G-RankTest: Regression Testing of Controller Applications

Leonardo Mariani, Oliviero Riganelli, Mauro Santoro

University of Milano Bicocca
Viale Sarca, 336 - Milano, Italy

Abstract—Since controller applications must typically satisfy
real-time constraints while manipulating real-world variables,
their implementation often results in programs that run ex-
tremely fast and manipulate numerical inputs and outputs.
These characteristics make them particularly suitable for test
case generation. In fact a number of test cases can be easily
created, due to the simplicity of numerical inputs, and executed,
due to the speed of computations.

In this paper we present G-RankTest, a technique for
test case generation and prioritization. The key idea is that
test case generation can run for long sessions (e.g., days) to
accurately sample the behavior of a controller application and
then the generated test cases can be prioritized according to
different strategies, and used for regression testing every time
the application is modified. In this work we investigate the
feasibility of using the gradient of the output as a criterion for
selecting the test cases that activate the most tricky behaviors,
which we expect easier to break when a change occurs, and
thus deserve priority in regression testing.

Keywords-regression testing; test case prioritization; test case
generation; test automation;

I. INTRODUCTION

Controller applications are real-time embedded software
applications designed for interacting and controlling the
environment through sensors and actuators. Controller ap-
plications must typically execute cyclic tasks within critical
time constraints and are often designed as an integration
of multiple components that implement functions that are
computed quickly (e.g., in few milliseconds). Since con-
troller applications have to deal with the physical world, the
inputs, the outputs and the values manipulated by controller
applications for the largest part consist of numeric values.

Controller applications are usually validated both outside
and inside the target device. In particular, they are first
executed and tested outside the target, where the execution
can be easily controlled and monitored. A simulator of the
embedding device might be needed if the tested component
interacts with the hardware. Successively they are executed
and tested within the target device with the aim of validating
the interaction between the software and the real hardware.

Some of the characteristics of controller applications
provide unique opportunities of automation for testing, and
regression testing in particular. The extensive use of values
in numeric domains dramatically simplifies automatic gen-
eration of test inputs, for instance there is no need to create
complex objects [1]. The short computations implemented

Muhammad Ali
VTIT Technical Research Centre of Finland
Tekniikankatu 1, FI-33101, Tampere, Finland

by components support the execution of a huge number
of test cases in a reasonable amount of time. Finally, the
well established practice of testing components in isolation
before testing the components in the target guarantees the
existence of an environment with adequate resources for
testing and monitoring.

The regression testing of controller applications could
be addressed with classic regression testing techniques that
identify the test cases that must be re-executed on a new
program version according to the changes in the code [2],
[3]. However many (visual) languages dedicated to the
development of embedded software are not yet adequately
supported in terms of techniques for change analysis [4],
and the design of a regression testing solution that focuses
on code changes might be hard. An interesting and comple-
mentary approach is given by the recent idea of focusing
test case selection on the behavioral differences rather than
the code differences [5], [6]. These techniques exploit the
dynamic information collected by executing the software to
select the test cases according to their runtime effect, rather
than the covered statements.

In this paper we present G-RankTest, a technique for
the automatic generation and prioritization of regression
test cases for controller applications. G-RankTest can au-
tomatically produce a prioritized regression test suite by
generating numerical test inputs for a component under test,
and heuristically rank the generated tests according to the
behaviors exhibited by the application. G-RankTest exploits
the characteristics of controller applications to generate a
huge number of inputs (e.g., billions) covering a large
portion of the input domain and then heuristically identifies
the behaviors that can be most easily broken by a change.
The key idea implemented in the heuristic illustrated in this
paper is that sequences of close inputs that cause big changes
on the output (i.e., the inputs that cause rapid changes on the
outputs) correspond to critical behaviors that can be easily
broken by a change and that are worth testing before the
others. Thus G-RankTest produces huge test suites ranked
according this criterion.

In the rest of the paper we will specifically refer to
applications implemented in LabVIEWT™ | one of the most
popular graphical languages for the development of real-time
control software. However the concepts introduced in this
paper can also be implemented for controller applications

written in different languages.

This paper investigates the feasibility of the approach
with a case study. The case study consists of a component
developed at the VTT Technical Research Centre of Finland
(VTT), and is part of a robot control system. The robot is
designed to carry out the divertor maintenance operations at
the ITER nuclear fusion power plant.

This paper is organized as follow. Section II provides
background concepts about LabVIEW as a programming
language for embedded software. Section III describes G-
RankTest. Section IV presents test case generation. Sec-
tion V describes test case prioritization. Section VI presents
early results with the VTT case study. Section VII discusses
related work. Finally, Section VIII provides final remarks
and outlines future work.

II. LABVIEW IN A NUTSHELL

LabVIEW™™ is a graphical programming environment
provided by National Instruments”? [4]. It is used world
wide by engineers and scientists to conduct experiments,
collect and analyze measurements and develop control sys-
tems for a variety of environments. The distinctive feature
of LabVIEW is its graphical programming language, which
is known as G language. The environment is also provided
with an integrated compiler, a linker, and debugging tools.
LabVIEW programs resemble flowcharts, providing visible
information on the data flow as well.

For illustration a simple example of LabVIEW code is
shown in Figure 1, where two numbers are added together
and a true/false condition is checked. The resemblance of the
code with control system block diagrams is obvious making
it intuitive for control engineers in many fields.

DR & Ay [ETEf (D 88 B<A)
A [}
B[E [Sl

Figure 1. Example of LabVIEW code

Another advantage of programming in LabVIEW is the
automatic generation of GUIs for controlling programs. In
fact the software is ready to run and be used as soon as the
coding is finished without putting any effort into developing
the GUI separately. The user interface for the example code
is shown in Figure 2. The direct relationship of the fields on
user interface with the inputs and outputs of the code can
be observed without difficulty.

Besides the graphical programming, the LabVIEW envi-
ronment also supports a number of options to support the use
of syntax based programming. For example, the programs
written in C or C++ can either be directly copied inside Lab-
VIEW blocks or can be embedded as DLLs. This makes the
development of simulations and control algorithms possible

using tools such as Matlab®, MapleTM, and Mathematica®,
and use them directly in LabVIEW. Additionally, it supports
the integration with a variety of hardware devices and
provides built-in libraries for data analysis and visualization.
For this reason software components developed in LabVIEW
are termed as Virtual Instruments.

C if (D && B<A)

0 9

Figure 2. LabVIEW Graphical User Interface

III. G-RANKTEST

G-RankTest is a test case generation and prioritization
technique for components with numerical inputs and out-
puts, which represent a large proportion of the components
used in embedded software. When the component under
analysis includes non-numerical inputs, G-RankTest can still
be applied to the numerical part of the input space by
assigning constant values to the non-numeric inputs. The
process can be repeated multiple times with different values
of the constants to study the behavior of the component for
different configurations. Non-numeric outputs can be simply
ignored for the purpose of the analysis. We also assume
that the component under analysis implements a stateless
computation, that is the value of the outputs uniquely
depend on the values of the inputs, and do not depend on
the previous inputs. Even if this assumption restricts the
applicability of the technique, there still exist a large body of
components used in embedded software that belongs to this
category. In the future, we aim at extending the ideas and
the preliminary results presented in this paper to the case of
stateful components by taking into consideration sequences
of inputs rather than single inputs.

G-RankTest

Component Test Case N
7| (G D (I G DD (O

Test Suite Prioritized Test Suite

@ UPGRADE
Test Case
|::> Execution

Component
v2

Prioritized and Filtered Test Suite

Failures

Legend

[Sottware > paterow () rostsuite
Manual

D Task Task
Figure 3. G-RankTest

For the purpose of this paper a component under analysis
can be modeled as a software unit that implements a function
f:D— C,where D =1; x I x...x I,, with I; CR
numerical input, and C' = O1 X O3 X ... X O,,, with O; C
R numerical output. Note that inputs and outputs are strict
subsets of R because in a computer system every numerical
representation is finite.

G-RankTest produces a prioritized test suite for a target
component (i.e., a function f : D — (') in two steps.
In the first step, it generates a (large) test suite 7S =
{te1,...,tcx}, where each test case tc; is a pair (i;,0;),
with i; € D and o; = f(i;) € C. Test cases can be
generated according to different strategies, depending on
the distribution of the test inputs that it is intended to
obtain. Section IV presents a strategy for the generation of
a regularly distributed set of inputs.

In the second step, G-RankTest prioritizes the test cases
in the test suite 79, finally obtaining a prioritized test suite
available for regression testing. The ranking of the test cases
aims at identifying the test cases that cover the behaviors that
can be more easily broken by an upgrade. Our intuition is
that since inputs and outputs represent values derived from
real world variables, in the majority of the cases the outputs
will change smoothly for small changes on the inputs. For
instance the temperature of an engine typically changes
smoothly while it is operating in normal condition. On the
contrary, the most difficult to control situations produce big
changes on the outputs for small changes on the inputs. For
instance, the temperature of an engine changes quickly as
soon as the engine is turned on or if the cooling system stops
working. Similar examples apply to variables like speed,
pressure, and position. Our ranking strategy exactly aims
at assigning high priority to the test cases that produce big
changes on the outputs for small changes on the inputs (the
difficult cases according to our heuristic). The prioritization
procedure is described in Section V.

Figure 3 summarizes how G-RankTest works when a
component is upgraded and the prioritized test suite is
used to reveal regression problems. Note that while the
prioritized test suite can be automatically generated without
human intervention and in parallel with other development
activities, the validation of an upgrade should produce useful
results soon. Thus even if it is feasible to produce a huge
prioritized test suite with billions of test cases that sample
the component behavior and requires multiple days to be
executed, it is important to prioritize the test cases to reveal
failures soon when an upgrade is checked.

Finally, since we focus on regression testing, we assume
that the prioritized test suite will be used to check if
the behaviors that should not be affected by the upgrade
are really preserved in the new version of the component
under test. Thus, before executing the prioritized test suite,
the test cases that sample behaviors that are intentionally
modified by the upgrade are classified as outdated and are

discarded from the test suite (this activity is represented by
the Filtering task in Figure 3).

IV. TEST CASE GENERATION

The definition of a strategy for the generation of a
regression test suite requires the definition of a strategy for
sampling the input domain of the function implemented by
the component under test. We assume we do not have any
information about the function f that must be tested, with
the exception of the range of values that can be assigned to
the inputs. Thus, if D =17 x Iy x ... x I, with I; C R is
the input domain, the only available information about the
function f(x1,...,2,) is that the values accepted by each
input variable x; are defined in I; = [b;, e;], where b; and
e; denote the minimum and maximum values that can be
assigned to x;, respectively. For simplicity we refer to the
case of a closed interval. Any other case can be represented
as an union of multiple closed intervals', and the following
definitions can be trivially extended to that case.

Many strategies can be potentially defined for sampling
D. Three relevant options are: regular sampling, random
sampling, and adaptive sampling. Regular sampling implies
the generation of a set of inputs that are regularly distributed
in the input space. Random sampling implies the generation
of random inputs in the input space (according to uniform
distribution of probabilities if no additional information
is available) [7]. Adaptive sampling implies incrementally
generating random inputs, and adapting the generation pro-
cess according to the characteristics of the function that
are captured by the execution of the inputs [8] (e.g., to
better sample the most irregular behaviors and sample less
the most regular behaviors). In every case the stopping
criterion is determined by the time that can be devoted to the
testing process. Since the sampling process can be executed
without human intervention and without affecting any other
development activity, but it only requires adequate hardware
support, it can be potentially used to generate a huge number
of inputs (i.e., test cases), which are successively ranked.

In this paper we consider regular sampling that is widely
used in practice [9]. For each input variable x;, we consider
a number of samples n; that are regularly distributed in I;,
that is the distance between two consecutive samples in [; is
constant. More formally the set of samples for the interval
I; = [bs, e;] is given by Sy, = {wio, . .. vip, }, with vig = b;,
UZm = e;, ’Uij — Uij_l =C; >0 VJ =1,...n;. The set of
samples for the entire input domain D is S = Sy, x... Sy, .
The value of the gap between two consecutive samples (C;
in the formula) can be different for each dimension of the
input space (i.e., each interval I;), and it is defined by the
tester according to the characteristics of the input variables
and the time available for testing.

lthis is true because numbers have a finite representation in computer
systems; it is obviously false in the domain of real numbers.

The estimation of the total number of samples that can
be executed can be done according the following simple
process: execute a bunch of random inputs (e.g., 1,000),
compute the average execution time per sample, and finally
compute the number of samples that saturate the time
available for testing. If 7' is the total time available for
testing and avg is the average time for the execution of
a single sample, the maximum number of test cases that can
be executed is ——. The values of the gaps C; are chosen to
exploit at best the available, that is ng % ...n; = |S| ~

The characteristics of many controller applications make
this simple approach about test case generation extremely
useful. In fact, the ratio between the time that is available
and the cost of execution of a single input is usually a huge
number. The execution of so many test cases allows to sam-
ple well the input domain. Moreover, the sampling process
leads to the extraction of interesting information about the
function computed by the component under analysis. The
discovered information can be exploited to prioritize the
generated test cases and increase the effectiveness of regres-
sion testing. The implementation of other strategies, such
as adaptive random testing, would allow taking advantage
of the information about the function under test not only
for test case prioritization, but also to dynamically drive
the generation of the test inputs. The investigation of this
strategy is part of our future work.

V. TEST CASE PRIORITIZATION

When generating the set of samples S, G-RankTest also
executes them and records the outputs produced by the com-
ponent under test. In particular, for each s € S, G-RankTest
records the value of f(s) = (f1(s), fa(s),... fm(s)) where
fi(s) € O; Vi = 1,...m. The set consisting of every pair
{(s, f(s))|s € S} is the test suite generated by G-RankTest,
where s is the input, and f(s) is the expected output.

We already clarified that the set of the generated test
cases is extremely large because it is generated through an
automatic process that does not affect the development loop.
However, the cost of test case execution is important when
testing a new version of a component, because the sooner
the faults are revealed the easier and the cheaper is to fix
them. To anticipate the discovery of faults when test cases
are executed, we prioritize the test suite using heuristics. In
the following we present the heuristic we are currently using
to test components.

Controller applications mostly deal with real world vari-
ables, which typically evolve smoothly; for instance, the
speed of a robotic arm typically increases or decreases
smoothly. However, in some specific cases these variables
can even have sharp variations or discontinuities. For in-
stance, if the robot detects an unexpected obstacle the
arm should suddenly stop moving, while if the obstacle
is not detected, the arm may even hurt the obstacle and
instantaneously stop. The rationale underlying the heuristic

for test case prioritization is that regular behaviors are easier
to control and design, and there is a small probability that a
regression fault is introduced in a regular behavior. On the
contrary, special cases are hard to program and may be easily
broken because of their complexity. Thus, programmers
may easily introduce regression faults in that behaviors. G-
RankTest prioritizes test cases assigning higher priority to
the test cases that correspond to behaviors that introduce
sharp variations on the outputs, and lower priority to test
cases that cover the most regular behaviors.

More formally, every time an input s is executed, in
addition to recording the outputs, G-RankTest records the
value of the numerical gradient at the same point. The
numerical gradient is the numerical approximation of the
gradient of a function and indicates how sharp the variation
of the output is. Given the function f = (fi,... f,,) defined
in the domain D = [} x I x ... x I, the gradient of
each output f; is a vector Vf; = (ga{’l e gf’). The value
of the numerical gradient for a point s = (s1,...5,) €
D is Vfi(s) = (ggl (s) %(s)), where %(s) =

(o185 4y,)2 G 1) The value of the gap
h; can be different accordlng to the considered dimension.
In our case the value of h; in each dimension j is chosen
to match the value of the gap C; used for regular sampling.

In order to evaluate how sharp the variation of the
outputs of the function f at the point s is, we compute
the sum of the norm of each vector in the gradient, that is
variationg(s) = > ., ||V fi(s)|. The higher the variation
is, the more rapidly the outputs change. The value of the
variation is the value used by G-RankTest to prioritize the
test cases, that is the test cases (s, f(s)) with a high value
of variations(s) are executed before the others.

The gradient is one of the interesting aspects that can be
taken into consideration when analyzing the behavior of a
function. We look forward of analyzing other aspects that
might be relevant for testing such as the second derivative.

VI. CASE STUDY

In this section we describe the subject of the study, we
shortly describe our toolset, and we present the early results
about the feasibility of the approach.

Subject of the Study

The component selected for the study is part of the system
that controls the Cassette Multifunctional Mover (CMM),
which is part of an ITER nuclear fusion power plant. The
ITER nuclear fusion power plant is a part of a series of
experimental reactors which are meant to investigate and
demonstrate the feasibility of using nuclear fusion as a
practical source of energy [10].

Due to a set of very specialized requirements the mainte-
nance operations of ITER reactor demand the development
and testing of several new technologies related to software,
mechanics, electric and control engineering. Many of these

technologies are under investigation at VIT Technical Re-
search Centre of Finland [11]. In particular, VTT develops
the real-time and safety critical control system for remotely
operating devices. The control system is implemented using
C, LabVIEW and IEC 61131 programming languages and
is distributed across the network.

Figure 4. CMM robot at the DTP2 facility at VTT Tampere

Among the many components in the control system, the
CMM, shown in Figure 4, plays a key role in the ITER
divertor maintenance activities. The CMM will be required
to transport ITER’s 54 divertor cassettes, each 3.5m-long
2.5m-high weighing about 9t, through three access ports at
the bottom of the reactor following a complex trajectory in
order to negotiate the path along the divertor access duct
from the transfer cask to the plasma chamber. This process
must be executed with high accuracy since the access route is
such that the cassettes have to pass within a few centimeters
of the vacuum vessel surfaces.

The software component selected for this study is part
of the CMM simulation models. The component calculates
the volume of water inside the two chambers of a water
hydraulic cylinder. Since hydraulic cylinders with different
diameters can be used in the system, the volume of water is
calculated as a function of cylinder radius and position. The
control system uses the component to detect the water leak-
ages by constantly comparing the measured volume with the
output of the component. This ensure the integrity and safety
of the system and facilitate the preventive maintenance of
the manipulator. The correctness of such components plays
a key role in the reliability of the control system of the ITER
maintenance equipment.

More in detail the component selected for the study has
two numerical inputs and two numerical outputs. The two
numerical inputs represent the cylinder radius (we represent
this input with the symbol r) the cylinder position (we
represent this input with the symbol x). The radius ranges
from 0.05 to 0.5 meters, while the position ranges from 0 to
1,000 millimeter. The two numerical outputs, represented
with symbols Va and Vb, indicate the volume of water
inside chamber A and B, respectively.

Toolset

Our implementation of G-RankTest consists of three com-
ponents. The first component is implemented in MatLab and
is devoted to test case generation. The output of this com-
ponent is a grid with every sample that must be executed.

The second component is implemented in LabVIEW and is
devoted to the execution of the test inputs in the grid and
the recording of both the outputs and the gradient. The third
component is implemented in MatLab and is responsible
for prioritizing the test cases, according to the value of
the gradient, and visualizing the behavior observed for the
component and its gradient directly in MatLab.

Feasibility Study

Our objective is to show that G-RankTest can be applied
to real-world software. In particular, we want to show that:

« G-RankTest can be used to effectively sample the input
domain of a real-world component and collect informa-
tion about the function computed by the component;

« the heuristic used to prioritize test case can effectively
discriminate the behaviors of the component under test.

Given the characteristics of the component under analysis
we estimated in 12 hours a time slot largely sufficient
to analyze in detail the behavior of the component. We
thus decided to sample each input variable using regular
sampling with a step of 0.001. The value of the step has
been determined together with domain experts from VTT,
based on the number of significant digits for input variables.
The total number of input samples that have been generated
is 451,000, 451.

A 12 hours testing activity has been largely sufficient to
precisely analyze the behavior of the function implemented
by the component under test. Figures 5 and 6 show the
samples collected for outputs Va and Vb, respectively.
Colors are used to indicate the value of the gradient. Note
that the points are so dense that the graph appears to show a
continuous functions, but the plots are instead obtained from
a discrete set of values (the ones produced by the test cases).
This is an early evidence that G-RankTest can be used to
analyze the behavior of controller applications.

SULIOU ma}pmﬁ Jjo wng

Figure 5. Volume of water in chamber A: Samples obtained from test

We also checked if our heuristic can be used to discrim-
inate behaviors. To this end, for every value of the norm
of the gradient, we counted the number of test cases that
produce outputs with that norm. Figures 7 and 8 show the
number of test cases that have a given value of the norm
for the gradient of Va and Vb, respectively. Note that in the

STIIOU JuSIpeId Jo wng

Figure 6. Volume of water in chamber B: Samples obtained from test

majority of the cases the outputs change smoothly (small
value of the gradient norm), and only few behaviors produce
big changes of the outputs for small changes on the inputs
(big value of the gradient norm).

Test cases

5 3 35

[T 5 7

Gradient norm

Figure 7. Test case distribution along the gradient norm for the output Va

Test cases

t s ¥ 75 i 35
Gradient norm

Figure 8. Test case distribution along the gradient norm for the output Va

We also investigated the distinguishing capability of our
heuristic, which orders test cases according to the sum of
the norm of the gradient of the two outputs. Figure 9 shows
the number of samples for every value of the sum. Note
that there are two uncommon cases: small and high values
of the sum of the norms. Interestingly there are few cases
with small values for the sum of the norms. The presence of
few values with high norms confirm our intuition that our
heuristic can be used to select a small subset of complex
behaviors that require particular attention every time the
application is modified. In the case study, for example, a

pressure rises inside the cylinders due to external forces.
Since the cylinders are not completely stiff, the cylinders
under that pressure start flexing and increasing their volume.
The points with highest sum of norms are the same points
producing the highest flexion.

This section reports early evidences about the distinguish-
ing capability of G-RankTest. Further studies are necessary
to confirm these evidences and demonstrate that this ranking
strategy is also effective in revealing common regression
faults in controller applications.

|

Test cases

o
©FO 0O 00 0200 0 g CL

75 5 B B3

i 3
Sum of gradient norms

Figure 9. Test case distribution along the sum of gradient norms of the

two outputs

VII. RELATED WORK

Test case prioritization is a well-known solution for in-
creasing the effectiveness of regression testing [2], [3]. Most
of the prioritization techniques can rank test cases according
to code coverage information and according to the likeli-
hood that a statement includes a fault. Recently regression
testing and test case prioritization techniques focusing on
the (observed) behaviors have been studied with promising
results [5], [6], [12]. Working at the behavioral level rather
than the source code level has two major benefits: the
strategy can be applied regardless the accessibility of the
source code, and test case selection and prioritization can
focus on the actual effect of the test cases (the behavior that
is activated), rather than the coverage of statements.

G-RankTest generates and prioritizes test cases working
on the observed behaviors only. In the case of controller
applications this is particularly interesting because the func-
tions implemented by the components that are part of
controller applications mostly deal with numerical values,
and their input-output behavior can be approximated and
studied using mathematical tools.

A few other approaches addressed testing of embedded
software (controller applications in particular), but none of
them defined strategies for test case prioritization. For in-
stance, WISE is a tool that generates test cases for worst-case
complexity [13], and Xest is a regression testing technique
for kernel modules [14].

Finally, Bongard et al. defined an estimation-exploration
algorithm that combines model inference and the generation

of training data [15]. The resulting technique can sample
a state space very efficiently. In the future, we aim at
evaluating if this solution can be used as adaptive sampling
strategy in G-RankTest.

VIII. CONCLUSION

This paper presents G-RankTest, a technique for the
generation and prioritization of test cases for controller
applications. G-RankTest uses regular sampling and test case
prioritization based on the gradient of the output function.
We investigated the feasibility of the approach with a real-
world LabVIEW component that is part of a robot used in
a nuclear fusion power plant.

Many aspects deserve further investigation. Here we sum-
marize the main research directions of our future work:

« support of stateful component: G-RankTest currently
reasons on stateless computations. Even if stateless
computations are common in embedded software, a
number of components are also stateful. Addressing
stateful components requires extending our strategies
and heuristic from considering single inputs to se-
quences of inputs.

« test case generation: G-RankTest generates test inputs
regularly distributed in the input space. This strategy is
extremely simple and can be extended in many ways.
In particular, we see three relevant directions: the use of
strategies for generating test inputs randomly, adaptive
randomly or based on a specification.

o test case prioritization: G-RankTest ranks test cases
according to the value of the gradient of the function
computed by the component under test. This strategy is
interesting, but many other aspects about the computed
function could also be investigated, and the many
mathematical and numerical tools available make the
investigation of other strategies easily accessible.

« empirical work: in this paper we studied the feasibility
of G-RankTest when applied to a real-world compo-
nent. Even if it is reasonable that the most unusual
behaviors might be easily broken during upgrades, this
fact needs to be confirmed with empirical evidences.
We thus look forward of studying the characteristics
of regression faults in industrial controller applications,
with particular emphasis on the ones developed at VTT,
to confirm that the behaviors selected by G-RankTest
are also the behaviors that most frequently include
faults. Moreover, our prioritization strategy should be
compared with standard prioritization strategies, to fur-
ther confirm that our heuristic is an effective option
for the tester. Finally additional case studies and faults
must be consider to build strong empirical evidence in
favor of this approach.

ACKNOWLEDGMENT

This work has been funded by the European Union FP7
project PINCETTE (grant agreement n. 257647).

REFERENCES

[1] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang, “OCAT:
object capture-based automated testing,” in proceedings of the
International Symposium on Software Testing and Analysis,
2010.

[2] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Prioritiz-
ing test cases for regression testing,” IEEE Transactions on
software engineering, vol. 27, no. 10, pp. 929-948, 2001.

[3] S. Elbaum, A. Malishevsky, and G. Rothermel, “Test case pri-
oritization: a family of empirical studies,” IEEE Transactions
on Software Engineering, vol. 28, no. 2, pp. 159-182, 2002.

[4] N. Instruments, “LabVIEW,” http://www.ni.com/labview, vis-
ited in 2012.

[5] W.lJin, A. Orso, and T. Xie, “Automated behavioral regression
testing,” in proceedings of the International Conference on
Software Testing, Verification and Validation, 2010.

[6] L. Mariani, S. Papagiannakis, and M. Pezze, “Compatibility
and regression testing of COTS-component-based software,”
in proceedings of the International Conference on Software
Engineering, 2007.

[7]1 J. Duran and S. Ntafos, “An evaluation of random testing,”
IEEE Transactions on Software Engineering, pp. 438—444,
July 1984.

[8] T. Chen, H. Leung, and I. Mak, “Adaptive random testing,” in
Advances in Computer Science - ASIAN 2004. Higher-Level
Decision Making, M. J. Maher, Ed. Springer-Verlag GmbH,
2004.

[9] M. Unser, “Sampling-50 years after shannon,” Proceedings
of the IEEE, vol. 88, no. 4, pp. 569 —587, 2000.

[10] Y. Shimomura, “The present status and future prospects of the
ITER project,” Journal of Nuclear Materials, vol. 329-333,
no. 1, pp. 5-11, 2004.

[11] A. Muhammad, S. Esque, M. Tolonen, J. Mattila, P. Niem-
inen, O. Linna, and M. Vilenius, “Water hydraulic teleoper-
ation system for ITER,” in proceedings of the Scandinavian
International Conference on Fluid Power, 2007.

[12] L. Mariani, M. Pezze, and D. Willmor, “Generation of selft-
test components,” in proceedings of the International Work-
shop on Integration of Testing Methodologies, 2004.

[13] J. Burnim, S. Juvekar, and K. Sen, “WISE: Automated test
generation for worst-case complexity,” in proceedings of the
International Conference on Software Engineering, 2009.

[14] M. H. Netkow and D. Brylow, “Xest: an automated frame-
work for regression testing of embedded software,” in pro-
ceedings of the Workshop on Embedded Systems Education,
2010.

[15] J. Bongard and H. Lipson, “Nonlinear system identification
using coevolution of models and tests,” IEEE Transactions on
Evolutionary Computation, vol. 9, no. 4, pp. 361-384, 2005.

