

ge
sc

hm
itz

_a
po

_c
ii

ba
so

ph
il

0

1000

2000

3000

4000

Figure 6.3: Gini Correction for clinical variables

The resulting subset is small (eleven variables) with more than 83% of

variables removed.

73

CHAPTER 6. SELECTION OF CLINICAL VARIABLES

6.4 Feature Selection with the Boruta Package

In the following section, we apply the feature selection algorithm described

in section 5.2 to dataset X3 as explained in Table 6.1.
ra

nd
M

in

eo
si

no
ph

m
ch

m
cv

na
tr

iu
m

m
on

oz

ka
liu

m

ba
so

ph
il

vi
lla

ge

m
pv

ra
nd

M
ea

n

pc
t

sc
hm

itz
_a

po
_b pl

t

ch
lo

r

sc
hm

itz
_a

po
_c

i

sc
hm

itz
_s

ra
nk

l

m
ch

c

sc
hm

itz
_t

ra
ns

fe
rr

in

ca
lc

iu
m

sc
hm

itz
_i

ge

w
bc rd
w

pt
tim

e

sc
hm

itz
_a

po
_c

iii

pt
tr

at
io

sc
hm

itz
_a

po
_a

i

sc
hm

itz
_a

di
po

ne
ct

in

ly
m

ph
oz

sc
hm

itz
_s

tfr

ne
ut

ro
ph

sc
hm

itz
_i

ro
n

sc
hm

itz
_a

po
_c

ii

sc
hm

itz
_c

ic
p

go
t

sc
hm

itz
_a

po
_e in

r

gp
t

pt
ts

ec

ra
nd

M
ax D
M

gl
uc

os
e

sc
hm

itz
_c

rp hc
t

gg
t

pd
w

sb
p

he
ig

ht

db
p

hg
b ft4

sc
hm

itz
_a

lb
um

in

se
x

rr
pu

ls

hd
l

fe
rr

iti
n

sc
hm

itz
_l

ep
tin

w
ei

gh
t

tr
ig

ly

ts
h ld
l

rb
c

ch
ol

es
t

bm
i

sc
hm

itz
_o

pg

sc
hm

itz
_i

gf
_1

sc
hm

itz
_i

ct
p

ur
ic

_a
ci

d

sc
hm

itz
_u

re
a

sc
hm

itz
_n

t_
pr

ob
np ag
e

0

10

20

30

40

50

60

Figure 6.4: Boruta Selection for clinical variables

The plot 6.4 shows the distribution of the z-scores obtained within a

run of the Boruta algorithm. maxRuns (i.e. the number of Random Forest

to produce) had to be increased to 400 in order to resolve doubtful cases.

Nonetheless, three variables are left as tentative (DM, glucose, schmitz crp)

because they did not seem to be resolved increasing the parameter maxRuns.

The resulting subset encompasses a total of 28 variables.

74

6.5. RESULTS

6.5 Results

Table 6.4 shows the results of the selection of clinical variables, displaying

how many times (out of three) a variable was selected along with each of

the methods used. The table columns show the variable names, the name

of each feature selection algorithm used (i.e. Boruta, RF-RFE, Gini Correc-

tion) indicating whether a given variable was selected by the corresponding

method (1=selected, 0=not selected), # indicates the number of feature

selection algorithms that selected a given variable (ranging from 1 to 3).

Table 6.4: Summary of the selection of clinical variables

variable name # Boruta RF-RFE Gini Correction

age 3 1 1 1
bmi 3 1 1 1

cholest 3 1 1 1
schmitz ictp 3 1 1 1
schmitz igf 1 3 1 1 1

schmitz nt probnp 3 1 1 1
schmitz opg 3 1 1 1
schmitz urea 3 1 1 1

uric acid 3 1 1 1
ft4 2 1 0 1
sbp 2 1 0 1
dbp 1 1 0 0

ferritin 1 1 0 0
ggt 1 1 0 0
hct 1 1 0 0
hdl 1 1 0 0

height 1 1 0 0
hgb 1 1 0 0
ldl 1 1 0 0

pdw 1 1 0 0
rbc 1 1 0 0

rrpuls 1 1 0 0
schmitz albumin 1 1 0 0
schmitz leptin 1 1 0 0

sex 1 1 0 0
trigly 1 1 0 0
tsh 1 1 0 0

weight 1 1 0 0

75

CHAPTER 6. SELECTION OF CLINICAL VARIABLES

Further in this work, these clinical variables will be used, along with

the SNPs selected in the following sections, in order to verify the prediction

performance of Random Forest using clinical variables with the addition of

SNPs.

76

Chapter 7

Selection of SNPs

In the following lines, we provide a framework that takes advantage of a

multiple use of the random forest algorithm as both a screening phase as

well as a multiple variable selection process.

We propose the use of a two-step procedure based on random forest.

1. A screening phase:

(a) Apply a single run of random forest with the Random Jungle

package, using the n × p dataset X.

(b) Collect three different importance measures (VIM) for each SNP,

namely the Gini, permutation, and Meng VIM.

(c) Select a prespecified number of SNPs according to each ordered

VIM, with or without the help of a screeplot. The number of

variables to retain depends on both computational capabilities at

hand and on the desired number of overall subset.

(d) Aggregate the results of each VIM, i.e. we take the union of the

three sets of variables, and create the n× p1 dataset X1 (p1 ≪ p)

to be processed in the following phase.

2. A feature selection phase:

(a) Perform finer feature selection with algorithms with a manageable

subset of p1 variables deriving from the screening phase.

77

CHAPTER 7. SELECTION OF SNPS

(b) Select a smaller subset of p2 informative variables (p2 ≪ p1) by

means of three feature selection algorithms.

(c) Compare results to standard GWA studies.

7.1 Screening Phase

Firstly we have applied Random Jungle to the original dataset X.

Since it is advisable to tune the number of variables randomly selected at

each node, we have performed various random forests with mtry = ⌈p/10 ⋅ (1, . . . ,9)⌉,

where ⌈⋅⌉ denotes the largest integer, with a relatively small number of trees,

i.e. ntree = 5000. For each mtry value, we recorded the values of accuracy

and error, as shown in Table 7.1.

Table 7.1: mtry values

percentage mtry accuracy error

10% 29032 0.0702769 0.9297231
20% 58064 0.0709461 0.9290539
30% 87096 0.0724675 0.9275325
40% 116128 0.0703509 0.9296491
50% 145160 0.0724536 0.9275464
60% 174192 0.0724203 0.9275797
70% 203224 0.0702812 0.9297188
80% 232256 0.0703163 0.9296837
90% 261288 0.0713772 0.9286228

The mtry value providing the best solution in terms of prediction error is

p/10 ⋅3. Thus, this value was used to produce a random forest with ntree =

50000 (accuracy=0.0707269, error=0.929273). The values of the prediction

error show that ntree = 5000, even if small compared to the number of

SNPs, was already large enough for the error rates to stabilize. Such results

are compatible with those provided by Goldstein et al. (2010). As already

stated, larger values of ntree are however advisable in order to obtain more

reliable variable importance measures (Dı́az-Uriarte and De Andres, 2006).

The preliminary tuning of random forests took around fifteen days using

28 CPUs and ∼ 15 GB of RAM on a machine with 32 CPUs and 64GB of

RAM, while the random forest with p/10 ⋅ 3 and ntree = 50000 took around

twelve days on the same machine.

78

7.1. SCREENING PHASE

0 20 40 60 80 100

0
50

0
10

00
15

00
20

00

Index

G
in

i V
IM

0 20 40 60 80 100

0.
00

00
0.

00
10

0.
00

20
0.

00
30

Index

R
aw

 V
IM

0 20 40 60 80 100

0.
01

5
0.

02
5

0.
03

5
0.

04
5

Index

M
en

g
V

IM

Figure 7.1: Plots showing variable importances for the highest ranking 100
variables: Gini VIM (top left), Permutation VIM (top right), and Meng
Permutation VIM (bottom).

79

CHAPTER 7. SELECTION OF SNPS

Through a visual inspection of the screeplots in Figure 7.1 of the ordered

variable importance measures, we considered that as for the Raw VIM an

elbow was noticed around 10 SNPs, as for the Gini VIM around 15, while

for the Meng VIM around 20 (see Figure 7.1).

In order for this phase to act as a screening procedure, we retain 1000

SNPs for each VIM, resulting in a final subset of SNPs equal to p1 = 2013,

due to the fact that the three subset were not disjoint. This screening

phase can be seen as a two-step variable selection procedure as explained

in Xin and Zhu (2012), i.e. ranking and thresholding. The authors are

of the opinion that ranking is more important than thresholding. From a

decision-theoretic point of view, once the variables are ranked, the choice of

the decision threshold has more to do with ones prior belief of how sparse

the model is likely to be. To this subset, we decided to add another 35

SNPs that were found to be associated in previous studies and could be

relevant (Pattaro et al., 2010, 2012; Böger et al., 2011), the final subset

being p1 = 2048.

80

7.2. FEATURE SELECTION PHASE

7.2 Feature Selection Phase

7.2.1 Random Forest Recursive Feature Elimination

In the following section, we used the feature selection algorithm described in

section 5.1 to dataset X1 as explained in Table 6.1. We have iteratively fitted

a random forest dropping 20% of (least ranking) SNPs at each iteration until

only two SNPs were retained (in order to maintain a multivariate approach),

such fraction was chosen because it provides a good compromise between

refinement of results and computational costs (Dı́az-Uriarte and De Andres,

2006). This procedure was encapsulated inside a ten-fold cross validation

which was repeated ten times, as suggested in Granitto et al. (2006). Each

of the 100 iterations took around 50 minutes on a single CPU. Subsequently

the root mean squared error (RMSE) for each subset solution was computed,

along with the correspondent standard deviation.

2 3 4 5 6 8 10 12 15 19 24 30 37 46 58 72 90 11
3

14
1

17
6

22
0

27
5

34
4

42
9

53
7

67
1

83
9

10
49

13
11

16
38

20
48

7.2

7.4

7.6

7.8

8.0

Figure 7.2: RMSE for RF-RFE obtained for a 10-fold cross-validation re-
peated ten times. At each step 20% of SNPs are dropped: on the x-axis the
number of SNPs used is shown.

81

CHAPTER 7. SELECTION OF SNPS

The smallest value of RMSE (7.164, see Figure 7.2) was reached at 1638

SNPs, but moving within one standard deviation we could select 30 SNPs.

Within the 30-SNPs solution, the inclusion frequency of each SNP was com-

puted and only those SNPs that were selected more than 10 out of 100

resamplings were retained. That allowed us to retain 24 SNPs of the initial

2048. This result falls within the framework of aggressive variable selec-

tion, as proposed in (Dı́az-Uriarte and De Andres, 2006), for it allows us to

remove 98.53% of variables and to retain a small subset.

The barplot 7.3 summarizes the inclusion probability of the first 35

mostly selected SNPs - note that 946 variables were selected in the 24-

variable solution, most of which have an inclusion probability of less than

5%. As we did for clinical variables, we retain the SNPs that were selected

in more than 10 out of 100 resamplings, and that allowed us to retain 24 of

the initial 2048 variables.

rs
95

19
97

2

rs
34

45
96

rs
15

41
89

6

rs
71

26
61

2

rs
71

09
66

2

rs
10

14
80

7

rs
66

63
70

6

rs
25

73
63

2

rs
49

72
60

0

rs
67

39
28

5

rs
99

28
06

6

rs
21

33
58

2

rs
99

47
57

6

rs
47

65
41

8

rs
80

20
07

5

rs
69

96
57

8

rs
22

27
41

rs
21

39
99

9

rs
87

48
38

rs
40

75
58

3

rs
49

42
06

3

rs
76

25
22

9

rs
14

23
63

4

rs
14

20
37

8

rs
21

23
69

4

rs
10

45
88

71

rs
10

26
82

5

rs
77

58
02

5

rs
68

90
20

4

rs
11

68
93

09

rs
76

00
58

5

rs
94

75
01

rs
78

32
05

7

rs
22

19
07

8

rs
81

81
35

5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 7.3: Inclusion Probability for SNPs.

82

7.2. FEATURE SELECTION PHASE

7.2.2 Gini VIM Correction Procedure

In the following section, we used the feature selection algorithm described in

section 5.3 to dataset X1 as explained in Table 6.1. Figure 7.4 shows the Gini

VIM Correction with 100 iterations (only the first 100 variables are plotted),

where the each boxplot represents the distribution of the difference between

the GINI VIM of variable Xi and its correspondent randomized replicate Zi.

rs
34

45
96

rs
15

41
89

6
rs

67
39

28
5

rs
95

19
97

2
rs

71
09

66
2

rs
71

26
61

2
rs

10
50

73
39

rs
25

73
63

2
rs

40
75

58
3

rs
12

51
61

13
rs

49
72

60
0

rs
66

63
70

6
rs

10
14

80
7

rs
15

04
18

9
rs

21
39

99
9

rs
20

48
81

6
rs

70
27

43
rs

47
47

01
1

rs
15

47
83

9
rs

23
57

84
2

rs
10

49
41

95
rs

12
25

36
51

rs
49

42
06

3
rs

87
48

38
rs

20
61

37
8

rs
96

60
71

0
rs

13
90

59
8

rs
80

91
26

1
rs

17
02

54
55

rs
21

33
58

2
rs

60
69

91
1

rs
79

22
31

0
rs

31
12

16
5

rs
17

20
84

0
rs

37
51

rs
23

22
01

4
rs

80
88

82
5

rs
12

99
44

24
rs

68
81

04
5

rs
99

28
06

6
rs

76
00

58
5

rs
71

21
83

5
rs

14
80

92
7

rs
24

73
89

rs
11

12
81

20
rs

95
87

29
9

rs
26

55
64

5
rs

55
85

20
rs

12
35

30
67

rs
69

96
57

8
rs

79
92

69
4

rs
10

26
82

5
rs

17
73

12
6

rs
14

20
37

8
rs

96
00

57
3

rs
18

76
52

7
rs

81
81

35
5

rs
12

21
19

25
rs

47
65

41
8

rs
10

34
70

9
rs

13
39

24
6

rs
10

36
86

7
rs

38
61

95
3

rs
98

51
96

7
rs

97
04

04
rs

10
38

84
2

rs
45

59
73

2
rs

22
19

07
8

rs
22

88
28

3
rs

13
04

83
76

rs
10

98
23

85
rs

21
23

69
4

rs
13

40
41

6
rs

49
44

08
rs

67
53

08
rs

96
45

76
3

rs
22

89
00

3
rs

59
99

90
0

rs
22

27
41

rs
99

47
57

6
rs

95
06

04
rs

93
22

75
rs

94
72

15
8

rs
62

65
33

rs
15

23
95

5
rs

10
50

14
98

rs
80

20
07

5
rs

81
37

49
3

rs
11

68
93

09
rs

22
33

17
7

rs
23

64
83

4
rs

70
46

65
3

rs
97

92
61

7
rs

99
26

73
5

rs
98

47
80

0
rs

11
79

16
55

rs
68

90
20

4
rs

99
81

28
3

rs
28

34
11

2
rs

10
43

82
43

0

100

200

300

400

Figure 7.4: Gini Correction for SNPs.

The correction algorithm for the Gini VIM was carried out using S = 100

iterations. The Gini VIM of each SNP was subtracted to the Gini VIM of

the corresponding pseudo-SNP (i.e. the permutation of the SNP values).

The distribution of such differences results in a boxplot for every SNP.

Such results were plotted, and the selection itself was conducted relying

on the resulting screeplot.

It is quite immediate to notice that a group of variables come out from

the multitude: particularly we have identified a group of four highly impor-

tant (dark green), a group of three middle important (green), and a group

of five slightly important SNPs (light green). The results of such selection

83

CHAPTER 7. SELECTION OF SNPS

is a subset of 12 SNPs being chosen.

84

7.2. FEATURE SELECTION PHASE

7.2.3 Selection through Boruta Algorithm

In the following section, we used the feature selection algorithm described in

section 5.2 to dataset X1 as explained in Table 6.1. Initial applications of the

algorithm showed that the maximal number of random forest runs (maxRuns)

had to be increased from 100 (default) to 800 in order for the algorithm to

provide a satisfactory solution. Such procedure performed 830 random forest

runs (some additional iterations are needed for a warm-up phase), and took

∼13 hours on a single CPU. 37 SNPs were confirmed important, while five

were left tentative, meaning that the algorithm could not decide whether

they were important or not, but they did not seem to be resolved further

increasing the maxRuns parameter. Therefore, we would discard these five

SNPs from further analysis. It is of interest to note that Boruta was easily

applicable to a relatively large dataset in relative small times without the

use of multithreading. Computational times may change dramatically if

shadow attributes are never dropped from the covariates set (parameter

light =FALSE).

rs
34

45
96

rs
95

19
97

2

rs
29

18
09

1

rs
15

41
89

6

rs
71

26
61

2

rs
71

09
66

2

rs
10

26
82

5

rs
10

36
86

7

rs
40

75
58

3

rs
60

69
91

1

rs
21

23
69

4

rs
22

19
07

8

rs
80

88
82

5

rs
99

47
57

6

rs
49

72
60

0

rs
10

14
80

7

rs
68

81
04

5

rs
67

39
28

5

rs
24

18
05

rs
22

27
41

rs
69

96
57

8

rs
49

80
06

9

rs
19

06
12

4

rs
19

16
76

2

rs
24

30
89

4

rs
21

33
58

2

rs
19

31
95

9

rs
13

27
02

01

rs
12

21
19

25

rs
77

58
02

5

rs
24

03
30

3

rs
10

88
29

04

rs
45

26
99

4

rs
68

90
20

4

rs
95

75
84

0

rs
45

67
98

rs
22

89
56

2

−2

0

2

4

6

8

10

12

Figure 7.5: z-score distribution of attributes marked as confirmed in the
Algorithm

85

CHAPTER 7. SELECTION OF SNPS

Figure 7.5 shows the distribution of the z-scores of the SNPs declared

important across the random forest iterations.

7.3 Results

Each feature selection algorithm selects a different number of SNPs, while

some SNPs were selected by all three methods, some others were selected by

two of them, while others are unique to each method, providing an overall

subset of 50 SNPs.

It is interesting to note, that - while most SNPs are not correlated - some

other are; e.g. SNPs rs7109662 and rs7126612 have a Cramer’s V coefficient

equal to 0.978. Consequently, we decided to retain rs7126612 for further

study, because it is the one of the two having the lesser average correlation

with other selected SNPs.

Similarly, SNPs rs2219078 and rs2123694 (retained) have a Cramer’s V

coefficient equal to 1, which means that each of the two works as a replicate

for the other, thus, any of the two can be retained for further analysis.

In order to state the relevance of such selection procedures, we have

compared the performance of Random Forest (iterated 1000 times) with

the SNPs selected by each feature selection algorithm to a Random Forest

(iterated 1000 times) with 50 SNPs sampled at random from the initial

290319 SNPs, as shown in Table 7.2. All SNPs is a subset of 50 SNPs

resulting from the union of the subsets obtained from the three feature

selection algorithms.

Table 7.2: Number of SNPs used for each RF model.

All SNPs Boruta RF-RFE Gini Random

number of SNPs 50 37 24 12 50

For each of the five subsets, we have performed 1000 random forest

iterations and computed the distribution of the RMSE. The RMSE is often

suggested as the correct measure to determine the best model. It is usually

to prefer over MSE because RMSE is measured in the same units as the

data, rather than in squared units (Ratner, 2011).

The plot 7.6 shows that

86

7.3. RESULTS

A
ll

S
N

P
s

B
or

ut
a

R
F

−
R

F
E

G
in

i

R
an

do
m

6.8

7.0

7.2

7.4

7.6

7.8

Figure 7.6: RMSE for different SNPs selections

87

CHAPTER 7. SELECTION OF SNPS

1. 50 randomly selected SNPs provide the worst predictive performance

(mean RMSE=7.761),

2. the SNPs selected by the Gini Correction algorithm provide a slightly

more accurate predictor (mean RMSE=7.534),

3. the SNPs selected by the RF-RFE algorithm increase the prediction

to a greater extent (mean RMSE=7.224),

4. the SNPs selected by the Boruta algorithm provide the most accurate

predictor (mean RMSE=6.893),

5. the SNPs selected by aggregating all results provide slightly better

results (mean RMSE=6.840, Welch test p-value 2.2e-16).

These results are summarized in table 7.3.

Table 7.3: Average RMSE comparison for different SNPs selections

All SNPs Boruta RF-RFE Gini Random

6.840 6.893 7.224 7.534 7.761

Such results show that the Boruta algorithm performed better in both

computational costs and in terms of selecting the SNPs that mostly con-

tribute to explaining the outcome. The computing times of all methods are

summarized in Table 7.4.

Table 7.4: Computational Times of feature selection algorithms.

Boruta RF-RFE Gini Correction

number of iterations - 100 100
single iteration time (minutes) - ∼50 ∼150

total time (minutes) - ∼5000 ∼150000
total time (hours) ∼13 ∼83 ∼250

It is however important to state that such results should be checked on

different datasets, in order to have honest estimates of the RMSE. This is

a key point in our future research, which will be devoted to assess (i) the

prediction performance of these SNPs in an independent population sample

and (ii) the biological relevance of the newly identified SNPs. It is of inter-

est to note that there is some coherence with the results provided from the

88

7.3. RESULTS

previous study in Pattaro et al. (2007). Although none of the SNPs could be

claimed to be statistically significant because they could not exceed genome-

wide significance, it should be noted that some of the SNPs ranking high

in terms of p-value were detected in the RF approach. For instance SNP

rs663706 is the one ranking highest with p-value = 0.000007, rs1906124 rank-

ing ninth with p-value = 0.000042, and rs6881045 ranking 23rd with p-value

= 0.000094. This information is shown in Tables 7.6 and 7.7: The table

columns show the SNP names, the name of each feature selection algorithm

used (i.e. Boruta, RF-RFE, Gini Correction) indicating whether a given

SNPs was selected by the corresponding method (1=selected, 0=not se-

lected), # indicates the number of feature selection algorithms that selected

a given variable (ranging from 1 to 3), while p-value and rank columns show

the p-value and the rank resulting from the GWAS in Pattaro et al. (2007).

This shows some coherence with regard to some SNPs, and may suggest

that interaction effects are relevant for prediction purposes, while marginal

main effects are in general too weak.

We have later compared the predictive ability of previously selected 28

clinical variables (i.e. using dataset X4 as explained in Table 6.1), mostly

containing parameters measured from blood and urine samples, in order to

investigate if the addition of SNPs (i.e. using dataset X5 as explained in

Table 6.1) could provide an increase in prediction compared with the use

of clinical variables only. We then performed 1000 random forest iterations

and computed the distribution of RMSE and compared this statistic to 1000

random forest iterations containing both clinical variables and SNPs.

Figure 7.7 shows the distribution of the RMSE’s of the prediction based

on the solely clinical variables and with the addition of the fifty SNPs se-

lected. The results are summarized in table 7.5 and show that there is

a gain in terms of RMSE, while figure 7.8 shows the distribution of the

RMSE’s compared through kernel estimation, plus graphical reference band

for equality of a bootstrap based test for the two distributions, which led to

the rejection of the equality of the two distributions. This was performed

with the sm package in R as described in (Bowman and Azzalini, 1997).

Moreover, it is interesting to check the ranking given to each SNP ac-

cording to the three different VIMs and the inclusion frequency in the trees

created in the first iteration of the RF algorithm with the Random Jungle

89

CHAPTER 7. SELECTION OF SNPS

Table 7.5: Average RMSE comparing the two subsets.

Clinical Variables and SNPs Clinical Variables

5.691 5.731

Clinical Variables + SNPs Clinical Variables

5.
66

5.
68

5.
70

5.
72

5.
74

5.
76

Figure 7.7: RMSE for clinical variables and clinical variables with the addi-
tion of the 50 selected SNPs

90

7.3. RESULTS

5.65 5.70 5.75 5.80

0
5

10
15

20
25

30

RMSE

D
en

si
ty

Figure 7.8: RMSE distribution for clinical variables (dotted cline) and for
clinical variables with the addition of SNPs (solid line)

Table 7.6: SNPs selected 3/2 times plus p-values and GWAS(MICROS) rank
in regression

SNP ID # Boruta RF-RFE Gini-Correction p-value rank

rs1541896 3 1 1 1 0.531508 154952
rs344596 3 1 1 1 0.401354 117026
rs4075583 3 1 1 1 0.061444 18150
rs4972600 3 1 1 1 0.02872 8552
rs6739285 3 1 1 1 0.12274 36043
rs7109662 3 1 1 1 0.372704 108662
rs7126612 3 1 1 1 0.987029 286556
rs9519972 3 1 1 1 0.081051 23846
rs1014807 2 1 1 0 0.162126 47579
rs2133582 2 1 1 0 0.040343 11997
rs222741 2 1 1 0 0.155381 45663
rs2573632 2 0 1 1 0.038378 11449
rs6663706 2 0 1 1 7.09E-06 1
rs6996578 2 1 1 0 0.312977 91222
rs9947576 2 1 1 0 0.30967 90235

91

CHAPTER 7. SELECTION OF SNPS

Table 7.7: SNPs selected once plus p-values and GWAS(MICROS) rank in
regression

SNP ID # Boruta RF-RFE Gini-Correction p-value rank

rs1026825 1 1 0 0 0.415659 121134
rs1036867 1 1 0 0 0.008986576 2706
rs10507339 1 0 0 1 0.3928927 114557
rs10882904 1 1 0 0 0.3844381 112125
rs12211925 1 1 0 0 0.2076489 60777
rs12516113 1 0 0 1 0.197702 57882
rs13270201 1 1 0 0 0.003679912 1074
rs1420378 1 0 1 0 0.003684297 1077
rs1423634 1 0 1 0 0.1197732 35148
rs1906124 1 1 0 0 0.0000416 9
rs1916762 1 1 0 0 0.002373611 686
rs1931959 1 1 0 0 0.09719026 28554
rs2123694 1 1 0 0 0.2333583 68132
rs2139999 1 0 1 0 0.2248291 65699
rs2219078 1 1 0 0 0.2267321 66241
rs2289562 1 1 0 0 0.7109454 207058
rs2403303 1 1 0 0 0.3844272 112123
rs241805 1 1 0 0 0.03046019 9098
rs2430894 1 1 0 0 0.2806196 81911
rs2918091 1 1 0 0 0.01081076 3259
rs4526994 1 1 0 0 0.005391562 1604
rs456798 1 1 0 0 0.3560212 103760
rs4765418 1 0 1 0 0.5898113 171844
rs4942063 1 0 1 0 0.3815121 111225
rs4980069 1 1 0 0 0.02746785 8222
rs6069911 1 1 0 0 0.000419317 135
rs6881045 1 1 0 0 0.0000937 23
rs6890204 1 1 0 0 0.00440025 1273
rs7625229 1 0 1 0 0.0634134 18720
rs7758025 1 1 0 0 0.08595233 25331
rs8020075 1 0 1 0 0.07778159 22865
rs8088825 1 1 0 0 0.08477194 24967
rs874838 1 0 1 0 0.5639512 164308
rs9575840 1 1 0 0 0.5185735 151092
rs9928066 1 0 1 0 0.1283263 37663

92

7.3. RESULTS

Package. Tables 7.8 and 7.9 show the ID of each of the 50 SNPs selected,

along with the rank for each VIM (Raw, Gini, Meng). Inclusion frequency

indicates the frequency with which a given SNP was included in the Random

Forest used in the screening phase using the Random Jungle package.

Table 7.8: Inclusion frequency greater than or equal to 0.1 in trees in RJ
and rankings

SNP ID Raw rank GINI rank MENG rank inclusion frequency

rs344596 2 1 134 0.1350
rs6663706 1 2 3 0.1309
rs874838 11 3 954 0.0424

rs10507339 27 7 3340 0.0386
rs1541896 16 9 1214 0.0369
rs6069911 4 13 15 0.0326
rs1420378 8 17 155 0.0315
rs6739285 54 10 4436 0.0267
rs7126612 73 30 7096 0.0257
rs2573632 18 15 647 0.0253
rs1036867 9 28 80 0.0244
rs7109662 92 33 7853 0.0236
rs13270201 41 38 1358 0.0200
rs6996578 122 40 7938 0.0193
rs2918091 32 39 594 0.0186
rs12516113 144400 36 158977 0.0183
rs8088825 49 31 1428 0.0177
rs9519972 64 64 1753 0.0151
rs6881045 19 66 93 0.014120
rs4075583 107 115 1683 0.010940
rs4972600 217 110 5876 0.010160

Inspecting the rankings in each variable importance measure, it is clear

that the contribution of the Meng VIM was not important in the screening

phase in the light of the feature selection that led to these fifty SNPs. The

ranks given by this VIM are usually large, oftentimes larger than 1000,

which was the threshold selected for each VIM: a rank larger than 1000

means that that particular VIM did not contribute to the screening phase,

i.e. that specific SNP was not selected according to that VIM but only

according to one or two other VIMs. It is also important to note that, in

those case when Meng VIM is less than 1000, it is always larger than at

least one of the other VIMs, this means that the screening of SNPs based

93

CHAPTER 7. SELECTION OF SNPS

Table 7.9: Inclusion frequency less than 0.1 in trees in RJ and rankings

SNP ID Raw rank GINI rank MENG rank inclusion frequecy

rs9947576 98 97 1180 0.009960
rs4942063 206 111 3351 0.008060
rs4980069 188 178 2064 0.007140
rs2403303 115 171 590 0.006900
rs222741 276 179 3448 0.006560
rs2289562 445 131 7105 0.005740
rs9928066 287 199 2921 0.005720
rs2139999 286 231 2675 0.005520
rs2123694 279 267 2270 0.005460
rs1026825 572 355 10016 0.005400
rs2133582 488 270 7194 0.005320
rs1906124 364 294 3804 0.005260
rs2219078 178 279 771 0.005200
rs4526994 209 318 1079 0.005080
rs456798 342 491 2146 0.004340
rs1014807 233 381 824 0.004240
rs6890204 2424 837 35130 0.003740
rs8020075 336 479 1127 0.003440
rs10882904 449 667 1999 0.003220
rs9575840 245016 407 187217 0.003180
rs2430894 4635 684 44619 0.002940
rs1423634 945 1088 6339 0.002860
rs7625229 506 1056 1573 0.002680
rs7758025 1393 827 10374 0.002660
rs1931959 1208 752 8049 0.002620
rs4765418 823 1169 4150 0.002600
rs12211925 4497 913 30348 0.002260
rs1916762 632 2675 421 0.001400
rs241805 2391 17320 109 0.000340

94

7.3. RESULTS

on the Meng VIM led to a redundancy in terms of relevant SNPs. These

SNPs have always smaller ranks on the two other VIMs, which means that

they would have been selected anyway without the screening phase based on

this VIM. This could depend on the fact that in this specific dataset there

was no substantial linkage disequilibrium. Generally speaking, we suggest to

include the screening based on all three VIMs, or to make sure that linkage

disequilibrium is not an issue in the particular dataset at hand.

At last, for the purpose of completeness we report a summary of the 50

SNPs selected. Tables 7.10 and 7.11 show the summary provided by the

summary function of the GeneABEL package in R. They show the ID of each

SNP (column SNPID), the chromosome position of each of the selected SNPs

(columns Chromosome and Position), the type of the two alleles measured

(i.e. A, T, C or G, columns A1 and A2), Q.2, which provides the minor allele

frequency (MAF) of a given SNP, i.e. the frequency of the less frequent B

allele, Pexact, which refers to exact p-value for the test of Hardy-Weinberg

equilibrium (HWE), and Fmax, which is a parameter describing what is the

direction of deviation from HWE.

95

CHAPTER 7. SELECTION OF SNPS

Table 7.10: SNPs summary (1:25)

SNPID Chromosome Position A1 A2 Q.2 Pexact Fmax

rs1014807 9 70492016 T C 0.169 0.0027 0.0868
rs1026825 18 58971255 A G 0.440 0.9548 0.0022
rs1036867 13 75362516 T C 0.402 0.5615 0.0161
rs10507339 13 24184564 G A 0.050 0.5485 0.0141
rs10882904 10 99105673 A G 0.345 0.3873 -0.0248
rs12211925 6 87166330 C T 0.145 0.3660 0.0261
rs12516113 5 139862830 A G 0.044 0.5103 -0.0270
rs13270201 8 71731645 T G 0.052 0.0017 0.1023
rs1420378 2 171338877 C A 0.324 0.1109 0.0447
rs1423634 5 87131861 A G 0.299 0.0831 -0.0492
rs1541896 18 37638408 C T 0.155 0.1985 -0.0395
rs1906124 9 11807216 C T 0.215 0.0036 0.0832
rs1916762 2 224999036 G A 0.187 0.3576 0.0268
rs1931959 13 73916739 C T 0.190 0.5260 0.0178
rs2123694 2 108223937 A G 0.214 0.7396 -0.0121
rs2133582 12 24912378 A G 0.162 0.2595 -0.0331
rs2139999 18 30272073 A G 0.162 0.2564 0.0320
rs2219078 2 108241630 G A 0.214 0.7396 -0.0121
rs222741 17 3455629 A G 0.193 0.4724 -0.0232
rs2289562 11 20075983 G T 0.109 0.1509 -0.0425
rs2403303 11 18652983 T C 0.396 0.6407 0.0129
rs241805 20 50812838 G A 0.062 0.8129 -0.0125
rs2430894 18 52568589 A G 0.256 0.7699 -0.0092
rs2573632 15 98217286 G A 0.078 0.8485 0.0012
rs2918091 10 132946118 A G 0.100 0.0594 0.0550

96

7.3. RESULTS

Table 7.11: SNPs summary (26:50)

SNPID Chromosome Position A1 A2 Q.2 Pexact Fmax

rs344596 19 6545274 A G 0.083 0.3611 0.0229
rs4075583 15 61127280 A G 0.368 0.7185 -0.0119
rs4526994 15 21307741 G A 0.242 0.1952 -0.0384
rs456798 20 30669432 G T 0.405 1.0000 0.0004
rs4765418 12 125658925 T G 0.238 0.3551 -0.0275
rs4942063 13 40989334 C T 0.096 0.8734 -0.0081
rs4972600 2 172689891 A G 0.301 0.1445 -0.0419
rs4980069 10 80815272 A G 0.163 0.1009 0.0462
rs6069911 20 54870125 T C 0.103 0.5447 -0.0220
rs6663706 1 117633695 T G 0.194 0.3711 0.0249
rs6739285 2 104723749 C A 0.097 0.0242 -0.0625
rs6881045 5 124208320 A G 0.324 0.0256 0.0626
rs6890204 5 137846077 C T 0.456 0.2157 -0.0354
rs6996578 8 138249241 G A 0.078 0.8485 0.0012
rs7109662 11 6569808 T C 0.077 0.6942 -0.0181
rs7126612 11 6567139 A G 0.071 1.0000 -0.0063
rs7625229 3 134679961 G A 0.308 0.1495 -0.0410
rs7758025 6 129959932 C T 0.168 0.6168 -0.0172
rs8020075 14 49205467 A G 0.174 0.6980 0.0109
rs8088825 18 11502551 T G 0.078 1.0000 -0.0096
rs874838 2 85275202 A G 0.079 0.2454 0.0326
rs9519972 13 105628162 C T 0.140 0.9076 -0.0075
rs9575840 13 84701898 C T 0.082 0.8533 0.0032
rs9928066 16 72754692 T C 0.172 0.6941 0.0122
rs9947576 18 23813740 A G 0.146 0.9107 -0.0081

97

CHAPTER 7. SELECTION OF SNPS

98

Chapter 8

Rule Extraction

In the following pages, we will focus on extracting information for the pur-

poses of interpreting the relation between the outcome variable and the set

of covariates. This is carried out using methods naturally embedded in ran-

dom forests, i.e. variable importance measures and partial dependence plots,

as well as two novel approaches, namely the Fitting Estimation method, and

the Node Harvest estimator.

8.1 Partial Dependence Plots

It can be useful to asses how each predictor is related to the response of

interest. This can be achieved through partial dependence plots, as pro-

posed by Friedman (2001). Such plots provide graphical interpretation of

the mapping function F (x) (as illustrated in Chapter 2) as a function of

the predictors, and provide a strong interpretation tool, although such vi-

sualization is limited to low dimensions. As the name suggests, one such

visualization provides a graphical tool showing how the value of one (or

two) predictor(s) influences the values taken on by the response, leaving all

other predictor values unchanged. Functions of a single real valued variable

can be plotted as a graph of the averaged values of F (x) against each corre-

sponding value of a predictor Xi. Functions of single categorical predictors

are represented through a a barplot, each for every level of the predictor,

where the height of the barplot corresponds to the averaged value of the

function. For quantitative response variables (and also for ordered categor-

ical variables), the units represented on the y-axis are the natural units of

99

CHAPTER 8. RULE EXTRACTION

the response, while for categorical variables they are not (see Berk (2008)

for insights). Single partial dependence plots can be carried out through

the partialPlot function in the randomForest package in R. The resulting

graphs show on the x-axis the deciles of the predictor distribution. For tree-

based approaches like random forest, one proceeds as described in Algotithm

8:

Algorithm 8: Partial Dependence Plot Algorithm

1 for each predictor xi of interest, which has υ different values on the

training data do

2 for each υ value taken by xi, create a new data set where xi only

takes on that value, leaving all other predictor unchanged do

3 Predict the response using random forests, for each of the υ

datasets. There will be a single value averaged over all

observations;

4 Average each of these predictions over the trees;

5 Plot the average prediction for each value of the υ datasets

against the υ values of xi;

8.2 Variable Importances

Although graphically representing the relationship between a particular pre-

dictor and the outcome variable is of great importance, it is also advisable

to investigate such relationships in the light of how much a given predictor

impacts on the response. Although in the previous section we have largely

used variable importance measures, it may not be clear how to compare

the importance measures of a given variable selection procedure. Thus, it

is advisable to recompute variable importance measures on the final subset

of variables. Due to the underlying variability of results, it is always advis-

able to compute VIMs inside an iterative scheme, in order to obtain some

kind of distribution, and not only a single value, that could either over- or

under-estimate the importance of a predictor.

Because checking each VIM individually could be quite chaotic, we sug-

100

8.3. FITTING ESTIMATION

gest the use of a simple procedure that allows us to create a single ranking of

all the variables at hand, e.g. a principal component analysis (PCA). PCA

is a well known dimensionality reduction technique which is usually carried

out for higher dimensional problems, but the following procedure could be

carried out in cases where a larger number of VIM’s are computed. This

was suggested by the use of PCA inside the framework of variable selection

in Sandri and Zuccolotto (2006). Given a large enough number of iterations

to compute VIM’s, we take the median value in order to take outliers into

account, and compute a PCA using the median VIM values of the three

measures seen above.

8.3 Fitting Estimation

As previously stated, ensemble methods provide accurate predictions but

leave interpretation needs unsatisfied. Ensemble methods are often con-

sidered as black-boxes, i.e. one cannot explore the overall mechanism with

which the covariates influence the outcome variable (considering both inter-

action and main effects). The idea behind the Fitting Estimation procedure

is the following: the presence of noise compromises the approximation of

the function f during the building of binary recurse partitioning algorithm

like CART, but such noise can be eliminated through a complex algorithm.

This leads to a two step procedure (Manisera et al., 2012), namely, first

fitting the data with an algorithmic procedure - e.g. tree-based ensembles

- providing a good estimation of f , secondly a CART is constructed us-

ing the fitted values ŷi = f̂ (xi) instead of the original yi’s. This idea is not

new, but until the contribution of Manisera et al. (2012), this procedure had

always been treated as an heuristic method: the authors provide a theoret-

ical background, showing the reasons why this approach can be successful.

The resulting CART conveys two outcomes: a tree-based interpretation of

the function f̂ generated by so-called black-box algorithms, and unbiased

variable importance measures, because the noise - and the resulting bias in

VIM’s resulting from unimportant splits - have been eliminated after the fit

of a complex algorithm. This concept is summarized in Algorithm 9.

Formally, observed values are defined as yi = f (xi) + εi, where εi is the

irreducible error component present in the training data, and f (x) is the

data generating process. The predicted values ŷi = f̂ (xi) are evaluations

101

CHAPTER 8. RULE EXTRACTION

Algorithm 9: Fitting-Estimation Procedure

1 Fit the training data {y,x}N1 through a tree-based ensemble

algorithm;

2 Take the fitted values ŷi and replace the original yi’s, as to build a

new dataset {ŷ,x}N1 ;

3 Grow a CART using the training set {ŷ,x}N1 ;

4 Provide a graphical representation or an explicit definition of the

resulting tree;

5 Compute variable importance measures [Optional].

of f at given points of the input space. The noise component εi induces

overfitting in the predictions in many known algorithms, as it is the case

in CARTs when uninformative splits take place. We have yi = f̂ (xi) + ei

where ei is the prediction error. If we let δi = f̂ (xi) − f (xi) be the error

committed by the algorithm in approximating f , then we can define the yi’s

as yi = f (xi)+δi+ei , so that ei = εi−δi, which means that the prediction error

depends both on the noise component and the error committed by algorithm

in approximating f . Let σ̂2
e , σ̂

2
δ , and σ̂2

ε be the variances of the ei’s, δi’s, and

εi’s. Hopefully the algorithm we are using in step 1 in algorithm 9 provides

a good fit of training data, such goodness of fit is ensured by a low value

of σ̂2
δ (≪ σ̂2

ε). For in step 2 of the algorithm the fitted values ŷi’s are used

to build a CART and ŷi = f (xi) + δi, there is still some noise in the new

training data, yet the variance of the noise component σ̂2
δ is less than that

in the original data, i.e. σ̂2
δ ≪ σ̂2

ε .

8.4 Node Harvest

Node harvest (Meinshausen, 2010) is a method with the aim of reconciling

two features of trees and tree ensembles, i.e. interpretability versus and

high predictive accuracy. The idea behind it is to generate a large number

of nodes in a random fashion, and to pick the right number of nodes by

choosing node weights, which result from a quadratic programming problem

with linear inequality contraints. The algorithm is presented in the following

lines. Let y = {y1, . . . , yn} be a vector of size n × 1 including observations

of a real-valued response variable, and X be the n× p-dimensional covariate

102

8.4. NODE HARVEST

matrix from a domain X , where xi is i-th observation for i = 1, . . . , n. Let

Q be a collection of q nodes, where a node Qg ∈ Q, g = 1, . . . , q, is defined

by a rectangular subspace in X ,

Qg = {x ∈ X ∶ xk ∈ I
(g)
k for k = 1, . . . , p} , (8.1)

at each interval I
(g)
k is a subset of the support of the k-th covariate. If

each leaf node in a tree is an element of Q, the partition provided by a tree

can be expressed by a weight vector w = {0,1}q, where wg = 1 (wg = 0) if

that node g is (not) used in the partition. The prediction Ŷ (x) at a point

x ∈ X is defined as:

Ŷ (x) =
q

∑
g=1

µg1{x ∈ Qg}wg, (8.2)

where 1 is the indicator function which equals 1 if x ∈ Qg, and 0 other-

wise, while µg is the mean over all observations into node Qq,

µg =
∑
n
i=1 1{xi ∈ Qg} yi

∑
n
i=1 1{xi ∈ Qg}

. (8.3)

The predictions on the n observed samples can be rewritten as M, where

M is the n × q-dimensional matrix, with rows entries for i = 1, . . . , n given

by

Mig =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

µg, if xi ∈ Qg

0, if xi ∉ Qg
for g = 1, . . . , q = ∣Q∣ . (8.4)

The empirical squared loss on the training samples is then

∥y −Mw∥
2 (8.5)

Trees try to pick a partitioning that minimizes this empirical squared

loss under certain complexity contraints (e.g. the number of observations in

each node). In tree ensembles, predictions are weighted averages over the

103

CHAPTER 8. RULE EXTRACTION

output of all trees in the ensemble, and each observation is allowed to be

part of more than one node. For instance, in random forests each of the m

trees receives a weight equal to 1/m. If all leaf nodes of the random forest

are part of the set Q, the vector of weights wg ∈ {0, 1
m ,

2
m , . . . ,1} instead

of binary weights wg = {0,1} for single trees. If a node appears once, its

corresponding weight is 1/m, while if it appears more than once its weight

is the corresponding multiple of 1/m (up to a maximum of 1 if it appears in

every tree). The node harvest estimator is obtained through:

ŵ = arg min
w

∥y-Mw∥
2 such that Iw = 1 and w ≥ 0 (8.6)

where

Iig =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if xi ∈ Qg

0, if xi ∉ Qg
for g = 1, . . . , q. (8.7)

is the n × q matrix indicating whether or not an observation i, with

i = 1, . . . , n, falls into a given leaf. The constraint Iw = 1 requires each

observation to be part of exactly one selected node. Similarly to tree en-

sembles, the weights across all nodes for a single observation have to sum

up to 1. The second constraint w ≥ 0 forces weights to take on nonnegative

values only. In tree ensembles, this is achieved implicitly through the aver-

aging process. The outcome of such process is a small subset of nodes being

picked by a large initial ensemble of nodes, since most of the nodes receive

a null weight, through the constraint imposed by Iw = 1. The prediction of

a new data point x ∈ X is carried out through a weighted average over all

nodes it falls into:

Ŷ (x) =
∑g∈Gx

ŵgµg

∑g∈Gx
ŵg

(8.8)

where Gx ∶= {g ∶ x ∈ Qg} is the collection of nodes that x falls into. The

root node is forced to be a member of the set Q through a small weight

equal to 0.001 so that the set Gx is always nonempty. This covers the case

in which a new observation does not fall in any of the selected nodes. Should

that be the case, the prediction of a new data point would be achieved as

104

8.4. NODE HARVEST

the mean of the root node, i.e. the mean over all training data.

The node harvest algorithm is implemented in the nodeHarvest package

in R. There are three parameters that affect the characteristics of the set Q.

1. Number of nodes (nodes). The number of randomly generated nodes

q = ∣Q∣ usually ranges from hundreds to thousands. Although for some

datasets the performance may increase as more nodes are added to

the set, default number of 1000 is recommended. Since computational

times depend greatly on this parameter, one should try to use the

maximum number that is computationally feasible.

2. Maximal interaction order (maxinter). The maximal interaction order

of node Qg is the number of variables necessary to establish whether

a given observation falls into a node. Main effects are obtainable with

a parameter maxinter=1, while two-variable interactions with a pa-

rameter maxinter=2 (default), while three-variable interactions with

a parameter maxinter=3. Meinshausen (2010) suggest to keep the

default value in order to keep the results as interpretable as possible,

stating that it is enough to provide competitive results with many

ensemble methods like random forests.

3. Minimal node size (nodesize). The minimal node size ming ∣{i ∶ Xi ∈ Qg}∣

influences the degree of smoothing. Although some datasets could be

sensitive to this parameter, a nodesize=5 has been shown to be com-

petitive on a wide range of different datasets.

The initial set of nodes Q could be either generated at random (i.e.

without the use of a response) or through the use of a tree ensemble. Mein-

shausen (2010) states that results are quite insensitive to this choice, with

the latter method requiring a smaller initial set of nodes. The algorithm

then starts with an empty set Q, nodes are generated by trees inside the

random forest algorithm, but trees are grown from subset of the training

data of size n/10 instead of bootstrap samples to speed up computational

times. All the nodes that satisfy the maximal interaction depth and minimal

node size contraints are added to the set Q.

105

CHAPTER 8. RULE EXTRACTION

8.5 Rule Extraction for Clinical Variables

8.5.1 Partial Dependence Plots for Clinical Variables

The partial dependence plots shown in figures 8.1 and 8.2 display the re-

lationship between each clinical variable and the response variable inside

the random forest ensemble run using dataset X4 as explained in Table 6.1.

Each plot shows the value of the response value (y-axis) changing depend-

ing on the different values taken for every predictor (x-axis). Note that only

sex is a categorical variable, so its corresponding partial dependence plot is

rendered as a barplot for each category (0=female).

20 30 40 50 60 70 80 90

−
4

−
2

0
2

4

age

20 30 40 50 60 70

0.
0

1.
0

2.
0

bmi

100 150 200 250 300 350

−
0.

2
0.

2
0.

6
1.

0

cholest

60 80 100 120
0.

0
0.

2
0.

4
0.

6
dbp

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

ferritin

0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4

ft4

0 100 200 300 400 500 600

0.
0

0.
1

0.
2

0.
3

0.
4

ggt

20 30 40 50

−
0.

10
0.

00
0.

10
0.

20

hct

40 60 80 100 120 140

−
0.

2
0.

0
0.

2
0.

4

hdl

140 150 160 170 180 190

−
0.

05
0.

05
0.

10
0.

15

height

10 12 14 16 18

0.
0

0.
1

0.
2

0.
3

hgb

50 100 150 200 250 300

−
0.

2
0.

0
0.

2
0.

4

ldl

15 16 17 18 19

0.
0

0.
1

0.
2

0.
3

pdw

3 4 5 6 7

0.
0

0.
4

0.
8

rbc

40 60 80 100 120

−
0.

4
0.

0
0.

2
0.

4

rrpuls

100 120 140 160 180 200 220

0.
0

0.
4

0.
8

1.
2

sbp

Figure 8.1: Partial Dependence Plots for clinical variables 1:16

No smoothness is imposed upon partial dependence plots, so the resulting

graph is sometimes irregular. As suggested in Berk (2008), it is advisable

to apply an eyeball smoother to interpret the results, although it is also

possible to overlay any smoothing function provided by regular packages.

106

8.5. RULE EXTRACTION FOR CLINICAL VARIABLES

40 45 50 55

−
0.

2
0.

2
0.

6
1.

0

schmitz_albumin

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

schmitz_ictp

100 200 300 400

−
0.

1
0.

1
0.

3
0.

5

schmitz_igf_1

0 20000 60000 100000

0.
0

0.
4

0.
8

schmitz_leptin

0 2000 4000 6000 8000

−
1.

5
−

0.
5

0.
0

0.
5

schmitz_nt_probnp

0 500 1000 1500

0.
0

0.
5

1.
0

1.
5

schmitz_opg

10 20 30 40 50 60 70 80

−
1

0
1

2

schmitz_urea

0 1

sex

0.
00

0.
04

0.
08

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

trigly

0 100 200 300 400

0.
0

0.
5

1.
0

1.
5

tsh

5 10 15 20

−
1.

0
0.

0
0.

5
1.

0

uric_acid

40 60 80 100 120 140 160

0.
0

0.
4

0.
8

1.
2

weight

Figure 8.2: Partial Dependence Plots for clinical variables 17:28

107

CHAPTER 8. RULE EXTRACTION

8.5.2 Variable Importances for Clinical Variables

We recomputed three VIM’s (Gini VIM, unscaled and scaled VIM) inside a

hundred RF iterations, and then computed the median value for each VIM.

Table 8.1: Median VIM values for clinical variable age

Gini unscaled scaled

age 17615.27 29.25 53.72

The results show - as it was clear from the previous sections - that age

is the most important clinical predictor. Table 8.1 shows the median VIM

values for age. Because of the large VIM values taken on by age, the resulting

VIM boxplot may be of little use as show in Figure 8.3. The results provided

in Figure 8.4 are a little easier to interpret.

ag
e

sc
hm

itz
_n

t_
pr

ob
np

sc
hm

itz
_u

re
a

sc
hm

itz
_i

gf
_1

sc
hm

itz
_o

pg

ur
ic

_a
ci

d ft4 bm
i

sc
hm

itz
_i

ct
p

ch
ol

es
t

sb
p

ts
h

sc
hm

itz
_l

ep
tin

tr
ig

ly

rr
pu

ls

w
ei

gh
t

ld
l

hd
l

rb
c

db
p

fe
rr

iti
n

gg
t

sc
hm

itz
_a

lb
um

in

he
ig

ht

pd
w

hc
t

hg
b

se
x

0

5000

10000

15000

Figure 8.3: Gini VIM for clinical variables

Figure 8.5 shows the value of each clinical variable according to the first

two principal components, which explain 98.27% and 1.16% of variance re-

spectively. The great importance of variable age makes all the other clinical

108

8.5. RULE EXTRACTION FOR CLINICAL VARIABLES

sc
hm

itz
_n

t_
pr

ob
np

sc
hm

itz
_u

re
a

sc
hm

itz
_i

gf
_1

sc
hm

itz
_o

pg

ur
ic

_a
ci

d ft4 bm
i

sc
hm

itz
_i

ct
p

ch
ol

es
t

sb
p

ts
h

sc
hm

itz
_l

ep
tin

tr
ig

ly

rr
pu

ls

w
ei

gh
t

ld
l

hd
l

rb
c

db
p

fe
rr

iti
n

gg
t

sc
hm

itz
_a

lb
um

in

he
ig

ht

pd
w

hc
t

hg
b

se
x

0

1000

2000

3000

4000

5000

Figure 8.4: Gini VIM for clinical variables - except age

109

CHAPTER 8. RULE EXTRACTION

variables cluster together, i.e. age can be considered as an outlier, therefore

PCA can be carried out excluding variable age, which we declare the most

important among clinical variables. Figure 8.6 is clearly more readable:

the first two principal components explain 93.31% and 6.31% of variance

respectiverly. Although a group of the least important variables are still

clustered together, other very important variables like schmitz nt probn and

schmitz urea stand out of the cloud. Due to the large amount of variability

explained by the first principal component, it is advisable to create a single

and final ranking based upon it (see Table 8.2).

Table 8.2: Ranking and PC value of clinical variables

rank variable PC

1 schmitz nt probnp 4.972
2 schmitz urea 4.805
3 uric acid 2.819
4 schmitz igf 1 1.440
5 schmitz opg 0.925
6 schmitz ictp 0.660
7 bmi 0.566
8 cholest 0.211
9 weight -0.377
10 trigly -0.418
11 ldl -0.502
12 rbc -0.594
13 sbp -0.633
14 ft4 -0.656
15 tsh -0.722
16 ferritin -0.752
17 schmitz leptin -0.762
18 dbp -0.829
19 hdl -0.878
20 hgb -0.893
21 rrpuls -0.921
22 hct -0.994
23 height -1.087
24 ggt -1.108
25 schmitz albumin -1.260
26 pdw -1.348
27 sex -1.665

110

8.5. RULE EXTRACTION FOR CLINICAL VARIABLES

0 2 4 6 8 10

−
2

0
2

4

Dim 1 (98.27%)

D
im

 2
 (

1.
16

%
)

age
bmicholestdbpferritin

ft4
ggthcthdlheighthgbldlpdw

rbc
rrpulssbpschmitz_albumin

schmitz_ictp
schmitz_igf_1

schmitz_leptin

schmitz_nt_probnp

schmitz_opg

schmitz_urea

sextrigly
tsh

uric_acid

weight

Figure 8.5: Principal Components of VIM’s for clinical variables

111

CHAPTER 8. RULE EXTRACTION

−2 0 2 4 6

−
2

−
1

0
1

2

Dim 1 (93.31%)

D
im

 2
 (

6.
31

%
)

bmicholest

dbp
ferritin

ft4

ggt

hct

hdl

height
hgb

ldlpdw
rbc

rrpuls
sbp

schmitz_albumin
schmitz_ictp

schmitz_igf_1schmitz_leptin schmitz_nt_probnp
schmitz_opg

schmitz_urea

sex

trigly

tsh

uric_acid

weight

Figure 8.6: Principal Components of VIM’s for clinical variables - except
age

112

8.5. RULE EXTRACTION FOR CLINICAL VARIABLES

After a ranking is provided, it could be of interest to inspect the par-

tial dependence plot in detail for some variable identified among the most

important. For instance, Figure 8.7 shows the partial dependence plot for

variable age. It can be seen that eGFR levels decrease while age increases,

but it should also be noted that eGFR decreases quite steeply between age

values 50-60. This is coherent with the result provided by many studies

which have shown that the GFR declines steadily with aging (Glassock and

Winearls, 2009; Maćıas-Núñez and López-Novoa, 2008). This decline seems

to be related to the physiologic process of cellular and organ senescence and

with structural changes in the kidneys.

20 30 40 50 60 70 80 90

−
4

−
2

0
2

4

age

Figure 8.7: Partial dependence plot for age

The same can be done for instance for variable schmitz urea: Figure 8.7

shows its corresponding partial dependence plot. It can be seen that eGFR

levels decrease when schmitz urea increases. eGFR rapidly decreases for

small values of schmitz urea, while then it decreases quite proportionally.

As previously mentioned, these plots can be quite irregular, therefore

a proper smoothing function can be used. For instance, Figure 8.9 shows

113

CHAPTER 8. RULE EXTRACTION

10 20 30 40 50 60 70 80

−
1

0
1

2

schmitz_urea

Figure 8.8: Partial dependence plot for schmitz urea

114

8.6. RULE EXTRACTION FOR SNPS

20 30 40 50 60 70 80 90

−
4

−
2

0
2

4

age

10 20 30 40 50 60 70 80

−
1

0
1

2
schmitz_urea

20 30 40 50 60 70

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

bmi

100 200 300 400

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

schmitz_igf_1

Figure 8.9: Smoothed partial dependence plot for age, schmitz urea, bmi,
and schmitz igf 1.

some smoothed partial dependence plots for four selected clinical variables,

namely age, schmitz urea, bmi, and schmitz igf 1, created using the lowess

function in R with smoothing parameter f=.3.

8.6 Rule Extraction for SNPs

8.6.1 Partial Dependence Plots for SNPs

The partial dependence plots shown in figures 8.10 and 8.11 display the re-

lationship between each SNP and the response variable inside the random

forest ensemble. Each plot shows the value of the response value (y-axis)

changing depending on the three different values taken for every SNPs (x-

axis), due to the fact that each SNP is an ordered categorical variable taking

on values 0-1-2. Namely, the homozygous dominant genotype (i.e. AA) is

coded by 0, the heterozygous genotype (i.e. AB/BA) by 1, and the homozy-

gous recessive genotype (i.e. BB) by 2.

115

CHAPTER 8. RULE EXTRACTION

0.0 0.5 1.0 1.5 2.0

−
1.

5
−

0.
5

0.
0

rs1014807

0.0 0.5 1.0 1.5 2.0

−
0.

2
0.

2
0.

6

rs1026825

0.0 0.5 1.0 1.5 2.0

−
0.

2
0.

2
0.

6

rs1036867

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

3.
0

rs10507339

0.0 0.5 1.0 1.5 2.0

−
0.

2
0.

2
0.

6

rs10882904

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

rs12211925

0.0 0.5 1.0 1.5 2.0

0
2

4
6

8

rs12516113

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

rs13270201

0.0 0.5 1.0 1.5 2.0

−
0.

8
−

0.
4

0.
0

rs1420378

0.0 0.5 1.0 1.5 2.0

−
0.

8
−

0.
4

0.
0

rs1423634

0.0 0.5 1.0 1.5 2.0

0
1

2
3

rs1541896

0.0 0.5 1.0 1.5 2.0

−
0.

2
0.

2
0.

6

rs1906124

0.0 0.5 1.0 1.5 2.0

−
0.

2
0.

2
0.

4

rs1916762

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

rs1931959

0.0 0.5 1.0 1.5 2.0

−
1.

5
−

0.
5

rs2133582

0.0 0.5 1.0 1.5 2.0

−
1.

5
−

0.
5

rs2139999

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

rs2219078

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

rs222741

0.0 0.5 1.0 1.5 2.0

−
0.

2
0.

4
0.

8

rs2289562

0.0 0.5 1.0 1.5 2.0

−
0.

6
−

0.
2

rs2403303

0.0 0.5 1.0 1.5 2.0

−
0.

10
0.

00
0.

10

rs241805

0.0 0.5 1.0 1.5 2.0

−
0.

2
0.

2
0.

6

rs2430894

0.0 0.5 1.0 1.5 2.0

0
1

2
3

rs2573632

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

rs2918091

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

rs344596

Figure 8.10: Partial Dependence Plots for SNPs 1:25

116

8.6. RULE EXTRACTION FOR SNPS

0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
6

−
0.

2

rs4075583

0.0 0.5 1.0 1.5 2.0

−
0.

4
0.

0
0.

4

rs4526994

0.0 0.5 1.0 1.5 2.0

−
0.

4
−

0.
2

0.
0

rs456798

0.0 0.5 1.0 1.5 2.0

−
1.

2
−

0.
6

0.
0

rs4765418

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

rs4942063

0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
6

−
0.

2

rs4972600

0.0 0.5 1.0 1.5 2.0

−
0.

2
0.

4
0.

8
1.

2

rs4980069

0.0 0.5 1.0 1.5 2.0

−
0.

2
0.

2
0.

6

rs6069911

0.0 0.5 1.0 1.5 2.0

−
0.

4
−

0.
1

0.
1

rs6663706

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

rs6739285

0.0 0.5 1.0 1.5 2.0

−
0.

4
0.

0

rs6881045

0.0 0.5 1.0 1.5 2.0

−
0.

3
−

0.
1

0.
1

rs6890204

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

3.
0

rs6996578

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

rs7126612

0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

rs7625229

0.0 0.5 1.0 1.5 2.0

−
1.

2
−

0.
6

0.
0

rs7758025

0.0 0.5 1.0 1.5 2.0

−
1.

5
−

0.
5

rs8020075

0.0 0.5 1.0 1.5 2.0

0
1

2
3

rs8088825

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

rs874838

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

3.
0

rs9519972

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

rs9575840

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

rs9928066

0.0 0.5 1.0 1.5 2.0

−
1.

5
−

0.
5

rs9947576

Figure 8.11: Partial Dependence Plots for SNPs 26:48

117

CHAPTER 8. RULE EXTRACTION

8.6.2 Variable Importances for SNPs

We recomputed three VIM’s (Gini VIM, unscaled, and scaled VIM) inside a

hundred RF iterations, and then computed the median value for each VIM.

−2 0 2 4

−
3

−
2

−
1

0
1

2

Dim 1 (72.2%)

D
im

 2
 (

24
.7

4%
)

rs1541896rs344596

rs4075583rs4972600

rs6739285

rs7109662

rs7126612

rs9519972

rs1014807

rs2133582

rs222741

rs2573632

rs6663706

rs6996578

rs9947576

rs1026825

rs1036867

rs10507339

rs10882904

rs12211925

rs12516113

rs13270201

rs1420378
rs1423634

rs1906124

rs1916762

rs1931959

rs2123694

rs2139999

rs2219078

rs2289562 rs2403303

rs241805

rs2430894

rs2918091

rs4526994

rs456798

rs4765418
rs4942063

rs4980069

rs6069911

rs6881045

rs6890204

rs7625229

rs7758025

rs8020075

rs8088825

rs874838

rs9575840 rs9928066

Figure 8.12: Ranking and PC value of SNPs

We take the median value in order to take into account outliers, and

perform a PCA using the median VIM values of the three measures seen

above. Figure 8.12 shows the value of each SNP according to the first two

principal components, which explain 72.2% and 24.74% of variance respec-

tively. Due to the large amount of variability explained by the first principal

component, it is advisable to create a single and final ranking based upon

it (see Table 8.3).

8.6.3 Fitting Estimation for SNPs

The pair of CARTs in Figure 8.13 show the Fitting Estimation procedure

for the SNPs selected (i.e. using dataset X2 as explained in Table 6.1), in

detail the figure provides the CART build to its maximum size (left) and

the CART build with default value mindev=1e-6, both using the predicted

118

8.6. RULE EXTRACTION FOR SNPS

Table 8.3: Ranking and first PC value of SNPs

rank variable PC rank variable PC

1 rs4075583 3.140 26 rs222741 -0.152
2 rs1026825 2.605 27 rs7109662 -0.281
3 rs1541896 2.391 28 rs4980069 -0.293
4 rs1916762 2.171 29 rs2133582 -0.298
5 rs6069911 2.100 30 rs1906124 -0.386
6 rs6881045 1.967 31 rs2430894 -0.422
7 rs344596 1.957 32 rs9928066 -0.437
8 rs1036867 1.949 33 rs8088825 -0.477
9 rs1420378 1.835 34 rs7126612 -0.501
10 rs4526994 1.672 35 rs2573632 -0.513
11 rs2918091 1.372 36 rs7625229 -0.754
12 rs9519972 1.229 37 rs12211925 -0.788
13 rs2403303 1.121 38 rs6663706 -0.814
14 rs4972600 0.873 39 rs9947576 -1.019
15 rs8020075 0.837 40 rs2139999 -1.092
16 rs2219078 0.492 41 rs9575840 -1.224
17 rs7758025 0.452 42 rs6996578 -1.383
18 rs10882904 0.431 43 rs456798 -1.609
19 rs6890204 0.429 44 rs4942063 -1.929
20 rs2123694 0.297 45 rs2289562 -2.021
21 rs1423634 0.121 46 rs241805 -2.039
22 rs1014807 -0.023 47 rs12516113 -2.299
23 rs6739285 -0.121 48 rs10507339 -2.482
24 rs4765418 -0.122 49 rs13270201 -2.856
25 rs1931959 -0.125 50 rs874838 -2.983

119

CHAPTER 8. RULE EXTRACTION

values from a Random Forest with ntree=5000. It is clear that noise has

been eliminated from the data, and extremely uninformative splits are evi-

dent in the maximally grown tree, and are easily removed in the CART with

default values in the function tree in R.

| |

Figure 8.13: Fitting Estimation showing overfitting (left), and Fitting Esti-
mation (right)

Figure 8.14 shows a regression tree providing a stable representation

of the underlying structure of the ensemble used. Let us recall that one

important drawback of CART is its instability, i.e. small changes in the

training data can cause big changes in the resulting model. In this case, the

changes depend on the seed used to run the ensemble method that produces

the predicted values: multiple runs, with different seed values, showed that

the CARTs resulting from the Fitting Estimation procedure did not differ

much from one another. As a result, the Fitting Estimation procedure

produced a stable tree. It is important to note that all splits are carried

out according to the homozygous dominant genotype (i.e. AA, coded by

0) or the heterozygous genotype (i.e. AB/BA, coded by 1), while the the

homozygous recessive genotype (i.e. BB, coded by 2) is never included in

120

8.6. RULE EXTRACTION FOR SNPS

|rs1420378 < 1.5

rs9519972 < 1.5

rs6069911 < 0.5

rs2219078 < 1.5

rs1026825 < 1.5

rs1541896 < 1.5

rs7625229 < 1.5

rs4526994 < 0.5

rs9928066 < 1.5

rs9947576 < 1.5

rs4972600 < 1.5

rs6881045 < 0.5

rs8088825 < 0.5

rs456798 < 1.5

rs6663706 < 0.5

−1.5070 −5.7310

 1.6410

 0.5156 −0.7818

−2.2430

 0.3790 3.5400

 3.9750

 0.6977

 2.4660

 1.3170 −0.2519

 3.8220

−0.8760 −3.0490

Figure 8.14: Fitting Estimation procedure showing cutting points and SNP
names.

121

CHAPTER 8. RULE EXTRACTION

the splits. Similarly, Table 8.4 shows the result of the Fitting Estimation

procedure, showing the number of the node (column node), the splitting

variable with its corresponding cutting point (column variable), the node

size (column size), the deviance value of the node (column deviance), and

the predicted value (column outcome).

8.6.4 Node Harvest for SNPs

While the author claims that satisfactory results can be achieved using two-

order interaction (maxinter=2), the parameters in Node Harvest should

be tuned like in any other method: Figure 8.15 shows the RMSE values

obtained for different interaction orders achieved inside a ten-fold cross-

validation using the subset of SNPs previously achieved (i.e. using dataset

X2 as explained in Table 6.1).

Maximum Interaction Depth

R
M

S
E

 (
C

ro
ss

−
V

al
id

at
io

n)

7.40

7.45

7.50

7.55

2 4 6 8 10

Figure 8.15: Tuning of node harvest interaction depth.

The smallest RMSE is obtained for maxinter=7, with maxinter=5 pro-

viding a similar result. In this case, one has to bear in mind that at this level

one is particularly interested in obtaining a simple interpretable model, as a

122

8.6. RULE EXTRACTION FOR SNPS

Table 8.4: Fitting Estimation description, * indicates terminal node

node variable size deviance outcome

1) root 1201 7713 -0.1676
2) rs1420378 < 1.5 1064 6506 0.04822
4) rs9519972 < 1.5 1042 6121 -0.03145
8) rs6069911 < 0.5 823 4701 -0.3121
16) rs2219078 < 1.5 789 4309 -0.4318
32) rs1026825 < 1.5 633 3410 -0.7101
64) rs1541896 < 1.5 622 3121 -0.793
128) rs7625229 < 1.5 568 2613 -0.9601
256) rs4526994 < 0.5 313 1329 -1.474
512) rs9928066 < 1.5 303 1178 -1.577
1024) rs9947576 < 1.5 298 1086 -1.507 *
1025) rs9947576 > 1.5 5 4.474 -5.731 *
513) rs9928066 > 1.5 10 50.29 1.641 *
257) rs4526994 > 0.5 255 1100 -0.3291
514) rs4972600 < 1.5 231 922.7 -0.1303
1028) rs6881045 < 0.5 116 399.8 0.5156 *
1029) rs6881045 > 0.5 115 425.7 -0.7818 *
515) rs4972600 > 1.5 24 80.79 -2.243 *
129) rs7625229 > 1.5 54 325.1 0.9645
258) rs8088825 < 0.5 44 158.7 0.379 *
259) rs8088825 > 0.5 10 84.89 3.54 *
65) rs1541896 > 1.5 11 43.06 3.975 *
33) rs1026825 > 1.5 156 651 0.6977 *
17) rs2219078 > 1.5 34 118.4 2.466 *
9) rs6069911 > 0.5 219 1111 1.023
18) rs456798 < 1.5 178 925.2 1.317 *
19) rs456798 > 1.5 41 104.2 -0.2519 *
5) rs9519972 > 1.5 22 65.07 3.822 *
3) rs1420378 > 1.5 137 773.4 -1.844
6) rs6663706 < 0.5 76 325 -0.876 *
7) rs6663706 > 0.5 61 288.6 -3.049 *

123

CHAPTER 8. RULE EXTRACTION

result imposing an interaction order equal to five (or even seven) could jeop-

ardize such purpose, i.e. providing many nodes with many interaction rules,

which could be too lengthy to visually inspect. Bearing this in mind, as

a compromise resulting between interpretation and performance, we select

an interaction order equal to three, while keeping nodesize=5 as suggested

by Meinshausen (2010). Figure 8.16 shows the result plotted for such Node

Harvest solution: it is evident that even an interaction depth equal to three

is already too much for such solution to be plotted, and except for some

nodes, the result is quite chaotic and of little use. The resulting Node Har-

vest estimator features 82 nodes, and tables 8.6, 8.7, and 8.8 provide the

values for each node, namely, the weight, the mean of the node, and the

number of samples included in such node, along with the SNPs used to cre-

ate each node.

The resulting estimator is a small number of nodes that predict the training

observations as a weighted average of node means. Because nodes are shown

with decreasing weights, progressively approaching zero, for interpretation

purposes, one can focus on the first ranking nodes.

RESPONSE

S
A

M
P

LE
S

5
8

19
10

8
71

2
12

01

●● ●●

●
● ● ●●

●
●● ●

●

●
●

●

●●
●

●●
●● ● ●●●●● ●●

●●●
●●●●●

●● ●●● ●●● ●●●●●●●●
●●●●

●
● ●

−10 −5 0 5 10 15 20

rs9519972 <= 1.5
rs6663706 <= 0.5
1.5 <= rs2573632

rs2139999 <= 1.5
1.5 <= rs1541896
1.5 <= rs1036867

1.5 <= rs6739285

rs344596 <= 1.5
rs1420378 <= 1.5
1.5 <= rs7126612

rs1036867 <= 1.5
1.5 <= rs2573632

rs12516113 <= 1.5
1.5 <= rs1541896
0.5 <= rs1931959

rs6881045 <= 0.5
0.5 <= rs6069911
1.5 <= rs8020075

rs6663706 <= 0.5
1.5 <= rs344596

1.5 <= rs9519972
0.5 <= rs9947576

rs4972600 <= 1.5
rs7126612 <= 1.5
1.5 <= rs6996578

1.5 <= rs344596
rs4980069 <= 0.5

rs2289562 <= 1.5
1.5 <= rs8088825

rs1541896 <= 1.5
1.5 <= rs2918091
rs8020075 <= 0.5

rs1541896 <= 1.5
1.5 <= rs2918091
0.5 <= rs8020075

1.5 <= rs1014807
rs6663706 <= 0.5
rs1026825 <= 0.5

rs7126612 <= 1.5
1.5 <= rs874838

1.5 <= rs4972600
1.5 <= rs1036867

rs12516113 <= 1.5
1.5 <= rs2573632

1.5 <= rs344596
rs1014807 <= 0.5

0.5 <= rs6663706
1.5 <= rs1036867
0.5 <= rs241805 1.5 <= rs3445961.5 <= rs1036867

0.5 <= rs10507339rs12516113 <= 1.5
1.5 <= rs1014807
0.5 <= rs6663706

1.5 <= rs1036867
1.5 <= rs1906124

rs2139999 <= 1.5
1.5 <= rs1541896
rs1036867 <= 1.5rs4972600 <= 1.5

0.5 <= rs6663706
1.5 <= rs9928066

rs12516113 <= 1.5
1.5 <= rs1541896
rs1931959 <= 0.5

rs12516113 <= 1.5
1.5 <= rs8020075
0.5 <= rs6663706 1.5 <= rs9519972

rs9947576 <= 0.5
rs8088825 <= 1.5
1.5 <= rs222741
0.5 <= rs1916762

rs4972600 <= 1.5
rs6663706 <= 0.5
1.5 <= rs12211925

rs6663706 <= 0.5
rs344596 <= 1.5

1.5 <= rs12211925

1.5 <= rs4972600
rs1036867 <= 1.5
0.5 <= rs4980069

rs8088825 <= 1.5
1.5 <= rs222741
rs1916762 <= 0.5

rs1036867 <= 1.5
rs2573632 <= 1.5
1.5 <= rs2133582

rs12516113 <= 1.5
1.5 <= rs8020075
rs6663706 <= 0.5

0.5 <= rs6881045
rs344596 <= 1.5
1.5 <= rs2219078

1.5 <= rs1014807
rs6663706 <= 0.5
0.5 <= rs1026825

rs344596 <= 1.5
rs1036867 <= 1.5
1.5 <= rs2139999

rs1014807 <= 1.5
rs8088825 <= 1.5
1.5 <= rs2139999

rs12516113 <= 1.5
rs6739285 <= 1.5
1.5 <= rs2139999

rs344596 <= 1.5
1.5 <= rs1420378
0.5 <= rs1916762

rs1541896 <= 1.5
rs874838 <= 1.5
1.5 <= rs1014807

rs1014807 <= 1.5
rs8020075 <= 1.5
1.5 <= rs2219078

0.5 <= rs6663706
rs1036867 <= 1.5
1.5 <= rs1420378

0.5 <= rs6663706
1.5 <= rs1036867
rs241805 <= 0.5

rs6739285 <= 1.5
0.5 <= rs6663706
1.5 <= rs4075583

1.5 <= rs4972600
rs1036867 <= 1.5
rs4980069 <= 0.5

rs344596 <= 1.5
1.5 <= rs1420378
rs1916762 <= 0.5

rs6881045 <= 0.5
0.5 <= rs6069911
rs8020075 <= 1.5

rs2573632 <= 1.5
rs6663706 <= 0.5
0.5 <= rs6069911

rs6739285 <= 1.5
rs6663706 <= 0.5
0.5 <= rs6069911

1.5 <= rs1036867
rs10507339 <= 0.5
rs1541896 <= 1.5

rs344596 <= 1.5
1.5 <= rs1036867
rs1906124 <= 1.5

0.5 <= rs6663706
rs1036867 <= 1.5
rs1420378 <= 1.5

rs6739285 <= 1.5
0.5 <= rs6663706
rs4075583 <= 1.5

rs4972600 <= 1.5
0.5 <= rs6663706
rs9928066 <= 1.5

rs6739285 <= 1.5
0.5 <= rs1916762
rs344596 <= 1.5

0.5 <= rs6663706
rs8020075 <= 1.5
rs4942063 <= 1.5

rs6739285 <= 1.5
0.5 <= rs1916762rs6881045 <= 0.5

rs6069911 <= 0.5
0.5 <= rs6881045
rs344596 <= 1.5
rs2219078 <= 1.5

rs2573632 <= 1.5
rs6663706 <= 0.5
rs6069911 <= 0.5

rs6739285 <= 1.5
rs6663706 <= 0.5
rs6069911 <= 0.5

rs6739285 <= 1.5
rs1916762 <= 0.5
rs1420378 <= 1.5

rs4972600 <= 1.5
rs6663706 <= 0.5
rs12211925 <= 1.5

rs1014807 <= 1.5
rs6663706 <= 0.5
rs344596 <= 1.5

rs6663706 <= 0.5
rs344596 <= 1.5

rs12211925 <= 1.5

rs344596 <= 1.5
rs1036867 <= 1.5
rs2139999 <= 1.5

rs1036867 <= 1.5
rs2573632 <= 1.5
rs2133582 <= 1.5

rs344596 <= 1.5
rs7126612 <= 1.5
rs1036867 <= 1.5

rs344596 <= 1.5
rs1420378 <= 1.5
rs7126612 <= 1.5

rs1014807 <= 1.5
rs8020075 <= 1.5
rs2219078 <= 1.5

rs6996578 <= 1.5
rs4972600 <= 1.5
rs344596 <= 1.5

rs4972600 <= 1.5
rs2573632 <= 1.5
rs7126612 <= 1.5

rs2139999 <= 1.5
rs1541896 <= 1.5
rs1014807 <= 1.5

rs8088825 <= 1.5
rs222741 <= 1.5

rs2139999 <= 1.5

rs1541896 <= 1.5
rs874838 <= 1.5

rs1014807 <= 1.5

rs8088825 <= 1.5
rs1541896 <= 1.5
rs8020075 <= 1.5

rs9519972 <= 1.5
rs7126612 <= 1.5
rs1541896 <= 1.5

rs1541896 <= 1.5
rs2918091 <= 1.5
rs2573632 <= 1.5root

Figure 8.16: Node Harvest for SNPs selected.

It is of interest to note that the first splitting variable in the Fitting

Estimation procedure (i.e. SNP rs1420378) shows up in three nodes (among

the first teen) in the Node Harvest solution. Similarly, SNP rs6663706 shows

up in many nodes in the Node Harvest solution, which rank high. In order

to summarize the overlap between the two methods, Table 8.5 shows the

inclusion frequencies of the SNPs selected in the Fitting Estimation proce-

124

8.6. RULE EXTRACTION FOR SNPS

dure that also compare in the Node Harvest solution. For instance, SNP

rs6663706 appears most frequently (30.9%), while SNP rs1420378 appears

12.3% of times.

Table 8.5: Inclusion frequencies of SNPs in the Fitting Estimation that also
appear in the Node Harvest solution.

SNP ID frequencies

rs6663706 25 0.309
rs1541896 13 0.160
rs4972600 10 0.123
rs1420378 7 0.086
rs6069911 7 0.086
rs8088825 6 0.074
rs6881045 5 0.062
rs9519972 4 0.049
rs2219078 4 0.049
rs9928066 2 0.025
rs1026825 2 0.025
rs9947576 2 0.025
rs456798 0 0.000
rs7625229 0 0.000
rs4526994 0 0.000

125

CHAPTER 8. RULE EXTRACTION

T
ab

le
8.6:

N
o
d

e
H

arv
est

E
stim

ator
for

S
N

P
s:

n
o
d

es
1-27

n
o
d

e
#

sa
m

p
les

m
ean

w
eigh

t
ru

le

1
21

10
1
4.1

0.321
1.5

<
=

rs344596
2

33
19

-8
.49

0.293
1.5

<
=

rs4972600
rs1036867

<
=

1.5
0.5

<
=

rs4980069
3

48
6
9

-2.74
0.293

1.5
<
=

rs4972600
rs1036867

<
=

1.5
rs4980069

<
=

0.5
4

1
7

8
7.71

0.293
1.5

<
=

rs4972600
1.5

<
=

rs1036867
5

4
5

15
.5

0.285
rs344596

<
=

1.5
rs1420378

<
=

1.5
1.5

<
=

rs7126612
6

5
4

18
4

1
.07

0.212
rs344596

<
=

1.5
1.5

<
=

rs1036867
rs1906124

<
=

1.5
7

24
13

1
1.9

0.212
1.5

<
=

rs1036867
1.5

<
=

rs1906124
8

7
1

99
0

-0
.567

0.140
rs344596

<
=

1.5
rs7126612

<
=

1.5
rs1036867

<
=

1.5
9

45
50

-4
.78

0.139
0.5

<
=

rs6663706
rs1036867

<
=

1.5
1.5

<
=

rs1420378
1
0

55
292

-1
.26

0.139
0.5

<
=

rs6663706
rs1036867

<
=

1.5
rs1420378

<
=

1.5
11

2
0

9
5.09

0.139
0.5

<
=

rs6663706
1.5

<
=

rs1036867
0.5

<
=

rs241805
1
2

46
63

0.0449
0.139

0.5
<
=

rs6663706
1.5

<
=

rs1036867
rs241805

<
=

0.5
13

8
7

18.4
0.128

rs6663706
<
=

0.5
1.5

<
=

rs344596
14

3
5

15
.8

0.117
1.5

<
=

rs6739285
15

66
7
12

0.811
0.104

rs4972600
<
=

1.5
rs6663706

<
=

0.5
rs12211925

<
=

1.5
1
6

31
17

7
.2

0.104
rs4972600

<
=

1.5
rs6663706

<
=

0.5
1.5

<
=

rs12211925
1
7

2
6

14
5
.4

0.104
rs4972600

<
=

1.5
0.5

<
=

rs6663706
1.5

<
=

rs9928066
1
8

57
362

-1
.34

0.104
rs4972600

<
=

1.5
0.5

<
=

rs6663706
rs9928066

<
=

1.5
19

1
8

8
12.9

0.102
rs12516113

<
=

1.5
1.5

<
=

rs2573632
20

15
8

2.17
0.097

1.5
<
=

rs1014807
rs6663706

<
=

0.5
rs1026825

<
=

0.5
2
1

38
28

-4
.35

0.097
1.5

<
=

rs1014807
rs6663706

<
=

0.5
0.5

<
=

rs1026825
22

7
5

10
9
2

0
.0

995
0.095

rs4972600
<
=

1.5
rs2573632

<
=

1.5
rs7126612

<
=

1.5
2
3

74
1
087

0.0612
0.095

rs6996578
<
=

1.5
rs4972600

<
=

1.5
rs344596

<
=

1.5
24

1
0

7
10.3

0.095
rs4972600

<
=

1.5
rs7126612

<
=

1.5
1.5

<
=

rs6996578
2
5

5
6

1
5.1

0.094
rs1036867

<
=

1.5
1.5

<
=

rs2573632
2
6

3
5

23
-6

.49
0.094

rs1036867
<
=

1.5
rs2573632

<
=

1.5
1.5

<
=

rs2133582
2
7

70
974

-0
.3

28
0.094

rs1036867
<
=

1.5
rs2573632

<
=

1.5
rs2133582

<
=

1.5

126

8.6. RULE EXTRACTION FOR SNPS

T
ab

le
8
.7

:
N

o
d

e
H

ar
v
es

t
E

st
im

at
or

fo
r

S
N

P
s:

n
o
d

es
28

-5
4

n
o
d

e
#

sa
m

p
le

s
m

ea
n

w
ei

gh
t

ru
le

2
8

5
2

17
4

3
.0

9
0.

09
3

rs
67

39
28

5
<
=

1.
5

rs
66

63
70

6
<
=

0.
5

0.
5
<
=

rs
60

69
91

1
29

64
6
10

-0
.0

47
1

0.
09

3
rs

67
39

28
5
<
=

1.
5

rs
66

63
70

6
<
=

0.
5

rs
60

69
91

1
<
=

0.
5

3
0

4
7

65
-4

.1
7

0.
08

5
rs

67
39

28
5
<
=

1.
5

0.
5
<
=

rs
66

63
70

6
1.

5
<
=

rs
40

75
58

3
31

56
3
47

-0
.9

13
0.

08
5

rs
67

39
28

5
<
=

1.
5

0.
5
<
=

rs
66

63
70

6
rs

40
75

58
3
<
=

1.
5

3
2

2
5

14
0.

07
8

rs
21

39
99

9
<
=

1.
5

1.
5
<
=

rs
15

41
89

6
1.

5
<
=

rs
10

36
86

7
33

49
9
7

-4
.0

7
0.

07
0

rs
34

45
96

<
=

1.
5

1.
5
<
=

rs
14

20
37

8
rs

19
16

76
2
<
=

0.
5

3
4

5
3

18
1

1
.1

3
0.

07
0

1.
5
<
=

rs
10

36
86

7
rs

10
50

73
39

<
=

0.
5

rs
15

41
89

6
<
=

1.
5

3
5

2
2

12
8
.6

4
0.

07
0

1.
5
<
=

rs
10

36
86

7
0.

5
<
=

rs
10

50
73

39
36

6
7

7
4
4

0.
72

0.
06

9
rs

10
14

80
7
<
=

1.
5

rs
66

63
70

6
<
=

0.
5

rs
34

45
96

<
=

1.
5

37
6

6
0.

22
1

0.
06

1
rs

12
51

61
13

<
=

1.
5

1.
5
<
=

rs
15

41
89

6
0.

5
<
=

rs
19

31
95

9
3
8

2
7

14
1
0.

8
0.

06
1

rs
12

51
61

13
<
=

1.
5

1.
5
<
=

rs
15

41
89

6
rs

19
31

95
9
<
=

0.
5

39
39

3
4

-5
.3

3
0.

04
9

rs
34

45
96

<
=

1.
5

rs
10

36
86

7
<
=

1.
5

1.
5
<
=

rs
21

39
99

9
40

69
9
60

-0
.3

25
0.

04
9

rs
34

45
96

<
=

1.
5

rs
10

36
86

7
<
=

1.
5

rs
21

39
99

9
<
=

1.
5

41
42

3
9

1.
54

0.
04

6
rs

34
45

96
<
=

1.
5

1.
5
<
=

rs
14

20
37

8
0.

5
<
=

rs
19

16
76

2
4
2

7
2

10
5
0

0
.1

1
0.

04
6

rs
34

45
96

<
=

1.
5

rs
14

20
37

8
<
=

1.
5

rs
71

26
61

2
<
=

1.
5

43
16

8
11

.5
0.

04
5

rs
71

26
61

2
<
=

1.
5

1.
5
<
=

rs
87

48
38

4
4

78
1
12

4
-0

.0
30

2
0.

04
5

rs
15

41
89

6
<
=

1.
5

rs
87

48
38

<
=

1.
5

rs
10

14
80

7
<
=

1.
5

45
43

4
8

-4
.5

6
0.

04
5

rs
15

41
89

6
<
=

1.
5

rs
87

48
38

<
=

1.
5

1.
5
<
=

rs
10

14
80

7
4
6

6
8

76
2

0
.4

0
2

0.
04

3
rs

66
63

70
6
<
=

0.
5

rs
34

45
96

<
=

1.
5

rs
12

21
19

25
<
=

1.
5

4
7

32
18

6
.9

1
0.

04
3

rs
66

63
70

6
<
=

0.
5

rs
34

45
96

<
=

1.
5

1.
5
<
=

rs
12

21
19

25
48

28
1
4

-8
.2

6
0.

03
2

rs
12

51
61

13
<
=

1.
5

1.
5
<
=

rs
80

20
07

5
0.

5
<
=

rs
66

63
70

6
4
9

2
3

13
-8

.4
7

0.
02

8
rs

12
51

61
13

<
=

1.
5

1.
5
<
=

rs
10

14
80

7
0.

5
<
=

rs
66

63
70

6
50

63
6
09

-0
.0

89
0.

02
7

rs
25

73
63

2
<
=

1.
5

rs
66

63
70

6
<
=

0.
5

rs
60

69
91

1
<
=

0.
5

5
1

1
5

1
4.

9
0.

02
7

rs
95

19
97

2
<
=

1.
5

rs
66

63
70

6
<
=

0.
5

1.
5
<
=

rs
25

73
63

2
52

51
1
73

3.
12

0.
02

7
rs

25
73

63
2
<
=

1.
5

rs
66

63
70

6
<
=

0.
5

0.
5
<
=

rs
60

69
91

1
5
3

6
5

69
8

-0
.1

1
1

0.
02

4
rs

67
39

28
5
<
=

1.
5

rs
19

16
76

2
<
=

0.
5

rs
14

20
37

8
<
=

1.
5

54
36

2
5

-3
.0

8
0.

02
4

rs
12

51
61

13
<
=

1.
5

1.
5
<
=

rs
80

20
07

5
rs

66
63

70
6
<
=

0.
5

127

CHAPTER 8. RULE EXTRACTION

T
ab

le
8
.8:

N
o
d

e
H

arvest
E

stim
ator

for
S

N
P

s:
n

o
d

es
55-82

n
o
d

e
#

sa
m

p
les

m
ean

w
eigh

t
ru

le

55
73

1
0
63

0
.185

0.020
rs1014807

<
=

1.5
rs8020075

<
=

1.5
rs2219078

<
=

1.5
5
6

44
50

4.22
0.020

rs1014807
<
=

1.5
rs8020075

<
=

1.5
1.5

<
=

rs2219078
5
7

37
27

4.03
0.016

0.5
<
=

rs6881045
rs344596

<
=

1.5
1.5

<
=

rs2219078
58

6
2

6
0
3

-1
.14

0.016
0.5

<
=

rs6881045
rs344596

<
=

1.5
rs2219078

<
=

1.5
5
9

7
7

-2.24
0.016

rs6881045
<
=

0.5
0.5

<
=

rs6069911
1.5

<
=

rs8020075
60

5
0

1
0
8

3
.25

0.016
rs6881045

<
=

0.5
0.5

<
=

rs6069911
rs8020075

<
=

1.5
61

6
1

4
5
2

0
.3

17
0.016

rs6881045
<
=

0.5
rs6069911

<
=

0.5
6
2

6
0

40
0

0.972
0.016

rs6739285
<
=

1.5
0.5

<
=

rs1916762
63

1
2

7
1
2.4

0.011
rs2289562

<
=

1.5
1.5

<
=

rs8088825
64

8
2

12
0
1

-1.00
E

-16
0.010

R
O

O
T

N
O

D
E

65
5
8

3
9
6

0
.8

36
0.008

rs6739285
<
=

1.5
0.5

<
=

rs1916762
rs344596

<
=

1.5
66

5
9

3
9
9

-1
.17

0.008
0.5

<
=

rs6663706
rs8020075

<
=

1.5
rs4942063

<
=

1.5
67

2
5

1
3

7
.59

0.008
rs2139999

<
=

1.5
1.5

<
=

rs1541896
rs1036867

<
=

1.5
68

1
9

8
17

0.008
1.5

<
=

rs344596
rs1014807

<
=

0.5
6
9

4
1

36
-5.32

0.008
rs12516113

<
=

1.5
rs6739285

<
=

1.5
1.5

<
=

rs2139999
7
0

11
7

18
.7

0.008
1.5

<
=

rs344596
rs4980069

<
=

0.5
7
1

7
7

112
0

-0
.0682

0.008
rs8088825

<
=

1.5
rs222741

<
=

1.5
rs2139999

<
=

1.5
72

7
6

10
9
7

0
.1

72
0.008

rs2139999
<
=

1.5
rs1541896

<
=

1.5
rs1014807

<
=

1.5
73

4
0

3
5

-5
.27

0.008
rs1014807

<
=

1.5
rs8088825

<
=

1.5
1.5

<
=

rs2139999
7
4

34
22

2.39
0.008

rs8088825
<
=

1.5
1.5

<
=

rs222741
rs1916762

<
=

0.5
7
5

30
16

8.08
0.008

rs8088825
<
=

1.5
1.5

<
=

rs222741
0.5

<
=

rs1916762
7
6

81
1
157

-0
.328

0.007
rs1541896

<
=

1.5
rs2918091

<
=

1.5
rs2573632

<
=

1.5
77

1
3

8
9.2

0.007
rs1541896

<
=

1.5
1.5

<
=

rs2918091
rs8020075

<
=

0.5
78

1
4

8
6
.45

0.007
rs1541896

<
=

1.5
1.5

<
=

rs2918091
0.5

<
=

rs8020075
79

8
0

11
5
4

-0.326
0.005

rs9519972
<
=

1.5
rs7126612

<
=

1.5
rs1541896

<
=

1.5
80

9
7

8.8
0.005

1.5
<
=

rs9519972
0.5

<
=

rs9947576
81

2
9

1
5

5.7
0.005

1.5
<
=

rs9519972
rs9947576

<
=

0.5
82

79
1
1
35

-0.0406
0.003

rs8088825
<
=

1.5
rs1541896

<
=

1.5
rs8020075

<
=

1.5

128

Chapter 9

Concluding Remarks

This work has offered an overview of the performance of some feature selec-

tion algorithms and rule extraction methods in a combined view to GWAS

data. Although the use of random forest is not new in genetics, its use as

a screening procedure combined with the use of the feature selection algo-

rithms presented is wrapped in a novel perspective.

RANDOM FOREST
(Random Jungle)

Screening
through VIMs

Reduced Subset

RF-RFE
GINI BIAS

 CORRECTION
BORUTA

1. VIMs
2. Partial dependence Plots FITTING ESTIMATION NODE HARVEST

Final Subset

Figure 9.1: Summary Schema

129

CHAPTER 9. CONCLUDING REMARKS

Figure 9.1 shows the schema of such approach (focusing on the selection

of genetic variables, i.e. SNPs). In many fields - specially in genetics where

one wants to investigate the association of a disease or trait with a given

set of variables - one has to deal with a huge amount of covariates, and the

removal of irrelevant features is of prime importance. This can be achieved

as follows:

1. Feature selection phase:

(a) A single iteration of random forest is performed through the use

of the Random Jungle package;

(b) Variable importance measures are used as a guidance towards a

computationally handable subset of covariates (e.g. ∼ 2000, but

that directly depends on the computational power at hand);

(c) The application of finer feature selection algorithms (e.g. the ones

outlined in this work) in order to strongly eliminate irrelevant

features;

(d) Results can be aggregated from all the feature selection algo-

rithms used as to obtain a final subset with a small number of

features.

If one is interested not only in a small number of SNPs associated with the

outcome, but also in interpreting the relationship between such SNPs and

the response, then a rule extraction phase should be performed.

2. Rule extraction phase:

(a) Ensembles provide variable importance measures in order to as-

sess which features are the most useful in the prediction of the

outcome, as well as partial dependence plots, which graphically

show how the outcome varies upon changing the values of a given

set (one or two) of covariates.

(b) The Fitting Estimation procedure produces a clear white-box model,

that is as interpretable as any CART, yet providing stable results.

(c) The Node Harvest estimator is a new ensemble method that re-

stores interpretability providing an ensemble of just a few nodes,

predicting the training observations as weighted means across

nodes.

130

The application of CART-based methods requires no assumption about

the underlying generating process, allowing interaction effects and non-linear

relations among the outcome and the predictor variables.

While the application of the screening phase still requires a powerful ma-

chine, the wrappers presented show to be feasible for relatively large datasets

even on less capable computers.

Our findings support some of the results from the previous study based

on the univariate approach used in Pattaro et al. (2007), while new loci were

identified, although that might need further biological investigation.

This procedure was effective in reducing the number of variables from

an extremely large dataset. The initial number of SNPs (p ≃ 300000) was

reduced to p1 ≃ 2000, and then further reduced to p2 = 50.

These 50 SNPs showed to be helpful in the prediction of the estimated

glomerular filtration rate (eGFR) in addition to clinical variables, providing

a Root Mean Squared Error that was statistically lower than that provided

by clinical variables alone.

The rule extraction phase allowed to create a clear model, which could be

helpful to a physician or biologist as a starting point for the inspection of

the interactions between genes relevant to the estimated glomerular filtra-

tion rate (eGFR).

Future research is now devoted to assess (i) the prediction performance

of these 50 SNPs in an independent population sample and (ii) the biological

relevance of the newly identified SNPs.

131

CHAPTER 9. CONCLUDING REMARKS

132

Appendix

Linear Mixed Models

This section has the aim of providing a brief overview of linear mixed mod-

els, that can be useful in cases - like the one provided in the following work -

when one has to deal with particular types of data, e.g. clustered data, that

cannot be implicitly modeled within machine learning algorithms. Thus,

linear mixed models can be seen as a preprocessing step. The name mixed

effects model come from the fact that these models incorporate both fixed

effects, which describe the relationships of the covariates to the dependent

variable for an entire population, and random effects, which are associated

with individual experimental units drawn at random from a population.

These models are used to describe relationships between a response variable

and some covariates that are grouped according to some classification fac-

tors. Typical data involved in these analysis are clustered data, repeated

measures data, longitudinal data, and block designs. Our main concern is

about clustered data, which can be defined as datasets in which the depen-

dent variable is measured only once for each observation, but these observa-

tions are grouped into, or nested within, clusters of observations, e.g. data

might be collected from students withing the same classroom or patients in

the same clinic. In our dataset, observations are sampled inside families,

therefore we need to model random genetic effects, namely using a kinship

matrix. Roughly speaking a kinship matrix can be seen as a similarity ma-

trix, showing to what extent observations are close to each other in terms

of a predefined set of single nucleotide polymorphisms (SNPs). This can be

achieved with the GenABEL package in R through the ibs function, which

computes the identity-by-state coefficient, ranging from 0 to 1: e.g people

with extremely high ibs values (close to 1) may indicate duplicated samples

133

CHAPTER 9. APPENDIX

(or twins), while simply high values of IBS may indicate relatives.

The general matrix specification of a linear mixed model takes the form

Y=Xβ +Zu + ε (9.1)

where Y represents a vector of a continuous response, X is an n × p

design matrix. In a model including an intercept term, the first column

would be simply equal to 1 for all observation. β is a vector of p unknown

regression coefficients (or fixed effect parameters). Z is an n×q is a covariate

matrix associated with random effects, while u is a vector of q random effects

associated with the q covariates in the Z matrix. The q random effects in

the u vector follow a multivariate normal distribution with mean vector 0

and a variance-covariance matrix denoted by D

u ∼ N (0,D) (9.2)

Finally, ε is a vector of random error terms of size n. The components

of this vector are random variables that follow a multivariate normal dis-

tribution with mean vector 0 and a variance-covariance matrix denoted by

R

ε ∼ N (0,R) (9.3)

For an exhaustive explanation of linear mixed models, one can refer

to Pinheiro and Bates (2000) or West et al. (2006). Therefore, in case of

individuals related through a multigenerational pedigree, we propose to fit a

linear mixed model using a kinship matrix, where familiality can be treated

as a random effect in order to remove the effect of relatedness, and then

to retain the residuals from this fit and to use them as the new response

variable.

In this case matrix D = σ2
uK, where K is the kinship matrix, and σ2

u is the

unknown genetic variance, while R = Iσ2
ε , where σ2

ε is the unknown residual

variance; while matrices X and Z are reduced to intercept terms.

134

Bibliography

Almuallim, H. and Dietterich, T. (1991). Learning with many irrelevant

features. In Proceedings of the ninth National conference on Artificial

intelligence, volume 2, pages 547–552.

Amaratunga, D., Cabrera, J., and Lee, Y. (2008). Enriched random forests.

Bioinformatics, 24(18), 2010–2014.

Ambroise, C. and McLachlan, G. (2002). Selection bias in gene extraction on

the basis of microarray gene-expression data. Proceedings of the National

Academy of Sciences, 99(10), 6562–6566.

Barakat, N. and Diederich, J. (2004). Learning-based rule-extraction from

support vector machines. In The 14th International Conference on Com-

puter Theory and applications ICCTA’2004. not found.

Bell, D. and Wang, H. (2000). A formalism for relevance and its application

in feature subset selection. Machine learning, 41(2), 175–195.

Berk, R. (2008). Statistical learning from a regression perspective. Springer.

Berrar, D., Bradbury, I., and Dubitzky, W. (2006). Avoiding model selection

bias in small-sample genomic datasets. Bioinformatics, 22(10), 1245–

1250.

Biau, G., Devroye, L., and Lugosi, G. (2008). Consistency of random forests

and other averaging classifiers. The Journal of Machine Learning Re-

search, 9, 2015–2033.

Blum, A. and Langley, P. (1997). Selection of relevant features and examples

in machine learning. Artificial intelligence, 97(1), 245–271.

135

BIBLIOGRAPHY

Böger, C., Gorski, M., Li, M., Hoffmann, M., Huang, C., Yang, Q., Teumer,

A., Krane, V., O’Seaghdha, C., Kutalik, Z., et al. (2011). Association

of egfr-related loci identified by gwas with incident ckd and esrd. PLoS

genetics, 7(9), e1002292.

Bowman, A. and Azzalini, A. (1997). Applied smoothing techniques for data

analysis.

Braga-Neto, U., Hashimoto, R., Dougherty, E., Nguyen, D., and Carroll, R.

(2004). Is cross-validation better than resubstitution for ranking genes?

Bioinformatics, 20(2), 253–258.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123–140.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.

Breiman, L. (2002). Manual on setting up, using, and understanding random

forests v3. 1. Statistics Department University of California Berkeley, CA,

USA.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification

and decision trees. Wadsworth, Belmont.

Bureau, A., Dupuis, J., Falls, K., Lunetta, K., Hayward, B., Keith, T., and

Van Eerdewegh, P. (2005). Identifying snps predictive of phenotype using

random forests. Genetic epidemiology, 28(2), 171–182.

Chang, J., Yeh, R., Wiencke, J., Wiemels, J., Smirnov, I., Pico, A., Ti-

han, T., Patoka, J., Miike, R., Sison, J., et al. (2008). Pathway analysis

of single-nucleotide polymorphisms potentially associated with glioblas-

toma multiforme susceptibility using random forests. Cancer Epidemiol-

ogy Biomarkers & Prevention, 17(6), 1368–1373.

Cockcroft, D. and Gault, M. (1976). Prediction of creatinine clearance from

serum creatinine. Nephron, 16(1), 31–41.

Cover, T. and Thomas, J. (2006). Elements of information theory. Wiley-

interscience.

Culverhouse, R., Klein, T., and Shannon, W. (2004). Detecting epistatic

interactions contributing to quantitative traits. Genetic epidemiology,

27(2), 141–152.

136

BIBLIOGRAPHY

Dı́az-Uriarte, R. and De Andres, S. (2006). Gene selection and classification

of microarray data using random forest. BMC bioinformatics, 7(1), 3.

Dietterich, T. (1997). Machine-learning research. AI magazine, 18(4), 97.

Dietterich, T. (2000). An experimental comparison of three methods for

constructing ensembles of decision trees: Bagging, boosting, and random-

ization. Machine learning, 40(2), 139–157.

Dobra, A. and Gehrke, J. (2001). Bias correction in classification tree con-

struction. In Proceedings of the Eighteenth International Conference on

Machine Learning, pages 90–97. Morgan Kaufmann Publishers Inc.

Efron, B. and Tibshirani, R. (1997). Improvements on cross-validation: the

632+ bootstrap method. Journal of the American Statistical Association,

92(438), 548–560.

Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimen-

sional feature space. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 70(5), 849–911.

Freund, Y. and Schapire, R. (1995). A desicion-theoretic generalization of

on-line learning and an application to boosting. In Computational learning

theory, pages 23–37. Springer.

Friedman, J. (1991). Multivariate adaptive regression splines. The annals

of statistics, pages 1–67.

Friedman, J. (2001). Greedy function approximation: a gradient boosting

machine. Ann. Statist, 29(5), 1189–1232.

Friedman, J. (2002). Stochastic gradient boosting. Computational Statistics

& Data Analysis, 38(4), 367–378.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statis-

tical learning, volume 1. Springer Series in Statistics.

Friedman, J., Popescu, B., et al. (2003). Importance sampled learning en-

sembles. Journal of Machine Learning Research, 94305.

Gärdenfors, P. (1978). On the logic of relevance. Synthese, 37(3), 351–367.

137

BIBLIOGRAPHY

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees.

Machine learning, 63(1), 3–42.

Gibbs, R., Belmont, J., Hardenbol, P., Willis, T., Yu, F., Yang, H., Ch’ang,

L., Huang, W., Liu, B., Shen, Y., et al. (2003). The international hapmap

project. Nature, 426(6968), 789–796.

Glassock, R. and Winearls, C. (2009). Ageing and the glomerular filtration

rate: truths and consequences. Transactions of the American Clinical and

Climatological Association, 120, 419.

Goldstein, B., Hubbard, A., Cutler, A., and Barcellos, L. (2010). An appli-

cation of random forests to a genome-wide association dataset: Method-

ological considerations & new findings. BMC genetics, 11(1), 49.

Granitto, P., Furlanello, C., Biasioli, F., and Gasperi, F. (2006). Recursive

feature elimination with random forest for ptr-ms analysis of agroindus-

trial products. Chemometrics and intelligent laboratory systems, 83(2),

83–90.

Guyon, I., Saffari, A., Dror, G., and Cawley, G. (2010). Model selection:

Beyond the bayesian/frequentist divide. The Journal of Machine Learning

Research, 11, 61–87.

Hahn, L., Ritchie, M., and Moore, J. (2003). Multifactor dimensionality

reduction software for detecting gene–gene and gene–environment inter-

actions. Bioinformatics, 19(3), 376–382.

Hapfelmeier, A., Hothorn, T., Ulm, K., and Strobl, C. (2011). A new variable

importance measure for random forests with missing data. Statistics and

Computing, pages 1–14.

Hindorff, L., Sethupathy, P., Junkins, H., Ramos, E., Mehta, J., Collins, F.,

and Manolio, T. (2009). Potential etiologic and functional implications of

genome-wide association loci for human diseases and traits. Proceedings

of the National Academy of Sciences, 106(23), 9362–9367.

Ho, T. K. (1998). The random subspace method for constructing decision

forests. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 20(8), 832–844.

138

BIBLIOGRAPHY

Hothorn, T., Hornik, K., and Zeileis, A. (2006). Unbiased recursive par-

titioning: A conditional inference framework. Journal of Computational

and Graphical Statistics, 15(3), 651–674.

Hyafil, L. and Rivest, R. L. (1976). Constructing optimal binary decision

trees is np-complete. Information Processing Letters, 5(1), 15–17.

Ishwaran, H. and Kogalur, U. (2010). Consistency of random survival forests.

Statistics & probability letters, 80(13), 1056–1064.

Jiang, R., Tang, W., Wu, X., and Fu, W. (2009). A random forest approach

to the detection of epistatic interactions in case-control studies. BMC

bioinformatics, 10(Suppl 1), S65.

Johansson, U., König, R., and Niklasson, L. (2010). Genetic rule extraction

optimizing brier score. In Proceedings of the 12th annual conference on

Genetic and evolutionary computation, pages 1007–1014. ACM.

John, G., Kohavi, R., Pfleger, K., et al. (1994). Irrelevant features and the

subset selection problem. In Proceedings of the eleventh international con-

ference on machine learning, volume 129, pages 121–129. San Francisco.

Johnson, A., Handsaker, R., Pulit, S., Nizzari, M., O’Donnell, C., and

de Bakker, P. (2008). Snap: a web-based tool for identification and anno-

tation of proxy snps using hapmap. Bioinformatics, 24(24), 2938–2939.

Kass, G. (1980). An exploratory technique for investigating large quantities

of categorical data. Applied statistics, pages 119–127.

Kim, J. (2009). Estimating classification error rate: Repeated cross-

validation, repeated hold-out and bootstrap. Computational Statistics

& Data Analysis, 53(11), 3735–3745.

King, R., Stansfield, W., and Mulligan, P. (2006). A dictionary of genetics.

Oxford University Press, USA.

Kira, K. and Rendell, L. (1992). A practical approach to feature selection.

In Proceedings of the ninth international workshop on Machine learning,

pages 249–256. Morgan Kaufmann Publishers Inc.

Kohavi, R. (1994). Feature subset selection as search with probabilistic

estimates. In AAAI fall symposium on relevance, volume 224.

139

BIBLIOGRAPHY

Kohavi, R. and John, G. (1997). Wrappers for feature subset selection.

Artificial intelligence, 97(1), 273–324.

Kursa, M. and Rudnicki, W. (2011). A deceiving charm of feature selection:

The microarray case study. Man-Machine Interactions 2, pages 145–152.

Kursa, M., Jankowski, A., and Rudnicki, W. (2010). Boruta–a system for

feature selection. Fundamenta Informaticae, 101(4), 271–285.

Levey, A., Bosch, J., Lewis, J., and Greene, T. (1999). A more accurate

method to estimate glomerular filtration rate from serum creatinine: a

new prediction equation.

Levey, A., Stevens, L., Schmid, C., Zhang, Y., Castro, A., Feldman, H.,

Kusek, J., Eggers, P., Van Lente, F., Greene, T., et al. (2009). A new equa-

tion to estimate glomerular filtration rate. Annals of internal medicine,

150(9), 604.

Li, J., Horstman, B., and Chen, Y. (2011). Detecting epistatic effects in

association studies at a genomic level based on an ensemble approach.

Bioinformatics, 27(13), i222–i229.

Liakhovitski, D., Bryukhov, Y., and Conklin, M. (2010). Relative impor-

tance of predictors: Comparison of random forests with johnson’s relative

weights. Model Assisted Statistics and Applications, 5(4), 235–249.

Liaw, A. and Wiener, M. (2002). Classification and regression by random-

forest. R news, 2(3), 18–22.

Lin, Y. and Jeon, Y. (2006). Random forests and adaptive nearest neighbors.

Journal of the American Statistical Association, 101(474), 578–590.

Lunetta, K., Hayward, L., Segal, J., and Van Eerdewegh, P. (2004). Screen-

ing large-scale association study data: exploiting interactions using ran-

dom forests. BMC genetics, 5(1), 32.

Maćıas-Núñez, J. and López-Novoa, J. (2008). Physiology of the healthy

aging kidney. The Aging Kidney in Health and Disease, pages 93–112.

Manisera, M., Sandri, M., and Zuccolotto, P. (2012). Fitting estimation.

Unpublished Manuscript.

140

BIBLIOGRAPHY

Manolio, T., Collins, F., Cox, N., Goldstein, D., Hindorff, L., Hunter, D.,

McCarthy, M., Ramos, E., Cardon, L., Chakravarti, A., et al. (2009).

Finding the missing heritability of complex diseases. Nature, 461(7265),

747–753.

Meinshausen, N. (2006). Quantile regression forests. The Journal of Machine

Learning Research, 7, 983–999.

Meinshausen, N. (2010). Node harvest. The Annals of Applied Statistics,

4(4), 2049–2072.

Meng, Y., Yu, Y., Cupples, L., Farrer, L., and Lunetta, K. (2009). Perfor-

mance of random forest when snps are in linkage disequilibrium. BMC

bioinformatics, 10(1), 78.

Moore, J. and Dunlap, J. (2010). Computational Methods for Genetics of

Complex Traits. Academic Press.

Nelson, M., Kardia, S., Ferrell, R., and Sing, C. (2001). A combinatorial par-

titioning method to identify multilocus genotypic partitions that predict

quantitative trait variation. Genome Research, 11(3), 458–470.

Nicodemus, K. and Malley, J. (2009). Predictor correlation impacts machine

learning algorithms: implications for genomic studies. Bioinformatics,

25(15), 1884–1890.

Nicodemus, K., Malley, J., Strobl, C., and Ziegler, A. (2010). The behaviour

of random forest permutation-based variable importance measures under

predictor correlation. BMC bioinformatics, 11(1), 110.

Pang, H., George, S., Hui, K., and Tong, T. (2012). Gene selection us-

ing iterative feature elimination random forests for survival outcomes.

IEEE/ACM Transactions on Computational Biology and Bioinformatics

(TCBB), 9(5), 1422–1431.

Pattaro, C., Marroni, F., Riegler, A., Mascalzoni, D., Pichler, I., Volpato, C.,

Dal Cero, U., De Grandi, A., Egger, C., Eisendle, A., et al. (2007). The

genetic study of three population microisolates in south tyrol (micros):

study design and epidemiological perspectives. BMC medical genetics,

8(1), 29.

141

BIBLIOGRAPHY

Pattaro, C., De Grandi, A., Vitart, V., Hayward, C., Franke, A., Aulchenko,

Y., Johansson, A., Wild, S., Melville, S., Isaacs, A., et al. (2010). A

meta-analysis of genome-wide data from five european isolates reveals an

association of col22a1, syt1, and gabrr2 with serum creatinine level. BMC

medical genetics, 11(1), 41.

Pattaro, C., Köttgen, A., Teumer, A., Garnaas, M., Böger, C., Fuchsberger,

C., Olden, M., Chen, M., Tin, A., Taliun, D., et al. (2012). Genome-wide

association and functional follow-up reveals new loci for kidney function.

PLoS Genetics, 8(3), e1002584.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of

plausible inference. Morgan Kaufmann.

Pepe, M., Longton, G., Anderson, G., and Schummer, M. (2003). Selecting

differentially expressed genes from microarray experiments. Biometrics,

59(1), 133–142.

Pinheiro, J. and Bates, D. (2000). Mixed-effects models in S and S-PLUS.

Springer Verlag.

Quinlan, J. (1993). C4. 5: programs for machine learning, volume 1. Morgan

kaufmann.

Ratner, B. (2011). Statistical and machine-learning data mining: techniques

for better predictive modeling and analysis of big data. CRC Press.

Rudnicki, W., Kierczak, M., Koronacki, J., and Komorowski, J. (2006). A

statistical method for determining importance of variables in an infor-

mation system. In Rough Sets and Current Trends in Computing, pages

557–566. Springer.

Sandri, M. and Zuccolotto, P. (2006). Variable selection using random

forests. Data Analysis, Classification and the Forward Search, pages 263–

270.

Sandri, M. and Zuccolotto, P. (2008). A bias correction algorithm for the

gini variable importance measure in classification trees. Journal of Com-

putational and Graphical Statistics, 17(3), 611–628.

142

BIBLIOGRAPHY

Schwarz, D., König, I., and Ziegler, A. (2010). On safari to random jun-

gle: a fast implementation of random forests for high-dimensional data.

Bioinformatics, 26(14), 1752–1758.

Schweitzer, H. (1995). Occam algorithms for computing visual motion. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on, 17(11),

1033–1042.

Seni, G. and Elder, J. F. (2010). Ensemble methods in data mining: im-

proving accuracy through combining predictions. Synthesis Lectures on

Data Mining and Knowledge Discovery, 2(1), 1–126.

Somorjai, R., Dolenko, B., and Baumgartner, R. (2003). Class prediction

and discovery using gene microarray and proteomics mass spectroscopy

data: curses, caveats, cautions. Bioinformatics, 19(12), 1484–1491.

Stevens, L., Coresh, J., Greene, T., and Levey, A. (2006). Assessing kidney

functionmeasured and estimated glomerular filtration rate. New England

Journal of Medicine, 354(23), 2473–2483.

Strobl, C. and Zeileis, A. (2008). Danger: High power!–exploring the statis-

tical properties of a test for random forest variable importance.

Strobl, C., Boulesteix, A., Zeileis, A., and Hothorn, T. (2007a). Bias in

random forest variable importance measures: Illustrations, sources and a

solution. BMC bioinformatics, 8(1), 25.

Strobl, C., Boulesteix, A., and Augustin, T. (2007b). Unbiased split selection

for classification trees based on the gini index. Computational Statistics

& Data Analysis, 52(1), 483–501.

Strobl, C., Boulesteix, A., Kneib, T., Augustin, T., and Zeileis, A. (2008).

Conditional variable importance for random forests. BMC bioinformatics,

9(1), 307.

Sun, Y., Cai, Z., Desai, K., Lawrance, R., Leff, R., Jawaid, A., Kardia, S.,

and Yang, H. (2007). Classification of rheumatoid arthritis status with

candidate gene and genome-wide single-nucleotide polymorphisms using

random forests. In BMC proceedings, volume 1, page S62. BioMed Central

Ltd.

143

BIBLIOGRAPHY

Svetnik, V., Liaw, A., Tong, C., and Wang, T. (2004). Application of

breimans random forest to modeling structure-activity relationships of

pharmaceutical molecules. Multiple Classifier Systems, pages 334–343.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society. Series B (Methodological), pages

267–288.

Traskin, M. (2007). On the consistency of ensemble classification algorithms.

ProQuest.

West, B., Welch, K., and Galecki, A. (2006). Linear mixed models: a prac-

tical guide using statistical software. Chapman & Hall/CRC.

Wille, A., Hoh, J., and Ott, J. (2003). Sum statistics for the joint detection of

multiple disease loci in case-control association studies with snp markers.

Genetic epidemiology, 25(4), 350–359.

Wolpert, D. (1990). The relationship between occams razor and convergent

guessing. Complex Systems, 4, 319–368.

Xin, L. and Zhu, M. (2012). Stochastic stepwise ensembles for variable

selection. Journal of Computational and Graphical Statistics, 21(2), 275–

294.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the

elastic net. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 67(2), 301–320.

144

	Introduction
	Preliminary Concepts
	Introduction
	Definitions
	Model Selection
	(Variable) Relevance
	Feature-Selection Algorithms
	Filters
	Wrappers
	Embedded Methods

	Ensemble Generation
	Perturbation Sampling Methods
	Why Ensembles Work

	Classification and Regression Trees (CART)
	Impurity Reduction
	CART Properties
	CART Limitations

	Random Forests
	Random Forest Algorithm
	Generalization Erorr
	Implementation and Tuning Parameters

	Variable Importance Measures (VIMs)
	Gini Importance
	Permutation Importance
	Bias and Conditional Permutation Variable Importance Measure
	Permutation Importance by Meng

	The Proximity Matrix
	Clustering Data
	Imputing Missing Values
	Detecting Outliers

	Variable Selection Methods
	Random Forest Recursive Feature Elimination
	Feature Selection with the Boruta Package
	Gini VIM Correction Procedure

	Selection of Clinical Variables
	Prediction Purposes and Dataset Description
	Random Forest Recursive Feature Elimination
	Gini VIM Correction Procedure
	Feature Selection with the Boruta Package
	Results

	Selection of SNPs
	Screening Phase
	Feature Selection Phase
	Random Forest Recursive Feature Elimination
	Gini VIM Correction Procedure
	Selection through Boruta Algorithm

	Results

	Rule Extraction
	Partial Dependence Plots
	Variable Importances
	Fitting Estimation
	Node Harvest
	Rule Extraction for Clinical Variables
	Partial Dependence Plots for Clinical Variables
	Variable Importances for Clinical Variables

	Rule Extraction for SNPs
	Partial Dependence Plots for SNPs
	Variable Importances for SNPs
	Fitting Estimation for SNPs
	Node Harvest for SNPs

	Concluding Remarks
	Appendix
	Bibliography

