
Dynamic Analysis of Upgrades in C/C++ Software

Fabrizio Pastore, Leonardo Mariani and Alberto Goffi
Department of Informatics, Systems and Communication

University of Milano Bicocca, Milan, Italy
{pastore, mariani, goffi}@disco.unimib.it

Manuel Oriol and Michael Wahler
ABB Corporate Research, Industrial Software Systems

Baden-Dättwil, Switzerland
{manuel.oriol, michael.wahler}@ch.abb.com

Abstract—Regression testing techniques are commonly used
to validate the correctness of upgrades. When a regression test
fails, testers must understand the erroneous behaviors that
caused the failure and identify the fault that originated these
erroneous behaviors. In many cases, identifying the causes
of a failure is difficult and time consuming. The analysis
of regression problems provides interesting opportunities to
validation and verification techniques. In fact, by comparing
the execution of the base version and the upgraded version
of the same program it is possible to automatically deduce
information about incorrect behavior of the program.

In this paper we present RADAR (Regression Analysis with
Diff And Recording), a dynamic analysis technique, which
analyzes regression problems and automatically identifies the
chain of erroneous events that lead to a failure in C/C++
programs. RADAR exploits information about changes and
the availability of multiple versions of the same program
to automatically distinguish correct and suspicious events.
Empirical experience with industrial and open source cases
shows that RADAR can effectively support testers in the
investigation of regression problems. Thus, RADAR can drive
and simplify the debugging process.

Keywords-dynamic analysis, upgrades, regression testing,
debugging, model inference

I. INTRODUCTION

Software systems are constantly modified by software
engineers to satisfy new requirements, support new tech-
nologies, and repair bugs. Frequent changes to a software
system, although often necessary, might represent a threat to
its integrity. To mitigate this risk, software engineers apply
quality control techniques as diverse as regression testing or
formal methods.

Regression testing techniques, for example, are commonly
used to check the correctness of changes and make sure
that changes do not negatively affect the unchanged code.
A number of different strategies identify [1], [2] and priori-
tize [3], [4], [5] the test cases to execute when validating a
change.

When these techniques find a failure, accurately identify-
ing its cause allows programmers to fix it in an efficient way.
Multiple techniques can be used to analyze failed executions
and detect the erroneous events that led to a failure [6], [7],
[8], [9]. None of them are however specifically tailored to
the analysis of regression failures — failures resulting from
version changes.

Regression problems simplify failure analysis in two
ways:

• Space: since the functionality that does not work in the
upgraded version works correctly in the base version,
the problem has been introduced by the change. The
analysis could thus be focused on the modified instruc-
tions of the software.

• Behavior: the execution that fails in the upgraded
version of the program can be compared with the same
(correct) execution in the base version of the program.
Identifying the suspicious events occurring in one case
but not in the other could thus ease debugging.

A technique that analyzes regression failures and takes
advantage of these assumptions has a chance of being
highly effective. Note that testers clearly know that they
are analyzing a regression problem because by definition,
a regression problem is evidenced by a test case passing for
the base version of the program and failing for the upgraded
version. In this case, testers also know that they should use
a technique specific to the analysis of regression failures.

This paper presents RADAR, a dynamic analysis tech-
nique, which analyzes regression problems and automat-
ically identifies failure causes in C and C++ software.
RADAR combines change analysis, monitoring, model in-
ference, and anomaly detection to identify the key events
responsible for a failure and present them to testers with the
aim of easing the debugging process. Testers can follow the
chain of suspicious events identified by RADAR to trace the
failure back to the erroneous conditions that determined the
failure and thus, the fault that led to the failure.

The major contributions of this paper are:

• a change analysis technique that identifies the program
locations that should be monitored to detect the events
responsible for the failure;

• a weakly intrusive and change-specific monitoring so-
lution that can be applied to any C/C++ program,
regardless of the compiler used;

• an approach for the generation of models that repre-
sent the (legal) behavior of the application at strategic
program points;

• a dynamic analysis solution that automatically identifies
the suspicious events from the trace collected for the



failed execution;
• empirical evidences that RADAR can effectively ad-

dress regression problems.

The paper is organized as follows. Section II presents the
main steps of the technique. Section III introduces a running
example used throughout the rest of the paper. Section IV
details how RADAR extracts data from C/C++ applications.
Section V describes the generation of models. Section VI
presents the RADAR failure analysis. Section VII reports
empirical results. Section VIII discusses related work and
we conclude in Section IX.

II. RADAR

RADAR is a technique for automatically identifying the
likely causes of regression problems in C/C++ software. We
use the term regression problem to indicate a failure that
depends on a fault that (1) is introduced as a consequence
of an upgrade (namely from a base to an upgraded version),
and (2) affects an existing functionality. There should thus be
a test case expected to pass for both versions of a program,
but passes only for the base version and fails when executed
on the upgraded version.

The idea underlying RADAR is that the causes of a
failure produced by a regression fault can be identified by
looking at the differences between the correct behavior,
shown by the base version, and the erroneous behavior,
shown by the upgraded version. Since the problem affects
a functionality that exists in both the base and upgraded
versions of the program, the causes of the faulty behavior
must necessarily be related to events that do not occur in
the base version of the program, but only occur in the
upgraded program. To compare the failing execution with
the behavior of the base version of the program, RADAR
derives multiple models that represent the behavior of the
base version of the program, and then compares the failed
execution with these models to identify a chain of anomalous
events that can explain the failure. Testers can follow the
chain of anomalous events to understand the failure and
reach the fault location. RADAR compares failed executions
with models because models can successfully represent the
legal sequences of events produced in many valid executions.
The behavior represented in the models is not representative
of a single case, (e.g., a single passing test case), but it is
representative of every passing test that has been executed.
This characteristic makes models particularly suitable to be
used as anomaly detectors for upgrades. In fact, since models
represent the general correct behavior of the base version of
a system, they tend to generate many useful alarms (i.e.,
illegal events generated by the upgraded program) and only
few false alarms (i.e., legal events that can be generated
in the upgraded program but could never be generated by
the base version of the software), when used to check an
execution that fails in the upgraded version of the program.

In opposition to classic fault localization techniques [10],
[11], [12], which guess the fault location without providing
any explanation of the guessing, RADAR aims at discover-
ing why the application failed, leaving to the tester the due of
identifying the location of the fault. The rationale is that the
likely fault location alone is a relatively useful information
because the tester must still analyze and understand the
failed execution to confirm the presence of the fault, and in
many cases the fault is not in the locations that are inspected
first. RADAR provides information that is complemental to
the fault location and that can facilitate debugging.

RADAR analyzes regression faults in three phases, as
shown in Figure 1. In the first phase, Script Generation,
RADAR identifies the program locations that must be used
as observation points for identifying the causes of a failure
(Change Analysis step). Since the fault is introduced during
an upgrade, the locations that most promisingly can produce
information about the anomalous events are the program
locations in the neighborhood of the changes. The changed
locations themselves are excluded because they potentially
differ in significant ways. The considered locations are the
same in both the upgraded and base versions of the program
and the behavior of the two program versions at these points
can be easily compared (e.g., since the two statements are
the same, they include the same variables, the same function
calls, etc.).

RADAR monitors C and C++ programs using a program
debugger: GDB1. RADAR automatically generates the GDB
scripts later used to monitor the base and upgraded versions
of the program under analysis (Script Creation step).

In the second phase, Model Generation, the base version
of the application is executed through GDB using the test
suite of the application. The script generated in the first
phase collects data about the behavior of the program in
term of values assigned to program variables, executed
statements and functions and method calls originated by
the changed functions (Test Suite Execution step). The
monitored data is recorded into trace files and is then used
to distill models. These models generalize and capture in a
compact way the values that are assigned to variables and
the event flow produced by the program in correct executions
(Model Inference step). RADAR uses two models: Boolean
properties, to represent the values that can be assigned
to variables, and Finite State Automata, to represent the
sequences of computational steps (i.e., the statements) and
method/function calls executed by a function or a method.

In the third phase, namely Failure Analysis, the test
case that causes the failure on the upgraded application is
executed, and the behavior of the program is recorded in
a trace file (Test Case Execution step). The trace is then
compared with the models distilled from the base version
of the program to look for anomalous behaviors, that is

1http://sources.redhat.com/gdb/



Application 
(base)

Application 
(upgraded)

1.1 
Change 
Analysis

Monitoring 
Targets

1.2 Script 
Creation

Phase 1: Script 
Generation

2.1 Test 
Suite 

Execution

Application 
(base)

Test Suite 
(base)

Traces

2.2 Model 
Inference

Models

1.2 Script 
Creation

Phase 2: Model 
Generation

Application 
(upgraded)

Failed Test 
Case 

(upgraded)
3.1 Test 

Case 
Execution

3.2 Failure 
Analysis

Failure 
Causes

Phase 3: Failure 
Analysis

src src

dump dump

GDB Script for 
Application 

(base)

Script for 
Application 

(base)

GDB Script for 
Application 
(upgraded)

Script for 
Application 
(upgraded)

TraceModels

Figure 1. The RADAR approach.

values of variables, computational steps or function calls
that are not accepted by the corresponding model (Failure
Analysis step). In this phase, specific heuristics can be used
to remove false alarms from the set of anomalies that have
been identified. The chain of anomalous events discovered
in this phase is presented to the tester to explain the likely
sequences of events that led to the failure of the application.

In the next sections we describe in detail how each phase
works, with the support of a running example.

III. RUNNING EXAMPLE

In this section we introduce a simple running example that
we use to illustrate the technique. The example represents
the case of a change that introduces a regression problem in
a small application that computes the salaries of the workers
in a company. For the purpose of the example we concentrate
on two functions: getAverageSalary, which computes
the average salary for the workers in the list passed as
parameter, and getSalary, which is an auxiliary function
that returns the salary of the worker specified as parameter.
The code of the two functions is shown in Listing 1.

The getAverageSalary function computes the aver-
age salary considering various types of workers. In partic-
ular, the list passed to getAverageSalary may include
people who are not anymore workers of the company (e.g.,
laid off and retired workers) that must not be taken into
account in the computation of the average salary. To dis-
card these workers from the computation, the getSalary
function checks if the specified worker is still an active
worker by invoking the function isWorker, not shown in
the listing. If a specified worker is not an active worker,

the getSalary returns 0. This value is intercepted by the
getAverageSalary function, which discards from the
computation a worker with a 0 salary (see line 49).

Listing 1. Compute Average Salary Example
42 long WorkersMap::getAverageSalary(list personIds){
43 list::iterator i;
44
45 long totalSalary = 0;
46 int workers = 0;
47
48 for(i=personIds.begin();i!=personIds.end();++i){
49 if (getSalary(*i)==0) continue;
50
51 totalSalary += getSalary(*i);
52 workers++;
53 }
54
55 if (workers==0) return -1;
56
57 return totalSalary/workers;
58 }
59
60 long WorkersMap::getSalary(string workerId){
61
62 if (!isWorker(workerId)) {
63 return 0; //upgraded with return -1;
64 }
65
66 return workers.find(workerId)->second;
67 }

For the purpose of the example, we consider a change
consisting in the introduction of the capability of handling
additional types of workers. In particular, some workers can
have a salary equals to 0 (e.g., students with reimbursement
for expenses, but no salary) and the getSalary function
must be refined to distinguish non-workers from workers
with a 0 salary. The new version of the getSalary
function returns -1 instead of 0 for non-workers (see line 63
in the example, the comment shows the statement introduced



in the upgraded version of the program). We assume that
developers miss the change that must be implemented at
the caller side, and the getAverageSalary function still
checks for 0 values instead of checking for the return value
equals to -1. This is unlikely to happen for such a small
example, but when the changed function is part of a large
application and it is invoked in many places this type of
fault is quite frequent.

The fault introduced with the upgrade results in the
generation of incorrect average salaries when non-workers
are included in the list passed as parameter of the function
getAverageSalary. For example the regression test
shown in the Listing 2 passes for the base version of the
program, but exposes the failure in the upgraded version.
The average salary expected by the assertion is 30,000 while
the value returned by the upgraded function is 19,999. The
problem is revealed by the presence of worker1, which is
not a worker, in the list.

Listing 2. Regression Test Example
void t e s t G e t A v e r a g e S a l a r y b u g ( ){

WorkersMap map ;

s t r i n g worker1 ( ”MRTFRZ83D6YETZD” ) ;

s t r i n g worker2 ( ”PSTFRZ83D6YETZD” ) ;
map . addWorker ( worker2 , 5 0 0 0 0 ) ;

s t r i n g worker3 ( ”PBTFRZ83D6YETZD” ) ;
map . addWorker ( worker3 , 1 0 0 0 0 ) ;

l i s t <s t r i n g > worke r s ;
worke r s . push back ( worker1 ) ;
worke r s . push back ( worker2 ) ;
worke r s . push back ( worker3 ) ;

a s s e r t E q u a l s ( ( 5 0 0 0 0 + 1 0 0 0 0 ) / 2 ,
map . g e t A v e r a g e S a l a r y ( worke r s ) ) ;

}

In the next sections, we show how RADAR can be used
to analyze this regression problem.

IV. SCRIPT GENERATION

In the Script Generation phase, RADAR generates mon-
itoring scripts in two steps. In the first step, RADAR
identifies the monitoring targets. In the second step, RADAR
generates the scripts that collect the data for the analysis.

To identify the monitoring targets, RADAR relies on two
facts. First, the data collected by executing the base and up-
graded versions of a same program can be directly compared
only if the data refer to a same (unchanged) program location
that exists in both versions. In fact, the data collected from
changed code locations may refer to completely different
variables and modified algorithmic steps, and thus be in-
comparable. Code regions that have not been modified are
expected to have a similar behavior across versions. Second,
to detect the (negative) impact of a change, it is intuitively
more effective to monitor the unchanged areas of code that

occur close to the changed ones2 rather than other areas.
In fact, these areas use comparable variables and produce
results that are likely influenced by the change, and can thus
be used to recognize anomalous events.

To identify the code locations that have been changed,
RADAR compares program versions using diff3. In our first
version of the approach we found diff effective enough,
despite its simplicity. In the future, other ways of de-
tecting changes could be experienced. Once the changed
lines of code have been identified, RADAR selects every
function/method that includes at least a modified line, and
every function/method that invokes at least a modified func-
tion/method. For each selected function/method, RADAR
classifies its entry/exit points and every unchanged line of
code in its body as a monitoring target. The monitoring
targets are the observation points used by RADAR to detect
the anomalous events. To effectively monitor programs at
runtime RADAR generates monitoring scripts that, for each
program point, allow to: (1) trace the execution of the
statement, (2) record the value of every local and global
variable valid in the scope of the line, (3) record the sequence
of method/function calls originated by the execution of each
selected function/method call. If the application under analy-
sis makes extensive use of standard libraries that produce an
unmanageable and noisy number of function calls, the testers
can disable the monitoring of the libraries and record only
the interactions between entities defined in the application.

If we consider our running example, a single line of
code has been modified (line 63). The functions selected
by RADAR are both getSalary, because it includes
a changed line of code, and getAverageSalary, be-
cause it directly invokes a function that has been modi-
fied. The monitoring targets are the entry and exit points
of the getSalary and getAverageSalary functions,
plus every line of code included in the getSalary and
getAverageSalary functions, with the exception of
line 63. For each program location identified as monitor-
ing target, RADAR records the value of local and global
variables. In addition RADAR traces the sequences of
function/method calls originated by the getSalary and
getAverageSalary functions.

Note that even if the two functions getSalary and
getAverageSalary would be embedded in a larger
project, RADAR would anyway automatically restrict mon-
itoring to the getSalary and getAverageSalary
functions only, unless there exist other functions directly
invoking getSalary. The ability of focusing the mon-
itoring to the code that is correlated to the change is a
unique ability of RADAR. Other dynamic analysis tech-
niques sample the executions with a granularity that is
independent from the change under analysis, thus losing

2Distance between code locations can be measured as the number of
nodes that separate the locations in the control-flow.

3http://linux.about.com/library/cmd/blcmdl1 diff.htm



a lot of information that would simplify the understanding
of the failure. For example, multiple techniques focus on
function entry/exit points only, without considering the body
of the functions [9], [13]. If we consider the running
example, these techniques could detect the new value that
the function getSalary can return, but this is an expected
anomaly, and would fail in detecting the many erroneous
results produced by the computation from line 49 to line 52
of function getAverageSalary, which can be detected
with RADAR.

To collect data at run-time, RADAR synthesizes GDB
scripts that run the target program, interrupt the execution
when a monitoring target is reached and collect the data
useful to RADAR. The use of GDB for monitoring satis-
fies multiple requirements that are extremely important for
C/C++ software:

• Applicable to most of the compilers A number of
compilers are available for C/C++ programs, and dif-
ferent organizations take different decisions about the
compiler that better adapts to the their projects. Unless
restricting the solution to a core of the language, it is
difficult to find a monitoring approach that works for
every compiler. The use of GDB produces a monitoring
solution that is applicable to any compiler that can
produce object code that includes debugging options,
which consist of the majority of the compilers;

• Weakly intrusive Monitoring through GDB does not
require the modification of the source code and impacts
on the object code through the standardized process,
implemented in most compilers, of enclosing debug-
ging symbols in the object code [14].

• Fine grained monitoring Using GDB scripts the
monitoring can take place at every statement, while
many popular monitoring approaches do not support
this granularity;

• Extensive access to data variables Through GDB
scripts it is extremely simple to access every variable
that is alive and in the scope of the program location
where the execution is interrupted. On the contrary,
using other monitoring approaches it is extremely hard
or even impossible to monitor non-local variables.

According to our solution the approach based on GDB
works well when the program does not have to satisfy real-
time requirements or when data are not collected to check
the correctness of real-time behaviors. In fact, monitoring
through GDB is rather expensive and real-time behaviors
might be negatively affected by the approach.

Following paragraph shows an excerpt of the script
that collects the data for the line of code 52 in the
getAverageSalary function. Note that the symbol . . .
in the script indicates removed text.

# code for line POINT getAverageSalary(...):52
b /home/.../src/WorkersMap.cpp:52
commands
silent
echo !!!BCT-POINT: getAverageSalary(...):52\n
echo !!!BCT-stack\n
bt
echo !!!BCT-stack-end\n
echo !!!BCT-args\n
info args
echo !!!BCT-args-end\n
echo !!!BCT-locals\n
info locals
bct_print_pointers this
echo \n
echo !!!BCT-locals-end\n
c
end

In a nutshell the script sets a breakpoint at line 52
(command b) and specifies a set of commands that must
be executed before continuing the execution. The set of
commands starts with the command commands and ends
with the command end. The commands starting with echo
produce outputs that facilitate the parsing of the results.
The most important commands that are executed are: bt, to
record the content of the stack; info args to record the
values of the parameters, if any; info locals to record
the values of the local variables; bct_print_pointers
this to record the values of the fields, if the execution is
stopped in a method; and c to continue the execution.

In this specific example no global variables are recorded.
Since at runtime there exist a huge number of global
variables, and recording all of them would be too expensive,
RADAR heuristically records only the global variables that
occur at least once in the source file that includes the code
with the breakpoint. Intuitively, global variables that are not
used in the file that includes the code under analysis are
likely to be irrelevant for the execution of the monitored
code. If no global variable occurs in the file, like in the run-
ning example, the command for recording global variables
is not even included in the script.

V. MODEL GENERATION

In the model generation phase, RADAR produces models
that represent in a general and compact way the behavior
of the base version of the program. In particular, RADAR
derives two types of models. Models that represent the
values that can be assigned to variables at each monitored
program point, and models that represent the sequence of
steps and calls that can be executed by a function.

To derive a model for the values that can be assigned to
variables, RADAR runs the Daikon inference engine [15]
on the data collected at each program point. The output
produced by Daikon consists of a set of Boolean expressions
that hold at the corresponding program point. For instance,
some of the models obtained with Daikon for the running
example are shown in the following lines.



MODELS THAT HOLD AT LINE 46
personIds != null
totalSalary == 0
workers != 0
...

MODELS THAT HOLD AT LINE 49
totalSalary >= 0
workers >= 0
i != null
...

MODELS THAT HOLD AT LINE 66
workerId != null
this != null
...

To derive a model that represents the computations and
calls executed by the monitored functions RADAR uses kBe-
havior [9]. kBehavior accepts in input a set of traces and re-
turns an automaton that generalizes the behavior represented
in the traces (the automaton is guaranteed to accept every
trace provided as input). In our case, each function/method
selected for monitoring produces a set of traces. Each trace
associated with a function/method contains a sequence of
line numbers, which represent the (unchanged) lines of code
that are executed by a test, interleaved with function names,
representing the function calls produced by the monitored
function when executing a test. For instance, the automaton
obtained with kBehavior from a sample set of traces for
the getAverageSalary function is shown in Figure 2.
The model represents the sequences of operations, including
method calls, that are legal according to the available test
suite.

Line numbers and method/function calls used in the model
might be an issue for the analysis of the upgraded program:
an upgrade might alter line numbers and might add/remove
functions. RADAR includes mechanisms to handle these
cases. In particular, RADAR exploits the output of diff,
which identified the corresponding program statements in
phase 1 of the technique, to automatically convert the line
numbers of the base version into the corresponding line
numbers of the upgraded version. Moreover, monitoring
works in a specific way when a removed or added function is
executed. When a removed function is executed on the base
version of a program, the corresponding trace will not report
the call to the removed function, which would not exist in
the upgraded program, but will include the calls originated
from the body of the removed function, if any. Similarly,
when a new function is executed on the upgraded version of
the program, the corresponding trace will not report the call
to the new function, which would not exist in the model, but
will include the calls originated from the body of the new
function, if any. By using these mechanisms automata can
be safely reused to analyze upgrades.

In summary, Boolean expressions and automata capture
the values that can be assigned to variables and the com-
putational steps that can be executed by functions when the

Figure 2. The FSA for the getAverageSalary method.

execution terminates correctly, respectively. These models
are used to detect anomalous values in the trace recorded
from the failed execution in the upgraded version of the
program.

VI. FAILURE ANALYSIS

In the last phase, RADAR executes the test case that
produces the failure, records the corresponding trace, and
compares the trace with the model. The script for recording
the data from the upgraded program is generated in the script
generation phase. RADAR compares the content of the trace
with the models. In particular, it compares the values of
the variables in the failed execution with the models on the
program variables, and it compares the computational steps
and sequences of calls executed by the selected functions
with the automata. RADAR analyzes failing test cases only,
this way it ignores anomalies caused by behavioral changes
that are already verified by passing test cases, and focusses
only on the anomalies that could have caused the failure.

Every time a model is violated, an anomalous event is
detected. A Boolean property that holds at a given program
location is violated if in the failed execution the values
of the variables at the corresponding program locations do
not satisfy the property. An automaton is violated if it
rejects the sequence of events (events include the execution
of an unchanged line of code and the invocation of a
function/method) executed in the failed execution.

To ease debugging, RADAR reports the detected anoma-
lies in the order they are observed, that is from the earliest
to the latest. The tester can follow the sequence of events to
understand the erroneous events produced by the fault. In the
case of the running example, the failed execution does not
violate any automaton, but violates a number of properties
on program variables. In the following we report the models
that are violated respecting the temporal order in which they
occur. The numbers in the left column indicate the ordering
of the events. The name of the method/function followed by
: and the line number indicate the program instruction that



is executed when the violation occurs. The keyword EXIT
instead of a line number indicates an anomaly detected when
exiting from the function/method.

1: getSalary:EXIT returnValue >= 0
2: getAverageSalary:52 totalSalary > workers
3: getAverageSalary:49 totalSalary >= 0
4: getAverageSalary:55 totalSalary oneof

{0, 60000, 118000}
5: getAverageSalary:55 workers oneof {0, 2, 6}
6: getAverageSalary:57 totalSalary oneof

{60000, 118000}
7: getAverageSalary:57 workers oneof {2, 6}
8: getAverageSalary:EXIT returnValue oneof

{-1, 19666, 30000}

If we follow the chain of anomalies it is simple to
understand the chain of events that produced the failure. In
fact, RADAR detects that getSalary returned a negative
value, which never occurred in the past. The fact that the
failure is related to the new value that can be returned was
expected because it was the only change we implemented.
However, RADAR also detects that the new return value
has an impact on the getAverageSalary function. This
is extremely useful because the same function can be used
in multiple places and we have an exact indication of
where the erroneous events are generated. RADAR also
indicates that the new return value impacts on the value
of the totalSalary inside the for loop. In the correct
executions totalSalary is always positive, while in the
failed execution it has been also assigned with negative
values. The erroneous computation of the totalSalary
naturally impacts also on the value of workers and
totalSalary, successively in the execution. This chain
of events gives intuitions about the reason of the failure and
the tester can easily detect that the value of totalSalary
in getAverageSalary depends from the if statement
at line 49, and that the condition must be fixed.

Note that the distribution of the anomalies is strictly
dependent from the fault being analyzed. When the fault is
related to the use of elements like API, objects, and libraries,
the anomalies are likely to occur in the automata. Whereas
if the data model underlying the application is modified, like
in the running example, the anomalies are likely to occur on
the variable values. In many non-trivial cases, the anomalies
are of heterogeneous type.

When the complexity of the program increases, spurious
model violations may occur, especially the ones related to
program variables. These model violations complicate the
understanding of the chain of events that lead to a failure and
must be removed from the output. RADAR implements the
following simple heuristic to mitigate the effect of spurious
model violations: “if an anomaly detected at a program
location l is produced by a model about a variable that
never occurs in the function that includes l, the anomaly is
removed”.

RADAR has been useful in this extremely simple exam-

ple, but it can be even more effective when the change
and the complexity of the program are non-trivial. In the
next section, we show how RADAR has been effective with
multiple open-source and industrial C and C++ programs.

VII. EMPIRICAL VALIDATION

To empirically validate RADAR we applied it to changes
in both open source and industrial software. In the former
case, we extracted the cases from the erroneous changes
isolated by Yu et al. [16], and made available at http:
//code.google.com/p/ddexpr/. These cases consist of multiple
erroneous changes that affected popular programs available
in Linux distributions. In the latter case, we selected multiple
upgrades of the FASA system, which is a real-time software
framework for distributed control systems developed at ABB
Corporate Research [17], and we manually injected faults
that are semantically correlated to the considered change.
Because of intellectual property reasons we cannot make
the code of the industrial cases available.

We analyzed these cases with our RADAR implemen-
tation, which is available at http://www.lta.disco.unimib.it/
tools/radar/. In total, we analyzed 10 upgrades.

Table I reports the empirical results for the 8 cases in
which RADAR has been successful. We discuss at the end of
this section the two unsuccessful cases. Column Application
indicates the Name of the application, its Language, which
can be either C or C++, its Type, which can be Open
Source or Industrial, and its size, expressed as lines of
code (LOC). Column Change specifies the Type and the Size
of the analyzed change. The type can be either Extension,
which indicates an upgrade that adds functionalities to an
application; Bug Fix, which indicates an upgrade that fixes
a bug; or Refactoring, which indicates an upgrade aimed
at improving the internal quality of the program. Column
Size gives an intuition of the spreading of the changes by
reporting the number of functions altered by the change. Col-
umn Filtered Anomalies indicates the number of anomalies
filtered by the heuristic described in Section VI. Column
Reported Anomalies provides details about the anomalies
discovered by RADAR, restricted to the ones that passed
the filtering step. In particular, we report the total number
of anomalies (column Tot), the number of false positives
(column FP), the number of true positives (column TP) dis-
tinguished between true positives discovered with Boolean
properties (column TP Bool) and true positives discovered
with automata (column TP FSA), and the Precision of
the approach (precision = TP

TP+FP ). A true positive is
an anomaly that corresponds to an erroneous condition
generated by the fault. A false positive is a spurious anomaly
that does not correspond to any erroneous condition. In
the case of the FASA system the software engineers from
ABB evaluated and classified the anomalies. In the open
source applications, the authors of the paper evaluated and
classified anomalies. Precision indicates the rate of correct



Table I
EMPIRICAL RESULTS

Application Change Filtered Reported Anomalies DistanceName Lang Type LOC Type Size Anomalies Tot FP TP TP Bool TP FSA Prec
grep a C OpenSource 22K Extension 10 func. 6 7 2 5 1 4 0.71 0
grep b C OpenSource 22K Refactoring 2 func. 17 7 2 5 0 5 0.71 5
bc C OpenSource 10K Extension 41 func. 0 4 2 2 1 1 0.5 12
find a C OpenSource 24K Bug Fix 4 func. 17 5 1 4 3 1 0.8 2
diff C OpenSource 10K Bug Fix 1 func. 177 48 0 48 48 0 1 5
FASA-1 C++ Industrial 39K Bug Fix 1 func. 0 2 0 2 2 0 1 2
FASA-2 C++ Industrial 38K Refactoring 3 func. 0 5 3 2 2 0 0.4 2
FASA-3 C++ Industrial 39K Refactoring 4 func. 0 2 1 1 0 1 0.5 2

and interesting warnings produced by the technique. Finally,
column Distance indicates the distance measured as the
number of lines of code that separate the first true positive
detected by RADAR and the location of the fault according
to the control-flow graph of the application.

According to the empirical results the filtering step
demonstrated to be useful even if not always necessary. In
fact, even if in half of the cases no anomalies have been
filtered, in three cases more than 10 anomalies have been
automatically removed, and in one case even 177 anomalies
have been automatically removed, finally obtaining outputs
that can be easily handled manually.

If we consider the anomalies that pass the filtering step,
the data in Table I show that most of these anomalies
are relevant anomalies that can be beneficial to failure
understanding and fault localization. In fact, the precision
of the approach (i.e., the density of the useful anomalies)
ranges from 0.4 to 1.0, and in 63% of the cases is higher than
0.7. It is also worth mentioning that some faults generated
anomalies of a same type (violations of Boolean expression
or violations of automata), but multiple faults generated
anomalies of both types, demonstrating that both are useful
to understand failures.

In most of the cases RADAR kept the total number of
returned anomalies small (the median is 5). Only in the
diff case the number of anomalies is pretty high. However,
in the diff case the anomalies can be easily handled by
software testers because all the anomalies are generated by
the same two Boolean properties that are violated in 25
different code locations of the modified method. Developers
obtain information useful to understand the failure by simply
inspecting two of the 48 anomalies.

We interpret the data about the good precision and the
small number of generated anomalies as the capability of
RADAR to produce a core set of important anomalies that
can concisely explain the failure causes and can bootstrap
the debugging process in the right direction.

RADAR has been also good in producing a chain of
anomalous events that is rooted at the nearby of the fault
location. In fact the median of the distance between the true
positive closest to the fault location and the fault location
is 2 statements. This information suggests that the targeted

monitoring and run-time analysis implemented in RADAR
is beneficial also in terms of the detection of fine-grained
events that are close to the location of the fault.

The obtained results are even more relevant if interpreted
as complementary to fault localization information. Yu et al.
for example report that the delta debugging fault localization
technique successfully identified the erroneous changes in
five of the seven open source regression faults considered
in this paper (bc, grep a, grep a, find b, indent), but only
in the case of bc software developers can easily repair the
software just by reading the lines reported as erroneous. In
the other cases they require an in depth understanding of the
software behavior. If the information about the fault location
returned by a fault localization technique is combined with
the anomalies returned by RADAR the tester would gain
a complete picture of the fault and its effects: the tester
would benefit from the behavioral information, returned by
RADAR, and the structural information, returned by the fault
localization technique. We expect the combination of the two
techniques can dramatically improve debugging.

RADAR has not been always successful. In fact, for the
open source cases make and indent the monitoring phase
produced slowing downs that prevented practical applicabil-
ity of the technique. This has been due to the generation of
an excessive number of monitoring targets, around 700. Our
implementation can reasonably handle up to 500 monitoring
points. Thus if the analyzed change is pervasive and targets
many long functions, RADAR could generate too many
program points. Increasing the size of changes that can
be analyzed with RADAR is part of future work, even if
according to our experience the case of changes that cannot
be analyzed is not frequent (2 out of 10 cases), and the
generation of large and pervasive changes is a discouraged
software engineering practice.

Threats to Validity

The results that we obtained might not generalize beyond
the systems that we analyzed. However, the positive results
with both open source and industrial applications suggest
that the technique can well address upgrades.

In the empirical evaluation we classified anomalies be-
tween true and false positives. The evaluation has been



made by ABB developers for the industrial cases and by
academics for the open source cases (both are skilled C/C++
software developers). This classification is subjective and
different people could generate different classifications. To
avoid to bias the results in favor of RADAR, we classified
as true positives only the erroneous events and the erroneous
states clearly originated by the fault, and in the ambiguous
cases we classified the anomaly as a false positive. In this
way the quantitative results should under-approximate the
effectiveness of the technique.

The fact that RADAR can detect multiple anomalous
events caused by a fault does not necessarily mean that
the discovered events are useful to testers. In the empirical
evaluation, we did not go into the issue of evaluating if the
information extracted by RADAR is enough to fully debug a
problem or not. Answering to this question would require a
design of a study with human subjects, which we reserve for
future work. We believe that the results that we obtained in
terms of density of true positives and small distance of the
first true positive from the fault location is enough to give
the intuition that the chain of events discovered by RADAR
is a useful way to backtrack a failure to its causes.

VIII. RELATED WORK

There are many techniques that can be used to analyze
a failed execution with the objective of identifying the
fault location and the failure causes. Here we discuss the
synergies and the complementarities of RADAR with the
approaches that work in similar settings. In particular, we
consider the approaches that do not require a specification
to be applied.

We cluster the related approaches into two categories:
fault localization techniques and anomaly detection tech-
niques. Fault localization techniques analyze failed execu-
tions to identify fault locations, whereas anomaly detection
techniques analyze failed executions to identify the anoma-
lous events that can be responsible for the failure.

Fault Localization: Fault localization techniques analyze
the code elements executed by the passing and failing exe-
cutions to identify the code blocks that most likely include
a fault. A well known solution is delta debugging [18],
which is an algorithm that can automatically identify a small
set of circumstances (e.g., inputs and program statements)
that caused a failure. In a recent work delta debugging has
been specifically applied to analyze regression problems,
demonstrating a good capability of isolating the changes that
caused the problem [16].

Statistical fault localization techniques localize faults as-
suming that the code elements frequently executed by failing
executions and seldom executed by passing executions likely
include a fault. The many techniques sharing this approach
mostly differ for the statistic used to compute the probability
that a code block includes a fault [10], [11], [12], [19], [20].

These techniques are useful to localize faults, but do not
provide information useful to understand the causes of a
failure. RADAR complements to these techniques. In fact, it
provides information useful to understand the chain of events
that originated the failure. The integration of information
about the events that originated the failure and information
about the likely fault location provides the best support to
debugging tasks, because testers will be able to recognize
and confirm the presence of a fault in a location thank to
the information about failure causes.

Anomaly Detection: Anomaly detection techniques can be
used to analyze a set of executions to identify the anomalous
events that occur in these executions. The rationale is that
rarely occurring events are suspicious events (likely faulty
events) that deserve the attention of testers. For instance, Raz
et al. use data models to automatically identify erroneous
values returned by online services [21]; Wasylkowski and
Zeller use finite state automata to detect improper uses of
objects’ API [7]; and Hangal and Lam use invariants to
identify erroneous variable values [6].

Anomaly detection has been used also to analyze the
events occurring in a failed execution. In this case, a set
of correct executions are used to distil models that capture
the general behavior of a program, then the events occurring
in the failed execution are compared with these models to
identify the anomalous events responsible for the failure. For
instance, BCT is a technique for the analysis of failures in
Java programs [9]; KLFA is a technique for the analysis
of log files [22]; and AVA is a technique for creating
interpretations of anomalous events in a form readable to
testers [8].

RADAR is an anomaly detection technique. RADAR
differs from the other approaches in the type of faults
that it targets. In fact, anomaly detection techniques collect
events with a coarse granularity from the entire application.
Since the program points that must be used for monitoring
are identified a-priori, the effectiveness of the results are
largely influenced by this choice. On the contrary, RADAR
specifically targets regression problems. In this setting,
RADAR has the unique capability of monitoring with a
high precision the code related to the change that caused
a failure. By exploiting its monitoring layer, RADAR can
build precise chains of events that correlate the fault with
the erroneous states traversed by the application, until the
failure is observed.

IX. CONCLUSIONS

Maintaining a software system is an expensive, complex
and ever running activity. Among the many activities exe-
cuted to prevent an upgrade to negatively impact the quality
of a system, regression testing is the most commonly used
technique [1], [2]. When a test reveals a failure, developers
have to analyze the execution to understand the causes of
the failure to fix the associated fault.



We have presented RADAR, a dynamic analysis tech-
nique, which assists developers in the identification of the
erroneous events leading to a failure. RADAR is specifically
designed to address regression issues. RADAR focuses the
analysis on the behavior of the code regions that are likely
affected by the change. When RADAR analyzes a failing ex-
ecution, it identifies a chain of suspicious events that testers
can follow to backtrack the failure to the corresponding fault.

Our empirical results with both open source and industrial
systems show that RADAR can effectively assist developers.
The feedback from developers using RADAR has shown that
the approach not only helps finding faults in the programs,
but also understanding the program behavior when the con-
trol flow is not explicit (e.g., initialization of static variables
or concurrent behavior). In the future, we aim at extending
the empirical study and systematically investigate the impact
of the size and type of changes, as well as the presence of
multiple faults, on the quality of the results.

ACKNOWLEDGMENT

This work is partially supported by the European Com-
munity under the call FP7-ICT-2009-5 project PINCETTE
257647.

REFERENCES

[1] G. Rothermel and M. J. Harrold, “Analyzing regression test
selection techniques,” IEEE Transactions on Software Engi-
neering, vol. 22, no. 8, pp. 529–551, 1996.

[2] J. Bible, G. Rothermel, and D. S. Rosenblum, “A comparative
study of coarse- and fine-grained safe regression test-selection
techniques,” ACM Transactions on Software Engineering and
Methodology, vol. 10, no. 2, 2001.

[3] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S.
Roos, “Timeaware test suite prioritization,” in Proceedings
of the International Symposium on Software Testing and
Analysis, 2006.

[4] L. Mariani, S. Papagiannakis, and M. Pezzè, “Compatibility
and regression testing of COTS-component-based software,”
in proceedings of the International Conference on Software
Engineering, 2007.

[5] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating
varying test costs and fault severities into test case prioriti-
zation,” in Proceedings of the International Conference on
Software Engineering, 2001.

[6] S. Hangal and M. Lam, “Tracking down software bugs
using automatic anomaly detection,” in Proceedings of the
International Conference on Software Engineering, 2002.

[7] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object
usage anomalies,” in Proceedings of the European Software
Engineering Conference and Foundations of Software Engi-
neering, 2007.

[8] A. Babenko, L. Mariani, and F. Pastore, “AVA: Automated
interpretation of dynamically detected anomalies,” in Pro-
ceedings of the International Symposium on Software Testing
and Analysis, 2009.

[9] L. Mariani, F. Pastore, and M. Pezzè, “Dynamic analysis for
diagnosing integration faults,” IEEE Transactions on Software
Engineering, vol. 37, no. 4, pp. 486–508, 2011.

[10] J. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proceedings of the
International Conference on Software Engineering, 2002.

[11] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.
Jordan, “Scalable statistical bug isolation,” in Proceedings
of the Conference on Programming Language Design and
Implementation, 2005.

[12] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “”SOBER:
statistical model-based bug localization”,” in Proceedings of
European Software Engineering Conference and Foundations
on Software Engineering, 2005.

[13] S. McCamant and M. D. Ernst, “Predicting problems caused
by component upgrades,” in Proceedings of the European
Software Engineering Conference and Foundations of Soft-
ware Engineering, 2003.

[14] “The DWARF Debugging Format Standard,”
http://www.dwarfstd.org/.

[15] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to sup-
port program evolution,” IEEE Transactions on Software
Engineering, vol. 27, pp. 99–123, 2001.

[16] K. Yu, M. Lin, J. Chen, and X. Zhang, “Towards automated
debugging in software evolution: Evaluating delta debugging
on real regression bugs from developers’ perspectives,” Jour-
nal of Systems and Software, to appear.

[17] S. Richter, M. Wahler, and A. Kumar, “A framework for
component-based real-time control applications,” in proceed-
ings of the Real-Time Linux Workshop, 2011.

[18] A. Zeller, “Yesterday, my program worked, today, it does not.
why?” in Proceedings of the European Software Engineering
Conference and Foundations of Software Engineering, 1999.

[19] L. Briand, Y. Labiche, and X. Liu, “Using machine learning
to support debugging with tarantula,” in Proceedings of the
International Symposium on Software Reliability Engineering,
2007.

[20] M. Renieris and S. Reiss, “Fault localization with nearest
neighbor queries,” in Proceedings of the International Con-
ference on Automated Software Engineering, 2003.

[21] O. Raz, P. Koopman, and M. Shaw, “Semantic anomaly
detection in online data sources,” in Proceedings of the
International Conference on Software Engineering, 2002.

[22] L. Mariani and F. Pastore, “Automated identification of failure
causes in system logs,” in Proceedings of the International
Symposium on Software Reliability Engineering, 2008.


