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SMOOTH BACKFITTING WITH R

Smooth Backfitting with R
by Alberto Arcagni, Luca Bagnato

The Smooth Backfitting Estimator (SBE) for additive
models increases the estimation performances of the
classical Backfitting Estimator. While for Backfitting
many code has been proposed no usable programs
for SBE are available. In this paper the packagesBF
for Smooth Backfitting using the Nadaraya-Watson
estimator is presented. Some simulations are pro-
vided in order to test the proposed program. The
manual of package sBF, including its functions, is
given at the end of the paper.

Introduction

Additive models are a nonparametric multiple re-
gression technique which allows to study the influ-
ence of different covariates separately. In particular,
an additive model focuses on the estimation of the
following regression model:

E(Y|X = x) = m(x),

with m(x) = m0 +
d

∑
j=1

mj

(

xj

)

,
(1)

where X = (X1, X2, . . . , Xd) represents the covariates
and Y the dependent variable. For identification it is
usually assumed E

[

mj

(

Xj

)]

= 0 for all j = 1,2, . . . ,d,
so m0 = E(Y). Due to its structure such a model is
very flexible and at the same time enables to over-
come the problem known as curse of dimensionality
(Bellman, 1961).

Model (1) was first studied in the context of
input-output analysis by Leontief (1947) who called
it additive separable. Additive models were intro-
duced in the statistics literature at the beginning of
the ’80s and they led to several important results
either practical and theoretical. Buja et al. (1989)
and Hastie and Tibshirani (1990) provide a good
review about additive models including estimation
algorithms like Backfitting (Opsomer and Ruppert,
1997) and Marginal Integration (Linton and Nielsen,
1995). The SBE method, introduced by Mammen
et al. (1999), consists of a more sophisticated version
of the classical Backfitting but, as shown by Nielsen
and Sperlich (2005), the SBE is more efficient, robust
and easier to calculate.

Smooth Backfitting

Considering model (1), the Nadaraya-Watson SBE
{m̃0, m̃1 (x1) , . . . , m̃d (xd)} is defined as the minimizer

of the smoothed sum of squares:

∫ n

∑
i=1

[Yi− m̄0 − m̄1 (x1)− · · · − m̄d (xd)]
2 ·

·
d

∏
j=1

Kh

(

xj − Xij

)

dx ,

(2)

where i = 1, . . . ,n denotes the observations and j =
1, . . . ,d the covariates (or the directions) that are take
in consideration. The minimization runs over the ad-
ditive functions m̄j

(

xj

)

and the constant m̄0 with:

∫

m̄j

(

xj

)

p̂j (x)dx = 0 ,

where p̂j (x) =
∫

p̂ (x)dx−j (x−j denotes the vector x
without the j-th component) is the marginal of the
density estimate:

p̂(x) = n−1
n

∑
i=1

d

∏
l=1

Kh (xl − Xil) . (3)

After some basic algebra and standard theory, the so-
lution related to the minimization problem in (2) can
be obtained by solving the following system of equa-
tions (j = 1, . . . ,d) :

m̃j = m̂j

(

xj

)

− ∑
k 6=j

∫

m̃k (xk)
p̂jk

(

xj, xk

)

p̂j

(

xj

) dxk − Ȳ, (4)

∫

m̃j

(

xj

)

p̂j

(

xj

)

dxj = 0 , (5)

where

m̂(x) =

n

∑
i=1

d

∏
l=1

Kh (xl − Xil)Yi

n

∑
i=1

d

∏
l=1

Kh (xl − Xil)

(6)

is a sort of pre-smoother for the conditional mean in
(1) and

p̂jk

(

xj, xk

)

= n−1
n

∑
i=1

Kh

(

xj − Xij

)

Kh (xk − Xik) (7)

is the two dimensional marginal of the full density

estimate p̂(x). Using
p̂jk(xj ,xk)

p̂j(xj)
in the equation (4),

the curse of dimensionality can be eluded since only
one and two dimensional marginal densities must be
computed (Nielsen and Sperlich, 2005, pag. 47). The
proposed R package follows the iterative algorithm
provided by Nielsen and Sperlich (2005). Hereby the
algorithm is quickly recalled.

We want to estimate each additive components
on a predeterminate grid of point i = 1, . . . , M. Thus
the generic point where the functions mj(·), j =
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1, . . . ,d, will be estimated is x0
i =

(

x0
i1, . . . , x0

id

)

where

x0
ij belong to the support of Xj for all j. Suppressing

the index i of x0
ij, j = 1, . . . ,d, the algorithm works as

follows:

1. Set r = 0, and calculate m̃0 = n−1 ∑
n
i=1 Yi and si-

multaneously calculate the functions m̂j(·) and

p̂jk

(

x0
j ,x0

k

)

p̂j

(

x0
j

) , k 6= j, then set m(r) := m̂j.

2. For j = 1, . . . ,d calculate for all the points x0
j

m̃
(r+1)
j

(

x0
j

)

= m̂j

(

x0
j

)

− m̃0+

− ∑
k<j

∫

m̃
(r+1)
k (xk)

p̂jk

(

x0
j , xk

)

p̂j

(

x0
j

) dxk+

− ∑
k>j

∫

m̃
(r)
k (xk)

p̂jk

(

x0
j , xk

)

p̂j

(

x0
j

) dxk .

3. If the convergence criterion

M

∑
i=1

[

m̃
(r+1)
j

(

x0
ij

)

− m̃
(r)
j

(

x0
ij

)]2

M

∑
i=1

m̃
(r)
j

(

x0
ij

)2
+ ǫ

< ǫ (8)

is fulfilled then stop; otherwise set r to r + 1 and
go to step 2.

Program with R

The code we wrote is composed of two functions.
The main function is called sBF and reproduces the
algorithm as described in the previous section. The
second function, K, is instrumental to the main func-
tion, and returns different kernel weighting func-
tions. We start describing the K function. The func-
tion is defined as follows:

K(u, method = "gaussian")

The domain of the kernel functions is centered at
the origin and generally the weight value returned
by the kernel decreases while the distance u from
the origin increases. The method parameter de-
fines the kernel function to use. The default value,
gaussian, applies the Normal distribution to de-
fine the weights. Other possible methods (Silver-
man, 1986) are: unifrom, epanechnikov, biweight,
and triweight. These methods are generated by the
same function changing a shape parameter.

The definition of the sBF function is

sBF(dat,

depCol = 1,

m = 100,

windows = rep(20, ncol(dat)-1),

bw = NULL,

method = "gaussian",

mx = 100,

epsilon = 0.0001,

PP = NULL,

G = NULL

)

dat is a matrix or a data frame containing the obser-
vations by row and depCol reports the column posi-
tion of the dependent variable (first column by de-
fault). The number of covariates, d, is defined by
the number of columns of dat minus one. Non-
parametric smoothing techniques usually require a
d-dimensional grid on which the algorithms calcu-
late the regressed functions: m is the number of equi-
spaced points for any dimension of the grid. Thus
we set a matrix G (m rows and d columns) where each
column represents a grid related to a single univari-
ate function mj(·), j = 1, . . . ,d. Using matrix G, the

d-dimensional grid (with md points), where the esti-
mates of (1) are calculated, can be defined. Higher
values of m determine more accurate estimates but
longer computational time.

Bandwidth is an important parameter in smooth-
ing techniques. It can be chosen in two different
ways: through the argument bw or defining the num-
ber of windows into the range of the values of any
independent variable through the argument windows
(equal to 20 by default). Bandwidth is the width of
the windows. Both the parameters bw and windows

can be single values, then every smoother has the
same bandwidth, or they can be vectors of length
d to specify different bandwidths for any direction.
Higher values of the bandwidth provide smoother
estimates.

The parameter method defines the kernel function
that will be used and it can get the same values as the
K function’s argument.

The iterative algorithm, described in the previ-
ous section, converges if the condition (8) is verified.
epsilon defines the ǫ parameter in that condition. If
the algorithm does not converge it will stop when the
maximum number of iterations mx is achieved (equal
to 100 by default).

sBF function calculates the matrix PP of the joint
probabilities (7). Calculating PP takes a long compu-
tational time. In applications it could be useful us-
ing the same PP matrix for different estimates, e.g. to
evaluate the impact of different bandwidths and de-
velop algorithms to select optimal bandwidths (see,
for example Nielsen and Sperlich, 2005, page 52).
This reasoning applies also to the grid G. This is why
the possibility to input matrices PP and G as parame-
ters is given.
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The sBF function returns an object of type list con-
taining estimates and information related to the algo-
rithm.

mxhat is a matrix m×d containing the estimated
univariate functions (1) by column on each point of
the grid (returned as grid), and m0 the estimated
value of m0. By using grid, mxhat and m0 it is possible
to obtain estimated values also outside the grid and
adopt, for example, some interpolation criteria. The
function returns also a boolean variable conv, which
indicates whether the iterations have converged and
the number of the iterations nit. The function also
returns the matrix of the joint probabilities (7) as ob-
ject PP and the bandwidths as object bw.

The most interesting part of our code relates to
the calculation of the conditional probabilities in (4).
After obtaining matrix PP, the conditional probabili-
ties are derived and grouped in matrices with dimen-
sions depending on the number of the covariates and
on the number of the grid points.

A large number of iterations should be done to
calculate joint and conditional probabilities. Consid-
ering that d is the number of covariates we have to

calculate these probabilities for (d
2) couples of vari-

ables. It is noticeable that the number of calcula-
tion is very high whereas these probabilities must
be evaluated on each pair of grid points (m2). In-
stead of loops and multidimensional arrays, the use

of matrices m2× (d
2) allowed us to exploit matrix and

Kronecker products to performing the iterative algo-
rithm steps.

Simulations

Two simulations were performed to validate the
code. For both simulations the dependent variable
is obtained as follows:

Y =
d

∑
j=1

m
(

Xj

)

+ ξ , ξ ∼ N(0,1) , (9)

where Xj := 2.5arctan
(

Zj

)

/π and the vector Z =
(Z1, Z2, . . . , Zd) has multinormal standard distribu-
tion and the correlation coefficients between the
components are ρij = ρ ∀i, j = 1, . . . ,d, i 6= j.

In the first simulation we show a simple model
which has two covariates (d = 2). The two univari-
ate functions constituting the additive model are the
following:

m1 (X1) = 4X3
1 and m2 (X2) = −4e−4X2

2 .
(10)

The correlation parameter and the sample size are se-
lected respectively equal to ρ = 0.1 and n = 500.
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m~(X1, X2) = m~ 0 + m~ 1(X1) + m~(X2)

(b)

Figure 1: Estimates related to simulation with addi-
tive components (10). (a) Estimated functions m̃j(·)
(bold curve) and generating functions mj(·) (thin
curve) for j = 1 (graph on the left) and j = 2 (graph
on the right). (b) Generating surface (graph on the
left) and estimated one (graph on the right).

Figure 1 (a) shows the univariate estimated
functions m̃j(·), the generating functions mj(·),
j = 1,2, and the scatterplots (X1,Y− m̃0 − m̃2(X2))
and (X2,Y− m̃0 − m̃1(X1)). Notwithstanding some
boundary effects due to data sparseness, the esti-
mated functions well adapt to the generating ones.
Such a result seems clearer in Figure 1 (b) where the
conditional mean m(·, ·) is compared to the estimated
function m̃(·, ·).

In the second simulation we replicated the simu-
lated model used by Nielsen and Sperlich (2005) and
we compared the results. The additive components
to insert in model (9) are the following

m
(

Xj

)

= 2sinπXj , j = 1, . . . ,d , (11)

where Xj is defined as in the previous simulation.
While ρ = 0.1 and n = 500, for ease in computation
we use d = 50 instead of d = 100 as used in the cited
article. The bandwidth choice for each covariate is
related to the standard deviation of Xj, i.e. σj.
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Figure 2: Estimated functions m̃j(·) (bold and dashed
curve) and generating functions mj(·) (thin curve),
j = 1,15,35,50.

It is easy to note that the estimated functions are
very close to the generating ones also for high values
of j. Such a result confirms that sBF function is coher-
ent with SBE and could be applied also using many
covariates.

Conclusions

Additive models provide both flexible structure and
interpretation capability, thus usable and efficient es-
timates are needed. Smooth Backfitting Estimator
improves the classical Backfitting Estimator but us-
able programs for its calculation are not available. In
this paper we present a R package which takes ad-
vantage of the peculiarity of such statistical environ-
ment. The program allows to obtain estimates in a
short time also when models include many covari-
ates. Simulations show the code validity and can be
compared to the results obtained by other authors.
Our package provides the building block for further
investigation. In particular, it gives the possibility to

study some bandwidth choice methods. To conclude
the algorithm can be also extended using the local
linear estimator instead of the Nadaraya-Watson es-
timator.
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Package ‘sBF’

October 1, 2009

Type Package

Title Smooth Backfitting

Version 1.0

Date 2009-09-24

Author A. Arcagni, L. Bagnato

Maintainer <a.arcagni@campus.unimib.it>, <luca.bagnato@unimib.it>

Description Smooth Backfitting for additive models using Nadaraya-Watson estimator

License GPL (>= 2)

LazyLoad yes
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K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

sBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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sBF-package Smooth Backfitting Estimator Package

Description

Smooth Backfitting Estimator

Details

Package: sBF

Type: Package

Version: 1.0

Date: 2009-09-24

License: GPL (>= 2)
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Author(s)

A. Arcagni a.arcagni@campus.unimib.it and L. Bagnato luca.bagnato@unimib.

it
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E. Mammen, O. Linton, and J. Nielsen. The existence and asymptotic properties of a backfitting
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J. P. Nielsen and S. Sperlich. Smooth backfitting in practice. Journal of the Royal Statistical Society,

Series B: Statistical Methodology, 67(1):43-61, 2005.

See Also

sBF, K.

K Kernel weighting function

Description

Instrumental to the sBF function. It returns weights used in the Nadaraya-Watson estimator.

Usage

K(u, method = "gaussian")

Arguments

u distance from the origin.

method type of kernel function. The default value is gaussian, other possible methods

are: unifrom, epanechnikov, biweight, and triweight.

Details

The domain of the kernel functions is centered at the origin and generally the weight value returned

by the kernel decreases while the distance u from the origin increases.

References

Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.

See Also

sBF-package, sBF.
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sBF Smooth Backfitting Estimator

Description

Smooth Backfitting for additive models using Nadaraya-Watson estimator.

Usage

sBF(dat, depCol = 1, m = 100, windows = rep(20, ncol(dat) - 1),

bw = NULL, method = "gaussian", mx = 100, epsilon = 1e-04,

PP = NULL, G = NULL)

Arguments

dat matrix of data.

depCol column of dat matrix in which the dependent variable is positioned.

m number of grid points. Higher values of m imply better estimates and loger

computational time.

windows number of windows. (covariate range width)/windows provide the bandwidths

for the kernel regression smoother.

bw bandwidths for the kernel regression smoother.

method kernel method. See function K.

mx maximum iterations number.

epsilon convergence limit of the iterative algorithm.

PP matrix of joint probabilities.

G grid on which univariate functions are estimated.

Details

Bandwidth can be chosen in two different ways: through the argument bw or defining the number of

windows into the range of the values of any independent variable through the argument windows

(equal to 20 by default). Bandwidth is the width of the windows. Both the parameters bw and

windows can be single values, then every smoother has the same bandwidth, or they can be vectors

of length equal tu the covariates number to specify different bandwidths for any direction. Higher

values of the bandwidth provide smoother estimates.

In applications it could be useful using the same PP matrix for different estimates, e.g. to evaluate

the impact of different bandwidths and develop algorithms to select optimal bandwidths (see, for

example Nielsen and Sperlich, 2005, page 52). This reasoning applies also to the grid G. This is

why the possibility to input matrices G and PP as parameters is given. The program creates G and

PP if they are not inserted.

Value

mxhat estimated univariate functions on the grid points.

m0 estimated constant value in the additive model.

grid the grid.
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conv boolean variable indicating whether the convergence has been achieved.

nit number of iterations performed.

PP matrix of joint probabilities.

bw bandwidths used for the kernel regression smoother.

See Also

sBF-package, K.

Examples

X <- matrix(rnorm(1000), ncol=2)

MX1 <- X[,1]^3

MX2 <- sin(X[,2])

Y <- MX1 + MX2

data <- cbind(Y, X)

est <- sBF(data)

par(mfrow=c(1, 2))

plot(est$grid[,1],est$mxhat[,1], type="l",

ylab=expression(m[1](x[1])), xlab=expression(x[1]))

curve(x^3, add=TRUE, col="red")

plot(est$grid[,2],est$mxhat[,2], type="l",

ylab=expression(m[2](x[2])), xlab=expression(x[2]))

curve(sin(x), add=TRUE, col="red")

par(mfrow=c(1, 1))
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