
RADAR: A Tool for Debugging Regression
Problems in C/C++ Software

Fabrizio Pastore‡ and Leonardo Mariani‡ and Alberto Goffi?

‡University of Milano - Bicocca , ?University of Lugano
Email: {pastore,mariani}@disco.unimib.it , {alberto.goffi}@usi.ch

Abstract—Multiple tools can assist developers when debugging
programs, but only a few solutions specifically target the common
case of regression failures, to provide a more focused and effective
support to debugging.

In this paper we present RADAR, a tool that combines change
identification and dynamic analysis to automatically explain
regression problems with a list of suspicious differences in
the behavior of the base and upgraded version of a program.
The output produced by the tool is particularly beneficial to
understand why an application failed.

A demo video is available at http://www.lta.disco.unimib.it/
tools/radar/icse2013.html

I. INTRODUCTION

Regression problems occur when upgrades introduce faults
in correctly working code. Since regression problems are
known to be particularly popular and annoying, it is important
to quickly identify and fix them.

Although several techniques can be used to assist developers
when debugging programs, only few solutions have been tai-
lored to effectively address regression problems. For instance
well-known debugging techniques, such as Tarantula [1] and
Delta Debugging [2], do not take advantage of the specific
information available in case of regression problems. The
additional information usually consists on a set of test cases
that pass when executed on the base version of the software
and fail when executed on the upgraded version of the same
program. The availability of these test cases is relevant because
the causes of the failure are hidden in the differences between
the behavior of the base and upgraded version of the code
when these test cases are executed.

A few techniques have been tailored to the case of regres-
sion problems. Recently, Yu et al. used Delta Debugging to
identify the faulty instructions responsible for a regression
fault by automatically generating and testing program versions
that include increasingly smaller subsets of changes extracted
from the upgrade under analysis [3]. Other techniques instead
of simply pinpointing faulty instructions combine dynamic
tracing with symbolic execution to characterize a regression
fault in terms of differences between invalid and valid be-
haviors. For example, Darwin identifies legal program inputs
that generate traces that are similar to the trace collected
during a regression failure [4]. Golden instead characterizes
the function with the regression fault in terms of differences in
the weakest precondition extracted from the base and upgraded
program [5].

Fault localization techniques are partially useful to devel-
opers because the identification of the suspicious instructions
without additional contextual information does not concretely
help software developers in understanding why an instruction
is faulty and how to fix it [6]. The approaches that focus on
the analysis of the faulty and legal behaviors produce more
valuable information, but are known to not scale well because
of the limitation of symbolic execution.

In this paper we present RADAR, a tool that helps software
developers in debugging regression problems in C/C++ soft-
ware. RADAR automatically identifies the behavioral differ-
ences between the failure, observed in the upgraded program,
and the legal executions, observed in the base version of
the program. RADAR does not localize faults but identifies
a set of suspicious behaviors that can effectively drive the
debugging activity toward the faulty areas of the upgrade.
RADAR relies on lightweight static and dynamic analyses
that make the approach scalable to large programs. Empirical
results with open-source and industrial software systems are
an early evidence of the effectiveness of the approach [7].

The paper is organized as follows. Section II presents a
typical case that can be addressed with RADAR. Section III
overviews the RADAR technology. Sections IV and V present
the RADAR tool and illustrate how RADAR can be used by
developers, respectively. Section VI reports some empirical
results obtained with the RADAR tool. Section VII provides
final remarks.

II. RADAR IN ACTION: A SAMPLE SCENARIO

To illustrate when and how RADAR can be used we present
a sample scenario. To keep the sample scenario understandable
we refer to a simple regression fault, anyway the scenario does
not change significantly for complex faults.

Tom is the maintainer of Accounting, an application that
manages the salaries of the workers in a company. A customer
recently contacted the support service indicating the presence
of a bug in version 1.0 of the application. After carefully
inspecting the code Tom discovered that the problem is caused
by method getSalary, which returns the salary of a worker
given her ID. Method getSalary returns NULL when the ID
provided as input does not belong to any active worker. This
behavior is responsible for the failure because callers cannot
distinguish the case of a worker with no salary from the
case of a worker who left the company (remind that NULL
corresponds to 0 in C++). To fix the bug, Tom introduces a

new case: getSalary returns -1 when a non-worker is passed
as argument of the method (the fix is introduced in line 23
of Figure 1, by replacing the instruction return NULL with
return -1).

long getAverageSalary(list personIds){
 list::iterator i;

 long totalSalary = 0;
 int workers = 0;

 for(i=personIds.begin();
 i!=personIds.end();++i){
 long salary = getSalary(*i)
 if (salary == 0){
 continue;
 }
 totalSalary += getSalary(*i);
 workers++;
 }
 if (workers==0) return -1;
 return totalSalary/workers;
}

42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58

long getSalary(string ids){

 if (! isWorker(id)){
 return NULL;
 }

 return workers.find(id)
 ->second;
}

20
21
22
23
24
25
26

27

Fig. 1. Methods getSalary (before the upgrade) and getAverageSalary.

To avoid the introduction of regression faults in the released
software, Tom executes the available regression test suite and
discovers the existence of a regression problem in the getAver-
ageSalary function. Understanding why the computation is
incorrect is not easy for Tom because he did not develop
the getAverageSalary function. To ease the analysis of the
regression problem, Tom runs RADAR.

RADAR automatically returned the chain of unexpected
events that produced the failure. In particular RADAR shows
that (1) during the failing execution the value of variable
salary in line 50 is unexpectedly equals to -1, while in
legal executions it was greater or equal than zero; (2) after
the execution of line 55 variable totalSalary is unexpectedly
decreased by one; and (3) the erroneous value of variable
totalSalary is propagated through the loop thus leading to a
wrong result for method testGetAverageSalary. It is clear that
the case of the return value of function getSalary equals to -1 is
not supported by the function getAverageSalary and the rest of
the anomalous behaviors are a consequence of the unsupported
case. Tom can now successfully fix the function by adding a
proper support to the missing case.

III. DEBUGGING REGRESSION PROBLEMS WITH RADAR

RADAR works in three steps: (1) generation of monitoring
scripts, (2) data collection, (3) analysis. The following para-
graphs describe each step.

A. Step 1: Generation of Monitoring Scripts

In the first step, the software developer specifies the paths
to the executables and source folders of the base and upgraded
versions of the program. This information is analyzed by
RADAR to generate scripts that use the GDB debugger1 to
record data from program executions.

To keep monitoring lightweight, RADAR monitors only the
program locations whose behavior is likely directly affected

1http://sources.redhat.com/gdb/

by the (erroneous) change: the modified functions (they may
contain faults), their callers (erroneous return values may affect
callers), and their callees (a fault may violate a function
preconditions). The rest of the program locations that could
be potentially affected by an erroneous change are ignored by
RADAR. To collect data from comparable program locations,
RADAR selects for monitoring only the statements that occur
unaltered in both the base and upgraded version of a modified
function.

RADAR identifies the modified lines of code by applying
the Unix diff algorithm [8] to the source files. RADAR then
uses objdump2 to identify, from the executables, the functions
that contain the modified code, their callers and callees.

A change may affect the behavior of a program altering
both the sequence of operations executed by a function and
the values assigned to variables. To capture these differences
RADAR traces both every statement executed by a monitored
function and the values assigned to variables.

B. Step 2: Data Collection

In the second step the software developer collects behav-
ioral data using the GDB scripts automatically generated by
RADAR during step 1. In this step, RADAR first executes
the test cases for the base version of the program. Then
RADAR executes the passing and failing tests of the upgraded
version of the program, separately. RADAR automatically
distinguishes passing and failing test cases on the basis of the
return code of the executed program. During these executions
RADAR traces the values of the variables and the sequences
of executed statements.

C. Step 3: Analysis

In the third step RADAR analyzes the collected data and
produces a report. The analysis starts with the generation of
models that generalize and represent in a compact way the
behavior of the base program when the execution terminates
correctly. Models are generated from traces and could consist
of Boolean expressions, which indicate the values that have
been assigned to program variables during passing tests, and
Finite State Automata (FSAs), which specify the sequences
of statements that the program executes when the functions
selected for monitoring are invoked.

RADAR derives Boolean properties from traces using
Daikon [9]. Since RADAR monitors the body and the en-
try/exit points of functions, it can derive: function precon-
ditions, that is properties that hold before the execution of
a function, for instance for the case in Figure 1 RADAR
detects that this.workers != NULL is a precondition
of method getSalary (i.e., WorkersMap.workers is always
initialized when getSalary is executed); program properties,
that is properties that hold before the execution of a line of
code, for instance for the case in Figure 1 RADAR detects that
before the execution of line 50 in method getAverageSalary
the following property holds: salary >= 0; function post-
conditions, that is properties that hold after the execution of a

2http://www.gnu.org/software/binutils/

function, for instance for the case in Figure 1 RADAR detects
that RETURNVALUE >= 0 is a post-condition.

RADAR uses the KBehavior inference engine [10] to derive
FSAs that generalize the sequences of operations executed by
each monitored function. In this context an operation is the
execution of a statement. KBehavior is effective in capturing
the precedence relation among subsets of K events. This
feature is particularly useful for RADAR, in fact changes often
introduce issues in the precedence between events.

RADAR finally compares the models obtained by monitor-
ing the base version of the program with the data recorded
during the execution of the upgraded version of the software.
Any event that occurs in the traces and is not accepted by
models is classified as an anomaly. The anomalies identified
uniquely when comparing the models with the traces collected
from failing executions are reported to the user, while the
anomalies identified also when comparing the models with
successful executions of the upgraded program are classified
as false positives, and thus they are filtered out.

The result of the comparison may be affected by struc-
tural changes like the addition or removal of methods and
instructions. Simple changes like the addition of few lines of
code in a function would change the line number of many
other statements, and thus potentially invalidating the models
that refer to program statements using line numbers. RADAR
can accommodate many of these changes by automatically
adapting the model to the upgraded software. See [7] for
details.

IV. THE RADAR ECLIPSE PLUG-IN

We implemented RADAR as an Eclipse plug-in, which
can be downloaded from http://www.lta.disco.unimib.it/tools/
radar/.

Figure 2 shows the Eclipse workbench, which consists of
multiple editors and views available within the Eclipse IDE:
(a) the analysis view, (b) the trace editor, (c) the program
points view, (d) the anomaly editor, and (e) the customized
properties view.

The analysis view shows the data generated by RADAR
during the analysis of a particular regression problem: it lists
the execution traces that have been recorded (RADAR shows
a single trace for each thread of the application), the models
associated to each monitored program-point, and the results of
the analysis.

The trace editor shows the sequence of statements executed
by the program, limitedly to the statements that have been
selected for monitoring. The program points view shows the
values of the variables that are in the scope of the execution for
a program point selected from the trace. For instance, Figure 2-
d shows the variable values collected when executing line 50
in function getAverageSalary.

The anomaly editor shows the anomalies returned by
RADAR, the program locations that generate them, and the
models that detected the anomalies. The properties view shows
additional information about a selected anomaly, such as the
anomalous values of the variables and the content of the stack

trace. The editor provides a contextual menu for opening
the trace that includes the anomalous event, the model that
detected an anomaly, and the source program with the line of
code that generated a selected anomaly.

V. DEBUGGING REGRESSION PROBLEMS WITH RADAR

The software developer who needs to debug a regression
fault with RADAR has to complete three activities: (1) create
a new analysis configuration, (2) monitor the execution of the
test suites, and (3) run the analysis and inspect the results.

Developers create a new analysis configuration by using a
wizard that guides the user toward setting the paths to the
source folders and the executables of the base and upgraded
versions of the software. Although RADAR automatically
identifies the functions that must be monitored according to
the changed area of the code, it is also possible to manu-
ally modify the list of functions and methods that must be
monitored. In this way the developer can exploit a knowledge
specific to the system under analysis, for instance by including
functions of critical relevance that are not selected by the tool
or excluding functions that are known to be irrelevant. The
specification of the functions that must be monitored can be
performed using a syntax based on regular expressions.

Test cases for C/C++ software are often executed either from
the command prompt or through shell scripts. RADAR assists
the developers by printing the shell commands that should be
executed to run test cases and monitor the application. This
step is usually quite simple. For instance, the following com-
mands must be executed to monitor the example application
introduced in Section II:

CONFIG=/home/Tom/WorkersMap/original.gdb.txt
GDB="gdb -batch -silent -n -x $CONFIG --args"
$GDB WorkersMapTest testNoWorker test1Worker ...

These lines are printed by RADAR. The first and second
line are executed to set some environment variables. The third
line executes the tests through GDB.

In the last step, developers can run the analysis of the
traces using a contextual menu. When the analysis is complete,
RADAR opens an editor with the list of detected anomalies.
Software developers inspect the anomalies in order of appear-
ance. In case the anomaly is produced by a data property, de-
velopers visualize the variables values that caused the anomaly.
In case the anomaly is produced by a FSA, developers can
open the FSA to determine the expected operations.

For instance, Figure 2 shows the set of anomalies returned
in the scenario illustrated in Section II. The first line of the
output indicates that before the execution of line 50 the value
of variable salary is not accepted by the Boolean expression
salary >= 0. Thus in the upgraded version of the program,
variable salary is unexpectedly lower than 0: its value is
equal to -1 as shown by the properties view in Figure 2-e.

A video demonstrating the use of RADAR is available at
http://www.lta.disco.unimib.it/tools/radar/icse2013.html

VI. EMPIRICAL RESULTS

We have used RADAR to debug 7 regression faults affecting
open source software systems and 3 regression faults injected

a d b

ce

Fig. 2. The Eclipse workbench augmented with the editors and views provide RADAR’s views.

on an industrial system [7].
Results show that RADAR can effectively help software

developers in debugging regression problems. In 8 of the 10
cases RADAR successfully spotted anomalies that capture the
misbehavior that generated the failure. In the two unsuccessful
cases RADAR was not able to monitor the target system
because, instead of analyzing a regular change, we analyze two
different releases, which include many pervasiveness changes
that caused the monitoring of a large portion of the software
(more than 500 monitoring breakpoints have been generated).

Although we had this issue in our experiment, we expect
that this limitation will not affect the applicability of RADAR
in most of the practical cases. Modern development pro-
cesses in fact postulate the adoption of continuous integration
mechanisms that execute regression test suites periodically
(e.g., nightly), thus identifying regression problems after few
changes are performed on the system.

The effort required for inspecting the anomalies reported by
RADAR is low: on average RADAR identified 4.25 different
anomalies for each case study. Results are characterized by
a pretty high precision: 70% of the reported anomalies spot
misbehaviors that depend on the fault. Both the Boolean
properties and FSA models resulted to be useful to capture
relevant anomalies: in 2 cases anomalies are discovered by
FSAs only, in 3 cases by Boolean properties only, and in the
remaining cases by both. To give an intuition of the amount of
effort required to debug software with RADAR, we computed
the average number of instructions that separate the line of
code with the fault from the closest line that generated a true
anomaly. This distance amount to 3.75, which indicates that
RADAR not only provides a valid description of the faulty
behavior in terms of anomalous events, but can also drive the
developers close to the faulty statements. Additional details
about our experiments are available in [7].

VII. CONCLUSION

In this paper we presented RADAR, a tool that helps
software developers in debugging regression faults. RADAR
automatically spots the behavioral differences between the

legal executions in the base version of the software and a
failing execution in the upgraded version of the software.
RADAR derives models that generalize the data observed in
legal executions, and uses these models to identify the anoma-
lous data values and the unexpected sequences of operations
that caused a regression failure.

Early empirical results with open source and industrial sys-
tems suggest that RADAR can be an effective tool supporting
developers.

ACKNOWLEDGMENT

This work is partially supported by the European Com-
munity under the call FP7-ICT-2009-5 project PINCETTE
257647.

REFERENCES

[1] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula au-
tomatic fault-localization technique,” in Proceedings of the International
Conference on Automated Software Engineering, 2005.

[2] A. Zeller, “Yesterday, my program worked. today, it does not. why?”
in Proceedings of the European Software Engineering Conference held
jointly with the International Symposium on Foundations of Software
Engineering, 1999.

[3] K. Yu, M. Lin, J. Chen, and X. Zhang, “Practical isolation of failure-
inducing changes for debugging regression faults,” in Proceedings of the
International Conference on Automated Software Engineering, 2012.

[4] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani, “Darwin: An ap-
proach to debugging evolving programs,” ACM Transactions on Software
Engineering and Methodology, vol. 21, no. 3, pp. 1–29, Jul. 2012.

[5] A. Banerjee, A. Roychoudhury, J. A. Harlie, and Z. Liang, “Golden
implementation driven software debugging,” in Proceedings of the
international Symposium on Foundations of Software Engineering, 2010.

[6] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the International Symposium
on Software Testing and Analysis, 2011.

[7] F. Pastore, L. Mariani, A. Goffi, M. Oriol, and M. Wahler, “Dynamic
analysis of upgrades in c/c++ software,” in Proceedings of the Interna-
tional Symposium on Software Reliability Engineering, 2012.

[8] W. Miller and E. Myers, “A file comparison program,” Software-Practice
and Experience, vol. 15, no. 11, pp. 1025–1040, 1985.

[9] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
IEEE Transactions on Software Engineering, vol. 27, no. 2, pp. 99–123,
2001.

[10] L. Mariani, F. Pastore, and M. Pezze, “Dynamic analysis for diagnosing
integration faults,” IEEE Transactions on Software Engineering, vol. 37,
no. 4, pp. 486–508, 2011.

