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6 CONTENTS

Abstract. The graphical models (GM) for categorical data are models use-

ful to representing conditional independencies through graphs. The parametric

marginal models for categorical data have useful properties for the asymptotic

theory. This work is focused on �nding which GMs can be represented by mar-

ginal parametrizations. Following theorem 1 of Bergsma, Rudas and Németh

[9], we have proposed a method to identify when a GM is parametrizable ac-

cording to a marginal model. We have applied this method to the four types of

GMs for chain graphs, summarized by Drton [22]. In particular, with regard to

the so-called GM of type II and GM of type III, we have found the subclasses

of these models which are parametrizable with marginal models, and therefore

they are smooth. About the so-called GM of type I and GM of type IV, in

the literature it is known that these models are smooth and we have provided

new proof of this result. Finally we have applied the mean results concerning

the GM of type II on the EVS data-set.

Key words: Categorical data, chain graph, hierarchical and complete parametriza-

tions, log-linear parameters, Markov properties, marginal parameters, smooth-

ness.



CHAPTER 1

Introduction

Log-linear and marginal models. The analysis of discrete data, grouped

into contingency tables, was the subject of many research studies in past decades.

The probabilistic relationships of independence (dependence) among discrete data

are discussed in this work using di�erent tools. The most well-known and com-

monly used tools are certainly log-linear parameters, which are contrasts of log-

arithms of probabilities. Models based on log-linear parameters are able to de-

scribe the probabilistic relationships of conditional independence between the vari-

ables considered in the model. This is possible through linear constraints on the

log-linear parameters. There is extensive literature regarding these models, see

Goodman (1970, 1971), Cox (1972), Haberman (1974), Andersen (1974), Darroch

(1980) and Agresti et al. (1993) among others for details [32, 33, 16, 3, 19, 2].

However, the log-linear models have a limit: they cannot easily represent con-

ditional independencies in marginal distributions. McCullagh and Nelder (1989)

[48] and later Liang, Zeger and Qaqish (1992), Lang and Agresti (1994), Molen-

berghs and Lesa�re (1994), Glonek and McCullagh (1995) and Colombi (1995)

[45, 40, 49, 31, 12], discussed this topic extensively, opening the way to the devel-

opment of models characterized by constraints on marginal distributions. In this

contest, Glonek and McCullagh (1995) proposed the multivariate logistic model

where the parameters (called multivariate logistic parameters) are the log-linear

7



8 1. INTRODUCTION

interactions evaluated in the marginal contingency table of the set of variables to

which the interactions refer. Kauermann (1997) [39] showed the bene�ts of this

last model, pointing out that multivariate logistic models work very well when

they must represent marginal independencies of subsets of variables but, on the

other hand, they do not �t as well with conditional independencies.

In order to handle this last topic, Bergsma and Rudas (2002) [7] proposed marginal

models that are models where the log-linear parameters are de�ned in marginal

distributions and where, once a collection of marginal sets has been selected, these

interactions are uniquely de�ned. In fact, the marginal models of Bergsma and

Rudas are the generalization of both classical log-linear models and multivari-

ate logistic models. Their suitable properties led to their large di�usion. First,

the marginal models are able to represent many kinds of independence, even the

conditional independence of a subset of variables. Secondly, Bergsma and Rudas

provided some suitable results about estimating parameters. In particular, they

proved that marginal models are always smooth, that is the parametrization has

continuous derivatives up to some desired order, it is invertible and its inverse

function has continuous derivatives up to some desired order. For more details

see [29, 30, 37, 23]. However, a list of independencies cannot always be repre-

sented by a marginal model. The simplest example to highlight this problem is

represented by the independencies A á B and A á B∣C, where A, B and C are

disjoint sets of variables. In fact, there is no marginal model capable of repre-

senting these independencies. Bergsma, Rudas and Németh (2010) and Forcina,

Lupparelli and Marchetti (2010) [9], [27], showed which lists of independencies

are compatible with marginal models.
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During the past, the development of research on marginal models has led to gen-

eralizations of the marginal models of Bergsma and Rudas using a large range of

parameters which are generalizations of log-linear parameters (see Douglas et al.

(1990), [21] for the di�erent types of parameters). These new models were intro-

duced by Colombi and Forcina (2001), Bartolucci, Colombi and Forcina (2007)

and Cazzaro and Colombi (2008) [14, 6, 11]. Due to these models, two more

important aspects are considered. First, by adding inequality constraints over the

linear constraints, di�erent situations of dependencies and stochastic orderings can

be represented. Secondly, by adding new types of parameters, the relationships

between ordinal variables can be described more appropriately.

Graphical models. During these same years, many authors started to study

models that could provide an immediate representation of the probabilistic struc-

tures of the variables. These models use the graphs G = {V,E} which are mathe-

matical objects de�ned by a set of vertices V and a set of edges E. In graphical

models every variable is associated with one vertex of the graph, and the presence

(absence) of an edge between two variables denotes dependence (independence)

between those variables. The rules that are needed to read the list of independen-

cies from a graph are called Markov properties (MP) and they change according

to the kind of graph. Di�erent kinds of graphs are useful for representing di�er-

ent situations. In particular, graphs with only undirected edges (called undirected

graph UG), are used to explain situations of conditional independencies, most of

the time applied to models of spatial dependence and image analysis. See Ham-

mersley and Cli�ord (1971) and Darroch et al. (1980)[36, 19]. Graphs with

only directed edges, where there are no cycles, are called DAG (Directed Acyclic
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Graphs) and they are usually used to describe and to verify dependence relation-

ships among variables. See Pearl (1988), Lauritzen and Spiegelhalter (1988) and

Shachter and Kenley (1989) [50, 44, 54]. Chain graphs CG are a generalization

of the two types of graphs cited above. In these kinds of graphs, in fact, both

undirected and directed edges may appear and there are not either directed or

semi directed cycles (see Lauritzen (1996)). Obviously, these tools are able to

represent both situations of associative and structural dependencies. For an ex-

haustive discussion of graphical models, see Whittaker (1990), Lauritzen (1996)

and Studený (2004) [58, 41, 55].

Over recent years, chain graphs have been studies extensively by Lauritzen and

Wermuth (1989), Frydenberg (1990), Andersson, Madigan and Perlman (2001),

Wermuth and Cox (2004), Drton (2009) and Marchetti and Lupparelli (2011)

[42, 28, 4, 57, 22, 47], who pointed out di�erent Markov properties to read in-

dependencies from chain graphs. These authors distinguish four types of graphical

models associated with the di�erent Markov properties, each of which is charac-

terized by three conditions. The �rst describes the macro relationship between

the components, and it is common to any type of Markov properties for chain

graphs. The second condition evaluates the relationship within a component, and

there are two kinds of these conditions. Finally, the third condition refers to the

relationship between a group of vertices in a component and a group of vertices in

the parent components; there are two kind of conditions in this case as well. The

combination of these produces four types, I II III and IV, of Markov properties,

summarized in Drton (2009) and in Chapter 2 of this work.
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Contribution of this work. The main issue, discussed in this work, refers

to the connection between graphical models of chain graphs and marginal models.

In fact, we investigate which lists of independencies, compatible with a graph,

can also be represented by a marginal model. The aim is to pro�t from both

the quality of representation and interpretation of the graphical models and the

broad theory that supports marginal models. We deal with this topics applying

the theorem 1 of Bergsma, Rudas and Németh (2010), [9], where they provide

guidelines to build a marginal parametrization capable of representing the prob-

abilistic relationships described by a list of independencies. In particular, we

propose an original method, based on this theorem, that can determine which

graphical models can be parametrized according to marginal parameters.

Lauritzen (1996) [41] conducted in-depth studies of graphical models based on

the Markov properties proposed by Lauritzen, Wermuth and Frydenberg (called

type I), and he showed that these models can always be represented by a marginal

model. Furthermore, Drton (2009) and Marchetti and Lupparelli (2011) [22, 47]

proved that the same result also holds for graphical models that follow the type

IV Markov property. In this work these known results will be presented with a

new approach.

Furthermore, in order to analyze the graphical models of type II, we have proposed

three di�erent marginal parametrizations. The �rst is directly derived from the

Markov property discussed by Andersson, Madigan and Perlman (2001). The

second parametrization is obtained using conditions that are equivalent to the

type II Markov property. Finally, the third parametrization, called �mixed�, is

a mixture of the previous two. Applying the theorem proposed by Bergsma,
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Rudas and Németh (2010) to these three marginal parametrizations we �nd the

subclasses of the graphical model of type II which can be represented by a marginal

model, and which are therefore smooth.

Finally, we apply the method to the graphical model of type III (introduced by

Drton (2009)). In this case as well, we �nd a subclass of graphical models of type

III which are also marginal models.

The structure of this work. In chapter 1, we will propose some basic con-

cepts regarding conditional independence models for categorical variables. In

chapter 2, we will take an in-depth look at the graphical models for chain graphs.

Instead, in chapter 3 will propose two new conditiona to read the independencies

between the components of a chain graph. Furthermore, we will prove that these

new conditions are equivalent to known Markov properties. Chapter 4 will be

focused on the marginal models for categorical variables and on the main results

of these models. In particular, section 4.3 will be presented the theorem 1 of

Bergsma, Rudas and Németh (2010).

In chapter 5, our method to �nd which graphical model is also a marginal model

will be presented and we will apply this method to the four types of graphical

models obtaining the original results mentioned above. Last chapter is reserved

to an application of the GM II to the EVS datasets, showing the main results

highlighted in Chapter 5.

1.1. Basic Notions for Contingency Tables

This work deals with categorical variables that are variables that assume a �nite

number of categories on both nominal and ordinal scale.



1.2. CONDITIONAL INDEPENDENCE 13

Let us consider V1, ..., Vq, categorical variables taking value in the set Ij = {ij1, ..., ijdj},

where dj denotes the number's categories of the j-th variable, j = 1, ..., q. We

refer to the whole set of variables with the symbol V . The set I = ×q
j=1Ij de-

�nes a contingency table of q variables, while the cells of the table are denoted

with the vector i which contains one category for each variable according to the

order of the variables. Let's consider a sample of m units for which we ob-

serve the q categorical variables. The observed data are displayed in a contin-

gency table I. We suppose the trials are independent, then the random variable

that counts the number of units that have the modalities i ∈ I of the q vari-

ables follows the multinomial distribution with parameters m and πV (i), i ∈ I

. Let us assume that the joint probability distribution function of q variables

π ∶ I → (0,1] is a strictly positive function, which assigns to each cell i a probabil-

ity πV (i) = P (Vj = ij, j = 1, ..., q), where ij ∈ Ij. The set of probability distribution

function of V is Π = {π ∶ πV (i) > 0, i ∈ I, ∑i∈I πV (i) = 1}. Assuming that A and

B are two disjoint subsets of V , the marginal probability that refers to A ⊂ V is

πA(iA) = ∑i∈IV /A πV (i), ∀iA ∈ IA where IA = ×j∶(Vj∈A)Ij and the conditional proba-

bility of A given a set B is πA∣B(iA∣iB) = πAB(iAB)
πB(iB)

, where πAB(iAB) denotes the

joint probability distribution of A ∪B.

1.2. Conditional independence

The aim of this work is to investigate the relationships of conditional independence

within a group of variables.

De�nition. Let V be the set of variables (V1, ..., Vq) with probability function π

and let A, B and C, with A,B ≠ ∅, be three disjoint subsets in V ; then the set A
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is conditionally independent of B given C, and it is denoted with A á B∣C, if

and only if πAB∣C(iAB ∣iC) = πA∣C(iA∣iC)πB∣C(iB ∣iC) ∀i ∈ I.

When the conditional set C is empty the independence is called marginal and is

denoted A á B. Note that marginal independence is not implied by conditional

independence, thus if A á B∣C holds, it is not necessarily A á B, and if A á B,

the independence A á B∣C is not necessarily true.

The following statements derive from the de�nition of conditional independence.

A á B∣C ⇐⇒ πABC(iABC) = πAC(iAC)πBC(iBC)/πC(iC)(1.2.1)

A á B∣C ⇐⇒ πA∣BC(iA∣iBC) = πA∣C(iA∣iC)(1.2.2)

A á B∣C ⇐⇒ πABC(iABC) = h(iAC)k(iBC)(1.2.3)

A á B∣C ⇐⇒ πABC(iABC) = πA∣C(iA∣iC)πBC(iBC)(1.2.4)

for some h(⋅) and k(⋅) in (1.2.3).

With the help of these statements it is possible to demonstrate the following

properties:

(P1): A á B∣C ⇒ B á A∣C

(P2): A á (B,C)∣D⇒ A á B∣D

(P3): A á (B,C)∣D⇒ A á B∣(C,D)

(P4): (A á B∣D & A á C ∣(B,D))⇒ A á (B,C)∣D

where A, B, C and D are disjoint sets. For more details see [58, 41]. If the

probability distribution function is strictly positive, then the following property

is also true:
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(P5): (A á B∣(C,D) & A á C ∣(B,D))⇒ A á (B,C)∣D

For more details see [58, 41, 55].

By means of the properties P1, P2, P3, P4 and P5, it easy to see that the rela-

tionship among variables can be expressed with di�erent lists of independencies.

For example, given four variables V1, V2, V3, V4, the relationship of conditional in-

dependence {V1 á V2, V3∣V4} can be replaced with the two following statements:

V1 á V2∣V3, V4 and V1 á V3∣V2, V4. Applying the property P5 to the last two

statements it is easy to see that we get the �rst independence.

1.3. Models for conditional independencies

The relationships of independence of q variables can be described by a model of

conditional independence, that is a joint probability function π ∈ Π that satis�es

a list of k conditional independencies.

De�nition 1. Let Ai á Bi∣Ci, i = 1, ..., k, be a list of independencies for the

variables in V ; models of conditional independence are given by:

(1.3.1) CIk = ∩k
i=1{π ∈ Π ∶ Ai á Bi∣Ci(π)},

Thus, a list of conditional independencies is the set of constraints that the prob-

ability function must satisfy. In chapter 2 we will introduce the graphical models

that are models of conditional independence where the list of independencies is

obtained by a graph applying rules called Markov properties. Chapter 4 will

present the marginal models, which are parametric models which can describe

lists of conditional independencies through constraints on interaction parameters.

Below are some features of lists of conditional independencies.
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De�nition 2. A list of conditional independencies is called non redundant if

there is no independence that implies another element of the list.

For example V1 á (V2, V3)∣V4 and V1 á V2∣(V3, V4) is a redundant list because

applying the property P3 it is possible to obtain the second independence from

the �rst.

De�nition. Two lists of conditional independencies are equivalent if it is possible

to obtain all elements of one list from the elements of the other list and vice-versa.



CHAPTER 2

Graphical Models

Graphical models are a relatively recent tool in the �eld of statistics, even though

there are some applications from as long as the early 1900s. In fact, in recent

years, the number of scienti�c techniques that use them has greatly increased.

The main reason for this rapid development is the ability to represent problems

in a simpli�ed way. In this section we will use graphical models to represent the

relationships of independencies among categorical variables. We will see that there

are many types of graphical models, based on the type of graph associated. In

particular, there are four types of graphical models associated with chain graphs.

2.1. Basic concepts for graphs

Given three variables, the structure of conditional independence can be checked

easily, but as the number of variables increases, the analysis of independence

becomes a more complex problem. In these cases, it is necessary to �nd suitable

tools capable of representing situations of independence (and also dependence) in

a simple and immediate fashion. These tools are graphs, mathematical structures

identi�ed by two sets: G = {V,E}, where V is the set of �nite vertices, or nodes,

V1, ..., Vq which represents the q variables, and E is the set of edges, or arcs, which

represents the relationships of dependence or independence between variables, E ⊆

V ×V . This section will report the main aspects of the graphs, leaving the detailed

list of the de�nitions for the appendix A. We use the notation presented by Drton

17



18 2. GRAPHICAL MODELS

(2009). Section 2.2 will describe the rules for obtaining a list of independencies

from a graph.

In order to describe di�erent situations, in the literature, many kind of graphs are

used. Here, the more relevant types of graphs will be m mentioned with special

emphasis on chain graphs.

An Undirected Graph (UG) is a graph GU = {V,E} where the edge set E is

composed of undirected arcs, symbolized by (−), and it is such that if the couple

(Vi, Vj) belongs to the set E, then (Vj, Vi) ∈ E.

A Directed Graph (DG) is a graph GD = {V,E} where the edge set E is

composed of directed arcs, or arrows, symbolized by (→) .

A directed cycle is a directed path (a sequence of arrows) that starts and ends

in the same vertex.

Let us de�ne a Directed Acyclic Graph (DAG) as a particular directed graph

GDA = {V,E}, with no directed cycles. This kind of graph was studied by Lau-

ritzen et al. [38].

A Mixed Graph (MG) is a graph GM = {V,E} such that, the edge set E is

composed by both directed and undirectedd arcs.

Let a semi-directed cycle be a ordered path, composed of directed and undi-

rected arcs, that starts and ends in the same vertex, where the directed arcs

preserve the direction.

A Directed Acyclic Mixed Graph (DAMG) is a mixed graph GDAM = {V,E}

with no directed cycles, but with possible semi-directed cycles between the com-

ponents. This type of graph was studied by Richardson and Spirtes (2003)[53].
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A Chain Graph (CG) is a mixed graph GC = {V,E} with no cycles either

directed or semi-directed. In a chain graph the nodes in V can be partitioned in

components V = T1 ∪ ... ∪ Ts, such that the vertices within the same components

are joined only by undirected arcs, while the vertices of two di�erent components

are linked only by arrows. These components are called chain components .

We consider the partial order of the components of the CG, where the component

Tj precedes Th if there is a direct path from Tj to Th in the graph. The collection

of all chain components T = {T1; ...;Ts} is well ordered if j < h implies that Tj

precedes Th.

It's easy to see that a chain graph with only one component is an undirected

graph and a chain graph where all components are singleton (set of only one

element) is a directed acyclic graph. Indeed, every CG is associated with a

DAG: GD = {(T1, ..., Ts), ED} where any element of the set of vertices refers to

a chain component in T and where there is an arrow between two components if

there is at least one element of the �rst component that points to one element in

the second component. The following example shows this structure.

V1

V2

V3

V4

V5

V6

V7

V8

T1

T2 T3 T4

(a)

T1

T2

T3 T4

(b)

Figure 2.1.1. Example of Chain Graph
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Example 1. Figure (2.1.1.A) shows a chain graph with vertices V =

{V1, V2, V3, V4,V5, V6, V7, V8} and components T = {T1;T2;T3;T4} where T1 = V1,

T2 = V2, T3 = (V3, V4), T4 = (V5, V6, V7, V8). It is easy to see that the order of class

T is not unique; in fact, if the �rst two component T1 and T2 are reversed, class T

is still well ordered. Instead, �gure (2.1.1.B) shows the associated DAG in which

the vertices are the components in T .

A graphical model is a representation of a probabilistic model of conditional

independence where the independencies are given by a graph. These models make

use of graphs to represent probabilistic relationships among variables. The nodes

of the graph act as random variables and the edges explain the relationships among

variables. In this work we will study graphical models associated with chain

graphs because they can represent the dependence structures of both undirected

graph and DAG. The absence of the arc between two vertices Vi and Vj is a

symptom of conditional independence among the variables that these vertices

represent. If, on the other hand, two variables are linked by an arc, the situation

of conditional dependence among the associated variables depends on whether

the arc is directed or undirected. In an intuitive way, undirected arcs represent

a symmetrical relationship among variables, on the other hand, the directed arcs

emphasize a non-symmetrical relationship (which can often be interpreted as the

relationship between response variables and the potential explanatory variables).

The following section describes the rules to get a list of independencies from a

graph. These rules are called Markov properties and they change according to

whether the graph is undirected or directed. As we will see in the next section,

chain graphs combine these two cases.
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2.2. Markov Properties

Let us consider a chain graph G = {V,E} where any vertex in V represents a

categorical variable. The Markov Properties (MP) are rules that make it possible

to read a list of independencies from the graph. Generally, given a graph, two

variables are in some way independent if there are no edges or arrows between the

vertices that represent the variables. In the case of chain graphs, there are four

types of Markov properties (see Drton (2009), [22]), each one based on di�erent

interpretations of the relationship among variables within the same component

and among variables of di�erent components of the graph. The four Markov

properties are characterized by the following rules. Let G = (V,E) be a chain

graph with components T = {T1, ..., Ts} and let GD(T ,ED) be the associated

directed acyclic graph.

The �rst rule, shared by any type of MP, describes the relationships among the

elements of GD:

(C1*): Th á [nd(Th)/paD(Th)]∣paD(Th) ∀Th ∈ T ;

This rule speci�es that any component is conditionally independent of its previous

component, given the parent components.

Marchetti and Lupparelli have shown in Theorem 1 of [47] that this �rst condition

can be rewritten considering the elements of the well ordered class T . The

alternative condition is:

(C1): Th á (∪h−1
j=1Tj/paD(Th)) ∣paD(Th), ∀h = 1, ..., s.

In this work we use condition (C1) instead of (C1*).
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The following example shows an application of condition (C1) to a CG. In order

to simplify the notation, in the examples the vertices Vj of the graphs will be

replaced with their subscripts j.

Example 2. Referring to the chain graph in �gure (2.1.1.A) and to its associated

DAG in �gure (2.1.1.B), the independencies that hold from the condition (C1)

are the following:

1 á 2 (5,6,7,8) á (1,2)∣(3,4)

The second rule regards variables within the same component Th, ∀Th ∈ T . There

are two kinds of statements involving these relationships. The (C2a) is basically

the global Markov property for undirected graph applied to any component Th,

for more details see Lauritzen (1996) [41]. This rule gives the independencies

among variables in the same component. A di�erent approach is used in (C2b)

where, in the conditional set, nb(A) does not appear, that is a subset of Th. This

means that the condition (C2b) explains the relationships of variables within the

same component as marginal independencies (dependencies).

(C2a): A á [Th/Nb(A)]∣[paD(Th) ∪ nb(A)] ∀A ⊆ Th,∀h = 1, ..., s;

(C2b): A á [Th/Nb(A)]∣[paD(Th)] ∀A ⊆ Th,∀h = 1, ..., s.

Below is shown how to apply the previous conditions.
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Example 3. (Example 2 continued) The condition (C2a) produces the following

independencies:

5 á 8∣ (3,4,6,7) ; 6 á 7∣ (3,4,5,8) ;

7 á (6,8) ∣ (3,4,5) ; 8 á (5,7) ∣ (3,4,6) .

And from (C2b) the following independencies are obtained:

5 á 8∣ (3,4) ; 6 á 7∣ (3,4) ;

7 á (6,8) ∣ (3,4) ; 8 á (5,7) ∣ (3,4) .

The lists of independencies generated by both the rules contain redundant ele-

ments. Next is an instance of non-redundant lists which express the same rela-

tionships of independencies. For the two respective rules the lists are:

7 á (6,8) ∣ (3,4,5) ; 8 á (5,7) ∣ (3,4,6) .

and

7 á (6,8) ∣ (3,4) ; 8 á (5,7) ∣ (3,4) .

The third condition explains the connection among variables in parents and chil-

dren components. In this case as well, there are two kinds of Markov properties

that di�er by the conditional set.

(C3a): A á [paD(Th)/paG(A)]∣[paG(A) ∪ nb(A)] ∀A ⊆ Th,∀h = 1, ..., s;

(C3b): A á [paD(Th)/paG(A)]∣[paG(A)] ∀A ⊆ Th,∀h = 1, ..., s.

The lack of nb(A) in the conditional sets of the (C3b) does not consider the

in�uence of other variables belonging to Th in the independence statements.
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Example 4. (Example 2 continued) Applying the condition (C3a) to the graph

in �gure (2.1.1.A), we get the following independencies:

3 á 1∣(2,4); 4 á 2∣(1,3); 5 á 4∣ (3,6,7) ;

6 á 3∣ (4,5,8) ; 7 á (3,4) ∣5; 8 á (3,4) ∣6;

(7,5) á 4∣ (3,6) ; (6,8) á 3∣ (4,5) ; (7,8) á (3,4) ∣ (5,6) ;

(5,8,7) á 4∣(3,6) (6,8,7) á 3∣(4,5).

On the contrary, applying the condition (C3b), we get:

3 á 1∣4; 4 á 2∣3; 5 á 4∣3; 6 á 3∣4;

7 á (3,4) ; 8 á (3,4) ; (7,5) á 4∣3; (6,8) á 3∣4;

(5,8,7) á 4∣3; (6,8,7) á 3∣4; (7,8) á (3,4) .

Note that, even in this case, in both the lists there are redundant elements.

The previous relationship of independencies can be expressed through non redun-

dant lists. For instance, from (C3a):

3 á 1∣(2,4); 4 á 2∣(1,3);

(5,8,7) á 4∣(3,6); (6,8,7) á 3∣(4,5).

and from (C3b):

3 á 1∣4; 4 á 2∣3;

(5,8,7) á 4∣3; (6,8,7) á 3∣4.

The four types of MP for chain graphs are built by combining the di�erent kinds

of conditions (C2) and (C3):
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MP.I: this Markov property is described by (C1), (C2a) and (C3a) rules,

and was introduced by Lauritzen and Wermuth (1989) [43] and Fryden-

berg (1990) [28]: (LWF).

MP.II: this Markov property is described by (C1), (C2a) and (C3b),

and was proposed by Andersson Madigan and Perlman (2001) [4].

MP.III: this Markov property is described by (C1), (C2b) and (C3a),

and was studied by Drton (2009)[22].

MP.IV: this Markov property is described by (C1), (C2b) and (C3b),

and was proposed by Wermuth and Cox (2004)[57].

The di�erences between rules of types a and b are always given by the conditioning

event.

It is possible to identify two particular cases according to special structures of

CG. If all components in T are singletons , the CG is a DAG and, any variable

Vj has no neighbor. In this case for both (C2) and (C3) conditions a and b

are the same, thus there is only one MP. On the other hand, if the graph is

composed of only one component, conditions (C1) and (C3) do not produce any

independence, thus the CG is a UG and the only two possible MP are identi�ed

respectively by (C2a) and (C2b).

Since there are four types of Markov properties, there are also four lists of in-

dependencies that can be read by a graph. We discern four types of graphical

models according to the Markov properties MP I, MP II, MP III or MP IV.

Thus, the graphical models of type I, denoted with GM I, are conditional inde-

pendence models where the independencies, read by the chain graph, obey the

type I Markov property. The same holds for the other models. Respectively,
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graphical models for type II (GM II), graphical models for type III (GM III)

and graphical models for type IV (GM IV) are characterized by independencies

obeying Markov properties MP II, MP III and MP IV.

It is worth noting that the condition (C2a), that refers to the relationship within

chain components, is the generalization of the Markov property for undirected

graphs. In particular, since the graphical model for undirected graphs are always

log-linear models (See Lauritzen [41]), GM I and GM II use the log-linear

approach for the variables within the same component. On the other hand, the

condition (C2b), is able to represent marginal independencies among the variable

within the same component. Thus, in order to represent a list of conditional

independencies,GM I andGM II are preferred toGM III andGM IV. Instead,

when it is useful to describe marginal independencies for variables in the same

component, we tend to prefer GM III and GM IV.

To investigate the relationships among the variables in di�erent chain components,

we can interpret the components with no parents as groups of �purely explicative�

variables, the components with no children as groups of �purely response� variables

and the remaining components as groups of �intervening� variables. The condition

(C3b) considers any subgroup of the response variables as a function of only its

explicative variables. This makes it easier to interpret the results. Instead, with

the condition (C3a), the relationship among a group of variables in a component

Th and its parent component, is also dependent on some element of Th. This

makes GM II and GM IV more useful.



CHAPTER 3

Alternative Markov properties

In the previous chapter we cited four di�erent types of graphical models. For

several reasons, discussed in greater depth in chapter 5, it is useful to see which

kind of graphical model de�nes a marginal model (discussed in chapter 4). As

we will see, the graphical models that obey MP I and MP IV are described

by di�erent lists of independencies that are always parametrizable by a marginal

model (MM). This result is not always true for MP II and MP III graphical

models. Chapter 5 is dedicated to investigating when a list of independencies

corresponding to a graphical model can be represented by a marginal model. In

this chapter we will instead focus on the condition (C2a), that appears in GM I

and in GM II and the condition (C3b), that appears in GM II and in GM IV.

Speci�cally, we will propose two equivalent conditions, denoted with (C2*a) and

(C3*b) that will aid us in section 5.2. Furthermore, the new (C3*b) produces

a no-redundant list of independencies. Notice that, given a graph, a unique not

redundant list of independencies does not exist. We then propose some de�nitions

regarding particular structures identi�able in graphs, with the goal of obtaining a

new rule. For the sake of brevity, we will report three graphs where it is possible

to identify these structures.

27
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Figure 3.0.1. Three examples of graphs with particular structures

De�nition 3. Given a chain graph G, any component Th can be partitioned in

three subsets called CHh, NCh and NAh, de�ned as follows:

● The set of children CH, which contains all the elements of T that have

at least one parent. Any element in T which is the endpoint of at least

one arrow.
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● The set of neighbors NC, which contains all the elements of T that do

not have parents and are adjacent to at least one element in CH.

● The set of non-adjacent vertices NA, which contains all the elements

of T that do not have parents and they are not adjacent to any element

in CH.

In order to simplify the notation, from here, we indicate the di�erent elements of

a class of sets by using the notation �{A,B; B,C}� instead of the more laborious

�{{A,B},{B,C}}�.

Example 5. In �gure (3.0.1a), the components T1 = {1} and T2 = {2,3} have no

parents, so the partition of these components is formed by CH1 = CH2 = {Ø}

and NC1 = NC2 = {Ø}; thus all elements belong to the set of non-adjacent

vertices NA: NA1 = {1} and NA2 = {2,3}. The remaining component T3 =

{4,5,6,7,8,9,10} is the only one with parents: paD(T3) = {1,2,3} and so we may

distinguish three subsets: CH3 = {4,5,6}, NC3 = {7,8,9} and NA3 = {10}.

In �gure (3.0.1b), the components T1 and T2 are formed only by the set NC:

NC1 = {1} and NC2 = {2,3} for the same reasons seen above. In component T3

we are able to identify the set CH3 = {4} and the set NC3 = {5}. Finally, the

component T4 contains all the sets: CH4 = {6,7}, NC4 = {8} and NA4 = {9}.

In �gure (3.0.1c), there are two chain components. The �rst one has only the

set NA: NA1 = {1,2,3,4} and the component T2, as highlighted in the graph,

contains the sets CH2 = {5,6,7} and NC2 = {8,9,10}.

De�nition 4. Given the component Th ∈ T , the class PAh of sets of parents

with the same children in Th, is a partition of paD(Th) such as, for any element

A of PAh, the vertices Vj, Vi ∈ A i� ch(Vj)∩Th = ch(Vi)∩Th, with Vi, Vj ∈ paD(Th).
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We consider the elements of this class partially ordered according to the following

rule: ∀A,B ∈ PAh if ∣ch(B)∣ < ∣ch(A)| then A ≺ B.

Example 6. Let us consider the graph in �gure (3.0.1a), the components T1

and T2 do not have parents, so PA1 = PA2 = Ø. With regard to T3, the set

of parents with the same children is PA3 = {1; 2; 3}, in fact, ch(1) ∩ T3 = (4,5),

ch(2) ∩ T3 = (5,6) and ch(3) ∩ T3 = 6 which are all di�erent. Note that, in this

case, PA3 = {2; 1; 3} is still well ordered because ∣ch(1) ∩ T3∣ = ∣ch(2) ∩ T3∣ = 2.

In �gure(3.0.1b), the components T1 and T2 do not have parents, thus the class of

parents with the same children of T1 and T2, respectively PA1 and PA2, do not

exist. With regard to the component T3, the class of PA3 is {1} because the only

parent of T3 is 1. On the other hand, PA4 is {3; 1,2} because the vertices 1 and 2

have exactly the same child in T4: the vertex 6; the vertex 3 has (6,7) as children.

Since ∣ch(1,2)∣ < ∣ch(3)∣, the element (1,2) must be preceded by 3 in PA4.

Finally, in �gure (3.0.1c), PA2 = {2; 3; 4; 1}. Note that the vertex 1 does not have

children, thus must be the last element of PA2.

Note that all subsets A are composed of variables in paD(Th) and they have

exactly the same children, thus A ⊆ paG(chG(A)), ∀A ∈ PAh.

De�nition 5. Given the component Th, the in-degree of a set A ⊆ CH, denoted

by dI(A), is the number of sets of PA that have A as child.
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Example 7. In �gure (3.0.1a), the only possible set of children is CH3 = {4,5,6}

and the class of parents with the same children is PA3 = {1; 2; 3}. The in-degree

of V4 is 1 (dI(4) = 1) because paG(4) = 1 and it is composed only of one element

of PA3. The in-degree of V5: dI(5) = 2 because paG(5) = {1,2}. Finally the

in-degree of V6: dI(6) = 2 because its parents are paG(6) = {2,3}.

In �gure (3.0.1b), the component T3 has set of children CH3 = {4} and class of

parents with the same children PA3 = {1}. Obviously dI(4) = 1. In component

T4 there are CH4 = {6,7} and PA4 = {3; 1,2}. The parent set of vertex V6 is

paG(6) = {1,2,3}, thus its in-degree is dI(6) = 2. Similary dI(7) = 1.

In �gure (3.0.1c), the set of children of T2 is CH2 = {5,6,7} and the class of

parents is PA2 = {2; 3; 4; 1}. The in-degrees of the children of component T2 are

respectively dI(5) = 1, dI(6) = 1 and dI(7) = 1.

3.1. The new condition (C2*a)

As condition (C2a) plays an important role in Chapter 5, it is worthwhile to

examine some topics regarding this statement in greater depth until to de�ne an

alternative condition (C2*a).

First, this Markov property is the generalization of the global Markov property for

an UG, see Lauritzen [41]. This implies that the statementA á Th/Nb(A)∣paD(Th)∪

nb(A), A ⊆ Th, is equivalent to the local Markov property Vj á Th/Nb(Vj)∣paD(Th)∪

nb(Vj), for any Vj ∈ Th.

Furthermore, the following lemma and theorem show another equivalence that

will be useful to demonstrate theorems 11 and 12 in Chapter 5:
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Lemma 1. Let B = B1 ∪B2 be a complete subset of Th, where Vj ∈ B1 i� nb(Vj) =

B/Vj and B2 = B/B1. Then the following list of independencies:

(3.1.1) B1 á Th/B∣paD(Th) ∪B2

(3.1.2) (B1 ∪ Vj) á Th/Nb (B1 ∪ Vj) ∣paD(Th) ∪ nb (B1 ∪ Vj) ∀Vj ∈ B2

is equivalent to the list:

(3.1.3) Vj á Th/Nb (Vj) ∣paD(Th) ∪ nb (Vj) ∀Vj ∈ B.

Note that, if there is a set B1 such that set B2 is empty, then B1 = B = Th , the

component Th is complete and there is not any independence. On the other hand,

if a set B1 = ∅, then B2 = B and the list in 3.1.2 matches the list in 3.1.3. Let Clh

be the family of clique of the component Th, that are the maximal complete sets

of the component Th.

Theorem 1. Let Bi = B1i∪B2i be the cliques of the component, Bi ∈ Clh, where Vj ∈

B1i i� nb(Vj) = Bi/Vj and B2i = Bi/B1i. Then the following list of independencies:

(3.1.4) Vj á Th/Nb (Vj) ∣paD(Th) ∪ nb (Vj) ∀Vj ∈ Th.

is equivalent to the list:

(3.1.5) B1i á Th/Bi∣paD(Th) ∪B2i ∀i = 1, ..., n
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(3.1.6)

(B1,Vj ∪ Vj) á Th/Nb (B1,Vj ∪ Vj) ∣paD(Th) ∪ nb (B1,Vj ∪ Vj) ∀Vj ∈ B2i,

∀i = 1, .., n. where B1,Vj = (∪B1k⊂nb(Vj)B1k) is the union of all sets B1k that belong

to the set nb(Vj), ∀Vj ∈ ∪n
i=1B2i.

The proof of this theorem is shown in the Appendix to this chapter.

Now we can de�ne the following condition (C2*a):

De�nition 6. We consider the class B∗
h = {Bi ∶ Bi ∈ Clh,Bi = B1i ∪B2i,Nb(B1i) =

Bi,CHh ∩ Bi ≠ ∅}. The condition (C2*a) is described by the following list of

independencies:

(3.1.7) B1i á Th/Bi∣paD(Th) ∪B2i ∀B1i ⊆ Bi ∈ B∗

(3.1.8)

(B1,Vj ∪ Vj) á Th/Nb (B1,Vj ∪ Vj) ∣paD(Th) ∪ nb (B1,Vj ∪ Vj) ∀Vj ∈ Th/ (∪i∶Bi∈B∗B1i)

B1,Vj = (∪B1k⊂nb(Vj)B1k) .

From lemma 1 and theorem 1 the following theorem derives.

Theorem 2. The list of conditional independencies generated by the rule (C2*a)

is equivalent to the list of independencies given by (C2a).
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Below are reported some exaples to showing this new condition.

Example 8. Let us consider the graph in �gure 3.0.1a. The family of the cliques

of the component T3 is Cl3 = {4,7,8; 5,8; 5,9; 6,8; 6,9; 8,10; 9,19}. Secondly

we de�ne the sets Bi ∈ Cl3 such that Bi ∩ CH3 = ∅, that are B∗
3 = {4,7,8; 5,8;

5,9; 6,8; 6,9}. For all these sets we consider only the sets B1i such that Nb(B1i) =

Bi, thus we get {4,7}. For the remaining vertices Vj, that are {5; 6; 8; 9; 10},

we de�ne the sets B1,Vj that are B1,5 = B1,6 = B1,9 = B1,10∅ and B1,8 = 4,7 .

According the (C2*a) are the following independencies:

4,7 á 5,6,9,10∣1,2,3,8 5 á 4,7,6,10∣1,2,3,8,9 6 á 4,7,5,10∣1,2,3,8,9

4,7,8 á 9∣1,2,3,5,6,10 9 á 4,7,8∣1,2,3,5,6,10 10 á 4,5,6,7∣1,2,3,8,9

Example 9. Let us consider the graph in �gure 3.0.1b. The family of the cliques

of the component T4 is Cl4 = {5,8; 6,8; ; 8,9}. Secondly we de�ne the sets Bi ∈ Cl4

such that Bi ∩CH4 = ∅, that are B∗
4 = {5,8; 6,8}. For all these sets we consider

only the sets B1i such that Nb(B1i) = Bi, thus we get {5; 6}. For the remaining

vertices Vj, that are {8; 9}, we de�ne the setsB1,Vj that areB1,8 = 5,6 andB1,9 = ∅

. According the (C2*a) are the following independencies:

5 á 6,9∣1,2,3,8 6 á 5,9∣1,2,3,8 9 á 5,6∣1,2,3,8
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Example 10. Let us consider the graph in �gure 3.0.1c. The family of the cliques

of the component T2 is Cl2 = {5,6; 6,9; ; 7,10 8,9; 9 10}. Secondly we de�ne the

sets Bi ∈ Cl2 such that Bi∩CH2 = ∅, that are B∗
2 = {5,8; 6,9; 7,10}. For all these

sets we consider only the sets B1i such that Nb(B1i) = Bi, thus we get {5; 6; 7}.

For the remaining vertices Vj, that are {8; 9; 10}, we de�ne the sets B1,Vj that

are B1,8 = 5, B1,9 = 6 and B1,10 = 7 . According the (C2*a) are the following

independencies:

5 á 6,7,9,10∣1,2,3,4,8 6 á 5,7,8,10∣1,2,3,4,9 7 á 5,6,8,9∣1,2,3,4,10

5,8 á 6,7,10∣1,2,3,4,9 6,9 á 5,7∣1,2,3,4,8,10 7,10 á 5,6,8∣1,2,3,4,9

Note that any element of this list is exential to describe the relationships between

the variables, thus this list is non rendundant.

3.2. The new condition (C3*b)

In this section we will introduce a new (C3*b) condition in place of (C3b).

First we will propose the new condition (C3*b) that describes the relationship

between a set and its children. After that, it will be shown that this new condition

is equivalent to the condition (C3b). One of the advantages of this new condition

is that it ensures a non-redundant list of independencies that are maximal on

the component T .

De�nition 7. Given three sets A, B and C such that A ⊆ Th and B ⊈ Th, the

statement of independence A á B∣C, is called maximal �on the component

Th� if it is not possible to add any element of Th to the set A ⊆ Th while keeping

the independence true.
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Indeed, the new condition (C3*b) follows this de�nition.

De�nition 8. The new condition, concerning the relationships between vertices

in di�erent components, is:

(C3*b): A á [Th/ch(A)]∣(paD(Th)/A), ∀A ∈ PAh ∀h = 1, ...s.

Note that A does not belong to Th but to the class of set PAh.

Example 11. Let us take the �gure (3.0.1a). The class of parents with the same

children is PA3 = {1; 2; 3}. From the (C3*b) condition we obtain:

1 á (6,7,8,9,10)∣(2,3) 2 á (4,7,8,9,10)∣(1,3) 3 á (4,5,7,8,9,10)∣(1,2)

In the �gure (3.0.1b) the class of parents with the same children of T3 is PA = {1}

and the class of parents with the same children of T4 is PA4 = {3; 1,2}. The list

of independencies given by (C3*b) is:

1 á 5 3 á 6,8,9∣1,2 1,2 á 7,8,9∣3

In �gure (3.0.1c) we have the class of parents of T2 that is PA2 = {2; 3; 4; 1} and

the independencies according to (C3*b) rule are:

1 á (5,6,7,8,9,10)∣(2,3,4); 2 á (6,7,8,9,10)∣(1,3,4);

3 á (5,7,8,9,10)∣(1,2,4); 4 á (5,6,8,9,10)∣(1,2,3).
.

Theorem 3. The list of conditional independencies generated by the rule (C3*b)

is equivalent to the list of independencies given by (C3b).
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The proof of this theorem appears in the appendix to this chapter.

Example 12. We saw in Chapter 2 that the graph in �gure (2.1.1a) has the

following list of independencies obtained by applying the rule (C3b):

4 á 1∣2; 3 á 2∣1; 5 á 4∣3; 6 á 3∣4;

7 á (3,4) ; 8 á (3,4) ; (7,5) á 4∣3; (6,8) á 3∣4;

(7,8) á (3,4) ; (6,7,8) á 3∣4

Applying the rule (C3*b), instead, we get the class of parents with the same

children for any component, respectively PA1 = ∅, PA2 = ∅, PA3 = {V1;V2} and

PA4 = {V3;V4}. The list of independencies results:

1 á 4∣??2 2 á 3∣1 4 á (5,7,8)∣3 3 á (6,7,8)∣4

The �rst two independencies of both lists are equal. It is the same for the last

independence. Furthermore, independence 3 á (6,7,8) ∣4, obtained from (C3*b),

implies 3 á 6∣4 (the fourth independence in the �rst list), 3 á (6,8) ∣4 (the eighth

independence) and 3 á (7,8)∣4. Hence, 4 á (5,7,8)∣3 implies 4 á 5∣3 (the third

independence of the �rst list), 4 á (5,7) (the seventh in dependence) and 4 á

(7,8)∣3. Now, applying the property (P5) to 3 á (7,8) ∣4 and 4 á (7,8) ∣3 we

obtain (3,4) á (7,8), (the ninth independence). Finally from (3,4) á (7,8) we

get the last two remaining independencies: (3,4) á 7 and (3,4) á 8.

Remark 1. Under (C3b), all the independencies induced by (C3*b) are maxi-

mal on Th.

In fact, by adding even just one vertex to the set Th/chG(A), this new element

necessarily has parents in A, and the independence is no longer true.
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Remark 2. The rule (C3*b) leads to a smaller number of independencies than

(C3b).

It is su�cient to note that the cardinality of PA is lower than the cardinality of

P(T ), where P(T ) is called the power set and is the class of all subsets of T .

Remark 3. The list of independencies obtained is not redundant.

Remember that the independence A á B∣C implies all independencies α á β∣C∪γ,

where α ⊆ A, β ⊆ B and γ ∈ {P(A/α) ∪ P(B/β)}. Since the condition (C3*b)

de�nes one independence for any element A ∈ PAh, where PAh is a particular

partition of paD(Th), in the list of independencies obtained from (C3*b) the

statement B á Th/ch(B)∣paD(Th)/B, ∀B ⊆ A and ∀A ∈ PAh, never appears.

Hence, even if it is possible that Th/ch(A) ∩ Th/ch(B) ≠ ∅, for some A,B ∈ PAh,

the statement of independencies concerning these two sets refer to a di�erent

relationship because A ∩ B = ∅, and it is impossible to obtain one statement

of independence from the other. This shows that any statement in the list of

independencies obtained from (C3*b) is essential.

The importance of these properties for a list of independencies will be discussed in

Section 5.2.2 where we will propose a parametrization based on condition (C3*b).



Appendix to Chapter 3

Proof o f Lemma 1.

Lemma. 1 Let A = A1 ∪A2 be a complete subset of Th, where Vj ∈ A1 i� nb(Vj) =

A/Vj and A2 = A/A1. Then the following list of independencies:

A1 á Th/A∣paD(Th) ∪A2

(A1 ∪ Vj) á Th/Nb (A1 ∪ Vj) ∣paD(Th) ∪ nb (A1 ∪ Vj)∀Vj ∈ A2

is equivalent to the list:

Vj á Th/Nb (Vj) ∣paD(Th) ∪ nb (Vj)∀Vj ∈ A.

Proof. Note that, according to the assumptions of the theorem, nb(A1) = A2

and nb(A2) = A1 ∪ nb(A); hence Nb(A1) = A and Nb(A2) = Nb(A) = A ∪ nb(A).

Applying the property P3 to any element of A1, the independence in (3.1.1)

implies Vi á Th/A∣paD(Th) ∪ A2 ∪ A1/Vi. Since, ∀Vj ∈ A1, nb(Vj) = A/Vj and

Nb(Vj) = A, the previous formula can be rewritten as Vj á Th/Nb(Vj)∣paD(Th) ∪

nb(Vj), ∀Vj ∈ A1.

In the same way, from any element of the list in (3.1.2) we get Vj á Th/Nb (A1 ∪ Vj) ∣

paD(Th)∪nb (A1 ∪ Vj)∪A1, ∀Vj ∈ A2. When Vj ∈ A2, nb(Vj) = A1∪A2/Vj∪(nb(A)∩
39
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nb(Vj)), since nb(A1) = A2 and nb(Vj∪A1) = (nb(Vj) ∪ nb(A1)) / (Vj ∪A1), we get

nb(Vj ∪ A1) = (A2 ∪A1 ∪A2/Vj ∪ (nb(A) ∩ nb(Vj))) / (Vj ∪A1) = A2/Vj ∪ (nb(A)

∩nb(Vj)), so A1∪nb (A1 ∪ Vj) = A1∪A2/Vj∪(nb(A)∩nb(Vj)) = nb (Vj) andNb(A1∪

Vj) = Nb(Vj). Due to the latter considerations, we get Vj á Th/Nb (Vj) ∣paD(Th)∪

nb (Vj), Vj ∈ A2.

On the other hand, we apply the property P5 to the element of 3.1.3 ∀Vi ∈ A1,

obtaining 3.1.1. Similarly, applying P5 to the element of 3.1.3 ∀Vi ∈ A2 and to

3.1.1, we get the list in 3.1.2. �

Proof of Theorem 1.

Theorem. 1 Let Ai = A1i∪A2i be the cliques of the component, Ai ∈ Clh, where Vj ∈

A1i i� nb(Vj) = Ai/Vj and A2i = Ai/A1i. Then the following list of independencies:

Vj á Th/Nb (Vj) ∣paD(Th) ∪ nb (Vj) ∀Vj ∈ Th.

is equivalent to the list:

A1i á Th/Ai∣paD(Th) ∪A2i ∀i = 1, ..., n

(A1,Vj ∪ Vj) á Th/Nb (A1,Vj ∪ Vj) ∣paD(Th) ∪ nb (A1,Vj ∪ Vj)∀Vj ∈ A2i,

∀i = 1, .., n. where A1,Vj = (∪A1k⊂nb(Vj)A1k) is the union of all sets A1k that belong

to the set nb(Vj), ∀Vj ∈ ∪n
i=1A2i.

Proof. To begin with, we should highlight some results. First, A1i∩A1k = ∅,

∀i, k = 1, ..., n, i ≠ k. In fact, by contradiction, if there was a vertex Vj such

that A1i ∩ Aki = Vj, by the assumptions of the theorem, nb(Vj) = Ak/Vj and

nb(Vj) = Ai/Vj. Since Ai is a maximal complete set ∀i = 1, ..., n, Ai = Ak. Note
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that, given a set Ai, the corresponding set A1i is unique, hence A1i = A1k and

these infringe the condition i ≠ k. Secondly, given a set A1i, the corresponding

set A2i such that nb(A1i) = A2i is unique. This result arises easily from the

previous considerations. Finally, given a set A2i, the set nb(A2i) is equal to

A1,A2i
∪ nb(Ai)/A1,A2i

, where A1,A2i
= (∪A1k⊂nb(A2i)A1k). In fact, it is easy to

derive from the theorem that nb(A2i) = A1i ∪ nb(Ai), where nb(Ai) ≠ ∅. Note

that, it can occur that there are some sets A1k ⊂ nb(Ai), for k ≠ i. The set A1,A2i

contains all these sets in addition to A1i. Thus, nb(A2i) =A1,A2i
∪ nb(Ai)/A1,A2i

.

Now we prove that, from the list of independencies obtained by applying (3.1.5)

and (3.1.6) we can deduce the list in 3.1.4 and vice versa. Applying the property

P3 to any element of A1i, the independence in (3.1.5) implies Vi á Th/Ai∣paD(Th)∪

A2i ∪ A1i/Vi. Since, ∀Vj ∈ A1i, nb(Vj) = Ai/Vj and Nb(Vj) = Ai, the previous

formula can be rewritten as Vj á Th/Nb(Vj)∣paD(Th) ∪ nb(Vj), ∀Vj ∈ A1i.

In the same way, from any element of the list in (3.1.6) we get Vj á Th/Nb (A1,Vj ∪ Vj) ∣

paD(Th) ∪ nb (A1,Vj ∪ Vj) ∪ A1, ∀Vj ∈ A2i, ∀i = 1, .., n. When Vj ∈ A2i, nb(Vj) =

A1,Vj ∪A2i/Vj ∪(nb(Ai)∩nb(Vj))/A1,Vj , since nb(A1,Vj) = A2i and nb(Vj ∪A1,Vj) =

(nb(Vj) ∪ nb(A1,Vj)) / (Vj ∪A1,Vj), we get nb(Vj ∪A1,Vj) = (A2i ∪A1,Vj ∪A2i/Vj

(nb(Ai) ∩ nb(Vj))/A1,Vj) / (Vj ∪A1,Vj) = A2i/Vj ∪ (nb(Ai) ∩ nb(Vj)), so A1,Vj ∪

nb (A1,Vj ∪ Vj) =A1,Vj ∪A2i/Vj ∪ (nb(Ai)∩nb(Vj)) = nb (Vj) and Nb(A1,Vj ∪ Vj) =

Nb(Vj). Due to the latter considerations, we get Vj á Th/Nb (Vj) ∣paD(Th) ∪

nb (Vj), Vj ∈ A2.

On the other hand, we apply the property P5 to the element of 3.1.4 ∀Vi ∈ A1,

obtaining 3.1.5. Similary, applying the P5 to the element of 3.1.4 ∀Vi ∈ A2i,

∀i = 1, ..., n and to 3.1.5 ∀i = 1, ..., n , we get the list in 3.1.6. �
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Proof of Theorem 3.

Theorem. 3. The list of conditional independencies generated by the rules (C3*b)

is equivalent to the list of independencies given by (C3b).

Proof. We start by showing that the list of independencies generated by

(C3*b) is implied by the independencies of (C3b). Since the (C3b) con-

dition holds for all subsets A of Th, we take A = Th/ch(A). Then, the set

paD(Th)/paG(A), that is the set of paD(Th) with no children in A, is A ∪ P ,

where P = paD(Th)/paG(Th) is the set of paD(Th) with no children. The set

of parents of A becomes paG(A) = paG(Th/ch(A)) = paD(Th)/(A ∪ P ). Thus,

for any A ∈ PAh, a set A = Th/ch(A) exists in Th so that the independence

[Th/ch(A)] á A ∪ P ∣(paD(Th)/(A ∪ P )) holds. Subsequently, we apply the prop-

erty (P3) and we get [Th/ch(A)] á A∣(paD(Th)/A).

The second step consists of showing that the list of independencies generated

by (C3*b) implies all independencies generated by (C3b). That is the inde-

pendencies A á [Th/ch(A)]∣(paD(Th)/A), A ∈ PAh imply the independencies

A á paD(Th)/paG(A)∣paG(A), A ⊆ Th.

Let us consider set A ⊆ Th, with in-degree dI(A) = (n − r), with r = 0, ..., n, where

n = ∣PA∣. This means that in PA there are exactly r sets Ai ∈ PAh, i = 1, .., r, so

that A ⊆ Th/ch(Ai). Thus A ⊆ ∩r
i=1Th/ch(Ai) = Th/ (∪r

i=1ch(Ai)). It follows that

paG(A) = paD(Th)/ (∪r
i=1Ai) and paD(Th)/paG(A) = (∪r

i=1Ai). Now we consider
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the statements of independencies related to this sets Ai, i = 1, .., r:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A1 á Th/ch(A1)∣(paD(Th)/A1)

...

Ar á Th/ch(Ar)∣(paD(Th)/Ar)

which can be rewritten as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A1 á Th/ch(A1)∣ ((paD(Th)/ (∪r
i=1Ai)) ∪ (∪r

i=1Ai/A1))

...

Ar á Th/ch(Ar)∣ ((paD(Th)/ (∪r
i=1Ai)) ∪ (∪r

i=1Ai/Ar))

Since A ⊆ Th/ch(Ai), ∀i = 1, ..., r, and applying the property (P2) we get:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A1 á A∣ ((paD(Th)/ (∪r
i=1Ai)) ∪ (∪r

i=1Ai/A1))

...

Ar á A∣ ((paD(Th)/ (∪r
i=1Ai)) ∪ (∪r

i=1Ai/Ar))

Finally, applying the property (P5) we obtain: (∪r
i=1Ai) á A∣ ((paD(Th)/ (∪r

i=1Ai))).

Thus, from the list of independencies read with the (C3*b) condition we may

obtain the list read with the (C3b) condition and vice versa. �





CHAPTER 4

Models for categorical data

In the previous chapters we focused on models which could to represent indepen-

dencies among groups of variables using graphs. Indeed, given a graph, with one

of the Markov properties explained in the previous chapter, we are able to obtain a

list of independencies. In this section some parametric models for categorical data

will be presented which make it possible to study the probabilistic relationships

among q categorical variables, respectively with d1, ..., dq categories. In section

4.1 we will propose the log-linear models, widely discussed in the literature. For

details see Agresti (2002) [1]. These models describe the probabilistic structure

of the variables by parameterizing the probability function with a set of log-linear

parameters. A log-linear parameter is a contrast of logarithms of probabilities.

The main two types of log-linear parameters are the baseline logits and contrasts

of these or the local logits and contrasts of these. The baseline parameters are used

for nominal variables, while the local parameters are used for ordinal variables.

In section 4.2 we will describe the marginal models, proposed by Bergsma and

Rudas (2002) [7]. These models generalize the log-linear models by de�ning the

log-linear parameters on di�erent marginal distributions. The interactions ob-

tained in this way are contrasts of logarithms of sums of probabilities.

45
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A further generalization of these models is proposed by Bartolucci, Colombi and

Forcina (2007), where the parameters, called generalized marginal interactions,

are not necessarily log-linear interactions.

4.1. Log-linear Models

In this section we deal with basic concepts of log-linear models in order to facilitate

understanding of the models de�ned in chapter 3.2. For a more extensive analysis,

see Agresti [1].

Let's L be a non empty subset of V , L ⊆ V, L ≠ ∅. The baseline log-linear

interactions are:

(4.1.1) λL(iL) = ∑
K⊆L

(−1)∣L/K∣ log(π(iK1V /K)) ∀iL ∈ IL

where 1K is a vector of ones with dimension K and IL is the table referring to the

variable in L (see section 1.1). The set L is called interaction set and it denotes

the group of variables to which the parameters λL(iL) refer.

For any interaction set L ⊆ V there are KL = ∏Vj∈L(dj − 1) log-linear parameters

de�ned by (4.1.1). Thus, given q variables, there are (∣I ∣−1) possible parameters.

Let π be the vector of probabilities arranged under the lexicographic order, and

it is possible to rewrite the formula (4.1.1) in matricial form:

(4.1.2) λL =CL logπ
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whereCL is a (kL×∣I ∣)matrix of contrasts. All possible parameters are arranged in

the (∣I ∣−1)−dimensional vector λ obtained by stacking the vectors λL, ∀L ∈ P(V ),

where P(V ) is called a power set and is the class of all subsets of V .

In order to build a model it is necessary for the previous parameters to represent

a parametrization of the probability function.

We reiterate the de�nition:

De�nition. A function f(π) ∶ Π → B ⊂ R∣I ∣−1 is a parametrization of π ∈ Π if it

is a one-to-one correspondence between Π and B.

Thus, the inverse function f−1(b) ∶ B → Π must exist.

Let λ be the function of π which, applied to any probabilities πV (i) ∈ Π, gives the

whole set of log-linear parameters λ. Thus λ(π) ∶ Π→ Λ ⊆ R∣I ∣−1 . This function is

a parametrization of the probability function because it is invertible ad its inverse

function is:

(4.1.3) πV (i) =
exp(∑L⊆P(V )/Ø λL(iL))
∑i∈I exp(∑L⊆P(V )/Ø λL(iL))

∀i ∈ I, ∀iL ∈ IL

We can rewrite it in matricial form:

(4.1.4) π = exp{Zλ}
1′ exp{Zλ}

where Z is the design matrix of elements {0,1}.

A log-linear model is a parametrization of a probability distribution capable of

representing situations of conditional independence. The log-linear model charac-

terized by the whole set of the previous parameters is called a saturated model and

it is representative of situations where independencies are lacking. The models
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used to describe relationships of independencies are sub-models of these, obtained

constraining some parameters to zero. In particular, if the independence A á B∣C

holds, all parameters λL(iL) are equal to zero, where L contains at least one ele-

ment of A and at least one element of B. For the proofs see [1, 58]. Thus, given

a conditional independence model CI, introduced in formula (1.3.1), such that

∀(Ai á Bi∣Ci) ∈ CI, Ai ∪Bi ∪ Ci = V , with i = 1, ..., k, the log-linear model that

satis�es these independencies is described by the set of linear constraints:

(4.1.5) {λLi = 0, ∀Li ∈Di, i = 1, ..., k}

where Di is the following class:

(4.1.6) Di = {P(V )/(P(Ai ∪Ci) ∪P(Bi ∪Ci))}

or in the alternative:

(4.1.7) Di = {L ∶ L = a ∪ b ∪ c, ∅ ≠ a ⊆ A, ∅ ≠ b ⊆ B, c ⊆ C}.

Note that, according to the formula 4.1.5, if λLk = 0 then λLj = 0, ∀Lj ⊃ Lk.

A statement of independence may involve a smaller number of variables, so the

union of the three sets A, B and C is strictly a subset of V . These hypotheses

are not easily represented by log-linear models. Bergsma and Rudas (2002) have

proposed a more general model which may represent these kinds of independencies.

This model will be explained in the next section.
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4.2. Marginal Models (MM)

As already mentioned, the model proposed by Bergsma and Rudas in (2002) [7] is

able to represent a more exhaustive set of independencies. The parameters used

are called marginal log-linear parameters, because they are calculated on marginal

distributions. Given L ⊆ M ⊆ V , the marginal baseline log-linear parameters,

referring to the set of variables in L and evaluated on the marginal distribution

πM are:

(4.2.1) ηML (iL) = ∑
K⊆L

(−1)∣L/K∣ log(πM(iK1M/K)) ∀iL ∈ IL

where the set L denotes the group of variables to which the parameter ηML (iL)

refers and it is called an interaction set. The set M ⊆ V , instead denotes the

marginal distribution where the parameter is evaluated and it is called marginal

set. The vector of all log-linear parameters, ηML , referring to the interaction set L,

is obtained by stacking the parameters ηML (iL) in formula 4.2.1 in lexicographic

order.

In order to build the whole list of marginal log-linear parameters it is necessary

for the marginal sets and interaction sets to follow some properties proposed by

Bergsma and Rudas (2002).

De�nition. Let H = {M1, ...,Ms = V } be a class of marginal sets ; this class is

hierarchical if the sets M1, ...,Ms are such that Mh ⊈Mk for all k = 1, ..., h,

h = 2, ..., s.

Given s marginal set, the hierarchical class always exists but it might not be

unique.
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De�nition. Let Fh = {L1, ...,Lc} be the class of interaction sets assigned to the

marginal setMh, with Lj ⊆Mh, ∀Lj ∈ Fh. The vector of interactions η obtained

by stacking the vectors {ηMh

Lj }Mh∈H,Lj∈Fh , is called complete if the union ∪s
h=1Fh

of all classes of interactions is equal to the power set of V , P(V ) and Fh∩Fj = Ø,

∀h = 2, ..., s and j = 1, ..., h; thus any interaction set is de�ned one time. The

vector η is called hierarchical if any interaction set Lj is de�ned exactly in the

�rst marginal that contains it. It follows that:

(1) F1 = P(M1)/Ø;

(2) Fh = P(Mh)/ ∪k<h Fk.

The parameters of the marginal log-linear model are built in accordance with

these two rules.

The next example reports some instances of possible classes of interactions and

marginal sets, some of which in accordance with the properties seen above.

Example 13. Let V = {V1, V2, V3} the vector of 3 variables, the power set of V

is P(V ) = {Ø; V1; V2; V1, V2; V3; V1, V3; V2, V3; V1, V2, V3}. Reported below, are

some possible lists of vectors of parameters regarding the three variables:

ηV1V2V3
Ø

, ηV1V2V3
V1

, ηV1V2V3
V2

, ηV1V2V3
V3

, ηV1V2V3
V1V2

, ηV1V2V3
V1V3

, ηV1V2V3
V2V3

, ηV1V2V3
V1V2V3

;(4.2.2)

ηØ
Ø
, ηV1

V1
, ηV2

V2
, ηV3

V3
, ηV1V2

V1V2
, ηV1V3

V1V3
, ηV2V3

V2V3
, ηV1V2V3

V1V2V3
;(4.2.3)

ηV1
Ø

, ηV1
V1

, ηV2V3
V2

, ηV2V3
V3

, ηV1V2V3
V1V2

, ηV1V2V3
V1V3

, ηV2V3
V2V3

, ηV1V2V3
V1V2V3

;(4.2.4)

ηØ
Ø
, ηV1

V1
, ηV1V2

V1
, ηV1V2

V2
, ηV3

V3
, ηV1V3

V1V3
, ηV2V3

V2V3
, ηV1V2V3

V1V2V3
;(4.2.5)

ηV1
Ø

, ηV1V2
V1

, ηV1V2
V2

, ηV3
V3

, ηV1V2
V1V2

, ηV1V3
V1V3

, ηV2V3
V2V3

, ηV1V2V3
V1V2V3

;(4.2.6)
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Example. (Continued) The parameters in (4.2.2) are the classic log-linear pa-

rameters, usually indicated with λA, ∀A ∈ P(V ); in (4.2.3) there are parameters

called multivariate logistic parameters proposed by Glonek and McCullagh (1995).

The �rst three lists satisfy the properties of both hierarchy and completeness. On

the contrary, the parameters in (4.2.5) violate completeness in two ways there is

no parameter referred to (V1, V2) jointly, and there are two parameters regard-

ing V1. The last set of parameters violates hierarchy, since L = V1 is de�ned in

M2 = (V1, V2) instead ofM1 = V1. Thus, only the �rst three lists can be considered

marginal log-linear parameters.

It easy to see that the log-linear model is a special type of marginal log-linear

model, with the only marginal set V . The Glonek and McCullagh model is also

a special type of marginal log-linear model. In fact, when M = L, ∀L ∈ P(V )

the two models are equal. It is important to note that, given an ordered class

of marginal sets, the choice of complete and hierarchical interactions is unique.

The vector ηML of all marginal log-linear parameters, the elements of which are

described by the formula (4.2.1), can be rewritten in matricial form as

(4.2.7) ηML =CML logMLπ

where ML is a matrix of 0s and 1s whose rows are used to form the marginal dis-

tributions and CML is a matrix of contrasts, which changes depending on whether

the parameters are baseline or local interactions. Colombi and Forcina (2001),

[14], in Appendix A, provided an algorithm to build this matrices.

The next example shows a list of possible marginal log-linear parameters.
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Example 14. Let V = {V1, V2, V3} be a vector of variables of level respectively

d1 = d2 = 2 and d3 = 3. We assume the following hierarchical class of marginal

sets H = {M1;M2;M3} = {V1; V2, V3; V1, V2, V3}. According to the properties

of completeness and hierarchy, the classes of interaction sets corresponding to

the marginal sets are: F1 = {L1} = {V1}, F2 = {L1;L2;L3} = {V2; V3; V2, V3},

F2 = {L1;L2;L3} = {V1, V2; V1, V3; V1, V2V3}. The marginal log-linear parameters

aggregated under the baseline criterion are:

η=(ηV1V1 ,η
V2V3
V2

,η
V2V3
V3

,η
V2V3
V2V3

,η
V1V2V3
V1V2

,η
V1V2V3
V1V3

,η
V1V2V3
V1V2V3

)
′

where

η
V1
V1
= [log(π1(2)

π1(1)
)]

η
V2V3
V2

= [log(π23(2,1)
π23(1,1)

)]

η
V2V3
V3

= [log(π23(1,2)
π23(1,1)

),log(π23(1,3)
π23(1,1)

)]
′

η
V2V3
V2V3

= [log(π23(1,1)π23(2,2)
π23(1,2)π23(2,1)

),log(π23(1,1)π23(2,3)
π23(1,3)π23(2,1)

)]
′

η
V1V2V3
V1V2

= [log(π123(1,1,1)π123(1,2,2)
π123(1,1,2)π123(1,2,1)

),log(π123(1,1,1)π123(1,2,3)
π123(1,1,3)π123(1,2,1)

)]
′

η
V1V2V3
V1V3

= [log(π123(1,1,1)π123(2,1,2)
π123(1,1,2)π123(2,1,1)

),log(π123(1,1,1)π123(2,1,3)
π123(1,1,3)π123(2,1,1)

)]
′

η
V1V2V3
V1V2V3

= [log(π123(2,2,2)π123(1,1,2)
π123(2,1,2)π123(1,2,2)

)−log(π123(2,1,1)π123(1,2,1)
π123(2,2,1)π123(1,1,1)

),

log(π123(2,2,3)π123(1,1,3)
π123(2,1,3)π123(1,2,3)

)−log(π123(2,1,1)π123(1,2,1)
π123(2,2,1)π123(1,1,1)

)]
′
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Once the parameters are de�ned, it is necessary to show that these parameters

are a parametrization of the probability distribution. Thus, the function that

gives all marginal parameters η(π) ∶ Π → B ⊆ R∣I ∣−1 must be invertible. Bergsma

and Rudas in [7] proved that this function is invertible. This means that the

vector η of marginal log-linear parameters, is a parametrization of the joint prob-

ability function πV . Furthermore, they proved that this parametrization has the

smoothness property. This result is reported after a brief discussion about the

importance of this property.

The smoothness property is one of most important features to require because

it guarantees the standard asymptotic theory of the maximum likelihood esti-

mators.Next we will review topics regarding the smoothness of a function. For

more details see Geiger and Meek (1998) and Geiger, Heckerman, King and Meek

(2001)[29, 30].

Def.: The function η(π) ∶ Π → B ⊆ R∣I−1∣ is smooth if it is a di�eomor-

phism onto B, that is the function η(π)∈ C∞, is invertible and its inverse

function η−1(b) ∈ C∞.

Smoothness is a su�cient condition for the existence of second derivatives of

the log-likelihood function, which is necessary to calculate Fisher's information

matrix and then for the asymptotic distribution of the estimators. In this regard

the following theorem gives a less strong su�cient condition for the asymptotic

theory.

Theorem 4. (Inverse function theorem) Let f be a function in Cq, q ≥ 1, from

an open set B ⊂ En into En. If the Jacobian matrix of f has full rank in t0:



54 4. MODELS FOR CATEGORICAL DATA

J(f(t0)) ≠ 0, then an open set B0 exists, containing t0 such that the inverse g of

f restricted to B0 is of class Cq.

Bergsma and Rudas in [7], Theorem 2, gave the following condition of smoothness

for complete and hierarchical models:

Theorem 5. If the vector of marginal log-linear parameter η follows the properties

of completeness and hierarchy, then η is a smooth parametrization of Π.

So any model that can be represented by the above parametrization is smooth.

Again, Bergsma and Rudas in [7], theorem 3, provided a necessary condition for

smoothness:

Theorem 6. If an interaction set L is de�ned in both Mi and Mj, then the

parametrization η is not smooth.

As before, conditional independence models are obtained by constraining certain

parameters to zero. Unfortunately, as we will see in the next section, not all

conditional independence models are representable by marginal models.

4.3. Marginal Models and CI models

Similarly to log-linear models, we de�ne a marginal model as the set of probability

distributions parametrized by a vector of hierarchical and complete interactions

η. If all parameters are not null, then the model is saturated. Marginal models

are a generalization of log-linear models since they can parametrize a larger set of

conditional independencies because the constraint A ∪B ∪C = V for A á B∣C is
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removed. By constraining certain parameters ηMi

Li to zero, we are able to represent

a list of k independencies Ai á Bi∣Ci, with i = 1, ..., k. As before:

(4.3.1) Ai á Bi∣Ci⇐⇒ ηMi

Li = 0 ∀Li ∈Di

whereMi = Ai ∪Bi ∪Ci and

(4.3.2) Di = {L ∶ L ∈ P(Ai ∪Bi ∪Ci)/(P(Ai ∪Ci) ∪P(Bi ∪Ci))} ∀i = 1, ..., k.

is the class of all null interactions. Note that this class can be rewritten as follows:

(4.3.3) Di = {L ∶ L = a ∪ b ∪ c, ∅ ≠ a ⊆ Ai, ∅ ≠ b ⊆ Bi, c ⊆ Ci}

Not every list of conditional independencies can be represented by a marginal

model, because, given a list of independencies, completeness and hierarchy must

be respected. The next example shows the more simple conditional independence

model that is not parametrizable with a marginal model.

Example 15. Let us consider the independencies 1 á 2 and 1 á 2∣3. In order to

represent the �rst independence it is necessary to constrain the parameter η1212 to

zero. According to the second independence, parameters η12312 and η123123 must be set

to zero. Note that the parameter referring to the interaction 12 is twice de�ned,

thus completeness is violated. According to theorem 6, the model of conditional

independence is not smooth.

There are cases where completeness and hierarchy are only apparently violated.

The next example highlights this situation.
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Example 16. Let us consider the following list of independencies: {1 á 2∣3; 1 á

3,4∣2}. According to 4.3.1 we getM1 = {1,2,3} andM2 = {1,2,3,4} and accord-

ing to 4.3.2, D1 = {1,2; 1,2,3} and D2 = {1,3; 1,4; 1,3,4; 1,2,3; 1,2,4; 1,2,3,4}.

Note that, if the interaction sets (1,3) and (1,2,3) in D2 are de�ned in M2

according to 4.3.1 the properties of completeness and hierarchy are violated.

But, if we rewrite the list of conditional independencies in the following equiv-

alent way {1 á 2∣3; 1 á 3∣2; 1 á 4∣2,3}, sets Di become D1 = {1,2; 1,2,3},

D2 = {1,3; 1,2,3} which must be correctly de�ned as M1 = 1,2,3 and D2 =

{1,4; 1,3,4; 1,2,4; 1,2,3,4} that must be correctly de�ned asM2 = {1,2,3,4}.
Bergsma, Rudas and Németh (2010) (hereinafter referred to as BRN) and Forcina,

Lupparelli and Marchetti (2010) (hereinafter referred to as FLM) have discussed

the problems described in the previous example.

In particular, BRN consider a list of k independencies Ai á Bi∣Ci, i = 1, ..., k

concerning the variables in V , and they de�ne ∀L ∈ P(V ), marginal set M(L),

that is the �rst marginal set in the hierarchical class H = {M1, ...,Mm} which

contains the interaction L. Then the BRN's theorem 1, describes when the list of

k independencies is a marginal model.

Theorem 7. If ∀L ∈Di the next condition is satis�ed

(4.3.4) Ci ⊆M(L) ⊆ (Ai ∪Bi ∪Ci), i = 1, ..., k

then the following statements hold:

● The conditional independence model CIk = ∩k
i=1{π ∈ Π ∶ Ai á Bi∣Ci(π)},

if and only if

η
M(L)
L = 0, ∀L ∈ ∪k

i=1Di.
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● The model CIk can be parametrized by

(4.3.5) {ηM(L)
L ∶ L ∈ P(V )/ ∪k

i=1Di}

which is a complete and hierarchical marginal parametrization;

● The number of degrees of freedom of CIk is

∑
L∈∪ki=1Di

∏
j∈L

(dj − 1).

Note that, according to this theorem, given the conditional independence model,

the marginal class is not unique. But, since the interaction L = Ai ∪Bi ∪Ci ∈ Di,

∀i = 1, ..., k, then the marginal setsMi = Ai ∪Bi ∪Ci will be always de�ned.

The next two examples show how to apply this theorem.

Example 17. Let us consider the following list of independencies: {(1 á 2); (1 á

2∣3)} proposed in example 15. BRN de�ne the following classes about any in-

dependence: D1 = {1,2} and D2 = {1,2; 1,2,3}. We de�ne the marginal sets

considering, for all independencies, the setMi = Ai∪Bi∪Ci. Thus, we obtain the

hierarchical class of marginal sets H = {1,2; 1,2,3}. Now, according to the �rst

statement of independence 1 á 2 we must constrain all parameters η
M(L)
L to zero,

where L ∈ D1, so η12
12 = 0. SinceM(L) = A ∪B ∪C, the requirements of theorem

7 are satis�ed. Similarly, according to the second independence 1 á 2∣3 we have

η12
12 = 0 and η123

123 = 0. The �rst constrain does not satisfy the condition of theorem

7 C ⊈M(L) ⊆ A ∪B ∪C, where, in this case C = 3. We may conclude that there

are no marginal parametrizations that describe this list of independencies, as we

saw in example 15.
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Example 18. Let us consider the following independencies {1 á 2∣3; 1 á 3,4∣2}.

According to BRN, for all independencies we consider the marginal sets Mi =

Ai ∪ Bi ∪ Ci. Thus, we obtain the hierarchical class of marginal sets H =

{1,2,3; 1,2,3,4}. Otherwise, the classes of null parameters are D1 = {1,2; 1,2,3}

and D2 = {1,3; 1,4; 1,3,4; 1,2,3; 1,2,4; 1,2,3,4}. According to 1 á 2∣3 we must

constrain the parameters η123
12 and η123

123 to zero and, according to 1 á 3,4, ∣2, we

must constrain the parameters η1234
13 , η1234

123 , η1234
14 , η1234

134 , η1234
124 and η1234

1234 to zero.

Note that the �rst two sets of parameters are de�ned in a smaller marginal set

than M = A ∪ B ∪ C = 1,2,3,4. But, since C ⊆ M(L) ⊆ A ∪ B ∪ C, where, in

this case C = 2, then the condition of theorem 7 is satis�ed, thus the marginal

model described by {ηM(L)
L }L∈∪Di;M∈H, is able to represent the previous set of

independencies.

On the other hand, FLM (2010) consider one independence at time. For any

statement A á B∣C belonging to the conditional independence model CIk, they

select the following marginal sets:

(4.3.6) Mj = Aj ∪Bj ∪C, j = 1, ...,m

where Aj ⊆ A and Bj ⊆ B, and where m = 2(∣A∣−1)2(∣B∣−1). We also collect these

marginal sets in the hierarchical class H = {Mj}j=1,..,m.

They considered the classes Rj, j = 1, ...,m de�ned as

(4.3.7) Rj = {L ∶ L = a ∪ b ∪ c, ∅ ≠ a ⊆ Aj, ∅ ≠ b ⊆ Bj, c ⊆ C, L ∉ Rl, l < j}

Note that the ∪m
j=1Rj for any independencies is equal to class in formula 4.3.2.

FML have proved the following theorem.
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Theorem 8. Within the family of hierarchical and complete marginal log-linear

parametrization, the condition that η
Mj

Rj = 0 for all j = 1, ...,m is necessary and

su�cient for A á B∣C to hold.

According to this theorem, FLM proposed an algorithm to �nd, if possible, a

marginal parametrization for a list of independencies.

In the next chapter we will analyze the four types of graphical models pre-

sented in Chapter 2, in order to determine which conditions these models can

be parametrized to using marginal models. In particular we will propose a four-

step method based on BRN's theorem 7 and we will apply this method to the

di�erent graphical models.





CHAPTER 5

Graphical models associated with marginal models

The aim of this chapter is to �nd which models of conditional independence are

both graphical models and marginal models. In particular, given a list of in-

dependencies compatible with a graph, we determine whether this list can be

parametrized by a marginal model. With this aim, we apply theorem 7 to the

list of independencies obtained from a graphical model. The result is a four-step

method as explained in section 5.1.

In Sections 5.2 and 5.5 we will provide a review of known results for GM I and

GM IV. Section 5.3 is dedicated to investigating GM II. We will propose three

marginal parametrizations, each of which is able to represent a sub-class of GM

II. In particular, subsection 5.3.3 shows a better parametrization for GM II.

Section 5.4 is dedicated to GM III.

5.1. Four-step Method

Given a list of independencies {Ai á Bi∣Ci}i=1,..,k from a graphical model, our

four-step method consists of:

Step_1 We de�ne the hierarchical class of marginal sets H = {M1, ...,Mk}

which must contains at least the setsMi = Ai ∪Bi ∪Ci, ∀Ai á Bi∣Ci.

Step_2 We de�ne the set of hierarchical and complete parameters associated

with the previous marginal class {ηML }M∈H.

61
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Step_3 We de�ne the classes of null interactions Di according to the formula

4.3.2.

Step_4 We check whether condition Ci ⊆M(L) ⊆ (Ai ∪Bi ∪ Ci), of theorem

7, holds ∀L ∈Di, ∀i = 1, .., h.

Note that class H depends on the list of the independencies, and that di�erent H

classes can correspond to equivalent lists of independencies.

If the requirement at the fourth step is satis�ed, then the marginal parametrization

proposed is capable of representing the graphical model.

Lauritzen, in [41], showed that any type I graphical model has a log-linear struc-

ture. It was also known thatGM IV can be expressed through marginal models (

see [22] and [47]). With this method we will provide new proofs to known results

regarding type I and IV graphical models. Furthermore, we will �nd subclasses

of type II and III graphical models that can always be represented by marginal

parametrizations.

5.2. Graphical Models with MP I

Given a CG, GM I is a set of probability functions that satis�es the list of

independencies generated by properties (C1), (C2a) and (C3a). We want to

investigate if there is a marginal parametrization that is capable of representing

the list of independencies of a GM I. As mentioned in the introduction to this

chapter we will apply the method described in the previous chapter.

In the �rst step, we de�ne the class of marginal sets H = {Ai∪Bi∪Ci, i = 1, ..., k},

for any independence Ai á Bi∣Ci. In order to consider the three conditions (C1),

(C2a) and (C3a) we use the following marginal sets:
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● In condition (C1), the sets of variables involved are

Th ∪ (∪h−1
j=1Tj/paD(Th)) ∪ paD(Th) = ∪h

j=1Tj, ∀h = 1, .., s. Thus the �rst

kind of marginal sets is given by: M1
h = ∪j≤hTj, h = 1, ..., s.

● In condition (C2a), the sets involved are: A ∪ [Th/Nb(A)] ∪ nb(A) ∪

paD(Th) = Th∪paD(T ), ∀h = 1, .., s, and ∀A ⊆ Th. Thus, the marginal sets

associated to the second condition areM2a
h = Th ∪ paD(Th), ∀h = 1, .., s.

● The third condition (C3a) is A á paD(Th)/paG(A)∣ (nb(A) ∪ paG(A)).

Note that, ∀A ⊆ Th, according to (C2a), there is also the indepen-

dence A á Th/Nb(A)∣ (paD(Th) ∪ nb(A)), which we can rewrite as A á

Th/Nb(A)∣ (paG(A)∪paD(Th)/paG(A)∪ nb(A)). Now, applying the prop-

erty (P4), we get that, ∀A ∈ P(Th), A á (Th/Nb(A)∪ paD(Th)/paG(A)) ∣

(paG(A) ∪ nb(A)). This independence, according to the property (P5)

is equivalent to the following two:

A á paD(Th)/paG(A)∣paG(A) ∪ Th/A

A á Th/Nb(A)∣ (paG(A) ∪ nb(A))

∀A ⊆ Th . Note that the second independence is exactly (C2a), while

the �rst independence involves all variables in Th ∪ paD(Th). Thus, no

new marginal set is needed in addition toM2a
h andM1

h, h = 1, ..., s.

The marginal sets above de�ned, are in accordance with the relationship M2a
h ⊆

M1
h, ∀h = 1, ..., s. The hierarchical class HI for the MP I models is provided by

(5.2.1) HI = {(M2a
h ;M1

h)}h=1,...,s.

IfM2a
h =M1

h, we use to retain only the setM2a
h .
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Once the class of marginal sets has been de�ned, in the second step, we introduce

the associated hierarchical and complete parametrization.

Example 19. Let us consider the graph in �gure (2.1.1.A). According to MP I

the marginal setsM1
h are {1; 1,2; 1,2,3,4; 1,2,3,4,5,6,7,8} and the marginal sets

M2a
h are .{1; 2; 1,2,3,4; 3,4,5,6,7,8}. So the class HI is HI = {M2a

1 = 1;M2a
2 =

2;M1
2 = 1,2;M2a

3 = 1,2,3,4; M2a
4 = 3,4,5,6,7,8; M1

4 = 1,2,3,4,5,6,7,8}. In

the marginal sets we allocate the interaction sets respecting the hierarchy and

completeness properties.

V1

V2

V3

V4

V5

V6

T1

T2

T3

T4

Figure 5.2.1

Example 20. Let's consider the graph in �gure 5.2.1. In this case the class of

components is not univocal. We choose the order T = {T1, T2, T3, T4}. The two

kinds of marginal setsM1
h andM2a

h are respectivelyM1
1 = (1),M1

2 = (1,2),M1
3 =

(1,2,3,4,5),M1
4 = (1,2,3,4,5,6),M2a

1 = (1),M2a
2 = (2),M2a

3 = (1,2,3,4,5) and

M2a
4 = (2,6). So, the class of marginal sets is: HI = {1; 2; 1,2; 1,2,3,4,5; 2,6;

1,2,3,4,5,6}.
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In the third step, we de�ne the sub classes of interaction sets Di = {P(Ai ∪Bi ∪

Ci)/P(Ai ∪Ci) ∪P(Bi ∪Ci)}, according to the formula (4.3.2). Thus:

● Applying the formula (4.3.2) to the condition (C1) we get the class:

(5.2.2) D1
h = {L ∶ L ∈ P (∪h

j=1Tj) / (P(Th ∪ paD(Th)) ∪P(∪h−1
j=1 (Tj)))}

∀h = 1, .., s.

● For the condition (C2a) we get D2a
h = ∪A⊆ThD

2a
h,A, where for any A ⊆ Th

(5.2.3) D2a
h,A =

{L ∶ L ∈ P(Th ∪ paD(Th))/

(P(Nb(A) ∪ paD(Th)) ∪P(Th/A ∪ paD(Th)))}

and ∀h = 1, ..., s.

● According to the independence A á paD(Th)/paG(A)∣paG(A)∪Th/A, ob-

tained from (C3a), we have D3a
h = ∪A⊆ThD

3a
h,A for any A ⊆ Th

(5.2.4) D3a
h,A =

{L ∶ L ∈ P(Th ∪ paD(Th))/

P(Th ∪ paG(A)) ∪P(Th/A ∪ paD(Th))}

and∀h = 1, ..., s.

Example 21. Let us consider the graph in �gure 5.2.1. According to con-

dition (C1) we must set to zero all parameters which refer to the elements

of the classes D1
2 = {1,2}, D1

4 = {3,6; 4,6; 5,6; 3,4,6; 3,5,6; 4,5,6; 3,4,5,6;

1,3,6; 1,4,6; 1,5,6; 1,3,4,6; 1,3,5,6; 1,4,5,6; 1,3,4,5,6; 2,3,6; 2,4,6; 2,5,6;

2,3,4,6; 2,3,5,6; 2,4,5,6; 2,3,4,5,6; 1,2,3,6; 1,2,4,6; 1,2,5,6; 1,2,3,4,6;
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1,2,3,5,6; 1,2,4,5,6; 1,2,3,4,5,6}. According to condition (C2a) the pa-

rameter to set to zero refer to the interaction set in D2a
3 = {4,5; 1,4,5; 2,4,5;

1,2,4,5}. Finally, according to the (C3a) we get class D3a
3 = {1,4; 2,4; 1,2,4;

1,5; 2,5; 1,2,5; 1,4,5; 2,4,5; 1,2,4,5; 1,3,4; 2,3,4; 1,2,3,4; 1,3,5; 2,3,5;

1,2,3,5; 1,3,4,5; 2,3,4,5; 1,2,3,4,5}.

As a �nal step, we must determine whether the condition 4.3.4 of theorem 7 is

satis�ed. In this case, we have three requirements to satisfy:

(5.2.5) paD(Th) ⊆M(L) ⊆ (∪h
j=1Tj), ∀L ∈D1

h.

It is easy to see that the �rst marginal setM(L) in HI that contains any element

L in D1
h isM1

h = (∪h
j=1Tj).

(5.2.6) paD(Th) ∪ nb(A) ⊆M(L) ⊆ Th ∪ paD(Th) ∀L ∈D2a
h,A, ∀A ⊆ Th.

In this case,M(L) =M2a
h = Th ∪ paD(Th), for all L ∈D2a

h .

(5.2.7) paG(A) ∪ nb(A) ⊆M(L) ⊆ Th ∪ paD(Th) ∀L ∈D3a
h,A, ∀A ⊆ Th

Even in this case,M(L) =M2a
h = Th ∪ paD(Th), for all L ∈D3a

h .

∀h = 1, ..., s. From these considerations it is easy to see that the following theorem

holds.



5.3. GRAPHICAL MODELS WITH MP II 67

Theorem 9. A graphical model of type I is always a marginal model of parametriza-

tion {ηML ∶ L ∈ P(V )/ ∪s
h=1 (D1

h ∪D2a
h ∪D3a

h ) ,M ∈ HI}.

From this result we can conclude that a graphical model I is smooth.

5.3. Graphical Models with MP II

The issue of which GM II are smooth is still open. Drton (2009) [22] showed

that GM II are not always smooth proving that the graph in �gure 5.3.1 did not

have this property. In fact, the graph 5.3.1 describes the list of independencies

{1 á 2,4; 2 á 4∣1,3}. Drton (2009), in chapter 5, proved that, in order to satisfy

this MP II, it is necessary to constrain the interactions referring to the variables

(1,2,4) in both distributions π24∣13(i24∣13) and π124(i124). Therefore, completeness

is violated and according Bergsma and Rudas theorem 6 the model is not smooth.

V1

V2

V3

V4

Figure 5.3.1
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In this chapter we propose some conditions that, if satis�ed, assure the smoothness

of the model. We deal with this problem by �nding what graphs, according to

MP II, give a list of independencies that permits a marginal parametrization. In

the following chapters we will propose three di�erent parametrizations with their

strong points and their disadvantages. In particular, the parametrization in the

subsection 5.3.3 includes the advantages of the parametrizations in the previous

subsections. Any parametrization is found by applying the method proposed in

section 5.1.

5.3.1. Parametrization based on (C3b). We consider the independencies

obtained from MP II. Let us remember that these conditional independencies

follow conditions (C1), (C2a) and (C3b).

It is useful to introduce the class of subsets of Th, having all possible parents

Jh = {A ∶ A ∈ P(Th), paG(A) = paD(Th)}.

In the �rst step, we de�ne the class of marginal sets H = {Ai ∪Bi ∪Ci, i = 1, ..., k}

for any independence Ai á Bi∣Ci, thus we have three kind of marginal sets, M1,

M2a andM3b, according to the conditions considered:

● According to condition (C1), we have the setsM1
h = ∪j≤hTj, h = 1, ..., s.

● According to (C2a), the marginal sets are M2a
h = Th ∪ paD(Th), ∀h =

1, .., s.

● According to (C3b), the marginal sets are M3b
h,A = A ∪ paD(Th), ∀A ∈

P(Th)/Jh and ∀h = 1, ..., s. If paG(A) = paD(Th), then no interaction

must be set equal to zero in the marginal A∪paD(Th), so it is unnecessary

to de�ne this marginal set.
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Note that setsM1
h andM2a

h , ∀h = 1, ..., s are the same for the MP I (see section

5.2).

The new kind of marginal sets satisfy the following relationships: M3b
h,A ⊆M2a

h ,

∀A ∈ Th where equality holds for A = Th. Furthermore, M1
h ⊈ M3b

h,A, ∀A ∈

P(Th)/Jh and ∀h = 1, ..., s. The hierarchical class of marginal sets is given by

(5.3.1) H′

II = {(M3b
h,A,M2a

h ,M1
h), A ∈ P(Th)}h=1,...,s

IfM3b
h,A =M2a

h orM2a
h =Mh, we customarily retain onlyM2a

h .

The second step consists of specifying the classes of interaction following the hi-

erarchical and complete properties. Thus, we allocate the interaction sets in the

�rst marginal that contains them. Hence, the whole set of parameters {ηML }M∈H′

II

characterizes a saturated marginal model.

Below are some examples of marginal class H′

II .

Example 22. With regard to �gure (2.1.1A), the marginal class H′

II is described

by the following elements M2a
1 = 1, M2a

2 = 2, M1
2 = (1,2), M3b

3,3 = (1,2,3),

M3b
3,4 = (1,2,4),M2a

3 = (1,2,3,4),M3b
4,5 = (3,4,5),M3b

4,6 = (3,4,6),M3b
4,7 = (3,4,7),

M3b
4,8 = (3,4,8), M3b

4,57 = (3,4,5,7), M3b
4,58 = (3,4,5,8), M3b

4,67 = (3,4,6,7),

M3b
4,68 = (3,4,6,8),M3b

4,78 = (3,4,7,8),M3b
4,578 = (3,4,5,7,8),M3b

4,678 = (3,4,6,7,8),

M2a
4 = (3,4,5,6,7,8),M1

4 = (1,2,3,4,5,6,7,8).



70 5. GRAPHICAL MODELS ASSOCIATED WITH MARGINAL MODELS

V1

V2

V3

V4

V5

V6

Figure 5.3.2

Example 23. Let us consider the graph in the �gure (5.3.2). Some ele-

ments of component T2 have parents equal to the parents of the component:

paG(A) = paD(T2) = (1,2), where A belongs to J2 = {4; 5; 3,4; 3,5; 4,5; 4,6; 5,6;

3,4,5; 3,4,6; 3,5,6; 4,5,6; 3,4,5,6}. Since the marginal setsM3b
h,A are evaluated

for all A ∈ P(Th)/Jh, the class of marginal sets H′

II is composed by the followings

setsM2a
1 = 1,2;M3b

2,3 = 1,2,3; M3b
2,6 = 1,2,6; M3b

2,36 = 1,2,3,6; M2a
2 = 1,2,3,4,5,6.

The third step consists of �nding classes Di = {P(A∪B∪C)/P(A∪C)∪P(B∪C)}

according to the formula (4.3.2). As before, there are three kinds of these classes,

D1, D2aand D3b:

● D1
h = {L ∶ L ∈ P (∪h

j=1Tj) / (P(Th ∪ paD(Th)) ∪P(∪h−1
j=1 (Tj)))}, ∀h = 1, .., s.

● D2a
h = ∪A⊂ThD

2a
h,A, ∀h = 1, .., s where D2a

h,A = {L ∶ L ∈ P(Th ∪ paD(Th))/

(P(Nb(A) ∪ paD(Th))∪ P(Th/A ∪ paD(Th)))}.
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● D3b
h = ∪A∈P(Th)/JhD

3b
h,A, ∀h = 1, ..., s, where D3b

h,A = {L ∶ L ∈ P(A ∪

paD(Th))/P(A ∪ paG(A)) ∪P(paD(Th))}.

Note that the �rst two classes D1
h and D

2a
h are the same as presented in the section

5.1.

Finally, in the last step, we must check if the conditions of the theorem 7 ire

satis�ed. As before, there are three conditions to verify:

(5.3.2) paD(Th) ⊆M(L) ⊆ (∪h
j=1Tj), ∀L ∈D1

h.

(5.3.3) paD(Th) ∪ nb(A) ⊆M(L) ⊆ Th ∪ paD(Th) ∀L ∈D2a
h,A, ∀A ⊆ Th.

(5.3.4) paG(A) ⊆M(L) ⊆ A ∪ paD(Th) ∀L ∈D3b
h,A, ∀A ∈ P(Th)/Jh.

∀h = 1, ..., s. Note that,M1
h is the only marginal set that contains all interaction

sets of D1
h, thus the �rst condition is always satis�ed. It is easy to see that,

∀L ∈ D3b
h,A, the sets M3b

h,A = A ∪ paD(Th) is the �rst marginal set that contains

the interaction set L. Thus, even condition (5.3.4) still holds. This is not always

true for condition (5.3.3). In fact, it may happen that there is a set L ∈D2a
h,A such

thatM(L) =M3b
h,A that might not contain the set nb(A). Theorem 10 gives the

conditions according to which condition (5.3.3) holds.

Let Kh be the class of all non connected subsets of Th.
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Theorem 10. A graphical model of type II is a marginal model of parametrization

{ηML ∶ L ∈ P(V )/ ∪s
h=1 (D1

h ∪D2a
h ∪D3b

h ) ,M ∈ H′

II} if, Kh ⊆ Jh, ∀h = 1, ..., s.

That is, for any subset A of Th, if A is a non connected set, then it must have the

parent set equal to the parent set of the component: paG(A) = paD(Th).

The proof of this theorem is postponed in the appendix to this chapter.

Following are some examples of this parametrization.

Example 24. Let us consider the graph in �gure (2.1.1A). According to theo-

rem 10, we may not conclude that graphical model II associated with the graph

in �gure 2.1.1 is compatible with the parametrizations {ηML ∶ L ∈ P(V )/ ∪s
h=1

(D1
h ∪D2a

h ∪D3b
h ) ,M ∈ H′

II}. In fact, the class Kh/Jh = {5,8; 6,7; 7,6,8; 5,7,8} ≠

∅.
Example 25. According to theorem 10, graphical model II associated with the

graph in �gure (5.3.2) permits representation with a marginal model, because all

non connected sets have parents equal to the parents of the component. In fact,

the non complete sets in component T2 are {3,5; 4,6} and paG(3,5) = paG(4,6) =

paD(T2) = 1,2. Hence the model is smooth.

Example 26. Let us consider the graph in �gure

5.3.3. The class of marginal sets is given by H′

II =

{1,2; 1,2,3; 1,2,4; 1,2,5; 1,2,6; 1,2,3,5; 1,2,3,6; 1,2,4,5; 1,2,4,6; 1,2,5,6;

1,2,3,5,6; 1,2,4,5,6; 1,2,3,4,5,6}. In this case as well, the conditions of

theorem 10 are not satis�ed, because the non complete subsets of T4, K = 3,6

and K = 4,5 do not have all parents, that is paG(K) ≠ paD(T2) = 1,2.

It should be noted that, if a graph has all complete components, then the class

Kh = {∅}, ∀h = 1, ..., s. This implies that for any Jh, the relation Kh ⊆ Jh holds and
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theorem 10 is satis�ed. On the other hand, if a graph has only one component,

then class Jh = P(Th) and relationship Kh ⊆ Jh holds. Note that, in the last

case, no one independence follows the condition (C3b) thus the GM II is equal

to GM I. It's easy to note that in this case the parametrization {ηML ∶ L ∈

P(V )/ ∪s
h=1 (D1

h ∪D2a
h ) ,M ∈ H′

II} is equal to the parametrization {ηML ∶ L ∈

P(V )/ ∪s
h=1 (D1

h ∪D2a
h ) ,M ∈ HI} proposed in chapter 5.2.

5.3.2. Parametrization based on (C2*a) and (C3*b). In chapter 3 we

proposed two new conditions, called (C2*a) and (C3*b), in order to explain the

relationships among a group of variables belonging to a component Th with the

parents. We also saw that these conditions are equivalent to (C2a) and (C3b).

In order to explain the bene�ts of these, we apply the method proposed in section

5.1 to the graphical model of type II described by (C1), (C2*a) and (C3*b).

The reasons that lead us to replace the (C2a) with (C2*a) lies on the importance

to have a non rendundant list of independence (see section 3.1). Instead, as it

will be shown in section 3.2, there are three main reasons to replace (C3b) with

(C3*b). First, using (C3*b), the list of independencies is shorter than the list



74 5. GRAPHICAL MODELS ASSOCIATED WITH MARGINAL MODELS

obtained with (C3b) and, consequently, the list of marginals to de�ne is shorter

too. Secondly, given a graph, the list of independencies that obeys to (C3*b) is

non rendundant. Finally, as we will see at the end of this section, the new class

of marginal sets permits di�erent conditions in order to �nd graphical models II

which are also marginal model. Before proceeding, we de�ne PA+
h as the class

which elements belong to{{paD(Th)} ∪ PAh}. The elements of class PA+
h are

partially ordered according the following rule: ∀A,B ∈ PAh if ∣ch(B)∣ < ∣ch(A)|

then A ≺ B.

In the �rst step of our method, introduced in section 5.1, we de�ne the class of

marginal sets H = {Ai ∪ Bi ∪ Ci, i = 1, ..., k} for any independence Ai á Bi∣Ci.

In order to consider the three conditions (C1), (C2*a) and (C3*b) we use the

following marginal sets:

● From condition (C1), we have the setsM1
h = ∪j≤hTj, h = 1, ..., s.

● From (C2*a), the marginal sets unchange and areM2a
h = Th ∪ paD(Th),

∀h = 1, .., s.

● From (C3*b), the marginal sets areM3∗b
h,A = paD(Th)∪ (T /ch(A)), ∀A ∈

PA+
h and ∀h = 1, ..., s. Any marginal set M3∗b

h,A is composed of the

paD(Th) and of a subset of Th. Notice that, when A = paD(T ), the mar-

ginal set becomesM3∗b
h,paD(Th)

= paD(Th)∪ (NC ∪NA), thusM3∗b
h,paD(Th)

=

∩A∈PAhM3∗b
h,A. In addition, if PAh has only one element, then only set A ∈

PAh has children corresponding to the whole set CHh, thusM3∗b
h,paD(Th)

=

M3∗b
h,A.
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For all sets A ∈ PA+
h and for all h = 1, ..., s, the three kinds of marginal sets are in

accordance with the following relationship:

(5.3.5) M3∗b
h,A ⊆M2a

h ⊆M1
h ∀h = 1, ..., s.

Thus, hierarchical class H∗
II is given by

H∗
II = {(M3∗b

h,A,M2a
h ,M1

h), A ∈ PA+
h}h=1,..,s.(5.3.6)

As before, ifM2a
h =M1

h for some h, we customarily to retain only the setM2a
h ; if,

instead, it occurs that M3∗b
h,A =M2a

h or M3∗b
h,A =M1

h , for some h and A, then we

retain respectively only the setM2a
h orM1

h, as shown in the following examples.

Example 27. With regards to �gure (2.1.1), the components T1 and T2 do not

have parents, thus PA1 = {Ø} and PA2 = {Ø}, so there are not marginal sets like

M3∗b
h,A. The components T3 and T4 have classes of parents with the same children,

respectively PA3 = {1; 2} and PA4 = {3; 4}. In addition we have the classes PA+
3 =

{1,2; 1; 2} and PA+
4 = {3,4; 3; 4}. The marginal class H∗

II is composed by the

following sets M2a
1 = 1 , M2a

2 = 2, M1
2 = (1,2), M3∗b

3,1 = (1,2,4) , M3∗b
3,2 = (1,2,3),

M2a
3 = (1,2,3,4), M3∗b

4,34 = (3,4,7,8), M3∗b
4,3 = (3,4,6,7,8), M3∗b

4,4 = (3,4,5,7,8),

M2a
4 = (3,4,5,6,7,8),M1

4 = (1,2,3,4,5,6,7,8).

Example 28. The graph in �gure (5.2.1) is composed of two components. The

class of marginal sets of the graph H∗
II is given by the following setsM2a

1 = (1,2),

M3∗b
2,12 = (1,2,6),M3∗b

2,1 = (1,2,3,6),M2a
2 = (1,2,3,4,5,6) .

According to the second step we specify the interaction sets in accordance with

the hierarchical and complete properties.
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In the third step we report the classes de�ned by the formula 4.3.2 according to

three conditions (C1), (C2*a) and (C3*b). Note that, since we proved that

(C2a) and (C2*a) are equivalent, then the classD2a
h and D2∗a

h have the same

elements.

● D1
h = {L ∶ L ∈ P (∪h

j=1Tj) / (P(Th ∪ paD(Th)) ∪P(∪h−1
j=1 (Tj)))}, ∀h = 1, .., s.

● D2a
h = ∪A⊂ThD

2a
h,A , ∀h = 1, .., s, where D2a

h,A = {L ∶ L ∈ P(Th ∪ paD(Th))/

(P(Nb(A) ∪ paD(Th))∪ P(Th/A ∪ paD(Th)))}, and .

● D3∗b
h = ∪A∈PA+

h
D3∗b

h,A, ∀h = 1, ..., s where D3∗b
h,A = {L ∶ L ∈ P(Th/ch(A) ∪

paD(Th))/P(paD(Th))∪ P(Th/ch(A) ∪ paD(Th)/A)}, and

Where class D1
h and D2a

h are the same presented in both section 5.1 and section

5.2.1.

The �nal step consists of verifying when parametrization {ηML }M∈H∗ satis�es con-

dition 4.3.4 of theorem 7. In this case as well, we have three conditions to check:

(5.3.7) paD(Th) ⊆M(L) ⊆ (∪h
j=1Tj), ∀L ∈D1

h

(5.3.8) paD(Th) ∪ nb(A) ⊆M(L) ⊆ Th ∪ paD(Th), ∀L ∈D2a
h,A, ∀A ⊆ Th.

(5.3.9) paD(Th)/A ⊆M(L) ⊆ Th/ch(A) ∪ paD(Th), ∀L ∈D3∗b
h,A, ∀A ∈ PA+

h
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∀h = 1, ..., s. The �rst condition is always checked, as it was shown in section 5.1.

Unfortunately, conditions (5.3.8) and (5.3.9) are not always met. In particular,

two di�erent situations may occur.

First, when there is at least one interaction set L ∈D3∗b
h,A such thatM(L) =M3∗b

h,B,

for A,B ∈ PA+
h, with B ≺ A in PA+

h, condition (5.3.9) is satis�ed, only if the

relationship P(Th) ∪A ⊆M3∗b
h,B ⊆ Th/ch(A) ∪ paD(Th) is met.

Secondly, when there is at least a set L ∈D2a
h,A such thatM(L) =M3∗b

h,A, for some

A, condition (5.3.8) is met only if paD(Th) ∪ nb(A) ⊆M3∗b
h,A ⊆ Th ∪ paD(Th) holds.

The following example shows these situations.

Example 29. With regard to the graph in �gure (5.3.3), the marginal sets

in H∗
II are M1

1 = M2a
1 = 1,2, M1

1 = M2a
2 = (1,2,3,4,5,6), M3∗b

3,12 = (1,2,5,6),

M3∗b
3,1 = (1,2,3,5,6), M3∗b

3,2 = (1,2,4,5,6). The class of interaction sets referring

to the null parameters are D3∗b
2 = {1,4; 1,5; 1,6; 1,4,5; 1,4,6; 1,5,6; 1,4,5,6;

1,2,4; 1,2,5; 1,2,6; 1,2,4,5; 1,2,4,6; 1,2,5,6; 1,2,4,5,6; 2,3; 2,5; 2,6; 2,3,5; 2,3,6;

2,5,6; 2,3,5,6; 1,2,3; 1,2,3,5; 1,2,3,6; 1,2,3,5,6} and D2a
2 = {3,4; 3,6;

3,4,6; 1,3,4; 1,3,6; 1,3,4,6; 2,3,4; 2,3,6; 2,3,4,6; 3,4,5; 3,5,6; 3,4,5,6; 1,2,3,4;

1,2,3,6; 1,2,3,4,6; 1,3,4,5; 1,3,5,6; 1,3,4,5,6; 2,3,4,5; 2,3,5,6; 2,3,4,5,6;

1,2,3,4,5; 1,2,3,5,6; 1,2,3,4,5,6}.

The �rst problem is addressed in the next lemma referring to a chain graph with

only complete components.

Lemma 2. A graphical model of type II is a marginal model of parametrization

{ηML ∶ L ∈ P(V )/ ∪s
h=1 (D1

h ∪D2∗a
h ∪D3∗b

h ) ,M ∈ H∗
II}, if the following conditions

are met:
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(a) All components of the graph are complete;

(b) ∀A,B ∈ PAh: B ≺ A in PAh, if (CHh/ch(A)) ∩ (CHh/ch(B)) ≠ ∅,

then (CHh/ch(B)) ⊆ (CHh/ch(A)) , h = 1, ..., s.

Note that according to theorem 10, each graphical model associated with a chain

graph with complete components is a marginal model, thus Lemma 2 identi�es a

smaller class of GM II that are MM. However, the graphical model described by

the parameters{ηML }M∈H∗

II
brings many bene�ts shown in theorem 11.

The proof of this lemma is reported in the appendix to this chapter. An example

will show the applicability of Lemma 2.

V1

V2

V3

V4

V5

V6

V7

Figure 5.3.4
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Example 30. Let's consider the graph in �gure 5.3.4 where the component T2

is complete. The class of parents with the same children is PA2 = {1; 2; 3}

and PA+
2 = {1,2,3; 1; 2; 3}. The marginal sets are M2a

1 = (1,2,3), M3∗b
2,123 =

(1,2,3,7), M3∗b
2,1 = (1,2,3,5,6,7), M3∗b

2,2 = (1,2,3,4,6,7), M3∗b
2,3 = (1,2,3,4,5,7),

M2a
2 = (1,2,3,4,5,6,7).

We report the set of interest ∀A ∈ PA2 mentioned in lemma 2: CH2/ch(1) = (5,6),

CH2/ch(2) = (4,6) and CH2/ch(3) = (4,5). It is easy to see that the requirement

of the theorem has not been met, in fact (CH2/ch(1)) ∩ (CH2/ch(2)) ≠ ∅ and

(CH2/ch(1)) ⊈ (CH2/ch(2)). The same holds for A = 3.

In fact, according to (C3*b) we get the following independencies:

1 á 5,6,7∣2,3 2 á 4,6,7∣1,3 3 á 4,5,7∣1,2

For example, the interaction set (1,2,6) is de�ned in the marginal M(1,2,6) =

M3∗b
2,567 = (1,2,3,5,6,7) but, according to the second independence this marginal

set should satisfy the relationship 1,3,5 ⊆ M3∗b
2,567 ⊆ 1,2,3,4,5,6,7. Thus, the

parametrization based on {ηML }M∈H∗

II
is not representative.

The following theorem shows that there are GM II that are marginal models of

parametrization {ηML ∶ L ∈ P(V )/ ∪s
h=1 (D1

h ∪D2a
h ∪D3∗b

h ) ,M ∈ H∗
II} but not of

parametrization {ηML ∶ L ∈ P(V )/ ∪s
h=1 (D1

h ∪D2a
h ∪D3b

h ) ,M ∈ H′

II}. This result

justi�es the use of this parametrization.

Theorem 11. A graphical model of type II is a marginal model with {ηML ∶ L ∈

P(V )/∪s
h=1 (D1

h ∪D2a
h ∪D3∗b

h ) ,M ∈ H∗
II}, if the assumption (b) of Lemma 2 holds

and if, for all Vj ∈ CHh such that Nb(Vj) ∉ Ch , {K ∶K ∈ Kh;K∩nb(Vj) ≠ ∅} ⊆ Jh.
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Figure 5.3.5

Example 31. In �gure (5.3.5), regarding component T2, we may recognize the

set of children CH2 = {3,4,5}, and the class of parents with the same children

PA2 = {1; 2} and PA+
2 = {1,2; 1; 2}. Note that, CH2/ch(1) = 5 and CH2/ch(2) = 3.

Since the previous two sets have null intersection, the assumption of lemma 2

is ful�lled. Now we must check whether condition (5.3.8) of theorem 11 has

been met. For every vertices in CH2, we have that Nb(3) = 3,4 is complete

set but Nb(4) = 3,4,5 and Nb(5) = 4,5,6 are non complete sets. Note that

{K ∶ K ∈ K2;K ∩ nb(4) ≠ ∅} = {3,5; 3,6; 3,5,6}. Since (3,6) ∉ J2 the second

condition of theorem 11 is not met.

The following examples compare the two parametrizations {ηML ∶ L ∈ P(V )/ ∪s
h=1

(D1
h ∪D2a

h ∪D3b
h ) ,M ∈ H′

II} and {ηML ∶ L ∈ P(V )/ ∪s
h=1 (D1

h ∪D2a
h ∪D3∗b

h ) ,M ∈

H∗
II}.
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Example 32. According to the graph in �gure (5.3.3), ∀Vj ∈ CH2, the sets

CH2/ch(Vj) are incompatible, hence, condition b) of lemma 2 is ful�lled. Fur-

ther, ∀Vj ∈ CH2, the sets Nb(Vj) are complete, then theorem 11 is also satis-

�ed. Note that the graphical model associated with this graph does not per-

mit parametrization {ηML }M∈H′

II
. In fact, the class of all non connected sets is

K2 = {3,2; 3,5; 3,6; 4,5; 3,4,5; 3,4,6}. Note that paG(3,6) = 1 ≠ paD(T2) = 1,2.

Thus K2 ⊈ J2, and the theorem (10) does not hold.

Example 33. As we showed in example 30, the graph in �gure 5.3.4 does not

satisfy lemma 2. Note that, in T2 the only two sets not connected are (3,5)

and (4,6) which have paG(3,5) = paG(4,6) = paD(T2). Thus, theorem 10 holds,

and this graphical model II is a marginal model based on {ηML }M∈H′

II
. The class

of marginal set H′

II is composed by M2a
1 = (1,2,3) , M3b

2,4 = (1,2,3,4), M3b
2,5 =

(1,2,3,5), M3b
2,6 = (1,2,3,6), M3b

2,7 = (1,2,3,7), M3b
2,45 = (1,2,3,4,5), M3b

2,46 =

(1,2,3,4,6), M3b
2,47 = (1,2,3,4,7), M3b

2,56 = (1,2,3,5,6), M3b
2,57 = (1,2,3,5,7),

M3b
2,67 = (1,2,3,6,7), M3b

2,457 = (1,2,3,4,5,7), M3b
2,467 = (1,2,3,4,6,7), M3b

2,567 =

(1,2,3,5,6,7),M2a
2 = (1,2,3,4,5,6,7).

In this case, any interaction set belonging to class D3b
2 is de�ned in the smallest

marginal. This means that the graphical model is a marginal model based on

{ηML ∶ L ∈ P(V )/ ∪s
h=1 (D1

h ∪D2a
h ∪D3b

h ) ,M ∈ H′

II} and therefore it is smooth.

We should make some comments about the two parametrizations introduced.

First, the parametrization {ηML ∶ L ∈ P(V )/ ∪s
h=1 (D1

h ∪D2a
h ∪D3b

h ) ,M ∈ H′

II}

is characterized by the marginal sets M1
h, M2a

h and M3b
h,A, which are obtained

by considering the independencies of (C2a) and (C3b). In this way, we get a

marginal set referring to any subset A of Th that does not belong to the class Jh.
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With this parametrization, as we saw in Section 5.2.1, condition (5.3.4) is always

met, while (5.3.3) holds only if all non connected subsets belong to class Jh.

On the other hand, the parametrization {ηML ∶ L ∈ P(V )/∪s
h=1(D1

h ∪D2a
h ∪D3∗b

h ) ,M ∈

H∗
II} is characterized by fewer marginal sets that are able to describe the inde-

pendencies following (C3*b). It is possible to note that class of marginal sets

H∗
II is included in class H′

II . Moreover, using the second parametrization , there

are fewer graphs which satisfy condition (5.3.9) but more graphs which satisfy

condition (5.3.8).

Note that the new condition (C2*a) is important in the last step, when we must

verify the conditions 5.3.8, 5.3.7 and 5.3.9.

In order to pro�t from both advantages, in the next section we will propose a

parametrization that is a mix between the two seen above.

5.3.3. Mixed parametrization. The two previous parametrizations have

di�erent advantages. The following diagram represents the GM II that are mar-

ginal models according to theorem (10) (left area), according to theorem (11)

(right area) and according to lemma (2) ( a subset of the intersection area). In

particular, in the intersection area, we have the graphs which satisfy condition b)

of lemma 2 and with the set Kh ⊆ Jh.



5.3. GRAPHICAL MODELS WITH MP II 83

Figure 5.3.6

The di�erence between the two parametrizations derives from the choice of the

hierarchical class of marginal sets. In order to de�ne the mixed class of marginal

sets we consider the whole list of marginal sets M3∗b
h,A, ∀A ∈ PA+

h and we add

certain elements of the list of marginal sets M3b
h,A, A ∈ P(Th)/Jh. The resulting

class is

M3bMIX
h,A = paD(Th) ∪ (NCh ∪NAh) ∪A ∀A ∈ {P(CHh)/Jh}

∀h = 1, .., s, where the class Jh is the same class seen in Chapter 5.3.1: Jh =

{A ∈ P(Th) ∶ paG(A) = paD(Th)}. It is easy to see that when A = ∅ , M3bMIX
h,A =

paD(Th)∪ (NCh ∪NAh) and it is the smallest marginal sets with elements in Th.

Furthermore, when A = CHh/ch(A), thenM3bMIX
h,A =M3∗b

h,A. Since the relationship

M3bMIX
h,A ⊆ M2a

h holds∀A ∈ {P(CHh)/Jh;∅}, the class of marginal sets for this

mixed parametrization is:

HMIX
II = {(M3bMIX

h,A ,M2a
h ,M1

h), ∀A ∈ {P(CHh)/Jh}h=1,..,s
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where the setsM3bMIX
h,A are ordered to obtain a hierarchical class of marginal sets.

If M3bMIX
h,A =M2a

h we retain only set M2a
h . From the construction, it is easy to

see that H∗
II ⊆ HMIX

II ⊆ H′

II .

In the second step of the method proposed in section 4.2, we de�ne all interaction

sets according to the property of completeness and hierarchy. Here is an example

of this new parametrization applied to the following graph.

Figure 5.3.7

Example 34. The previous graph is composed of two components T1 and T2.

First, it is useful to note that class J2 is empty because vertex 1 has no chil-

dren. Now, we are able to recognize the following marginal sets of the new

type: M3bMIX
2,∅ = (1,2,3,7), M3bMIX

2,4 = (1,2,3,4,7), M3bMIX
2,5 = (1,2,3,5,7),

M3bMIX
2,6 = (1,2,3,6,7), M3bMIX

2,45 = (1,2,3,4,5,7), M3bMIX
2,46 = (1,2,3,4,6,7),

M3bMIX
2,56 = (1,2,3,5,6,7) and M3bMIX

2,456 = (1,2,3,4,5,6,7). The relations of in-

dependence represented by this graph are:

1 á 4,5,6,7∣2,3 2 á 6,7∣1,3 3 á 5,7∣1,2 4,5 á 6∣1,2,3,7

In the third step of the method, we take into account the classes of parameters to

constrain to zero. Since we must satisfy conditions (C1), (C2*a) and (C3*b),
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we take the same classes Di proposed in section 5.2.2. Thus we get D1
h, D

2∗a
h and

D3∗b
h for all h = 1, ..., s.

The �nal step consists of verifying when the parametrization {ηML ∶ L ∈ P(V )/∪s
h=1

(D1
h ∪D2a

h ∪D3∗b
h ) ,M ∈ HMIX

II } satis�es condition 4.3.4 of theorem 7. In this case

as well, we have three conditions to check.

(5.3.10) paD(Th) ⊆M(L) ⊆ (∪h
j=1Tj), ∀L ∈D1

h

(5.3.11) paD(Th) ∪ nb(A) ⊆M(L) ⊆ Th ∪ paD(Th) ∀L ∈D2a
h,A, ∀A

(5.3.12) paD(Th)/A ⊆M(L) ⊆ Th/ch(A) ∪ paD(Th) ∀L ∈D3∗b
h,A, ∀A ∈ PAh

∀h = 1, ..., s. As before, the set M(L) for any L ∈ D1
h is exactly M1

h, thus

condition (5.3.10) is always checked. Condition (5.3.12) is also checked. In fact,

for any interaction set L ∈ D3∗b
h,A,M(L) =M3bMIX

h,A , where A = CHh/ch(A) . One

can easily note that paD(Th)/A ⊆M3bMIX
h,A ⊆ Th/ch(A) ∪ paD(Th) holds for any

A ∈ PA3∗b
h .

Thus, we obtain the same results as the standard parametrization where the only

problematic statement is (5.3.11).

The following theorem describes when a graphical model of type II is a marginal

model.
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Theorem 12. A graphical model of type II is a marginal model with {ηML ∶ L ∈

P(V )/∪s
h=1(D1

h ∪D2a
h ∪D3∗b

h ) ,M ∈ HMIX
II }, if, for all Vj ∈ CHh such that Nb(Vj) ∉

Ch , {K ∶K ∈ Kh;K ∩ nb(Vj) ≠ ∅} ⊆ Jh.

The proof of this theorem is reported in the appendix to Chapter 5.

An example will show this result.

Example 35. (continue from Example 26) It is easy to see that the graph in �gure

(5.3.7) meets the condition of theorem 12. In fact, for any vertex in CH2 = {4,5,6},

we have Nb(4) = Nb(5) = (4,5,7) which is complete and Nb(6) = (6,7) which is

also complete.

Example. Following it is shown that it is possible to arrive at the same result

applying theorem 7.

In fact, according to independence 4,5 á 6∣1,2,3,7, there are some interaction

sets L ∈ D2a
2 such that (4,6) ⊆ L. Note that, for these interaction sets, we have

M(L) = M3bMIX
2,46 = 1,2,3,4,6,7. But, since C = 1,2,3,7 ⊆ M3bMIX

2,46 , theorem

7 is checked. The same arguments hold for interaction sets L ∈ D2a
2 such that

(5,6) ⊆ L. In this case the �rst marginal set M(L) = M3bMIX
2,56 = 1,2,3,5,6,7.

Even here it is easy to check that theorem 7 is satis�ed. Since all the remaining

interaction sets L ∈ D2a
2 are de�ned inM2a

2 = 1,2,3,4,5,6,7, the parametrization

proposed is marginal and the model is smooth.

5.3.4. Comparative examples of the three parametrizations proposed

for GM II. In this section some examples will be presented to compared the

three parametrizations proposed above. The �rst example shows a graphical

model II that permits all the parametrizations proposed: {ηML ∶ L ∈ P(V )/ ∪s
h=1
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(D1
h ∪D2a

h ∪D3b
h ) ,M ∈ H′

II}, {ηML ∶ L ∈ P(V )/ ∪s
h=1 (D1

h ∪D2a
h ∪D3∗b

h ) ,M ∈ H∗
II}

and {ηML ∶ L ∈ P(V )/ ∪s
h=1 (D1

h ∪D2a
h ∪D3∗b

h ) ,M ∈ HMIX
II }.

Example 36. Let us consider the graph in �gure 5.3.2, table 1 reports the mar-

ginal class for the three parametrizations:

H′II
M2a

1 = (1,2) M3b
2,3 = (1,2,3) M3b

2,6 = (1,2,6) M3b
2,36 = (1,2,3,6) M2a

2 = (1,2,3,4,5,6)

H∗

II

M2a
1 = (1,2) M3∗b

2,12 = (1,2,6) M3∗b
2,6 = (1,2,3,6) M2a

2 = (1,2,3,4,5,6)

HMIX
II

M2a
1 = (1,2) M3bMIX

2,∅ = (1,2,6) M3bMIX
2,3 = (1,2,3,6) M2a

2 = (1,2,3,4,5,6)

Table 1. Three classes of marginal sets H′

II , H∗
II and HMIX

II which
refer to 5.3.2.

According to theorem 10, theorem 11 and theorem 12, the graphical model II

associated with this graph permits the parametrizations {ηML }M∈H′

II
, {ηML }M∈H∗

II

and {ηML }M∈HMIX
II

and therefore the model is smooth. In fact, the class of all non

connects sets of T2 of K2 = {3,5; 4,6}. It is easy to see that K2 ∈ J2, thus theorems

10 and 12 hold. Furthermore, CH2/ch(V1) = 3,6 contains CH2/ch(V2) = 6. In

the example 25 we detailed the case of the parametrization {ηML }M∈H′

II
. About

the {ηML }M∈H∗

II
, we may consider the marginal class H∗. The (C3*b) leads only

two independencies 2 á 6∣1 and 1 á 3,6∣2. Note that the interaction that refers to

(1,2,6) ∈D3∗b
2 is de�ned in the marginalM(1,2,6) =M3∗b

2,12.
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According to the �rst independence, the relationship 1 ⊂M3∗b
2,12 ⊂ (1,2,3,6) must

hold and, according the second independence the 2 ⊂M3∗b
2,12 ⊂ (1,2,3,6) must hold.

The (C2a) also leads two independencies 4 á 6∣1,2,3,5 and 3 á 5∣1,2,4,6 and the

smaller marginal set where (4,6) and (3,5) occur, is exactlyM∗
2. Thus, theorem

7 guarantees that these parametrizations correspond to a marginal model. Since

HMIX
II = H∗

II , it is easy to see that even for theorem 12 the associated graphical

model is smooth.

Example 37 shows a graph representable only by the parametrization {ηML ∶ L ∈

P(V )/ ∪s
h=1 (D1

h ∪D2a
h ∪D3∗b

h ) ,M ∈ HMIX
II }.

V1

V2

V3

V4

V5

V6

V7 V7

Figure 5.3.8
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Example 37. Theorem 12 is the only one that assures the smoothness of GM

II associated with the previous graph. In fact, since there are non connected

sets (4,8), (5,6), (5,8), (6,8) and (5,6,8) which do not belong to the class Jh,

the theorem 10 doesn't hold. Besides, with regard to the second parametrization

proposed, we have class PA2 = {2; 1; 3}. Note that, according the �rst two sets

CH2/ch(2) = 6 and CH2/ch(1) = 5,6, Lemma 2 holds. Instead, according to the

third set CH2/ch(3) = 4,5, since (5,6) ⊈ (4,5), Lemma 2 does not hold. Finally,

note that, for all vertices Vj in CH2, the sets Nb(Vj) are complete. Next we will

show that we get the same results by applying theorem 7 to these parametriza-

tions.
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We should make some comments about these three parametrizations proposed.

If a graphical model permits the parametrization {ηML ∶ L ∈ P(V )/∪s
h=1(D1

h ∪D2a
h ∪D3b

h ) ,

M ∈ H′

II} or the parametrization {ηML ∶ L ∈ P(V )/ ∪s
h=1 (D1

h ∪D2a
h ∪D3∗b

h ) , M ∈

H∗
II}, then it is parametrizable with {ηML ∶ L ∈ P(V )/ ∪s

h=1 (D1
h ∪D2a

h ∪D3∗b
h ) ,

M ∈ HMIX
II }.

If a graph has the sets NCh∪NAh = ∅ for all h = 1, ..., s, then the parametrization

{ηML }M∈H′

II
and {ηML }M∈HMIX

II
are equivalent.

5.4. Graphical Models with MP III

Graphical models III were introduced by Drton in (2009) [22] to complete the

treatment on graphical models for chain graphs and are characterized by condi-

tions (C1), (C2b) and (C3a). The �rst step of our method consists of de�ning

the class of marginal sets:

● According to (C1), we must consider the marginal setsM1
h = ∪h

j=1Tj.

● According to (C2b), the variables involved areA∪Th/Nb(A)∪paD(Th),∀A ∶

A ∈ P(Th)/∅. Note that, A ∪ Th/Nb(A), ∀A ∈ P(Th)/∅, is contained in

the list of all not connected subsets of Th. Hence, the following marginal

sets contain all sets of interest:

(5.4.1) M2b
h,K =K ∪ paD(Th), ∀K ∈ Kh,

where Kh is the family of all non connected subsets of Th.

● According o (C3a),M3a′

h,A = Nb(A) ∪ paD(Th) ∀A ∈ P(Th)/Jh where

Jh = {A ∶ paG(A) = paD(Th)}. Note that, M3a′

h,A ≠ M3a
h,A, where M3a

h,A

were introduced for the graphical model of type I.
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We list the marginal sets M3a′

h,A, M2b
h,K and M1

h according to the hierarchical

property of the marginal sets HIII .

The second step consists of specifying the classes of interaction following the hi-

erarchical and complete properties.

V1

V2

V3

V4

V5

V6

Figure 5.4.1

Example 38. Let us consider the previous graph. It is possible to note that

conditions (C2b) and (C3a) produce statements of independence only on the

component T3. Thus we may recognize the following classes of interest: K3 =

{3,6; 4,5; 5,6; 3,5,6; 4,5,6} and P(T3)/J3 = {5; 6; 5,6}. The hierarchical class

of marginal sets is: M1
1 = 1, M1

2 = (1,2), M3a′

3,5 = (1,2,3,5), M2b
3,36 = (1,2,3,6),

M2b
3,45 = (1,2,4,5), M3a′

3,6 = (1,2,4,6), M2b
3,56 = (1,2,5,6), M2b

3,356 = (1,2,3,5,6),

M2b
3,456 = (1,2,4,5,6),M3a′

3,34 = (1,2,3,4,5,6).
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Next, in the third step, the classes of interaction sets associated with the null

parameters are reported, according to formula 4.3.2.

● D1
h = {L ∶ L ∈ P (∪h

j=1Tj) / (P(Th ∪ paD(Th)) ∪P(∪h−1
j=1 (Tj)))}, ∀h = 1, .., s.

● D2b
h = ∪A⊂ThD

2b
h,A, ∀h = 1, ..., s, where D2b

h,A = {L ∶ L ∈ P(Th/nb(A) ∪

paD(Th))/

(P(A ∪ paD(Th))∪ P(Th/Nb(A) ∪ paD(Th))}.

● D3a′

h = ∪A∈P(Th)/JhD
3a′

h,A, ∀h = 1, ..., s, where D3a′

h,A = {L ∶ L ∈ P(Nb(A) ∪

paD(Th))/P(Nb(A) ∪ paG(A))

∪P(nb(A) ∪ paD(Th))}.

Obviously classes D1
h are the same presented in the previous sections.

In the last step, we must check the 4.3.4 requirement of theorem 7. In this case

as well, we have three conditions to verify:

(5.4.2) paD(Th) ⊆M(L) ⊆ (∪h
j=1Tj), ∀L ∈D1

h.

(5.4.3) paD(Th) ⊆M(L) ⊆K ∪ paD(Th), ∀L ∈D2b
h,K , ∀K ∈ Kh.

(5.4.4)

paD(Th)/paG(A)∪nb(A) ⊆M(L) ⊆ Nb(A)∪paD(Th), ∀L ∈D3a′

h,A, ∀A ∈ P(Th)/Jh.

∀h = 1, ..., s. Obviously the �rst condition (5.4.2) always holds. Furthermore,

condition (5.4.3) is always veri�ed. In fact, for all LK ∈ D2b
h , where LK ∩ Th = K,
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the marginal setM(LK) is equal toM2b
h,K =K ∪paD(Th). Thus, condition (5.4.3)

is always satis�ed. On the other hand, condition (5.4.4) is not always satis�ed.

In fact, there may be a set LA ∈ D3a′

h such that M(LA) = M2b
h,K . In this case,

if A ∈ Kh, then condition (5.4.4) does not hold because nb(A) ⊈M(LA). Indeed

the following theorem explains when a graphical model of type III is a marginal

model.

Theorem 13. A graphical model of type III is a marginal model with {ηML ∶ L ∈

P(V )/ ∪s
h=1 (D1

h ∪D2b
h ∪D3′a

h ) ,M ∈ HIII}, if any component of the graph meets

both conditions ∀A ∈ P(Th)/Jh, Nb(A) = Th and Kh ⊆ Jh.

The following example shows the special case of a graph where there are not

independencies of type (C3b). In this case GM IV and GM III are equivalent,

and, as we will see in section 5.4, the two parametrizations coincide.

V1

V2

V3

V4

V5

Figure 5.4.2
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Example 39. Let's consider the previous graph, where the list of independencies

implied by MP III is {2 á 5∣1; 2 á 4∣1; 3 á ∣1; 2 á 4,5∣1; 2,3 á 5∣1}.

The class of all non connected sets of T2 is K2 = {2,4; 2,5; 3,5; 2,3,5; 2,4,5}.

The next table reports the interaction sets de�ned in the respective marginal sets

according to the properties of hierarchy and completeness. The elements of D2b
2

are denoted in bold.

Marginal sets 1 1,2,4 1,2,5 1,3,5 1,2,3,5 1,2,4,5 1,2,3,4,5

I
n
te
r
a
ct
io
n

se
ts

1 2 5 3 2,3 4,5 3,4
4 1,5 1,3 1,2,3 1,4,5 1,3,4
2,4 2,5 3,5 2,3,5 2,4,5 2,3,4
1,2 1,2,5 1,3,5 1,2,3,5 1,2,4,5 3,4,5
1,4 1,2,3,4
1,2,4 1,3,4,5

2,3,4,5
1,2,3,4,5

Table 2

Note that all non connected sets belong to class Jh. Furthermore, class Jh = P(Th)

thus, both assumptions of theorem 13 are veri�ed.

The next example shows the relationships between the GM I and GM III; in

fact, when any component of the graph is complete the two models are equal.

Example 40. We take the list of independencies from graph 5.3.4 with MP III,

that is {4 á 2,3∣1,5,6,7; 5 á 1,3∣2,4,6,7; 6 á 1,2∣3,4,5,7; 7 á 1,2,3∣4,5,6}. It's

easy to see that the union of all sets involved in the independencies is always

equal to Th ∪ paD(Th) = (1,2,3,4,5,6,7). Thus, there is only one marginal set

M3a′

h = Th∪paD(Th). Furthermore, since components T1 and T2 are complete, the

classes K1 and K2 are empty. Thus this graphical model is smooth.

Finally, the next example introduces a graphical model III that is smooth.
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V1

V2

V3

V4

Figure 5.4.3

Example 41. In the underlying graph we may recognize the following indepen-

dencies according to the Markov properties III: {2 á 3∣1; 4 á 1∣2,3}. From this

graph we have the classes J2 = {2; 3; 2,3; 2,4; 3,4; 2,3,4} and P(T2)/J2 = {4}. The

condition of theorem 13 holds is met since Nb(4) = 2,3,4 = T2 and the only non

connected set of T2, that is K = 2,3 belongs to J2.

.

5.5. Graphical Models with MP IV

The Markov Property of type IV is characterized by conditions (C1), (C2b)

and (C3b). Bergsma Rudas and Németh in [9] and Marchetti and Lupparelli in

[47] showed that the graphical model, where the independencies obey MP IV, is

smooth. In this chapter we will come to the same results by applying our method

explained in section 4.3.1.

In the �rst step of our method, we de�ne the class of marginal sets H = {Ai ∪Bi ∪

Ci, i = 1, ..., k}, for any independence Ai á Bi∣Ci.
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● M1
h = ∪h

j=1Tj, from condition (C1);

● M2b
h,K = paD(Th) ∪K, ∀K ∈ Kh, from condition (C2b), for more details

about this marginal set see section 5.3;

● M3b
h,A = paD(Th) ∪A, ∀A ∈ P(Th)/Jh, from condition (C3b);

Note that, the �rst class of the marginal sets is the same for all parametrization

proposed. The marginal sets M2b
h,K are the same proposed for GM III and the

marginal setsM3a
h,A are described in section 5.2.1 for the graphical model II.

The last two types of marginal sets can be compacted in the following way:

MIV
h,A = paD(Th) ∪A, A ∈ P(Th)/(Jh ∩Rh).

Where Rh = P(Th)/Kh is the class of all connected subsets of Th. Obviously

∀h = 1, .., s,MIV
h,A ⊆M1

h, and when the two sets are equivalent we only de�ne the

setM1
h,A.

The hierarchical class of marginal sets is

HIV = {(Mh,A;Mh), A ∈ P(Th)/(Jh ∩Rh)}h=1,..,s

where the setsMh,A satisfy the hierarchical order.

Once the marginal class is speci�ed, in the second step, we de�ne the interaction

sets respecting the properties of hierarchy and completeness.
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Example 42. In the graph in �gure 5.3.2, in the component T1 we may rec-

ognize the classes J1 = {1; 2; 1,2} and R1 = {1; 2; 1,2}, thus P(T1)/(J1 ∩

R1) = ∅. Instead, looking at the component T2, we can recognize the class

J2 = {4; 5; 3,4; 3,5; 4,5; 4,6; 5,6; 3,4,5; 3,4,6; 3,5,6; 4,5,6; 3,4,5,6} and the

class R2 = {3; 4; 5; 6; 3,4; 3,6; 4,5; 5,6; 3,4,5; 3,4,6; 3,5,6; 4,5,6; 3,4,5,6}.

Hence, we choose any subset A of Th that belongs to P(T2)/(J2 ∩ R2) =

{3; 6; 3,5; 3,6; 4,6}. The marginal sets of this graph with the interaction

sets, according to MP IV are M1
1 = (1,2), MIV

2,3 = (1,2,3), MIV
2,6 = (1,2,6),

MIV
2,35 = (1,2,3,5),MIV

2,36 = (1,2,3,6),MIV
2,46 = (1,2,4,6),M1

2 = (1,2,3,4,5,6).

In the third step, we apply the formula 4.3.2 to the three conditions identifying

the following three classes:

● D1
h = {L ∶ L ∈ P (∪h

j=1Tj) / (P(Th ∪ paD(Th)) ∪P(∪h−1
j=1 (Tj)))}, ∀h = 1, .., s.

● D2b
h = ∪A⊂ThD

2b
h,A, ∀h = 1, .., s where D2b

h,A = {L ∶ L ∈ P(Th/nb(A) ∪

paD(Th))/ (P(A ∪ paD(Th))∪

P(Th/Nb(A) ∪ paD(Th)))}.

● D3b
h = ∪A∈P(Th)/JhD

3b
h,A, ∀h = 1, .., s whereD3b

h,A = {L ∶ L ∈ (P(A ∪ paD(Th))/

P(A ∪ paG(Th)) ∪P(paD(Th)))}.

According to theorem 7, the parametrization {ηML }M∈HIV is able to describe a

graphical model IV if the following conditions are satis�ed.

(5.5.1) paD(Th) ⊆M(L) ⊆ (∪h
j=1Tj), ∀L ∈D1

h.
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(5.5.2) paD(Th) ⊆M(L) ⊆ T /nb(K) ∪ paD(Th), ∀L ∈D2b
h,K ∀K ∈ Kh.

(5.5.3) paG(A) ⊆M(L) ⊆ A ∪ paD(Th), ∀L ∈D3b
h,A, ∀A ∈ P(Th)/Jh.

∀h = 1, ..., s. It is easy to see that, ∀L ∈ D2b
h,K , M(L) = MIV

h,K = K ∪ paD(Th).

Thus, condition (5.5.2) are always satis�ed. Furthermore ∀L ∈ D3b
h,A, M(L) =

MIV
h,A = A ∪ paD(Th), hence, even condition (5.5.3) is checked. Since condition

(5.5.1) is always satis�ed, the validity of the following theorem is evident.

Theorem 14. A graphical model of type IV is always a marginal model with

{ηML ∶ L ∈ P(V )/ ∪s
h=1 (D1

h ∪D2b
h ∪D3b

h ) ,M ∈ HIV } and therefore it is always

smooth.

Note that, if we take a chain graph with all complete components, the condition

(C2b) does not produce any independence, and the independencies obtained using

the MP II and MP IV are the same and the marginal class HIV is equal to H′

II .
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Proof of Theorem 10 (Section 5.3.1)

Theorem. A graphical model of type II is a marginal model of parametrization

{ηML ∶ L ∈ P(V )/ ∪s
h=1 (D1

h ∪D2a
h ∪D3b

h ) ,M ∈ H′

II} if, ∀h = 1, ..., s, Kh ⊆ Jh.

Proof. In order to prove this theorem we must see when conditions (5.3.2),

(5.3.3) and (5.3.4), obtained by applying the formula 4.3.4 to (C1), (C2a) and

(C3b) hold. As shown in chapter 5.3.1, the only problematic situation occurs in

condition (5.3.4). In fact, it may happen that, given an interaction set L ∈ D2a
h,A,

there is a set B ⊆ A ∪ nb(A) such that L ∈ D3b
h,B. In this case the �rst marginal

set which contains L is M(L) =M3b
h,B = B ∪ paD(Th), and the condition (5.3.4)

becomes paD(Th) ∪ nb(A) ⊆ M3b
h,B ⊆ Th ∪ paD(Th), that holds only for strong

condition B = nb(A) ∪A.

On the other hand, ifD3b
h ∩D2a

h = ∅ theorem 7 is satis�ed. Since the interaction sets

L ∈D2a
h are such that L∩Th ∈ P(Th)/Ch and L ∈D3b

h are such that L∩Th ∈ P(Th)/Jh

, then if P(Th)/Ch ⊆ Jh then D3b
h ∩D2a

h = ∅.

Note that, any element A of the class of non-complete sets P(Th)/Ch contains a

non-connected set K. Thus, if the class of all non-connected sets Kh ∈ Jh then,

even P(Th)/Ch ∈ Jh. Thus, we may conclude that the condition of theorem 7 is

never violated if Kh ⊆ Jh. �
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Proof of Lemma 2 (section 5.3.2)

Lemma. A graphical model of type II is a marginal model of parametrization

{ηML ∶ L ∈ P(V )/ ∪s
h=1 (D1

h ∪D2∗a
h ∪D3∗b

h ) ,M ∈ H∗
II}. if both the conditions are

satis�ed:

(a): All components of the graph are complete;

(b): ∀A,B ∈ PAh: B ≺ A in PAh, if (CHh/ch(A)) ∩ (CHh/ch(B)) ≠ ∅,

then (CHh/ch(B)) ⊆ (CHh/ch(A)) , h = 1, ..., s.

We consider a chain graph with all complete components. Thus, there is not any

independence associatedwith (C2a) and the marginal class isHII = {(M3∗b
h,A,M1

h),∀A ∈

PA+
h}, where M3∗b

h,A = paD(Th) ∪ Th/ch(A). Section 5.2.2 introduces three condi-

tions (5.3.7), (5.3.8) and (5.3.9) related to (C1), (C2a) and (C3b), which, if

satis�ed, allow us to conclude that the parametrization {ηML ∶ L ∈ P(V )/ ∪s
h=1

(D1
h ∪D2∗a

h ∪D3∗b
h ) ,M ∈ H∗

II} is a graphical model of type II. Since (5.3.7) al-

ways holds and since (C2a) does not produce independencies when components

are complete, we must see if condition (5.3.9) is met.

For every A ⊆ Th/ch(A), ∀A ∈ PA+
h, let LA be an interaction set such that LA∩Th =

A. Let B be a set in PAh such that B ≺ A. Following are the possible situations

which may arise:

When LA ∶M(LA) =M3∗b
h,A = paD(Th)∪Th/ch(A), then condition (5.3.9) is always

met.

When LA ∶M(LA) =M3∗b
h,B = paD(Th)∪ Th/ch(B), and B = paD(Th), the marginal

set becomes M3∗b
h,B = paD(Th) ∪ NCh ∪ NAh and the condition (5.3.9) becomes

paD(Th)/A ⊆ (paD(Th) ∪NCh ∪NAh) ⊆ paD(Th) ∪ Th/ch(A) which always holds.
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When LA ∶ M(LA) = M3∗b
h,B = paD(Th) ∪ Th/ch(B), and B ≠ paD(Th), condition

(5.3.9) becomes paD(Th/A) ⊆ (paD(Th) ∪ Th/ch(B)) ⊆ paD(Th) ∪ Th/ch(A) which

is met only if Th/ch(B) ⊆ Th/ch(A) or, equivalently CHh/ch(B) ⊆ CHh/ch(A).

Note that if (CHh/ch(A))∩(CHh/ch(B)) = ∅, ∀A,B ∈ PAh, then the problematic

situation seen in the last point never occurs.

Proof of Theorem 11 (section 5.3.2)

Theorem. A graphical model of type II is a marginal model with {ηML ∶ L ∈

P(V )/∪s
h=1(D1

h ∪D2∗a
h ∪D3∗b

h ) ,M ∈ H∗
II}, if the assumption (b) of Lemma 2 holds

and if, for all Vj ∈ CHh such that Nb(Vj) ∉ Ch, {K ∶K ∈ Kh;K ∩nb(Vj) ≠ ∅} ⊆ Jh.

Given a graph, the parametrization {ηML ∶ L ∈ P(V )/∪s
h=1 (D1

h ∪D2a
h ∪D3∗b

h ) ,M ∈

H∗
II} is a graphical model II if conditions (5.3.7), (5.3.8) and (5.3.9) proposed in

section 5.2.2 are met. We have already seen that (5.3.7) is always true, irrespective

of the type of graphical model, and condition (5.3.9) holds when the assumption

(b) of Lemma 2 is satis�ed.

The next step consists of checking when condition (5.3.8) holds. Let remember

that the condition (C2*a) is described by the following list of independencies:

B1i á Th/Bi∣paD(Th) ∪Bi/B1i ∀B1i ⊆ Bi ∈ B∗

(B1,Vj ∪ Vj) á Th/Nb (B1,Vj ∪ Vj) ∣paD(Th) ∪ nb (B1,Vj ∪ Vj) ∀Vj ∈ Th/ (∪i∶Bi∈B∗B1i)
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where B1,Vj = (∪B1k⊂nb(Vj)B1k), B∗
h = {Bi ∶ Bi ∈ Clh,Bi = B1i ∪ B2i,Nb(B1i) =

Bi,CHh ∩Bi ≠ ∅} and Clh is the class of cliques of the component Th.

Further, nb(B1i) = B2i and nb(B2i) = B1i ∪ nb(Bi) , where in nb(Bi) can be B1h

and B2h, for some h.

If CHh ⊆ (∪i∶Bi∈B∗B1i), condition (5.3.8) holds because, in this case, (paD(Th) ∪Bi/B1i)∩

CHh = ∅ and also

(paD(Th) ∪ nb (B1,Vj ∪ Vj))∩CHh = ∅ as it follows from nb (B1,Vj ∪ Vj) = Bi/(B1i∪

Vj) ∪ (nb(Vj) ∩NCh). Condition CHh ⊆ (∪i∶Bi∈B∗B1i), occurs if and only if,

∀Vj ∈ CHh, Nb(Vj) is a complete set.

In fact, all B1i and Nb(B1i) are complete sets, so ∀Vj ∈ B1i, Nb(Vj) are also

complete. If CHh ⊆ (∪i∶Bi∈B∗B1i), thenNb(Vj)must be a complete set, ∀Vj ∈ CHh.

On the contrary, if Vj ∈ CHh is such that Nb(Vj) is complete set, then it is even a

maximal complete set, thus we can choose a set Bi = Nb(Vj), and, by de�nition,

the vertex Vj belongs to the set B1i. This holds for every Vj ∈ CHh. Hence, if

∀Vj ∈ CHh, Nb(Vj) is complete, CHh ⊆ (∪i∶Bi∈B∗B1i).

Instead, if it is CHh ⊈ (∪i∶Bi∈B∗B1i), there is at lest one vertex Vk ∈ CHh ∩Bi/B1i

having Nb(Vk) non complete. In this case, the conditional set of ??, that is

paD(Th) ∪ Bi/B1i, contains the set Vk when Vk ∈ nb(B1i), that occurs for every

B1i ⊆ nb(Vk). Furthermore, conditional set of ??, that is paD(Th)∪nb (B1,Vj ∪ Vj),

contains Vk whether Vk is neighbord of Vj ∈ Bi/B1i, that is for every Vj ∈ nb(Vk).

For the e�ectiveness of condition (5.3.8), it is necessary that, according to inde-

pendencies in ?? ∀B1i ⊆ B1,Vk , and in ?? ∀Vj ∈ Bi/B1i such that Vk ∈ nb(Vj),

the corresponding interaction sets in D2a
h,B1i

e D2a
h,(B1,Vk

∪Vk)
will be allocated in the

marginalM2a
h .
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In particular, from ??, ∀B1i ⊆ B1,Vk , the interaction sets in D2a
h,B1i

= {P(Th ∪

paD(Th))/ (P(Bi ∪ paD(Th)) ∪P(Th/B1i ∪ paD(Th)))} must belong to Jh. Note

that, inD2a
h,B1i

there are all non complete sets with at least one element in B1i. But,

if all non-connected sets containing at least on element of B1i, for all B1i ⊂ nb(Vk),

that is {K ∶K ∈ Kh;K ∩B1,Vk ≠ ∅}, belong to Jh, this is even more so for all sets

in D2a
h,B1i

⊆ Jh.

Similarly, from ??, ∀Vj ∈ Bi/B1i such that Vj ∈ nb(Vk), the class {P(Th∪paD(Th))/

(P(Nb(B1,Vj ∪ Vj) ∪ paD(Th)) ∪P(Th/ (B1,Vj ∪ Vj) ∪ paD(Th)))} must belong to

Jh. Even in this case, if all sets {K ∶ K ∈ Kh;K ∩ (Vk ∪B1,Vk) ≠ ∅} belong to Jh,

then all sets in D2a
h,(B1,Vk

∪Vk)
⊆ Jh.

Summarizing, ∀Vk such that Nb(Vk) ∉ Ch , {K ∶K ∈ Kh;K ∩ nb(Vk) ≠ ∅} ⊆ Jh.

Proof of Theorem 12 (section 5.3.3)

Theorem. A graphical model of type II is a marginal model with {ηML ∶ L ∈

P(V )/∪s
h=1 (D1

h ∪D2a
h ∪D3∗b

h ) ,M ∈ HMIX
II }, if, for all Vj ∈ CHh such that Nb(Vj) ∉

Ch , {K ∶K ∈ Kh;K ∩ nb(Vj) ≠ ∅} ⊆ Jh.

We have already seen in Chapter 5.3.3 that condition 5.3.10 is always met. Since

(NCh ∪ NAh) ⊆ M3bMIX
h,A , ∀A ∈ P(Th)/Jh, then, according to theorem 11, if

∀Vj ∈ CHh, such that Nb(Vj) ∉ Ch, {K ∶ K ∈ Kh;K ∩ nb(Vj) ≠ ∅} ⊆ Jh, condition

5.3.11 always holds.

Now we must to check condition (5.3.12) that is paD(Th)/A ⊆M(L) ⊆ paD(Th) ∪

Th/ch(A), ∀L ∈D3∗b
h .

Let LA be an interaction set such that LA ∈ D3∗b
h,A, LA ∩ Th = A. Since D3∗b

h,A =

{L ∶ L ∈ P(Th/ch(A) ∪ paD(Th))/P(paD(Th)) ∪ P(Th/ch(A) ∪ paD(Th)/A))}, if
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LA ∈ D3∗b
h,A, then A ⊆ Th/ch(A). Then ∀A ∈ P(Th)/Jh, it is M(LA) =M3bMIX

h,B =

paD(Th) ∪ (NCh ∪NAh) ∪B, where B = A ∩CHh. Thus, condition (5.3.12) that

becomes paD(Th)/A ⊆ paD(Th) ∪ (NCh ∪NAh) ∪B ⊆ paD(Th) ∪ Th/ch(A), holds

∀A ∶ A ∈ Th/ch(A) .

Proof of Theorem 13 (section 5.4)

Theorem. A graphical model of type III is a marginal model with {ηML ∶ L ∈

P(V )/ ∪s
h=1 (D1

h ∪D2b
h ∪D3′a

h ) ,M ∈ HIII}, if any component of the graph meets

the both conditions:∀A ∈ P(Th)/Jh, Nb(A) = Th and Kh ⊆ Jh.

As before, we may verify conditions (5.4.3) and (5.4.4) proposed in Chapter 5.3,

since condition (5.4.2) always holds. With regard to condition (5.4.3), ∀LK ∈

D2b
h,K , where LK is such that LK ∩Th =K, the �rst marginal set where it appears

isM(LK) =K ∪ paD(Th) =M2b
h,K . Thus, even condition (5.4.3) always hols. The

same is not true for the third condition. In fact two problematic situations may

occur:

∃L ∈D3a′

h,A ∶M(L) =M3a′

h,B = Nb(B) ∪ paD(Th), where A ⊆ Nb(B);

∃L ∈D3a′

h,A ∶M(L) =M2b
h,K(A), where K(A) is the �rst set in Kh so that A ⊂K(A).

Let LAbe a set such that LA ∩ Th = A. Wih regrad the �rst situation, note that

if A ⊂ Nb(B) and Nb(A) ⊆ Nb(B), then M(LA) =M3a′

h,A. If, instead, Nb(A) ⊈

Nb(B) then condition (5.4.4) is not satis�ed, because paG(A) ∪ nb(A) ⊈M3a′

h,B.

Note that if a set A ∈ P(Th)/Jh has nb(A) so that Nb(A) = Th, we have exactly

one marginal setM3a′

h,A = Th ∪ paD(Th), and the �rst case never occurs.

With regard to the second condition, K(A) = A if A ∈ Kh, or K(A) = A ∪ Vj,

whereVj ⊈ nb(A), if A is connected. In both cases it easy to see that condition
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(5.4.4) is not met because paG(A) ∪ nb(A) ⊈M2b
h,K(A). Note that, if Kh ⊆ Jh, this

second situation cannot occur. Thus, if A ∈ P(Th)/Jh, Nb(A) = Th and Kh ⊆ Jh,

the condition (5.4.4) is satis�ed.





CHAPTER 6

Application based on data from the European Values Study

(EVS), 2008

In this chapter we illustrate the results obtained onGM II through an application

based on data from the European Values Study (EVS) [24], 2008. This study is

a research project on how Europeans think about family, work, religion, politics

and society. For our purposes, we considered only the Italian data-set concerning

1520 individuals where we select the six variables described above:

A: Range of age (20 ⊣ 40, 40 ⊣ 60, > 60)

C: Children (Yes, No)

E: Employed (Yes, No)

T : Trust in the people (Yes, No)

LS: Life satisfaction (High; Low)

OS: Opinion on Society (High, Mean, Low)

We divided the variables into three groups. In the �rst group we placed the

variables concerning the personal data of the respondents: A. In the second group

there were variables regarding the social life of the respondents C and E . Finally,

the last group regarded the variables perception of life for the respondents T, LS

and OS. Each group of variables was represented with a component in the graphs.

Thus, we used the components T1 = {A}, T2 = {C, E} and T3 = {T, LS, OS}

to investigate how children and work can in�uence the opinion variables in T3

107
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and, furthermore how they can in�uence the other variables. To this aim, we

considered variable A as �purely explicative�, variables C and F as �intervening�

and variables in the component T3 as �purely response�.

In order to �nd the most representative graphical model, we started by consider-

ing a graph with all complete components and where any vertex is child of any

element of the parent component. In this case the only condition that produces

independencies is (C1). Thus we tested the independence

LS,T,OS á A∣C,E

The result is reported in table 2. Thus, if it is satis�ed the previous independence,

the DAG associated with these components will be compatible with the graph in

�gure 6.0.1.

Figure 6.0.1

We proceeded by removing one by one the edges in component T3. Therefore,

we obtained three possible chain graphs depending on the edge removed. In

particular, applying condition (C2a) we had the following independencies for the

three graphs.

LS á T ∣OS,C,E LS á OS∣T,C,E T á OS∣LS,C,E
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(a) (b)

(c) (d)

Figure 6.0.2. Graphs respectively concerning the models 3.1.1,
3.2.3, 3.2.8 and 3.3.4

Finally, one by one we removed the arcs between the components T2 and T3,

respecting the condition of theorem 12.

Table 1 shows the most interesting results for the GM II. The table is shared in 5

blocks. The �rst describes theGM II with only condition (C1). The second block

refers to the three GM II associated with di�erent conditions (C2a) described

above. The last three blocks refer to the just cited independencies (C2a) with

di�erent (C3*b)s.
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Ref. Fig. (C1) (C2a) (C3*b) df Gsq p

1 6.0.1 LS,T,OS á A∣C,E - - 88 70.85958 0.90919

2.1 LS,T,OS á A∣C,E LS á T ∣OS,C,E - 100 91.44389 0.71758

2.2 LS,T,OS á A∣C,E LS á OS∣T,C,E - 104 91.33411 0.80783

2.3 LS,T,OS á A∣C,E T á OS∣LS,C,E - 104 98.87589 0.62357

3.1.1 6.0.2a LS,T,OS á A∣C,E LS á T ∣OS,C,E OS á C,E 106 97.84138 0.7017

3.1.2 LS,T,OS á A∣C,E LS á T ∣OS,C,E
C á OS∣E

E á LS,OS∣C 112 135.7669 0.062808

3.1.3 LS,T,OS á A∣C,E LS á T ∣OS,C,E
C á OS,LS∣E
E á OS∣C 112 126.852 0.1597

3.1.4 LS,T,OS á A∣C,E LS á T ∣OS,C,E C,E á OS,LS 115 140.4228 0.053715

3.1.5 LS,T,OS á A∣C,E LS á T ∣OS,C,E
C á OS,LS∣E
E á T,OS∣C 118 141.769 0.06722

3.2.1 LS,T,OS á A∣C,E LS á OS∣T,C,E T á C,E 107 100.7471 0.65182

3.2.2 LS,T,OS á A∣C,E LS á OS∣T,C,E C á T ∣E
E á LS,T ∣C 111 113.1351 0.4258

3.2.3 6.0.2b LS,T,OS á A∣C,E LS á OS∣T,C,E C á T,SL∣E
E á T ∣C 111 106.5838 0.60083

3.2.4 LS,T,OS á A∣C,E LS á OS∣T,C,E C,E á LS,T 113 117.9889 0.35521

3.2.5 LS,T,OS á A∣C,E LS á OS∣T,C,E C á T,OS∣E
E á T ∣C 115 132.6055 0.1251

3.2.6 LS,T,OS á A∣C,E LS á OS∣T,C,E C á T ∣E
E á OS,T ∣C 115 113.4657 0.52297

3.2.7 LS,T,OS á A∣C,E LS á OS∣T,C,E C á T,SO∣E
E á T,LS∣C 119 144.9936 0.052797

3.2.8 6.0.2c LS,T,OS á A∣C,E LS á OS∣T,C,E C á T,LS∣E
E á OS,T ∣C 119 137.1901 0.47496

3.2.9 LS,T,OS á A∣C,E LS á OS∣T,C,E C,E á OS,T 119 137.1901 0.12169

3.3.1 LS,T,OS á A∣C,E T á OS∣LS,C,E LS á C,E 107 112.1012 0.34874

3.3.2 LS,T,OS á A∣C,E T á OS∣LS,C,E C á T,LS∣E
E á LS∣C 111 121.0358 0.24237

3.3.3 LS,T,OS á A∣C,E T á OS∣LS,C,E C,E á LS,T 113 125.5307 0.19807

3.3.4 6.0.2d LS,T,OS á A∣C,E T á OS∣LS,C,E C á LS∣E
E á OS,LS∣C 115 120.7303 0.33887

3.3.5 LS,T,OS á A∣C,E T á OS∣LS,C,E C á OS,LS∣E
E á LS∣C 115 144.6259 0.032138

3.3.6 LS,T,OS á A∣C,E T á OS∣LS,C,E C á OS,LS∣E
E á T,LS∣C 116 153.0183 0.019388

3.3.7 LS,T,OS á A∣C,E T á OS∣LS,C,E C á T,LS∣E
E á LS,OS∣C 119 129.665 0.23743

3.3.8 LS,T,OS á A∣C,E T á OS∣LS,C,E C,E á LS,OS 119 147.8547 0.037542

Table 1. Summary of main GM II proposed
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The goal of this analysis consist in �nding the simplest model which represents

the data. From the previous table it is clear that the suitable models are 3.1.1,

3.2.3, 3.2.8 and 3.3.4. In �gure (6.0.2) are the graphs associated to these models.

The best model for the data is represented in �gure 6.0.2c. Below a summary table

on this model is reported. In the table, any column is indexed by the marginal

sets of HMIX
II and the cells contain the interaction sets de�ned according to the

properties of hierarchy and completeness. The bold interactions refer to the null

parameters according the model 3.2.4.
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6. APPLICATION BASED ON DATA FROM THE EUROPEAN VALUES STUDY (EVS), 2008113

By the previous table it is easy to see that, applying GM II, we have considerably

simpli�ed the model to describe the relationships among the variables. In fact,

constraining to zero 111 parameters, only 35 parameters to estimate remain.

Since we have make more hypothesis of independencies on the marginal table

concerning the variables E,C,LS,T,OS, it follows the respective distribution.

LS Low High
OS High Low Mean High Low Mean

C E T N Y N Y N Y N Y N Y N Y
NO NO 2 0 5 2 20 12 2 1 11 5 87 34

SI 6 0 7 1 19 8 10 1 23 8 116 61
SI NO 8 1 7 1 60 13 15 4 9 155 78

SI 3 1 7 2 44 15 20 3 11 9 183 130

Table 3. Main models for the data

We have used the statistical software R (R Core Team (2012)), with the help of the

package "hmmm", (that is available from the comprehensive R Archive Network at

http://cran.r-project.org/web/packages/hmmm) to test marginal models and es-

timate the parameters and the packages "gRbase" (http://cran.r-project.org/web/

packages/gRbase) and "RBGL" (http://www.bioconductor.org/packages/release/

bioc/html/RBGL.html) to plot the graphs.





Conclusion

In this work we studied the graphical models focusing on the GM II and GM

III. In particular we introduced the subclasses of these models which are also

marginal models.

Future researche will attempt to prove that the only graphical models correspond-

ing to marginal models are these subclasses.

In addition will be interested to study how to model the non null parameters to

representing di�erent relationships of dependence.
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Appendix A

Glossary of graph terminology

● A graphG = {V,E} is a mathematical object composed by a set of vertices

V and a set E of unordered pairs of distinct element of V , called edges

or arcs, such that E ⊆ V × V .

● GA = {A,EA} is a subgraph of G = {V,E}, if A ⊂ V and EA = E∩(A×A).

● The arcs of a graph can be undirected (denoted with secments: −) or

directed (denoted with arrows:→).

● Given a graph G = {V,E}, ∀Vi, Vj ∈ V , the two vertices are called adja-

cent if there is an undirected arc between Vi and Vj.

● Given a graph G = {V,E}, a path is a sequence of adjacent vertices.

● Given a graph G = {V,E}, the set of all vertices which are adjacent to

Vj, ∀Vj ∈ V , is called set of neighbors of Vj and it is denoted with the

symbol nb(Vj).

● Given a graph G = {V,E} and a set A ⊂ V , the set of all vertices which

are adjacent to A, but not in A, is called set of neighbors of A is

nb(A) = ∪Vj∈Anb(Vj)/A.

● Given a graph G = {V,E} and a set A ⊂ V , the neighborhood of the set

A is Nb(A) = A ∪ nb(A).
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● A subset R of V is called connected if all pairs of vertices in C are linked

by a path in R.

● A subsetK of V is called non connected if there are at least two vertices

non connected in K.

● A subset C of V is called complete if all pairs of vertices in C are

adiacent.

● The class of all connected subsets of V is denoted with R.

● The class of all non connected subsets of V is denoted with K.

● The class of all complete subsets of V is denoted with C.

● A graph G = {V,E} with only undirected arcs is called Undirected

Graph (UG).

● Given a graph G = {V,E} and Vj, Vi ∈ V , if Vj → Vi then Vj is called

parent of Vi and Vi is called child of Vj.

● Given a graph G = {V,E}, an ordered path is a ordered sequence of

verticies V1, ..., Vq where Vj is either adiacent or children of V(j−1).

● Given a graph G = {V,E}, a directed cycle is a sequence of vertices

linked by arrows in an ordered path.

● Given a graph G = {V,E}, for all vertices Vj in V , the set of all children

of Vj is denoted with ch(Vj) and the set of all parents is denoted with

pa(Vj).

● Given a graph G = {V,E}, the set of the parents of a subset A of V

is denoted with pa(A) and is the set of the parents of all vertices in A:

pa(A) = (∪Vj∈ApaG(Vj)).
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● Given a graph G = {V,E}, the set of children of A, ch(A), is the set

of all vertices Vj ∈ T such that there is at least one vertex Vh ∈ A such

that Vh ∈ paG(Vj).

● A graph G = {V,E} with only directed arcs where there are non directed

cyles is called Directed Acyclic Graph (DAG).

● Given a graph G = {V,E}, a semi directed cycle is a sequence of

vertices linked by arrows and segments in an ordered path.

● A graph G = {V,E} with both directed and undirected arcs where there

are non directed or semi directed cycles is called Chain Graph (CG).

● Given a CG, the components of the chain Th, h = 1, ..., s induce underected

subgraphs of the CG. Btween the components there are only directed arcs.

● The class of all component of a CG is denoted with T = {T1, ..., Ts}.

● The DAG associated to a CG is the graph GD = {T ,E} where the set of

vertices is composed by the chain components, and where two components

are linked by an arrow if there is at least a directed arc between the

vertices in the components.

● Given a CG, the set of the parents of the chain component Th,

paD(Th), is the set of parents of the component Th in the DAG associated

to T .

● Given a CG, the set of non descendents nd(Th) of the chain component

Th is the set of all components Tj such that there is not any ordered path

from Tj to Th.

● Given a component Th, we de�ne the family of the cliques of the compo-

nent Clh the class of maximal complete sets such that ∪A∈ClhA = Th.





Appendix B

{A,B;B,C}: Class with elements {{A;B},{B;C}}

λL: Vector of log-linear parameters referring to the variables in L

ηML : Vector of marginal log-linear parameters referring to the variables in

L allocated in the marginalM

Π: Set of probability distribution functions

(C1), (C2a), (C2b), (C3a), (C3b), (C3 ∗ b): Markov properties for chain

graphs

CG: Chain Graphs

CHh: Set of children of the component Th

ch(A): Children of the set A

CIk: Conditional independence model referring to k independencies

Clh: Family of the cliques of the component Th

Di: Class of interaction sets referring to the null parameters according to

the i-th independence

dI(A): In-degree of the set A

DAG: Directed Acyclic Graph

DG: Directed Graph

F : Class of hierarchical and complete interaction sets

GM: Graphical model

H: Class of hierarchical marginal sets
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HI: Hierarchical class of marginal sets for GM I

H′

II : Hierarchical class of marginal sets for the �rst parametrizatin for GM

II

H∗
II : Hierarchical class of marginal sets for the second parametrizatin for

GM II

HMIX
II : Hierarchical class of marginal sets for the mixed parametrizatin for

GM II

HIII : Hierarchical class of marginal sets for GM III

HIV : Hierarchical class of marginal sets for GM IV

I: Contingency table

L: Interaction set

M: Marginal set

MG: Mixed Graph

MP: Markov properties

NAh: Set of vertices that are non adiacent to the children in component Th

Nb(A): Set of neighborhood of A

nb(A): Set if neighbords of A

NCh: Set of vertices that are adiacent to CHh in Th

nd(Th): Set of non discendents of Th

paD(Th): Set of parents of component Th

paG(Th): Set of parents of set A

PAh: Class of parents with the same children in Th

UG: Underected graph

P(A): Power set of A

T = {T1, ..., Ts}: Class of components of a chain graph
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