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Introduction

Recent developments in the complex networks analysis, based largely on

graph theory, have been used to study the brain network organization. The

growth of network science has been driven by the fact that the behavior of

brain systems is shaped by interactions among their constituent elements

(Bullmore and Sporns, 2009).

The brain is a complex system that can be represented by a graph. A graph is

a mathematical representation constituted by a set of nodes and a set of links

(Kolaczyk, 2009),which can be useful to study the connectivity of the brain.

Nodes in the brain can be identified dividing its volume in regions of inter-

est and links can be identified calculating a measure of dependence between

pairs of regions whose activation signal, measured by functional magnetic

resonance imaging (fMRI) techniques, represents the strength of the connec-

tion between regions. The study of brain connectivity through graph theory

and network analysis can be also applied to other brain mapping techniques,

for instance diffusion magnetic resonance imaging (MRI), which investigate

structural/anatomical brain connectivity.

A graph can be synthesized by the so-called adjacency matrix, which, in its

simplest form, is an undirected, binary, and symmetric matrix, whose en-

tries are set to one if a link exists between a pair of brain areas and zero

otherwise. The adjacency matrix is particularly useful because allows the

calculation of several measures which summarize global and local character-

istics of functional brain connectivity, such as centrality, efficiency, density

and small worldness property.

In Chapter 1 of this work, the basic terminology and notation for graphs

are discussed and a network analysis is applied to a particular case study in
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order to investigate the characteristics of brain networks. We consider the

global measures, such as the clustering coefficient, the characteristic path

length and the global efficiency, and the local measures, such as centrality

measures and local efficiency, in order to represent global and local dynam-

ics and changes between networks. This is achieved by studying with resting

state (rs) fMRI data of healthy subjects and patients with neurodegenerative

diseases.

The goal of Chapter 2 is to illustrate an original methodology to construct

the adjacency matrix. Its entries, containing the information about the ex-

istence of links, are identified by testing the correlation between the time

series that characterized the dynamic behavior of the nodes. This involves

the problem of multiple comparisons in order to control the error rates. The

method based on the estimation of positive false discovery rate (pFDR),

proposed by Storey (2002) has been used. A similar measure involving false

negatives (type II errors), called the positive false nondiscovery rate (pFNR)

is then considered, proposing new point and interval estimators for pFNR

and a method for balancing the two types of error. This approach is demon-

strated using both simulations and fMRI data, and providing finite sample as

well as large sample results for pFDR and pFNR estimators. Furthermore a

ranking of the most central nodes in the networks is proposed using q-values,

the pFDR analog of the p-values. The differences on the inter-regional con-

nectivity between cases and controls are studied. Finally original methods

for constructing group differences networks and group-based representative

networks are proposed.

In Chapter 3 network models are discussed. Network models based on a

small-world property have been mostly utilized to describe different brain

networks. In order to gain deeper insights into the complex neurobiological

interaction, exponential random graph models (ERGMs) are applied to as-

sess several network properties simultaneously and to compare case/control

brain networks. As an interesting proposal for future works, ERGMs can be

applied in medical prediction problems, including diagnostic outcomes.
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Chapter 1

Brain Network Analysis

1.1 The brain connectivity

Brain mapping techniques, such as electroencephalography (EEG), magne-

toencephalography (MEG), functional magnetic resonance imaging (fMRI)

and diffusion tensor MRI, produce large datasets of functional or structural

connection patterns (Rubinov and Sporns, 2010).

Structural brain networks can be described as a graph composed by nodes

(denoting neural elements, i.e. neurons or brain regions) that are connected

by links, representing physical connections (synapses or axonal projections)

(Bullmore and Sporns, 2009).

In addition to the anatomical connectivity, it is important to consider also

the functional connectivity within the brain. The investigation of the inter-

regional functional connections might allow to understand how this architec-

ture supports neurophysiological dynamics. In their simplest form, functional

brain networks can be represented by undirected graphs, in which nodes de-

note brain areas, and links represent correlations between the time series of

functional activity of brain regions.

Measuring functional connectivity by means of a correlation coefficient is sim-

ple, but it does not indicate the causality of the connection, or whether the

functional connection between two nodes is direct. A further step is there-

fore the representation of brain functional connections by means of effective
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CHAPTER 1. BRAIN NETWORK ANALYSIS

connectivity (e.g., by using dynamic causal models or granger causality).

Measures of effective connectivity between regions can be used to generate

a directed graph, and the estimation of the directionality of functional con-

nections could be useful to show how information flows through the network,

and to correctly understand the connection’s dynamics (Smith et al., 2011).

The nature of nodes and links in individual brain networks is determined by

combinations of brain mapping methods, anatomical parcellation schemes

and measures of connectivity. There are many ways to define network nodes.

In the case of electrophysiological data, the simplest approach is to consider

each recorded channel as a node. In the case of fMRI, nodes are often defined

as spatial regions of interest (ROIs) obtained from brain atlases (Tzourio-

Mazoyer et al., 2002). The choice of a parcellation scheme determines the

neurobiological interpretation of network topology. Nodes should ideally rep-

resent homogeneous brain regions with patterns of anatomical or functional

connections. Parcellation schemes should divide heterogeneously connected

brain regions into single nodes completely covering the surface of the cortex,

or of the entire brain, without spatially overlap. Networks constructed using

distinct parcellation schemes may significantly differ in their properties and

cannot, in general, be quantitatively compared. Specifically, structural and

functional networks may only be compared if these networks share the same

parcellation (Rubinov and Sporns, 2010).

In the process of construction of functional brain networks, once the nodes

are defined, the next step is the estimate of a measure of association be-

tween nodes. This is usually done by using suitable time-courses associated

with nodes. The more similar the time-courses are between any given pair

of nodes, the more likely it is that there is a functional connection between

those nodes. Many different methods are being used in the literature as

measure of dependence between nodes (Smith et al., 2011). As previously

mentioned, correlation-based approaches can be quite successful. However,

correlation between two time-series does not imply causality (by definition,

it tells anything about the direction of information flow) and directionality

(there may be a third node between the two under consideration without a

direct connection existing between the two). Therefore, the use of correlation
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1.1. THE BRAIN CONNECTIVITY

coefficients often doesn’t allow the distinction between true correlations and

spurious correlations, and doesn’t allow to correctly interpret the nature of

links. One simple method to overcome this limitation is the estimation of

functional connections with partial correlation coefficients. For example, in

a three-node network, this method works by taking each pair of time-series

in turn, and regressing out the third from each of the two time-series in ques-

tion, before estimating the correlation between the two (Smith et al., 2011).

However, the estimation of partial correlation coefficient might be problem-

atic and unstable for networks with several nodes (e.g., 90 nodes, as in the

case of a typical brain parcellation of a fMRI experiment). Therefore, the

majority of literature studies use methods (such as full correlation) giving no

directional information at all (Bullmore and Sporns, 2009).

In addition to the type of connectivity (anatomical, functional or effective)

links can be also differentiated on the basis of their weight (Rubinov and

Sporns, 2010). Binary links denote the presence or absence of connections,

while weighted links also contain information about connection strength.

Weights in anatomical networks may represent size, density, or coherence

of anatomical tracts, while weights in functional and effective networks may

represent respective magnitudes of interactions (Latora and Marchiori, 2003).

Binary networks are in most cases simpler to characterize and have a more

easily defined null model for statistical comparison. On the other hand,

weighted characterization usually focuses on different and complementary

aspects of network organization and may be useful in filtering the influence

of weak and potentially non-significant links. These links tend to obscure

the topology of strong and significant connections and as a result are of-

ten discarded, by applying an absolute, or a proportional weight threshold.

Threshold values are often arbitrarily determined, and networks should ide-

ally be characterized across a broad range of thresholds. With the use of a

threshold, however, all negative connections are removed from the networks,

causing a loss of information about the role of negative weights in global

network organization.
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CHAPTER 1. BRAIN NETWORK ANALYSIS

1.2 Basic Definitions and Concepts: the Graph

Theory

As we have seen in the previous section, the brain is as a complex system

that can be modeled as a network, where the vertices (or nodes) are brain

regions and the edges (or links) represent the interactions between them. An

accurate description of the architecture and a characterization of the prop-

erties of the network can be important to understand the dynamic of the

system (Latora and Marchiori, 2003). Network analysis (also called graph

theory) describes complex systems by quantifying properties of network rep-

resentation.

In this section we discuss the basic terminology and notation for graphs.

Networks can be represented as a graph G = (V,E) , a mathematical struc-

ture consisting of a set V of vertices and a set E of edges, where elements of

E are unordered pairs {i, j} of distinct vertices i, j ∈ V . Adjacency is a basic

notion when describing connectivity. Two vertices i, j are said to be neigh-

bors or adjacent if joined by a common end point in V (Kolaczyk, 2009).

The cardinality of V is usually denoted by n, the cardinality of E by m. The

two vertices joined by an edge (e) are called its end-vertices.

Graphs can be undirected or directed. In directed graphs, each directed edge

(arc) has an origin (tail) and a destination (head). An edge with origin i ∈ V
and destination j ∈ V is represented by an ordered pair (i, j). In both undi-

rected and directed graphs, we may allow the edge set E to contain the same

edge several times, i.e., E can be a multiset. If an edge occurs several times

in E, the copies of that edge are called parallel edges. Graphs with parallel

edges are also called multigraphs.

A graph is called simple, if each of its edges is contained in E only once, i.e.,

if the graph does not have parallel edges.

An edge joining a vertex to itself, i.e., an edge whose end-vertices are iden-

tical, is called a loop. A graph is called loop-free if it has no loops.

Often it is useful to associate numerical values (weights) with the edges of a

graph G = (V,E). Edge weights can be represented as a function ω ∶ E → R
that assigns each edge a weight ω(e). Depending on the context, edge weights
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1.2. BASIC DEFINITIONS AND CONCEPTS: THE GRAPH THEORY

can describe various properties such as cost, capacity, strength of interaction,

or similarity. An unweighted graph G = (V,E) is equivalent to a weighted

graph with unit edge weights ω(e) = 1∀e ∈ E.

The degree of a vertex i in an undirected graph G = (V,E), denoted by

Deg(i), is the number of edges in E that have i as an end-vertex. If G is a

multigraph, parallel edges are counted according to their multiplicity in E.

The set of edges that have i as an end-vertex is denoted by Γ(i). The set

of neighbors of i is denoted by Ni. In a directed graph G = (V,E), the out-

degree of i ∈ V , denoted by Degout(i), is the number of edges in E that have

origin i. The in-degree of i ∈ V , denoted by Degin(i), is the number of edges

with destination i. For weighted graphs, all these notions are generalized by

summing over edge weights rather than taking their number. The maximum

and minimum degree of an undirected graph are denoted by ∆(G) and δ(G),
respectively. The average degree is denoted by Deg(G) = 1

∣V ∣ ∑i∈V Deg(i).
A graph G

′ = (V ′
,E

′) is a subgraph of the graph G = (V,E) if V
′ ⊆ V and

E
′ ⊆ E. It is a (vertex-) induced subgraph if E

′
contains all edges e ∈ E that

join vertices in V
′
. The induced subgraph of G with vertex set V

′ ⊆ V is

denoted by G[V ′]. The (edge-)induced subgraph with edge set E
′ ⊆ E, de-

noted by G[E ′], is the subgraph G
′ = (V ′

,E
′) of G, where V

′
is the set of all

vertices in V that are end-vertices of at least one edge in E
′
. Particular cases

of subgraphs are called dyads and triads: a dyad represents a pair of vertices

and the possible edges between them, a triad consists of three vertices and

possible edges between them (Wasserman, 1994).

If C is a proper subset of V , then G−C denotes the graph obtained from G

by deleting all vertices in C and their incident edges. If F is a subset of E,

G − F denotes the graph obtained from G by deleting all edges in F .

A walk from x0 to xk in a graph is an alternating sequence:

x0, e1, x1, e2, . . . , x(k−1), ek, xk

of vertices and edges, where ei = x(i−1), xi in the undirected case and ei =
(x(i−1), xi) in the directed case. The length of the walk is defined as the

number of edges on the walk. The walk is called a path, if ei = ej for i = j,

7



CHAPTER 1. BRAIN NETWORK ANALYSIS

and a path is a simple path if xi = xj for i = j. A path with x0 = xk is a

cycle. A cycle is a simple cycle if xi = xj for 0 ≤ i < j ≤ k − 1. A geodesic

between vertex i and j is a shortest path between these vertices (Jackson,

2008). An important thing to keep in mind in many applications of networks

is which nodes can reach which other nodes through paths in the network.

This plays a critical role in things like contagion, learning and the diffusion

of the information through a network. In particular, in the brain network

that could be important in the study of the connectivity of the brain regions.

Looking at the path relationships naturally partitions a network into different

connected subgraphs that are commonly referred to as components (Rubinov

and Sporns, 2010). An undirected graph G = (V,E) is connected if every

vertex can be reached from every other vertex, i.e., if there is a path from

every vertex to every other vertex. A graph consisting of a single vertex

is also taken to be connected. Graphs that are not connected are called

disconnected. For a given undirected graph, a connected component of G is

an induced subgraph G
′ = (V ′

,E
′) that is connected and maximal.

A directed graph G = (V,E) is strongly connected if there is a directed path

from every vertex to every other vertex. A strongly connected component of

a directed graph G is an induced subgraph that is strongly connected and

maximal.

A graph that is connected and is acyclic is called a tree. Trees contain the

minimum number of edges necessary to be connected and they do not contain

cycles, they are particular important for several characteristics. First, trees

are minimally connected graphs since every line in the graph is a bridge; the

removal of any one edge causes the graph to be disconnected. Second, the

number of edges in a tree equals the number of vertices minus one. Adding

another edge the graph becomes a cycle, so is no longer a tree. Finally,

there is only one path between any two vertices in a tree. A graph that is

disconnected and contains no cycles is called a forest, where each component

is a tree (Wasserman, 1994).

There are equivalent ways of representing a graph. Instead of describing a

graph by listing of all the links or edges that are in the graph, it is sometimes

easier to view G as an n × n matrix. Indeed the fundamental connectivity
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1.2. BASIC DEFINITIONS AND CONCEPTS: THE GRAPH THEORY

of a graph may be captured in a n × n binary symmetric (for the undirected

case) matrix A with entries

Aij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if {i, j} ∈ E
0, otherwise

where the integers 1, . . . ,N generically denote the elements of V . In other

words, A is non-zero for entries whose row-column indices correspond to ver-

tices joined by an edge, and zero for those that are not. This matrix, called

the adjacency matrix, is also useful for operations on A that yield additional

information concerning G. For example, the row sum Ai. = ∑j Aij is equal to

degree Deg(i) of vertex i. By symmetry Ai. = A.i.
Furthermore:

Theorem.

If A is the n × n adjacency matrix of a graph G, then (AL)ij is the number

of walks of length L from the node i to the node j in G.

Proof. A simple proof is by induction on L. For L = 1 the result follows

from the definition of adjacency matrix, since a walk of length 1 is just an

edge. The induction hypothesis assumes that (AL)ij is the number of walks

of length L from i to j in G. Hence, there are (AL)ihAhj walks of length

L+ 1 from i to j in which h is the penultimate node. The result then follows

directly from (AL+1)ij = ∑h(AL)ihAhj.

◻

In addition, there are many interesting relations involving the eigenvalues of

A. For example, G is regular if and only if the maximum degree ∆(G) is an

eigenvalues of A.

An adjacency matrix may also be created for digraphs (directed graphs)

Aij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if (i, j) ∈ E
0, otherwise

9



CHAPTER 1. BRAIN NETWORK ANALYSIS

where E is a direct edge from i to j. A is no longer symmetric in this case,

but it contains similarly useful information. For example Ai. =Degout(i) and

A.j =Degin(j).
Another useful matrix capturing the structure in G is the incidence matrix

B, an n ×m binary matrix with entries

Bij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if vertex i is incident to edge j

0, otherwise.

There is a relation between A and B, indeed if we extend B to be a signed

incidence matrix B̄ where the entries 1 are given plus or minus signs indi-

cating an arbitrarily assigned orientation of the corresponding edge. That is

the role of either head or tail is assigned to each vertex in an edge j (like in

digraph), and let B̄ij = 1 if vertex i is incident to edge j as a tail, and -1,

if as a head. It can be show that B̄B̄
′ = D −A where D = diag[(di)(i∈V )] is

diagonal matrix containing the degree sequence. The n × n matrix L =D−A
is called the Laplacian of the graph for the analogy to the Laplacian in the

context of the multivariable calculus. Indeed, for a vector x ∈ Rn

x
′
Lx = ∑

(i,j)∈E

(xi − xj)2.

The closer this value is to zero, the more similar are the elements of x at

adjacent vertices in V . Hence the Laplacian provides some sense of the

smoothness of functions on a graph G, with respect to the connectivity of

G. Furthermore the eigenvalues and eigenvectors are important to know the

structure of the graph. Since L can be show to be a positive semi-definite

matrix, the eigenvalues are all non-negative and because L1 = 0, where 1

and 0 are n vectors of ones and zeroes, the smallest eigenvalue λ1 of L is

equal to zero. The second smallest eigenvalue, λ2, is typically nontrivial and

the most important of all the eigenvalues. For example, the larger λ2 is, the

more connected G is, and the more difficult is to separate G into disconnected

subgraphs by eliminating some number of edges (Kolaczyk, 2009).
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1.3 Local and Global Network Measures

In the study of brain connectivity, it is interesting to investigate the structure

and the characteristics of the corresponding brain network. For example,

neuronal dynamics can be represented by triplets of nodes with a particular

pattern of lings among them (i.e., triads); questions about the movement of

information throughout brain regions can be posed in terms of paths on the

network, and flows along those paths. The importance of brain regions in the

network may be captured by measures of how central the corresponding node

is. The search for clusters and analogous types of unspecified groups within

the brain may be addressed as a graph partitioning problem (Kolaczyk, 2009).

1.3.1 Measures of Centrality

An aspect to be investigated about a vertex is its importance in the network.

Measures of centrality are designed to quantify such notion of importance.

We will assume that G is an undirected graph.

As discussed above, the degree in a graph G = (V,E) counts the number of

edges in E incident upon the vertex i. Therefore, the degree provides a basic

quantification of the extent to which i is connected to other vertices within

the graph. The degree can be considered as the most common measures of

centrality.

In the context of functional brain connectivity, a node can be considered

central in the network if it is connected with the other nodes. The degree

of a node i is the number of links (e ∈ E) connected to the node i, its value

therefore reflects the importance of a node in the network, and it can be

defined as:

Deg(i) = ∑
j∈N

Aij,

where N is the total number of nodes in the network.

Another popular class of centrality measures takes into account that the im-

portance of a vertex is not only related to the number of its connections, but

also to its location with respect to the paths in the network. Vertices that sit

on many paths are likely more critical to the communication process (Wasser-
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man, 1994). Betweenness centrality measures are aimed at summarizing the

extent to which a vertex is located between other pairs of vertices. The most

commonly used definition of betweenness centrality has been introduced by

Freeman (1977):

Bet(i) = ∑
j≠h≠i∈V

Djh(i)
Djh

where Djh(i) is the total number of shortest paths between j and h that

pass through i, and Djhis the number of shortest paths between j and h. In

the case that shortest paths are unique, Bet(i) just counts the number of

shortest paths going through i. This centrality measure can be normalized to

the unit interval through division by a factor of (n−1)(n−2)/2. Calculation

of the collection of all betweenness centralities Bet(i) requires the calculation

of the lengths of shortest paths among all pairs of vertices, by means of the

Theorem in section 1.3, and the computation of the equation above for each

vertex.

1.3.2 Measures of Efficiency

Let N be the total number of nodes in the network. Global efficiency of the

network is defined as:

Eff(G) = 1

N
∑
i

∑i≠jD−1
ij

N − 1

The local efficiency is

Eff(i) = 1

N
∑
i

∑i≠j,hAijAih[D−1
jh]

Deg(i)[Deg(i) − 1]

where Djh is the length of the shortest path between j and h (Latora and

Marchiori, 2001).

1.3.3 Measures of Density and Cohesion

The description of a network structure as coherent is based on the notion

that a coherent subset of nodes should be locally dense in the graph (Ko-
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laczyk, 2009).

Given a network graph G, define fd to be the fraction of vertices i ∈ V with

degree Deg(i) = d. The collection {fd}(d≥0) is called the degree distribution

of G, and is simply the histogram formed from the degree sequence, with

bins of size one, centered on the non-negative integers. The degree distri-

bution provides a natural summary of the connectivity in the graph. The

mean network degree Deg(G) = 1
N ∑i∈V Deg(i) is most commonly used as a

measure of density, or the total wiring cost of the network.

From a graph-theoretic point of view, another concept that can be employed

to describe network density is that of ‘clique’: a complete subgraph H of G.

Cliques are subsets of vertices that are fully cohesive, in the sense that all

vertices within the subset are connected by edges. A common case of practi-

cal interest, particularly in social network analysis, is that of 3-cliques (i.e.,

triangles). In practice, large cliques are relatively rare, as they necessarily

require that G itself be fairly dense. This approach to network cohesion pro-

ceed by first stating a prespecified notion of locally dense structure and then

looking to see whether it is anywhere satisfied in a graph G. Alternatively,

we can define a measure of local density and then characterize the extent to

which subsets of vertices are dense, according to this measure. Such measures

are commonly based on ratios of the number of edges among a subset of ver-

tices to the total number of possible edges. For example, in a graph G with

no self-loops and no multiple edges, the density of a subgraph H = (VH ,EH)
is

den(H) = ∣EH ∣
∣VH ∣(∣VH ∣ − 1)/2 .

The value of den(H) will lie between zero and one and provides a measure

of how close H is to being a clique. Note that den(H) is just a rescaling of

the average degree seen above. There is freedom in the choice of subgraph

H. Taking H = G yields the density of the overall graph G. Conversely,

taking H = Ni to be the set of neighbors of a vertex i ∈ V , and the edges

between them, yields a measure of density in the immediate neighborhood of

i. Watts and Strogatz (1998) propose den(Ni) as a summary of the extent
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to which there is clustering of edges local to i and propose that the average

of den(Ni) over all vertices can be used as a clustering coefficient for the

overall graph. These measures of clustering can be expressed alternatively

in terms of the density of triangles among connected triples. A triangle

is a complete subgraph of order three. A connected triple is a subgraph

of three vertices connected by two edges (also sometimes called a 2-star).

Intuitively, a measure of the frequency with which connected triples close

to form triangles will provide some indication of the extent to which edges

are clustered in the graph. Let τ∆(i) denote the number of triangles in G

into which i ∈ V falls, and τ3(i) the number of connected triples in G for

which the two edges are both incident to i. Note that τ3(i) = (Deg(i)
2

). The

Watts-Strogatz local clustering coefficient den(Hi)) can be re-expressed as

cl(i) = τ∆(i)
τ3(i)

, for those vertices i with τ3(i) > 0. The corresponding clustering

coefficient for G is

cl(G) = 1

∣V ′ ∣ = ∑
i∈V ′

cl(i)

where V
′ ⊆ V is the set of vertices i with Deg(i) ≥ 2.

Clustering coefficients have become a standard quantity used in the analysis

of network structure. Their values have typically been found to be quite

large in real-world networks, in comparison to what expected in random

graph models.

Measures based on path concept estimate the ease with which brain regions

communicate. Paths are sequences of distinct nodes, the average shortest

path length between all pairs of nodes in the network is known as path length

of the network. Let the shortest path length (distance), between nodes i and

j, be

Dij = ∑
Aij∈g

Aij,

where g is a shortest path (geodesic) between node i and j, that is equivalent

to

Dij = min{d > 0 ∶ (Ad)ij > 0},

by Theorem in section 1.3. The characteristic path length of the network
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can be defined as

pl(G) = 1

N
∑
i

pl(i)

where pl(i) = 1
N ∑i

∑i≠j Dij
N−1 .

1.3.4 Small-worldness

In contrast to a local perspective, and the search for small-scale subsets

of cohesive vertices, it may useful to also investigate networks at a global

perspective. Basic questions of interest are whether a given graph separates

into distinct sub-graphs, and how information flows within the graph. A

graph G is said to be connected if every vertex is reachable from every other

(i.e., if for any two vertices, there exists a walk between the two). A connected

component of a graph is a maximally connected subgraph. Such a component

is called a giant component. A characteristic of giant components of many

real-world networks is the so-called small-world property. The initial concept

and terminology for this term is due to the experiment of Milgram (1967) in

the late 1960’s, and his assertion that people are only separated by roughly

six acquaintances. If the population of the world and acquaintances among

its members is represented as a social network graph, despite its enormous

size, the number of hops along shortest paths between its vertices would be

quite small.

Formally the average distance between distinct vertices

l̄ = 1

N(N + 1)/2∑i≠j
Dij

scales as O(log(N)) or less.

Watts and Strogatz (1998) discover that this property is valid for many

networks. These authors also found that often small average distance is

accompanied by a high clustering coefficient, and they proposed a random

graph model for such a network: the ‘Small-world’ network. The small-world

property has important implications for problems of network communication.

Small-world networks are formally defined as networks that are significantly
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more clustered than random networks, yet have approximately the same

characteristic path length as random networks1 (Watts and Strogatz, 1998).

Random networks have to preserve the same number of nodes, edges, and de-

gree distribution as the investigated networks (Maslov and Sneppen, 2002).

A useful way to investigate the small-world property of a real network is to

compute the normalized clustering coefficient clnorm = clreal
clrand

and the normal-

ized characteristic path length plnorm = plreal
plrand

(Watts and Strogatz, 1998),

where clreal and plreal are cl and pl of a real brain networks, and clrand and

plrand represent the corresponding measures calculated on a great number

of matched random networks. By definition, a small-world network had to

respect the following criteria: clnorm > 1 and plnorm ≈ 1 (Watts and Strogatz,

1998).

1.4 Applications of Graph Theory to Neuro-

physiological and Neuroimaging data

In the previous sections we introduced the main concepts of the graph theory,

describing how brain connectivity can be investigated using network analysis,

and how measures derived from Theorem of section 1.3, are useful to describe

the characteristics of the network itself.

Over the last decade network analysis has been applied to biological re-

search fields such as immunology, genetics and neuroscience and these ap-

plications. The growing interest of neuroscientists on network analysis has

been driven by the realization that the behaviour of complex systems is

shaped by the interactions among their constituent elements (Bullmore and

Sporns, 2009). The application of graph theory concepts to neurophysiolog-

ical and neuroimaging data is a promising way to characterize brain connec-

tivity (De Haan et al., 2009). Network analysis is a tool able to represent the

1The significance of network measures should be established by comparison with the
same measures calculated on random networks. Random networks have simple random
or ordered topologies but preserve basic characteristics of the original network. The most
commonly used random network has a random topology but shares the size, density and
binary degree distribution of the original network (Maslov and Sneppen, 2002).
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local and the global structural changes, as well as the dynamics of the brain.

The complex organization of connectivity in the human brain has still to be

completely investigated, nonetheless measures based on graph theory (Latora

and Marchiori, 2001)(Watts and Strogatz, 1998) have provided a new way to

understand the relation between brain structure and function (Bullmore and

Sporns, 2009).

In this section, network analysis will be applied to study how brain functional

connectivity changes with pathology. This will be achieved by studying with

graph theory fMRI data of subjects coming from different populations, in-

cluding healthy subjects and patients with neurodegenerative diseases. In

this context, network analysis might contribute to detect abnormalities of

network connectivity in different brain disorders and to improve our under-

standing of the pathobiological mechanisms responsible of the development

of irreversible disability. In this case, the role of network analysis is to provide

new measures to quantify differences between patient groups. In Figure 1.1,

the example of two networks, one (a) referred to an healthy subject and the

other (b) referred to a patient, is provided. The difference between the two

networks can be noted even at a visual inspection. In the next sections, we

will quantify this difference by using metrics of graph theory, and we will

interpret their meaning in a biological context.

1.4.1 Subjects and data acquisition

Aim of the presented applicative study is to explore the difference of brain

functional connectivity between healthy subjects and patients with a diagno-

sis of behavioural variant of frontotemporal dementia (bvFTD). The bvFTD

is a clinical syndrome caused by the degeneration of the frontal and tem-

poral lobes of the brain and it is the second-most common dementia after

Alzheimer’s disease. bvFTD affects social conduct, social inhibitions, and

personality, with patients becoming lethargic and apathetic (or, oppositely,

dishinibited) and unable to perform skills that require complex planning or

sequencing. The analysis of functional connectivity in these patients is useful

to define if there is a correspondence between clinical symptoms and func-
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Figure 1.1: Disease-related disorganization of brain networks
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Figure 1.2: Construction of the functional brain network

tional disconnection of regions of the frontal and temporal lobe. To this aim,

we measure brain network connectivity with fMRI at resting state, i.e., with

subjects lying still in the scanner and thinking nothing in particular.

In this study, we recruite eighteen right-handed patients with a diagnosis of

bvFTD (mean age=61.9 years; range=45-79 years, 10/8 males/females) and

fifty right-handed age and sex-matched healthy controls (mean age=61.10

years, range=46-79 years; 23/27 males/females). Resting state fMRI images

are pre-processed to correct for minor head movements and normalized to

a default template using a standard affine transformation. Then, data are

band-pass filtered to partially remove low-frequency drifts and physiologi-

cal high-frequency noise. No spatial smoothing is applied, in order to avoid

spurious correlations between neighboring voxels, as previously suggested by

Sanz-Arigita et al. (2010).

1.4.2 Construction of brain functional networks

In a graphical representation of a brain network, a node corresponds to a

brain region while a link corresponds to the functional interaction between

two brain regions (Rubinov and Sporns, 2010). To construct brain functional

networks we follow the steps illustrated in Figure 1.2.

First we employ an automated anatomical labeling (AAL) atlas (Tzourio-

Mazoyer et al., 2002) to parcellate the brain into 90 cortical regions of interest

(ROIs) (1). Second time series are extracted from each ROI by averaging the
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signal of all voxels within that region (2). Bivariate correlations between each

ROIs pair are obtained by calculating the Pearson’s correlation coefficient ρij

between ROIs time courses i and j. Such correlation coefficients represent the

functional connectivity strength between brain regions. Correlation matrices
2 of size {90×90}, obtained from all study subjects, are thresholded deriving

an adjacency matrix A with entries:

Aij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if ρij ≥ τ
0, otherwise

A is computed putting the Aij elements to zero if ρij < τ and unity if ρij ≥ τ ,

where 0 < τ < 1 is a suitable threshold. Finally, through this thresholding,

unweighted graphs are obtained (3), with the nodes representing brain regions

and edges/links representing functional relationships between brain regions

(Rubinov and Sporns, 2010).

A crucial issue is the choice of the threshold used to generate the adjacency

matrix from the correlation matrix: different thresholds generate graphs of

different average degree, this means that, at a given value of τ , a single-

subject graph can have more or less significant links than graphs of other

subjects. Previous studies faced this problem by avoiding to use a fixed

τ for all study subjects, but they rather fixed the average degree Deg(G)
instead to fix τ , i.e. they forced the total number of existing connections

to be the same for all study subjects (Tian et al., 2011), (Yao et al., 2010),

(Van Den Heuvel and Hulshoff Pol, 2010), (Stam et al., 2009). However, this

approach is not always straightforward, since fixing a pre-defined Deg(G)
may involve the risk of modifying network structure (Van Wijk et al., 2010).

Therefore, for this application, we choose to construct our graphs by fixing

the same τ in all study subjects (Van Den Heuvel et al., 2009), (Salvador

et al., 2005), (Meunier et al., 2009). In Chapter 3 we will show another case

study for which it is advisable to fix the average degree.

Because there is no unique way to choose τ , here, we examine several possible

2Note that the elements of the principal diagonal of the correlation matrix are not
considered (loop-free graph)(Kolaczyk, 2009).
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network configurations for a range of values from 0 to 0.9, and we explore

the consistency of the results over this range (Sanz-Arigita et al., 2010). In

the next chapter, we will offer an alternative approach to the investigation of

network properties over a range of thresholds, and the problem of the choice

of τ will be dealt by multiple testing approach, in order to offer a statistical

evaluation of the error committed in constructing the adjacency matrix.

In this first applicative section, we establish to explore network characteristics

over the range of threshold that yielded fully connected graphs (0 < τ < 0.20,

with increments of 0.01). The condition of fully-connectedness is necessary

to calculate all network measures defined in the previous sections of this

chapter, because the path length pl(G) of a sparse graph is infinite.

1.4.3 Descriptive network analysis

Global and local network characteristics are explored over the above defined

range of plausible thresholds by assessing the principal measures of graph the-

ory, which are able to detect various aspects of functional connectivity, e.g.

quantify importance of brain regions, characterize patterns of local anatom-

ical circuitry, test resilience of networks to insult and so on. Values of net-

work measures from all elements (i.e., nodes and links) of a graph form a

distribution, which provides a more global description of the network. This

distribution is most commonly characterized by its mean, although other fea-

tures, such as the median or the distribution shape, may be more important

if the distribution is non-homogeneous.

Global network analysis

In order to characterize the global organization of brain networks, the average

degree, the global efficiency, the clustering coefficient and the characteristic

path length are adopted. As defined above, the degree Deg(i) of a single

node i is the number of links connected to that node. The average network

degree Deg(G) is defined as the average Deg(i) of all network nodes, and

is used as a measure of density of the network (Rubinov and Sporns, 2010).

The clustering coefficient cl(i) of a node i is the number of links existing
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between its nearest neighbors; in other words, it represents the fraction of

the node’s neighbors that are also neighbors of each other (Watts and Stro-

gatz, 1998). The mean network clustering coefficient cl(G) over a network,

therefore, represents how strong it is locally interconnected. The characteris-

tic path length pl(G) is defined as the average shortest path length between

all pairs of nodes in the network (Watts and Strogatz, 1998). Since pl(G)
represents the average number of nodes that must be traversed to go from

one node to any other node, it is usually taken as a measure of functional

integration. The global efficiency Eff(G) is defined as the average inverse

shortest path length (Latora and Marchiori, 2001).

Global network architecture is then quantified in terms of small-worldness,

as defined in Section 1.3.4 (Watts and Strogatz, 1998). To this aim, we

computed the normalized clustering coefficient clnorm and the normalized

characteristic path length plnorm. A Kolmogorov-Smirnov test is performed

on all global network parameters, in order to verify that data are normally

distributed. In our case all global network metrics follow a Gaussian dis-

tribution. To test whether small-worldness property is present or absent in

the networks of healthy controls and bvFTD patients, separately, we use a

one-sample T test, the aim of this analysis is to verify if clnorm is significantly

higher than the asymptotic value of 1 and, contemporary, plnorm is not sig-

nificantly higher than the asymptotic value of 1, which are the conditions of

a graph with small-worldness property Supekar et al. (2008).

In order to explore the difference of brain functional connectivity between

healthy subjects and bvFTD patients, global network parameters are com-

pared between the two groups, first a F test is used to verify that the two

samples have equal variances, then the difference in means of the network

parameters is tested using a two-sample T test for non-paired data. (Ko-

laczyk, 2009). Plots of the mean values of global network parameters as a

function of the correlation threshold, τ , for controls and bvFTD patients are

reported in Figure 1.3. Most of graph theoretical metrics are found to be

significantly altered in bvFTD patients with respect to healthy controls. In

particular, Deg(G), pl(G) and Eff(g) were significantly different between

bvFTD patients and controls when 0 < τ < 0.10 (p-value ranging from 0.04 to
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Figure 1.3: Global measures results: degree in plot A, clustering coefficient
in plot B, path length in plot C, global efficiency in plot D
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0.05), and cl(G) was significantly lower in bvFTD patients than in healthy

controls when 0 < τ < 0.06 (p-value ranging from 0.04 to 0.05). Even when

statistical significance is not reached, there is a trend very close to signifi-

cance (p-value ranging from 0.056 to 0.08).

In both controls and bvFTD patients, small-worldness properties are veri-

fied: clnorm is significantly higher than 1 at all considered thresholds in both

groups (p-value ranging from 0.001 to 0.01 in healthy controls, and from 0.008

to 0.001 in bvFTD patients). Conversely, plnorm is not significantly different

from 1 for any threshold in both groups (p-value ranging from 0.06 to 0.5).

Local network analysis

Local network measures are calculated in order to identify which brain regions

could be considered ‘hubs’, i.e., regions interacting with several other brain

areas, thus facilitating functional integration. Hubs are identified on the basis

of their centrality in the network. To this aim, we calculate two metrics of

centrality: the degree and the betweenness centrality. The degree Deg(i), as

defined above, is one of the most common measures of centrality: nodes with

high Deg(i) are functionally interacting with many other network nodes.

The betweenness centrality Bet(i) of a node is defined as the fraction of all

shortest paths in the network that pass through that node (Rubinov and

Sporns, 2010). Therefore, bridging nodes that connect disparate parts of the

network have an high Bet(i). These nodal measures (i.e., Deg(i) and Bet(i))
were calculated for every τ in the range yielding fully connected graphs (i.e.,

between 0 and 0.20, as previously mentioned). Then, a nodal parameters

Xnod integrated over all considered thresholds, is calculated as

Xnod(i) =
0.20

∑
k=0.01

X(i, k∆τ)∆τ

where X is one of the local measures of interest and ∆τ = 0.01. A brain

region i is defined as an ‘hub’ when Xnod(i) of the nodal metrics is at least

one standard deviation (SD) greater than the average of the parameters

over the network (Tian et al., 2011). In the Figure 1.4 the ‘hubs’ for the
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Figure 1.4: Cortical hubs in left and right hemisphere relative to controls
and patients networks

right and left hemisphere are shown for healthy controls (red) and bvFTD

patients (blue). As it can be easily noted, bvFTD patients lose their hubs in

the frontal region, confirming with a non-invasive technique that functional

disconnection of frontal regions is underlying bvFTD clinical symptoms.

1.4.4 Discussion of the results

This applicative study confirms that complex network analysis can be used

to explore connectivity relationships in individual subjects and to explore

connectivity differences between subject groups. By analyzing fMRI fluc-

tuations during resting state condition, we have demonstrated that bvFTD

condition induced changes in global and local brain functional connectivity

in line with the expected neuropathological alterations. Global functional
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network organization was altered in bvFTD patients, suggesting a loss of

efficiency in information exchange between brain areas. Moreover, the local

network analysis reveals that the altered brain regions are mainly located in

the frontal lobe (including the anterior cingulate cortex), temporal lobe and

basal ganglia that are closely associated with the expected neuropathology

of bvFTD.

1.5 Closing Remarks

In this first chapter we described the brain as a complex system modeled

as a network where the vertices are brain regions and edges represent the

interactions between them. An accurate description of the architecture and

a characterization of the network properties can be important to understand

the functional and structural connectivity of the brain. In this contest the

network analysis describes complex systems by quantifying properties of net-

work representation, such as centrality, efficiency, density and small worldness

characteristics.

Here the basic terminology and notation for graphs were discussed, then

this theory has been applied to a particular case study in order to investi-

gate the structure and the characteristics of brain networks and to represent

the local and the global structural changes, as well as their dynamics. In

this applicative study, network analysis has been used also to study how

brain functional connectivity changes with pathology. This was achieved by

studying with graph theory rs-fMRI data of subjects coming from different

populations, including healthy subjects and patients with neurodegenerative

diseases. In this context, network analysis might contribute to detect abnor-

malities of network connectivity in different brain disorders and to improve

our understanding of the mechanisms responsible of the development of irre-

versible disability.

Rs-fMRI correlations are defined by the temporal relationships of distinct

brain areas observed in the absence of experimental demands. To generate a

representation of an rs-fMRI brain network, nodes should first be defined by

parcellating the brain into meaningful objects of interest (e.g., brain areas).
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Building the adjacency matrix (i.e., defining the edges) requires a quantifi-

cation of the pairwise relationship between each of the nodes in the network

(e.g., the presence of a significant correlation between two areas resting-state

time courses). In each of these steps a different choice of techniques is re-

quired.

In our study the brain network was clustered employing an automated anatom-

ical labeling (AAL) method, but it could be interesting to explore differences

in node definition using other methods (e.g anatomic parcels, random divi-

sions of anatomic parcels, voxels).

Another choice taken during the brain network construction concerns the def-

inition of an edge. In a graph, an edge represents the pairwise relationship

or interaction between two independent nodes. We have focused our discus-

sion on measures of rs-fMRI whereby time courses of activity were extracted

from each node, pairwise correlations between the time courses of each node

pair were calculated using the Pearson’s correlation coefficient to quantify

the strength of relationships. Several alternatives can be chosen to estimate

the strength of functional relationships. For example, pairwise relationships

may be quantified according to spectral coherence, correlations of wavelets

derived from the variance decomposition of the resting-state time series, or

measurements that estimate directional information. As an alternative to the

full correlation as a measure of strength of relationships, a partial correlation

coefficient can be used, in this case the resulting network will be directed.

In Smith et al. (2011) a set of simulations with a model for fMRI time series

is discussed in order to determine which dependence measures are the most

sensitive in detecting network functional connections.

Finally, we constructed binary adjacency matrices according to a threshold.

It can be interesting to note that network edges are easy to define and can

be represented by the presence or absence of the relationship of interest,

but variable or weighted relationships can also be studied using a weighted

graphs, considering the information on differences in the strength of the re-

lationships across pairs of nodes. In our study we decided to consider undi-

rected and unweighted networks. Care must be taken when thresholding an

adjacency matrix to remove edges. Although thresholding can remove weak
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relationships that may not be physiologically relevant, excessive thresholding

for the purposes of computing graph properties or constructing comparable

graphs across subjects or cohorts can result in the creation of a matrix that,

while sparse, misrepresents the underlying connectivity (Wig et al., 2011).

In Chapter 2 we will deal with the problem of choosing the threshold and we

will propose a statistical solution.

As we have briefly reported in this section, the emerging field of complex

brain networks raises a number of interesting questions and provides some

of the first quantitative insights into general topological principles of brain

network organization. The growth in the statistical mechanics of complex

networks, and the use of graph theoretical analysis, suggests that this ap-

proach will play an increasingly important part to study the neurological

connectivity.
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Chapter 2

Statistical Assessing of

Adjacency Matrices

As we have seen in the previous chapter, complex network analysis aims to

characterize brain networks with global and local measures (Rubinov and

Sporns, 2010). A network is a mathematical representation of a real-world

complex system (brain) and it is defined by a collection of nodes (brain re-

gions) and links (measure of dependence) between pairs of nodes. To simplify

analysis, networks are often reduced to a binary (undirected) form, through

an adjacency matrix (Kolaczyk, 2009). The correlation matrices are typically

converted to a graph by considering a threshold τ , to create an adjacency

matrix. If the correlation coefficient between a pair of nodes exceeds τ , an

edge is said to exist between their representing vertices; otherwise no edge

exists between them. In previous works there was no unique way to choose

τ and the possible network configurations were examined by constructing

graphs for a range of values of τ within which the consistency of the network

characteristics was explored (Sanz-Arigita et al., 2010). The aim of this sec-

tion is to propose an original method to derive the adjacency matrix using a

multiple test on correlation coefficient and to provide a statistical evaluation

of the error committed in constructing the adjacency matrix, considering the

problem of multiple comparisons.
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2.1 Test on correlation coefficient and multi-

ple comparisons problem

The proposed method to construct the adjacency matrix works as follows.

The brain connectivity is defined as temporal correlations between spatially

distinct brain regions investigated during task-free (resting-state) conditions.

Time series of t temporal instants were extracted from each region by aver-

aging the signal of all voxels within it. Bivariate correlations between each

ROIs pair were obtained by calculating the Pearson’s correlation coefficient

between node time courses. The correlation matrix is computed by compiling

all pairwise correlation ρij between node i and node j. The binary adjacency

matrix is constructed according to a test on correlation coefficient, one for

each entry of the correlation matrix, instead of applying an arbitrary thresh-

old (ρ̂ij > τ), with: H0 ∶ ρij ≤ 0 vs H1 ∶ ρij > 0, where H0 and H1 are null and

alternative hypothesis respectively. The entry of the adjacency matrix will

be 1 if H0 is rejected and zero otherwise. Note that with the assumption of

normality the exact probability density of the Pearson correlation coefficient

is a T-Student on t − 2 degrees of freedom and when t is large this can be

approximated with a Normal distribution (Landenna et al., 1997). In the

case of study t corresponds to the 200 temporal instants associated to every

single node.

Let us to introduce, briefly, the basic paradigm for single hypothesis. We

wish to test a null hypothesis H0 versus an alternative H1, based on a statis-

tic X. For a given rejection region Γ, we reject H0 when X ∈ Γ, we accept H0

when X ∉ Γ, otherwise. A type I error occurs when X ∈ Γ, but H0 is really

true. A type II error occurs when X ∉ Γ but H1 is really true. To choose

Γ, the type I error is set to a level α and all rejection regions that have a

type I error less or equal to α and the one that has the lowest type II error

is chosen.

We may notice that there is a relation between the threshold on correlation

coefficient and the threshold on p-value of the considered test. If τ is the

threshold on correlation coefficient, then the rejection region ρ̂ ≥ τ can be
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written as:

p-value ≤ γ (2.1)

where

γ = Φ
⎛
⎝
−
√

(t − 2)τ 2

1 − τ 2

⎞
⎠

(2.2)

and Φ is the Standard Normal distribution function.

Test on correlation matrix, described before, involves multiple-hypothesis

problem. In this case the situation is more complicated because it becomes

unclear how we should measure the overall error rate. In this work we de-

cided to control the positive false discovery rate (pFDR), following Storey

(2002), which proposes to fix the rejection region and, then, to estimate its

corresponding error rate. We will see that this approach offers increased ap-

plicability, accuracy and power. We will see later that this method involves

the punctual estimation of both the FDR and the pFDR. Besides we con-

sider a similar measure involving false negatives (type II errors), which is

called the positive false nondiscovery rate (pFNR) (Genovese et al., 2002).

In particular, we propose a point estimation for pFNR and a method to

balance the two types of error. In addition we propose an interval estimation

for pFDR and pFNR, based on the Bootstrap method.

In the following section we will deal with the problem of multiple compar-

isons and with the method based on the estimation of pFDR and pFNR

and we will describe how it can be useful in our context.

2.2 From FWER to FDR

When comparing several medical treatments, the numbers of treatments is

typically fairly small and it is possible to disregard the problem of multi-

ple comparisons. But, instead, recent applications of multiple comparison

theory occurs, for example, in microarrays, where thousands or even tens of

thousands of genes are tested simultaneously. Each microarray corresponds

to one unit and in these experiments the sample size (the number of such

units) is typically of a much smaller order of magnitude (in the tens) than
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m 1 2 5 10 50 100
Pr(at least one false rejection) 0.05 0.10 0.23 0.40 0.92 0.99

Table 2.1: The probability of one or more false rejections when all of the
hypotheses H i

0 are true at level α = 0.05

the number of comparisons being tested (Lehmann and Romano, 2005). The

same problem also occurs testing correlation coefficients in a correlation ma-

trix, we have to test N(N−1)
2 hypotheses, corresponding to the elements of the

upper triangular matrix (where N is the number of nodes).

Let us now consider the general problem of simultaneously testingm hypothe-

ses H i
0(i = 1, ...,m). We shall assume that tests for the individual hypotheses

are available and the problem is how to combine them into a multiple test

procedure. The easiest approach is to simply test each hypothesis at level

α. However, with such a procedure the probability of one or more false re-

jections rapidly increases with m. Table 2.1 shows the probability of one or

more false rejections when all of the hypotheses H1
0 , ...,H

m
0 are true, when

the test statistics used for testing H1
0 , ...,H

m
0 are independent, and when the

level at which each of the m hypotheses is tested is α = 0.05. In this sense the

claim that the procedure controls the probability of false rejections at level

0.05 is very misleading. We shall therefore replace the usual condition for

testing a single hypothesis, that the probability of a false rejection not exceed

α, by the requirement, when testing several hypotheses, that the probability

of one or more false rejections, not exceed a given level. This probability

is called the family-wise error rate (FWER), where the term family refers

to the collection of hypotheses H i
0 that is being considered for joint testing.

Once the family has been defined, we shall require that

FWER ≤ α. (2.3)

So:

FWER = Pr(∪Γi∣ ∩H i
0) ≤

m

∑
i

Pr(Γi∣ ∩H i
0) (2.4)
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the last step follows from the Boole’s inequality,

m

∑
i

Pr(Γi∣ ∩H i
0) = ∑Pr(Γi∣H i

0) =mα (2.5)

so if we want to control mα ≤ ε we have to choose α = ε
m that is known as the

Bonferroni procedure and, if m is high, this is a very conservative control.

When the tests are independent:

FWER = Pr(∪Γi∣ ∩H i
0) = 1 − Pr(∩Γ̄i∣ ∩H i

0). (2.6)

Using the hypothesis of independence:

Pr(∩Γ̄i∣ ∩H i
0) =

m

∏
i

Pr(Γ̄i∣ ∩H i
0) =

m

∏
i

[1 − Pr(Γi∣ ∩H i
0)] =

m

∏
i

[1 − Pr(Γi∣H i
0)];

(2.7)

So:

FWER = 1 −
m

∏
i

[1 − α] = 1 − [1 − α]m. (2.8)

We can notice that:

∀ε ∈ (0,1) ∃ M t.c. ∀m ≥M FWER ≥ ε (2.9)

that is: when m increases there is no way to control FWER (it tends to

one). In particular, when the number of true hypotheses is large, we shall be

nearly certain to reject some of them.

When the number of tests is in the tens or hundreds of thousands, control

of the FWER at conventional levels becomes too conservative. A radical

weakening of the FWER was proposed by Benjamini and Hochberg (1995),

who suggested the following. For a given multiple testing decision rule, let R

be the total number of rejections and let V be the number of false rejections,

i.e., the number of rejections among the R rejections corresponding to true

null hypotheses (see Table 2.2). Define Q to be V
R if R ≠ 0 and to be 0

if R = 0.Thus Q is the proportion of rejected hypotheses that are rejected

erroneously. When none of the hypotheses are rejected, both numerator and

denominator of that proportion are 0, and Q is then claimed to be 0. The
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Hypothesis Accept null Reject null Total
Null true U V m0

Alternative true T S m1

W R m

Table 2.2: Possible outcomes from m hypothesis tests

false discovery rate (FDR) is defined by

FDR = E(Q). (2.10)

With this notation the FWER becomes Pr(V ≥ 1). When all hypotheses

are true, FDR = FWER. In general, FDR ≤ FWER and typically this

inequality is strict, so that the FDR is more liberal (in the sense of permitting

more rejections) than the FWER (Lehmann and Romano, 2005). Benjamini

and Hochberg (1995) provided a sequential p-value method to control FDR:

using the observed data, it estimates the rejection region so that FDR ≤ α for

some pre-chosen α. The product of a sequential p-value method is an estimate

k̂ that tells us to reject P(1), P(2), . . . , P(k̂) where P(1) ≤ P(2) ≤, . . . ,≤ P(m) are

the ordered observed p-values. If

k̂ = max
k

{k ∶ p(k) ≤ α
k

m
} (2.11)

is calculated then rejecting the null hypotheses corresponding to P(1) ≤, . . . ,≤
P

(k̂) provides FDR = m0

m α ≤ α. If there is no p-value satisfying this inequality,

then no hypothesis test is called significant. The FDR offers less stringent

control over Type I errors than the FWER, and is therefore usually more

powerful. Storey (2003) underlines that, in reality, this process involves es-

timation and that the more variable the estimate of k̂ is, the worse the

procedure will work, so it is important to explore the reliability of k̂ case by

case. Another weakness of this approach to false discovery rates is that the

error rate is controlled for all values of m0 (the number of true null hypothe-

ses) simultaneously without using any information in the data about it. In

the method proposed by Storey (2003), this information is used yielding a

less stringent procedure and more power, while maintaining strong control.
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Often, the power of the multiple-hypothesis testing method decreases with

increasing m. Especially when the tests are independent. This should not

be so, the larger m is, the more information we have about m0 that should

be used.

2.3 The Positive False Discovery Rate (pFDR)

Storey (2002) notes that (2.10) can be also written as follows 1:

FDR = E(V
R

∣R > 0)Pr(R > 0), (2.12)

that is the expected proportion of false positive findings among all rejected

hypotheses times the probability of making at least one rejection. This quan-

tity has to be considered because in most cases there is a positive probability

that R = 0, so V /R is not well-defined. Storey (2002), instead, proposes to

use the positive false discovery rate (pFDR), defined as follows:

pFDR = E(V
R

∣R > 0), (2.13)

where the expectation of Q is conditioned on the event that positive findings

have occurred, so this quantity does’t consider the case where no test is

significant. Furthermore, we can notice, from (2.12) and (2.13), that FDR ≤
pFDR.

There are two approaches that can be taken. The first is to fix the acceptable

rate α beforehand and estimate a significance threshold to obtain this rate

conservatively on average. The second is to fix the significance threshold and

provide a conservative estimate of the rate over that threshold. When taking

the first approach, we are forced to use the FDR since the pFDR cannot be

controlled in this sense. The pFDR can be conservatively estimated in the

second approach (Storey, 2002).

1E( Y
max{X,1}

) = E( Y
X
∣X > 0)Pr(X > 0), which holds when Y = 0 if X = 0 and X,Y ≥ 0
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2.3.1 Inference for FDR and pFDR

For simplicity, we suppose to test m hypotheses H1
0 ,H

2
0 , . . . ,H

m
0 with inde-

pendent test statistics T1, T2, . . . , Tm.

Theorem 1.

Suppose that:

• the same rejection region, Γ, is used for each test;

• the hypotheses are simple and represented as identical distributed and

independent Bernoulli random variables with Pr(H i
0 is true) = π0 and

Pr(H i
0 is false) = π1;

which make the tests identical. Then we can write:

pFDR(Γ) = Pr(H0 is true∣Γ)

= π0Pr(Γ∣H0 is true)
Pr(Γ)

= π0{Type I error of Γ}

π0{Type I error of Γ}+π1{Power of Γ}
.

(2.14)

For a proof of this theorem see Storey (2003). In addition, Storey and Tib-

shirani (2001) shows how to estimate the pFDR in more general situations.

Theorem 1 shows that pFDR increases with increasing Type I errors and

decreases with increasing power. With (2.14) we can write pFDR in a form

that does not depend on m. For large m the assumption that H i
0 are random

makes little difference (Storey, 2003).

In terms of p-values we can write the result of Theorem 1 as:

pFDR(γ) = π0Pr(P ≤ γ∣H0 is true)
Pr(P ≤ γ) = π0γ

Pr(P ≤ γ) , (2.15)

where P is the random p-value from any test. We can notice that

Pr(P > λ,H0) = Pr(P > λ∣H0)P (H0) = [1−Pr(P ≤ λ∣H0)]P (H0) = (1−λ)π0,

36
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for some well chosen λ

Pr(P > λ,H0) ≅
#{pi > λ}

m
;

therefore a conservative estimate of π0 is given by

π̂0(λ) =
#{pi > λ}
(1 − λ)m = W (λ)

(1 − λ)m (2.16)

where p1, . . . , pm are the observed p-values and W (λ) = #{pi > λ}. The

choice of the optimal value of the tuning parameter λ will be the topic of the

next section.

A natural estimate of Pr(P ≤ γ) is

P̂ r(P ≤ γ) = #{pi ≤ γ}
m

= R(γ)
m

, (2.17)

where R(γ) = #{pi ≤ γ}. Therefore , a natural estimate of (2.15), for fixed λ

is

Q̂λ(γ) =
π̂0(λ)γ

P̂ r(P ≤ γ)
= W (λ)γ

(1 − λ)R(γ) . (2.18)

In finite sample contest, we must make two adjustments to estimate pFDR.

When R(γ) = 0, the estimate would be undefined, so we replace R(γ) with

max{R(γ),1}. Since

E( Y

max{X,1}) ≥ E(Y
X

∣X > 0)Pr(X > 0) forX,Y ≥ 0

we obtain

E(Q̂∣R(γ) > 0) ≤ E [ W (λ)γ
(1 − λ)max{R(γ),1}Pr(R(γ) > 0)] . (2.19)

Since that Pr(R > 0) ≥ Pr(V ≥ 1) = FWER and, when the tests are in-

dependent FWER = 1 − (1 − γ)m, then 1 − (1 − γ)m is a lower bound for

Pr(R(γ) > 0) and γ/[1 − (1 − γ)m] is a conservative estimate of the type I

error, conditional that R(γ) > 0. Therefore, Storey (2002) estimates pFDR
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as:

p̂FDRλ(γ) =
π̂0(λ)γ

P̂ r(P ≤ γ)[1 − (1 − γ)m]
= W (λ)γ

(1 − λ)max{R(γ),1}[1 − (1 − γ)m] .

(2.20)

Since FDR is not conditioned on at least one rejection occurring, F̂DR can

be written:

F̂DRλ(γ) =
π̂0(λ)γ

P̂ r(P ≤ γ)
= W (λ)γ

(1 − λ)max{R(γ),1} . (2.21)

Large Sample Results

Storey (2002) proves that pFDR and FDR are asymptotically equivalent for

a fixed rejection region. For m identical simple hypothesis tests, let

g(λ) = Pr(P ≤ λ∣H0 is false) (2.22)

be the power as a function of type I error λ. Note that g(⋅) is the cumulative

density function of the alternative p-values. If the alternative hypothesis is

composite, then g(λ) must be defined as an appropriate mixture. We assume

that g(0) = 0, g(1) = 1 and g(λ) ≥ λ for 0 < λ < 1 (unbiasedness condition).

In the following the asymptotic properties are discussed.

Theorem 2.

With probability 1:

lim
m→∞

{p̂FDRλ(γ)} = f(λ)pFDR(γ) ≥ pFDR(γ), (2.23)

where

f(λ) = π0 + π1[1 − g(λ)]/(1 − λ)
π0

≥ 1. (2.24)

Proof. By the strong law of large numbers, with probability 1:
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W (λ)
m → Pr(P > λ) =

= Pr(P > λ∣H0)Pr(H0) + Pr(P > λ∣H1)Pr(H1) =

= (1 − λ)π0 + [1 − g(λ)]π1

and so, with probability 1:

π̂0(λ) = W (λ)
(1−λ)m → π0 + 1−g(λ)

1−λ π1 =

= π0 [1 + 1−g(λ)
1−λ

π1

π0] = π0f(λ) ≥ π0

(2.25)

this proves that π̂0 is an asymptotically conservative estimate for π0.

Then, by the strong law of large numbers, with probability 1:

R(γ)
m → Pr(P ≤ γ) =

= Pr(P ≤ γ∣H0)Pr(H0) + Pr(P ≤ γ∣H1)Pr(H1) = γπ0 + (1 − β)π1.

(2.26)

We may note that R(γ)
m is an asymptotically conservative estimate of the

power 1 − β.

Besides
p̂FDRλ(γ) =

= γπ̂0(λ)
R(γ)
m

[1−(1−γ)m]
→ γπ0f(λ)

Pr(P≤γ) =

= pFDR(γ)f(λ) ≥ pFDR(γ),

(2.27)

almost surely.

◻

In particular we can notice that γπ0f(λ)
Pr(P≤γ) ≅ pFDR(γ) when g(λ) ≅ 1, that is

the p̂FDR converges almost surely to pFDR when the test is powerful.

Moreover, we observe that

R(λ)
m → Pr(P ≤ λ) =

= Pr(P ≤ λ∣H0)Pr(H0) + Pr(P ≤ λ∣H1)Pr(H1) =

= λπ0 + g(λ)π1

(2.28)
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almost surely. So R(λ)
m is an asymptotically conservative estimate of g(λ) and

we can select a value of the tuning parameter λ such that g(λ) is near to one

as we want.

Under the assumptions of Theorem 1, Q̂λ(γ) is the maximum likelihood

estimate of

f(λ)pFDR(γ). (2.29)

For a proof of this property see Storey (2003). This quantity is slightly

greater than pFDR(γ) for powerful tests. In situations where g is unknown,

this estimate is optimal in that the bias can usually be made arbitrarily

small, while obtaining the smallest asymptotic variance for an estimator of

that bias. p̂FDRλ(γ) is asymptotically equivalent to Q̂λ(γ), so it has the

same large sample properties.

Finite Sample Results

For finite sample considerations, Storey (2002) reports the main finite prop-

erty of p̂FDR andF̂DR:

E[pFDRλ(γ)] ≥ pFDR(γ) and E[FDRλ(γ)] ≥ FDR(γ), (2.30)

for all λ and π0.

2.3.2 The q-value

The q-value represents the pFDR analogue of the p-value and gives a hypoth-

esis testing error measure for each observed statistic with respect to pFDR.

The p-value, in a single hypothesis test, is the minimum type I error rate

that can occur when we reject a hypothesis, using a statistic T with value

t for the set of rejection regions Γ. In a multiple testing contest, usually,

the p-values of several statistics, T1, . . . , Tm, are adjusted to control FWER.

The adjusted p-values give a measure of the strength of an observed statistic

with respect to making one or more type I errors. In the contest of pFDR,

as a natural extension to it, the q-value can be defined as follows (Storey,
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2002):

q(t) = inf
{Γ∶t∈Γ}

{pFDR(Γ)}. (2.31)

So the q-value is the minimum pFDR that can occur when rejecting a statis-

tic T with value t for the set of rejection regions Γ. In terms of independent

p-values, the q-value of an observed p-value p is

q(p) = inf
γ≥p

{pFDR(γ)} = inf
γ≥p

{ π0γ

Pr(P ≤ γ)}. (2.32)

The q-values can be used in practice in the following way: q̂(p(i)) gives us the

minimum pFDR that we can achieve for rejection regions containing [0, p(i)]
for i = 1, . . . ,m. In other words, for each p-value there is a rejection region

with pFDR = q(p(i)) so that at least p(1), . . . , p(i) are rejected, where q̂(p(i))
is an estimate of q(p(i)).

2.3.3 Looking for the optimal value of the tuning pa-

rameter

The method, proposed by Storey (2002), to calculate the optimal value of

the tuning parameter for p̂FDR and F̂DR, consists in minimize the mean

square error (MSE) of p̂FDR and F̂DR. The author uses the Bootstrap

method to estimate this parameter, λ1,

λ1 = argminλ∈[0,1]{E[(p̂FDRλ(γ) − pFDR(γ))2]} (2.33)

where E{[p̂FDRλ(γ)−pFDR(γ)]2} =MSE(λ). In order to estimate MSE

over a range of λ from 0 to 0.95 with step 0.05, p̂FDR
∗b

λ (γ) (for b = 1, . . . ,B),

the version of the estimate p̂FDRλ(γ) is used for any fixed λ. Then the

Bootstrap estimate of the MSE(λ) would be

1

B

B

∑
b=1

[p̂FDR∗b

λ (γ) − pFDR(γ)]2, (2.34)

but because we don’t know pFDR(γ), we must form a plug-in estimate of

it, that is, according to Shao and Tu (1996), {p̂FDRλ(γ)}, so the estimate
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used for MSEpFDR(λ) is

̂MSEpFDR(λ) =
1

B

B

∑
b=1

[p̂FDR∗b

λ (γ) − {p̂FDRλ(γ)}]2. (2.35)

We note that another method to calculate the optimal value of λ consist-

ing in calculate the shortest length confidence interval of p̂FDR and F̂DR,

using p̂FDR
∗b

λ (γ) and F̂DR
∗b

λ (γ) for any fixed λ. We use the Bootstrap

Percentile method identifying that value of λ corresponding to the minimum

size confidence interval at level 95%. We found that the two methods lead

approximately to the same value for λ1.

2.4 The False Nondiscovery Rate (FNR)

The pFDR (and the FDR) by itself don’t tell us what proportion of the

true hypotheses were detected (Genovese et al., 2002). For this purpose we

also need to quantify the size of a type II error (the acceptance of H0 when

is false) and to verify that the two kinds of error are reasonably small.

Let F be the proportion of alternative true declared false, that is, according

to Table 2.2, the number of false acceptance T among the W = (m−R) total

acceptances, the false non-discovery rate (FNR) is defined by

FNR = E(F ), (2.36)

where

F = T

W
= m1 − S
m −R = m −m0 − (R − V )

m −R . (2.37)

As we have seen in (2.12), the (2.36) can be also written:

FNR = E( T
W

∣W > 0)P (W > 0) (2.38)

and we can define the pFNR, in analogy with (2.12), as

pFNR = E( T
W

∣W > 0) (2.39)
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(Storey, 2003). Furthermore we obtain the following characterization of

pFNR.

Theorem 3.

Under the same hypotheses of the Theorem 1

pFNR(γ) = βπ1

Pr(P > γ) . (2.40)

Proof.

Applying Theorem 1 to T , W , H1 and P > γ in place of R, V , H0 and Γ

respectively we obtain that

pFNR(γ) = E( T
W

∣W > 0) = Pr(H1 is true∣P > γ).

Then

Pr(H1 is true∣P > γ) = Pr(P>γ∣H1 is true)Pr(H1 is true)
Pr(P>γ) = βπ1

Pr(P>γ) .

◻

From (2.40) it follows that pFNR ≥ FNR. Then we can notice that the

definition of the pFNR includes the value of β that is the probability of type

II error. If we suppose to know the distribution of the null and alternative

hypothesis, for example:

H0 ∶ Z ∼ N(0,1) and H1 ∶ Z ∼ N(2,1), where N(µ,σ2) is the Normal distri-

bution with mean µ and variance σ2, then

β = Pr(Z ≤ z1−γ ∣H1 is true) = Φ(z1−γ − 2),

where z1−γ is the 1 − γ-quantile of the Standard Normal distribution and Φ

is its cumulative distribution function.

In real problem, β is unknown and has to be estimated. For this reason

pFNR is more difficult to estimate that the pFDR. With the purpose to

find a good estimate of pFNR we can notice that, for unbiased test (where

43



CHAPTER 2. STATISTICAL ASSESSING OF ADJACENCY MATRICES

1 − β ≥ γ that is β ≤ 1 − γ) we can write the following inequality:

FNR ≤ pFNR ≤ (1 − γ)π1

Pr(P > γ) ,

then we can estimate π1 and Pr(P > γ) respectively:

π̂1 =
#{pi ≤ λ}

m
= R(λ)

m

P̂r(P > γ) = #{pi > γ}
m

= 1 − R(γ)
m

, (2.41)

then a conservative estimate of FNR can be written as:

˜FNR = (1 − γ)R(λ)
m −R(γ) . (2.42)

Nevertheless we found that (2.42) is too conservative. The discussions so far

have focused on type II error rate, however in addition to it, of importance is

also the power Pw. The power, in the context of multiple hypothesis testing,

can be defined as:

Pw = S

m1

= R − V
m −m0

=
(1 − V

R)R
(1 − m0

m )m = (1 −Q)R
(1 − π0)m

(2.43)

and

Pwa = E(Pw) = E ( S

m1

)

is the average power which is equal to Pr (P ≤ γ∣H1 is true) = 1−β for simple

hypothesis. Then we can propose the following estimate for Pwa from (2.43):

ˆPwa = (1 − p̂FDR)R
(1 − π̂0)m

. (2.44)

Let consider the complement to one of Pwa, the NDR:

NDR = 1 − Pwa,

N̂DR = 1 − ˆPwa, (2.45)
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according to Craiu and Sun (2008).

Furthermore we can see that the quantity in (2.45) can be a candidate as

estimator of β in (2.40). From (2.40), using (2.41) and (2.45) we obtain

p̂FNR = (1 − π̂0)mN̂DR
m −R = (1 − π̂0)m − (1 − p̂FDR)R

m −R (2.46)

which represents our proposal for estimating the pFNR.

In analogy with the method proposed by Storey (2002), we can calculate the

optimal value of the tuning parameter, minimizing the mean square error

(MSE) of p̂FNR as in (2.33):

λ2 = argminλ∈[0,1]{E[(p̂FNRλ(γ) − pFNR(γ))2]}. (2.47)

In this case the estimate used for MSE(λ) is

̂MSEpFNR(λ) =
1

B

B

∑
b=1

[p̂FNR∗b

λ (γ) − {p̂FNRλ(γ)}]2, (2.48)

where b = 1, . . .B. Similarly, we define the optimal tuning parameter for P̂wa

as:

λ3 = argminλ∈[0,1]{E[P̂waλ(γ) − Pwa(γ))2]} (2.49)

and

M̂SEPwa(λ) =
1

B

B

∑
b=1

[P̂wa∗bλ (γ) − {P̂waλ(γ)}]2. (2.50)

Besides, we propose an interval estimation of pFNR and Pwa, using the

Bootstrap Percentile method and finding a 1−α upper confidence interval by

taking the 1 − α quantile of the p̂FNR
∗1

λ2
(γ), . . . , p̂FNR∗B

λ2
(γ) as the upper

confidence bound and finding the α lower confidence interval by taking the

α quantile of P̂wa
∗1

λ3
(γ), . . . , P̂wa∗Bλ3

(γ) as the lower confidence bound.

Large Sample Results

Now we study the large sample properties of the proposal estimates for Pwa

and pFNR for a fixed rejection region. Recall the power as a function of
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type I error in (2.22) and the quantity in (2.24).

Theorem 4.

With probability 1:

lim
m→∞

{P̂waλ(γ)} =
γπ0/π1[1 − f(λ)] + 1 − β
π0/π1[1 − f(λ)] + 1

(2.51)

where γπ0/π1[1−f(λ)]+1−β
π0/π1[1−f(λ)]+1 ≅ 1 − β when g(λ) ≅ 1.

Proof. By the asymptotic behavior of π̂0(λ) seen in (2.25), of R(γ)
m in (2.26)

and of p̂FDRλ(γ) in (2.27), we obtain that

P̂waλ(γ) =
[1−p̂FDRλ(γ)]

R(γ)
m

1−π̂0(λ)
→ γπ0+(1−β)π1−γπ0f(λ)

1−π0f(λ)
=

= γπ0[1−f(λ)]+(1−β)π1

π0[1−f(λ)]+π1
= γπ0/π1[1−f(λ)]+1−β

π0/π1[1−f(λ)]+1

(2.52)

almost surely.

◻

Furthermore, from the previous result, it follows that, with probability 1:

lim
m→∞

{N̂DRλ(γ)} = lim
m→∞

{1 − P̂waλ(γ)} =
(1 − γ)[1 − f(λ)]π0/π1 + β

π0/π1[1 − f(λ)] + 1
(2.53)

where (1−γ)[1−f(λ)]π0/π1+β
π0/π1[1−f(λ)]+1 ≅ β when g(λ) ≅ 1.

Theorem 5.

With probability 1:

lim
m→∞

{p̂FNRλ(γ)} =
(1 − γ)π0[1 − f(λ)]

Pr(p > γ) + pFNR(γ) (2.54)

where the limit is ≅ pFNR when g(λ) ≅ 1.

Proof. By the asymptotic behavior of π̂0(λ) in (2.25), of R(γ)
m in (2.26) and

46



2.5. THE TRADE-OFF BETWEEN TYPE I ERROR RATE AND TYPE II
ERROR RATE IN MULTIPLE TESTS

of p̂FDRλ(γ) in (2.27), we obtain that:

p̂FNRλ(γ)) =
[1−π̂0(λ)]m−[1−p̂FDRλ(γ)]R(γ)

m−R(γ) =

= 1−π̂0(λ)−R(γ)/m+p̂FDRλ(γ)R(γ)/m
1−R(γ)/m →

→ 1−π0f(λ)−γπ0−π1+βπ1+γπ0f(λ)
Pr(p>γ) =

= π0(1−γ)−π0f(λ)(1−γ)+βπ1

Pr(p>γ) = (1−γ)π0[1−f(λ)]
Pr(p>γ) + βπ1

Pr(p>λ)

(2.55)

almost surely.

◻

2.5 The Trade-off between Type I Error Rate

and Type II Error Rate in multiple tests

The dependence between α and β for single hypothesis testing is well doc-

umented in the literature (Lehmann and Romano, 2005). In the context

of simple hypothesis testing, α is typically pre-specified at a small standard

level (e.g., α = 0.05, 0.01 or 0.001). Such a procedure controls the probability

of false rejection at the desired level α but leaves the power of the test and

hence the probability of a type II error to the mercy of the experiment, so

β is mainly discussed when design and sample size are of concern. In Fig-

ure 2.1 the problem of how to balance α against β is shown. We can notice

that when α decreases the probability of type II error increases. It seems

then reasonable that the choice of test should involve β in addition to α. In

this contest, there are several proposals of solution to balance the errors such

that

α ≤ β (2.56)

(Landenna et al., 1997). This inequality is commonly justified on the grounds

that the error of the first kind is of higher order of importance, and should

be controlled at the prescribed level.

Similar to the trade-off between α and β in the context of single hypothesis,

there is one between pFDR and pFNR for multiple comparisons. Untill now,
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Figure 2.1: Illustration of the trade-off between type I and type II error rates

however, such standard statistical practice is still challenging for multiple

hypothesis testing utilizing pFDR and pFNR, and the choice of pFDR

level seems to be somewhat arbitrary from study to study.

In the following we propose a method to balance the two types of error a

posteriori. Figure 2.2 shows the trade-off between pFDR and pFNR. We can

notice that the control of the pFDR alone is not sufficient, in analogy with

the case of the single hypothesis testing described before, if we reduce pFDR

there is an increase of pFNR. The rule to balance the two kinds of error

is to look at graph itself, considering the set of pairs (pFDR(γ), pFNR(γ))
and choosing a suitable pair such that:

pFDR ≤ pFNR (2.57)

in analogy with the (2.56). We can then increase the pFDR until when the

consequent decrease of pFNR is considered adequate. In this way we can

derive the corresponding value γ for the rejection region.

In the context of network analysis, the inequality (2.57) is due to the fact

that the error of putting a wrong link in the network is more serious than

the error of omitting an actual link. We can notice that there is not a unique

pair of (pFDR(γ), pFNR(γ)) satisfying the (2.57). For instance, a possible
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Figure 2.2: Illustration of the dependence between pFDR and pFNR for
multiple hypothesis testing

way to choose one pair of values, according to Lehmann (1958), is to assure a

pre-fixed relation between the errors pFNR = r(pFDR) where r = pFNR
pFDR ≥ 1

for the (2.57).

2.6 Interval estimation of pFDR, pFNR and

Pwa

In the following section we show some results with the proposed estimators

for pFDR, pFNR and Pwa seen previously. In particular we derive the

confidence intervals for them using the Percentile Bootstrap method, and we

evaluate their coverage probability.

2.6.1 Simulation Studies

For the sake of simplicity, we simulate multiple tests on correlation coef-

ficient,introduced in section 2.1, using its normal asymptotic distribution.
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We consider the {n × n} correlation matrix for each network, where n is the

number of nodes, and it has been fixed to 90. We performed m = (n
2
) =

4005 hypothesis tests of µ = 0 versus µ = 2 for independent random variables

Zi ∼ N(µ,1), i = 1, . . . ,4005, over B iterations (b = 1, . . . ,500). The null

hypothesis for each test is that µ = 0, so the proportion of Zi ∼ N(0,1) is

set to π0; hence the proportion of the alternative distribution N(2,1) is π1

(Storey, 2002). For each test the p-value is defined as pib = Pr{N(0,1) ≥ zi}
for the b-th iteration, where zi is the observed value of Zi.

The algorithm to estimate the FDR and FNR can be summarized through

the following steps:

1. for the m =m0 +m1 hypothesis tests (m0 true null hypotheses and m1

false null hypotheses), calculate their respective p-values p1,. . . ,pm;

2. for each iteration b calculate Qb = Vb
Rb

, Fb = m−m0−(Rb−Vb)
m−Rb

and Pw =
(1−Qb)Rb
(1−π0)m

where Vb = #{pib > γ} and Rb = #{pib ≤ γ} with rejection

region of interest [0, γ] and π0 =m0/m;

3. calculate pFDR = E[Q] as 1
B ∑

B
b=1Qb, pFNR = E[F ] as 1

B ∑
B
b=1Fb and

Pwa as 1
B ∑

B
b=1Pwb whereQ, F and Pw are calculated for each iteration

b = 1, . . . ,B;

4. estimate π0 and Pr(P ≤ γ) by

π̂0(λ) =
W (λ)

(1 − λ)m

and

P̂ r(P ≤ γ) = R(γ)
m

,

where R(γ) = #{pib ≤ γ} and W (λ) = #{pib > λ};

5. for any rejection region of interest, estimate pFDR(γ) by

p̂FDRλ(γ) =
π̂0(λ)(γ)

P̂ r(P ≤ γ)[1 − (1 − γ)m]
,
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pFNR(γ) by

p̂FNRλ(γ) =
(1 − π̂0)m − (1 − p̂FDR)R

m −R

and Pwa(γ) by

P̂waλ(γ) =
(1 − ˆpFDR)R

(1 − π̂0)m
for each λ in L = {0,0.05, . . . ,0.95};

6. for each λ ∈ L estimate the mean-square errors as

̂MSEpFDR(λ) =
1

B

B

∑
b=1

[p̂FDR∗b

λ (γ) − pFDR(γ)]
2

,

̂MSEpFNR(λ) =
1

B

B

∑
b=1

[p̂FNR∗b

λ (γ) − pFNR(γ)]
2

,

and

M̂SEPwa(λ) =
1

B

B

∑
b=1

[P̂wa∗bλ (γ) − Pwa(γ)]
2

.

Note that in this case we have the true value of pFDR, pFNR and

Pwa, instead, in real situations, we need to use a plug-in for them as

described in section 2.3.3;

7. set λ̂1 = argminλ∈L{ ̂MSEpFDR(λ)}, λ̂2 = argminλ∈L{ ̂MSEpFNR(λ)}
and λ̂3 = argminλ∈L{M̂SEPwa(λ)}. Our overall estimate of pFDR(γ),
pFNR(γ) and Pwa(γ) are respectively: p̂FDR(γ) = p̂FDRλ̂1

(γ),
p̂FNR(γ) = p̂FNRλ̂2

(γ) and P̂wa(γ) = P̂waλ̂3
(γ);

8. form a 1−α upper confidence interval for pFDR(γ) by taking the 1−α
quantile of the p̂FDR

∗1

λ̂1
(γ), . . . , p̂FDR∗B

λ̂1
(γ) as the upper confidence

bound and the same procedure has to be performed for pFNR(γ);
Pwa(γ) needs an α-lower confidence interval;

9. repeat the steps 1-8 1000 times to evaluate the coverage probability of

the confidence interval obtained for pFDR, pFNR and Pwa for a fixed

rejection region γ.
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π0 = 0.62 True Value Estimate MSE CI 95%
τ = 0.3 γ = 7.948544e − 06
pFDR 0.001523 0.061898 0.002097 [0,0.068212]
pFNR 0.373364 0.386439 0.000355 [0,0.388173]
Pwa 0.010266 0.006320 0.000007 [0.005936,1]
τ = 0.2 γ = 0.0022
pFDR 0.018778 0.018969 0.000001 [0,0.020516]
pFNR 0.325189 0.324503 0.000413 [0,0.340279]
Pwa 0.201324 0.199559 0.000211 [0.186782,1]
τ = 0.1 γ = 0.0794
pFDR 0.154537 0.164708 0.000033 [0,0.165681]
pFNR 0.153168 0.169471 0.000647 [0,0.173149]
Pwa 0.723407 0.729512 0.001270 [0.695118,1]

Table 2.3: Results of the simulation study from step 1 to step 8, with m0 =
2500 and m1 = 1505: true values of pFDR, pFNR and Pwa, their point
estimates, the MSE and the 95% confidence interval

In the Table 2.3 we show the results of the simulation study from step 1 to

step 8. We have reported the true values of pFDR, pFNR and the average

power Pwa, their point estimates, the MSE and the 95% confidence interval.

First we have simulated a typical brain network with m = 4005, m0 = 2500,

m1 = 1505 and π0 = 0.62. We have furthermore calculated these values for

different γ and associated the correspondent threshold τ on correlation coef-

ficient. Besides we have evaluated the coverage probability of the confidence

intervals, as we have seen in step 9 of the simulation, and we found that this

is always equal to 100%. As we can see from the last column of Table 2.3, the

confidence intervals at 95% level contain the true values of interest. We can

notice that this result of over coverage is due to the conservative nature of

the procedure considered. We found similar results with other values of m0

and m1. One example is shown in Table 2.4 with m0 = 1505 and m1 = 2500.
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π0 = 0.37 True Value Estimate MSE CI 95%
τ = 0.3 γ = 7.948544e − 06
pFDR 0.001042 0.014134 0.000224 [0,0.023029]
pFNR 0.621811 0.623932 0.000245 [0,0.635131]
Pwa 0.010212 0.010794 0.000004 [0.006721,1]
τ = 0.2 γ = 0.0022
pFDR 0.007023 0.007014 0.000000 [0,0.007591]
pFNR 0.571110 0.576322 0.000333 [0,0.585228]
Pwa 0.200224 0.182890 0.000115 [0.187253,1]
τ = 0.1 γ = 0.0794
pFDR 0.062954 0.062217 0.000006 [0,0.069030]
pFNR 0.333373 0.342642 0.000817 [0,0.346254]
Pwa 0.723172 0.713896 0.000343 [0.710298,1]

Table 2.4: Results of the simulation study from step 1 to step 8, with m0 =
1505 and m1 = 2500:true values of pFDR, pFNR and Pwa, their point
estimates, the MSE and the 95% confidence interval

2.7 Applications to brain networks

The aim of this section is to apply the proposed estimates for pFDR, pFNR

and Pwa to real data and to show how the methods seen above can be useful

in the application introduced in the previous chapter. First, we will calculate

the estimates in the context of a real network obtained from fMRI data and

we will see how to choose the threshold τ on correlation coefficient that pro-

vides a balance between pFDR and pFNR. Second, we will go back to the

application of the previous chapter and we will introduce another interesting

application of pFDR in the context of local network analysis. In particu-

lar, we will use q-values to create a ranking of the most central nodes in

the networks. Third we will investigate the differences on the inter-regional

connectivity between the control group and the bvFTD group. Here we will

use the multiple hypothesis testing approach to create a group differences

network. Finally we will propose a method to construct a group-based repre-

sentative network that allows determining the type of dynamic information

transfer of a brain network set.
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Estimate MSE CI 95%
τ = 0.3
pFDR 0.000135 0.000001 [0,0.000143]
pFNR 0.497559 0.000117 [0,0.516438]
Pwa 0.613299 0.000061 [0.600069,1]
τ = 0.2
pFDR 0.000882 0.000000 [0,0.000940]
pFNR 0.275375 0.000185 [0,0.296598]
Pwa 0.857937 0.000047 [0.846642,1]
τ = 0.1
pFDR 0.026522 0.000001 [0,0.028061]
pFNR 0.025096 0.000041 [0,0.037872]
Pwa 0.991938 0.000004 [0.988121,1]

Table 2.5: Results of the case study:the estimates of pFDR, pFNR and
Pwa, the MSE and the 95% confidence interval, calculated on a healthy
subject’s network

2.7.1 Point and interval estimation of pFDR, pFNR

and Pwa

In Table 2.5 the estimates of pFDR, pFNR and Pwa, the MSE and the

95% confidence interval, calculated on a healthy subject’s network, are re-

ported for some values of the threshold τ . In Figure 2.3, Figure 2.4 and

Figure 2.5 plots of p̂FDR, p̂FNR and P̂wa are respectively shown over a

range of threshold values, τ , which is the threshold applied on the correla-

tion coefficient in order to binarize the correlation matrix and it is related

to the rejection region of the test, γ, as we have seen in (2.2) and (2.1) .

In Figure 2.3 and in Figure 2.5 we can see that the pFDR and the average

power estimated decrease with the threshold and consequently they increase

with γ, because τ and γ are inversely related. In Figure 2.4 we can note

the opposite behavior for the pFNR estimated. This allows us to draw the

trade-off between the two types of error for real networks relative to healthy

subjects or patients, as illustrated in Figure 2.6. So, we can balance the

two kinds of error using the rule proposed in section 2.5, considering the set

of pairs ( ̂pFDR(γ), ̂pFNR(γ)) and choosing a suitable pair satisfying the
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Figure 2.3: Plot of p̂FDR over a range of τ values, with the respective 95%
upper confidence bound (dashed line)

Figure 2.4: Plot of p̂FNR over a range of τ values, with the respective 95%
upper confidence bound (dashed line)
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Figure 2.5: Plot of P̂wa over a range of τ values, with the respective 95%
lower confidence bound (dashed line)

Figure 2.6: Trade-off between p̂FDR and p̂FNR for three networks of
healthy subjects
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Estimate MSE CI 95%
τ = 0.14
pFDR 0.008 0.000001 [0,0.008426]
pFNR 0.08 0.00006 [0,0.10]
Pwa 0.96 0.000013 [0.955852,1]

Table 2.6: Example of balancing threshold (τ = 0.14): the estimates of
pFDR, pFNR and Pwa, the MSE and the 95% confidence interval, cal-
culated on a healthy subject’s network

(2.57). In this case we can consider τ = 0.14 as a balancing threshold with

respect to pFDR and pFNR (Table 2.6). In the previous chapter we have

seen that a crucial issue is the choice of threshold used to generate the ad-

jacency matrix from the correlation matrix. We have seen that, in previous

study, there was no unique way to choose τ , and, as a preliminary analysis,

one strategy adopted to solve this problem was to examine several possible

network configurations for a range of values of τ , exploring the consistency

of the results over this range. In this chapter, we have dealt with this prob-

lem with the multiple hypothesis testing approach This allows us not only

to associate a measure of the errors in terms of the pFDR and pFNR over

this range of values for τ but also to choose an optimal value of τ itself using

the balance rule mentioned above.

2.7.2 Local network analysis

Ranking of the nodes

Regional integrated network parameters Xnod (see section 1.4.3) of Deg(i),
Bet(i) and Eff(i) from all 90 examined cortical regions (i.e., including both

hub and non-hub brain regions) is compared between groups by using the

Wilcoxon-Mann-Whitney non-parametric test. Between-groups comparison

of regional network metrics on several brain regions involves the issue of mul-

tiple comparisons. We solve this problem controlling for the pFDR. This

approach allows us not only to control for multiple comparisons, but also

to rank brain regions according to their importance in explaining differences
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Brain Region Healthy controls Xnod Patients Xnod q-value
Superior temporal pole R 15.76 12.98 0.0087
Anterior cingulate cortex L 16.37 13.36 0.0087
Superior parietal lobe R 16.44 13.87 0.0087
Middle occipital gyrus R 16.81 14.43 0.0087
Superior temporal pole L 14.89 12.34 0.0087
Superior parietal lobe L 16.56 14.21 0.0087
Anterior cingulate cortex L 16.16 13.71 0.0087
Inferior temporal gyrus L 16.66 14.71 0.0105
Supplementary motor area R 16.32 14.15 0.0105
Insula L 15.81 14.07 0.0105
Caudate nucleus L 14.7 11.86 0.0105
Superior occipital gyrus L 16.5 14.45 0.0105
Superior orbital frontal gyrus L 15.74 12.73 0.0105

Table 2.7: Integrated nodal parameter (Xnod) for degree ranked by q-values
(R: right hemisphere, L: left hemisphere)

between groups. Ranking of significance is measured by the q-value seen in

section 2.3.2.

For instance the results of the comparison of the nodal degree between

healthy controls and patients with the behavioural variant of frontotemporal

dementia (bvFTD) are shown in Table 2.7. Correction for multiple compar-

isons is conducted by controlling for the positive false discovery rate (pFDR).

Brain regions were ranked according to their importance in explaining group

differences by means of the q-value. So the brain regions of Table 2.7 can

be considered different between controls and patients at a pFDR level given

by q̂ = 0.0105. The same analysis can be done with the Xnod of betweennes

centrality and local efficiency.

2.7.3 Inter-regional correlation analysis and group dif-

ferences network construction

In order to investigate differences in the brain functional organization be-

tween controls and patients, we study the inter-regional connectivity, simi-

larly to Supekar et al. (2008). For this purpose, as explained in details in
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Liang et al. (2006), we examined regional connectivity, looking at the cor-

relation matrices of the two groups. The Pearson’s correlation coefficient

represent the strength of the connectivity between pairs of brain regions.

The correlation coefficient values of 4005 pairs of anatomical regions are first

z-normalized and then compared between the two subject groups using a one-

tailed T-test. The correlation coefficients are transformed to z values using

Fisher ρ-to-z transformation 2 to improve normality (Fisher, 1915). One-

tailed T-test is used to test if there is a decrease of regional connectivity in

bvFTD group, with H0 ∶ µcontrolsij ≤ µpatientsij and H1 ∶ µcontrolsij > µpatientsij , where

µcontrolsij is the mean value of the z-normalized ρij for controls and µpatientsij is

the mean value of the z-normalized ρij for patients. This is another example

of a multiple comparisons problem similar to those we have seen above, so it

is useful to control for the pFDR.

The correlation values (z-normalized) of 90 pairs of anatomical regions are

significantly lower in the bfFTD group as compared to the control group with

pFDR < 0.01. In Table 2.8 we show the first connections between node i and

node j among the 90 pairs, ranked by q-values.

In Figure 2.7 a group differences network is shown illustrating the results

of the previous analysis, where the balls represent the nodes of the ranking in

Table 2.8. Whereas the links represent the inter-regional connectivity lost in

bvFTD patients. We propose this new kind of network showing the significant

differences in the inter-regional connectivity between healthy controls and

bvFTD patients.

2.7.4 Group representative network construction

Despite the utility of network science in providing insight into the infrastruc-

tural properties of a given subject’s brain, understanding these properties in

a group of subjects still presents challenges and necessitates the development

of comparison tools to focus on changes in complex brain function across

different cognitive and disease states (Simpson et al., 2012). A group-based

2The Fisher variance-stabilizing transformation is defined by z =
1
2

ln 1+ρ
1−ρ

=artanh(ρ)
where ‘ln’ is the natural logarithm function and ‘artanh’ is the inverse hyperbolic tangent.
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Node i Node j q-value

Insula R Globus pallidus R 0.0008
Anterior cingulate cortex R Middle occipital gyrus R 0.0019
Anterior cingulate cortex R Middle temporal pole L 0.0019

Insula L Superior temporal pole R 0.0019
Superior occipital gyrus L Paracentral lobule L 0.0019
Superior occipital gyrus R Paracentral lobule L 0.0019

Medial superior frontal gyrus L Middle temporal pole L 0.002
Insula R Superior temporal pole R 0.002

Supplementary motor area R Superior temporal gyrus L 0.002
Postcentral R Temporal Sup L 0.0029

Anterior cingulate cortex L Middle occipital gyrus R 0.0031
Medial superior frontal gyrus R Middle temporal pole L 0.0032

Heschl L Rectus L 0.0034
Rectus L Rolandic Oper L 0.004

Table 2.8: First pairs (node i and node j) of anatomical regions significantly
lower in the bfFTD group as compared to the control group, ranked by q-
values (R: right hemisphere, L: left hemisphere)

Figure 2.7: Group differences network: links represent the inter-regional
connectivity lost in bvFTD patients
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representative brain connectivity network can provide a graph that typifies

the complex structure of a set of brain networks and it can be useful to cap-

ture the network characteristics from a group of subjects’ brain networks,

serving as null networks against which other networks or network models

could be compared. Creating these group-based ‘representative’ networks is

a daunting challenge given the difficulties associated with accounting for the

inter-subject variability (Van Wijk et al., 2010), (Simpson et al., 2012). The

goal of these representative network techniques is to take a set of already con-

structed networks and produce a group network that typifies the topological

structure of the individual graphs. Hence, these methods are independent of

how the initial subject-level networks are constructed.

The first and most common method to generating a group-based represen-

tative functional network has been to take the mean of the functional con-

nectivity matrices of the subjects in a group and threshold this group mean

matrix to get a mean network (Meunier et al., 2009), (Zuo et al., 2011). Al-

though this approach is intuitive and computationally straightforward, the

resulting network may be influenced by one or more outlying functional con-

nectivity values (Simpson et al., 2012). Another similar approach taken by

researchers is to take the median of the functional connectivity matrices of

the subjects and threshold this group median matrix to get a median network

(Song et al., 2009). Furthermore, we propose an approach to creating group-

based representative networks utilizing the Fisher z-to-ρ transformation. In

this case the averaging is done across the individual entries of the matrices

containing the correlation coefficients z-normalized as seen in the previous

section. That is, first we calculate the mean value of the z-normalized corre-

lation matrices and then we apply the inverse of the Fisher transformation3.

This last approach provides more robustness to outlying connectivity values.

We introduce an example to see how this method works. For the sight of

simplicity we consider only the group of controls. First we consider the en-

tries of the correlation matrices ρ̂ij for each subject and we apply the Fisher

transformation, deriving a matrix with entries the resulting zij. Then we

3The inverse of the Fisher transformation is defined by ρ = exp(2z)−1
exp(2z)+1

=tanh(z), where

‘tanh’ is the hyperbolic tangent.
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Estimate MSE CI 95%
τ = 0.14
pFDR 0.026064 0.000001 [0,0.027238]
pFNR 0.038643 0.000025 [0,0.045257]
Pwa 0.955707 0.000032 [0.947384,1]

Table 2.9: Example of balancing threshold (τ = 0.14): the estimates of
pFDR, pFNR and Pwa, the MSE and the 95% confidence interval, cal-
culated on the control group representative network

calculate the mean of zij over the group, z̄ij, and we apply the inverse trans-

formation to obtain ρ̃ij. The resulting correlation matrix with entries ρ̃ij can

be used to construct a graph applying τ = 0.14 as a balancing threshold with

respect to pFDR and pFNR (Table 2.9). This threshold corresponds to that

calculated on the single subject network in Table 2.6.

As we have found the representative network of the controls, the same pro-

cedure can be also applied to different groups of patients.

2.8 Closing Remarks

In previous works (Van Wijk et al., 2010), the correlation matrices were con-

verted to an adjacency matrix by considering an arbitrary threshold. In this

chapter, a new method for the derivation of the adjacency matrix with a

suitable threshold is proposed using a multiple test on correlation coefficient

and offering a statistical evaluation of the error committed, considering the

problem of multiple comparisons. With at least one test performed for ev-

ery entry of the correlation matrix, some correction is needed to control the

error rates, but standard procedures for multiple hypothesis testing (e.g.,

Bonferroni correction) are known to be too conservative in this context. So

we have dealt with the problem of multiple comparisons using the method

based on the estimation of positive false discovery rate (pFDR) proposed by

Storey (2002). Furthermore we considered a similar measure involving false

negatives (type II errors), called the positive false negatives rate (pFNR),

we proposed new point and interval estimators for pFNR and a method to
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balance the two types of error. We demonstrated this approach using both

simulations and functional magnetic resonance imaging data providing finite

sample and large sample results for p̂FDR and p̂FNR.

Everything that we have discussed in this section lies under the assumption

that we are working with independent p-values. Even in case of dependence,

this approach can be fully applied due to the fact that the effect of depen-

dence is negligible if the number of hypothesis m is large for a large class of

dependence models (Storey, 2003). Also, in more general cases, such as with

dependence or in nonparametric scenarios, it is possible to implement very

similar approaches (Storey and Tibshirani, 2001).

We continued the applicative study introduced in the previous chapter utiliz-

ing such balanced networks to investigate the brain network characteristics,

we proposed a ranking of the most central nodes in the networks using q-

values (which are the pFDR analog of the p-values), we examined the differ-

ences on the inter-regional connectivity between the control group and the

patient (bvFTD) group. Moreover, we considered the multiple hypothesis

testing approach to create a group differences network. Finally, we proposed

a method to construct a group-based representative network that allows to

determine the type of connectivity of a brain network set.
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Chapter 3

Network Models

In previous chapters we reported that whole-brain connectivity analysis is

useful to understand how each regions of the brain interacts with each an-

other one. The complex interactions of these regions necessitates to study

the brain as a whole rather than just its individual parts. The application of

network and graph theory to the brain allows these whole-brain analyses and

helps uncover new insights into the function of the nervous system (Simp-

son et al., 2011), for example after having calculated the global and local

network measures it has been shown that the brain exhibits the small-world

properties (see sessions 1.3.4 and 1.4.3).

Another finding of the previous work is that network analysis might con-

tribute to detect abnormalities of network connectivity in different brain

disorders (see session 1.4).

In order to gain deeper insights into the complex neurobiological interactions

and changes that occur in many neurological diseases, methods that enable

assessing several properties simultaneously are needed given the statistical

dependencies among network measures described in Chapter 1. In this chap-

ter we will introduce the general theory of network model, in particular the

exponential random graph models (ERGMs) provide a statistical approach

to the assessment of how a set of interacting brain network features gives rise

to the global structure. We will illustrate the utility of ERGMs for modeling

and comparing complex whole-brain networks.
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3.1 Models for Networks Graphs

A model for a network graph is a collection

{Pθ(G) ∶ G ∈ G; θ ∈ Θ} (3.1)

where G is a collection of possible graphs, Pθ is a probability distribution

on G, and θ is a vector of parameters in the space Θ. There are different

graph models depending on the choice of P . Some approaches, for example,

let P (⋅) be uniform on G , but restrict G to contain only those graphs

G satisfying certain properties of interest. Other approaches induce P (⋅)
implicitly through the recurrent application of simple generative mechanism

(Kolaczyk, 2009).

To understand the logic of these models and their utility in the analysis

of the brain, it is helpful to introduce the concept of the observed network

that is the network data the researcher has collected and is interested in

modeling (Robins et al., 2007a). The observed network is one realization

from a set of possible network with similar characteristics (for example the

same number of nodes): an outcome of some stochastic process. In general

the stochastic process that generates the observed network is unknown and

the aim of the model is to suggest a plausible hypothesis for this process.

For instance, one research question may be whether in the observed network

there are significantly more, or less, structural characteristics of interest than

expected by chance. For example, it can be interesting to understand whether

the observed network shows a strong tendency to form clusters, over the

appearance of a number of clusters occurred at random. In this context this

characteristic (presence of triangles) is the outcome of a connectivity process.

In general, the structural characteristics in question helps shape the form of

the model. A statistical model for a network on a given set of nodes assigns

a probability to all possible networks on those nodes. As before a network

can be represented as a graph constituted by nodes and edges. For a given

model, the node set has to be fixed. The range of possible networks and their

probability of occurrence under the model are represented by a probability

66



3.1. MODELS FOR NETWORKS GRAPHS

distribution on the set of all possible graphs with this number of nodes (see

(3.1)). The observed network is a particular graph in this distribution and so

it has a particular probability. The parameter values to use are not known in

assigning probabilities to graphs in the distribution. The goal is to find the

best values (by estimating model parameters) using the observed network.

The maximum likelihood criterion is to choose parameter values in such a

way that the most probable degree of clusterization is the one which occurs in

the observed network. If we estimate a clustering parameter for the observed

network, and if we can be confident that this parameter is positive, we may

infer that there is more clusterization in the observed network than expected

by chance (Kolaczyk, 2009).

In the following we will discuss the most important categories of network

graph models used in the context of neuroimaging: the random networks,

the small-world models and the class of exponential random graph models.

3.1.1 Random Networks

The term random networks typically refers to a model specifying a collection

G and a uniform probability P (⋅) over a finite G. Random graph models

have been widely used for the precise analytical characterization of many of

the descriptive measures introduced in Chapter 1. As previously reported,

these models are used as term of comparisons to test some structural char-

acteristics in observed network graphs.

Consider the task of estimating a given characteristic η(G) of a network graph

G, based on a sampled version of that graph, G∗. G is assumed to have been

generated uniformly at random from a collection G, prior to obtaining G∗.

Inference on η should incorporate both randomness due to selection of G

from G and randomness due to sampling G∗ from G. If we are interested in

η(Gobs), where η is a structural characteristic of the observed graph (Gobs)
and we want to know if this property is unexpected in comparison to an

appropriate frame of reference, we can use random graph models to set up

such a comparison.

A collection of random graphs G is defined, and the value η(Gobs) is com-
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pared to the collection of values {η(G) ∶ G ∈ G}. If η(Gobs) is judged to be

extreme with respect to this collection, then there would be an evidence that

η(Gobs) is unusual. Formally, a random network is used to create a reference

distribution which, under the assumption of uniform likelihood of elements

in G , takes the form

Pη,G(t) = #{G ∈ G ∶ η(G) ≤ t}
∣G∣ . (3.2)

If η(Gobs) is found to be sufficiently unlikely under the distribution (3.2),

this is taken as evidence against the hypothesis that Gobs is a uniform draw

from G.

The problem is that we are not always able to explicitly enumerate all of the

elements of G, and therefore, we cannot calculate the probabilities in (3.2)

exactly. Rather, approximations to these probabilities are used. There are

analytical approximations for certain comparatively simple cases or Monte

Carlo simulation methods to obtain numerical approximations are employed.

The classical theory of random graph models, described in a series of papers

by Erdos and Renyi (1959, 1960, 1961), rests upon a simple model that places

equal probability on all graphs of a given order and size. Their model speci-

fies a collection GNv ,Ne of all graphs G = (V,E) with ∣V ∣ = Nv and ∣E∣ = Ne,

and assigns probability P (G) = (N
Ne

)−1
to each G ∈ GNv ,Ne, where N = (Nv

2
) is

the total number of distinct vertex pairs. Erdos and Renyi (1959) developed

formal probabilistic results concerning the characteristics of graphs G drawn

randomly from GNv ,Ne with respect to this P (⋅). A variant of GNv ,Ne is sug-

gested by Gilbert (1959), where a collection GNv ,p consists of all graphs G of

order Nv that may be obtained by assigning an edge independently to each

pair of distinct vertices with probability p ∈ (0,1). When p is a function of

Nv, and Ne ∼ pNv, these two classes of models are essentially equivalent for

large Nv (Bollobas, 2001).
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3.1.2 Small-World Models

Small-World Models are designed to mimic an observed property of the real

world. This type of model has been introduced by Watts and Strogatz (1998).

The interest in these models is largely due to their relevance to the topic of

communication: if a graph has this topology, it means that it would be able

to transmit information quickly across the network. Small worlds are rele-

vant, for example, to the spread of news, gossip, rumors; but they also have

been found to be of importance in the biological field, for instance, for the

spread of diseases, as in the case of human infectious diseases or for the in-

formation flow among the neurons in the brain.

In the case of the classical random graph model, we observe small distance

between nodes and a very little clustering. Instead many networks in the

real world display small distances between most nodes, but high levels of

clustering. Watts and Strogatz (1998) create a network graph with both the

properties, introduced above. They consider a generic graph G assumed to

be unweighted, simple (multiple edges between the same couple of nodes are

not allowed), connected (there exist at least one path connecting any cou-

ple of nodes) and sparse (Ne << Nv(Nv − 1)/2, i.e. only a few of the total

possible number of edges Nv(Nv − 1)/2 exist. The degree of a graph with

these properties must be small enough to be sparse but, on the other side,

it must be large enough to assure that there exist at least one path connect-

ing any couple of nodes. For a random graph these properties is satisfied if

Ne >> NvlnNv (Latora and Marchiori, 2001).

The mathematical characterization of the small-world behavior is based on

the evaluation of the two quantities we have defined in Chapter 1: the char-

acteristic path length pl(G) and the clustering coefficient cl(G). Small-world

networks are in between regular and random networks: they are highly clus-

tered like regular lattices 1, yet having small characteristics path lengths

like random graphs. Watts and Strogatz (1998) propose a one-parameter

model (the WS model) to construct a class of graphs G which interpolates

between a regular lattice and a random graph. The WS model is a method

1In a regular lattice each node is linked to its four immediate neighbors
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Figure 3.1: The rewiring procedure of the WS model interpolates between
a regular lattice and a random graph without altering the number of nodes
or edges. The regular lattice has Nv = 20 nodes, each connected to its 4
neighbors and a total number of edges Ne = 40. As the rewiring probability p
increases, the network becomes increasingly disordered. For p = 1 a random
graph is obtained

to produce a class of graphs with increasing randomness without altering

the number of nodes or edges. As we can see in Figure 3.1, the WS model

starts with a one-dimensional lattice with Nv vertices, Ne edges, and peri-

odic boundary conditions. Every vertex in the lattice is connected to its k

neighbors (4 in the Figure 3.1). The random rewiring procedure consists in

going through each of the edges in turn and independently with some prob-

ability p rewire it. Rewiring means shifting one end of the edge to a new

vertex chosen randomly with a uniform probability, avoiding multiple edges,

self-connections and disconnected graphs (Latora and Marchiori, 2003). In

this way it is possible to tune G in a continuous manner from a regular

lattice (p = 0) into a random graph (p = 1), without altering the average

number of neighbors. The behavior of pl(G) and cl(G) in the two limiting

cases is: for the regular lattice we expect pl(G) ∼ Nv/2k and a relatively

high clustering coefficient cl(G) = 3/4(k − 2)/(k − 1); for the random graph,

we expect pl(G) ∼ lnNv/ln(k − 1) and cl(G) ∼ k/Nv. It is interesting to

notice how regular and random graphs behave differently when we change

the size of the system Nv. If Nv increases, keeping fixed the average number
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Figure 3.2: Characteristic path length pl(G), and clustering coefficient pl(G)
for the class of graphs produced by the WS model with Nv = 1000 and k = 10.
As function of p the rewiring procedure interpolates between a regular lattice
(p = 0) and a random graph (p = 1), and produces the small-world behavior
for p in the range 0.01-0.1

of edges per vertex, we see that for a regular graph pl(G) increases with the

size of the system, while for a random graph pl(G) increases much slower,

only logarithmically with Nv. On the other hand, the clustering coefficient

cl(G) does not depend on Nv for a regular lattice, while it goes to zero in

large random graphs. From these two limiting cases one could argue that

short pl(G) is always associated with small cl(G), and long pl(G) with large

cl(G). Now we can come back to the WS model. To understand the co-

existence of small characteristic path length and high clustering, typical of

the small-world behavior, we can see the behavior of pl(G) and cl(G) as a

function of the rewiring probability p for a graph with Nv = 1000 and k = 10

in Figure 3.2.

Although in the two limiting cases large cl(G) is associated to large pl(G)
and viceversa, the numerical experiment reveals very interesting properties

in the intermediate regime: only few rewired edges (small p = 0) are sufficient

to produce a rapid drop of pl(G), while cl(G) is not affected and remains

equal to the value for the regular lattice. In this intermediate regime the

network is highly clustered like regular lattices and has small characteristic

path lengths like random graphs. These networks are named small worlds

in analogy with the small-world phenomenon empirically observed in social

71



CHAPTER 3. NETWORK MODELS

systems more than 30 years ago by the social psychologist Milgram (1967)

(Latora and Marchiori, 2003). The WS model is a way to construct networks

with the characteristics of a small-world. In Chapter 1, we have applied

this mathematical formalism to study the topological properties of real brain

networks.

3.1.3 Exponential Random Graph Models

In network modeling, the goal is to predict the joint probability that a set of

edges exists given a set of nodes in a network. In general, these edges are not

independent, and that is the challenge for both model specification and esti-

mation. ERGMs were developed to address the complex dependencies within

relational data structures and provide a way to represent them (Kolaczyk,

2009). In Chapter 1, it has been shown that there are many techniques that

measure properties of a network, of the nodes, or of subsets of nodes (e.g.,

small-worldness, centrality). These techniques are useful to describe and un-

derstand network features that might bear on particular research questions,

otherwise, in the following, we explain why a well-fitted model of an ob-

served network can be useful to improve descriptive results. A well-specified

stochastic model allows us to understand the uncertainty associated with ob-

served outcomes: we can learn about the distribution of possible outcomes

for a given specification of a model, or we can estimate, for given observed

data, the parameters of the hypothesized model from which the data may

have been generated. Statistical models also allow inferences about whether

certain network substructures are more commonly observed in the network

than might be expected by chance. Besides, once we have defined a proba-

bility distribution on the set of all graphs with a fixed number of nodes, we

can also draw graphs at random from the distribution according to their as-

signed probabilities, and we can compare the sampled graphs to the observed

one on any other characteristic of interest. So, in the contest of the brain

network analysis, ERGMs provide a statistically principled approach to the

assessment of how a set of interacting local brain network features gives rise

to the global structure and allow to explore several features simultaneously
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and to understand how they interact to form the global network architecture

(Simpson et al., 2011). Simple examples of these features include degree dis-

tributions, triangles (number of triangles in the network) and other higher

order cycles that lead to clustering. These observed network statistics are

properly regarded as outcomes, and the goal of the model is to specify the

process that leads to their joint distribution. The term used to indicated

them is also network statistics.

ERGMs can be applied on a single subject network in order to quantify the

relative significance of various network statistics, they allow asking specific

questions about processes that may give rise to the network architecture.

ERGMs can also be applied on a group representative network (see session

2.7.4) in order to create a network model for a particular group of subject, for

example with a particular disease, and to find the network statistics having

the most influential impact on overall functional brain network organization

in this group. Moreover group-based network comparisons can potentially

be performed by comparing the mean of the estimated model parameters

among groups of subjects via hypothesis testing or classification techniques

(Simpson et al., 2011). A suitable test to compare two groups can be em-

ployed. It is important to note that if one were to just compare the mean of

a estimated model parameter of a particular metrics among groups then the

potential confounding from the other metrics included in the model would

be inherently accounted for given that the estimates account for all other

metrics in the model.

It is important to underline that the use of network analysis and models

for comparing networks is not without challenges, the major difficulty arises

from the fact that graph measures and the network statistics depend on the

number of nodes and edges in the network. Van Wijk et al. (2010) propose

a review of advantages and disadvantages of approach commonly used to

compare networks, for instance fixing the threshold or the average degree.

The ERGM, also called p∗ class of models, was first discussed by Frank

and Strauss (1986) who viewed it as a generalization of model p1 introduced

by Holland and Leinhardt (1981). Frank and Strauss (1986) presented the
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general specification of p∗ and, in particular, discussed the Markov model, a

special case of p∗ model. Further developments of this family of models has

been given by Wasserman and Pattison (1996) and Pattison and Wasserman

(1999) who showed how a Markov parametric assumption provides just one of

many possible sets of parameters. Most of the initial investigations focused on

nondirected, single, binary links. In literature there are a lot of works which

present extensions to valued and multiple links (Pattison and Wasserman,

1999), (Koehly and Pattison, 2005). There are two different approaches to

derive the model : it could be derived from the Hammersley-Clifford theorem

(Besag, 1975) as a consequence of dependence graphs (Frank and Strauss,

1986) or it could be seen as a logistic regression model (Wasserman and

Pattison, 1996).

Robins et al. (2007a) summarize the steps to follow in using the model. The

first step implies a stochastic framework with a fixed node set. This means

that the link is assumed to be a random variable. For i and j, distinct mem-

bers of a set Ni of n nodes, there is a random variable Yij where Yij = 1

if there is a link from node i to node j, and where Yij = 0 if there is no

link. yij is specified as the observed value of the variable Yij and Y as the

matrix of all variables with y the matrix of observed links. We will restrict

the attention to binary edges. The second steps regards the proposal of a

dependence hypothesis, defining contingencies among the network variables.

This hypothesis embodies the local processes that are assumed to generate

the network links. For instance, edges may be assumed to be independent

of each other, that is, brain regions form connections independently of their

other links. This is not usually a very realistic assumption. The third step

refers to the form for the model. It is important to notice that well-specified

dependence assumptions imply a particular class of models (by the Hammer-

sley and Clifford theorem). Each parameter corresponds to a configuration

in the network, that is a subgraph structure for which there is a parameter

in the model (Robins et al., 2009). The model represents a distribution of

random graphs which are assumed to be built up from the patterns repre-

sented by the configurations. Step four is the reduction of the number of

parameters through homogeneity or other constraints. Finally the step five
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is the estimation and the interpretation of the model parameters, the sta-

tistical basis of the model permits inferences about which configurations are

important. In the following sections we discuss the steps introduced above.

Model specification

A discrete random vector Z is said to belong to an exponential family if its

probability mass function may be expressed in the form

Pθ(Z = z) = exp{θTg(z) − ψ(θ)} (3.3)

where θ ∈ Rp is a p × 1 vector of parameters, g(⋅) is a p-dimensional function

of z and ψ(θ) is a normalization term, ensuring that Pθ(⋅) sums to one over

its range. The class of discrete exponential families includes many familiar

distributions, such as the Binomial, Geometric, and Poisson. In the case

of continuous exponential families, where an analogous form of (3.3) holds

for probability density functions, for example the Gaussian and Chi-square

distributions. Exponential families all have a variety of useful algebraic and

geometric properties, making this class of distributions mathematically con-

venient for purposes of inference and simulation (Kolaczyk, 2009). Consider

G = (V,E) as a random graph. Let Yij = Yji be a binary random variable

indicating the presence or absence of an edge e ∈ E between two vertices i

and j in V . The matrix Y = [Yij] is thus the (random) adjacency matrix

for G. Denote by y=[yij] a particular realization of Y. More precisely, an

ERGM takes the form

Pθ(Y = y) = 1

κ
exp{∑

H

θHgH(y)} (3.4)

where: H is a configuration, which is defined to be a set of possible edges

among a subset of the vertices in G; gH(y) = ∏yij∈H(yij) and is therefore

either one if the configuration H occurs in y,or zero, otherwise; a non-zero

value for θH means that the Yij are dependent for all pairs of vertices i, j

in H, conditional upon the rest of the graph; κ = κ(θ) is a normalization
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constant,

κθ = ∑
y

exp{∑
H

θHgH(y)}. (3.5)

The summation in (3.4) and (3.5) is over all possible configurations H.

Parameter Constraints

There are several ways in which constraints on the parameters of ERGMs

may be applied. In the general form given by (3.4) the ERGM implies many

parameters. In order to define a model clearly, we need to reduce the number

of parameters. Some parameters need to be set to zero, equated or otherwise

constrained by introducing hypothesized constraints on the values of param-

eters associated with larger configurations (Snijders et al., 2006). Following

Frank and Strauss (1986), often a homogeneity assumption is imposed by

equating parameters when they refer to the same type of configuration. One

of the examples of homogeneity constraint is to propose a single tendency for

reciprocity across the entire network, by assuming that the reciprocity pa-

rameters for each possible reciprocated tie are all equal. Another method of

applying constraints may be obtained by equating parameters for isomorphic

configurations involving similar types of vertices.

Dependence Assumptions

As suggested by Frank and Strauss (1986), such a model implies a struc-

ture of dependence among the elements in Y, so it is fundamental to define

dependence structures for the random variables Yij because the entries of

adjacency matrix cannot be assumed to be independent. For example, the

simplest dependence assumption is the case of the Bernoulli Random Graph,

for any given pair of vertices, the presence or absence of an edge between

that pair is independent of the status of possible edges between any other

pairs of vertices. That is, for each pair (i, j), we assume that Yij is indepen-

dent of Yi′j′ , for any (i′j ′) ≠ (i, j). This assumption implies that θH = 0 for

all configurations H involving three or more vertices. In this case, the only

relevant functions gH are those of the form gH(y) = gij(y) = yij , and the
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ERGM in (3.4) reduces to

Pθ(Y = y) = 1

κ
exp{∑

i,j

θijyij}. (3.6)

This is another way to write that each edge i, j is present in the graph

independently with probability

pij =
exp(θij)

1 + exp(θij)
. (3.7)

This implies a model with N2
v parameters, which is likely far too overparam-

eterized. In order to reduce the total number of parameters, it is common

to impose an assumption of homogeneity across certain vertex pairs. For

example, assuming homogeneity across all of G, the condition: θi,j ≡ θ, for

all (i, j), yields

Pθ(Y = y) = 1

κ
exp{θN(y)}, (3.8)

where N(y) = ∑i,j yi,j = Ne is the number of edges in the graph and the

parameter θ is related to the probability of a edge being observed. The pa-

rameter θ is called the edge or density parameter. The (3.8) is, furthermore,

equivalent to the Erdos and Renyi model with probability p = exp(θ)
1+exp(θ) . There

are other possibilities for imposing homogeneity. Suppose that vertices are

known a priori to fall within either of two sets, say S1 and S2. If we impose

homogeneity within and between sets, we arrive at a model of the form

Pθ(Y = y) = 1

κ
exp{θ11N11(y) + θ12N12(y) + θ22N22(y)}, (3.9)

where N11(y) and N22(y) are the number of edges within sets S1 and S2,

respectively, and N12(y) is the number of edges between S1 and S2. Unfor-

tunately, assumptions of complete independence among possible edges are

untenable in practice. Furthermore there are situations that indicate that

Bernoulli-like random graphs lack the ability to reproduce many of the most

basic structural characteristics observed in most real-world networks. But

certain simple conditional independence assumptions may be used profitably

77



CHAPTER 3. NETWORK MODELS

to create a much richer class of models.

Frank and Strauss (1986) introduced the notion of Markov dependence for

network graph models, which specifies that two possible edges are dependent

whenever they share a vertex, conditional on all other possible edges. That

is, the presence or absence of i, j in the graph will depend upon that of i, k,

for a given k = j, even given information on the status of all other possible

edges in the network. A random graph G arising under Markov dependence

conditions is called a Markov graph. Under a suitable assumption of homo-

geneity, using the Hammersley-Clifford theorem, Frank and Strauss (1986)

shows that G is a Markov graph if and only if Pθ(⋅) may be expressed as

Pθ(Y = y) = 1

κ
exp{

Nv−1

∑
k=1

θkSk(y) + θτT (y)}, (3.10)

where S1(y) = Ne is the number of edges, Sk(y) is the number of k-stars

(a k-star is a tree, with one vertex of degree k, and k vertices of degree

1), for 2 ≤ k ≤ Nv − 1, and T (y) is the number of triangles. Note that the

statistics Sk in (3.10), and also T , can be expected to be correlated. For

example, more edges in G clearly allows for the possibility of more k-stars of

certain orders. Similarly, more k-stars, for a given k, means more k
′
-stars,

for k
′ < k. In this sense, we may view the θk, for increasingly larger k, as

successively higher-order effects in the model. The inclusion of lower-order

effects θk′ means that θk is the effect due to k-stars, adjusted for the quantity

of lower-order stars. Additionally, more k-stars means the potential for more

triangles, and the value θτ is therefore the effect of triangles, adjusted for the

levels of all k-stars. We can see from the nature of the statistics Sk and T

that the transition from the independence assumptions underlying Bernoulli

models to Markov dependence results in a model explicitly parameterized

to account for some effects of transitivity, something lacking in the models

introduced previously. In using Markov graph models, it has traditionally

been common practice to include star counts Sk no higher than k = 2, or

at most k = 3, by setting θ4 = . . . = θNv−1 = 0. But experience has shown

this practice to frequently produce models that fit quite poorly to real data.

Investigation of this phenomena has found it to be related to the issue of
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model degeneracy that we will discuss in the following. Otherwise, if we

include a sufficiently large number of higher order terms, there would be a

problem of model fitting. These problems are greater for network with more

nodes (Hunter, 2007).

A solution to this dilemma, proposed by Snijders et al. (2006) , is to impose a

parametric constraint of the form θk ∝ (−1)kλ2−k upon the star parameters,

for all k ≥ 2, for some λ ≥ 1. This tactic has the effect of combining all of

the k-star statistics Sk(y) in (3.1), for k ≥ 2, into a single alternating k-star

statistic of the form

AKSλ(y) =
Nv−1

∑
k=2

(−1)kSk(y)
λk−2

, (3.11)

and weighting that statistic by a single parameter θAKS that takes into ac-

count the star effects of all orders simultaneously. It may be shown by Hunter

and Handcock (2006) and by Hunter (2007) that the statistic AKSλ(y) is a

linear function of the geometrically weighted degree count, defined as:

GWDγ(y) =
Nv−1

∑
d=0

(e)−γdNd(y), (3.12)

where Nd(y) is the number of vertices of degree d and γ > 0 is related to λ

through the expression γ = log[ λ
(λ−1)]. So this approach in a sense attempts

to model the degree distribution, with choice of γ influencing the extent to

which higher-degree vertices are likely to occur in the graph G.A positive

estimate is evidence that the network contains a skewed degree distribution

with some higher degree nodes, while a negative parameter suggests that high

degree nodes are improbable, with a smaller variance between the degrees.

In other words, this parameter provides information about the spread of the

degree distribution. Moreover, a positive parameter suggests a preference

for connections between a larger number of low degree nodes and a smaller

number of higher degree nodes.

Besides Snijders et al. (2006) discusses a number of other similar statistics,

including a generalization of triadic structures based on alternating sums of
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k-triangles, which takes the form

AKTλ(y) = 3T1 +
Nv−2

∑
k=2

(−1)k+1Tk(y)
λk−1

. (3.13)

Here Tk is the number of k-triangles, where a k-triangle is defined to be a set

of k individual triangles sharing a common base. There is an equivalent for-

mulation of this definition, in terms of geometrically weighted counts of the

neighbors common to adjacent vertices, called the edgewise shared partner

parameters (GWESP) (Robins et al., 2009) (Hunter, 2007) .

A positive alternating k-triangle effect and a negative alternating k-star effect

together suggest a segmented network of multiple (but small) dense regions

connected by low density paths (Robins et al., 2007a).

Another similar statistics the alternating k-two-path effect (or alternating

2-path effect) is intended to assist with modeling localized multiple con-

nectivity in the network. By this we mean tendencies for redundant short

paths between pairs of nodes. A k-two path is a precursor to the transitiv-

ity construct represented by a k-triangle: the configuration is identical to a

k-triangle except that there is no requirement for an edge at the base of the

k-triangle. It represents k independent two-paths between two nodes.

Let the number of k-two paths in the graph be Uk. Then the alternating

2-path statistic is:

AK2Pλ(y) = U1 −
2U2

λ
+
Nv−2

∑
k=3

(−1)k−1Uk(y)
λk−1

. (3.14)

If the k-triangle effect is positive in the presence of the k-2-path parameter,

then there is evidence that transitivity in this network tends to occur be-

cause of the completion of the bases of k-triangles, rather than completion of

the sides. In other words, multiple connectivity in the form of independent

2-paths tends to lead to network closure. There is also an equivalent interpre-

tation of the parameter, the dyadwise shared partner parameter (GWDSP)

(Robins et al., 2009) (Hunter, 2007). Models involving the alternating k-star,

alternating k-triangle and alternating k-two path statistics may be viewed as

curved exponential family models (Hunter, 2007).
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Estimation method

The goal of applying a ERG model for a network consists in describing the

global features by a low number of local structures. To do it we need to

estimate the unknown parameters θ of a set of configurations g(y) and then

interpret them. In standard settings, with independent and identically dis-

tributed realizations, exponential family models are fit using the method of

maximum likelihood, and the resulting parameter estimates θ̂ are accompa-

nied by asymptotically confidence intervals and test statistics. In the con-

text of the ERGMs the maximum likelihood estimators (MLEs) θ̂H of the

parameters θH are well defined, Handcock (2003a) presents conditions for the

existence and uniqueness of the MLE for network models and he indicates

that many properties of MLE can be derived from the statistical exponential

family theory (Barndorff-Nielsen, 1978). The problem is that the calculation

of MLE is non-trivial and that an asymptotic theory for confidence intervals

and testing, taking into account the highly dependent nature of observations

in a network graph, has yet to be established (Kolaczyk, 2009).

Consider the general definition of an ERGM in (3.4). The MLE for the vector

θ = θH is defined as θ̂ = argmaxθl(θ), where l(θ) is the log-likelihood, which

has the following form common to exponential families,

l(θ) = θTg(y) − ψ(θ). (3.15)

Here g denotes the vector of functions gH and ψ(θ) = log k(θ). Alternatively,

taking derivatives on each side

∂l(θ)
∂θ

= g(y) − ∂ψ(θ)
∂θ

and using the fact that Eθ̂[g(Y)] = ∂ψ(θ)
∂θ , the MLE can also be expressed as

the solution to the system of equations

∂ψ(θ)
∂θ

= g(y)
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which is equivalent to

Eθ̂[g(Y)] = g(y). (3.16)

The problem is that the function ψ(θ) cannot be evaluated explicitly, as it

involves the summation in (3.5) over 2(
Nv
2
) possible choices of y, for each

candidate θ. Therefore, it is necessary to use numerical methods to com-

pute approximate values for θ̂. Two Monte Carlo approaches are commonly

used for this purpose, one based on the stochastic approximation of the op-

timization of the log-likelihood in (3.15), and the other using a method for

the stochastic approximation to solutions of systems of equations, applied

to those in (3.16) (Robins et al., 2007a). The first method, Markov Chain

Monte Carlo (MCMC) maximum likelihood estimation, derives from funda-

mental work of Geyer and Thompson (1992). Note that optimization of the

log-likelihood in (3.15) is equivalent to optimization of the logarithm of the

likelihood ratio

r(θ, θ(0)) = l(θ) − l(θ(0)) = (θ − θ(0))Tg(y) − [ψ(θ) − ψ(θ(0))], (3.17)

for arbitrary, fixed θ(0). Furthermore, we can note that:

exp{ψ(θ) − ψ(θ(0))} =

= ∑y exp{(θ − θ(0))Tg(y)}( exp{(θ
(0))T }g(y)

exp{ψ(θ(0))} ) =

= Eθ(0)[exp{(θ − θ(0))T}g(Y)].

(3.18)

Therefore, an approximation to the term ψ(θ) − ψ(θ(0)) in (3.17) can be

produced by:

• generating a Markov chain Monte Carlo sample Y1, . . . ,Yn from the

ERGM (3.4), under θ(0);

• approximating the expectation in (3.18) by the corresponding average

based on this sample;

• taking a logarithm of that average.
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The resulting approximation to the log-likelihood ratio will converge to its

target as n tends to infinity, and hence the optimum of this approximate log-

likelihood ratio will approximate the MLE θ̂ (Hunter and Handcock, 2006).

The second method utilizes the algorithm of Robbins and Monro (1951),

which may be viewed as a stochastic version of the Newton-Raphson algo-

rithm. Given a random vector Z, with distribution parameterized by a vector

θ, the Robbins-Monro algorithm allows for the solution in θ of the system of

equations Eθ[Z] = 0, through a sequence of iterations of the form

θ̂(i+1) = θ̂i − aiD−1
i Zi. (3.19)

Here the Zi are a sequence of random vectors for which the distribution of Zi,

conditional on Z1, . . . ,ZI−1, is that of Z at θ = θ̂(i); the ai are a sequence of

positive numbers tending to zero; and Di is a matrix playing the role of the

Hessian in the traditional Newton-Raphson algorithm. In the case of ai = 1
i

and Z distributed according to an exponential family, as in (3.3), the optimal

choice of Di is COVθ(Z), where this quantity is usually approximated. To

estimate the MLE θ̂, that solves the system of equations in (3.16), we set

Z = g(Y) − g(y), where Y is distributed according to (3.4) (Snijders, 2002).

For both of these methods of approximating the MLE, it is necessary to

simulate draws of Y from the ERGM in (3.4). One natural approach to this

task is to use the Gibbs sampler, a general Markov chain Monte Carlo method

for simulating from the joint distribution of a vector Z that utilizes only the

univariate conditional distributions of each element given all of the others.

For ERGMs, such conditional distributions have a particularly simple form.

Writing Y(−ij) to be all of the elements of Y except Y(ij) , the distribution

of Y(ij) conditional on Y(−ij) is Bernoulli and satisfies the expression

log[
Pθ(Yij = 1∣Y(−ij) = y(−ij))
Pθ(Yij = 0∣Y(−ij) = y(−ij))

] = θT∆ij(y), (3.20)

where ∆ij(y) is the change statistic, denoting the difference between g(y)
when yij = 1 and when yij = 0, which may be calculated in an efficient

manner. Various other MCMC methods are also possible (Snijders, 2002). A
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disadvantage of both of the methods above is their computationally intensive

nature. An alternative is to estimate θ by maximizing not the actual log-

likelihood (3.4), but rather the log-pseudo-likelihood

∑
{i,j}

logPθ(Yij = 1∣Y(−ij) = y(−ij)). (3.21)

This approach, originally proposed by Besag (1975) in the context of spa-

tial data analysis, and adapted for ERGMs by Strauss and Ikeda (1990),

will work best when dependencies among the elements of Y are relatively

weak. Unfortunately, in many network contexts this is not likely to be the

case. Nevertheless, pseudo-likelihood estimation is a method for obtaining

at least some rough sense of the value of θ̂ (Kolaczyk, 2009). Maximum

pseudo-likelihood estimation (MPLE) here is equivalent to logistic regression

of the elements of y on the design matrix formed by the vectors ∆ij(y), and

may thus be carried out using standard software (van Duijn et al., 2009).

The computational tractability of the pseudolikelihood function makes it an

attractive alternative to the full likelihood function and it has made ERGMs

computationally available. For this reason this approach has been the pri-

mary method of estimation, until the more recent development of MCMC

methods (Robins et al., 2007b) which try to overcome the limits of this meth-

ods. When the dependence among observations becomes stronger (the dyadic

dependence models), the statistical properties for the maximum pseudolike-

lihood estimators (MPLE) are not well understood and in practice MPLE

does not provide a good performance (van Duijn et al., 2009). In this case

the parameter estimates may be biased and it could be risky to interprete

standard errors from logistic regression output as though they are reasonable

estimates of the standard deviations of the pseudolikelihood estimators.

Model Degeneracy and Goodness of Fit

The concept of model goodness of fit is important and well developed in stan-

dard modeling contexts, such as linear modeling, but it is still not so well

developed in the context of network graph modeling (Kolaczyk, 2009). For
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ERGMs, the current practice in assessing goodness of fit is to first simulate

numerous random graphs from the fitted model and then compare high-level

characteristics of these graphs with those of the originally observed graph

(Hunter et al., 2008b), (Goodreau et al., 2008). If our model can generate

a distribution of networks that have consistent network measures with the

observed one we may say it is a good model. Otherwise, if the characteris-

tics of the observed network graph are too poor of a match to the typical

values arising from realizations of the fitted random graph model, then this

suggests systematic differences between the specified class of models and the

data, and therefore a lack of goodness of fit (Handcock et al., 2008).

The method proposed by Hunter et al. (2008b) and Goodreau et al. (2008)

consists of simulating many networks (at least 100) from the final coefficient

estimates and compare features of the observed network with the same fea-

tures of a set of simulated networks. If the original network is inconsistent

with the networks generated from the model, this suggests that the structure

of the network differs from those predicted by the model, and the model is

not fitted well. This method provides some limitations because it gives pos-

sibility to compare only a single outcome (i.e. number of edges) from the

simulations, so Handcock et al. (2008) propose graphical tests of goodness of

fit (the gof function). Moreover the authors compare their graphical meth-

ods for assessing goodness of fit with more traditional methods such as AIC

or BIC. Goodness of fit has been found to be particularly important where

ERGMs are concerned, due in large part to the issue of model degeneracy

(Kolaczyk, 2009). In this context the term is used to refer to a probabil-

ity distribution that places a disproportionately large amount of its mass

on a correspondingly small set of outcomes (Handcock, 2003a), (Handcock,

2003b).

A number of simple but originally popular Markov graph models have been

shown to be degenerate. A common case is where the ERGM places most

of its mass on either the empty graph, the complete graph, or a mixture of

the two, depending on the value of θ. None of these, of course, is likely to

be especially appropriate for modeling real data of any interest. In addition

to its defining lack of richness, model degeneracy also can lead to difficulties
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in fitting ERGMs. For any estimation procedure, it is very important that

the model is nondegenerate one, otherwise it is difficult to obtain satisfactory

convergence of parameter estimates. If degeneracy model is used for simula-

tion and MCMC likelihood inference, the approximations to the true model

will be very poor. Thus, for most applications we should seek to limit our

space of viable models.

In summary, model specification for ERGMs is clearly a non-trivial task

and one that should be approached in a manner closely informed by the

above issues, with goodness of fit diagnostics playing an important facili-

tating role (Kolaczyk, 2009). The problem of degeneracy and poor fitting

can be resolved using models based on recently developed statistics (like the

alternating k-stars and the alternating k-triangles mentioned above) which

have been proven to be more robust and very effective in representing real

network data. These statistics seem to capture high-order dependency struc-

ture in networks and to contain a lot of significant information about network

(Snijders et al., 2006), (Hunter, 2007).

3.2 Exponential Random Graph Modeling for

Complex Brain Networks

In this section we illustrate the utility of ERGMs for modeling brain net-

work. Chapter 1 reported descriptive analysis based on a specific feature of

the network such as characteristic path length or clustering coefficient. To

examine group differences based on one of these features, inferential studies

have been employed based on testing techniques. ERGMs provide an ap-

proach to explore several features simultaneously, to study their interactions

and to compare different groups of networks (Simpson et al., 2011).

Data used in this application include whole-brain functional connectivity net-

works for 55 normal subjects (mean age=41 years; range=20-65 years, 20/35

males/females) and 121 patients with a diagnosis of multiple sclerosis (MS)

(mean age=40 years; range=19-63 years, 44/77 males/females). Multiple

sclerosis (MS) is an inflammatory disease of the central nervous system in

86



3.2. EXPONENTIAL RANDOM GRAPH MODELING FOR COMPLEX
BRAIN NETWORKS

which the myelin sheaths around the axons of the brain and spinal cord are

damaged, leading to demyelination and a broad spectrum of signs and symp-

toms. MS affects the ability of nerve cells in the brain and spinal cord to

communicate with each other effectively. Almost any neurological symptom

can appear with the disease, and often progresses to physical and cognitive

disability.

Each network comprises 116 nodes corresponding to the 116 brain regions

(116 ROIs-Regions of Interest) defined by the Automated Anatomical Label-

ing atlas. Time series were extracted from each ROI by averaging the signal

of all voxels within that region. Bivariate correlations between each ROI pair

were obtained by calculating the Pearson’s correlation coefficient ρij between

ROIs time courses i and j. Correlation matrices of size {116×116}, obtained

from all study subjects, were thresholded deriving an adjacency matrix A

with entries:

Aij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if ρij ≥ τ
0, otherwise

A is computed putting the Aij elements to zero if ρij < τ and unity if ρij ≥
τ , where 0 < τ < 1 is a suitable threshold. This threshold is defined so

that the relationship between the number of nodes and the average node

degree Deg(G) is the same across different subjects (Deg(G) = k). From

a neurological point of view, for this particular pathology, it is advisable to

fix the average degree (Schoonheim et al., 2012). Consequently, using this

approach, the threshold varies from subject to subject.

3.2.1 ERGMs for a Brain Network

Exponential random graph models have the form (3.4).

In this contest Y is a {116 × 116} random symmetric adjacency matrix rep-

resenting a brain network from a particular class of networks, with Yij = 1 if

an edge exists between nodes i and j and Yij = 0 otherwise. Nodes represent

locations in the brain (e.g., ROIs) and edges represent functional connec-

tions between them. We statistically model the probability mass function

Pθ(Y = y) of this class of networks as a function of the pre-specified network
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features defined by the p-dimensional vector g(y). This vector of explanatory

metrics (features) consists of covariates that are functions of the network y

and can contain any graph statistic (e.g., number of paths of length two) or

node statistic, also called attributes (e.g., brain location of the node). The

parameter vector θ , associated with g(y), quantifies the relative significance

of the network features to explain the structure of the network taking into

account the contribution of all other network features in the model. More

specifically, θ indicates the change in the log odds of an edge existing for

each unit increase in the corresponding explanatory metric. If the θ value

corresponding to a given metric is large and positive, then the metric plays

a considerable role to explain the network architecture and is more preva-

lent than in the null model (random network with the probability of an edge

existing p = 0.5). Conversely, if the θ value is large and negative, then this

metric still plays a considerable role to explain the network architecture but is

less prevalent than in the null model. Consequently, inferences can be made

about whether certain local features are observed in the network more than it

would be expected by chance enabling hypothesis development regarding the

biological processes that produce these structural properties. The normal-

izing constant κ ensures that the probabilities sum to one. This approach

allows representing the global network structure by specified explanatory

metrics. The goal in defining g(y) is to identify metrics that summarize the

whole-brain network structure.

In Simpson et al. (2011) a subset of mathematically compatible explanatory

network metrics is defined (Saul and Filkov, 2007), (Handcock et al., 2008),

(Hunter and Handcock, 2006) and the most appropriate set of explanatory

metrics and a ‘best assessment’ ERGM for complex brain networks are pro-

vided. The potential explanatory metrics are chosen based on properties of

brain networks that are regarded as important in the literature. These met-

rics are analogous to typical brain network metrics (see Chapter 1) but have

been developed to be statistically compatible with ERGMs.

The geometrically weighted statistics discussed in Hunter et al. (2008b) help

address degeneracy issues described by Handcock (2003b) and in Rinaldo

et al. (2009).
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Here we use the Simpson’s overall ERGM for whole-brain networks with a

connectedness metric (Edges) 2, a clustering metric (GWESP) 3, and a global

efficiency metric (GWNSP) 4. That is,

Pθ(Y = y) = 1

κ
exp{θ1Edges + θ2GWESP + θ3GWNSP} (3.22)

to model a healthy control network and a patient network, we examine sev-

eral possible network configurations for Deg(G) = k, and we explored the

results over k = 4.5, k = 20, k = 45. We started from the degree fixed by

Simpson et al. (2011) and we explore other values for k that are closer to

the values used in the descriptive analysis by Supekar et al. (2008). To this

purpose we use the statnet package (Handcock et al., 2008), (Hunter et al.,

2008a) for the R statistical computing environment.

The ν parameters associated with geometrically weighted statistics are all

assumed to be fixed and known and set to ν = 0.75 based on preliminary

analyses as this value generally led to better fitting models.

Fitting of the ERGM is normally done with either Markov chain Monte

Carlo maximum likelihood estimation (MCMC MLE) or maximum pseudo-

likelihood estimation (MPLE) Robins et al. (2007a). Model fits with MPLE

are much simpler computationally than MCMC MLE fits and afford higher

convergence rates with large networks, but properties of the MPLE estima-

tors are not well understood, and the estimates tend to be less accurate

than those of MCMC MLE (van Duijn et al., 2009). Here MCMC MLE is

employed to fit the model, whereas MPLE fits is used as an appropriate al-

ternative in the case of computational limitations which can cause problems

of convergence. For this case we used the MCMC MLE to fit the networks

with fixed average degree k = 4.5 which is the same used by Simpson et al.

(2011) and for k = 20, whereas for k = 45 we used the MPLE.

2Number of edges in the network.
3Geometrically weighted edge-wise shared partner is a weighted sum of the number

of connected nodes having exactly i shared partners weighted by the geometric sequence
(1 − exp(−ν))i , where ν is a decay parameter.

4Geometrically weighted non-edge-wise shared partner is a weighted sum of the num-
ber of non-connected nodes having exactly i shared partners weighted by the geometric
sequence (1 − exp(−ν))i, where ν is a decay parameter.
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Estimate SE p-value
k = 4.5
Edges -4.79546 0.21427 < 1e − 04
GWESP 1.52919 0.09177 < 1e − 04
GWNSP -0.14301 0.11369 0.208
k = 20
Edges -2.22538 0.70118 0.001512
GWESP 0.99817 0.50068 0.046232
GWNSP -0.26140 0.02073 < 1e − 04
k = 45
Edges -5.27823 0.47417 < 1e − 04
GWESP 2.73056 0.21708 < 1e − 04
GWNSP -0.39355 0.01473 < 1e − 04

Table 3.1: ERGM estimates for a healthy control subject with
Deg(G)=k=4.5, 20, 45

The resulting model and its corresponding parameter estimates are displayed

in Table 3.1 where the results for a healthy control (HC) are reported and in

Table 3.2 where the results for a patient (RRMS) are reported.

These estimates quantify the relative significance of the given metric in

explaining the overall network structure. In order to test the significance of

the estimates a one sample T-test is used, as the distribution of the statistic

formed as the ratio of the estimate to its standard error is not known exactly,

but likely to approximate a T-Student distribution (Snijders, 2002).

According to Simpson et al. (2011), these three metrics have an impact on

overall functional brain network organization, the p-value is shown in Ta-

ble 3.1 and in Table 3.2. The number of functional connections (Edges) is

instrumental in information transfer while also playing a role in brain net-

work organization. The negative density (Edges) parameter indicates that

edges occur relatively rarely, especially if they are not part of higher order

structures such as triangles.

Clustering (GWESP) is another critical feature of brain network archi-

tecture that allows the efficient local processing of information. In this case

GWESP is an important metric in describing the structure of the subjects
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Estimate SE p-value
k = 4.5
Edges -4.81633 0.22254 < 1e − 04
GWESP 1.52429 0.10495 < 1e − 04
GWNSP -0.10789 0.10431 0. 03
k = 20
Edges -2.94445 0.42465 < 1e − 04
GWESP 1.17885 0.13826 < 1e − 04
GWNSP -0.23452 0.16260 0.03
k = 45
Edges -3.53978 0.39874 < 1e − 04
GWESP 1.79015 0.18368 < 1e − 04
GWNSP -0.34945 0.01664 < 1e − 04

Table 3.2: ERGM estimates for a RRMS patient with Deg(G)=k=4.5, 20,
45

network given the larger absolute value of the parameter estimate. The posi-

tiveness of the estimate associated with GWESP indicates that an edge that

closes a triangle is more likely to exist than it would by chance (i.e., the

network has more clustering than a random network where the probability

of an edge is p = 0.5). The consistently negative θ3 values associated with

GWNSP indicate that if two brain areas are not functionally connected, they

are less likely to have shared connections with other regions than they would

by chance. That is, two regions are less likely than by chance to have a

2-path as the shortest path between them. Speculatively, this may result

from the brain having direct connections when necessary, but allowing for

slightly longer global connections (3-paths, etc.) to maintain efficiency oth-

erwise (Simpson et al., 2011).
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Estimate SE p-value
k = 4.5
Edges -4.04274 0.10410 < 1e − 04
GWESP 1.36812 0.07549 < 1e − 04
GWNSP -0.26482 0.05207 < 1e − 04
k = 20
Edges -3.25313 0.41328 < 1e − 04
GWESP 1.32551 0.16515 < 1e − 04
GWNSP -0.19023 0.0641 0.00303
k = 45
Edges -5.26580 0.41741 < 1e − 04
GWESP 2.53627 0.19288 < 1e − 04
GWNSP -0.31301 0.01362 < 1e − 04

Table 3.3: ERGM estimates for the healthy controls representative network
with Deg(G)=k=4.5, 20, 45

3.2.2 ERGMs for a Group Representative Brain Net-

work

Group-based brain connectivity networks have great appeal for researchers

interested in gaining further insight into complex brain function and how

it changes across different mental states and disease conditions. Viable ap-

proaches to this task must engender networks that capture the constitutive

topological properties of the group of subjects’ networks that it is aiming to

represent (Simpson et al., 2012).

In Chapter 1 we have proposed an approach to creating group-based repre-

sentative networks utilizing the z-to-ρ transformation, described in section

2.7.4. In this section we will model the patient representative network and

the healthy controls representative network using the model in (3.22). Its cor-

responding parameter estimates are displayed in Table 3.3 and in Table 3.4 .

This approach could be useful to explore which network metrics best charac-

terize a group of brain networks. We can notice that the results are consistent

with those reported Table 3.3 and Table 3.4 for a single subject network.

92



3.2. EXPONENTIAL RANDOM GRAPH MODELING FOR COMPLEX
BRAIN NETWORKS

Estimate SE p-value
k = 4.5
Edges -3.93314 0.19331 < 1e − 04
GWESP 1.52429 0.10495 < 1e − 04
GWNSP -0.28507 0.05424 < 1e − 04
k = 20
Edges -2.58034 0.39183 < 1e − 04
GWESP 1.00088 0.12338 < 1e − 04
GWNSP -0.27936 0.14138 0.0482
k = 45
Edges -4.72848 0.39039 < 1e − 04
GWESP 2.27267 0.18025 < 1e − 04
GWNSP -0.31619 0.01396 < 1e − 04

Table 3.4: ERGM estimates for the RRMS representative network with
Deg(G)=k=4.5, 20, 45

3.2.3 ERGMs to compare two Groups of Networks

Once the most appropriate statistics have been established, parameter pro-

files (θ) can be utilized to classify and compare whole-brain networks.

The following analysis includes ERGM fits to thresholded networks with de-

gree fixed as described in the introduction of this section. The parameter

profile comparisons require the use of the same set of explanatory metrics for

all networks (due to metric interdependencies) and same number of nodes

for all networks.

Group-based network comparisons can potentially be performed by com-

paring the mean of the estimated θ1, θ2, and θ3 values among groups via

hypothesis testing or classification techniques (Simpson et al., 2011). One of

the advantage of this analysis is that if we want to compare, for instance,the

mean of the estimated θ1 (Edges) values among groups, potential confound-

ing from the GWESP and GWNSP would be inherently accounted.

In the hypothesis testing framework one can exploit the fact that the θ̂s are

approximate MLEs and thus asymptotically have a Gaussian distribution.

For this applicative study, first a F test to verify the equality of variances

and then a T-test can be employed in order to elucidate biologically inter-
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HC SM
Mean SE Mean SE p-value

k = 4.5
θ1 (Edges) -4.88 0.49 -4.9 0.41 0.7
θ2 (GWESP) 1.68 0.26 1.71 0.27 0.4
θ3 (GWNSP) -0.15 0.09 -0.16 0.08 0.3
k = 20
θ1 (Edges) -3.44 0.74 -3.69 0.71 0.03
θ2 (GWESP) 1.65 0.3 1.75 0.30 0.04
θ3 (GWNSP) -0.29 0.05 -0.28 0.05 0.7
k = 45
θ1 (Edges) -4.36 1.42 -4.9 1.82 0.04
θ2 (GWESP) 2.17 0.65 2.37 0.85 0.08
θ3 (GWNSP) -0.35 0.04 -0.37 0.06 0.06

Table 3.5: Results of ERGM parameter estimate comparisons between
healthy controls (HC) and multiple sclerosis (MS) patients with different
average degree Deg(G)=k=4.5, 20, 45

esting differences between the two groups.

Here we implement the Simpson’s best assessment ERGM from equation

(3.22) to illustrate its utility for comparing groups of networks. We imple-

ment the model for each of the 176 subjects (55 healthy controls and 121

patients with multiple sclerosis). The aim is to assess if there were any dis-

cernible differences between controls and patients. The results of this analysis

are exhibited in Table 3.5 . In particular in Table 3.5 we observe that, at

Deg(G) = 20, the two groups differ significantly in θ1, with the SM group

having a more negative value. An increased number of edges in MS patients

compared with controls represents a tendency towards an increased func-

tional connectivity in Ms patients, in the attempt to compensate structural

damage due to demyelination. Moreover the two groups significantly differ

in θ2: in MS patients θ2 is positive and higher than in HC group denoting a

higher tendency to clusterization.
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3.3 Closing Remarks

The general theory of network model and, in particular, exponential random

graph models (ERGMs) are introduced in the first part of this chapter.

In the second part, a particular assessment of ERGMs for whole-brain net-

works has been used to model a healthy control and a patient network. Ap-

plying different assessments of this analysis provides a way of exploring which

set of features is the most important in explaining the global architecture

of the brain network. In this sense an important perspective could be the

development of novel explanatory network metrics in order to define more

appropriate model settings.

Furthermore the ERGM has been applied to a group representative brain

network: this approach is able to capture the network characteristics from a

group of subjects. These representative networks can serve as null networks

against which other networks can be compared, as well as a visualization tool

and as a means to define properties of network metrics in a group (Simpson

et al., 2012).

Finally, group-based network comparisons have been performed by compar-

ing the mean of the estimated parameters between healthy controls and pa-

tients with multiple sclerosis via hypothesis testing. This application has

shown the utility of ERGMs to characterize change of functional network

properties in the context of this disease.

Another important perspective is that ERGMs can be applied in medical

prediction problems,in particular, to characterize features of the pathologi-

cal brain. As shown above, healthy controls and multiple sclerosis data can

be used to establish which variables are influential in predicting the given

outcome (Y . They can then be measured for a new patient, through plac-

ing in ERGM model, to calculate the probability of given outcome. For

instance, we are interested in understating if a new subject can be classified

as a patient (MS) given an observed outcome, that is Pr(MS∣Y = y). Let

Pr(Y = y∣MS) = ERGM1(y), Pr(Y = y∣MS) = ERGM0(y) and Pr(MS)
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be the probability of occurrence of the disease, then

Pr(MS∣Y = y)
Pr(MS∣Y = y)

= Pr(Y = y∣MS)Pr(MS)
Pr(Y = y∣MS)Pr(MS)

. (3.23)

In this way we are able to know when Pr(MS∣Y = y) > Pr(MS∣Y = y),
because this relation is verified if and only if

Pr(Y = y∣MS)Pr(MS)
Pr(Y = y∣MS)Pr(MS)

= ERGM1(y)Pr(MS)
ERGM0(y) [1 − Pr(MS)] > 1. (3.24)
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The brain can be described as a complex system and modeled as a network

where the vertices are brain regions and edges represent the interactions be-

tween them. An accurate description of the architecture and a characteriza-

tion of the network properties can be important to understand the functional

and structural connectivity of the brain. In this context the network analysis

describes complex systems by quantifying properties of network representa-

tion.

In this work, the basic terminology and notation for graphs were discussed

and the network analysis was applied to a particular case study in order to

investigate the structure and the characteristics of brain networks and to

provide new measures to quantify differences between patient groups. In our

study, we quantified this difference by using metrics of graph theory, in order

to explore the difference of brain functional connectivity between healthy sub-

jects and patients with a diagnosis of behavioural variant of frontotemporal

dementia (bvFTD). bvFTD is a clinical syndrome caused by the degeneration

of the frontal and temporal lobes of the brain and it is the second-most com-

mon dementia after Alzheimer’s disease. To this purpose we measured brain

network connectivity with functional magnetic resonance images (fMRI) at

resting state, i.e., with subjects lying still in the scanner and thinking noth-

ing in particular. Global and local network characteristics were explored by

assessing the principal measures of graph theory, which are able to detect

various aspects of functional connectivity, e.g. quantify importance of brain

regions, characterize patterns of local anatomical circuitry, test resilience of

networks to insult and so on. In order to characterize the global organization
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of brain networks, the average degree, the global efficiency, the clustering

coefficient and the characteristic path length were adopted. Global network

architecture subjects was quantified in terms of small-worldness, comput-

ing the normalized clustering coefficient and the normalized characteristic

path length. Most of graph theoretical metrics were found to be signifi-

cantly altered in bvFTD patients with respect to healthy controls and, in

both controls and bvFTD patients, small-worldness properties were verified.

Moreover local network measures were calculated in order to identify which

brain regions could be considered ‘hubs’, i.e., regions interacting with several

other brain areas, thus facilitating functional integration. Hubs are identified

on the basis of their centrality in the network. To this aim, we calculated

two metrics of centrality: the degree and the betweenness centrality. This

applicative study confirmed that complex network analysis can be used to

explore connectivity relationships in individual subjects and to explore con-

nectivity differences between subject groups. By analyzing fMRI fluctuations

during resting state condition, we have demonstrated that bvFTD condition

induced changes in global and local brain functional connectivity in line with

the expected neuropathological alterations. Global functional network or-

ganization was altered in bvFTD patients, suggesting a loss of efficiency in

information exchange between brain areas. Moreover, the local network anal-

ysis reveals that the altered brain regions are mainly located in the frontal

lobe (including the anterior cingulate cortex), temporal lobe and basal gan-

glia that are closely associated with the expected neuropathology of bvFTD.

In the second part of this work, the adjacency matrix has been constructed

with an original methodology involving the problem of multiple comparisons.

To simplify analysis, networks are often reduced to a binary (undirected)

form, through an adjacency matrix. The correlation matrices are typically

converted to a graph by considering a threshold τ , to create an adjacency ma-

trix. In previous works, there was no unique way to choose τ , so, the possible

network configurations were examined by constructing graphs for a range of

values of τ within which the consistency of the network characteristics was

explored. In this context, we proposed an innovative methodology for the
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derivation of the adjacency matrix using a suitable threshold, performing a

multiple test on correlation coefficient. Then we offered a statistical evalua-

tion of the error committed, considering the problem of multiple comparisons.

A correction is needed to control the error rates, but standard procedures

for multiple hypothesis testing (e.g., Bonferroni correction) are known to be

too conservative. So we have dealt with the problem of multiple compar-

isons using the method based on the estimation of positive false discovery

rate (pFDR) proposed for the first time by Storey (2002). Furthermore we

considered a similar measure involving false negatives (type II errors), called

the positive nondiscovery negatives rate (pFNR), we proposed new point

and interval estimators for pFNR and a method to balance the two types of

error. We demonstrated this approach using both simulations and fMRI data

providing finite sample and large sample results for p̂FDR and p̂FNR. We

reported some results with the proposed estimators for pFDR, pFNR and

the average power (Pwa). In particular we derived the confidence intervals

for them using the Bootstrap method, and we evaluated their coverage prob-

ability. We showed the results of the simulation study, reporting the true

values of pFDR, pFNR and the average power Pwa, their point estimates,

the MSE and the 95% confidence interval. First we have simulated a typical

brain network and calculated these values for different rejection regions and

associated the correspondent threshold τ on correlation coefficient. Then we

evaluated the coverage probability of the confidence intervals and we found

that this is always equal to 100%. We found similar results with other brain

network simulations. Furthermore we applied the proposed estimates for

pFDR, pFNR and Pwa to real data. We calculated the estimates in the

context of a real network obtained from fMRI data and we described how

to choose the threshold on correlation coefficient that provides a balance be-

tween pFDR and pFNR. We continued the applicative study introduced in

the previous chapter utilizing such balanced networks to investigate the brain

network characteristics, we proposed a ranking of the most central nodes in

the networks, using q-values, which are the pFDR analog of the p-values,

we examined the differences on the inter-regional connectivity between the

control group and the patient (bvFTD) group. We reported the results of the
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comparison of the nodal degree between healthy controls and patients with

the behavioral variant of frontotemporal dementia. Brain regions were ranked

according to their importance in explaining group differences by means of the

q-value. Moreover we considered the multiple hypothesis testing approach to

create a group differences network. We proposed this new kind of network

showing the significant differences in the inter-regional connectivity between

healthy controls and bvFTD patients. Finally, we proposed a new method to

construct a group-based representative network that allows to determine the

type of connectivity of a brain network set and we showed an example to see

how this method works, considering the group of controls. As we have found

the representative network of the controls, the same procedure can be also

applied to different groups of patients. A group-based representative brain

connectivity network can provide a graph that typifies the complex structure

of a set of brain networks and it can be useful to capture the network char-

acteristics from a group of subjects’ brain networks, serving as null networks

against which other networks and network models could be compared.

In the third part of this work, the general theory of network model and

exponential random graph models (ERGMs) were introduced. A particu-

lar assessment of ERGMs for whole-brain networks has been used to model

a healthy control and a patient network. Data used in this application in-

cluded whole-brain functional connectivity networks for healthy subjects and

patients with a diagnosis of relapsing-remitting multiple sclerosis (RRMS).

We used the ERGM for whole-brain networks with a Connectedness metric

(Edges), i.e., the number of edges in the network, a Local Efficiency met-

ric, i.e., the geometrically weighted edge-wise shared partner (GWESP) and

a Global Efficiency metric, i.e., the geometrically weighted non-edge-wise

shared partner (GWNSP), to model a healthy control network and a pa-

tient network, and we examined several possible network configurations. We

displayed the resulting model and its corresponding parameter estimates.

Furthermore we applied the ERGM to a group representative brain net-

work: this approach is able to capture the network characteristics from a

group of subjects. These representative networks can serve as null networks
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against which other networks can be compared, as well as a visualization

tool and as a means to define properties of network metrics in a group. We

demonstrated that the three metrics, considered above, have an impact on

overall functional brain network organization. Finally, group-based network

comparisons have been performed by comparing the mean of the estimated

parameters among groups via hypothesis testing. This application has shown

the utility of ERGMs in the clinical context, for understand neurological pro-

cesses (represented by the explanatory network metrics) that can play a role

in different diseases. We observed that, in a particular network configura-

tion, the two groups differed significantly in the Edegs coefficient, with the

HC group having a more negative value. Furthermore the two groups signifi-

cantly differed in GWESP coefficient, which, in RRMS patients was positive

and higher than in control group denoting a higher tendency to clusterization.
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