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Abstract

The present thesis is devoted to the investigation of certain aspects of the large time behavior of the
solutions of two nonlinear Schrödinger equations in dimension three in some suitable perturbative
regimes.
The �rst model consist in a Schrödinger equation with a concentrated nonlinearity obtained con-
sidering a point (or contact) interaction with strength α, which consists of a singular perturbation
of the Laplacian described by a selfadjoint operator Hα, and letting the strength α depend on the
wave function: idudt = Hαu, α = α(u). It is well-known that the elements of the domain of a point
interaction in three dimensions can be written as the sum of a regular function and a function
that exhibits a singularity proportional to |x− x0|−1, where x0 is the location of the point inter-
action. If q is the so-called charge of the domain element u, i.e. the coe�cient of its singular part,
then, in order to introduce a nonlinearity, we let the strength α depend on u according to the
law α = −ν|q|σ, with ν > 0. This characterizes the model as a focusing NLS with concentrated
nonlinearity of power type. In particular, we study orbital and asymptotic stability of standing
waves for such a model. We prove the existence of standing waves of the form u(t) = eiωtΦω,
which are orbitally stable in the range σ ∈ (0, 1), and orbitally unstable for σ ≥ 1. Moreover,

we show that for σ ∈ (0, 1√
2
) ∪
(

1√
2
,
√

3+1
2
√

2

)
every standing wave is asymptotically stable, in the

following sense. Choosing an initial data close to the stationary state in the energy norm, and
belonging to a natural weighted Lp space which allows dispersive estimates, the following resolu-
tion holds: u(t) = eiω∞t+il(t)Φω∞ + Ut ∗ ψ∞ + r∞, where Ut is the free Schrödinger propagator,
ω∞ > 0 and ψ∞, r∞ ∈ L2(R3) with ‖r∞‖L2 = O(t−p) as t → +∞, p = 5

4 ,
1
4 depending on

σ ∈ (0, 1/
√

2), σ ∈ (1/
√

2, 1), respectively, and �nally l(t) is a logarithmic increasing function

that appears when σ ∈ ( 1√
2
, σ∗), for a certain σ∗ ∈

(
1√
2
,
√

3+1
2
√

2

]
. Notice that in the present model

the admitted nonlinearities for which asymptotic stability of solitons is proved, are subcritical in
the sense that it does not give rise to blow up, regardless of the chosen initial data.
The second model is the energy critical focusing nonlinear Schrödinger equation idudt = −∆u −
|u|4u. In this case we prove, for any ν and α0 su�ciently small, the existence of radial �nite
energy solutions of the form u(t, x) = eiα(t)λ1/2(t)W (λ(t)x) + ei∆tζ∗ + oḢ1(1) as t→ +∞, where
α(t) = α0 ln t, λ(t) = tν , W (x) = (1 + 1

3 |x|
2)−1/2 is the ground state and ζ∗ is arbitrarily small in

Ḣ1.
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Résumé

Cette thèse est consacrée à l'étude de certaine aspects du comportement en temps longs des
solutions de deux équations de Schrödinger non-linéaires en dimension trois dans des régimes
perturbatives convenables.
Le premier modèle consiste en une équation de Schrödinger avec une non-linéarité concentrée
obtenue en considérant une interaction ponctuelle de force α, c'est-à-dire une perturbation sin-
gulière du Laplacien décrite par un opérateur autoadjoint Hα, où la force α dépend de la fonction
d'onde : idudt = Hαu, α = α(u). Il est bien connu que les éléments du domaine d'une interac-
tion ponctuelle en trois dimensions peuvent être décrits comme la somme d'une fonction régulière
et d'une fonction ayant une singularité proportionnelle à |x − x0|−1, où x0 est l'emplacement
du point d'interaction. Si q est la charge d'un élément du domaine u, c'est-à-dire le coe�-
cient de sa partie singulière, alors pour introduire une non-linéarité, on fait dépendre la force
α de u selon la loi α = −ν|q|σ, avec ν > 0. Ce modèle est dé�ni comme une équation de
Schrödinger non-linéaire focalisant de type puissance avec une non-linéarité concentrée en x0.
Notre étude porte sur la stabilité orbitale et asymptotique des ondes stationnaires de ce modèle.
Nous prouvons l'existence d'ondes stationnaires de la forme u(t) = eiωtΦω, qui soient orbitale-
ment stables pour σ ∈ (0, 1) et orbitalement instables quand σ ≥ 1. De plus nous montrons que
si σ ∈ (0, 1√

2
) ∪ ( 1√

2
, 1), alors chaque onde stationnaire est asymptotiquement stable, à savoir

que pour des données initiales proches d'un état stationnaire dans la norme d'énergie et appar-
tenant à un espace Lp pondéré où les estimations dispersives sont valides, l'a�rmation suivante
est véri�ée : il existe ω∞ > 0 et ψ∞ ∈ L2(R3) tel que ψ∞ = OL2(t−p) quand t → +∞, tel que
u(t) = eiω∞t+il(t)Φω∞ + Ut ∗ ψ∞ + r∞, où Ut est le propagateur de Schrödinger libre, p = 5

4 ,
1
4

respectivement en fonction de σ ∈ (0, 1/
√

2), σ ∈
(

1√
2
,
√

3+1
2
√

2

)
, et l(t) est une fonction à croissance

logarithmique qui apparaît quand σ ∈ ( 1√
2
, σ∗), où σ∗ ∈

(
1√
2
,
√

3+1
2
√

2

]
. Notons que dans ce modèle

les non-linéarités pour lesquelles on a la stabilité asymptotique sont sous-critiques dans le sens où
quelle que soit la donnée initiale il n'y a pas de solutions explosives.
Quant au deuxième modèle, il s'agit de l'équation de Schrödinger non-linéaire focalisant à énergie
critique : idudt = −∆u− |u|4u. Pour ce cas, nous prouvons, pour tout ν et α0 su�samment petits,
l'existence de solutions radiales à énergie �nie de la forme u(t, x) = eiα(t)λ1/2(t)W (λ(t)x)+ei∆tζ∗+
oḢ1(1) tout t→ +∞, où α(t) = α0 ln t, λ(t) = tν , W (x) = (1 + 1

3 |x|
2)−1/2 est l'état stationnaire

et ζ∗ est arbitrairement petit en Ḣ1.

Mots clés

Équation de Schrödinger, soliton, stabilité asimptotique, energie critique, focalisant, solution
radiale.
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Introduction

The purpose of this thesis is to understand certain aspects of the large time behavior of the
solutions to some nonlinear Schrödinger (NLS) equations of the form

(1) i
du

dt
= −4u− f(x, |u|2)u, x ∈ R3.

Let us note that it is also possible to consider abstract equations with other self-adjoint operators
in place of the Laplacian. Anyway, the local and global well-posedness of the associated Cauchy
problem have been largely investigated for a wide family of nonlinearities in dimension three as
well as in the generic Euclidean space Rn, n ≥ 1 (for example see [24], [25], [26], [12] and references
therein). In particular, under suitable hypotheses on f , this equation has a unique solution once
an initial datum is �xed.
Broadly speaking, the evolution turns out to be a competition between the linear part of the
equation (which tends to disperse the solution) and the nonlinear part (which can either focus
or defocus the solution depending on the sign of the nonlinear function f). Therefore, one might
expect the dynamics to be a combination of three phenomena. The �rst one is a linearly dominated
behavior which occurs when the e�ects of the linear part dominate those of the nonlinear one.
In such a case, the solution is global and at large times converges to a solution to the linear
Schrödinger equation that is known to disperse to zero. One can also have a nonlinear dominated
behavior when the nonlinear e�ects are stronger than the linear ones. In this situation, if equation
(1) is focusing (as will be in this thesis), then the solution can develop singularities at �nite times.
Finally, the linear and nonlinear e�ects may be in balance. In the focusing case one of the most
classical manifestations of this regime is the existence of soliton type solutions.
To be more precise in the de�nition of soliton let us notice that the inhomogeneity given by the x
dependence of f in (1) destroys the translation invariance but the dynamics still enjoys the phase
shift invariance. As a consequence, it is well known that under suitable assumptions equation (1)
admits a branch of non-trivial solutions of the form

u(t, x) = eiωtΦω(x),

with ω in some interval and Φω satisfying

−4Φω + ωΦω − f(x, |Φω|2)Φω = 0.

Existence and uniqueness as well as the properties of the solutions of this equation, which are
called solitary waves or solitons, have been largely inspected, see for example [7] and [12].
Solitons appear in a wide class of nonlinear dispersive partial di�erential equations such as the
wave equation, the Korteweg-de Vries equation or the Klein-Gordon equation. One could believe
that when the nonlinear e�ects are not strong enough to produce �nite time blow up, solutions with
generic initial data should eventually resolve into a superposition of a radiation component (which

ix



x Introduction

behaves like a solution to the linear Schrödinger equation) plus a �nite number of modulated
nonlinear bound states. This statement is known as soliton resolution conjecture.
As far as NLS type equations are concerned, the only case where this conjecture is proved rigor-
ously is the cubic NLS in dimension one, that can be integrated by means of the inverse scattering
method. In the non-integrable case the conjecture is in general widely open. However, there are
certain important perturbative regimes that are accessible to the analysis.
Two examples of such perturbative regimes are considered in this thesis both of them being
related to small initial perturbations of a single solitary wave. More precisely, in part I we
study the orbital and asymptotic stability of solitary waves of some three-dimensional NLS with
concentrated nonlinearities opportunely de�ned, and in part II we exhibit some "exotic" regimes
in the vicinity of the ground state of the NLS in the energy critical regime.

Orbital and asymptotic stability for standing waves of a NLS equa-

tion with concentrated nonlinearity in dimension three

The �rst part of this work is devoted to the analysis of orbital and asymptotic stability of the
solitary waves of a Schrödinger equation with concentrated nonlinearity in dimension three. Such
a model was proposed and constructed by Adami, Dell'Antonio, Figari, and Teta in [1] and [2].
For the analogous one-dimensional model constructed by Adami and Teta in [5] these stability
properties are studied by Buslaev, Komech, Kopylova, and Stuart in [8] and [33].
By Schrödinger operator with concentrated nonlinearity is meant a dynamical generator whose
nonlinear part is localized at one point. More precisely, the considered model is de�ned through
the nonlinear operator Hα de�ned on a suitable subspace of L2(Rn), n = 1, 2, 3, where α is a �xed
functional acting on the element domain precisely de�ned below. The action of the operator Hα

when restricted to regular functions vanishing in 0 is that of the Laplacian. On the other hand,
when α is a constant one gets a family of operators known as pointwise interaction (the topic is
treated in the book of Albeverio et alii [6]). In [37], Noja and Posilicano give a general de�nition
of concentrated nonlinearities in the case n = 3 that is considered here. In this particular case,
the subspace of L2(R3) which turns out to be the operator domain of Hα is

D(Hα) =

{
u ∈ L2(R3) : u(x) = φ(x) + q

1

4π|x|
with φ ∈ H2

loc(R3), ∆φ ∈ L2(R3),

q ∈ C, lim
x→0

(
u(x)− q 1

4π|x|

)
= α(u)q

}
,

while the action of the operator is described by

Hαu = −4φ.

The complex number q is sometimes called charge. In particular we consider the case

(2) α(u) = −ν|q|2σ, ν > 0, σ > 0.

For this nonlinearity local and global well-posedness of the dynamics and blow up properties of
the equation

(3) i
du

dt
= Hαu, u ∈ D(Hα),

have been studied by Adami, Dell'Antonio, Figari, and Teta in [1] and [2].
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The solitary waves (or standing waves) of Equation (3)exist if and only if ω > 0 and their analytic
expression is known (see Section 1.2.2).
Notice that equation (3) is phase shift invariant (but not translationally invariant since this
symmetry is broken by the pointwise interaction): this prevents the solitons from being stable in
the sense of Lyapunov.
Hence, the natural notion to be used in this context is that of orbital stability, which roughly
speaking, is Lyapunov stability up to symmetries. More precisely, one can de�ne the orbit of a
soliton Φω as O(Φω) = {eiθΦω(x), θ ∈ [0, 2π)}. Thus, by de�nition, the state Φω is orbitally

stable in the future if for every ε > 0 there exists δ > 0 such that

‖u(0)− Φω‖V < δ ⇒ d(u(t),O(Φω)) < ε ∀t > 0,

where
d(u,O(Φω)) = inf

v∈O(Φω)
‖u− v‖V ,

and ‖ · ‖V is the norm in the energy space. A stationary state is said to be orbitally unstable if it
is not orbitally stable. This type of investigations can be done following two di�erent approaches:
the �rst one is based on variational and compactness argument (see the paper of Cazenave and
Lions [13] for details), while the second one is based on the idea of constructing a sort of Lyapunov
function (see the paper of Weinstein [53], [52] and those of Grillakis, Shatah and Strauss [28],
[29]). In our setting one can observe that the hypotheses of the results of Weinstein [53] and of
Grillakis, Shatah, and Strauss [28] are satis�ed then we prove the following theorem.

Theorem 0.1. (Orbital stability) Consider equation (3) with concentrated power nonlinearity

(2), then for all ω > 0

(a) the standing wave Φω is orbitally stable when 0 < σ < 1,

(b) the standing wave Φω is orbitally unstable when σ > 1.

Finally, in the case σ = 1 instability by blow up is proved exploiting the additional pseudoconfor-
mal transformation. Roughly speaking, for each solitary wave Φω in any neighbourhood of initial
data there is a (non global) solution of equation (3) whose charge diverges as the time goes to
in�nity. Hence the standing wave is orbitally unstable.
A more challenging and subtle task is the study of asymptotic stability. One says that a soliton
is asymptotically stable if it has a neighbourhood of initial data such that the corresponding
solutions converges in some suitable weighted Lebesgue space to some soliton which is in general
di�erent from the initial one. Hence, one expects that the solution to the NLS equation (3) can
be decomposed as

u(t, x) = eiΘ(t)
(
Φω(t)(x) + χ(t, x)

)
,

where the real functions ω(t) ∼ Θ̇(t) behave as a precise constant as the time goes to in�nity, while
the function χ(t) disperses. This implies that, for large times, the solution u(t) is approximated
by a soliton which might not be the initial one. Under some restriction on the nonlinearity,
asymptotic stability of solitary waves of equation (1) in some �xed dimension were proved by
So�er and Weinstein [42], [43], and Buslaev and Perelman [9], [10]. In the cited papers the
techniques nowadays classical in dealing with this type of problems are also developed . These
results have been extended to higher dimension; in this direction some meaningful works are
[14, 48, 51, 30, 22, 23, 15].
The �rst step in the asymptotic stability analysis is the study of the spectrum of the operator L
which comes out linearizing the NLS equation (3) around the solitary wave Φω. Exploiting the
explicit expression of the resolvent of the linearization L the spectrum σ(L) sati�es:
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if σ = 1, then L has just the eigenvalue 0 with algebraic multiplicity 4,

if σ ∈ (1,+∞), then L has two simple real eigenvalues ±µ = ±2σ
√
σ2 − 1ω and the eigen-

value 0 with algebraic multiplicity 2.

In the case σ = 1/
√

2 the endpoints of the essential spectrum ±iω are resonances for the linearized
problem.
The second fundamental ingredient for the study of asymptotic stability consists in the so-called
modulation equations that describe the evolution of the parameter ω(t), of the phase Θ(t), and,
in case of presence of the purely imaginary eigenvalues, of the coe�cients of the corresponding
eigenfunctions. Such equations are obtained constructing a solution u(t) of the NLS equation
(3) close to the stationary wave Φω(t) for all t > 0 and such that the reminder u(t) − Φω(t) is
symplectically orthogonal to the generalized kernel of the linearized operator L(t) at every positive
time.
In order to obtain information about the asymptotic behavior of the solution of the NLS, we are
interested in determine the behavior of the solutions of the modulation equations as t→ +∞. To
this purpose, one studies the behavior of the propagator of the operator L. In particular, some
dispersive estimates for the propagator of L are proved. As it often happens in establishing such
estimates, the structure of the resolvent of the linearized operator (in this case it is explicitly
known) imposes to chose the initial data in some suitable weighted L1(R3). Let us denote this
weight by w.
In the thesis only the spectral cases σ ∈ (0, 1/

√
2) and σ ∈ ( 1√

2
,
√

3+1
2
√

2
) are studied. The �rst case

correspond to the absence of non-vanishing eigenvalues while in the second case purely imaginary
eigenvalues ±iξ with the condition 2ξ > ω appear. We do not consider the case σ = 1√

2
where

there is a resonance at the endpoint of the continuous spectrum. In the �rst case the steps
described above lead to the following result.

Theorem 0.2. (Asymptotic stability in case the point spectrum only consists in the

eigenvalue 0) Assume that u(t) ∈ C(R+, V ) is a solution to (3) with concentrated power non-

linearity (2) where σ ∈ (0, 1/
√

2). Moreover, suppose that u(0) = u0 ∈ V ∩ L1
w(R3). Denoting

d = ‖u0 − eiθ0Φω0‖V ∩L1
w
,

for some ω0 > 0 and θ0 ∈ R, then, provided d is su�ciently small, the solution u(t) can be

asymptotically decomposed as

u(t) = eiω∞tΦω∞ + Ut ∗ ψ∞ + r∞(t),

where ω∞ > 0 and ψ∞, r∞ ∈ L2(R3) with

‖r∞(t)‖L2 = O(t−5/4) as t→ +∞,

in L2(R3).

Finally, in the second spectral case (σ ∈ ( 1√
2
,
√

3+1
2
√

2
)), the presence of the two purely imaginary

eigenvalues slows down the speed of decay of the reminder r∞. This slower decay can be observed
by the behavior of the parameters whose evolution is described by the modulation equations.
Hence, in order to deal with the modulation equations, it is necessary to consider also the quadratic
and the cubic terms of the nonlinearity and, later, to exploit a change of variables to have a normal
form of the modulation equations to proceed with the dispersive estimates and the asymptotic
behavior analysis. This makes more complicate the study of the properties of ψ∞ and r∞.
In order to formulate the last result we denote by Ψ1, Ψ2 the eigenfunctions corresponding to the
purely complex eigenvalues, and by z0 the associated coe�cient in the initial datum.
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Theorem 0.3. (Asymptotic stability in the case of purely imaginary eigenvalues)

Assume that u(t) ∈ C(R+, V ) is a solution to (3) with concentrated power nonlinearity (2) where

σ ∈ ( 1√
2
, σ∗), for a certain σ∗ ∈ ( 1√

2
,
√

3+1
2
√

2
]. Moreover, suppose that the initial datum

u(0) = u0 = eiω0+γ0Φω0 + eiω0+γ0 [(z0 + z0)Ψ1 + i(z0 − z0)Ψ2] + f0 ∈ V ∩ L1
w(R3),

with ω0 > 0, γ0, z0 ∈ R, and f0 ∈ L2(R3) ∩ L1
w(R3) is close to a stationary wave, i.e.

|z0| ≤ ε1/2 and ‖f0‖L1
w
≤ cε3/2,

where c, ε > 0.
Then, provided ε is su�ciently small, the solution u(t) can be asymptotically decomposed as

u(t) = eiω∞t+ib1 log(1+εk∞t)Φω∞ + Ut ∗ ψ∞ + r∞(t),

where ω∞, εk∞ > 0, b1 ∈ R, and ψ∞, r∞ ∈ L2(R3) such that

‖r∞(t)‖L2 = O(t−1/4) as t→ +∞,

in L2(R3).

Nondispersive vanishing and blow up at in�nity for the energy crit-

ical nonlinear Schrödinger equation in R3

In the second part of the thesis we study the equation (also called energy critical NLS equation)

(4)
idudt = −4u− |u|4u x ∈ R3

u(0) = u0 ∈ Ḣ1(R3)
.

This Cauchy problem is known to be locally well-posed: for any initial datum u0 ∈ Ḣ1(R3)
there exists a unique solution u de�ned on a maximal interval of de�nition I = (T−, T+) such that
u ∈ C(I, Ḣ1(R3))∩L10(I×R3) for any compact interval I ⊂ I. If T+ < +∞ (or T− > −∞), then
‖u‖L10((0,T+)×R3) = +∞ (respectively ‖u‖L10((T−,0)×R3) = +∞), and one says that the solution
blows up in �nite time.
During their lifespan the solutions to (4) satisfy the conservation of energy

E(u(t)) =
1

2

∫
R3

|∇u(t, x)|2dx− 1

6

∫
R3

|u(t, x)|6dx = E(u(0)).

Both the energy and the equation are invariant under the scaling

u(t, x) 7−→ λ−1/2u

(
t

λ2
,
x

λ

)
, ∀λ > 0.

The existence of this invariance is the reason of the name "energy critical NLS".
If the initial data are su�ciently small, the solution is global and scatters as t → ∞. For large
data, the exitence of �nite time blow up solution can be proved by mean of the viral identity

d2

dt2

∫
R3

|x|2|u(t, x)|2dx = 8E(u)− 16

3

∫
R3

|u(t, x)|6dx,

which shows that localized initial data with negative energy must break down in �nite time.
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Moreover, equation (4) admits a stationary state in Ḣ1(R3), namely a solution of

−4W − |W |4W = 0.

A particular solution to the above equation is the so-called Talenti-Aubin solution

W (x) =

(
1 +
|x|2

3

)−1/2

,

which belongs to Ḣ1(R3) but not to L2(R3).
In [31], Kenig and Merle show that the energy of the ground state W is critical in the following
sense: for any u(t) a radial solution to (4) such that E(u(0)) < E(W ) one has

if ‖u(0)‖Ḣ1 < ‖W‖Ḣ1 , then the solution is global and scatters as t→∞;

if ‖u(0)‖Ḣ1 > ‖W‖Ḣ1 and u(0) ∈ L2(R3), then the solution blows up in �nite time.

The behavior of radial solutions with critical energy was classi�ed by Duyckaerts and Merle in
[19]. In this case, in addition to �nite time blow up and scattering to zero (and W itself), one
has solutions that as t → ∞ converge in Ḣ1(R3) to a rescaled ground state. In the case where
E(u(0)) > E(W ) the dynamics is expected to be richer and to include the solution that as t→∞
behave as a modulated ground state eiα(t)λ

1
2 (t)W (λ(t)x) with fairly general α(t) and λ(t).

For a closely related model of the critical wave equation, the solutions of this type with λ(t)→∞
as t → ∞ (blow up at in�nity) and λ(t) → 0, tλ(t) → ∞ as t → ∞ (non-dispersive vanishing)
were recently constructed by Donninger and Krieger (see [17]). The goal of the second part of
this thesis is to prove an analogous result for the NLS equation (4). More precisely we show the
following theorem.

Theorem 0.4. There exists β0 > 0 such that for any ν, α0 ∈ R with |ν| + |α0| ≤ β0 and any

δ > 0 there exist T > 0 and a radial solution u ∈ C([T,+∞), Ḣ1 ∩ Ḣ2) to (4) of the form:

(5) u(t, x) = eiα(t)λ1/2(t)W (λ(t)x) + ζ(t, x),

where λ(t) = tν , α(t) = α0 ln t, and ζ(t) veri�es:

‖ζ(t)‖Ḣ1∩Ḣ2 ≤ δ,

‖ζ(t)‖L∞ ≤ Ct−
1+ν

2 ,

‖ < λ(t)x >−1 ζ(t)‖L∞ ≤ Ct−1− 3
2
ν ,

(6)

for all t ≥ T . The constants C here and below are independent of ν, α0 and δ.
Furthermore, there exists ζ∗ ∈ Ḣs, ∀s > 1

2 − ν, such that, as t → +∞, ζ(t) − eit∆ζ∗ → 0 in

Ḣ1 ∩ Ḣ2.

As mentioned above, a similar result is obtained for the energy critical wave equation by Donninger
and Krieger in [17]. Their construction was inspired by the previous work of Krieger, Schlag,
and Tataru [35] where the case of �nite time blow up was considered. Both these papers and
the references therein have been a source of inspiration for parts of the techniques to construct
solutions to equation (4) as in the previous theorem.
The �rst step in proving this kind of results is to construct an approximate solution to the NLS
equation (4) with an error that decay su�ciently fast in time. In order to do that it is useful to
split the space R3 in three regions related to three di�erent space scales: the inner region with the
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scale tν |x| . 1, the self-similar region where |x| = O(t1/2), and, �nally, the remote region where
|x| = O(t). In the inner region the solution will be constructed as a perturbation of the pro�le
eiα0ν ln ttν/2W (tνx). While, the self-similar and remote regions are the regions where the solution
is small and described essentially by the linear equation idudt = −4u.
The second step consists in considering the linearization of (4) around W and prove the bound-
edness of the propagator of the linearized operator along its essential spectrum in the H1(R3).
To achieve this result we use the distorted Fourier transform and some of its properties. In such
arguments, some of the techniques are from Buslaev and Perelman [9], and Krieger and Schlag
[34].
Finally, in the third and last step the results of the previous steps are exploited in order to prove,
by a �xed point argument, the existence of an exact solution on the NLS equation (4) that satis�es
the properties claimed in the theorem.

The results presented here form the core of three papers:

• R. Adami, D. Noja, and C. O., Orbital and asymptotic stability for standing waves of a

NLS equation with concentrated nonlinearity in dimension three, to appear in Journal of
Mathematical Physics, avaible at arxiv.org/pdf/1207.5677.

• R. Adami, D. Noja, and C. O., Orbital and asymptotic stability for standing waves of a NLS

equation with concentrated nonlinearity in dimension three. II, in preparation.

• C. O., G. Perelman, Nondispersive vanishing and blow up at in�nity for the energy critical

nonlinear Schrödinger equation in R3, to appear in St. Petersburg Mathematical Journal.
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Introduction

Le but de cette thèse est de comprendre certains aspects du comportement en temps longs des
solutions des équations de Schrödinger non-linéaires (NLS) de la forme

(7) i
du

dt
= −4u− f(x, |u|2)u, x ∈ R3.

Notons qu'on peut aussi considérer des equations abstraites avec des opérateurs autoadjoints
autre que le Laplacien. L'existence locale et globale pour le problème de Cauchy associé a été
amplement examinée pour une grand famille de nonlinéarités (pour exemple voir [24], [25], [26],
[12] et leur références). En particulier, sous des hypothèses convenables sur f , cette équation a
une solution unique une fois que la donnée initiale est �xée.
De manière générale, l'évolution se révèle être une compétition entre la partie linéaire de l'équation
(qui tend à disperser la solution) et la partie non-linéaire (qui peut être soit focalisante, soit
défocalisante en fonction du signe de la fonction f). On pourrait ainsi penser que la dynamique se
caractérise par la combinaison de trois phénomènes. Le premiér est un comportement linéairement
dominé qui apparait quand les e�ets de la partie linéaire dominent ceux de la non-linéarité. Dans
ce cas, la solution est globale et en temps longs elle converge vers une solution de l'équation de
Schrödinger linéaire qui nous le savons, se disperse vers zero. Si les e�ets non-linéaires sont plus
forts que les e�ets linéaires, on peut avoir un comportement complètement non-linéaire. En ce
cas, si l'équation (7) est focalisante (cas étudié dans cette thèse), alors la solution peut développer
des singularités en temps �ni. En�n les e�ets linéaires et non-linéaires peuvent être en équilibre.
Dans le cas focalisant une des manifestations les plus classiques de ce régime est l'existence de
solutions solitoniques.
Pour dé�nir d'une façon plus précise la notion de soliton on observe que la non-homogénéité,
qui vient de la dépendance de f en x dans l'équation (7), détruit l'invariance par rapport aux
translations mais la dynamique est toujours invariante par rapport à la variation de phase. Par
conséquent, il est bien connu que, sous des hypothèses convenables, l'équation (7) admet une
famille de solutions de la forme

u(t, x) = eiωtΦω(x),

avec ω appartenant à un intervalle et Φω satisfaisant

−4Φω + ωΦω − f(x, |Φω|2)Φω = 0.

L'existence, l'unicité et les propriétés des solutions de cette équation, qui sont appelées ondes

solitaires ou solitons, ont été largement inspectées (voir par example [7] et [12]).
Les solitons apparaissent dans une large classe d'équations aux dérivées partielles non-linéaires
dispersives comme l'équation des ondes, l'équation de Korteweg-de Vries ou l'équation de Klein-
Gordon. On peut penser que si les e�ets non-linéaires ne sont pas assez forts pour produire
des solutions explosives en temps �ni, les solutions avec des données initiales générales devront
�nalement se réduire à une superposition d'un composant de radiation (qui se comporte comme

xvii
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une solution de l'équation de Schrödinger linéaire) plus un nombre �ni des étas liés non-linéaires
modulés. Cette a�rmation est connue sous le nom de conjecture de résolution en solitons .
Pour des équations du type Schrödinger non-linéaire le seul cas où cette conjecture est rigoureuse-
ment démontrée est celui de l'équation de Schrödinger non-linéaire cubique en dimension un, qui
peut être intégrée par la méthode du scattering inverse. Dans les cas non-intégrables, la conjecture
est généralement largement ouverte. Il existe cependant certains régimes perturbatifs importants
accessibles à l'analyse.
Dans cette thèse nous considérons deux exemples de ces régimes perturbatifs, tous les deux cor-
respondant à de petites perturbations initiales d'une seule onde solitaire.Nous étudirons tout
d'abord la stabilité orbitale et asymptotique des ondes stationnaires pour certaines équations de
Schrödinger non-linéaires avec des non-linéarités concentrées (dé�nies opportunément) en dimen-
sion trois et dans une seconde partie nous exposerons des régimes "exotiques" dans le voisinage
de l'état fondamental de l'équation de Schrödinger non-linéaire à énergie critique.

Stabilité orbitale et asymptotique des ondes stationnaires pour des

l'équations de Schrödinger avec des non-linéarités concentrése en

dimension trois

La première partie de cette thèse est dédiée à l'analyse de la stabilité orbitale et asymptotique des
ondes solitaires de l'équation de Schrödinger avec des non-linéarités concentrées en dimension trois.
Ce modèle a été introduit par Adami, Dell'Antonio, Figari et Teta ([1] et [2]). Les propriétés de
stabilité du modèle analogue en dimension un, construit par Adami et Teta ([5]), ont été étudiées
par Buslaev, Komech, Kopylova et Stuart ([8] et [33]).
Un opérateur de Schrödinger à non-linéarité concentrée est un générateur de dynamique dont
la partie non-linéaire est localisée en un point. Plus précisément, le modèle considéré est dé�ni
à l'aide de l'opérateur non-linéaire Hα dé�ni sur un sous-espace approprié de L2(Rn), n = 1,
2, 3, où α est une fonctionnel �xée agissant sur un élément du domaine dé�ni précisément ci-
dessous.. Dans le cas n = 3 (cas étudié dans cette thèse) une dé�nition générale des non-linéarités
concentrées a été donnée par Noja et Posilicano [37]. Dans ce cas, le domaine de l'opérateur Hα

est le sous-espace suivant de L2(R3) :

D(Hα) =

{
u ∈ L2(R3) : u(x) = φ(x) + q

1

4π|x|
avec φ ∈ H2

loc(R3), ∆φ ∈ L2(R3),

q ∈ C, lim
x→0

(
u(x)− q 1

4π|x|

)
= α(u)q

}
,

l'action de l'opérateur étant décrite par

Hαu = −4φ.

Le nombre complexe q est parfois appelé charge. Dans cette thèse on considère le cas

(8) α(u) = −ν|q|2σ, ν > 0, σ > 0.

Pour cette non-linéarité l'existence locale et globale de la dynamique ainsi que les propriétés des
solutions explosives pour l'équation

(9) i
du

dt
= Hαu, u ∈ D(Hα),
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ont été étudiée par Adami, Dell'Antonio, Figari, and Teta en [1] et [2].
Les ondes solitaires (ou ondes stationnaires) de l'Équation (9) existent si et seulement si ω > 0 et
leur expression analytique est alors connue (voir Section 1.2.2).
Notons que l'Équation (9) est invariante par changements de phase ce qui l'empêche la stabilité
des solitons au sens de Lyapounov.
Un état Φω est dit orbitalement stable dans le futur si pour tout ε > 0 il existe δ > 0 tel que

‖u(0)− Φω‖V < δ ⇒ d(u(t),O(Φω)) < ε ∀t > 0,

où ‖ · ‖V est la norme dans l'espace d'énergie, O(Φω) = {eiθΦω(x), θ ∈ [0, 2π)} est l'orbite de
Φω et d(u,O(Φω)) = infv∈O(Φω) ‖u − v‖V ,. Un état stationnaire est dit orbitalement instable

s'il n'est pas orbitalement stable. L'étude de la stabilité orbitale peut être mené selon deux
approches di�érentses : le première est basé sur des arguments variationnels dans l'esprit des
travaux pionnières de Cazenave et Lions [13], et la seconde repense sur le construction d'une
fonction de Lyapounov (voir Weinstein [53], [52] et Grillakis, Shatah et Strauss [28], [29]). Les
résultats obtenus par ces derniers s'appliquent bien au modèle ici considéré et nous permettent
de démontrer le théorème suivant.

Theorem 0.5. (Stabilité orbitale) Considérons l'équation (9) avec non-linéarité puissance con-
centrée (8), alors pour tout ω > 0

(a) l'onde stationnaire Φω est orbitalement stable si 0 < σ < 1,

(b) l'onde stationnaire Φω est orbitalement instable si σ > 1.

Finalement pour le cas σ = 1 l'instabilité par explosions se démontre en exploitant la transfor-
mation pseudo-conforme.
Une tache plus di�cile et délicate est l'analyse de la stabilité asymptotique. On dit qu'un soliton
est asymptotiquement stable s'il existe un voisinage de données initiales tels que les solutions
correspondantes convergent dans un espace de Lebesgue convenablement pondéré vers un soliton
qui généralement est di�érent du soliton initial dont les paramètres sont proches des paramètres
initiales. Plus précisément la solution de l'équation de Schrödinger non-linéaire (9) se décompose
comme

u(t, x) = eiΘ(t)
(
Φω(t)(x) + χ(t, x)

)
,

où les fonctions réeles ω(t) ∼ Θ̇(t) converge vers une constante précise quand t→ +∞, tandis que
la fonction χ(t) se disperse. Sous quelques restrictions sur la non-linéarité la stabilité asymptotique
de l'équation (7) en certain dimension �xée est démontrée par So�er et Weinstein en [42], [43],
et par Buslaev et Perelman en [9], [10]. Les techniques développées dans ces articles aujourd'hui
sont considérées comme classiques pour ces type de problèmes. Ces résultats ont aussi été prouvés
en dimensions supérieurs ([14, 48, 51, 30, 22, 23, 15]).
Une première étape dans l'analyse de la stabilité asymptotique consiste en l'étude du spectre de
l'opérateur L provenant de la linéarisation de l'équation de Schrödinger non-linéaire (9) autour
d'une onde stationnaire Φω. Exploitant l'expression explicite de la résolvante de l'opérateur L on
peut montrer que :

si σ = 1, alors L a seulement une valeur propre 0 avec multiplicité algébrique 4 ;

si σ ∈ (1,+∞), alors L a deux valeurs propres réels ±µ = ±2σ
√
σ2 − 1ω et la valeur propre

0 avec multiplicité algébrique 2.
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Dans le cas σ = 1/
√

2 les extrémités du spectre essentiel ±iω sont des résonances pour le probleme
linéarisé.
Le deuxième ingrédient fondamental pour l'étude de stabilité asymptotique en l'établissent des
équations de modulation qui décrivent l'évolution de paramètre ω(t), de la phase Θ(t) et, dans le
cas où les valeurs propres purement imaginaire sont présentes, des coe�cientsdes fonctions propres
correspondantes. Ces équations sont obtenues à partir de la décomposition u(t) = eiΘ(t)Φω(t)+χ(t)
avec χ(t) symplectiquement orthogonal au noyau généralisé de l'opérateur linéarisé L.
L'étude du comportement asymptotique des solutions des équations de modulation et donc du
comportement asymptotique de l'équation de Schrödinger non-linéaire repose sur les propriétés
dispersives du propagateur de L restreint au spectre essentiel. Lors de l'établissent des estimations
dispersives, le structure de le résolvant de l'opérateur linéarisé (explicite dans notre cas) impose
sauvent de choisir les données initiales dans un espace L1(R3) pondéré convenablement. Dénotons
ce poids par w.
Dans cette thèse on étudie seulement les cas spectraux σ ∈ (0, 1/

√
2) et σ ∈ ( 1√

2
,
√

3+1
2
√

2
), c'est-à-

dire les cas non-résonants où on a la stabilité orbitale et en présence de valeurs propres purement
imaginaires ±iξ la condition 2ξ > ω est satisfaite.. Dans le premier cas la stratégie exposée
ci-dessus permet d'établir le résultat suivant.

Theorem 0.6. (Stabilité asymptotique quand le spectre ponctuel se compose seulement

de la valeur propre 0) Soit σ ∈ (0, 1/
√

2). Soit u ∈ C(R+, V ) une solution de (9) avec

u(0) = u0 ∈ V ∩ L1
w(R3) et ω0 > 0, θ0 ∈ R. On note d = ‖u0 − eiθ0Φω0‖V ∩L1

w
. Alors, si d est

su�samment petit, la solution u(t) se décompose en somme

u(t) = eiω∞tΦω∞ + Ut ∗ ψ∞ + r∞(t),

où ω∞ > 0 et ψ∞ ∈ L2(R3) et le reste r∞(t) véri�e

‖r∞(t)‖L2 = O(t−5/4) quand t→ +∞.

Dans le deuxième cas spectral (σ ∈ ( 1√
2
,
√

3+1
2
√

2
)), la présence de deux valeurs propres purement

imaginaires ralentit la vitesse de décroissance du reste r∞. Cette décroissance plus lente peut être
observée à travers le comportement des paramétrés dont l'évolution est décrite par les équations
des modulation. Pour étudier les équations de modulation il est, dans ce cas, nécessaire de tenir
compte des termes quadratiques et cubiques de la non-linéarité et exploiter un changement de
variables, a�n de réduire les équations à une forme normale, ce qui permet ensuite, à l'aide des
estimations dispersives, de procéder à l'analyse du comportement asymptotique. Cela complexi�é
l'étude des propriétés de ψ∞ et r∞.
A�n de formuler le dernier résultat notons Ψ1, Ψ2 les fonctions propres correspondantes aux
valeurs propres purement complexes et z0 le coe�cient dans la donnée initiale.

Theorem 0.7. (Stabilité asymptotique en présence de valeurs propres purement imag-

inaires) Soit σ ∈ ( 1√
2
, σ∗), où σ∗ ∈ ( 1√

2
,
√

3+1
2
√

2
]. Soit u(t) ∈ C(R+, V ) une solution de (9) avec

u(0) = u0 ∈ V ∩ L1
w de la forme

u(0) = u0 = eiω0+γ0Φω0 + eiω0+γ0 [(z0 + z0)Ψ1 + i(z0 − z0)Ψ2] + f0 ∈ V ∩ L1
w(R3),

où ω0 > 0, γ0, z0 ∈ R, et f0 ∈ L2(R3) ∩ L1
w(R3) sont tels que

|z0| ≤ ε1/2 and ‖f0‖L1
w
≤ cε3/2,

avec c, ε > 0.
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Alors, si ε est su�samment petit, la solution u(t) se en somme

u(t) = eiω∞t+ib1 log(1+εk∞t)Φω∞ + Ut ∗ ψ∞ + r∞(t), as t→ +∞,

où ω∞, εk∞ > 0, b1 ∈ R et φ∞ ∈ L2(R3) et r∞(t) véri�e

‖r∞(t)‖L2 = O(t−1/4) quand t→ +∞,

en L2(R3).

Relaxation non-dispersive et explosion à l'in�ni pour l'équation de

Schrödinger non-linéaire à énergie critique en dimension trois

Dans la deuxiéme partie de cette thése nous étudierons l'équation (appelée équation de Schrödinger
non-linéaire à énergie critique)

(10)
idudt = −4u− |u|4u x ∈ R3

u(0) = u0 ∈ Ḣ1(R3)
.

Ce probléme de Cauchy est bien posé localement en temps : pour tout donnée initiale u0 ∈ Ḣ1(R3)
il existe une unique solution u dé�nie sur un intervalle maximal de dé�nition I = (T−, T+) tel que
u ∈ C(I, Ḣ1(R3))∩L10(I×R3) pour tout intervalle compact I ⊂ I. Si T+ < +∞ (ou T− > −∞),
alors ‖u‖L10((0,T+)×R3) = +∞ (respectivement ‖u‖L10((T−,0)×R3) = +∞) et on dit que la solution
explose en temps �ni.
Pendant sa durée de vie la solution de (10) conserve l'énergie :

E(u(t)) =
1

2

∫
R3

|∇u(t, x)|2dx− 1

6

∫
R3

|u(t, x)|6dx = E(u(0)).

L'énergie et l'équation sont toutes les deux invariantes par changement d'échelle

u(t, x) 7−→ λ−1/2u

(
t

λ2
,
x

λ

)
, ∀λ > 0.

Si les données initiales sont su�samment petites, la solution est globale et se disperse quand
t→∞. Pour des données grandes on peut démontrer l'existence de solutions explosives en temps
�ni à l'aide de l'identité de viriel

d2

dt2

∫
R3

|x|2|u(t, x)|2dx = 8E(u)− 16

3

∫
R3

|u(t, x)|4dx,

qui montre que le solutions avec des données initiales localisés avec énergie négative ne peuvent
pas vivre qu'un temps �ni.
De plus l'équation (10) admet un état stationnaire en Ḣ1(R3), c'est-à-dire une solution de

−4W − |W |4W = 0.

Une solution particulière de l'équation ci-dessus est la solution de Talenti-Aubin

W (x) =

(
1 +
|x|2

3

)−1/2

,

qui appartient à Ḣ1(R3) mais non à L2(R3).
En [31], Kenig et Merle montrent que l'énergie de l'état stationnaireW est critique au sens suivant
: pour chaque u(t) solution radiale de (10) tel que E(u(0)) < E(W ) on a
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si ‖u(0)‖Ḣ1 < ‖W‖Ḣ1 , alors la solution est globale et se disperse pour t→∞ ;

si ‖u(0)‖Ḣ1 > ‖W‖Ḣ1 et u(0) ∈ L2(R3), alors la solution explose en temps �ni.

Le comportement des solutions radiales à énergie critique a été classi�é par Duyckaerts et Merle
[19]. Dans ce cas, en plus de l'explosion en temps �ni et dispersion à zéro (et àW même), on a des
solutions qui quand t → ∞ convergent dans Ḣ1(R3) vers un état stationnaire re-écaillé. Quand
E(u(0)) > E(W ), on s'attende à ce que la dynamique soit plus riche et inclue des solutions qui
quand t → ∞ se comportent comme un état stationnaire modulé eiα(t)λ

1
2 (t)W (λ(t)x) avec α(t)

et λ(t) assez généraux.
Pour le modèle trés proche de l'équation des ondes critique les solutions de ce type ont été récem-
ment construites par Donninger et Krieger (voir [17]) avec λ(t)→∞ quand t→∞ (explosion à
l'in�ni) et λ(t)→ 0, tλ(t)→∞ pour t→∞ (relaxation). Le but de la deuxiéme partie de cette
thése est de démontrer un résultat similaire pour l'équation de Schrödinger non-linéaire (10). Plus
précisément on prouvera le théorème suivant.

Theorem 0.8. Il existe β0 > 0 tel que pour tout ν, α0 ∈ R avec |ν|+ |α0| ≤ β0 et tout δ > 0, il
existe T > 0 et une solution radiale u ∈ C([T,+∞), Ḣ1 ∩ Ḣ2) de (10) de la forme :

(11) u(t, x) = eiα(t)λ1/2(t)W (λ(t)x) + ζ(t, x),

où λ(t) = tν , α(t) = α0 ln t, et ζ(t) véri�e:

‖ζ(t)‖Ḣ1∩Ḣ2 ≤ δ,

‖ζ(t)‖L∞ ≤ Ct−
1+ν

2 ,

‖ < λ(t)x >−1 ζ(t)‖L∞ ≤ Ct−1− 3
2
ν ,

(12)

pour tout t ≥ T . Les constantes C ici et dessous sont indépendantes de ν, α0 et δ.
De plus il existe ζ∗ ∈ Ḣs, ∀s > 1

2 − ν, tel que, quand t→ +∞, ζ(t)− eit∆ζ∗ → 0 dans Ḣ1 ∩ Ḣ2.

Comme mentionné ci-dessus, un résultat similaire pour l'équation des ondes à énergie critique a été
obtenu par Donninger et Krieger [17]. Cette construction a été inspirée par l'article précédent de
Krieger, Schlag et Tataru [35], où le cas d'explosions en temps �ni a été traité. Ces deux articles,
ont été une source d'inspiration pour partie des techniques employées dans la démonstration du
théorème précédent.

Les résultés présentés ici vont à former trois publications :

• R. Adami, D. Noja, C. O., Orbital and asymptotic stability for standing waves of a NLS

equation with concentrated nonlinearity in dimension three, accepté par Journal of Mathe-
matical Physics, disponible sur arxiv.org/pdf/1207.5677.

• R. Adami, D. Noja, C. O., Orbital and asymptotic stability for standing waves of a NLS

equation with concentrated nonlinearity in dimension three. II, en préparation.

• C. O., G. Perelman, Nondispersive vanishing and blow up at in�nity for the energy critical

nonlinear Schrödinger equation in R3, accepté par St. Petersburg Mathematical Journal.
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Chapter 1

Absence of nonvanishing eigenvalues

1.1 Introduction

In this chapter we begin a systematic analysis of the stability of solitary waves for a nonlinear
Schrödinger equation with a nonlinearity concentrated in space dimension three. In particular,
we show that the standing waves of the model are asymptotically stable in the sense that at large
times, the evolution decomposes as the sum of a standing wave (possibly with di�erent parameters
from those of the reference initial soliton), a free linear wave, and a small remainder with a spatial
decay stronger than the linear dispersive one.
An analogous study concerning the NLS equation with a concentrated nonlinearity in dimension
one was given in [8] and [33]. These papers have been a source of inspiration for the present work,
in particular for what concerns the general scheme of analysis and for some proofs. However, the
one and the three-dimensional models are di�erent, in particular the latter is strongly singular and
its energy space is not contained in H1(R3). This fact prevents us from following step by step the
techniques and the results of the cited papers; in particular, no formal manipulations with delta
distributions are possible, and the full de�nition of a delta interaction as a point perturbation of
the Laplacian is needed in the analysis. We shall comment on that along the paper.
We start by giving a presentation of the model. According to [1], we construct a Schrödinger
equation with concentrated nonlinearities in dimension three by starting from the standard three-
dimensional linear Schrödinger operator with a so-called point or delta interaction ([6]). Point
interactions are widely used in Quantum Mechanics as models of contact or zero-range interac-
tions and they are intended to describe strongly concentrated potentials at a point. In order to
rigorously de�ne a delta interaction located at the origin of R3 we �rst consider the Laplacian
restricted to the set C∞0 (R3\{0}) and obtain a symmetric non selfadjoint operator with de�ciency
indices (1, 1). Second, by the classical Von Neumann-Krejn theory there exists a one-parameter
family of selfadjoint extensions, which we denote by Hα. The operator Hα is de�ned on the
domain

D(Hα) = {u ∈ L2(R3) : u(x) = φ(x) + qG0(x)with φ ∈ L2
loc(R3) ,∇φ ∈ L2(R3) ,∆φ ∈ L2(R3),

(1.1) q ∈ C, lim
x→0

(u(x)− qG0(x)) = αq},

where G0 is the Green's function of the Laplacian in three dimensions, i.e.

(1.2) G0(x) =
1

4π|x|
,

3
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and the action is given by Hαu(x) = −∆φ(x), x ∈ R3. To summarize, any element of the domain
decomposes in a regular part φ and a singular (Coulombian) part; the coe�cient q of the singular
part is conventionally called charge, and the boundary condition imposes a relation between the
charge and the value of the regular part at the origin depending on the so-called strength α of the
point interaction, which is the parameter that �xes the selfadjoint extension.
An alternative equivalent and perhaps more direct construction, which better justi�es the inter-
pretation and the physical meaning of Hα, can be given by de�ning Hα as a suitable scaling
limit (in norm resolvent sense) of a family of Schrödinger operators of the form −∆ + Vε, where
Vε is a short range potential that approximates a delta distribution as ε → 0. Performing such
limit requires a rescaling procedure in order to yield a non-trivial result, and the parameter α
appearing in the above de�nition characterizes the particular selfadjoint extension and is related
to zero energy resonances of the approximating operators. For details and further information see
[6].
Whatever the de�nition given to the operator Hα is, we recall that, for α ≥ 0 (repulsive delta
interaction), Hα is positive and its spectrum is purely absolutely continuous and coincides with
[0,+∞), while for α < 0 (attractive delta interaction) an isolated simple negative eigenvalue
λ = −(4πα)2 appears, corresponding to a bound state. A second property relevant to the physical
interpretation of the model and related to the value of α is that the scattering length of a delta
interaction of strength α is given by −(4πα)−1 . The closed and lower bounded quadratic form
associated to Hα is

(1.3) Hα(u) =

∫
R3

|∇φ(x)|2dx+ α|q|2,

de�ned on the domain of �nite energy states

(1.4) V = {u ∈ L2(R3) : u(x) = φ(x) + quG0(x), with φ ∈ L2
loc(R3), ∇φ ∈ L2(R3), q ∈ C},

which is a Hilbert space endowed with the norm

(1.5) ‖u‖2V = ‖∇φ‖L2 + |q|2.

Note that for a generic element u of the form domain the charge q and its regular part φ are
independent of each other. determined by u; for example, the relation between the element u
and its charge is given by Note also that the energy domain is strictly larger than H1(R3). So,
the linear problem cannot be considered as a small perturbation of the standard free problem
in the sense of the quadratic forms (at variance with the one-dimensional case). An equivalent
representation of the energy space is obtained, �xed λ > 0, by

(1.6) V =

{
u = φλ + qGλ, withφλ ∈ H1(R3), q ∈ C , Gλ(x) =

e−λ|x|

4π|x|

}
,

and one can de�ne an equivalent energy norm by

‖u‖2V = ‖∇φλ‖2L2 + |q|2, ∀u ∈ V.

Notice that Gλ ∈ L2(R3) and φλ ∈ H1(R3), while in the representation (1.4) the regular part was
just in the homogeneous Sobolev space D1(R3) only.
Following [1], the nonlinear model can be de�ned by allowing the strength α to depend on u as
α(u) = −ν|q|2σ, with ν > 0, σ > 0, so that

D(Hα) = {u ∈ L2(R3) : u(x) = φ(x) + qG0(x)with φ ∈ H2
loc(R3), ∆φ ∈ L2(R3),
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q ∈ C, lim
x→0

(u(x)− qG0(x)) = −ν|q|2σq},

and Hαu = −∆φ. In the following sections, we often omit the notation Hα(u) in favour of Hα

if no risk of confusion exists between the linear and the nonlinear operator. We stress that the
nonlinearity we are considering is focusing. It can be interpreted as modeling the action of a
defect in a medium which exerts a nonlinear response to the propagation. We remark that a
more general de�nition of concentrated nonlinearities (with applications to the case of the wave
equation) is given in [37].

We consider the evolution generated by the nonlinear operator Hα(u), i.e.

(1.7) i
du

dt
= Hαu.

In the present literature, there is some physical and numerical analysis of Schrödinger dynamics in
presence of nonlinear defects, mainly focused on the milder one-dimensional case ([36],[45],[18]).
The more technical construction of the three-dimensional problem has hindered extended modeling
study, numerical work as well as rigorous analysis. Moreover, a certain amount of literature is
devoted to NLS equation with nonhomogeneous (i.e. x-dependent and decaying) nonlinearities,
yet with a relatively low decay at in�nity (see [20, 23] and references therein).
Local (for any σ > 0) and global (for σ < 1) well-posedness of the Cauchy problem associated to
the nonlinear Schrödinger equation (1.7) in the space V have been established in [1] and [2]. In
particular, (1.7) admits two conserved quantities called mass and energy, de�ned as

M(u(t)) = ‖u(t)‖2L2 , E(u(t)) = 1
2‖∇φ(t)‖2L2 − ν

2σ+2 |q(t)|
2σ+2.

In Section 1.2 we prove that equation (1.7) admits standing waves, i.e. solutions of the form
u(x, t) = eiωtΦω(x) , where the pro�le or amplitude Φω up to a phase factor eiθ is given by

(1.8) Φω(x) =

(√
ω

4πν

) 1
2σ e−

√
ω|x|

4π|x|
.

The set of standing waves is called the solitary manifoldM, and the main concern of this chapter
consists in the study of the large-time evolution of initial data in the vicinity of M. A �rst
result concerns stability and instability of standing waves. Stability has to be intended as orbital
stability, i.e. Lyapunov stability up to symmetries of the equation, in this case up to gauge (U(1))
invariance. The orbit of Φω is then O(Φω) = {eiθΦω(x), θ ∈ R}. Thus, by de�nition, the state
Φω is orbitally stable if for every ε > 0 there exists δ > 0 such that

d(ψ(0),O(Φω)) < δ ⇒ d(ψ(t),O(Φω)) < ε ∀t > 0,

where d(ψ,O(Φω)) = infu∈O(Φω) ‖ψ − u‖V . A stationary state is said to be unstable if it is not
stable. Then, we have the following result, proved in Section 1.3:
Theorem (Orbital Stability) Let us consider (1.7). Then, for every ω > 0,
(a) if 0 < σ < 1, then the state Φω is orbitally stable
(b) if σ ≥ 1, then Φω is orbitally unstable.

The result directly follows from Weinstein [53] and Grillakis-Shatah-Strauss [28] theory for the
case σ 6= 1, while for the case σ = 1 the pseudoconformal invariance of the equation gives the
instability by blow-up.
The core of the chapter is devoted to the study of the asymptotic stability of the family of sta-
tionary states. Asymptotic stability means, loosely speaking, that the solution u(t) corresponding
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to an initial datum u(0) close to the family of orbits, approaches some element of the family of
orbits as t→∞. The analysis makes use of the representation

(1.9) u(t, x) = eiΘ(t)
(
Φω(t)(x) + χ(t, x)

)
,

where Θ(t) =
∫ t

0 ω(s)ds + γ(t), and γ(t) is a suitable phase. Namely, the solution is represented
at every time as a modulated solitary wave, with time dependent parameters, up to a �uctuating
remainder χ which has to be controlled. Asymptotic stability of the family of standing waves
means that the modulating parameters ω(t) and γ(t) have a limit as t→∞, and the �uctuation
χ is in some sense a small and decaying dispersive correction; the radiation damping through
dispersion is responsible for the "dissipative" asymptotic behavior of the solution u around the
family of relative equilibria O(Φω) . Notice that, however, in general the solution does not converge
to the solitary wave to which it was close initially.
The subject of asymptotic stability of solitary waves was pioneered by So�er and Weinstein ([42],
[43]), and Buslaev and Perelman ([9], [10]), who developed the main strategies and techniques,
nowadays classical; a more recent presentation is contained in [11]. Many relevant later contribu-
tions re�ning and enlarging the hypotheses in the original papers, as well as concerning the kind
of initial admitted data and nonlinearities, are contained in [14, 48, 51, 30, 22, 23, 15]. According
to this consolidated analysis, one must preliminarily indagate the spectrum of the linearization of
equation (1.7) around the solitary solution. Writing u = eiωt(Φω +R) and identifying R with the
vector of its real and imaginary part, we obtain that it satis�es the canonical system

J
dR

dt
=

[
Hα1 + ω 0

0 Hα2 + ω

]
R ≡ DR

where Hαj are (linear) delta interaction hamiltonian operators with �xed strength αj that depend
on the stationary state Φω (through its charge) and on the parameters of the model ν, σ (see eq.
(1.17)). So the dynamics of the linearization of the NLS equation around the standing wave
Φω is controlled by the nonselfadjoint (Hamiltonian) matrix operator L = JD. The explicit
characterization of the spectrum of the linearization L is possible due to the detailed knowledge
of the properties of operators Hαj . Such feature is infrequent and allows to avoid further spectral
assumptions. The complete result is given in Section 1.4, Theorem 1.10. Here it is su�cient
to recall that in this chapter we study asymptotic stability of standing waves in the range σ ∈
(0, 1/

√
2) only, which corresponds to L having no eigenvalues di�erent from zero and no resonances

at the threshold of the essential spectrum. The following chapter will treat the case σ ∈ (1/
√

2, 1),
where two simple eigenvalues ±i2σ

√
1− σ2ω appear.

Let us notice that the representation (1.9) amounts in fact to a change of coordinates from the
original global u to the new set {ω, γ, χ}, with a �nite dimensional component given by {ω, γ},
that describes the solitary manifold and an in�nite dimensional one described by χ. However, the
representation is not unique, because any choice of ω, γ gives a corresponding choice of χ such
that u given by (1.9) is a solution of (1.7); so one has to restrict in some way the behavior of
the new parameters {ω, γ, χ} of the solution. To this end, we exploit the fact that the solitary
manifold can be naturally endowed with a symplectic structure (see Section 1.2.1) and it turns
out that its tangent space TΦω coincides with the generalized kernel of the linearization L. The
generalized kernel is in turn non trivial, so the propagator e−tL has a component growing in time.
A parametrization of the running approximate solitary wave in the neighborhood of the solitary
manifold suitable for asymptotic analysis is hence obtained through a symplectic splitting in a
component along the solitary manifold and a component transversal (symplectically orthogonal)
to it. Requiring that the in�nite dimensional component χ is purely transversal, i.e. projecting
to zero on the directions of the generalized kernel of the linearization, provides the set of the
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so called modulation (coupled) equations for the parameters ω(t) and γ(t), as well as a partial
di�erential equation for χ (see [21] for an enlightening description of the symplectic projection
method). The goal is to establish the asymptotic behavior of the solutions to the modulation
equations with a simultaneous control of the decay of the nonlinear part χ, through the so-called
majorant's method (see [9, 10, 11]).
The main result of this chapter is the following, and it is proven in Section 1.7.
Theorem (Asymptotic stability) Assume σ ∈ (0, 1/

√
2). Let u ∈ C(R+, V ) be a solution of

equation (1.7) with u(0) = u0 ∈ V ∩ L1
w and denote d = ‖u0 − eiθ0Φω0‖V ∩L1

w
,

for some ω0 > 0 and θ0 ∈ R. If d is su�ciently small, then the solution u(t) decomposes
asimptotically as follows

u(t) = eiω∞Φω∞ + Ut ∗ u∞ + r∞, t→ +∞,

where ω∞ > 0 and u∞, r∞ ∈ L2(R3) with ‖r∞‖L2 = O(t−5/4) as t→ +∞.

In the previous statement, L1
w is de�ned in Section 1.4.2 and is a weighted space of integrable

functions. The weight guarantees the validity of the dispersive estimates needed in order to
control the decay of the transversal evolution, and it seems at present unavoidable in view of the
singularity of �nite energy states. Moreover, it imposes a certain localization on the the admitted
initial data, which seems to be a technical requirement.
Concerning the treatment of the modulation equations, one of the main additional di�culties with
respect to standard models, and in particular with the case of concentrated nonlinearities in one
dimension treated in [8] and [33], is that the equations controlling the evolution of the transversal
part χ have domains that change with time. This fact forced us to make use of the variational
formulation (i.e. in terms of quadratic forms) instead of the traditional strong formulation (i.e.
in terms of operators). The same problem propagates to the proof of the asymptotics given in the
above theorem. A last remark concerns the seemingly anomalous value of the nonlinearities where
asymptotic stability is proven; this because in the typical situations, when standard NLS with or
without potential is treated, it is di�cult to have information about subcritical nonlinearities (but
see the notably exception in [32]), and in particular pure power. On the other hand, the present
model corresponds to an inhomogeneous (space dependent and strongly singular) nonlinearity;
this seems to indicate that the analysis of speci�c models can give results not accessible to general
theory, at least at present.

1.2 Preliminaries

1.2.1 Hamiltonian structure

We consider L2(R3,C) as a real Hilbert space endowed with the scalar product

(1.10) (u, v)L2 = Re

∫
R3

uv dx =

∫
R3

(Re vReu+ Im v Imu)dx.

It is sometimes convenient to shift from the complex valued representation of u to the vector
real valued one through the identi�cation u = Reu + i Imu 7→ (Reu, Imu) = (u1, u2). As a
consequence, Hs(R3,C) ∼= Hs(R3,R2), while multiplication by i is equivalent to multiplication
by the matrix −J , where

(1.11) J =

[
0 1
−1 0

]
.
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The space L2(R3) is also a symplectic manifold when endowed with the symplectic form

(1.12) Ω(u, v) = Im

∫
R3

uv dx =

∫
R3

(Re v Imu− Im vReu)dx =

∫
R3

(u2v1 − u1v2)dx.

Along the chapter we often shift between real and complex representation when no ambiguity
occurs.
In our model the Hamiltonian functional coincides with the total energy and it is given by

(1.13) E(u(t)) =
1

2
‖∇φ‖2L2 −

ν

2σ + 2
|q|2σ+2, u = φ+ qG0 ∈ V.

Correspondingly, the NLS equation (1.7) takes the hamiltonian form

(1.14)
du

dt
(t) = J E

′
(u(t)) .

1.2.2 Standing waves

Standing waves are solutions of the form u(x, t) = eiωtΦω(x) ∈ V. It immediately follows that if
a standing wave exists, then the amplitude Φω satis�es the following nonlinear equation in weak
form

(1.15) HαΦω + ωΦω = 0.

Proposition 1.1. Standing waves for equation (1.7) exist if and only if ν > 0. In such a case

the set of solitary waves is given by the two-dimensional manifold

(1.16) M =
{
eiΘ Φω , ω > 0 , Θ ∈ [0, 2π)

}
,

where the function Φω reads

Φω(x) =

(√
ω

4πν

) 1
2σ e−

√
ω|x|

4π|x|
and the parameters ω and Θ play the role of local coordinates.

Proof. Recall that the function G0 de�ned in (1.2) satis�es the equation −4G0 = δ
where δ is the Dirac's delta distribution centred at x = 0. Hence, for x 6= 0 equation (1.15) is
equivalent to −4Φω(x) + ωΦω(x) = 0. Consider the corresponding equation in spherical coordi-
nates, namely

−∂
2u

∂2r
− 2

r

∂u

∂r
− 1

r2

∂2u

∂2φ
− cosφ

r2 sinφ

∂u

∂φ
− 1

r2 sin2 φ

∂2u

∂2θ
+ ωu = 0,

and exploit the spherical harmonics expansion of the solution u(r, θ, φ) =
∑+∞

l=0

∑l
j=−l ul,j(r)Yl,j(θ, φ),

where Yl,j denotes the set of spherical harmonics which is an orthonormal basis of L2([0, π] ×
[0, 2π], sin θdθdφ). Since

∂2Yl,j
∂φ2

+
cosφ

sinφ

∂Yl,j
∂φ

+
1

sin2 φ

∂2Yl,j
∂θ2

= −λYl,j , for some λ ∈ C,

one has that λ belongs to the set {λl := l(l+1), l ∈ N}, and so the functions ul,j solves −u′′l,j(r)−
2
ru
′
l,j(r) +

(
ω − λl

r2

)
ul,j(r) = 0. Then, from formula 8.491.6 in [27],

uj,l(r) =
1√
r
Z√

1
4

+λ
(
√
ωr),
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where Zν is a generic Bessel's function. By the asymptotic expansions 8.443 and 8.451.1 in [27]
one immediately has that if λ 6= 0, then uj,l cannot belong to L2(R+, r2dr). Hence, we �x λ = 0

and denote Φω(x) = u(r)
r , r = |x|. Thus u has to be a L2(R+, r2dr) solution of u′′(r)−ωu(r) = 0,

and

Φω(x) =
qe−
√
ω|x|

4π|x|
,

for some q ∈ C and ω > 0.
Writing (1.15) in weak form and separating regular and singular part of the test function, one
obtains

−ν|q|2σqqv +

√
ω

4π
qqv = 0,

for all qv ∈ C which coincides with the boundary condition for Hα. Supposing ν 6= 0 one obtains
|q|2σ =

√
ω

4πν . This requires ν > 0, so

Φω(x) =

(√
ω

4πν

) 1
2σ e−

√
ω|x|

4π|x|

which, up to a phase factor, gives the stated result. In the case ν = 0, from boundary condition
we get q = 0 or ω = 0. If q = 0 , then the function u vanishes. If ω = 0, then one has u(x) = 1

4π|x| ,
which is the resonance function of the delta interaction with vanishing strength, but it is not an
element of the operator domain, and it does not solve the stationary equation (1.15). So for ν = 0
standing waves do not exist.

In the following we denote qω =
(√

ω
4πν

) 1
2σ
.

Remark 1.2. From the proof above, it turns out that a �nite energy standing wave is in fact an
element of D(Hα).

1.2.3 Linearization of Hα(u) around Φω

The linearization of equation (1.7) around a stationary solution is not completely obvious, due
to the fact that the nonlinearity is embodied in the domain of the operator Hα(u) and not in the
action of the operator itself. Nevertheless, we can consider the Hamiltonian associated to equation
(1.7) given by formula (1.14) and notice that the nonlinearity no longer appears in the domain V
but directly in the Hamiltonian functional. So we derive the linear operator which approximates
Hα(u) from the quadratic form which approximates E(Φω) and obtain the following result.

Proposition 1.3. The Hessian E′′(Φω) of the functional E can be represented as E′′(Φω)(h, k) =
〈Hα,Lin h, k〉, where Hα,Lin is the operator given by

Hα,Lin =

[
Hα1 0

0 Hα2

]
,

where Hα1 and Hα2 are the selfadjoint operators on L2(R3) de�ned in the introduction (see (1.1)),
and

(1.17) α1 = −ν(2σ + 1)|qω|2σ = −2σ + 1

4π

√
ω, α2 = −ν|qω|2σ = −

√
ω

4π
.

Hα,lin is selfadjoint with respect to the real scalar product in L2(R3,C) .
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Proof. The �rst Gâteaux derivative of E(u) reads

(1.18) E′(u)[h] =
d

dε
{E(u+ εh)}ε=0 = Re

∫
R3

∇φu(x) ·∇φh(x)dx− ν|qu|2σ Re(quqh) ∀u, h ∈ V,

while the second Gâteaux derivative at Φω reads

∂2

∂ε∂λ
{E(Φω + εh+ λk)}ε=0,λ=0 = Re

∫
R3

∇φh(x) · ∇φk(x)dx− ∂2

∂ε∂λ
{ ν

2σ + 2
|qu|2σ+2}ε=0,λ=0 .

The last term gives, after some calculation, the contribution (here h = (h1, h2), k = (k1, k2))

∂2

∂ε∂λ
{− ν

2σ + 2
|qu|2σ+2}ε=0,λ=0 = −ν|qω|2σ[(2σ + 1)qh1qk1 + qh2qk2 ] .

So E′′(Φω) is given by the direct sum of two quadratic forms: one is acting on the real part
of the functions h and k, and the other on the imaginary part. The term related to the real
part is a lower bounded quadratic form whose corresponding selfadjoint operator is Hα1 , while
the quadratic form related to the imaginary part corresponds to the operator Hα2 (α1 and α2

have been de�ned in (1.17)). Then, the operator Hα,Lin that represents the entire quadratic form
E′′(Φω) is self-adjoint and the proof is complete.

Now, to get the linearized equation set u(t) = eiωt(Φω +R(t)) and obtain

d

dt
R = J(E′(Φω) + ωΦω) + J(E

′′
(Φω) + ω)R+ higher order terms ' J(Hα,Lin + ω)R .

Summing up, the linearized equation (1.7) becomes

(1.19)
dR

dt
= JDR,

where D =

[
L1 0
0 L2

]
, with

(1.20) Lj = Hαj + ω,

j = 1, 2. Notice that the operator

(1.21) JD := L =

[
0 L2

−L1 0

]
,

is not selfadjoint nor skew adjoint. Nevertheless, a standard application of Hille-Yosida theorem
and a simple analysis of the resolvent of L which takes into account the factorized structure
L = JD with D s.a. shows that it generates a semigroup of linear operators with (at most)
exponential growth in time. A more precise analysis of the resolvent of the operator L will be
given in Theorem 1.10 and in the appendix 1.11 we will prove that the semigroup has in fact a
linear growth (see Theorem 1.32) in the case here interesting, i.e. σ ∈ (0, 1/

√
2).
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1.3 Orbital stability

In order to prove the orbital stability of the stationary solutions to equation (1.7), we apply
Grillakis-Shatah-Strauss theory, and in particular Theorem 2 in [28]. As a �rst step, we recall the
following known fact proved in [6].

Proposition 1.4. If α(u) = α where α < 0 is a constant, then

(1.22) σ(Hα) ≡ {−(4πα)2} ∪ [0,+∞).

Thanks to the last proposition one can prove the following lemma which implies the spectral
properties needed to verify Assumption 3 in [28].

Lemma 1.5. The spectrum of the operator D is

σ(D) = {−4σ(σ + 1)ω, 0} ∪ [ω,+∞),

and ker(D) = span

{(
0
Φω

)}
.

Proof. Since D is the direct sum of the operators L1 and L2 acting on L2(R3) ⊕ L2(R3), its
spectrum is given by the union of σ(L1) and σ(L2). From (1.22) follows

σ(Hα1) = {−(2σ + 1)2ω} ∪ [0,+∞), σ(Hα2) = {−ω} ∪ [0,+∞).

Then

σ(L1) = σ(Hα1) + ω = {−4σ(σ + 1)ω} ∪ [ω,+∞), σ(L2) = σ(Hα2) + ω = {0} ∪ [ω,+∞).

Hence, ker(L1) = {0} and ker(L2) = span{Φω}, which concludes the proof.

We can now prove the following

Theorem 1.6. (Orbital stability) For each ω > 0, if 0 < σ < 1, then Φω is orbitally stable. If

σ > 1, then Φω is orbitally unstable.

Proof. Well-posedness and existence of a branch of standing waves, i.e. Assumptions 1 and 2 in
[28], are proved in [1] and [2] and in the previous section, while Assumption 3 is true thanks to
Lemma 1.5. Hence, from Theorem 3 in [28] we have orbital stability if d

dω‖Φω(x)‖2L2 > 0 and
orbital instability if d

dω‖Φω(x)‖2L2) < 0. In order to inspect the sign of d
dω‖Φω(x)‖2L2 , we compute

‖Φω‖2L2 =

(√
ω

4πν

) 1
σ 1

8π
√
ω
,

hence d
dω‖Φω(x)‖2L2 = 1

8π(4πν)1/σ
1−σ
2σ ω

1−3σ
2σ , which concludes the proof.

1.3.1 The case σ = 1

Since Theorem 3 in [28] does not give information about orbital stability of the stationary state
eiωtΦω when d

dω‖Φω(x)‖2L2 = 0, we need to inspect the case σ = 1 apart. In such case, equation
(1.7) exhibits one additional symmetry (see [2]).
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Remark 1.7. Equation (1.7) is invariant under the pseudoconformal transformation

uTpc(t, x) =
e
−i |x|

2

4(T−t)

(T − t)3/2
u

(
1

T − t
,
|x|
T − t

)
.

In [1] it is proved that equation (1.7) may have some non global solutions which blow up, in the
following sense: the solution u(t) of equation (1.7) blows up (in the future) at time T < +∞ if

lim sup
t→T−

‖∇φ‖L2 = +∞,

where φ is the regular part of the function u according to decomposition (1.1). Due to the
conservation of the energy this condition is equivalent to lim supt→T− |qu(t)| = +∞.
Thanks to the pseudoconformal invariance we prove that in any neighbourhood (in energy norm)
of each standing wave there are initial data of a blow up solution.

Theorem 1.8. Fix σ = 1 and ω > 0. For any δ > 0 there exists a blow up solution u(t) ∈ V
such that ‖u(0)− Φω‖V < δ.

Proof. Applying the pseudoconformal transformation to the solitary wave eiω̃tΦω̃ one gets that
for any T > 0, the function

uω̃,T (t, x) = ei
ω̃
T−t

ω̃1/4

√
4πν

e−
√
ω̃|x|
T−t

4π
√
T − t|x|

e
−i |x|

2

4(T−t)

is a solution to equation (1.7). Thus, for any T > 0, the initial datum uT (x) = ei
ω̃
T
ω̃1/4

√
4πν

e−
√
ω̃|x|
T

4π
√
T − t|x|

e−i
|x|2
4T

gives rise to a solution that blows up at time T . Now, let ω̃ depend on T as ω̃ = ωT 2, so that

uT (x) = e−i
|x|2
4T Φω(x).

We prove the theorem by showing that ‖(e−i
|·|2
4T − 1)Φω‖V → 0 as T → +∞. Indeed, noting that

the function (e−i
|·|2
4T − 1)Φω belongs to H1(R3),

‖(e−i
|·|2
4T −1)Φω‖V = ‖∇((e−i

|·|2
4T −1)Φω)‖L2 ≤

1

2T
‖| · |Φω‖L2 +

1

4T
‖| · |2∇Φω‖L2 → 0, T → +∞.

1.4 Spectral and dispersive properties of linearization L

Here we study the long time behaviour of equation (1.19), that is the linearization of (1.7) around
the stationary solution eiωtΦω.
The generalized kernel of the operator L (see (1.21)) is de�ned as Ng(L) =

⋃
k∈N

ker(Lk).

In what follows let us denote

ϕω(x) = dΦω
dω (x) = 1

4σω

(√
ω

4πν

) 1
2σ e−

√
ω|x|

4π|x| −
1

2
√
ω

(√
ω

4πν

) 1
2σ e−

√
ω|x|

4π ,

gω(x) = ω
1
4√

4πν
|x| e−

√
ω|x|

4π ,

hω(x) = ω
1
4√

4πν

(
− 1

4ω
3
2

e−
√
ω|x|

4π|x| + 1
2ω

e−
√
ω|x|

4π + 1
2
√
ω
|x| e−

√
ω|x|

4π + 1
3 |x|

2 e−
√
ω|x|

4π

)
.

In Appendix 1.9 we prove the following theorem.
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Theorem 1.9. If the nonlinearity power σ is di�erent from 1, then Ng(L) = span

{(
0
Φω

)
,

(
ϕω
0

)}
.

Moreover, if σ = 1, then Ng(L) = span

{(
0
Φω

)
,

(
ϕω
0

)
,

(
0
gω

)
,

(
hω
0

)}
.

In the following section we provide an explicit description of the spectrum of the non-selfadjoint
operator L and the dispersive estimates for the action of the propagator e−Lt upon the absolutely
continuous subspace.

1.4.1 The resolvent and the spectrum of the linearized operator

The purpose of this section is to prove an explicit formula for the resolvent of the linearized
operator. For later convenience we denote

(1.23) Gω±iλ(x) =
ei
√
−ω∓iλ|x|

4π|x|
ω > 0, λ ∈ C,

with the prescription Im
√
−ω ± iλ > 0.

Furthermore, we make use of the notation 〈g, h〉 :=
∫
R3 g(x)h(x) dx.

We prove the following

Theorem 1.10. The resolvent R(λ) = (L−λI)−1 of the operator L de�ned in (1.21) is given by

(1.24) R(λ) =

[
−λGλ2∗ −Γλ2∗

Γλ2∗ −λGλ2∗

]
+

4π

W (λ2)
i

[
Λ1 iΣ2

−iΣ1 Λ2

]
,

where

W (λ2) = 32π2α1α2 − 4iπ(α1 + α2)
(√
−ω + iλ+

√
−ω − iλ

)
− 2
√
−ω + iλ

√
−ω − iλ,

and formula (1.24) holds for all λ ∈ C \ {λ ∈ C : W (λ2) = 0, or Re(λ) = 0 and | Im(λ)| ≥ ω}.
Furthermore, the symbol ∗ in (1.24) denotes the convolution and

(1.25) Gλ2(x) =
1

2iλ
(Gω−iλ(x)−Gω+iλ(x)) , Γλ2(x) =

1

2
(Gω−iλ(x) +Gω+iλ(x)) .

Finally, the entries of the second matrix are �nite rank operators whose action on f ∈ L2(R3)
reads

(1.26) Λ1f = [iλ(4πα2 − i
√
−ω + iλ)〈Gλ2 , f〉 − (4πα1 − i

√
−ω + iλ)〈Γλ2 , f〉]Gω+iλ+

+[iλ(4πα2 − i
√
−ω − iλ)〈Gλ2 , f〉+ (4πα1 − i

√
−ω − iλ)〈Γλ2 , f〉]Gω−iλ,

Λ2f = [iλ(4πα1 − i
√
−ω + iλ)〈Gλ2 , f〉 − (4πα2 − i

√
−ω + iλ)〈Γλ2 , f〉]Gω+iλ+

+[iλ(4πα1 − i
√
−ω − iλ)〈Gλ2 , f〉+ (4πα2 − i

√
−ω − iλ)〈Γλ2 , f〉]Gω−iλ,

Σ1f = −[iλ(4πα2 − i
√
−ω + iλ)〈Gλ2 , f〉 − (4πα1 − i

√
−ω + iλ)〈Γλ2 , f〉]Gω+iλ+

+[iλ(4πα2 − i
√
−ω − iλ)〈Gλ2 , f〉+ (4πα1 − i

√
−ω − iλ)〈Γλ2 , f〉]Gω−iλ,

Σ2f = −[iλ(4πα1 − i
√
−ω + iλ)〈Gλ2 , f〉 − (4πα2 − i

√
−ω + iλ)〈Γλ2 , f〉]Gω+iλ+

+[iλ(4πα1 − i
√
−ω − iλ)〈Gλ2 , f〉+ (4πα2 − i

√
−ω − iλ)〈Γλ2 , f〉]Gω−iλ.
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The spectrum of the operator L can be decomposed into an essential and a discrete part,

(1.27) σ(L) = σess(L) ∪ σd(L),

where the essential spectrum is

σess(L) = C+∪C− = {λ ∈ C : Re(λ) = 0 and Im(λ) ≥ ω}∪{λ ∈ C : Re(λ) = 0 and Im(λ) ≤ −ω},

and the discrete spectrum depends on the paremeter σ as follows:

(a) if σ ∈ (0, 1/
√

2], then the only eigenvalue of L is 0 with algebraic multiplicity 2.

(b) if σ ∈ (1/
√

2, 1), then L has two simple eigenvalues ±i2σ
√

1− σ2ω and the eigenvalue 0
with algebraic multiplicity 2.

(c) if σ = 1, then the only eigenvalue of L is 0 with algebraic multiplicity 4.

(d) if σ ∈ (1,+∞), then L has two simple eigenvalues ±2σ
√
σ2 − 1ω and the eigenvalue 0 with

algebraic multiplicity 2.

Before giving the proof, we need two preliminary lemmas.

Lemma 1.11. For any µ ∈ C, ω > 0, the Green's function Gµ of the operator Hµ, de�ned by

D(Hµ) = H4(R3), Hµ = µ+ (−4+ ω)2,

reads

(1.28) Gµ(x) =
1

2i
√
µ

(
Gω−i√µ(x)−Gω+i

√
µ(x)

)
.

Proof. By de�nition of Green's function, Gµ solves the equation [µ + (−4 + ω)2]Gµ(x) = δ(x).
Taking the Fourier transform, one gets

Ĝµ(k) =
1

(2π)3/2(µ+ (k2 + ω)2)
=

1

2i
√
µ

(
Ĝω−i√µ(k)− Ĝω+i

√
µ(k)

)
,

where the function Gω±i√µ was de�ned in (1.23). The proof is complete.

Remark 1.12. The function Gµ is an element of Hs(R3) for any s < 7/2.

Let us denote
H21
µ = µ+ L2L1,

where L2 and L1 were de�ned in (1.20). Applying elementary rules on composition of operators,
one can easily see that the domain of the operator H21

µ , which coincides with the domain of L2L1,
is given by

(1.29) D(L2L1) =
{
u ∈ L2(R3) : u = ξ + pGω+i

√
µ + qGω−i√µ, with ξ ∈ H4(R3), p, q ∈ C,

ξ(0) + ip

√
−ω − i√µ

4π
+ iq

√
−ω + i

√
µ

4π
= α1(p+ q),

(−4+ ω)ξ(0) +
√
µp

√
−ω − i√µ

4π
−√µq

√
−ω + i

√
µ

4π
= α2i

√
µ(q − p)

}
.

In the following lemma the inverse operator of H21
µ is constructed.
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Lemma 1.13. For each µ ∈ C, the inverse of the operator H21
µ is given by

(1.30) (H21
µ )−1 : L2(R3)→ D(H21

µ ) f 7→ Gµ ∗ f + p(f)Gω+i
√
µ + q(f)Gω−i√µ,

where the functionals p,q : L2(R3)→ C act as

(1.31)
p(f) = 4π

i
√
µW (µ) [i

√
µ(4πα2 − i

√
−ω + i

√
µ)〈Gµ, f〉 − (4πα1 − i

√
−ω + i

√
µ)〈Γµ, f〉]

q(f) = 4π
i
√
µW (µ) [i

√
µ(4πα2 − i

√
−ω − i√µ)〈Gµ, f〉+ (4πα1 − i

√
−ω − i√µ)〈Γµ, f〉],

with Gµ and Γµ are given by (1.25), and

W (µ) = 2(4π)2α1α2 − 4iπ(α1 +α2)

(√
−ω + i

√
µ+

√
−ω − i√µ

)
− 2
√
−ω + i

√
µ
√
−ω − i√µ.

Proof. First we show that the de�nition of the functionals p and q ensures

Gµ ∗ f + p(f)Gω+i
√
µ + q(f)Gω−i√µ ∈ D(H21

µ ) = D(L2L1)

for all f ∈ L2(R3). Indeed, p(f) and q(f) solve the algebraic system given by the bounday
condition in the de�nition of the domain (1.29), namely 〈Gµ, f〉+ ip

√
−ω−i√µ

4π + iq

√
−ω+i

√
µ

4π = α1(p+ q)

〈Γµ, f〉+
√
µp

√
−ω−i√µ

4π −√µq
√
−ω+i

√
µ

4π = α2i
√
µ(q − p).

Now, denote by Ĥ0 the operator that acts as the Laplacian on the subspace of the Schwartz
functions in R3 that vanish in a neighbourhood of the origin. It is well-known (see [6]), that
both selfadjoint operators Hα1 and Hα2 de�ned in Proposition 1.3 are restrictions of Ĥ∗0 (i.e. the
adjoint of Ĥ0 as an operator in L2(R3)), whose action on Gω±i√µ yields

(1.32) [µ+ (Ĥ∗0 + ω)2]Gω±i√µ = 0.

Recalling that Gµ ∈ H4(R3), it follows, for any f ∈ L2(R3),

H21
µ (Gµ∗f+p(f)Gω+i

√
µ+q(f)Gω−i√µ) = (µ+(Ĥ∗0 +ω)2)(Gµ∗f+p(f)Gω+i

√
µ+q(f)Gω−i√µ) =

= (µ+ (−4+ ω)2)(µ+ (−4+ ω)2)−1f = f.

To conclude the proof one has to show

Gµ ∗ (H21
µ f) + p(H21

µ f)Gω+i
√
µ + q(H21

µ f)Gω−i√µ = f

for any f ∈ D(H21). To this purpose let us set f = ξ+ aGω+i
√
µ + bGω−i√µ for some ξ ∈ H4(R3)

and a, b ∈ C such that the boundary condition in (1.29) are satis�ed, then, by (1.32)

H21
µ f = [µ+ (−∆ + ω)2]ξ

and, by system (1.31)
p(f) = a, q(f) = b.

The proof is complete.
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Remark 1.14. The inverse of the operator H12
µ = µ+L1L2 is obtained exchanging α1 and α2 in

the expression of (H21
µ )−1.

Now we can turn to the proof of Theorem 1.10.

Proof. We preliminarily observe that

Γµ(x) = (−4+ ω)Gµ(x) =
ei
√
−ω+i

√
µ|x| + ei

√
−ω−i√µ|x|

8π|x|
=

1

2

(
Gω−i√µ(x) +Gω+i

√
µ(x)

)
.

As proven in Appendix 1.10, the following identity holds:

R(λ) = (L−λI)−1 =

[
−λ(λ2 + L2L1)−1 −L2(λ2 + L1L2)−1

L1(λ2 + L2L1)−1 −λ(λ2 + L1L2)−1

]
=

[
−λ(H21

λ2)−1 −L2(H12
λ2)−1

L1(H21
λ2)−1 −λ(H12

λ2)−1

]
,

with λ in the resolvent set of L, to be speci�ed.
In order to �nd the explicit expressions for Λ1 and Λ2 given in (1.26), one sets λ =

√
µ and then

applies Lemma 1.13, Remark 1.14, and uses the de�nition of p and q given in (1.31). Besides, the
operators Σ1 and Σ2 can be obtained applying L1 and L2 to (H21

λ2)−1 and (H12
λ2)−1, respectively,

and using some trivial algebra.
The statement about the essential spectrum of L is a consequence of Weyl's theorem (Theorem
XIII.4 in [40]). On the other hand, the eigenvalues of L are given by the poles of the resolvent
(1.24), or equivalently by the complex roots of the functionW (λ); these can be computed through
a lengthy but elementary calculation, here omitted.

Remark 1.15. As a by-product, the previous analysis of the complex roots of W (λ) reveals the

presence of a resonance at the endpoints of essential spectrum for the case σ = 1√
2
.

1.4.2 Dispersive estimates for the linearized problem in the case σ ∈ (0, 1/
√

2)

In this section we focus on the case σ ∈ (0, 1/
√

2) and study the behaviour for large t of the
propagator e−Lt restricted to the subspace associated to the essential spectrum of the operator L.
In order to achieve an e�ective estimate, the following weighted Lp spaces are needed

L1
w(R3) =

{
f : R3 → C :

∫
R3

w(x)|f(x)|dx < +∞
}
,

and

L∞w−1(R3) =

{
f : R3 → C : esssup

x∈R3

(w(x))−1|f(x)| < +∞
}
,

where w(x) = 1 + 1
|x| . The use of such spaces is due to the singularity of the elements of (1.1).

A similar choice was made in [16] for the sake of deriving dispersive estimates in the case of N
delta interactions in R3.

Theorem 1.16. There exists a constant C > 0 such that∣∣∣∣ 1

2πi

∫
R3

∫
C+∪C−

(R(λ+ 0)−R(λ− 0))(x)e−λtf(y) dλdy

∣∣∣∣ ≤ C (1 +
1

|x|

)
t−

3
2

∫
R3

(
1 +

1

|y|

)
|f(y)|dy

for any f ∈ L1
w(R3), where

C+ = {λ ∈ C : Re(λ) = 0 and Im(λ) ≥ ω}, C− = {λ ∈ C : Re(λ) = 0 and Im(λ) ≤ −ω} .
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Proof. One can compute the propagator e−Lt as the inverse Laplace transform of the resolvent of
L. In particular, by Theorem 1.10 and applying the residue theorem, it follows that for t > 0

e−Lt =
1

2πi

∫
iR+0

R(λ)e−λtdλ =
1

2πi

∫
|λ|=r

R(λ)e−λtdλ+
1

2πi

∫
C+∪C−

(R(λ+ 0)−R(λ−0))e−λtdλ,

with r ∈ (0, ω) and R(λ± 0) = limε→0+ R(λ± ε).
We show the computations only for the component R1,1(λ) of the resolvent whose analytic ex-
pression is given in (1.24) and (1.26), since the other components can be handled in the same
way.
Recalling the de�nition of α1 and α2 given in equation (1.17), R1,1(λ) can be written as an integral
kernel, namely

(1.33) R1,1(λ;x, y) = i
ei
√
−ω+iλ|x−y| − ei

√
−ω−iλ|x−y|

8π|x− y|
+

+i
−σ
√
ωei
√
−ω−iλ|y|ei

√
−ω+iλ|x| + [(σ + 1)

√
ω + i

√
−ω + iλ]ei

√
−ω−iλ(|x|+|y|)

8π|x||y|[(2σ + 1)ω + i(σ + 1)
√
ω
(√
−ω − iλ+

√
−ω + iλ

)
−
√
−ω − iλ

√
−ω + iλ]

+

−i [(σ + 1)
√
ω + i

√
−ω + iλ]ei

√
−ω+iλ(|x|+|y|) − σ

√
ωei
√
−ω+iλ|y|ei

√
−ω−iλ|x|

8π|x||y|[(2σ + 1)ω + i(σ + 1)
√
ω
(√
−ω − iλ+

√
−ω + iλ

)
−
√
−ω − iλ

√
−ω + iλ]

.

Since from equation (1.33) it is clear that the computation of the integral on C+ and on C− are
analogous, we treat the cut C+ only. On C+,

√
−ω + iλ is continuous while, by the prescription

Im(
√
−ω ± iλ) > 0, considering ε as a real parameter, one has

lim
ε→0+

√
−ω − i(λ+ ε) = − lim

ε→0+

√
−ω − i(λ− ε) = −

√
−ω − iλ.

Performing the change of variable k =
√
−ω − iλ, one can write∫

C+
(R1,1(λ+ 0)−R1,1(λ− 0))e−λtdλ = ie−iωt

∫ +∞

−∞
F (k)2ke−itk

2
dk,

where F is the function R(λ+ 0)−R(λ− 0) expressed in the variable k.
The functionR1,1 de�ned in (1.33) is the sum of a convolution summandR∗,1,1 and a multiplication
summand Rm,1,1, where

R∗,1,1(λ;x, y) = i
ei
√
−ω+iλ|x−y| − ei

√
−ω−iλ|x−y|

8π|x− y|

and
(1.34)

Rm,1,1(λ;x, y) = i
−σ
√
ωei
√
−ω−iλ|y|ei

√
−ω+iλ|x| + [(σ + 1)

√
ω + i

√
−ω + iλ]ei

√
−ω−iλ(|x|+|y|)

8π|x||y|[(2σ + 1)ω + i(σ + 1)
√
ω
(√
−ω − iλ+

√
−ω + iλ

)
−
√
−ω − iλ

√
−ω + iλ]

+

−i [(σ + 1)
√
ω + i

√
−ω + iλ]ei

√
−ω+iλ(|x|+|y|) − σ

√
ωei
√
−ω+iλ|y|ei

√
−ω−iλ|x|

8π|x||y|[(2σ + 1)ω + i(σ + 1)
√
ω
(√
−ω − iλ+

√
−ω + iλ

)
−
√
−ω − iλ

√
−ω + iλ]

.

Then we can de�ne

F∗(k) = R∗,1,1(λ+ 0)−R∗,1,1(λ− 0), and Fm(k) = Rm,1,1(λ+ 0)−Rm,1,1(λ− 0).
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One can easily compute F∗ and gets F∗(k) = − sin(|x−y|k)
4π|x−y| . Thus, by formula 3.851 in [27],∫ +∞

−∞
F∗(k)2ke−itk

2
dk = sin(|x− y|k)dk − i 1 + i

16
√
π
t−

3
2 ei
|x−y|2

4t ,

for any t > 0. Hence

(1.35)

∣∣∣∣ 1

2πi

∫
R3

∫ +∞

−∞
F∗(k; y)dkf(y)dy

∣∣∣∣ ≤ 1

8
√

2π
t−

3
2

∫
R3

|f(y)|dy.

Let us estimate
∫ +∞
−∞ Fm(k)2ke−itk

2
dk. One can notice that Fm(k) is the sum of terms of the

form i
8π|x||y|g(k)e±iks, where g(k) is a rational function of k and

√
−2ω − k2 possibly multiplied

by ei
√
−2ω−k2s, and s can be 0, |x|, |y| or |x|+ |y|. Let us consider the term

g(k)e−ik(|x|+|y|) =

=
(σ + 1)

√
ω + i

√
−2ω − k2

(2σ + 1)ω + i(σ + 1)
√
ω(
√
−2ω − k2 − k) + k

√
−2ω − k2

e−ik(|x|+|y|),

which results from the second term in (1.34) referred to Rm,1,1(λ+ 0).
Notice that g ∈ C1(R,C) and |g(k)| ∼ 1

ik as k → +∞, hence g ∈ L2(R). Moreover,

dg

dk
(k) =

−ik[
(2σ + 1)ω + i(σ + 1)

√
ω(
√
−2ω − k2 − k) + k

√
−2ω − k2

]√
−2ω − k2

+

− (σ + 1)
√
ω + i

√
−2ω − k2

[(2σ + 1)ω + i(σ + 1)
√
ω(
√
−2ω − k2 − k) + k

√
−2ω − k2]2

·

·
(
− i(σ + 1)

√
ωk√

−2ω − k2
− i(σ + 1)

√
ω +

√
−2ω − k2 − k2

√
−2ω − k2

)
,

which belongs to L2(R) too, so g is an element of H1(R), and as consequence ǧ ∈ L1(R), where ǧ
is the inverse Fourier transform of g. Furthermore, one can compute the inverse Fourier transform
of 2ke−itk

2
as

Ut(s) =
1

2πi

∫ +∞

−∞
2ke−itk

2
e−iksdk =

1

(4πit)
3
2

e−
s2

4it .

From the last identity it follows∣∣∣∣ 1

2πi

∫
R3

∫ +∞

−∞

i

8π|x||y|
g(k)e−ik(|x|+|y|)2ke−itk

2
dkf(y)dy

∣∣∣∣ =

(1.36) =

∣∣∣∣∫
R3

∫ +∞

−∞

1

8π|x||y|
ǧ(u)Ut(u− |x| − |y|)duf(y)dy

∣∣∣∣ ≤ C 1

|x|
t−

3
2

∫
R3

|f(y)|
|y|

dy,

where the last inequality follows from Hölder inequality and C > 0. The other terms in Fm(k)
are handled in an analogous way so we do not give details.

Summing up, let f ∈ L1
w(R3). Then∣∣∣∣ 1

2πi

∫
R3

∫
C+∪C−

(R(λ+ 0)−R(λ− 0))e−λtdλf(y)dy

∣∣∣∣ ≤
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≤ 1

2π

(∫
R3

∣∣∣∣∫
C+

(R(λ+ 0)−R(λ− 0))e−λtdλf(y)

∣∣∣∣ dy+

+

∫
R3

∣∣∣∣∫
C−

(R(λ+ 0)−R(λ− 0))e−λtdλf(y)

∣∣∣∣ dy) =
1

2π
(I + II).

Let us estimate the integral I. Thanks to the estimates (1.35) and (1.36) one has

I =

∫
R3

∣∣∣∣∫ +∞

−∞
F (k)2ke−itk

2
dkf(y)

∣∣∣∣ dy ≤
≤
∫
R3

∣∣∣∣∫ +∞

−∞
F∗(k)2ke−itk

2
dkf(y)

∣∣∣∣ dy +

∫
R3

f(y)

∣∣∣∣∫ +∞

−∞
Fm(k)2ke−itk

2
dk

∣∣∣∣ dy ≤
≤ Ct−3/2

(∫
R3

|f(y)|dy +
1

|x|

∫
R3

|f(y)|
|y|

dy

)
≤ C

(
1 +

1

|x|

)
t−3/2

∫
R3

|f(y)|
(

1 +
1

|y|

)
dy.

The integral II can be estimated in the same way, which completes the proof.

Remark 1.17. Evaluating the propagator e−Lt at t = 0 one gets

1 =
1

2πi

∫
|λ|=r

R(λ)dλ+
1

2πi

∫
C+∪C−

(R(λ+ 0)−R(λ− 0))dλ = P0 + Pc.

From Lemma 1.18 it will follow that the operators P0 and Pc are symplectic projectors onto the

subspaces associated to generalized kernel and to the continuous spectrum respectively. Finally,

let us note that explicitly integrating the resolvent around its poles it turns out that the dynamics

along the generalized kernel grows linearly in time. This fact is proved in Appendix 1.11.

1.5 Modulation equations

In this section we restrict to the case σ ∈ (0, 1/
√

2), summarize the main technical steps and
give some preliminary results towards the proof of asymptotic stability of standing waves. In
particular, we write the so-called modulation equations that rule the evolution of a perturbed
standing wave when splitted in a solitary component and a �uctuating one. We recall once more
that the scalar product we adopt is the real scalar product on the Hilbert space L2(R3,C) de�ned
in (1.10). In order to make the reading easier, let us give a brief outline of the strategy to be
employed. We follow the roadmap of the classical papers [42],[43],[9],[10], [11], also adopted for
the model with concentrated nonlinearity in dimension one in [8] and [33]. More speci�cally, we
decompose the dynamics in the neighbourhood of the solitary manifold in a "longitudinal" and
a "transversal" component with respect to the generalized kernel Ng(L), given in Theorem 1.9,
of the linearized operator L. In order to perform the required analysis, we exploit the symplectic
structure introduced in Section 1.2.1. Let us begin by noticing that the solitary manifold M
de�ned in (1.16) is a symplectic submanifold of (L2(R3,C),Ω), invariant under the �ow of (1.7).
Its tangent space at the standing wave Φω is two-dimensional and is generated by the vectors
d
dθ{e

iθΦω}θ=0 and d
dω{Φω}ω=0, in real representation given by

d

dθ
{eiθΦω}θ=0 7→ e1 =

(
0
Φω

)
and

d

dω
{Φω} 7→ e2 =

(
ϕω
0

)
,

where ϕω = d
dωΦω was de�ned in Section 1.4. However, when no confusion arises, we use the

shorthand expressions Φω and ϕω with the meaning of the corresponding real representative
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vectors (second component vanishing). As already remarked the couple of vectors {e1, e2} is a
basis for Ng(L). It is immediately seen that Ω(e1, e2) = 1

2
d
dω‖Φω‖2 6= 0, thanks to the condition

σ ∈ (0, 1/
√

2) guaranteeing orbital stability. So the symplectic form is nondegenerate on the
solitary manifold M, which is a symplectic submanifold. By its very de�nition, M is invariant
for the �ow of (1.7).
The following lemma establishes the relation between the spectral projection P0 introduced in
Remark 1.17 and the symplectic projection onto the solitary manifold.

Lemma 1.18. Let ∆ = 1
2
d
dω‖Φω‖2L2 , then for any f ∈ L2(R3)

(1.37) P0f =
1

∆
Ω (f, ϕω) JΦω −

1

∆
Ω (f, JΦω)ϕω ,

where Ω(·, ·) was de�ned in (1.12).

Proof. The explicit expression of the spectral projection P0 = 1
2πi

∫
|λ|=r R(λ)dλ can be recovered

by Appendix 1.11, and the equivalence with the r.h.s. follows by straightforward calculations.

Notice that the given representation of P0 is well de�ned thanks to the fact that ∆ > 0,
again as a consequence of the choice σ ∈ (0, 1/

√
2). Moreover, P0 is a symplectically orthogonal

projection, in the sense that given a couple {ζ, f} with ζ ∈ Im P0 and f ∈ Ker P0, one has
Ω(ζ, f) = 0 . In particular, it is useful to note that due to the de�nition of symplectic form Ω, a
state f with vanishing component along the continuous spectrum of L is orthogonal to the vectors
Je1 and Je2, or in complex notation, to Φω and i ddωΦω = iϕω.

After these preliminaries, as anticipated in formula (1.9), we write the solution to (1.7) as

(1.38) u(t, x) = eiΘ(t)
(
Φω(t)(x) + χ(t, x)

)
, Θ(t) =

∫ t

0
ω(s)ds+ γ(t),

with the �nal goal of proving that the solution decomposes in the sum of a solitary component
and a dispersive one.

The local splitting of the invariant symplectic manifold (L2(R3,C),Ω) in two symplectically
orthogonal manifolds, the �nite dimensional solitary manifold M and the in�nite dimensional
range of the spectral projection on the continuous spectrum, suggests to symplectically project
the �ow according to this decomposition (see also Remark 1.17), in order to obtain the so called
modulation equations. The projection alongM ("longitudinal") gives rise to two ordinary di�er-
ential equations for the frequency ω and the phase γ of the solitary wave, depending parametrically
on the �uctuating component χ; while the projection on the continuous spectrum ("transversal")
gives a partial di�erential equation for the remainder χ (with coe�cients depending on γ and
ω). The solution to the equation for the χ component will be shown to decay in time in suitable
norms. As a consequence, one has the asymptotic behavior of the solutions for the parameters ω
and γ of the solitary wave, to be shown in Section 6, and �nally asymptotic stability, which will
be the subject of Section 7.
To deduce the modulation equations it proves convenient to make use of the variational formulation
of equation (1.7)

(1.39)

(
i
du

dt
(t), v

)
L2

= E′[u(t)](v) ∀v ∈ V.

To begin with, we replace in the previous equation the Ansatz (1.38).
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By equation (1.15) and Proposition 1.3, equation (1.39) can be rephrased as
(1.40)(
i
dχ

dt
(t), v

)
L2

= Qα,Lin(χ(t), v) + γ̇(t)(Φω(t) + χ(t), v)L2 + ω̇(t)

(
−i
dΦω(t)

dω
, v

)
L2

+N(qχ(t), qv)

for any v ∈ V .
Here Qα,Lin is the quadratic form of the operator D de�ned in (1.19) and acting as

Qα,Lin(χ, v) = (∇φχ,∇φv)L2 −
√
ω

4π
Re(qχqv)− σ

√
ω

2π
Re qχ Re qv + ω(χ, v)L2 ,

and the nonlinear remainder N(qχ, qv) is given by

N(qχ, qv) = −ν|qχ+qω|2σ Re((qχ+qω)qv)+ν(2σ+1)|qω|2σ Re qχ Re qv+ν|qω|2σ Im qχ Im qv+ν|qω|2σ Re(qωqv),

where, according to Section 1.2.2, qω =
(√

ω
4πν

) 1
2σ
.

Remark 1.19. The remainder N(qχ, qv) depends nonlinearly on χ (and ω) and it is real linear

in v; so, by Riesz representation theorem and with a slight abuse of notation, there exist a vector

N(qχ) such that N(qχ, qv) = ReN(qχ)qv. The dependence just on the charges of χ and v is a

peculiarity of this model. Moreover, by its very de�nition, the remainder is the di�erence between

the action of the complete vector �eld and its linear part at the solitary wave, and so it is quadratic

in qχ near χ = 0.

Corresponding expressions can be given with obvious modi�cation in purely real form, which we
omit for the sake of brevity. Since ω, γ and χ are all unknown the Ansatz (1.38) makes the problem
underdetermined, and a supplementary condition is needed to give a unique representation of
the solution; a way to close the system for ω, γ and χ is to require that the χ component is
decoupled from the discrete spectrum, i.e. P0χ = 0, or equivalently to project equation (1.40)
onto the symplectically orthogonal complement of the generalized kernel of L. The corresponding
modulation equations take di�erent forms according to the way one writes the projection and
we give two of them for future reference. In the following we denote by QL the bilinear form
associated to the linear nonselfadjoint operator L.

Theorem 1.20. (Modulation equations I) Let χ be a solution to equation (1.40) such that

P0χ(t) = 0 for all t ≥ 0, and let the functions ω and γ belong to C1(R); then ω and γ solve the

equations

(1.41) ω̇ =
Re (JN(qχ)qP ∗0 (Φω+χ))(
ϕω − dP0

dω χ,Φω + χ
)
L2

,

and

(1.42) γ̇ =
Re (JN(qχ)q

J(ϕω− dP0
dω

χ)
)(

ϕω − dP0
dω χ,Φω + χ

)
L2

.

Proof. We adapt the reasoning in [11]. Equation (1.40) is equivalent to

(1.43)

(
d

dt
(Φω + χ), v

)
L2

= QL(χ, v)) + γ̇ (J(Φω + χ), v)L2 + Re(JN(qχ)qv) ∀v ∈ V .
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Set v = P ∗0 (Φω+χ) where P ∗0 is the adjoint in L2(R3) of the operator P0; notice that di�erentiating
in time P0χ = 0, one has

P0
d

dt
(Φω + χ) = ω̇

(
ϕ− dP0

dω
χ

)
,

where expressions such as dP0
dω χ are computed from the representation given in (1.37).

Moreover, one immediately has the identities

QL(χ, P ∗0 (Φω + χ)) = QL(P0χ, (Φω + χ)) = 0

and, using P0J = JP ∗0 ,

(J(Φω + χ), P ∗0 (Φω + χ))L2 =
(
J(Φω + χ), (P ∗0 )2(Φω + χ)

)
L2 = (JP ∗0 (Φω + χ), P ∗0 (Φω + χ))L2 = 0 .

So one remains with (
P0

d

dt
(Φω + χ),Φω + χ

)
L2

= Re(JN(qχ)qP ∗0 (Φω+χ))

from which the equation for ω̇ follows.
Now let us consider the test function JP0

d
dt(Φω + χ), and notice the following facts, in which use

is made of JP0 = P ∗0 J .(
d

dt
(Φω + χ), JP0(Φω + χ)

)
L2

=

(
d

dt
(Φω + χ), JP 2

0 (Φω + χ)

)
L2

=

(
P0

d

dt
(Φω + χ), JP0(Φω + χ)

)
L2

= 0 ;

QL(χ, JP0
d

dt
(Φω + χ)) = 0 .

It follows from the weak equation (1.43)

γ̇

(
Φω + χ, P0

d

dt
(Φω + χ)

)
L2

= Re(JN(qχ)qJP0
d
dt

(Φω+χ)

and hence, after substituting the expression of P0
d
dt(Φω + χ) determined above and cancellation

of ω̇ the equation for γ̇ follows. This ends the proof.

Two properties of the modulation equations which will be useful in the subsequent analysis are
the following.

Corollary 1.21. Under the hypotheses of Theorem 1.20, and if it is known that ‖χ‖L1
w
is su�-

ciently small, the right hand sides of (1.41) and (1.42) are smooth and there exists a continuous

function R = R(ω, ‖χ‖L1
w

) such that, for any t ≥ 0,

|ω̇(t)| ≤ R|qχ(t)|2 and |γ̇(t)| ≤ R|qχ(t)|2.

The proof of the previous result is a consequence of two facts. In the �rst place (ϕω,Φω)L2 =
1
2
d
dt‖Φω‖2 > 0 by condition σ ∈ (0, 1/

√
2) which gives orbital stability; secondarily, the nonlinear

part in (1.40) actually depends only on the charges qχ and qv; provided that |qχ| ≤ c, there exists
a positive constant C > 0 such that the denominators in (1.41) and (1.42) are strictly away from
zero and

|N(qχ)| ≤ C|qχ|2, ∀χ ∈ V.

The second property concerns the compatibility of the orthogonality condition of the �uctuating
part χ with arbitrary choices of initial data. The following lemma assures in fact that the orthog-
onality condition P0χ = 0 can be satis�ed at the initial time in the neighbourhood of the solitary
manifold without loss of generality.
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Lemma 1.22. Let u ∈ C(R+, V ) be a solution to equation (1.7) with u(0) = u0 ∈ V ∩ L1
w and

assume

d = ‖u0 − eiθ0Φω0‖V ∩L1
w
� 1,

for some ω0 > 0 and θ0 ∈ R.
Then, there exists a stationary wave eiθ̃0Φω̃0

, and χ0(x) with P0(ω̃0)χ0 = 0 such that u0(x) =

eiθ̃0 (Φω̃0
(x) + χ0(x)) , and ‖χ0‖V ∩L1

w
= O(d) as d→ 0.

The result is commonly stated as a preliminary step in the analysis of modulation equations (see
for example [30],[32] and [8]). The proof is an application of the implicit function theorem making
use again of the condition d

dt‖Φω‖2 6= 0; we omit details and refer to the cited references. As a
consequence of the previous lemma, in all proofs in the rest of the chapter we can assume P0χ0 = 0
where χ0 = χ(0).
An equivalent form of the modulation equations for the soliton parameters ω and γ can be obtained
exploiting the characterization of the condition P0χ = 0 through the (Hilbert) orthogonality
(χ,Φω)L2 = 0 = (χ, iϕω)L2 . In some respects they are more transparent and we give them
making use of the complex writing.

Theorem 1.23. (Modulation equations II) Let χ be a solution to equation (1.40) such that

P0χ(t) = 0 for all t ≥ 0, and let the functions ω and γ belong to C1(R); then ω and γ satisfy the

equations

(1.44) ω̇ =
((χ, ϕω)L2 + (ϕω,Φω)L2)N(χ, iΦω)− (χ, iΦω)L2N(χ, ϕω)

(ϕω,Φω)2
L2 − (χ, ϕω)2

L2

(1.45) γ̇ =
((χ, ϕω)L2 − (ϕω,Φω)L2)N(χ, ϕω) + (χ, i ddωϕω)L2N(χ, iΦω)

(ϕω,Φω)2
L2 − (χ, ϕω)2

L2

Proof. Di�erentiating in time the orthogonality conditions (χ,Φω)L2 = 0 = (χ, iϕω)L2 , it easily
follows that

(iχ̇, iΦω)L2 = −ω̇(χ, ϕω)L2 , (iχ̇, ϕω)L2 = ω̇

(
χ, i

d

dω
ϕω

)
L2

.

So testing the weak equation for χ with iΦω and ϕ and taking into account properties of operators
L1 and L2 and orthogonality conditions again, one obtains the system

ω̇((χ, ϕω)L2 − (Φω, ϕω)L2) + γ̇(χ, iΦω)L2 = −N(χ, iΦω)

ω̇

(
χ,

d

dω
ϕω

)
L2

− γ̇((Φω, ϕω)L2 + (χ, ϕω)L2) = N(χ, ϕω).

The thesis follows solving for ω̇ and γ̇.

Notice that to this second form of modulation equations apply similar remarks to the ones made
for the �rst form. In particular, if a priori estimates on smallness of χ are known, the modulation
equations are well de�ned thanks to the condition d

dω‖Φω‖2 > 0 , and the analogous of Lemma
1.22 holds true.
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1.6 Time decay of weak solutions

The goal of this section is to provide the time decay of the transversal component χ of the solution
u (see (31)) to equation (1.7); the result we achieve shows that χ is in fact not only a �uctuation,
but also a decaying dispersive remainder and it paves the way to the proof of asymptotic stability
of standing waves, that is given in the next section. To this end we follow the idea developed in
[9],[10],[11] for the standard NLS and applied in [8] to the case of 1-d concentrated nonlinearities.
For any T > 0, de�ne preliminarily the so-called majorant

(1.46) M(T ) = sup
0≤t≤T

[
(1 + t)3/2‖χ(t)‖L∞

w−1
+ (1 + t)3(|γ̇(t)|+ |ω̇(t)|)

]
.

We aim at proving that the majorant is uniformly bounded in T by a constantM = O(d), where d
is the size of the dispersive component χ. The proof of such bound is the content of the following
theorem.

Theorem 1.24. Let u ∈ C(R+, V ) be a solution to equation (1.7) with u(0) = u0 ∈ V ∩ L1
w and

de�ne d := ‖u0 − eiθ0Φω0‖V ∩L1
w
, for some ω0 > 0 and θ0 ∈ R. Then, if d is su�ciently small,

there are ω, γ ∈ C1(R+) which satisfy (1.41)-(1.42), and such that the solution u can be written

as in (1.38).
Moreover, there is a positive constant M > 0, depending only on the initial data, such that, for

any T > 0, one has M(T ) ≤M and M = O(d) as d→ 0. In particular

‖χ(t)‖L∞
w−1
≤M (1 + t)−3/2 ∀t > 0,(1.47)

|γ̇(t)|+ |ω̇(t)| ≤M (1 + t)−3 ∀t > 0.(1.48)

The previous theorem is implied by the following proposition that is proven in Section 1.6.3 by
using the results given in Sections 1.6.1 and 1.6.2, and the dispersive properties of the linearization
operator L given in Section 1.4.2.

Proposition 1.25. Under the hypotheses of the previous theorem, assume that there exist some

t1 > 0 and ρ > 0 such thatM(t1) ≤ ρ. Then there are two positive numbers d1 and ρ1, independent

of t1, such that if d = ‖χ0‖V ∩L1
w
< d1 and ρ < ρ1, then M(t1) ≤ ρ

2 .

Indeed, if Proposition 1.25 were true, then Theorem 1.24 would follow from the next argument:
let I ⊂ [0,+∞) be de�ned as

I = {t1 ≥ 0 : ω, γ ∈ C1([0, t1]), M(t1) ≤ ρ}.

I is obviously relatively closed in [0,+∞) with the topology induced by considering it as a subspace
of R with the standard Euclidean topology. On the other hand, the thesis of Proposition 1.25 and
the estimates of Corollary 1.21 imply that I is also relatively open. Hence, the uniform estimate
of Theorem 1.24 follows from the fact that sup I = +∞.

1.6.1 Frozen linearized problem

Note that the equation (1.40) is non autonomous. In order to make its study simpler, it is useful
to exploit a further reparametrization of the solution χ(t). We �x a time t1 > 0 and denote
ω1 = ω(t1) and γ1 = γ(t1). Now de�ne (in vector notation; we recall that J corresponds to −i)

(1.49) e−JΘ(t)χ(t, x) = e−JΘ̃(t)η(t, x) , where Θ̃(t) = ω1t+ γ1 .
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The function η satis�es the equation

(
eJ(Θ−Θ̃)dη

dt
, v

)
L2

= QL(eJ(Θ−Θ̃)η, v) + (ω1 − ω)(Jη, v)L2 + γ̇(JΦω, v)L2

− ω̇
(
dΦω

dω
, v

)
L2

+ JN(eJ(Θ−Θ̃)qη)qv ∀v ∈ V

We need a further manipulation which allows to rewrite the previous equation in a form which
makes the role of reparametrization clear. To this end we need the following identities, which can
be obtained from straightforward computations

• JeJ(Θ−Θ̃) = eJ(Θ−Θ̃)J ;

• QL(eJ(Θ−Θ̃)u, v)−eJ(Θ−Θ̃)QL(u, v) =
(σ + 1)

√
ω

2π
sin(Θ−Θ̃)σ3quqv, for any u, v ∈ V , where

σ3 =

[
1 0
0 −1

]
.

Making use of the previous identities, one rewrites the equation for η as

(1.50)

(
dη

dt
, v

)
L2

= (ω1 − ω)(Jη, v)L2 +QL(η, v) +

(
e−J(Θ−Θ̃)

(
γ̇JΦω − ω̇

dΦω

dω

)
, v

)
L2

+

+e−J(Θ−Θ̃) (σ + 1)
√
ω

2π
sin(Θ− Θ̃)σ3qηqv + e−J(Θ−Θ̃)JN(eJ(Θ−Θ̃)qη)qv, ∀v ∈ V .

Let us de�ne the linearization frozen at time t1 as LI = L(ω1), and observe that for all u, v ∈ V

QL(u, v)−QLI (u, v) =

√
ω −√ω1

4π
Tquqv − (ω1 − ω)(Ju, v)L2 ,

where T =

[
0 −1

2σ + 1 0

]
. Hence, equation (1.50) becomes

(1.51)

(
dη

dt
, v

)
L2

= QLI (η, v) +NI(t, ω, qη, qv) ∀v ∈ V

where, for all v ∈ V , the time dependent nonlinear remainder (including now �dragging" terms
due to reparametrization) is given by

NI(t, ω, qη, qv) =

(
e−J(Θ−Θ̃)

(
γ̇JΦω − ω̇

dΦω

dω

)
, v

)
L2

+

√
ω −√ω1

4π
Tqηqv(1.52)

+ e−J(Θ−Θ̃) (σ + 1)
√
ω

2π
sin(Θ− Θ̃)σ3qηqv + e−J(Θ−Θ̃)JN(eJ(Θ−Θ̃)qη)qv .(1.53)

The gain in changing from original (1.40) for the dispersive component to equation (1.51) is that
the latter is still non autonomous, but now the generator of the evolution is (in weak form) a
sum of a �xed linear vector �eld (the frozen linearization LI) and a nonlinear time dependent
perturbation (see also [9]). This allows to use the known dispersive properties of linearization
operator L described in 1.4.2.
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1.6.2 Duhamel's representation

In this subsection we write the equation (1.51) in Duhamel's representation to better exploit
the dispersive properties of the propagator eLI t. This is not a completely trivial task since our
frozen equation is a variational equation and cannot be written in strong form. In order to reach
our purpose, we consider (1.51) separating in the test function v the regular and singular part
accordingly to (1.6). So we begin by setting v = φλv ∈ H1(R3). We get(

dη

dt
(t), φλv

)
L2

= (LIη(t) + fI(t), φ
λ
v )L2 ,

where fI(t) = e−J(Θ(t)−Θ̃(t))
(
γ̇(t)JΦω(t) − ω̇(t)

dΦω(t)

dω

)
. Hence, by Duhamel's principle one gets

(η, φλv )L2 =

(
eLI tη0 +

∫ t

0
eLI(t−s)fI(s)ds, φ

λ
v

)
L2

.

If one considers the same equation with v = qvGλ where qv ∈ C, one has(
dη

dt
(t), qvGλ

)
L2

= (LIη(t) + fI(t) + gI(t), qvGλ)L2 ,

where
gI(t) = e−J(Θ(t)−Θ̃(t))

(
4
√
λ(σ + 1)

√
ω(t) sin(Θ(t)− Θ̃(t))σ3qη(t)Gλ+

+8π
√
λJN(eJ(Θ(t)−Θ̃(t))qη(t))Gλ

)
+ 2
√
λ(
√
ω(t)−

√
ω1)Tqη(t)Gλ,

where qη is the charge of the function η. And hence,

(η, qvGλ)L2 =

(
eLI tη0 +

∫ t

0
eLI(t−s)(fI(s) + gI(s))ds, qvGλ

)
L2

.

Summing up, for any v ∈ V , the solution to equation (1.51) can be written as

(η, v)L2 =

(
eLI tη0 +

∫ t

0
eLI(t−s)fI(s)ds, v

)
L2

+

(∫ t

0
eLI(t−s)gI(s)ds, qvGλ

)
L2

.

In what follows we will use the following estimate on the function gI .

Lemma 1.26. Under the hypotheses of Proposition 1.25, there exists a constant C > 0 such that

‖gI(t)‖V ∩L1
w
≤ C(|qη|2 + ρ|qη|),

for any t ≤ t1.

Proof. First of all let us notice that it is possible to chose t1 in such a way that ω(t) ≥ c > 0 for
any 0 ≤ t ≤ t1, then

|
√
ω(t)−

√
ω1| ≤ C|ω(t)− ω1| ≤ C

∫ t1

t
|ω̇(s)|ds ≤ C sup

0≤t≤t1

[
(1 + t)3|ω̇(t)|

] ∫ t1

t
(1 + s)−3ds ≤ Cρ,

and

|Θ(t)−Θ̃(t)| ≤
∫ t

0

∫ t1

s
|ω̇(τ)|dτds+

∫ t1

t
|γ̇(s)|ds ≤ Cρ

∫ t

0

∫ t1

s
(1+τ)−3dτds+Cρ

∫ t1

t
(1+s)−3ds ≤ Cρ.

The result follows since

‖gI(t)‖V ∩L1
w
≤ C(|Θ(t)− Θ̃(t)||qη(t)|+ |

√
ω(t)−

√
ω1||qη(t)|+ |qη(t)|2).
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We end the section with a technical result that allows to transfer dispersive estimates on the
frozen �uctuating component Pc(LI)η = Pc(ω1)η into estimates on η. This is needed because η
appears in the integral Duhamel's equation where estimates have to be done, but the dispersive
behavior is at our disposal for Pc(ω1)η. This is stated in the following lemma (see for analogous
construction, for example, [22] and [8]).

Lemma 1.27. Let the hypotheses of Proposition 1.25 hold true and suppose that the quantity

sup
0≤t≤t1

(|ω(t)− ω1|+ |Θ(t)− Θ̃(t)|) = δ

is su�ciently small; then, for any t ∈ [0, t1] there is a bounded linear operator Π(t) : Pc(ω1)(V ∩
L∞w−1)→ V ∩ L∞w−1, and a positive constant C = C(δ, ω1) > 0 such that η(t) = Π(t)h(t), and

C(δ, ω1)−1‖h‖V ∩L∞
w−1
≤ ‖η‖V ∩L∞

w−1
≤ C(δ, ω1)‖h‖V ∩L∞

w−1
.

Proof. We give only a sketch of the standard proof, referring for details to the literature cited
above. Set η(t) = P0(ω1)η + Pc(ω1)η = ik1(t)Φω1 + k2(t) d

dω1
Φω1 + h(t) . The condition P0χ = 0

makes time dependent functions k1 and k2 to satisfy a linear system with a source term depending
on h; the coe�cient matrix has an inverse uniformly bounded in t and t1 thanks to the conditions
(Φω,

d
dω1

Φω1)L2 > const > 0 and (Φω1 ,
d
dωΦω)L2 > const > 0 valid for |ω−ω1| small enough. This

gives a representation of k1 and k2 in terms of h and as a consequence the required bound on the
�nite dimensional component. Now de�ne Π(t)h(t) = η(t)− ik1Φω1−k2

d
dω1

Φω1 and the complete
bound follows.

1.6.3 Proof of Proposition 1.25

Estimate of |γ̇|+ |ω̇|.

Lemma 1.28. If η ∈ V ∩ L∞w−1, then the charge qη of the function η satis�es |qη| ≤ 4π‖η‖L∞
w−1

.

Proof. Since η ∈ L∞w−1(R3) then ‖η‖L∞
w−1

= supx∈R3

∣∣∣ |x|1+|x|φη(x) +
qη

4π(1+|x|)

∣∣∣ ≥ 1
4π |qη|.

From the last lemma and Corollary 1.21 one gets

|γ̇(t)|+ |ω̇(t)| ≤ c|qη(t)|2 ≤ c1‖η(t)‖2L∞
w−1
≤ c1(1 + t)−3M(t)2, ∀t ∈ [0, t1],

with c1 independent of t1. Hence, one can choose ρ2
1 <

1
4c1

and get (1 + t)3(|γ̇(t)| + |ω̇(t)|) ≤
c1ρ

2 ≤ ρ
4 , ∀t ∈ [0, t1].

Estimate of ‖η‖L∞
w−1

.

As explained in the previous section, for any t ∈ [0, t1] we have η(t) = P0(ω1)η(t)+Pc(ω1)η(t) (for
the de�nitions of P0 and Pc see Remark 1.17) and thanks to Lemma 1.27 we have η(t) = Πh(t)
where Π(t) : Pc(ω1)(V ∩ L∞w−1)→ V ∩ L∞w−1 is bounded.
In order to estimate ‖η‖L∞

w−1
we make use of the equation for h. For all v ∈ V , h is a solution to(

dh

dt
, v

)
L2

= QLI (h, v) + (Pc(ω1)fI , v)L2 + (Pc(ω1)gI , gvGλ)L2 ,

where fI and gI were de�ned at the beginning of Section 1.4.2, hence, for any v ∈ V , h satis�es

(h, v)L2 =

(
eLI th0 +

∫ t

0
eLI(t−s)Pc(ω1)fI(s)ds, v

)
L2

+

(∫ t

0
eLI(t−s)Pc(ω1)gI(s)ds, qvGλ

)
L2

.
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In addition let us assume that v ∈ V ∩ L1
w, hence by Hölder inequality

(h, v)L2 ≤

(
‖eLI th0‖V ∩L∞

w−1
+

∥∥∥∥∫ t

0
eLI(t−s)Pc(ω1)fI(s)ds

∥∥∥∥
V ∩L∞

w−1

)
‖v‖L1

w
+

+

∥∥∥∥∫ t

0
eLI(t−s)Pc(ω1)gI(s)ds

∥∥∥∥
V ∩L∞

w−1

‖qvGλ‖L1
w
.

Now we can apply the dispersive estimate proved in Theorem 1.16 and get

‖eLI th0‖V ∩L∞
w−1
≤ c(1 + t)−3/2‖h0‖V ∩L1

w
≤ c(1 + t)−3/2d,

where d was de�ned in the statement of the present proposition. Furthermore, again by Theorem
1.16, ∥∥∥∥∫ t

0
eLI(t−s)Pc(ω1)fI(s)ds

∥∥∥∥
V ∩L∞

w−1

≤ c
∫ t

0
(1 + t− s)−3/2‖fI(s)‖V ∩L1

w
ds ≤

≤ c
∫ t

0
(1 + t− s)−3/2(|γ̇(s)|+ |ω̇(s)|)ds ≤ c

∫ t

0
(1 + t− s)−3/2‖η(s)‖2L∞

w−1
ds.

Analogously, using Lemma 1.25 and Theorem 1.16,∥∥∥∥∫ t

0
eLI(t−s)Pc(ω1)gI(s)ds

∥∥∥∥
V ∩L∞

w−1

≤ c
∫ t

0
(1 + t− s)−3/2‖gI(s)‖V ∩L1

w
ds ≤

≤ c
∫ t

0
(1 + t− s)−3/2(‖η(s)‖2L∞

w−1
+ ρ‖η(s)‖L∞

w−1
)ds.

Let us de�ne
m(t) = sup

s∈[0,t]
(1 + s)3/2‖η(s)‖L∞

w−1
.

Now, using the above inequalities, Lemma 1.25, and exploiting the duality paring de�ned by the
inner product in L2, it holds

(1 + t)3/2‖η(t)‖L∞
w−1

= (1 + t)3/2 sup
06=v∈L1

w

(η(t), v)L2

‖v‖L1
w

≤

≤ c

(
‖eLI th0‖V ∩L∞

w−1
+

∥∥∥∥∫ t

0
eLI(t−s)Pc(ω1)fI(s)ds

∥∥∥∥
V ∩L∞

w−1

+

∥∥∥∥∫ t

0
eLI(t−s)Pc(ω1)gI(s)ds

∥∥∥∥
V ∩L∞

w−1

)
≤

≤ c
∫ t

0
(1 + t− s)−3/2(‖η(s)‖2L∞

w−1
+ ρ‖η(s)‖L∞

w−1
)ds,

≤ c
(
d+m2(t)

∫ t

0
(1 + t)3/2(1 + s)−3(1 + t− s)−3/2ds+ ρm(t)

∫ t

0
(1 + t)3/2(1 + s)−3/2(1 + t− s)−3/2ds

)
.

Observe that the constant c and both integrals appearing in the last inequality are bounded
independently of t, and this implies that for any t ∈ [0, t1] we have

m(t) ≤ c(d+m2(t1) + ρm(t1)) ≤ c(d+ ρ2
1) ≤ c2d,

provided d and ρ are small enough. Since the constant c2 does not depend on t1, we can choose
d < ρ

4c2
and �nally get

m(t1) ≤ ρ

4
,

concluding the proof of Proposition 1.25.
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1.7 Asymptotic stability

Now we are in the position to prove the asymptotic stability result as stated in the next theorem.
Before formulating the result, let us denote by Ut the integral kernel which de�nes the propagator

of the free Laplacian in R3, namely Ut(x) = (4πit)−3/2ei
|x|2
4t .

Theorem 1.29. Assume σ ∈ (0, 1/
√

2). Let u ∈ C(R+, V ) be a solution to equation (1.7) with
u(0) = u0 ∈ V ∩ L1

w and denote d = ‖u0 − eiθ0Φω0‖V ∩L1
w
, for some ω0 > 0 and θ0 ∈ R. Then, if

d is su�ciently small, the solution u can be decomposed as follows

(1.54) u = eiω∞tΦω∞ + Ut ∗ ψ∞ + r∞,

where ω∞ > 0 and ψ∞, r∞ ∈ L2(R3), with ‖r∞‖L2 = O(t−5/4) as t→ +∞.

Proof. Along the proof we assume that P0(u0−eiθ0Φω0) = 0, and we recall from Lemma 1.22 that
there is no loss of generality in this choice. First of all let us notice that Theorem 1.24 implies
ω(t)→ ω∞, and Θ(t)− ω∞t→ 0, as t→ +∞. Next, let us de�ne the modulated soliton as

s(t, x) = eiΘ(t)Φω(t)(x),

and the function

(1.55) z(t, x) = u(t, x)− s(t, x).

By equation (1.7) and (1.15) one has that, for any v ∈ V , z(t) is also a solution to(
i
dz

dt
, v

)
L2

= Re

∫
R3

∇φz · ∇φvdx− ν Re((|qu|2σqu − |qs|2σqs)qv) +

(
γ̇s− iω̇ ds

dω
, v

)
L2

.

As one can verify by direct di�erentiation, the solution of the last equation can be expressed as

(1.56) z(t, x) = Ut ∗ z0(x) + i

∫ t

0
Ut−τ (x)qz(τ)dτ − i

∫ t

0
Ut−τ ∗ f(s(τ))dτ,

where we denoted f(s) = γ̇s− iω̇ ds
dω and, according to (3.77), qz(t) = qu(t)−qs(t). Let us consider

the last integral in formula (1.56)∫ t

0
Ut−τ ∗ f(s(τ))dτ = Ut ∗

∫ ∞
0

U−τ ∗ f(s(τ))dτ −
∫ ∞
t

Ut−τ ∗ f(s(τ))dτ,

and note that the regularity of s(t, x) implies ψ1(x) =
∫∞

0 U−τ ∗f(s(τ))dτ ∈ L2(R3), and r1(t, x) =
−
∫∞
t Ut−τ ∗f(s(τ))dτ ∈ L2(R3). Moreover, from Theorem 1.24 and the unitarity of the evolution

group of the free Laplacian we have ‖r1(t)‖L2 = O(t−2), t→ +∞.
To conclude the proof it is left to prove a similar asymptotic decomposition for the �rst integral
in the formula (1.56). As before, one can write∫ t

0
Ut−τ (x)qz(τ)dτ = Ut ∗

∫ ∞
0

U−τ (x)qz(τ)dτ −
∫ ∞
t

Ut−τ (x)qz(τ)dτ.

First of all one needs to show that ψ0(x) =
∫∞

0 U−τ (x)qz(τ)dτ belongs to L2(R3). To this aim,

let us observe that ψ0(x) = 1
(4πi)3/2h

(
r2

4

)
, with h(y) =

∫∞
0 e−iy/ττ−3/2qz (τ) dτ , hence

‖ψ0‖2L2 =
1

(4π)2

∫ ∞
0

∣∣∣∣h(r2

4

)∣∣∣∣2 r2dr =
1

(2π)2

∫ ∞
0
|h(y)|2√ydy.
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From the �rst and the last terms one gets ψ0 ∈ L2(R3) if and only if h ∈ L2(R+,
√
ydy). On the

other hand, one can perform the change of variable u = 1
τ in the integral function h and get

h(y) =

∫ ∞
0

e−iyu
1√
u
qz

(
1

u

)
du =

∫ ∞
0

e−iyu
1

u
qz

(
1

u

)√
udu,

where we set y = |x|2
4 . Then ĥ(u) = 1

uqz
(

1
u

)
. Moreover, by Theorem 1.24,

∣∣ 1
uqz

(
1
u

)∣∣2√u ≤ u3/2

(1+u)3

then ĥ ∈ L2(R+,
√
udu) and hence, by Plancherel's identity h ∈ L2(R+,

√
ydy).

Finally, let us denote r0 =
∫∞
t Ut−τ (x)qz(τ)dτ . As before, we have r0(x) = g

(
r2

4

)
, with g(y) =∫∞

0 e−iy/(t−τ)(t − τ)−3/2qz (τ) dτ . Moreover, we can set y = |x|2
4 exploit the change of variables

u = − 1
t−τ in order to get

g(y) =

∫ ∞
0

e−iyu
i

u
qz

(
t+

1

u

)√
udu.

Again, Theorem 1.24 implies that ĝ(u) = i
uqz

(
t+ 1

u

)
∈ L2(R+,

√
udu), for any t ≥ 0. In particu-

lar,

‖g‖2L2(R+,
√
udu) ≤ c̃

∫ ∞
0

u3/2

((1 + t)u+ 1)3
du ≤ c(1 + t)−5/2,

for any t ≥ 0, with c̃, c > 0 independent of time. Summing up, Plancherel's identity allows us to
conclude ‖r0‖L2 = O(t−5/4) as t→ +∞.
Hence the theorem follows with ψ∞ = z0 + ψ0 + ψ1, and r∞ = r0 + r1.

1.8 Appendices

1.9 The generalized kernel of the operator L

The aim of this appendix is to provide the proof or Theorem 1.9.

Proof. It is easy to see that cΦω, with c ∈ C, is the unique family of distributional solutions to
the equation

−4u+ ωu = 0.

Furthermore, Φω belongs to D(Hα2) but not to D(Hα1) since the boundary condition is not
satis�ed. Hence

ker(L) = span

{(
0
Φω

)}
.

Let us now consider the operator

L2 =

[
−L2L1 0

0 −L1L2

]
.

Since the operator L1 is invertible, the following holds

u ∈ ker(L1L2)⇔ u ∈ ker(L2), then ker(L1L2) = span{Φω},

u ∈ ker(L2L1)⇔ ∃u ∈ D(Hα1) such that L1u = Φω.

Solving the former equation one gets that ker(L1L2) = span {ϕω}. From this follows

ker(L2) = span

{(
0
Φω

)
,

(
ϕω
0

)}
.
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The operator L3 has the following form

L3 =

[
0 −L2L1L2

L1L2L1 0

]
.

As before

u ∈ ker(L1L2L1)⇔ L1u ∈ ker(L1L2) = span {Φω} ⇔ ker(L1L2L1) = span {ϕω},

u ∈ ker(L2L1L2)⇔ u ∈ ker(L2) = span {Φω} or L2u ∈ ker(L2L1) = span {ϕω}.

Let us notice that the equation
−4u+ ωu = ϕω

has a unique family of distributional solutions given by

u(x) =

(√
ω

4πν

) 1
2σ

[(
c2

2
√
ω

+
1

16σ2ω2

)
e−
√
ω|x|

4π|x|
+

c1

2
√
ω

e
√
ω|x|

4π|x|
+

− 1

8ω
|x|e

−
√
ω|x|

4π
+

(
1

8σω
3
2

− 1

8ω
3
2

)
e−
√
ω|x|

4π

]
.

Notice that one must impose that u belongs to D(Hα2) which means that u ∈ L2(R3) and satis�es
the boundary condition. This is equivalent to ask the following algebraic conditions to be veri�ed{

c1 = 0
c2 = σ−1

8σω
3
2
.

Therefore, if σ 6= 1, then ker(L2L1L2) = span {Φω}. Hence

ker(L3) = ker(L2),

which concludes the �rst part of the theorem.
In the case σ = 1 we get ker(L2L1L2) = {Φω, gω}, then

ker(L3) = span

{(
0
Φω

)
,

(
ϕω
0

)
,

(
0
gω

)}
.

With analogous computations one can prove that

ker(L4) = ker(L5) = span

{(
0
Φω

)
,

(
ϕω
0

)
,

(
0
gω

)
,

(
hω
0

)}
,

which concludes the proof.

1.10 Proof of the resolvent formula

In this appendix we prove that the operator (L− λI)−1 is given by

R(λ) =

[
−λ(λ2 + L2L1)−1 −L2(λ2 + L1L2)−1

L1(λ2 + L2L1)−1 −λ(λ2 + L1L2)−1

]
for the resolvent of the linear operator L. More precisely, we prove the following proposition.
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Proposition 1.30. If λ ∈ C\σ(L), then R(λ)(L−λI)u = u, ∀u ∈ D(L), and (L−λI)R(λ)f = f
for any f ∈ (L2(R3))2.

Before proving the former proposition, let us prove the following lemma.

Lemma 1.31. For any λ ∈ C \ σ(L) the following identities hold

1. (λ2 + L2L1)−1L−1
1 = L−1

1 (λ2 + L1L2)−1,

2. (λ2 + L1L2)−1 = (λ2L−1
1 + L2)−1L−1

1 ,

3. (λ2 + L1L̃2)−1L̃2
−1

= L̃2
−1

(λ2 + L̃2L1)−1,

where L̃2 is the restriction of the operator L2 to the projection of its domain onto the subspace of

L2(R3) associated to the continuous spectrum of L2.

Proof. First of all, let us notice that all the inverse operators are well de�ned since λ is not
allowed to be a spectral point of L, L1 is invertible and L2 is restricted to a subspace on which it
is invertible too.
In order to prove 1, we prove the following claim

(λ2 + L2L1)−1L−1
1 = (λ2L1 + L1L2L1)−1 = L−1

1 (λ2 + L1L2)−1.

To this purpose, let us take any ξ ∈ L2(R3), then one has

(λ2 + L2L1)−1L−1
1 ξ ∈ D(L2L1) and L−1

1 ξ ∈ D(L1).

Hence, the following chain of identities holds

(λ2L1 + L1L2L1)(λ2 + L2L1)−1L−1
1 ξ = L1(λ2 + L2L1)(λ2 + L2L1)−1L−1

1 ξ = L1L
−1
1 ξ = ξ.

On the other hand, let us take η ∈ D(L1L2L1), and observe that, in particular, η ∈ D(L2L1).
This justi�es the following identities

(λ2 + L2L1)−1L−1
1 (λ2L1 + L1L2L1)η =

= (λ2 + L2L1)−1L−1
1 L1(λ2 + L2L1)η = (λ2 + L2L1)−1(λ2 + L2L1)η = η,

which concludes the proof of the �rst identity of the claim. The second one is proved in the same
way.
The proof of 3. can be done in the same way exganging L1 with L̃2 and L2 with L1.
It is left to prove 2.. To do that, let ξ be in L2(R3), then (λ2L−1

1 +L2)−1L−1
1 ξ ∈ D((λ2L−1

1 +L2))
and L−1

1 ξ ∈ D(L1). Hence, we have

(λ2 + L1L2)(λ2L−1
1 + L2)−1L−1

1 ξ = L1(λ2L−1
1 + L2)(λ2L−1

1 + L2)−1L−1
1 ξ = ξ.

On the other hand, for any η ∈ D(L1L2) one has η ∈ D(L2) ⊂ L2(R3) = D(L−1
1 ), which justi�es

(λ2L−1
1 + L2)−1L−1

1 (λ2 + L1L2)η = (λ2L−1
1 + L2)−1L−1

1 L1(λ2L−1
1 + L2)η = η.

We can now prove the proposition.
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Proof. I step: proof of the first identity.

Let us recall that for u ∈ D(L) holds

R(λ)(L− λI)u =

=

[
−λ(λ2 + L2L1)−1 −L2(λ2 + L1L2)−1

L1(λ2 + L2L1)−1 −λ(λ2 + L1L2)−1

] [
−λ L2

−L1 −λ

](
u1

u2

)
=

(
w1

w2

)
,

where

w1 = λ2(λ2 + L2L1)−1u1 + L2(λ2 + L1L2)−1L1u1 − λ(λ2 + L2L1)−1L2u2 + λL2(λ2 + L1L2)−1u2,

and

w2 = λ2(λ2 + L1L2)−1u2 + L1(λ2 + L2L1)−1L2u2 + λ(λ2 + L1L2)−1L1u1 − λL1(λ2 + L2L1)−1u1.

We will concentrate on the �rst component w1, because the second one can be treated in the same
way.
The spectrum of the selfadjoint operator L2 is ([6])

σ(L2) = {0} ∪ [ω,+∞),

where 0 is a simple eigenvalue and ker(L2) = span{Φω}. Hence, any u2 ∈ D(L2) can be decom-
posed as

u2 = aΦω + g2,

where a ∈ C and g2 belongs to the projection of D(L2) onto the continuous spectrum of L2.
Moreover, since L2Φω = 0, one gets Φω ∈ D(L1L2) and

Φω =
1

λ2
(λ2 + L1L2)Φω = (λ2 + L1L2)

(
1

λ2
Φω

)
,

which is equivalent to (λ2 + L1L2)−1Φω ∈ ker(L2).

As a consequence, since L1 and L̃2 are invertible on their domains, one has

w1 = λ2(λ2 + L2L1)−1L−1
1 L1u1 + L2(λ2 + L1L2)−1L1u1+

−λ(λ2 + L̃2L1)−1L̃2g2 + λL̃2(λ2 + L1L̃2)−1L̃2
−1
L̃2g2,

hence, by lemma 1.31 it follows

w1 = (λ2L−1
1 + L2)(λ2 + L1L2)−1L1u1 − λ(λ2 + L̃2L1)−1L̃2g2 + λL̃2L̃2

−1
(λ2 + L̃2L1)−1L̃2g2 =

= (λ2L−1
1 + L2)(λ2L−1

1 + L2)−1L−1
1 L1u1 = u1.

Summing up, we proved
R(λ)(L− λI)u = u ∀u ∈ D(L).

II step: proof of the second identity.

First of all let us recall that for f ∈ (L2(R3))2 one has

(λ2 + L2L1)−1f1 ∈ D(L2L1) and (λ2 + L1L2)−1f2 ∈ D(L1L2).

Hence, the following identities hold

(L− λI)R(λ)f =

[
−λ L2

−L1 −λ

] [
−λ(λ2 + L2L1)−1 −L2(λ2 + L1L2)−1

L1(λ2 + L2L1)−1 −λ(λ2 + L1L2)−1

](
f1

f2

)
=

=

(
(λ2 + L2L1)(λ2 + L2L1)−1f1

(λ2 + L1L2)(λ2 + L1L2)−1f2

)
= f,

which concludes the proof.
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1.11 The dynamics generated by L along the generalized kernel

In this appendix we estimate the behaviour of the propagator of L around the eigenvalue 0. This
is achieved in the following theorem in which it is proved that the dynamics has a linear growth
in time along the generalized kernel.

Theorem 1.32. For any r ∈ (0, ω) the following identity holds

1

2πi

∫
|λ|=r

R(λ;x, y)e−λtdλ =

=

 √
ω

1−σ
e−
√
ω(|x|+|y|)

2π|x||y| (2σ
√
ω|x| − 1) 0

i2ω
3
2 σ

1−σ
e−
√
ω(|x|+|y|)

π|x||y| t
√
ω

1−σ
e−
√
ω(|x|+|y|)

2π|x||y| (2σ
√
ω|y| − 1)

 ,
for any x, y ∈ R3.

Proof. Since the convolution term of the resolvent R(λ) is continuous in zero it su�ces to compute
the integral of the multiplication term. First of all, let us note that the function

f(λ) =
4πi

W (λ2)
Λ1(λ)e−λt = i

e−λt

W (λ2)
·

·

[
(4πα2 − i

√
−ω + iλ)ei

√
−ω−iλ|x| + (4πα2 − i

√
−ω − iλ)ei

√
−ω+iλ|x|

8π|x||y|

(
ei
√
−ω+iλ|y| − ei

√
−ω−iλ|y|

)
+

+
−(4πα1 − i

√
−ω + iλ)ei

√
−ω−iλ|x| + (4πα1 − i

√
−ω − iλ)ei

√
−ω+iλ|x|

8π|x||y|

(
ei
√
−ω+iλ|y| + ei

√
−ω−iλ|y|

)]
=

=
i

8π|x||y|

[
2(4πα2 +

√
ω)e−

√
ω|x|

(
i|y|√
ω
e−
√
ω|y|λ+ o(λ2)

)
+ 8πα1e

−
√
ω|y|
(
i|x|√
ω
e−
√
ω|x|λ+ o(λ2)

)
+

+2ie−
√
ω|y|
((

1√
ω

+ |x|
)
e−
√
ω|x|λ+ o(λ2)

)](
1− σ

2ω
λ2 + o(λ4)

)−1

∼

∼ −
√
ω

1− σ
e−
√
ω(|x|+|y|)

2π|x||y|
[(4πα2 +

√
ω)|y|+ (4πα1 +

√
ω)|x|+ 1]

1

λ
.

as λ→ 0. Hence the function f(λ) has a pole of order one in zero. Then, by the Cauchy theorem
one gets

1

2πi

∫
|λ|=r

4πi

W (λ2)
Λ1(λ)e−λtdλ = −

√
ω

1− σ
e−
√
ω(|x|+|y|)

2π|x||y|
[(4πα2 +

√
ω)|y|+ (4πα1 +

√
ω)|x|+ 1] =

= −
√
ω

1− σ
e−
√
ω(|x|+|y|)

2π|x||y|
[−2σ

√
ω|x|+ 1].

Switching α1 to α2 and vice versa, it follows

1

2πi

∫
|λ|=r

4πi

W (λ2)
Λ2(λ)e−λtdλ = −

√
ω

1− σ
e−
√
ω(|x|+|y|)

2π|x||y|
[(4πα1 +

√
ω)|y|+ (4πα2 +

√
ω)|x|+ 1] =

= −
√
ω

1− σ
e−
√
ω(|x|+|y|)

2π|x||y|
[−2σ

√
ω|y|+ 1].
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On the other hand, the function
4πi

W (λ2)
Σ1(λ)e−λt

is the sum of a continuous function and a function with a pole of second order in zero, namely

g(λ)e−λt =

= i
(4πα1 − i

√
−ω + iλ)ei

√
−ω−iλ|x| + (8πα1 − i

√
−ω − iλ)ei

√
−ω+iλ|x|

W (λ2)4π|x||y|
(ei
√
−ω+iλ|y|+ei

√
−ω−iλ|y|)e−λt.

Note that g(λ) =
∑+∞

k=2 akλk with

a−2 = i
ω

1− σ
4πα1 +

√
ω

π|x||y|
e−
√
ω(|x|+|y|), a−1 = 0,

then, by residue theorem,

1

2πi

∫
|λ|=r

4πi

W (λ2)
Σ1(λ)e−λtdλ = −i ω

1− σ
4πα1 +

√
ω

π|x||y|
e−
√
ω(|x|+|y|)t = i

2σω
3
2

(1− σ)π|x||y|
e−
√
ω(|x|+|y|)t.

In the same way
1

2πi

∫
|λ|=r

4πi

W (λ2)
Σ2(λ)e−λtdλ = 0,

which concludes the proof.





Chapter 2

Presence of purely imaginary

eigenvalues

2.1 Introduction

In the previous chapter we have studied the asymptotic stability of standing waves for a nonlinear
Schrödinger equation with a nonlinearity concentrated at the origin in the case in which the
discrete spectrum of the linearized operator is made just by the eigenvalue 0 with algebraic
multiplicity 2. We recall that this component of the discrete spectrum exists in any case due to
the U(1) invariance of the dynamics, related through Noether Theorem to mass (or L2-norm)
conservation. Here we go on with the analysis of the asymptotic stability in the case in which a
couple of two purely imaginary simple eigenvalues ±iξ is present in the spectrum of the linearized
operator with the further condition that ±2iξ belongs to the continuous spectrum. This case

corresponds to the nonlinearities where σ ∈
(

1√
2
,
√

3+1
2
√

2

)
. The asymptotic stability result is

achieved following the outline of [11] and [33]. In particular, in [33] the same problem for the
analogous one-dimensional model is studied.
Nevertheless, the three-dimensional case presents some di�erences. The �rst one is that, as
explained in Chapter 1, the concentrated nonlinearity imposes to develop the analysis at the form
level. This means that the estimates on the evolution of the initial data are more delicate.
The second main di�erence is the faster decay of the propagator of the free Laplacian. This allows
to develop the the analysis using just the structural weight w = 1 + 1

|x| which arises from the
dispersive estimate (once again see the previous chapter) instead of introducing new weighted
spaces as done in the one-dimensional case.
Finally, the eigenfunctions associated to the purely imaginary eigenvalues do not have any oscil-
lating term as in the one-dimensional case but they exponentially decrease as |x| → +∞. This
fact will be very useful in order to get the decay in time of the radiation term.
On the other hand, comparing with the case in Chapter 1, and in parallel with the already
known one-dimensional case, the presence of the two purely imaginary eigenvalues slows down
the speed of decay of the remainder. This slower decay can be observed from the behavior of
the parameters whose evolution is described by the modulation equations; these include an extra
equation describing the evolution of the coe�cients of the eigenfunctions associated to the purely
imaginary eigenvalues. Hence, in order to deal with the modulation equations, it is necessary to
consider also the quadratic and the cubic terms of the nonlinearity and, later, exploit a change
of variables to have a normal form of the modulation equation to go on with the estimates. This
makes more complicate the analysis of the integrability and of the decay of the terms in the

37
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asymptotic decomposition. Denoting by N2(q, q) the quadratic terms coming from the Taylor

expansion of the nonlinearity, and by Ψ(ω0) =

(
Ψ1(ω0)
Ψ2(ω0)

)
the eigenfunction of the linearized

operator associated to iξ0. Usually, when investigating asymptotic stability in presence of purely
imaginary eigenvalues, one assumes that the following non-degeneracy condition holds:

(2.1) JN2(qΨ(ω0), qΨ(ω0))qΨ+(2iξ0) 6= 0,

where Ψ+(2iξ0) is the generalized eigenfunction associated to +2iξ0. The previous condition can
be considered as a nonlinear version of the Fermi Golden Rule (see for example [42], [43], [41],
[44], [50], [51], [49], [10], and [11]). It is necessary to guarantee a time decay of the normal
modes related to the discrete spectrum of the linearization; the decay is due to coupling with the
continuous spectrum given by FGR, and consequent dispersion. Thanks to the explicit character
of our model, we are able to directly verify that the decay of the discrete modes holds for σ in

the range
(

1√
2
, σ∗
)
, for a certain σ∗ ∈

(
1√
2
,
√

3+1
2
√

2

]
(see Section 2.3.4). The numerical evidence is

that this is true on the whole interval
(

1√
2
,
√

3+1
2
√

2

)
. Eventually, we proved the following result.

Theorem (Asymptotic stability in the case of purely imaginary eigenvalues) Assume
that u(t) ∈ C(R+, V ) is a solution to (3) with concentrated power nonlinearity (2) where σ ∈
( 1√

2
, σ∗), for a certain σ∗ ∈ ( 1√

2
,
√

3+1
2
√

2
]. Moreover, suppose that the initial datum

u(0) = u0 = eiω0+γ0Φω0 + eiω0+γ0 [(z0 + z0)Ψ1 + i(z0 − z0)Ψ2] + f0 ∈ V ∩ L1
w(R3),

with ω0 > 0, γ0, z0 ∈ R, and f0 ∈ L2(R3) ∩ L1
w(R3) is close to a stationary wave, i.e.

|z0| ≤ ε1/2 and ‖f0‖L1
w
≤ cε3/2,

where c, ε > 0.
Then, provided ε is su�ciently small, the solution u(t) can be asymptotically decomposed as

u(t) = eiω∞t+ib1 log(1+εk∞t)Φω∞ + Ut ∗ ψ∞ + r∞, as t→ +∞,

where ω∞, εk∞ > 0, b1 ∈ R, and ψ∞, r∞ ∈ L2(R3) such that

‖r∞‖L2 = O(t−1/4) as t→ +∞,

in L2(R3).

Notice that the range of the admitted nonlinearities σ implies that±2iξ is in the essential spectrum
of the linearized operator.
A last comment of general nature is in order. As in the one dimensional case studied by Buslaev,
Komech, Kopylova, and Stuart in [8] and Komech, Kopylova, and Stuart in [33], and the three
dimensional model analyzed in the previous chapter, the analysis of a speci�c model allows to
obtain asymptotic stability of standing waves without a priori assumptions. In particular the
nonlinearity is �xed, of power type and subcritical, no smallness of initial data is required (in the
sense that we give results for every standing wave of the model and initial data near the family
of standing waves). Moreover, while Komech, Kopylova, and Suart �nd a link between the Fermi
Golden Rule and the decay of normal modes, here such decay is directly veri�ed. This fact seems
to indicate that some of these assumptions or hypotheses are in fact unnecessary when enough
information about the model is known.
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For the sake of completeness, in this chapter we will repeat proofs requiring some modi�cations
because of the facts mentioned above; on the contrary, where the arguments hold unchanged, just
a reference will be given.
Recall that we are considering the following nonlinear evolution problem associated to the operator
Hα, i.e.

(2.2) i
du

dt
= Hαu,

with an initial datum u(0) = u0. The action of the operator Hα is de�ned in Section 1.1 and the
existence of the solitary waves manifold

M =

{
Φω(x) =

(√
ω

4πν

) 1
2σ e−

√
ω|x|

4π|x|
∈ D : ω > 0

}
.

is proved in Section 1.2.2. Furthermore, in Section 1.4 we describe some spectral properties of the
linearized operator

L =

[
0 L2

−L1 0

]
,

where Lj = Hαj + ω for j = 1, 2, where α1 = −(2σ + 1)
√
ω

4π and α2 = −
√
ω

4π .
Let us stress that in the case σ ∈ (1/

√
2, 1) the discrete spectrum of L consist in the eigenvalue

0 with algebraic multiplicity 2 and two purely imaginary eigenvalues ±iξ with

(2.3) ξ = 2σ
√

1− σ2ω.

As it is proved in Appendix 2.6.1, the eigenfunction Ψ associated to the eigenvalue iξ can be
chosen such that its �rst component is real and its second component is purely imaginary. Hence,
one gets that the eigenfunction associated to −iξ is

Ψ∗ =

(
Ψ1

−Ψ2

)
.

As a consequence, the domain of the operator L can be decomposed in three symplectic subspaces,
more precisely

D(L) = X0 ⊕X1 ⊕Xc,

where X0, X1, and Xc are the generalized kernel, the eigensubspace corresponding to the eigen-
functions Ψ and Ψ∗, and the continuous spectral subspace respectively.
The projection operators from L2(R3) onto X0, X1 and Xc are

P 0f = − 2

∆
Ω

(
f,
dΦω

dω

)
JΦω +

2

∆
Ω (f, JΦω)

dΦω

dω
, ∆ = d

dω‖Φω‖L2 ,

P 1f =
Ω(f,Ψ)

κ
Ψ +

Ω(f,Ψ∗)

κ
Ψ∗, κ = Ω(Ψ,Ψ∗),

P cf = f − P 0f − P 1f,

respectively. Moreover, we denote with Π± the projections onto the branches C± of the continuous
spectrum separately.
Finally note that the dispersive estimate in Theorem 1.16 still holds true since there are no embed-
ded eigenvalues nor threshold resonances and the eigenvalue 0 has the same algebraic multiplicity

as in the case
(

0, 1√
2

)
.
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2.2 Modulation equations

Since the operators we are dealing with are all di�erent in domain while the forms associated to
them have all the same domain, namely

V =
{
u = φλ + qGλ, withφλ ∈ D1(R3), q ∈ C

}
,

it makes sense to do the following computations at the form level as done in Section 1.5. In order
to do that let us recall that the variational formulation of equation (2.2) is

(2.4)

(
i
du

dt
(t), v

)
L2

= Qα(u(t), v) ∀v ∈ V.

Note that the last equation makes sense because V is independent on the positive parameter λ
and it is a Hilbert space with the norm

‖u‖2V = ‖∇φλ‖2L2 + |q|2, ∀u ∈ V.

In order to inspect the asymptotic stability of equation (2.2) it is useful to solve it with the ansatz

(2.5) u(t, x) = eiΘ(t)
(
Φω(t)(x) + χ(t, x)

)
,

where

(2.6) χ(t, x) = z(t)Ψ(t, x) + z(t)Ψ∗(t, x) + f(t, x) = ψ(t, x) + f(t, x),

with ψ ∈ X1, f ∈ Xc, and

Θ(t) =

∫ t

0
ω(s)ds+ γ(t),

with ω(t), γ(t) to be chosen in a suitable way.
Hence, we are constructing a solution of equation (2.2) close at each time to a solitary wave. Let
us notice that the solitary wave does not need to be the same at every time, which means that
the parameters ω(t) and Θ(t) are free to vary in time.

As in the case in which σ ∈
(

0, 1√
2

)
(see Section 1.5) the function χ solves

(2.7)

(
i
dχ

dt
(t), v

)
L2

= Qα,Lin(χ(t), v) + γ̇(t)(Φω(t) + χ(t), v)L2+

+ω̇(t)

(
−i
dΦω(t)

dω
, v

)
L2

+N(qχ(t), qv),

for all v ∈ V , where N(qχ(t), qv) is the nonlinear part of the variational formulation of equation
(2.2) de�ned together with Qα,Lin(χ(t), v) in Section 1.5.
Since ω(t), γ(t), and χ(x, t) are unknown and the propagator grows in time along the directions
of the generalized kernel of the operator L, the idea is to get a determined system requiring the
function χ(t) to be orthogonal to the generalized kernel of L at any time t ≥ 0. Hence, one obtains
that ω, γ, z, and f must solve the following system of equations.
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Theorem 2.1. (Modulation equations) If χ(t) is a solution of equation (2.7) such that

P0χ(t) = 0 for all t ≥ 0 and ω(t) and γ(t) are continuously di�erentiable in time, then ω and γ
are solutions of

(2.8) ω̇ =
Re (JN(qχ)qP ∗0 (Φω+χ))(
ϕω − dP0

dω χ,Φω + χ
)
L2

,

(2.9) γ̇ =
Re (JN(qχ)q

J(ϕω− dP0
dω

χ)
)(

ϕω − dP0
dω χ,Φω + χ

)
L2

,

and z and f satisfy

(2.10) (Ψ, JΨ)L2(ż − iξz) = Re(JN(qχ)qJΨ) + ω̇

[(
f, J

dΨ

dω

)
L2

−
(
dψ

dω
, JΨ

)
L2

]
+ γ̇(χ,Ψ)L2 ,

(2.11)

(
df

dt
, v

)
L2

= QL(f, v) +

(
−ω̇

(
zP c

dΨ

dω
+ zP c

dΨ∗

dω

)
+ γ̇P cJχ, v

)
L2

+

+(8π
√
λP cJN(qχ)Gλ, qvGλ)L2 ,

for all v ∈ V .

Proof. Equations (2.8) and (2.9) can be proved with the same argument exploited in the case

σ ∈
(

0, 1√
2

)
.

Equation (2.10) can be obtained taking v = JΨ as test function and noting that

• dχ
dt = żΨ + żΨ∗ + ω̇

(
z dΨ
dω + z dΨ∗

dω

)
+ df

dt ,

• (Ψ∗, JΨ)L2 = 0,

•
(
dΦω
dω , JΨ

)
L2 = 0,

•
(
df
dt , JΨ

)
L2

= −ω̇
(
f, J dΨ

dt

)
L2 , and

• ω̇
(
dΨ∗

dω , JΨ
)
L2 = −

(
Ψ∗, J dΨ

dt

)
L2 .

Finally, equation (2.11) follows taking the projection onto the continuous spectrum P c of both
side of equation (2.7) and recalling that f ∈ Xc.

2.2.1 Frozen spectral decomposition

The goal of this subsection is to get an autonomous linearized equation for the component f , as
done in Section 1.6.1.
Let us �x some T > 0, then for any t ∈ [0, T ] one can decompose f(t) ∈ Xc = Xc(t) as

f = g + h with g ∈ Xd
T = X0

T ⊕X1
T , h ∈ Xc

T ,

where the subscript T means that the time is �xed at t = T .
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Denote P dT = P 0
T + P 1

T and ωT = ω(T ). Moreover, let us de�ne

LT = L(ωT ),

then

QL(u, v)−QLT (u, v) =

√
ω −√ωT

4π
Re(Tquqv)− (ωT − ω)(Ju, v)L2 ,

for all u, v ∈ V , where

T =

[
0 −1

2σ + 1 0

]
.

Hence, observing that P cΨ = 0, the equation (2.11) for f is equivalent to(
df

dt
, v

)
L2

= QLT (f, v) +

(
(ω − ωT )Jf + ω̇

dP c

dω
ψ + γ̇P cJχ, v

)
L2

+

+

(
8π
√
λ

(√
ω −√ωT

4π
Tqf + P cJN(qχ)

)
Gλ, qvGλ

)
L2

,

for all v ∈ V .
Since our dispersive estimate holds only on the continuous spectral subspace, we need to prove
that it is enough to estimate the symplectic projection of χ(t) onto that subspace. This is stated
in the following lemma where we denote, with a slight abuse, as R(a) R(a, b) bounded continuous
real valued functions vanishing as a, b→ 0, and

R1(ω) = R(‖ω − ω0‖C0([0,T ])).

Lemma 2.2. If |ω − ωT | is small enough, then the function g can be estimated in terms of h as

follows:

‖g‖L∞
w−1
≤ R1(ω)|ω − ωT |‖h‖L∞

w−1
.

The last lemma can be proved following the proof of Lemma 3.2 in [33].
As a consequence, one can apply the operator P cT to both sides of the equation for f and obtain

(2.12)

(
dh

dt
, v

)
L2

= QLT (h, v) +

(
P cT

[
(ω − ωT )Jf + ω̇

dP c

dω
ψ + γ̇P cJχ

]
, v

)
L2

+

+

(
8π
√
λP cT

(√
ω −√ωT

4π
Tqf + P cJN(qχ)

)
Gλ, qvGλ

)
L2

,

for any v ∈ V .

2.2.2 Asymptotic expansion of dynamics

In order to prove the asymptotic stability of the ground state we need to show that for large times
z and h are small. For this purpose, the goal of this section is to expand the inhomogeneous terms
in the modulation equations.
In what follows we denote

(q, p) = q1p1 + q2p2, ∀p, q ∈ C2.
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With an abuse of notation in what follows we denote by qω =

( (√
ω

4πν

)1/(2σ)

0

)
the charge of the

function

(
Φω

0

)
.

As a preliminary step, we expand the nonlinear part of the equation (2.7) N(qχ) as

(2.13) N(qχ) = N2(qχ) +N3(qχ) +NR(qχ),

where N2 and N3 are the quadratic and cubic terms in qχ respectively, while NR is the remainder.
Exploiting the Taylor expansion of the function F (t) = tσ around |qω|2, one gets

Re(N2(qχ)qv) = Re((σ|qω|2(σ−1)|qχ|2qω+2σ|qω|2(σ−1)(qω, qχ)qχ+2(σ−1)σ|qω|2(σ−2)(qω, qχ)2qω)qv),

and

Re(N3(qχ)qv) = Re((σ|qω|2(σ−1)|qχ|2qχ + 2(σ − 1)σ|qω|2(σ−2)(qω, qχ)2qχ+

+2(σ − 1)σ|qω|2(σ−2)(qω, qχ)|qχ|2qω +
4

3
(σ − 2)(σ − 1)σ|qω|2(σ−3)(qω, qχ)3qω)qv),

for any qv ∈ C. For later convenience, let us de�ne the following symmetric forms

N2(q1, q2) = σ|qω|2(σ−1)(q1, q2)qω + σ|qω|2(σ−1)[(qω, q1)q2 + (qω, q2)q1]+

+2(σ − 1)σ|qω|2(σ−2)(qω, q1)(qω, q2)qω,

and

N3(q1, q2, q3) =
1

6
σ|qω|2(σ−1)

3∑
i,j,k=1

(qi, qj)qk +
1

3
(σ − 1)σ|qω|2(σ−2)

3∑
i,j,k=1

(qω, qi)(qω, qj)qk+

+
1

3
(σ− 1)σ|qω|2(σ−2)

3∑
i,j,k=1

(qω, qi)(qj , qk)qω +
4

3
(σ− 2)(σ− 1)σ|qω|2(σ−3)(qω, q1)(qω, q2)(qω, q3)qω.

In order to prove the asymptotic stability result, we shall prove in Section 2.4, the following
asymptotics

(2.14) ‖f(t)‖L∞
w−1
∼ t−1, z(t) ∼ t−

1
2 , ‖ψ(t)‖V ∼ t−

1
2 ,

as t→ +∞.

Remark 2.3. As in [33], the �rst step in proving these expected asymptotics is to separate
leading terms and remainders in the right hand sides of the modulation equations (2.8) - (2.10),
(2.12). Basically, in the next subsections, we will expand the expression for ω̇, γ̇, and ż up to and
including the terms of order t−3/2, and for ḣ up to and including t−1.

Remark 2.4. Note that since the nonlinearity depends only on the charges the same holds for
its Taylor expansion.
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Equation for ω

Substituting the expansion for the nonlinear part N given in (2.13) in equation (2.8) and consid-
ering the asymptotics (2.14) one gets

ω̇ =
1

∆
Re((JN2(qψ) + 2JN2(qψ, qf ) + JN3(qψ))qω) +

1

∆2

(
ψ,
dΦω

dω

)
L2

Re(JN2(qψ)qω) + ΩR,

where ∆ = 1
2
d
dω‖Φω‖2L2 and the remainder ΩR is estimated by

|ΩR| ≤ R(ω, |z|+ ‖f‖L∞
w−1

)(|z|2 + ‖f‖L∞
w−1

)2.

Recalling that ψ = zΨ + zΨ∗, one can rewrite the former equation for ω̇ as

(2.15) ω̇ = Ω20z
2+Ω11zz+Ω02z

2+Ω30z
3+Ω21z

2z+Ω12zz
2+Ω03z

3+z(qf ,Ω
′
10)+z(qf ,Ω

′
01)+ΩR.

Remark 2.5. Since the second component of the vector qω equals 0, one has

Ω11 = 2
qω
∆
Re(JN2(qΨ)qΨ∗) = 0.

This fact will turn out to be useful in writing the canonical form of the modulation equations.

Equation for γ

As in the previous subsection the equation for γ̇ (2.9) can expanded as

γ̇ =
1

∆
Re((JN2(qψ)+2JN2(qψ, qf )+JN3(qψ))qJ dΦω

dω
)+

1

∆2

(
ψ, J

d2Φω

d2ω

)
L2

Re(JN2(qψ)qω)+ΓR,

where the remainder ΓR is estimated by

|ΓR| ≤ R(ω, |z|+ ‖f‖L∞
w−1

)(|z|2 + ‖f‖L∞
w−1

)2.

As before, the equation for γ̇ shall be written in the form

(2.16) γ̇ = Γ20z
2 + Γ11zzΓ02z

2 + Γ30z
3 + Γ21z

2z+ Γ12zz
2 + Γ03z

3 + z(qf ,Γ
′
10) + z(qf ,Γ

′
01) + ΓR.

Remark 2.6. In this case Γ11 does not vanish as in equation (2.15).

Equation for z

Exploiting the results of the previous subsections, equation (2.10) can be expanded as

ż − iξz = 2
κ Re(JN2(qψ)qf ) + 1

κ Re((JN2(qψ) + JN3(qψ))qJΨ)+

− 1
∆κ

(
dψ
dω , JΨ

)
L2

Re(JN2(qψ)qω) + 1
∆κ(ψ,Ψ)L2 Re(JN2(qψ)qJ dΦω

dω
) + ZR,

where κ = −(Ψ, JΨ)L2 and

|ZR| ≤ R(ω, |z|+ ‖f‖L∞
w−1

)(|z|2 + ‖f‖L∞
w−1

)2.

With the same notation as before, the previous equation can be written in the form
(2.17)
ż = iξz+Z20z

2+Z11zz+Z02z
2+Z30z

3+Z21z
2z+Z12zz

2+Z03z
3+zRe(qfZ

′
10)+zRe(qfZ

′
01)+ZR,

and it turns out that
(2.18)

Z11 = 2
κ Re(JN2(qΨ, qΨ∗)qΨ), Z20 = 1

κ Re(JN2(qΨ)qΨ), Z02 = 1
κ Re(JN2(qΨ∗)qΨ),

Z21 = 3
κ Re(JN3(qΨ∗ , qΨ, qΨ)qΨ) + 1

∆κ

[(
dΨ∗

dω , jΨ
)
L2 Re(JN2(qΨ)qJΦω)+

−(Ψ∗,Ψ)L2 Re(JN2(qΨ)q dΦω
dω

)− 2‖Ψ‖2L2 Re(JN2(qΨ∗ , qΨ)q dΦω
dω

)
]
,

Z ′10 = 2JN2(qΨ∗ ,qΨ)
κ , Z ′01 = 2JN2(qΨ)

κ .
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Equation for h

In order to expand asymptotically the equation (2.12) for h, the following remark will be useful.

Remark 2.7. For any f ∈ L2(R3) the following holds

P cTP
cf = P cT (I − P d)f = P cT (P cT + P dT − P d)f = P cT f + P cT (P dT − P d)f.

Let us denote
ρ(t) = ω(t)− ωT + γ̇(t),

then equation (2.12) can be rewritten as(
dh

dt
, v

)
L2

= QLT (h, v) + (ρP cTJh, v)L2 + (8πP cTJN2(qψ)Gλ, qvGλ)L2+

+

(
P cT

[
ω̇
dP c

dω
ψ + γ̇P cJψ + ρJg + γ̇(P dT − P d)Jf

]
, v

)
L2

+

+

(
8π
√
λP cT

(√
ω −√ωT

4π
Tqf + P cJN(qχ)− JN2(qψ)

)
Gλ, qvGλ

)
L2

,

for any v ∈ V .
Denote

H ′R = P cT

[
ω̇
dP c

dω
ψ + γ̇P cJψ + ρJg + γ̇(P dT − P d)Jf

]
,

and

H ′′R = 8π
√
λP cT

(√
ω −√ωT

4π
Tqf + P cJN(qχ)− JN2(qψ)

)
Gλ.

The next lemma will justify what follows.

Lemma 2.8. There exists a constant C > 0 such that for each h ∈ Xc
T holds∥∥[P cTJ − i(Π+

T −Π−T )]h
∥∥
L1
w
≤ C‖h‖L∞

w−1
.

The proof is in Appendix 2.6.2 for any t > 0. Finally, let us de�ne

(2.19) LM (t) = LT + iρ(t)(Π+
T −Π−T ),

then the previous equation becomes

(2.20)

(
dh

dt
, v

)
L2

= QLM (h, v) + (8πP cTJN2(qψ)Gλ, qvGλ)L2 + (H̃R, v)L2 + (H ′′R, qvGλ)L2 ,

for any v ∈ V , where we have denoted

H̃R = H ′R + ρ[P cTJ − i(Π+
T −Π−T )]h.

Finally, let us expand the second summand in the right hand side of (2.20), getting(
dh

dt
, v

)
L2

= QLM (h, v) + (z2H20 + zzH11 + z2H02)qv + (H̃R, v)L2 + (H ′′R, qvGλ)L2 ,
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for any v ∈ V , where
H20 = (8π

√
λP cTJN2(qΨ)Gλ, Gλ)L2 ,

H11 = 2(8π
√
λP cTJN2(qΨ, qΨ∗)Gλ, Gλ)L2 ,

H02 = (8π
√
λP cTJN2(qΨ∗)Gλ, Gλ)L2 .

Thanks to the estimates done for the other equations and Lemma 2.8, one can estimates the
remainders in the following way:

‖H ′R‖L1
w
≤ C

(
|z|(|ω̇|+ |γ̇|) +R1(ω)(|ω − ωT |+ |γ̇|‖f‖L∞

w−1
)
)
≤

≤ R1(ω, |z|+ ‖f‖L∞
w−1

)
(
|z|3 + |z|‖f‖L∞

w−1
+ ‖f‖2L∞

w−1
+ |ω − ωT |‖f‖L∞

w−1

)
,

hence

(2.21) ‖H̃R‖L1
w
≤ R1(ω, |z|+ ‖f‖L∞

w−1
)
(
|z|3 + |z|‖f‖L∞

w−1
+ ‖f‖2L∞

w−1
+ |ω − ωT |‖f‖L∞

w−1

)
,

and
(2.22)

‖H ′′R‖L1
w
≤ R1(ω, |z|+ ‖f‖L∞

w−1
)
(
|z|3 + |z|‖f‖L∞

w−1
+ ‖f‖2L∞

w−1
+ |ω − ωT |(|z|2 + ‖f‖L∞

w−1
)
)
.

Remark 2.9. In the same way one could directly expand the equation for the function f getting

(2.23)

(
df

dt
, v

)
L2

= QL(f, v) + (z2F20 + zzF11 + z2F02)qv + (F̃R, v)L2 + (F ′′R, qvGλ)L2 ,

for any v ∈ V , where
F20 = (8π

√
λJN2(qΨ)Gλ, Gλ)L2 ,

F11 = 2(8π
√
λJN2(qΨ, qΨ∗)Gλ, Gλ)L2 ,

F02 = (8π
√
λJN2(qΨ∗)Gλ, Gλ)L2 .

and

F̃R = ω̇
dP c

dω
ψ + γ̇P cJψ + γ̇(P dT − P d)Jf,

F ′′R = 8π
√
λ

(√
ω −√ωT

4π
Tqf + P cJN(qχ)− JN2(qψ)

)
Gλ.

Furthermore, the L1
w norms of the remainders F̃R and F ′′R can be estimated by the corresponding

norms of the remainders H̃R and H ′′R.

2.3 Canonical form of the equations

In this section we would like to use the technique of normal coordinates in order to transform the
modulation equations for ω, γ, z, and h to a simpler canonical form. We will also try to keep the
estimates of the remainders as much close as possible to the original ones.
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2.3.1 Canonical form of the equation for h

Our goal is to exploit a change of variable in such a way that the function h is mapped in a new
function decaying in time at least as t−3/2. For this purpose one could expand h as

(2.24) h = h1 + k + k1,

where
k = a20z

2 + a11zz + a02z
2,

with some coe�cients aij = aij(x, ω) such that aij = aji, and

k1 = −exp
(∫ t

0
LM (s)ds

)
k(0).

Note that h1(0) = h(0), since k1(0) = −k(0).

Proposition 2.10. There exist aij ∈ L∞w−1(R3), for i, j = 0, 1, 2, such that the equation for h1

has the form

(2.25)

(
dh1

dt
, v

)
L2

= QLM (h1, v) + (ĤR, v)L2 + (H ′′R, qvGλ)L2 ,

for all v ∈ V , where ĤR = H̃R +HR with

(2.26) HR = −
[
ω̇

(
da20

dω
z2 +

da11

dω
zz +

da02

dω
z2

)
+ (2a20z + a11z)(ż − iξT z)+

+(a11z + 2a20z)(ż + iξT z)− ρ(Π+
T −Π−T )k

]
.

Proof. The thesis is proved substituting (2.24) into (2.20) and equating the coe�cients of the
quadratic powers of z which leads to the system

(2.27)


QLT (a20, v) + Re(H20qv)− (2iξTa20, v)L2 = 0
QLT (a11, v) + Re(H11qv) = 0
QLT (a02, v) + Re(H02qv) + (2iξTa02, v)L2 = 0

,

for all v ∈ V . The former system admits the solution

a11 = −L−1
T H11

a20 = −(LT − 2iξT − 0)−1H20

a02 = a02 = −(LT + 2iξT − 0)−1H02

Remark 2.11. From the explicit structure of the remainder ĤR it follows that it still satis�es
estimate (2.21).

We will need to apply the next lemma which can be proved as Proposition 2.3 in [33].

Lemma 2.12. If σ ∈
(

1√
2
,
√

3+1
2
√

2

)
and f ∈ V ∩ L1

w, then there exists some constant C > 0 such

that for any t ≥ 0

‖e−LT t(LT + 2iξT − 0)−1P cT f‖L∞
w−1
≤ C(1 + t)−3/2‖f‖L1

w
.

Remark 2.13. Let us note that

h = P cTh = P cTh1 + P cTk + P cTk1,

hence, in order to estimate the decay of ‖h‖L∞
w−1

, it su�ces to estimate the decay of

‖P cTh1‖L∞
w−1

, ‖P cTk‖L∞
w−1

, and ‖P cTk1‖L∞
w−1

.
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2.3.2 Canonical form of the equation for ω

Since Ω11 = 0, we can exploit the method by Buslaev and Sulem in [11], Proposition 4.1 and get
the following proposition.

Proposition 2.14. There exist coe�cients bij = bij(ω), with i, j = 0, 1, 2, 3, and vector functions
b′ij = b′ij(x, ω), with i, j = 0, 1, such that function

ω1 = ω + b20z
2 + b11zz + b02z

2 + b30z
3 + b21z

2z + b12zz
2 + b03z

3+

+z(f, b′10)L2 + z(f, b′01)L2 ,

solves a di�erential equation of the form

ω̇1 = Ω̂R,

for some remainder Ω̂R.

Proof. Substituting the equations (2.15), (2.17), and (2.23) into the derivative with respect to
time of the expression for ω1 and equating the coe�cients of z2, zz, z2, z, and z one gets the
following system

Ω20 + 2iξb20 = 0
Ω02 − 2iξb02 = 0
Ω30 + 3iξb30 + 2Z20b20 + Re(F20qb′10

) = 0

Ω03 − 3iξb03 + 2Z02b02 + Re(F02qb′01
) = 0

Ω21 + iξb21 + 2Z11b20 + 2Z20b02 + Re(F11qb′10
+ F20qb′01

) = 0

Ω12 − iξb12 + 2Z11b02 + 2Z20b20 + Re(F11qb′01
+ F20qb′10

) = 0

(qf ,Ω
′
10) + iξ(f, b′10)L2 +QL(f, b′10) = 0

(qf ,Ω
′
01) + iξ(f, b′01)L2 +QL(f, b′01) = 0

.

The last two equations of this system can be solved in a way similar to the ones system (2.27),
and the proof follows.

Remark 2.15. From the proof of the previous proposition it also follows that the remainder Ω̂R

can be estimated as ΩR, namely

|Ω̂R| ≤ R(ω, |z|+ ‖f‖L∞
w−1

)(|z|2 + ‖f‖L∞
w−1

)2.

In the next lemma we prove a uniform bound for |ωT − ω| on the interval [0, T ]. For later
convenience let us denote

R2(ω, |z|+ ‖f‖L∞
w−1

) = R
(

max
0≤t≤T

|ωT − ω|, max
0≤t≤T

(|z|+ ‖f‖L∞
w−1

)

)
.

Remark 2.16. Let us note that |ω| ≤ |ω0|+ |ω0 − ωT |+ |ω − ωT |, then

max
0≤t≤T

R(ω, |z|+ ‖f‖L∞
w−1

) = R
(

max
0≤t≤T

|ωT − ω|, max
0≤t≤T

(|z|+ ‖f‖L∞
w−1

)

)
.

The next lemma can be proved as in Section 3.5 of [33].

Lemma 2.17. For any t ∈ [0, T ] we have

|ωT − ω| ≤ R2(ω, |z|+ ‖f‖L∞
w−1

)

[∫ T

t
(|z(τ)|+ ‖f(τ)‖L∞

w−1
)2dτ+

+(|zT |+ ‖fT ‖L∞
w−1

)2 + (|z|+ ‖f‖L∞
w−1

)2
]
.
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2.3.3 Canonical form of the equation for γ

Equations (2.16) for γ and (2.15) for ω di�er just because in general Γ11 6= 0. But we can perform
the same change of variable in the previous subsection, namely

γ1 = γ + d20z
2 + d02z

2 + d30z
3 + d21z

2z + d12zz
2 + d03z

3 + z(f, d′10)L2 + z(f, d′01)L2 ,

for some suitable coe�cients dij = dij(ω), with i, j = 0, 1, 2, 3, and vector functions d′ij =
d′ij(x, ω), with i, j = 0, 1. Then the function γ1 solves the di�erential equation

γ̇1 = Γ11(ω)zz + Γ̂R,

for some remainder Γ̂R, which can be estimated as ΓR, i.e.

|Γ̂R| ≤ R(ω, |z|+ ‖f‖L∞
w−1

)(|z|2 + ‖f‖L∞
w−1

)2.

2.3.4 Canonical form of the equation for z

Exploiting the change of variable (2.24) used to obtain the canonical form of equation (2.20) for
h, one can prove the following proposition.

Proposition 2.18. There exist coe�cients cij = cij(ω), with i, j = 0, 1, 2, 3, such that function

z1 = z + c20z
2 + c11zz + c02z

2 + c30z
3 + c21z

2z + c03z
3,

solves a di�erential equation of the form

(2.28) ż1 = iξz1 + iK|z1|2z1 + ẐR,

where

iK = Z21 + Z ′21 +
i

ξ
Z20Z11 −

i

ξ
Z2

11 −
2i

3ξ
Z2

02,

with the coe�cient Zij, i, j = 0, 1, 3, de�ned in (2.18), and

Z̃R = (g + P cTh1 + P cTk1, Z
′
10)z + (g + P cTh1 + P cTk1, Z

′
01)z + ZR.

The proof is a matter of calculation, but we give it explicitly to stress the role of the functions
aij , i, j = 0, 1, 2.

Proof. Substituting (2.24) in the equation (2.17) the di�erential equation for z becomes

(2.29) ż = iξz + Z20z
2 + Z11zz + Z02z

2 + Z30z
3 + Z21z

2z + Z12zz
2 + Z03z

3+

+Z ′30z
3 + Z ′21z

2z + Z ′12zz
2 + Z ′03z

3 + Z̃R,

where
Z ′30 = Re(qa20Z

′
10),

Z ′03 = Re(qa02Z
′
01),

Z ′21 = Re(qa11Z
′
10) + Re(qa20Z

′
01),

Z ′12 = Re(qa11Z
′
01) + Re(qa02Z

′
10),

and the remainder Z̃R is as in the statement of the proposition.
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Inserting equation (2.29) into the time derivative of the expression for z1 and equating the coef-
�cients of z2, zz, z2, z3, zz2, and z3 one obtains the system

iξc20 + Z20 = 0
−iξc11 + Z11 = 0
−3iξc02 + Z02 = 0
2iξc30 + Z30 + Z ′30 + 2c20Z20 + c11Z20 = 0
Z12 + Z ′12 + 2c20Z20 + c11(Z11 + Z02) + 2c02Z11 − 2iξc12 = 0
−4iξc03 + Z03 + Z ′03 + c11Z02 = 0

The theorem follows from the fact the the above system is solvable and in particular

c20 =
i

ξ
Z20, c11 = − i

ξ
Z11, and c02 =

i

3ξ
Z02.

Remark 2.19. For later convenience let us note that, since Z21, Z20, Z11, and Z02 are purely
imaginary, one has

Re(iK) = Re(Z ′21).

Moreover, we need the following lemma.

Lemma 2.20. There exists σ∗ ∈
(

1√
2
,
√

3+1
2
√

2

]
such that if σ ∈

(
1√
2
, σ∗
)
, then

Re(Z ′21) < 0,

∀ω belonging to an open neighbourhood of ω0.

Proof. First of all recall that ξT = 2σ
√

1− σ2ωT , then one can compute

(2.30) κ = −(Ψ, JΨ)L2 =
i

4π
√
ωT

(
1√

1− 2σ
√

1− σ2
− (
√

1− σ2 − 1)2

σ2

1√
1 + 2σ

√
1− σ2

)
=

=
i

4π
√
ωT

σ2
√

1 + 2σ
√

1− σ2 − (
√

1− σ2 − 1)2
√

1− 2σ
√

1− σ2

σ2(2σ2 − 1)
.

Since κ is purely imaginary with positive imaginary part and L−1
T 2P cTJ is self-adjoint, for the �rst

summand in the expression for Re(Z ′21) one gets

Re(qa11Z
′
10) = −2 Re

qL−1
T 2P cT JN2(qΨ,qΨ∗ )JN2(qΨ, qΨ∗)

κ

 = 0.

Hence,

Re(Z ′21) = −2 Re

(
qa20JN2(qΨ)

κ

)
.

By direct computations one has

a20(x) = (LT − (2iξT + 0))−1H20 = A
e−
√
ωT+2ξT |x|

4π|x|

(
1
−i

)
+ C

e−i
√
−ωT+2ξT |x|

4π|x|

(
1
i

)
,
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with

A = −4π
d [((2σ + 1)

√
ωT − i

√
−ωT + 2ξT )(H20)1 + (i

√
ωT +

√
−ωT + 2ξT )(H20)2]

C = 4π
d [((2σ + 1)

√
ωT −

√
ωT + 2ξT )(H20)1 − (i

√
ωT − i

√
ωT + 2ξT )(H20)2]

,

where d = 2i(2σ+1)ωT+2(σ+1)
√
ωT
√
−ωT + 2ξT−2i(σ+1)

√
ωT
√
ωT + 2ξT−2

√
ωT + 2ξT

√
−ωT + 2ξT .

From which follows

qa20 =
4π

d

[(
(i
√
−ωT + 2ξT −

√
ωT + 2ξT )(H20)1

((2σ + 1)
√
ωT −

√
ωT + 2ξT −

√
−ωT + 2ξT )(H20)1

)
+

+

(
−i(2√ωT +

√
ωT + 2ξT + i

√
−ωT + 2ξT )(H20)2

(−
√
ωT + 2ξT + i

√
−ωT + 2ξT )(H20)2

)]
.

Hence
(2.31)
Re((qa20)1) = 16π

|d|2 [i(H20)1(−(σ + 1)
√
ωT
√
ωT + 2ξT

√
−ωT + 2ξT + ((σ + 1)ωT + ξT )

√
−ωT + 2ξT )+

(H20)2(−(2(σ + 1)ξT + (2σ + 1)ωT )
√
ωT + (ξT + (2σ + 1)ωT )

√
ωT + 2ξT )]

Im((qa20)2) = 16π
|d|2 [i(H20)1((2(σ + 1)2ωT + ξT )

√
−ωT + 2ξT − (3σ + 2)

√
ωT
√
ωT + 2ξT

√
−ωT + 2ξT )+

+(H20)2((σ + 1)ω
3/2
T + ((σ + 1)ωT − ξT )

√
ωT + 2ξT )].

Moreover, by (2.13) one gets

(2.32) JN2(qΨ) =

(
−2σ|qωT |2σ−1(qΨ)1(qΨ)2

σ|qωT |2σ−1(3(qΨ)2
1 + (qΨ)2

2) + 2σ(σ − 1)|qωT |2σ−1(qΨ)2
1

)
=

=

 −2iσ|qωT |2σ−1
(

1−
√

1−σ2−1
σ

)(
1 +

√
1−σ2−1
σ

)
2σ|qωT |2σ−1

(
1−

√
1−σ2−1
σ

)  ,

which implies

(2.33) H20 = (8π
√
ωTP

c
TJN2(qΨ)GωT , GωT )L2 =

= JN2(qΨ)− (JN2(qΨ))1|qωT |
16π∆ω3/2

(
1

σ
− 1

)(
1
0

)
+

+

√
ωT
κ

 −(JN2(qΨ))2

(
1√

ωT−ξT+
√
ωT
−
√

1−σ2−1
σ

1√
ωT+ξT+

√
ωT

)2

(JN2(qΨ))1

(
1√

ωT−ξT+
√
ωT

+
√

1−σ2−1
σ

1√
ωT+ξT+

√
ωT

)2

 .

Let us notice that (2.32) and (2.33) imply

i(H20)1i(JN2(qΨ))1 = − 1
2σ−1(JN2(qΨ))2

1+

+
√
ωT

4πiκ

(
1√

ωT−ξT+
√
ωT
−
√

1−σ2−1
σ

1√
ωT+ξT+

√
ωT

)2
i(JN2(qΨ))1(JN2(qΨ))2

(H20)2i(JN2(qΨ))1 = (JN2(qΨ))2i(JN2(qΨ))1+

−
√
ωT

4πiκ

(
1√

ωT−ξT+
√
ωT

+
√

1−σ2−1
σ

1√
ωT+ξT+

√
ωT

)2
(JN2(qΨ))2

1

i(H20)1(JN2(qΨ))2 = 1
2σ−1 i(JN2(qΨ))1(JN2(qΨ))2+

+
√
ωT

4πiκ

(
1√

ωT−ξT+
√
ωT
−
√

1−σ2−1
σ

1√
ωT+ξT+

√
ωT

)2
(JN2(qΨ))2

2

(H20)2(JN2(qΨ))2 = (JN2(qΨ))2
2+

+
√
ωT

4πiκ

(
1√

ωT−ξT+
√
ωT

+
√

1−σ2−1
σ

1√
ωT+ξT+

√
ωT

)2
i(JN2(qΨ))1(JN2(qΨ))2,
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then by (2.30) and (2.31) it follows

Re(Z ′21) = −2 Re

(
qa20JN2(qΨ)

κ

)
=

2

iκ
(Re((qa20)1)i(JN2(qΨ))1 + Im((qa20)2)(JN2(qΨ))2) =

=
128πω

3/2
T |qωT |4σ−2

iκ|d|2
σ2

(
1−
√

1− σ2 − 1

σ

)2

f(σ),

with

f(σ) =

((
2(1 + σ)2 + 2σ

√
1− σ2

)√
−1 + 4σ

√
1− σ2−(2+3σ)

√
−1 + 4σ

√
1− σ2

√
1 + 4σ

√
1− σ2+

+

(
1 +
−1 +

√
1− σ2

σ

) (
(−1− σ)

√
−1 + 16σ2 − 16σ4 +

(
1 + σ + 2σ

√
1− σ2

)√
−1 + 4σ

√
1− σ2

))
·

·

 1

−1 + 2σ
−

(
1

1+
√

1−2σ
√

1−σ2
− −1+

√
1−σ2

σ+σ
√

1+2σ
√

1−σ2

)2

1√
1−2σ

√
1−σ2

− (−1+
√

1−σ2)
2

σ2
√

1+2σ
√

1−σ2

+

+

(
1 + σ +

(
1 + σ − 2σ

√
1− σ2

)√
1 + 4σ

√
1− σ2+

+

(
1 +
−1 +

√
1− σ2

σ

) (
−1− 2σ +

(
−4σ − 4σ2

)√
1− σ2 +

(
1 + 2σ + 2σ

√
1− σ2

)√
1 + 4σ

√
1− σ2

))
·

·

1−

(
1

1+
√

1−2σ
√

1−σ2
+ −1+

√
1−σ2

σ+σ
√

1+2σ
√

1−σ2

)2

1√
1−2σ

√
1−σ2

− (−1+
√

1−σ2)
2

σ2
√

1+2σ
√

1−σ2

 .

Notice that one has f(σ)→ f̃ > 0, d→ d̃ 6= 0, and iκ→ −∞ as σ → 1/
√

2; this implies

lim
σ→1/

√
2
Re(Z ′21) =

128
√

2ω
3/2
T |qωT |2

√
2−2

π|d̃|2
f̃ lim
σ→1/

√
2

1

iκ
= 0−.

Hence there is a neighborhood of 1√
2
where Re(Z ′21) is strictly negative. A Mathematica plot of

the function f(σ) in the range
(

1√
2
,
√

3+1
2
√

2

)
is given in �gure 2.19.

Summing up, one can conclude that there exists σ∗ ∈
(

1√
2
,
√

3+1
2
√

2

]
such that Re(Z ′21) < 0 for

σ ∈
(

1√
2
, σ∗
)
.

Remark 2.21. The following reformulation on the equation for z1 will turn out to be useful.
First of all, if we denote KT = K(ωT ), then the ordinary di�erential equation for z1 becomes

ż1 = iξz1 + iKT |z1|2z1 +
̂̂
ZR,

for some remainder ̂̂ZR.
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Figure 2.1: f(σ)

Secondly, let us notice that z1 is oscillating while y = |z1|2 decreases at in�nity. Hence, it is easier
to deal with the variable y, which satis�es the equation

(2.34) ẏ = 2 Re(iKT )y2 + YR,

where YR is some suitable remainder.

Remark 2.22. From Lemma 2.2 we have

|(g + P cTh1 + P cTk1, Z
′
10)| ≤ R(ω)(‖g‖L∞

w−1
+ ‖P cTh1‖L∞

w−1
+ ‖P cTk1‖L∞

w−1
) ≤

≤ R1(ω)(|ωT − ω|‖h‖L∞
w−1

+ ‖P cTh1‖L∞
w−1

+ ‖P cTk1‖L∞
w−1

),

hence
|YR| = |

̂̂
ZR||z| = |Z̃R + i(K −KT )|z1|2z1||z| ≤

≤ R1(ω, |z|+ ‖f‖L∞
w−1

)|z|[(|z|2 + ‖f‖L∞
w−1

)2 + |z||ωT − ω|(|z|2 + ‖h‖L∞
w−1

)+

+|z|‖P cTk1‖L∞
w−1

+ |z|‖P cTh1‖L∞
w−1

].

2.4 Majorants

In this section we exploit the so-called majorant method to prove large time asymptotic for the
solutions of the modulation equations. Preliminary, we need some assumptions on the initial
conditions.

2.4.1 Initial conditions

Let us �x some ε > 0 to be chosen subsequently to control uniformly estimates. Then we assume
that

(2.35)
|z(0)| ≤ ε1/2
‖f(0)‖L1

w
≤ cε1/2,

where c > 0 is some positive constant.
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From the de�nition of z1 one has
z1 − z = R(ω)|z|2.

Then the following estimate holds

y(0) = |z1(0)|2 ≤ |z(0)|2 +R(ω, |z(0)|)|z(0)|3 ≤ ε+R(ω, |z(0)|)ε3/2.

We also want an estimate for the initial datum of the function h(t), for this purpose recall that
h = f + (P d − P dT )f . Hence,

‖h(0)‖L1
w
≤ ‖f(0)‖L1

w
+ ‖(P d − P dT )f(0)‖L1

w
≤ cε3/2 +R1(ω)|ωT − ω|‖f(0)‖L∞

w−1
,

for some constant c > 0.
Thanks to the former estimates, one can prove the following lemma.

Lemma 2.23. Let us assume conditions (2.35) on the initial data. Then

‖P cTk1‖L∞
w−1
≤ c |z(0)|2

(1 + t)3/2
≤ cε

(1 + t)3/2
,

for all t ≥ 0.

Proof. Let us denote ζ =
∫ t

0 ρ(τ)dτ .
From the de�nition of the exponential and the idempotency of the projections one gets

eiζΠ
±
T = Π±T e

iζ + Π∓T + P dT .

Then it follows

eiζ(Π
+
T−Π−T ) = (Π+

T e
iζ + Π−T + P dT )(Π−T e

−iζ + Π+
T + P dT ) = Π+

T e
iζ + Π−T e

−iζ + P dT .

The lemma follows from the fact that LT commutes with the projectors Π±T , the de�nition (2.19)
of the operator LM and the decay of the evolution of the functions P cTaij , i, j = 0, 1, 2, stated in
Lemma 2.12, namely

‖P cTk1‖L∞
w−1

=
∥∥∥e∫ t0 LM (τ)dτP cTk(0)

∥∥∥
L∞
w−1

=

= ‖eLT tP cT (eiζΠ+
T + e−iζΠ−T + P dT )(a20z

2(0) + a11z(0)z(0) + a02z(0)
2
)‖L∞

w−1
≤

≤ c |z(0)|2

(1 + t)3/2
≤ cε

(1 + t)3/2
.

2.4.2 De�nition of the majorants

We are now in the position to de�ne the majorants:

M0(T ) = max
0≤t≤T

|ωT − ω|
(

ε

1 + εt

)−1

(2.36)

M1(T ) = max
0≤t≤T

|z(t)|
(

ε

1 + εt

)−1/2

(2.37)

M2(T ) = max
0≤t≤T

‖P cTh1(t)‖L∞
w−1

(
ε

1 + εt

)−3/2

(2.38)

.
We denote

(2.39) M = (M0,M1,M2).
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Remark 2.24. From the estimates on g, k1 and the de�nitions of the majorants follows

‖f‖L∞
w−1

= ‖g + P cTh1 + P cTk + P cTk1‖L∞
w−1
≤

≤ R1(ω)

(
|ωT − ω|+ |z|2 +

ε

(1 + t)3/2
‖P cTh1‖L∞

w−1

)
≤

≤ ε

1 + εt
R1(ω)(M2

1 + ε1/2M2).

From the assumptions (2.35) on the initial data one obtains

y(0) ≤ ε+R(ε1/2M)ε3/2 ≤ ε(1 +R(ε1/2M)ε1/2),

‖h(0)‖L1
w
≤ cε3/2R(ε1/2M)ε2M0(1 +M2

1 + ε1/2M2).

2.4.3 The equation for y

We want to study the asymptotic behavior of the solution of equation (2.34) for the variable y
introduced in Remark 2.18. To do that we need the following lemma which is the analogous of
Lemma 4.1 in [33].

Lemma 2.25. The remainder YR in equation (2.34) satis�es the estimate

|YR| ≤ R(ε1/2M)
ε5/2

(1 + εt)2
√
εt

(1 + |M |)5.

Hence, equation (2.34) is of the form

(2.40) ẏ = 2 Re(iKT )y2 + YR,

with
Re(iKT ) < 0,
y(0) ≤ εy0,

|YR| ≤ Y ε5/2

(1+εt)2
√
εt
,

where y0 and Y > 0 are some constants. Then we can apply Proposition 5.6 in [11] and get the
next lemma.

Lemma 2.26. Assuming the initial condition and the source term of equation (2.34) as above,

the solution y(t) is bonded as follows for any t > 0

∣∣∣∣y(t)− y(0)

1 + 2 Im(KT )y0t

∣∣∣∣ ≤ cY ( ε

1 + εt

)3/2

,

where c = c(y0, Im(KT )).
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2.4.4 The equation for P c
Th1

As a �rst step let us estimate the remianders in the equation (2.25) for h1. This is done in the
next two lemmas.

Lemma 2.27. The remainders H̃R and H ′′R can be estimated as

‖P cT H̃R‖L1
w
≤ R(ε1/2M)

(
ε

1 + εt

)3/2

((1 +M1)3 + ε1/2(1 + |M |)4),

and

‖P cTH ′′R‖L1
w
≤ R(ε1/2M)

(
ε

1 + εt

)3/2

((1 +M1)3 + ε1/2(1 + |M |)4).

Proof. From the estimate (2.21) on H̃R one has

‖P cT H̃R‖L1
w
≤ R2(ω, |z|+ ‖f‖L∞

w−1
)[|z|3 + (|z|+ |ωT − ω|)(|z|2 + ‖P cTk1‖L∞

w−1
+

+‖P cTh1‖L∞
w−1

) + (|z|2 + ‖P cTk1‖L∞
w−1

+ ‖P cTh1‖L∞
w−1

)2] ≤

≤ R(ε1/2M)

[(
ε

1 + εt

)3/2

M3
1 +

+

((
ε

1 + εt

)1/2

M1 +
ε

1 + εt
M0

)(
ε

1 + εt
M2

1 +
ε

(1 + t)3/2
+

(
ε

1 + εt

)3/2

M2

)
+

+

(
ε

1 + εt
M2

1 +
ε

(1 + t)3/2
+

(
ε

1 + εt

)3/2

M2

)]
≤

≤ R(ε1/2M)

(
ε

1 + εt

)3/2

((1 +M1)3 + ε1/2(1 + |M |)4).

The bound for H ′′R follows in the same way from the estimate (2.22).

In the next lemma we get a estimate the evolution under the linear operator LT of the remainder
P cTHR.

Lemma 2.28. For any t, s ≥ 0 the following estimate holds

‖eLT tP cTHR(s)‖L∞
w−1

(1 + t)3/2 ≤ R(ε1/2M)

(
ε

1 + εs

)3/2

(M3
1 + ε1/2(1 + |M |)3).

Proof. From the analytic expression (2.26) of HR and the estimates of the evolution of the func-
tions a20, a11, and a02 stated in Lemma 2.12, one has

‖eLT tP cTHR(s)‖L∞
w−1

(1 + t)3/2 ≤

≤ R2(ω, |z|+ ‖f‖L∞
w−1

)|z|[|z||ωT − ω|+ (|z|+ ‖k1‖L∞
w−1

+ ‖h1‖L∞
w−1

)2] ≤

≤ R(ε1/2M)

(
ε

1 + εs

)1/2

M1

[(
ε

1 + εs

)3/2

M0M1+
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+

((
ε

1 + εs

)1/2

M1 +
ε

(1 + s)3/2
+

(
ε

1 + εs

)3/2

M2

)2
 ≤

≤ R(ε1/2M)

(
ε

1 + εs

)3/2

(M3
1 + ε1/2(1 + |M |)3).

From the two previous lemmas we can get the following result.

Lemma 2.29. Let us consider the equation for P cTh1(
dP cTh1

dt
, v

)
L2

= QLM (P cTh1, v) + (P cT ĤR, v)L2 + (P cTH
′′
R, qvGλ)L2 ,

with initial condition and source terms satisfying

‖h1(0)‖L1
w
≤ ε3/2h0,

ĤR = H̃R +H ′′R,

such that

‖P cT H̃R‖L1
w
≤ H1

(
ε

1 + εt

)3/2

,

‖P cTH ′′R‖L1
w
≤ H2

(
ε

1 + εt

)3/2

,

‖eLT tP cTHR(s)‖L∞
w−1

(1 + t)3/2 ≤ H3

(
ε

1 + εs

)3/2

(M3
1 + ε1/2(1 + |M |)3).

for some positive constant h0, H1, H2 and H3. Then its solution is bounded as follows

‖P cTh1‖L∞
w−1
≤ c

(
ε

1 + εt

)3/2

(h0 +H1 +H2 +H3),

where c = c(ωT ) > 0.

Proof. By the Duhamel representation (see Section 1.6.2) one has

(P cTh1, v)L2 =

(
e
∫ t
0 LM (τ)dτh1(0) +

∫ t

0
e
∫ t
s LM (τ)dτP cT ĤR(s)ds, v

)
L2

+

+

(∫ t

0
e
∫ t
s LM (τ)dτP cTH

′′
R(s)ds, qvGλ

)
L2

,

for all v ∈ V .
Then from the dispersive estimate in Theorem 1.16 and the estimates on the remainders proved
above in the duality paring de�ned by the inner product L2, one has

‖P cTh1‖L∞
w−1

= sup
06=v∈L1

w

(P cTh1, v)L2

‖v‖V ∩L1
w

≤

≤ c(ωT )

(
1

(1 + t)3/2
‖h1(0)‖L1

w
+

∫ t

0

1

(1 + t− s)3/2
(‖P cT H̃R(s)‖L1

w
+ ‖P cTH ′′R(s)‖L1

w
)ds+
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+

∫ t

0
‖eLT (t−s)P cTHR(s)‖L∞

w−1
ds

)
≤

≤ c(ωT )

((
ε

1 + εt

)3/2

h0 +

∫ t

0

1

(1 + t− s)3/2

(
ε

1 + εs

)3/2

ds(H1 +H2 +H3)

)
.

The lemma follows from the fact that∫ t

0

1

(1 + t− s)3/2

(
ε

1 + εs

)3/2

ds ≤ c
(

ε

1 + εt

)3/2

,

for some constant c > 0.

2.4.5 Uniform bounds for the majorants

To prove that the majorants are uniformly bounded, the following lemma will be useful.

Lemma 2.30. For any T > 0 the majorants M0, M1, and M2 satisfy the following inequalities

M0(T ) ≤ R(ε1/2M)[(1 +M1)4 + ε(1 + |M |)2],

(M1(T ))2 ≤ R(ε1/2M)[1 + ε1/2(1 + |M |)5],

M2(T ) ≤ R(ε1/2M)[(1 +M1)3 + ε1/2(1 + |M |)4].

Proof. It follows form Lemma 2.26 and 2.29 as Lemma 4.6 in [33], but we give the proof for sake
of completeness.
Step 1. Let us begin noting that

|z|2 + ‖f‖L∞
w−1
≤ R2(ω, |z|+ ‖f‖L∞

w−1
)(|z|2 + ‖P cTk1‖L∞

w−1
+ ‖P cTh1‖L∞

w−1
) ≤

≤ R(ε1/2M)

(
ε

(1 + t)3/2
+

ε

1 + εt
M2

1 +

(
ε

1 + εt

)3/2

M2

)
≤

≤ R(ε1/2M)
ε

1 + εt
(1 +M2

1 + ε1/2M2).

Then by the de�nition of M0 and the bound on |ωT − ω|:

M0(T ) ≤ max
0≤t≤T

[(
ε

1 + εt

)−1

R(ε1/2M)

(∫ T

t

(
ε

1 + ετ

)2

(1 +M1(τ)2+

+ε1/2M2(τ))2dτ +

(
ε

1 + εt

)2

(1 +M2
1 + ε1/2M2)2

)]
≤

≤ R(ε1/2M)[(1 +M1)4 + ε(1 + |M |)2].

Step 2. Since y = |z1|2, we can exploit the inequality proved in Lemma 2.26, the fact that
Y = R(ε1/2M)(1 + |M |)5 and y(0) ≤ εy0, one gets

y ≤ R(ε1/2M)

[
ε

1 + εt
+

(
ε

1 + εt

)3/2

(1 + |M |)5

]
.

From which follows
|z|2 ≤ y +R(ω)|z|3 ≤
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≤ R(ε1/2M)

[
ε

1 + εt
+

(
ε

1 + εt

)3/2

(1 + |M |)5 +

(
ε

1 + εt

)3/2

M3
1

]
≤ R(ε1/2M)[1+ε1/2(1+|M |)5].

Step 3. Recall that

‖h(0)‖L1
w
≤ cε3/2R(ε1/2M)ε2M0(1 +M2

1 + ε1/2M2),

H1 = R(ε1/2M)((1 +M1)3 + ε1/2(1 + |M |)4),

H2 = R(ε1/2M)((1 +M1)3 + ε1/2(1 + |M |)4),

H3 = R(ε1/2M)(M3
1 + ε1/2(1 + |M |)3).

Hence from Lemma 2.29 follows

‖P cTh1‖L∞
w−1
≤ R(ε1/2M)

(
ε

1 + εt

)3/2

((1 +M1)3 + ε1/2(1 + |M |)4),

which implies the inequality for M2.

We are now in the position to prove the uniform boundedness of the majorants.

Proposition 2.31. If ε > 0 is su�ciently small, there exist a positive constant M independent

of T and ε such that

|M(T )| ≤M,

for all T > 0.

Proof. From the previous lemma follows

|M |2 ≤ R(ε1/2M)[(1 +M1)8 + ε1/2(1 + |M |)8] ≤ R(ε1/2M)(1 + ε1/2F (M)),

where in the last inequality we have replaced the estimate for M2
1 , and F (M) is a suitable

polynomial function.
Furthermore, M(0) is small and M(T ) is a continuous function. Hence it follows that |M | is
bounded independent of ε� 1.

The last proposition gives a summary of the behavior of the functions ω(t), z(t), P cTh1(t), and
f(t).

Corollary 2.32. There exists a �nite limit ω∞ for the function ω(t) as t → +∞. Moreover the

following holds for all t > 0

|ω∞ − ω(t)| ≤M ε
1+εt ,

|z(t)| ≤M
(

ε
1+εt

)1/2
,

‖P cTh1(t)‖L∞
w−1
≤M

(
ε

1+εt

)3/2
,

‖f(t)‖L∞
w−1
≤M ε

1+εt .
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2.5 Large time behavior of the solution and scattering asymptotics

2.5.1 Large time behavior of the solution of equation (2.2)

The results of the previous section lead us to the following theorem.

Theorem 2.33. Let u(t) be a solution of equation (2.2) with initial datum u0 ∈ V ∩ L1
w of the

form

u0(x) = eiθ0Φω0(x) + z0Ψ(x) + z0Ψ∗(x) + f0(x),

where θ0 ∈ R, ω0 > 0, z0 ∈ C with

|z(0)| ≤ ε1/2, ‖f0‖L1
w
≤ cε3/2,

for some ε, c > 0. Then, provided ε is small enough, there exist ω(t), γ(t), z(t) ∈ C1([0,+∞))
solutions of the modulation equations (2.8)-(2.10), and two constants ω∞, M > 0 such that

ω∞ = lim
t→+∞

ω(t) and for all t ≥ 0

u(t, x) = ei(
∫ t
0 ω(s)ds+γ(t))

(
Φω(t)(x) + z(t)Ψ(t, x) + z(t)Ψ∗(t, x) + f(t, x)

)
,

where

|ω∞ − ω(t)| ≤M ε

1 + εt
, |z(t)| ≤M

(
ε

1 + εt

)1/2

, ‖f(t)‖L∞
w−1
≤M ε

1 + εt
.

Proof. Let us recall that the decomposition of the function f as

f = g + h1 + k + k1

depends on the quantity ω(T ). On the other hand Corollary 2.32 claims that the function ω(t)
converges to some ω∞ > 0 as t→ +∞.
As a consequence, one can reformulate the decomposition by choosing T = +∞. Moreover, all the
estimates obtained before for �nite T can be extended to T = +∞ without modi�cation. Hence
the theorem.

The next goal is to construct precise asymptotic expressions for ω(t), γ(t), and z(t). For later
convenience let us de�ne (recall that ξ depends explicitly on ω, see (2.3); and similarly for K, see
(2.28) and subsequent, and γ)

ξ∞ = ξ(ω∞),

γ∞ = γ(ω∞),

K∞ = K(ω∞).

Lemma 2.34. Under the assumption of Theorem 2.33 the functions ω(t), γ(t), and z(t) have the
following asymptotic behavior as t→ +∞:

ω(t) = ω∞ +
q1

1 + εk∞t
+

q2

1 + εk∞t
cos(2ξ∞t+ a1 log(1 + εk∞t) + a2) +O(t−3/2),

γ(t) = γ∞ + b1 log(1 + εk∞t) +O(t−1),

z(t) = z∞
ei

∫ t
0 ξ(τ)dτ

(1 + εk∞t)
1−iδ

2

+O(t−1),

where

z∞ = z1(0) +

∫ +∞

0
e−i

∫ s
0 ξ(τ)dτ (1 + εk∞s)

1−iδ
2 Z1(s)ds,

εk∞ = 2 Im(K∞)y0, δ = Re(K∞)
Im(K∞) , and q1, q2, a1, a2, b1 are constants.
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Proof. We will prove just the asymptotics for z(t); the formulas for ω(t) and γ(t) can be deduced
as in Sections 6.1 and 6.2 of [11].
In order to do that let us recall the equation for z1(t) can be written as

ż1 = iξz1 + iK∞|z1|2z1 +
̂̂
ZR,

moreover Remark 2.22 and the inequalities satis�ed by the majorants in Lemma 2.30 justify the

following estimates on ̂̂ZR
| ̂̂ZR| ≤ R1(ω, |z|+ ‖f‖L∞

w−1
)[(|z|2 + ‖f‖L∞

w−1
)2 + |z||ωT − ω|(|z|2 + ‖h‖L∞

w−1
)+

+|z|‖P cTk1‖L∞
w−1

+ |z|‖P cTh1‖L∞
w−1

] ≤

≤ R(ε1/2M)
ε2

(1 + εt)3/2
√
εt

(1 +M
4
) = O(t−2),

as t→ +∞. On the other hand, Lemma 2.26 implies

y(t) =
y(0)

1 + 2 Im(K∞)y(0)t
+O(t−3/2), as t→ +∞.

Let us note that |z1| satis�es the same bound of |z|, namely

|z1| ≤M
(

ε

1 + εt

)1/2

,

then the equation for z1(t) can be rewritten in the formulas

ż1 = iξz1 + iK∞
y(0)

1 + 2 Im(K∞)y(0)t
z1 + Z1,

where Z1 = O(t−2) as t→ +∞.
Since y(0) = εy0, one has εK∞y0 = i

2εk∞(1− iδ) and the equation for z1(t) becomes

ż1 =

(
iξ − i

2
εk∞(1− iδ) 1

1 + εk∞t

)
z1 + Z1.

Hence, one gets

z1(t) =
ei

∫ t
0 ξ(τ)dτ

(1 + εk∞t)
1−iδ

2

(
z1(0) +

∫ s

0
e−i

∫ t
0 ξ(τ)dτ (1 + εk∞s)

1−iδ
2 ds

)
= z∞

ei
∫ t
0 ξ(τ)dτ

(1 + εk∞t)
1−iδ

2

+ zR,

where z∞ is as in the statement of the lemma and

zR = −
∫ +∞

t
ei

∫ t
s ξ(τ)dτ

(
1 + εk∞s

1 + εk∞t

) 1−iδ
2

Z1(s)ds.

The bound on Z1 implies zR = O(t−1). Therefore z(t) has the asymptotic behavior as t → +∞
stated in the lemma because

z(t) = z1(t) +O(t−1) = z∞
ei

∫ t
0 ξ(τ)dτ

(1 + εk∞t)
1−iδ

2

+O(t−1).
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2.5.2 Scattering asymptotics

Let us make the following ansatz

u(t, x) = s(t, x) + ζ(t, x) + f(t, x),

where

s(t, x) = eiΘ(t)Φω(t)(x),

is the modulated soliton and

ζ(t, x) = eiΘ(t)[(z(t) + z(t))Ψ1(x) + i(z(t)− z(t))Ψ2(x)]

is the �uctuating component. Recall that the functions Φω, Ψ1 and Ψ2 satisfy

ωΦω = −HαΦω,

ωΨ1 = −iξΨ2 −Hα1Ψ1,

ωΨ2 = iξΨ1 −Hα2Ψ2.

Therefore from equation (2.2) one gets(
i
df

dt
, v

)
L2

= Q0(f, v)− ν(|qu|2σqu − |qs|2σqs − α1q(z+z)Ψ1
− α2q(z−z)Ψ2

)qv+

+(γ̇(s+ ζ)− iω̇ d

dω
(s+ ζ)− ieiΘ[(ż − iξz)(Ψ1 + iΨ2) + (ż − iξz)(Ψ1 − iΨ2)], v)L2 ,

for all v ∈ V , where Q0 is the quadratic form of the free Laplacian. Hence, as in [1], the solution
f(t) can be formally expressed as

f(t, x) = Ut ∗ f0(x) + i

∫ t

0
Ut−τ (x)qf (τ)dτ − i

∫ t

0
Ut−τ ∗G(τ)dτ,

where we have denoted

G(t) = γ̇(t)(s(t) + ζ(t))− iω̇(t)
d

dω
(s(t) + ζ(t))+

−ieiΘ(t)[(ż(t)− iξz(t))(Ψ1(t) + iΨ2(t)) + (ż(t)− iξz(t))(Ψ1(t)− iΨ2(t))]

and Ut(x) = ei
|x|2
4t

(4πit)3/2 is the propagator of the free Laplacian in R3.

In order to prove the asymptotic stability result we need the two following lemmas.

Lemma 2.35. If the assumptions of Theorem 2.33 hold true, then∫ t

0
Ut−τ (x)qf (τ)dτ = Ut ∗

∫ +∞

0
U−τ (x)qf (τ)dτ −

∫ +∞

t
Ut−τ (x)qf (τ)dτ = Ut ∗ φ0 + r0,

where φ0 ∈ L2(R3) and r0 = O(t−1/4) as t→ +∞ in L2(R3).



2.5. Large time behavior of the solution and scattering asymptotics 63

Proof. One can proceed as it is done in the case σ ∈ (0, 1/
√

2) (see the proof of Theorem 1.29):

since φ0(x) = 1
(4πi)3/2 φ̃0

(
r2

4

)
, for some function φ̃0 : R+ → C, one gets

‖φ0‖2L2 =
1

(4π)2

∫ +∞

0

∣∣∣∣φ̃0

(
r2

4

)∣∣∣∣2 r2dr =
1

(2π)2

∫ +∞

0
|φ̃0(y)|2√ydy.

Hence φ0 ∈ L2(R3) if and only if φ̃0 ∈ L2(R+,
√
ydy). On the other hand, one can make the

change of variables u = 1
τ in the integral function φ̃0 and get

φ̃0(y) =

∫ +∞

0
e−iyu

1

u
qf

(
1

u

)√
udu,

then ̂̃φ0 = 1
uqf

(
1
u

)
. Moreover, by corollary 2.32 one has

‖̂̃φ0‖2L2 =

∫ +∞

0

1

u2

∣∣∣∣qf (1

u

)∣∣∣∣2√udu ≤ C ∫ +∞

0

√
u

(u+ ε)2
du ≤ C,

for some constant C > 0, hence the Plancherel identity implies

φ̃0 ∈ L2(R+,
√
ydy).

In the same way, for any t > 0 the following holds

‖r0‖2L2 =
1

(2π)2

∥∥∥∥1

u
qf

(
t+

1

u

)∥∥∥∥2

L2(R+,
√
udu)

≤ C 1√
1 + εt

,

for some constant C > 0 independent of t. Which concludes the proof.

The analogous result for the integral function
∫ t

0 Ut−τ ∗G(τ)dτ requires di�erent tools.

Lemma 2.36. Assume that the assumptions of Theorem 2.33 hold true, then∫ t

0
Ut−τ ∗G(τ)dτ = Ut ∗

∫ +∞

0
U−τ ∗G(τ)dτ − Ut ∗

∫ +∞

t
U−τ ∗G(τ)dτ = Ut ∗ φ1 + r1,

where φ1 ∈ L2(R3) and r1 = O(t−1/2) as t→ +∞ in L2(R3).

Proof. We exploit the idea used in [33] to prove Lemma 5.5.
Step 1: restriction to the leading terms.

From the expansions (2.15), (2.16) and (2.17) for ω̇(t), γ̇(t) and ż(t) − iξz(t) follow that the
function G(t) is made by a quadratic part consisting in the terms multiplied eiΘ(t)z2

∞, e
iΘ(t)z∞

2

or eiΘ(t)|z∞|2, with

z∞ =
eiξ∞t√

1 + εk∞t
,

which are of order t−1 and a remainder of order t−3/2. The convergence and the decay of the
remainder is trivial from the unitarity of Ut. Furthermore, from the analytic de�nition of G it
follows that it is a complex linear combination of functions of the form

Q(x) = e−
√
α|x|2 , α = ω∞, ω∞ + ν∞, ω∞ − ν∞.

Hence it su�ces to prove the lemma for the functions Π(t)Q(x), where Π(t) is one between
eiΘ(t)z2

∞, e
iΘ(t)z∞

2 and eiΘ(t)|z∞|2.
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Step 2: decomposition of Ut ∗Q.
Let us note that we can rewrite the convolution product as follows

Ut ∗Q =
ei
|x|2
4t

(4πit)3/2

∫
R3

e−i
(x,y)

2t Q(y)dy +
ei
|x|2
4t

(4πit)3/2

∫
R3

e−i
(x,y)

2t (ei
|y|2
4t − 1)Q(y)dy =

(2.41) =
ei
|x|2
4t

(2it)3/2
Q̂
( x

2t

)
+

ei
|x|2
4t

(2it)3/2
Q̂t

( x
2t

)
,

where Qt(y) = (ei
|y|2
4t − 1)Q(y).

Since |eiθ − 1| ≤ θ and the function G(y) is exponentially decaying as |y| → +∞, the L2 norm of
the second term of (2.41) can be estimated in the following way for any t > 1

1

(2t)3/2

∥∥∥Q̂t ( ·
2t

)∥∥∥
L2

= ‖Q̂t(·)‖L2 ≤
1

4t

(∫
R3

|y|4|Q(y)|2dy
)1/2

≤ C

t
,

for some constant C > 0. Hence, recalling that Π(τ) ≤ (1 + εk∞τ)−1, we obtain∫ +∞

0
Π(τ)Uτ ∗Qtdτ ∈ L2(R3),

and ∫ +∞

t
Π(τ)Uτ ∗Qtdτ = O(t−1),

as t→ +∞ in L2(R3).
Step 3: Analysis of the first term in (2.41) in a particular case.

Let us �rst show how to treat the terms with the phase Θ(t) replaced by ω∞t.
Note that

Q̂(x) =
1

α+ |x|2
,

Hence, in the case of the summands with |z∞|2 it su�ces to prove the integrability of the function

I(x) =

∫ ∞
0

ei(ω∞τ−
|x|2
4τ

)

√
τ

(1 + εk∞τ)(|x|2 + 4ατ2)
dτ =

= A(x)

∫ ∞
0

ei(ω∞τ−
|x|2
4τ

)

( √
τ

(1 + εk∞τ)
− 4α

εk∞

τ
√
τ

(|x|2 + 4ατ2)

)
dτ+

+
4α

ε2k2
∞
A(x)

∫ ∞
0

ei(ω∞τ−
|x|2
4τ

)

√
τ

(|x|2 + 4ατ2)
dτ = I1(x) + I2(x),

and the decay of

It(x) =

∫ ∞
t

ei(ω∞τ−
|x|2
4τ

)

√
τ

(1 + εk∞τ)(|x|2 + 4ατ2)
dτ =

= A(x)

∫ ∞
t

ei(ω∞τ−
|x|2
4τ

)

( √
τ

(1 + εk∞τ)
− 4α

εk∞

τ
√
τ

(|x|2 + 4ατ2)

)
dτ+

+
4α

ε2k2
∞
A(x)

∫ ∞
t

ei(ω∞τ−
|x|2
4τ

)

√
τ

(|x|2 + 4ατ2)
dτ = I1,t(x) + I2,t(x),
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where A(x) = ε2k2
∞

4α+ε2k2
∞|x|2

.

For the function I2(x) one has

|I2(x)| ≤ 4α

ε2k2
∞
A(x)

∫ ∞
0

√
τ

(|x|2 + 4ατ2)
dτ = C

A(x)√
|x|
∈ L2(R3).

With the same estimate it is trivial to prove

I2,t(x) = O(t−1/2)

as t→ +∞, in L2(R3).
In order to treat I1 note that

√
τ

(1 + εk∞t)
− 4α

εk∞

τ
√
τ

(|x|2 + 4ατ2)
= − 1

εk∞
√
τ(1 + εk∞τ)

+
|x|2

εk∞
√
τ(|x|2 + 4ατ2)

.

Since 1
εk∞
√
τ(1+εk∞τ)

= O(t−3/2) as t→ +∞, is integrable on (0,+∞) and A(x) ∈ L2(R3) one has
to prove

|x|2A(x)

εk∞

∫ +∞

0
ei(ω∞τ−

|x|2
4τ

) 1√
τ(|x|2 + 4ατ2)

dτ =

= A(x)

∫ +∞

0
eiω∞(τ− |x|2

4ω∞τ
) 1√
τ
dτ − 4αA(x)

∫ +∞

0
ei(ω∞τ−

|x|2
4τ

) τ3/2

(|x|2 + 4ατ2)
dτ ∈ L2(R3).

From formulas 3.871.3 and 3.871.4 in [27] one has

A(x)

∫ +∞

0
eiω∞(τ− |x|2

4ω∞τ
) 1√
τ
dτ =

eiπ/4
√
πω∞

A(x)|x|3/2e−
√
ω∞|x| ∈ L2(R3).

It remains to handle with the second integral in the former sum which can be done integrating
by parts in the following way∣∣∣∣∣A(x)

∫ +∞

0
ei(ω∞τ−

|x|2
4τ

) τ3/2

(|x|2 + 4ατ2)
dτ

∣∣∣∣∣ =

= 4A(x)

∣∣∣∣∣
∫ +∞

0
ei(ω∞τ−

|x|2
4τ

) d

dτ

[
τ7/2

(|x|2 + 4ατ2)(|x|2 + 4ω∞τ2)

]
dτ

∣∣∣∣∣ ≤
≤ CA(x)

∫ +∞

0

τ5/2

(|x|2 + 4 min{α, ω∞}τ2)2
dτ ≤ CA(x)√

|x|
∈ L2(R3).

Then we are done.
In order to estimate the decay of I1,t it su�ces to study the decay of

|x|2A(x)

εk∞

∫ +∞

t
ei(ω∞τ−

|x|2
4τ

) 1√
τ(|x|2 + 4ατ2)

dτ =

= A(x)

∫ +∞

t
eiω∞(τ− |x|2

4ω∞τ
) 1√
τ
dτ − 4αA(x)

∫ +∞

t
ei(ω∞τ−

|x|2
4τ

) τ3/2

(|x|2 + 4ατ2)
dτ,

which can be done integrating by parts as before. Let us do that for the second term (the
computation for the �rst one are analogous and simpler):∣∣∣∣∣A(x)

∫ +∞

t
ei(ω∞τ−

|x|2
4τ

) τ3/2

(|x|2 + 4ατ2)
dτ

∣∣∣∣∣ =
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= 4A(x)

∣∣∣∣∣
∫ +∞

t
ei(ω∞τ−

|x|2
4τ

) d

dτ

[
τ7/2

(|x|2 + 4ατ2)(|x|2 + 4ω∞τ2)

]
dτ

∣∣∣∣∣ ≤
≤ CA(x)

[
t−1/2 +

∫ +∞

t

τ5/2

(|x|2 + 4 min{α, ω∞}τ2)2
dτ

]
≤

≤ CA(x)

(
1 +

1√
|x|

)
t−1/2.

The case of the summands with z2
∞ is analogous, while the case of z∞2 is more di�cult because

|x|2 + 4(ω∞ − 2ξ∞)τ2 = 0 for

τ = t∗ =
|x|

2
√

2ξ∞ − ω∞
.

Let g : R+ → R+ be a continuous function with the properties:

0 < g(t∗) < t∗ ∀t∗ > 0, and A(x)g(t∗) ∈ L2(R3).

It follows that g(t∗) = O(t∗) = O(|x|) as |x| → +∞. Hence, one can represent (0,+∞) =
(0, t∗ − g(t∗)] ∪ (t∗ − g(t∗), t∗ + g(t∗)] ∪ (t∗ + g(t∗),+∞). Integrating by parts once more one has∣∣∣∣∣A(x)

∫ t∗−g(t∗)

0
ei((ω∞−2ξ∞)τ− |x|

2

4τ
) t3/2

|x|2 + 4ατ2
dτ

∣∣∣∣∣ ≤
≤ CA(x)

(
(t∗ − g(t∗))−1/2 +

∫ t∗−g(t∗)

0

t5/2

(|x|2 + 4ατ2)||x|2 + 4(ω∞ − 2ξ∞)τ2|
dτ+

+

∫ t∗−g(t∗)

0

t9/2

(|x|2 + 4ατ2)2||x|2 + 4(ω∞ − 2ξ∞)τ2|
dτ+

+

∫ t∗−g(t∗)

0

t9/2

(|x|2 + 4ατ2)||x|2 + 4(ω∞ − 2ξ∞)τ2|2
dτ

)
≤

≤ CA(x)((t∗ − g(t∗))−1/2 + (t∗ − g(t∗))3/8) ∈ L2(R3),

where the last inequality follows from formula 3.194.1 in [27]. In the same way (exploiting formula
3.194.2 instead of 3.194.1 in [27]), one has∣∣∣∣∣A(x)

∫ ∞
t∗+g(t∗)

ei((ω∞−2ξ∞)τ− |x|
2

4τ
) t3/2

|x|2 + 4ατ2
dτ

∣∣∣∣∣ ≤
≤ CA(x)((t∗ + g(t∗))−1/8 + (t∗ + g(t∗))−9/8 + (t∗ − g(t∗))−1/2) ∈ L2(R3).

Finally, ∣∣∣∣∣A(x)

∫ t∗+g(t∗)

t∗−g(t∗)
ei((ω∞−2ξ∞)τ− |x|

2

4τ
) t3/2

|x|2 + 4ατ2
dτ

∣∣∣∣∣ ≤
≤ CA(x)

∫ t∗+g(t∗)

t∗−g(t∗)

1√
τ
dτ ≤ C A(x)g(t∗)√

t∗ − g(t∗)
∈ L2(R3).

Summing up, the integrability of the integral function∫ +∞

0
Π(τ)Uτ ∗Qdτ
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is achieved. It is left to study the decay of

A(x)

∫ +∞

t
ei((ω∞−2ξ∞)τ− |x|

2

4τ
) t3/2

|x|2 + 4ατ2
dτ.

First of all, let us note that integrating by parts one obtains∣∣∣∣∣A(x)

∫
(0,t∗−g(t∗)]∩[t,+∞)

ei((ω∞−2ξ∞)τ− |x|
2

4τ
) t3/2

|x|2 + 4ατ2
dτ

∣∣∣∣∣ ≤
≤ CA(x)

∫ t∗−g(t∗)

t

∣∣∣∣∣ ddτ t7/2

(|x|2 + 4ατ2)(|x|2 + 4(ω∞ − 2ξ∞)τ2)

∣∣∣∣∣ dτ ≤
≤ CA(x)

(
t−1/2 +

∫ t∗−g(t∗)

t

√
τ

|x|2 + 4ατ2
dτ +

∫ t∗−g(t∗)

t

√
τ

||x|2 + 4(ω∞ − 2ξ∞)τ2|
dτ+

+

∫ t∗−g(t∗)

t

τ9/2

(|x|2 + 4ατ2)||x|2 + 4(ω∞ − 2ξ∞)τ2|2
dτ

)
.

The three integrals in the last inequality can be estimated in the following way:

(i)
∫ t∗−g(t∗)
t

√
τ

|x|2+4ατ2dτ ≤ C
∫ +∞
t τ−3/2dτ ≤ Ct−1/2;

(ii)
∫ t∗−g(t∗)
t

√
τ

|x|2+4(2ξ∞−ω∞)τ2dτ =
∫ t∗−g(t∗)
t

√
τ

(|x|+2
√

2ξ∞−ω∞τ)||x|−2
√

2ξ∞−ω∞τ |
dτ

≤ Ct−1/2
∫ t∗−g(t∗)

0
1

||x|−2
√

2ξ∞−ω∞τ |
dτ ≤ Ct−1/2;

(iii)
∫ t∗−g(t∗)
t

τ9/2

(|x|2+4ατ2)||x|2+4(ω∞−2ξ∞)τ2|2dτ ≤ Ct
−1/2

∫ t∗−g(t∗)
0

τ
||x|−2

√
ω∞−2ξ∞τ |2

dτ

≤ Ct−1/2(1 + ln ||x| − 2
√
ω∞ − 2ξ∞(t∗ − g(t∗))|).

Hence, since A(x) ln ||x| − 2
√
ω∞ − 2ξ∞(t∗ − g(t∗))| ∈ L2(R3), one can conclude

A(x)

∫
(0,t∗−g(t∗)]∩[t,+∞)

ei((ω∞−2ξ∞)τ− |x|
2

4τ
) t3/2

|x|2 + 4ατ2
dτ = O(t−1/2)

as t→ +∞, in L2(R3).
Let us now observe that∣∣∣∣∣A(x)

∫
(t∗−g(t∗),+∞)∩[t,+∞)

ei((ω∞−2ξ∞)τ− |x|
2

4τ
) t3/2

|x|2 + 4ατ2
dτ

∣∣∣∣∣ ≤
≤ CA(x)

∫ +∞

t

∣∣∣∣∣ ddτ t7/2

(|x|2 + 4ατ2)(|x|2 + 4(ω∞ − 2ξ∞)τ2)

∣∣∣∣∣ dτ ≤
≤ B(x)A(x)

(
t−1/2 +

∫ +∞

t

√
τ

|x|2 + 4ατ2
dτ

)
≤ CB(x)A(x)t−1/2 ∈ L2(R3),

where B : R3 → R+ is a continuous bounded function.
Finally, ∣∣∣∣∣A(x)

∫
(t∗−g(t∗),(t∗+g(t∗)]∩[t,+∞)

ei((ω∞−2ξ∞)τ− |x|
2

4τ
) t3/2

|x|2 + 4ατ2
dτ

∣∣∣∣∣ ≤
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≤ CA(x)

∫ t∗+g(t∗)

t

1√
τ
dτ ≤ CA(x)g(t∗)t−1/2 ∈ L2(R3).

Summing up, thanks to the unitarity of Ut, we proved

Ut ∗
∫ +∞

t
Π(τ)Uτ ∗Qdτ = O(t−1/2),

as t→ +∞, in L2(R3).
Step 4: conclusion of the proof.

The conclusions of the previous step hold true if the phase ω∞t is replaced by Θ(t). In fact,
the estimates which involve the integral of the absolute value are totally una�ected by change
of phase, then it is only left to adjust the argument involving integration by parts. This can be
done integrating by parts exactly as before, which leaves a factor ei(Θ(t)−ω∞t) in the integrand.
Then, the boundary terms can be treated in the same way because |ei(Θ(t)−ω∞t)| = 1. Finally, the
extra contribution to the integrand can be estimated as it is done for the summand arising from
di�erentiation of t7/2 since |Θ̇(t)−ω∞| ≤ C

1+εk∞t
for all t > 0, where C is a positive constant.

Summing up, we have proved the following asymptotic stability result.

Theorem 2.37. Let σ ∈
(

1√
2
, σ∗
)
, for a certain σ∗ ∈

(
1√
2
,
√

3+1
2
√

2

]
and u(t) ∈ C(R+, V ) be a

solution of equation (2.2) with

u(0) = u0 = eiω0t+γ0Φω0 + eiω0t+γ0 [(z0 + z0)Ψ1 + i(z0 − z0)Ψ2] + f0 ∈ V ∩ L1
w(R3),

for some ω0 > 0, γ0, z0 ∈ R and f0 ∈ L2(R3) ∩ L1
w(R3). Furthermore, assume that the initial

datum u0 is close to a solitary wave, i.e.

|z0| ≤ ε1/2 and ‖f0‖L1
w
≤ cε3/2,

where c, ε > 0.

Then, if ε is su�ciently small, the solution u(t) can be asymptotically decomposed as follows

u(t) = eiω∞t+ib1 log(1+εk∞t)Φω∞ + Ut ∗ φ∞ + r∞(t), as t→ +∞,

where ω∞, εk∞ > 0, b1 ∈ R and φ∞, r∞(t) ∈ L2(R3) with

‖r∞(t)‖L2 = O(t−1/4) as t→ +∞,

in L2(R3).

Remark 2.38. Numerical evidences (see Lemma 2.20) suggest σ∗ =
√

3+1
2
√

2
' 0, 96.

2.6 Appendices

2.6.1 Eigenfunctions associated to ±iξ and generalized eigenfunctions

The eigenfunctions associated to ±iξ

Here we want to describe the eigenspaces associated to the simple purely imaginary eigenvalues
±iξ = ±i2σ

√
1− σ2ω.

Let us start with the eigenvalue iξ. The following proposition holds true.
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Proposition 2.39. The eigenspace associated to iξ is spanned by

Ψ(x) =

(
Ψ1(x)
Ψ2(x)

)
=
e−
√
ω−ξ|x|

4π|x|

(
1
i

)
−
√

1− σ2 − 1

σ

e−
√
ω+ξ|x|

4π|x|

(
1
−i

)
.

Proof. In order to prove the proposition we need to solve the equation

LΨ = iξΨ

in D(L). For x 6= 0, the previous equation is equivalent to the system{
(−4+ ω)2Ψ1 − ξ2Ψ1 = 0
Ψ2 = i

ξ (−4+ ω)Ψ1
,

from which follows that Ψ1 must belong to L2(R3) and solve the equation

(−4+ ω − ξ)(−4+ ω + ξ)Ψ1 = 0.

Hence, the solutions in L2(R3) are of the form{
Ψ1(x) = A e−

√
ω−ξ|x|

4π|x| +B e−
√
ω+ξ|x|

4π|x|

Ψ2(x) = iA e−
√
ω−ξ|x|

4π|x| − iB e−
√
ω+ξ|x|

4π|x|
,

for any A, B ∈ C.
It is left to look for A, B ∈ C such that Ψi ∈ D(Li) for i = 1, 2, i.e.{

−
√
ω−ξ
4π A−

√
ω+ξ
4π B = −(2σ + 1)

√
ω

4π (A+B)

−i
√
ω−ξ
4π A+ i

√
ω+ξ
4π B = −

√
ω

4π (iA− iB)
.

Exploiting the fact that ξ = 2σ
√

1− σ2ω one can show that the two equations of the previous
system are linearly dependent and

B = −
√

1− σ2 + 1

σ
A.

The thesis follows by setting A = 1.

Let us note that in the previous proof we have chosen the constant in such a way that Ψ1(x) ∈ R
and Ψ2(x) ∈ iR for any x ∈ R3 \ {0}. This fact will be used to prove the next proposition.

Proposition 2.40. The eigenspace associated to −iξ is spanned by

Ψ∗ =

(
Ψ1

−Ψ2

)
.

Proof. In the previous proposition we proved that{
L2Ψ2 = iξΨ1

−L1Ψ1 = iξΨ2
,

with Ψ1 real and Ψ2 purely imaginary.
Taking the conjugate of both equations and recalling that the operators Li, i = 1, 2 act on the
real and imaginary parts separately, one has{

L2(−Ψ2) = −iξΨ1

−L1Ψ1 = −iξ(−Ψ2)
,

which is equivalent to
LΨ∗ = −iξΨ∗,

because the operators Li, i = 1, 2 are linear. The proof is complete.
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The generalized eigenfunctions

Our goal is to compute the generalized eigenfunctions associated to the continuous spectrum. In
order to do that, we treat the two branches C+ and C− of the continuous spectrum separately.

Proposition 2.41. The generalized eigenfunctions associated to C+ are

Ψ+(x) = A
e−
√
ω+η|x|

4π|x|

(
1
−i

)
+ C

e−i
√
η−ω|x|

4π|x|

(
1
i

)
+D

ei
√
η−ω|x|

4π|x|

(
1
i

)
,

for any η ∈ [ω,+∞) and D ∈ C, with

A = σ
√
ω√

ω+η−(σ+1)
√
ω

(C +D),

C =
(2σ+1)ω+(σ+1)

√
ω(i
√
η−ω−

√
η+ω)−i

√
η2−ω2

−(2σ+1)ω+(σ+1)
√
ω(i
√
η−ω+

√
η+ω)−i

√
η2−ω2

D.

Proof. For any η ∈ [ω,+∞), we need to solve the system

LΨ+ = iηΨ+,

where Ψ+ ∈ L∞(R3) does not necessary belongs to L2(R3). As in the computation for the
eigenfunction at ±iξ, if x 6= 0 the former equation is equivalent to the system{

(−4+ ω − ξ)(−4+ ω + ξ)(Ψ+)1 = 0
(Ψ+)2 = i

ξ (−4+ ω)(Ψ+)1
,

which leads to

Ψ+(x) = A
e−
√
ω+η|x|

4π|x|

(
1
−i

)
+B

e
√
ω+η|x|

4π|x|

(
1
i

)
+ C

e−i
√
η−ω|x|

4π|x|

(
1
i

)
+D

ei
√
η−ω|x|

4π|x|

(
1
i

)
,

for some A, B, C, D ∈ C. Since we require Ψ+ ∈ L∞(R3), we get B = 0. Moreover, the
boundary conditions in the domain of the operators L1 and L2 must be satis�ed by (Ψ+)1 and
(Ψ+)2 respectively. Then A, C, and D solve the system{

−
√
ω+η
4π A− i

√
η+ω
4π C + i

√
η+ω
4π D = − (2σ+1)

√
ω

4π (A+ C +D)

i
√
ω+η
4π A+

√
η+ω
4π C −

√
η+ω
4π D = −

√
ω

4π (−iA+ iC + iD)
,

which concludes the proof.

In the same way, one can prove the analogous result about C−.

Proposition 2.42. The generalized eigenfunctions associated to C− are

Ψ−(x) = A
e−
√
ω−η|x|

4π|x|

(
1
i

)
+ C

e−i
√
−(η+ω)|x|

4π|x|

(
1
−i

)
+D

ei
√
−(η+ω)|x|

4π|x|

(
1
−i

)
,

for any η ∈ (−∞,−ω], where D ∈ C and

A = σ
√
ω√

ω−η−(σ+1)
√
ω

(C +D),

C =
(2σ+1)ω+(σ+1)

√
ω(i
√
−(η+ω)−

√
ω−η)−i

√
η2−ω2

−(2σ+1)ω+(σ+1)
√
ω(i
√
−(η+ω)+

√
η+ω)−i

√
η2−ω2

D.
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2.6.2 Proof of Lemma 2.8

In this appendix we prove Lemma 2.8 whose statement is recalled for the reader's convenience.

Lemma 2.43. There exists a constant C > 0 such that for each h ∈ Xc holds∥∥[P cJ − i(Π+ −Π−)]h
∥∥
L1
w
≤ C‖h‖L∞

w−1
.

Proof. From the de�nitions of the operators P c and Π± one gets

P cJ − i(Π+ −Π−) = Π+(J − iI) + Π−(J + iI) =

=
1

2πi

[∫
C+

(R(λ+ 0)−R(λ− 0))(J − iI)dλ+

∫
C−

(R(λ+ 0)−R(λ− 0))(J + iI)dλ

]
.

We will estimate just the �rst integral because the second one can be handled in the same way.
Exploiting the explicit form of the resolvent (1.10) it follows that

R(λ)(J − iI) = (iλGλ2 ∗+Γλ2∗)
[

1 i
−i 1

]
+

4π

D(λ2)

[
Λ1 + Σ2 i(Λ1 + Σ2)
−i(Λ2 + Σ1) Λ2 + Σ1

]
=

= R∗(λ)(J − iI) +Rm(λ)(J − iI),

where R∗ and Rm correspond to the convolution term of the resolvent and the multiplicative term.
Note that

iλGλ2(x− y) + Γλ2(x− y) = 2Gω−iλ(x− y) =
ei
√
−ω+iλ|x−y|

2π|x− y|
is continuous on C+. Hence, the integral on C+ of the convolution addends vanishes.
Let us now consider the multiplicative addends in the integral on C+. From the explicit formulas
for Λ1 and Σ2 given in Proposition 1.10 one can compute

(Λ1+Σ2)(x, y) = 8π(α2−α1)Gω−iλ(y)Gω+iλ(x)+[8π(α2+α1)−4i
√
−ω − iλ]Gω−iλ(y)Gω−iλ(x) =

= 4σ
√
ω
ei
√
−ω+iλ|y|

4π|y|
ei
√
−ω−iλ|x|

4π|x|
− [4(σ + 1)

√
ω − 4i

√
−ω − iλ]

ei
√
−ω+iλ(|x|+|y|)

(4π)2|x||y|
.

Denote
D±(λ2) = D((λ± 0)2).

Then it follows ∫
C+

[(Rm(λ+ 0)−Rm(λ− 0))(J − iI)]1,1dλ =

=

∫
C+

σ
√
ωei
√
−ω+iλ|y|e−i

√
−ω−iλ|x| + ((σ + 1)

√
ω − i

√
−ω − iλ)ei

√
−ω+iλ(|x|+|y|)

π|x||y|D+(λ2)
dλ+

−
∫
C+

σ
√
ωei
√
−ω+iλ|y|ei

√
−ω−iλ|x| + ((σ + 1)

√
ω + i

√
−ω − iλ)ei

√
−ω+iλ(|x|+|y|)

π|x||y|D−(λ2)
dλ.

If we compute the change of variable k =
√
−ω − iλ in the �rst integral of the last equality, and

k = −
√
−ω − iλ in the second one, then one has∣∣∣∣∫

C+

[(Rm(λ+ 0)−Rm(λ− 0))(J − iI)]1,1dλ

∣∣∣∣ =
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=

∣∣∣∣∣ 4i

π|x||y|

(∫ +∞

−∞
σ
√
ωk

e−
√
k2+2ω|y|

D(k)
e−ik|x|dk +

∫ +∞

−∞
2ik2 e

−
√
k2+2ω(|x|+|y|)

D(k)
dk

)∣∣∣∣∣ ≤
≤ C e

−
√

2ω|y|

|y||x|
min

{
1

|x|
, e−
√

2ω|x|
}
≤ C e

−
√

2ω|y|

|y|
e−
√

2ω|x|

|x|
,

where the �rst inequality is obtained integrating by parts both integrals.
The integral of the other three elements of the matrix operator (Rm(λ+ 0)−Rm(λ− 0))(J − iI)
can be estimated in the same way and this implies the statement of the lemma.
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Chapter 3

Nondispersive vanishing and blow up at

in�nity for the energy critical nonlinear

Schrödinger equation in R3

3.1 Introduction

3.1.1 Setting of the problem and statement of the result

In this chapter we consider the energy critical focusing nonlinear Schrödinger equation

i
du

dt
= −∆u− |u|4u, x ∈ R3,

u(0) = u0 ∈ Ḣ1(R3).
(3.1)

The Cauchy problem (3.1) is locally well posed, which means that for any initial datum u0 ∈
Ḣ1(R3) there exists a unique solution u de�ned on a maximal interval of de�nition I = (T−, T+)
such that u ∈ C(I, Ḣ1(R3)) ∩ L10(I × R3) for any compact interval I ⊂ I. If T+ < +∞ (or
T− > −∞), then ‖u‖L10((0,T+)×R3) = +∞ (respectively ‖u‖L10((T−,0)×R3) = +∞), and one says
that the solution blows up in �nite time. Moreover, the solutions during their life span satisfy
conservation of energy:

(3.2) E(u(t)) ≡ 1

2

∫
R3

|∇u(t, x)|2dx− 1

6

∫
R3

|u(t, x)|6 dx = E(u0).

The problem is energy critical in the sense that (3.1) as well as (3.2) are invariant with respect
to the scaling u(t, x)→ λ1/2u(λx, λ2t), λ ∈ R+. For Ḣ1 small data one has global existence and
scattering. In the case of large data blow up may occur. Indeed, the classical virial identity

d2

dt2

∫
R3

|x|2|u(t, x)|2dx = 8E(u)− 16

3

∫
R3

|u(t, x)|6dx

shows that if xu0 ∈ L2(R3) and E(u0) < 0, the solution has to break down in �nite time.
Furthermore, Equation (3.1) admits an explicit stationary solution (ground state):

W (x) = (1 +
1

3
|x|2)−1/2, ∆W +W 5 = 0,

so that scattering cannot always occur even for solutions that exist globally in time.
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Schrödinger equation in R3

The ground state W is known to play an important role in the dynamics of (3.1). It was proved
by Kenig and Merle [31] that E(W ) is an energy threshold for the dynamics in the following sense.
If u0 is radial and E(u0) < E(W ) then

(i) the solution of (3.1) is global and scatters to zero as a free wave in both directions, provided
‖∇u0‖L2 < ‖∇W‖L2 ;

(ii) the solution blows up in �nite time in both direction, provided u0 ∈ L2 and ‖∇u0‖L2 >
‖∇W‖L2 .

The behavior of radial solutions with critical energy E(u0) = E(W ) was classi�ed by Duyckaerts
and Merle in [19]. In this case, in addition to the �nite time blow up and scattering to zero, one
has the existence of solutions that converge as t → ∞ to a rescaled ground state. In the case
of energy slightly greater than E(W ) the dynamics is expected to be richer and to include the
solutions that as t → ∞ behave like eiα(t)λ1/2(t)W (λ(t)x) with fairly general α(t) and λ(t). For
a closely related model of the critical wave equation, the existence of this type of solutions with
λ(t)→∞ (blow up at in�nity) and λ(t)→ 0, tλ(t)→∞ (non-dispersive vanishing) was recently
proved by Donninger and Krieger [17]. Our objective in this chapter is to obtain an analogous
result for NLS (3.1). More precisely, we prove the following.

Theorem 3.1. There exists β0 > 0 such that for any ν, α0 ∈ R with |ν| + |α0| ≤ β0 and any

δ > 0 there exist T > 0 and a radial solution u ∈ C([T,+∞), Ḣ1 ∩ Ḣ2) to (3.1) of the form:

(3.3) u(t, x) = eiα(t)λ1/2(t)W (λ(t)x) + ζ(t, x),

where λ(t) = tν , α(t) = α0 ln t, and ζ(t) veri�es:

‖ζ(t)‖Ḣ1∩Ḣ2 ≤ δ,

‖ζ(t)‖L∞ ≤ Ct−
1+ν

2 ,

‖ < λ(t)x >−1 ζ(t)‖L∞ ≤ Ct−1− 3
2
ν ,

(3.4)

for all t ≥ T . The constants C here and below are independent of ν, α0 and δ.
Furthermore, there exists ζ∗ ∈ Ḣs, ∀s > 1

2 − ν, such that, as t → +∞, ζ(t) − eit∆ζ∗ → 0 in

Ḣ1 ∩ Ḣ2.

In order to prove the main Theorem 3.1, in Section 2 we construct (Proposition 3.2) a su�ciently
good approximate solution of (3.1) very much in the spirit of [17], [35], [39]. In Section 3 we
build up an exact solution by solving the problem for the small remainder with zero initial data
at in�nity, the main technical tool of the construction being some suitable energy type estimates
for the linearized evolution. These estimates are proved in Section 4.

3.2 Approximate solutions

In this section we prove the following result.

Proposition 3.2. For any ν and α0 su�ciently small and any 0 < δ ≤ 1 there exists a radial

approximate solution uap ∈ C∞(R3,R∗+) of (3.1) such that the following holds for t ≥ T with

some T = T (ν, α0, δ) > 0.
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(i) uap has the form: uap(t, x) = eiα(t)λ1/2(t)(W (λ(t)x)+χap(t, λ(t)x)), where χap(t, y), y = λ(t)x,
veri�es

‖χap(t)‖Ḣk ≤ Cδν+k−1/2t−ν(k−1), k = 1, 2,(3.5)

‖χap(t)‖L∞ ≤ Ct−(1+2ν)/2,(3.6)

‖|y|−1χap(t)‖L∞ + ‖∇χap(t)‖L∞ ≤ Ct−1−2ν ,(3.7)

‖|y|−2χap(t)‖L∞ + ‖|y|−1∇yχap(t)‖L∞ ≤ C(|ν|+ |α0|)t−1−2ν ,(3.8)

‖∇2χap(t)‖L∞ ≤ C(|ν|+ |α0|)t−1−2ν .(3.9)

Furthermore, there exists ζ∗ ∈ Ḣs, for any s > 1
2−ν, such that, as t→ +∞, eiα(t)λ1/2(t)χap(t, λ(t)·)−

eit∆ζ∗ → 0 in Ḣ1 ∩ Ḣ2.

(ii) The corresponding error R = −iduapdt −∆uap − |uap|4uap satis�es

(3.10) ‖R(t)‖Ḣk ≤ t−(2+ 1
8

)(1+2ν)+ν(k+1), k = 0, 1, 2.

The construction of uap(t) will be achieved by considering separately the three regions that cor-
respond to three di�erent space scales: the inner region with the scale tν |x| . 1, the self-similar
region where |x| = O(t1/2), and, �nally, the remote region where |x| = O(t). In the inner region
the solution will be constructed as a perturbation of the pro�le eiα0 ln ttν/2W (tνx). The self-similar
and remote regions are the regions where the solution is small and is described essentially by the
linear equation idudt = −4u. In the self-similar region the pro�le of the solution will be determined
uniquely by the matching conditions coming out from the inner region, while in the remote region
the pro�le remains essentially a free parameter of the construction, only the limiting behavior at
the origin is prescribed by the matching procedure.

3.2.1 The inner region

We start by considering the inner region 0 ≤ tν |x| ≤ 10t1/2+ν−ε1 with 0 < ε1 < 1/2 + ν to be
�xed later. Writing u(t, x) as u(t, x) = eiα(t)λ1/2(t)ψ(t, ρ), ρ = λ(t)|x|, we get from (3.1)

(3.11) it−2ν dψ

dt
− α0t

−(1+2ν)ψ + iνt−(1+2ν)(
1

2
+ ρ∂ρ)ψ = −4ψ − |ψ|4ψ.

Write ψ(t, ρ) = W (ρ) + χ(t, ρ). Then ~χ(t) =
(χ(t)
χ̄(t)

)
solves

(3.12) it−2ν d~χ

dt
= H~χ+N (χ),

where

H = −4σ3 − 3W 4σ3 − 2W 4σ3σ1, σ1 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
,

N (χ) =

(
N(χ)

−N(χ)

)
, N(χ) = N0 +N1(χ) +N2(χ),

N0 = α0t
−(1+2ν)W − iνt−(1+2ν)W1, W1(ρ) = (

1

2
+ ρ∂ρ)W (ρ)

N1(χ) = α0t
−(1+2ν)χ− iνt−(1+2ν)(

1

2
+ ρ∂ρ)χ,

N2(χ) = −|W + χ|4(W + χ) +W 5 + 3W 4χ+ 2W 4χ.
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We look for a solution to (3.12) of the form

(3.13) χ(t, ρ) =
∞∑
k=1

t−k(1+2ν)χk(ρ).

Substituting (3.13) into (3.12) and identifying the terms with the same powers of t we get the
following system for {χk}k≥1:

(3.14) H~χk = Dk, k ≥ 1,

where Dk =

(
Dk

−Dk

)
,

D1 = −α0W + iνW1,

Dk = D
(1)
k +D

(2)
k , k ≥ 2,

D
(1)
k and D(2)

k being contributions of it−2ν dχ
dt −N1(χ) and −N2(χ) respectively:

D
(1)
k = −i(1 + 2ν)(k − 1)χk−1 − α0νχk−1 + iν(

1

2
+ ρ∂ρ)χk−1,

N2(χ) = −
∞∑
k=2

t−k(1+2ν)D
(2)
k (ρ).

Note that Dk depends on χp, 1 ≤ p ≤ k − 1 only:

Dk = Dk(ρ;χp, 1 ≤ p ≤ k − 1).

We subject (3.14) to zero initial conditions at 0: χk(0) = ∂ρχk(0) = 0.

Lemma 3.3. System (3.14) has a unique solution {χk}k≥1 verifying:

i) for any k ≥ 1, χk is a C∞ function that has an even Taylor expansion at ρ = 0 that starts at

order 2k;
ii) as ρ→ +∞, χk, k ≥ 1, has the following asymptotic expansion

(3.15) χk(ρ) =

k∑
l=0

∑
j≤2k−2l−1

α
(k)
l,j (ln ρ)lρj ,

with some coe�cients α
(k)
l,j verifying α

(k)
k,2m = 0 for all k,m. The asymptotic expansion (3.15) can

be di�erentiated any number of times with respect to ρ.

Proof. It will be convenient for us to rewrite (3.14) as

(3.16) L+v
+
k = G+

k , L−v
−
k = G−k , k ≥ 1,

where
v+
k = Reχk, v−k = Imχk,
G+
k = ReDk, G−k = ImDk,

L+ = −4− 5W 4, L− = −4−W 4.

For k = 1 (3.16) gives

(3.17) L+v
+
1 = −α0W, L−v

−
1 = νW1.
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The homogeneous equation L±f = 0 has two explicit solutions Φ±, Θ± given by

Φ−(ρ) = W (ρ), Θ−(ρ) =

(
1 +

ρ2

3

)−1/2(
ρ

3
− 1

ρ

)
,

Φ+(ρ) = W1(ρ), Θ+(ρ) = −2

(
1 +

ρ2

3

)−3/2(
1

ρ
− 2ρ+

ρ3

9

)
.

(3.18)

Therefore, solving (3.17) with zero initial conditions at the origin we obtain

(3.19)
v+

1 (ρ) = α0

∫ ρ
0 s

2(Θ+(ρ)Φ+(s)−Θ+(s)Φ+(ρ))W (s)ds
v−1 (ρ) = −ν

∫ ρ
0 s

2(Θ−(ρ)Φ−(s)−Θ−(s)Φ−(ρ))W1(s)ds.

SinceW ,W1 are C∞ even functions, v+
1 and v−1 are also C∞ functions with even Taylor expansion

at ρ = 0 that starts at order 2. Furthermore, the asymptotic expansions of v+
1 and v−1 as ρ→ +∞

can be obtained directly from (3.19). As claimed, one has

v+
1 (ρ) + iv−1 (ρ) =

∑
j≤1

α
(1)
0,jρ

j +
∑
j≤0

α
(1)
1,jρ

2j−1 ln ρ, as ρ→ +∞.

We next proceed by induction. Let us consider k > 1 and assume that we have found χi,
i = 1, · · · , k − 1, that verify i), ii).Then one can easily check that Dk is an even C∞ function
with a Taylor series at 0 starting at order 2(k − 1) and as ρ → +∞, Dk admits an asymptotic
expansion of the form

Dk(ρ) =

k−1∑
l=0

∑
j≤2k−2l−3

d
(k)
j,l (ln ρ)lρj + (ln ρ)k

∑
j≤−5

d
(k)
j,kρ

j ,

where d(k)
−2,k−1 = 0 and d

(k)
2m,k = 0, ∀m. Therefore, solving L±v

±
k = G±k with zero conditions

at ρ = 0 we get a C∞ even solution v±k which is O(ρ2k) at the origin. Finally, the asymptotic
expansion at in�nity follows directly from the representation

v±k (ρ) = −
∫ ρ

0
s2(Θ±(ρ)Φ±(s)−Θ±(s)Φ±(ρ))G±k (s)ds.

Remark 3.4. Clearly, for any k, χk is a polynomial with respect to α0 and ν of the form

χk =
∑

1≤m+n≤k
αm0 ν

nχkm,n(ρ),

where the coe�cients χkm,n are C∞ functions of ρ with an even Taylor expansion at 0 that starts
at order 2k. As ρ→ +∞, χkm,n, admits an asymptotic expansion of the form (3.15).

For any N ≥ 2, de�ne

χ(N)(t, ρ) =

N∑
k=1

t−k(1+2ν)χk(ρ).

It follows from our construction that χ(N) veri�es,∣∣∣∣ρ−k∂lρ(−it−2ν d~χ
(N)

dt
+H~χ(N) +N (χ(N)))

∣∣∣∣ ≤
CN,l,kt

−(N+1)(1+2ν) < ρ >2N−1−l−k,

(3.20)
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for any k, l ∈ N, k + l ≤ 2N , 0 ≤ ρ ≤ 10t
1
2

+ν−ε1 , t ≥ 1.
Fix N = 27, ε1 = 1+2ν

27
1 and set

ψapin = W + χapin , χapin = χ(27),

Rin = −it−2ν dψ
ap
in

dt
−4ψapin + α0t

−1−2νψapin − iνt
−1−2ν(

1

2
+ ρ∂ρ)ψ

ap
in − |ψ

ap
in |

4ψapin .

As a direct consequence of Lemma 3.3 and estimate (3.20) we obtain the following result.

Lemma 3.5. For any α0 ∈ R and any ν > −1
2 there exists T = T (α0, ν) > 0 such that for t ≥ T

the following holds.

(i) The pro�le χapin(t) veri�es

‖χapin‖L∞(0≤ρ≤10t
1
2 +ν−ε1 )

≤ C(|ν|+ |α0|)t−
1
2
−ν ,(3.21)

‖ρ−k∂lρχ
ap
in‖L∞(0≤ρ≤10t

1
2 +ν−ε1 )

≤ C(|ν|+ |α0|)t−1−2ν , 1 ≤ k + l ≤ 2,(3.22)

‖ρ−k∂lρχ
ap
in‖L2(ρ2dρ,0≤ρ≤10t

1
2 +ν−ε1 )

≤ C(|ν|+ |α0|)t−( 1
2

+ν)(k+l− 1
2

), k + l ≤ 2.(3.23)

(ii) The error Rin(t) admits the estimate

(3.24)
∥∥∥ρ−k∂lρRin(t)

∥∥∥
L2(ρ2dρ,0≤ρ≤10t

1
2 +ν−ε1 )

≤ t−3(1+2ν)/4−ε1(2N+1/2), k + l ≤ 2.

3.2.2 The self-similar region

We next consider the self-similar region 1
10 t
−ε1 ≤ |x|t−1/2 ≤ 10tε2 , where 0 < ε2 < 1/2 to be �xed

later. Write u(t, x) = eiα0 ln tt−1/4w(t, y), y = t−1/2|x|. Then, w(t) solves

(3.25) it
dw

dt
= (L+ α0)w − |w|4w,

where L = −4+ i
2

(
1
2 + y∂y

)
.

Note that in the limit ρ→ +∞, y → 0 one has, at least, formally

tν/2(W (ρ) +
∑
k≥1

t−k(1+2ν)χk(ρ)) =

t−1/4
∑
n≥0

∑
0≤l≤n

2

t−
1
4

(2n+1)(1+2ν)(ln y + (
1

2
+ ν) ln t)l

∑
k≥l

α
(k)
l,2k−n−1y

2k−n−1,
(3.26)

where α(k)
l,j , k 6= 0, are given by Lemma 3.3 and α(0)

l,j come from the expansion of W (ρ) as ρ→∞:

W (ρ) =
∑
j≤0

α
(0)
0,jρ

j , α
(0)
0,2m = 0 ∀m ∈ Z.

Equation (3.26) suggests the following ansatz for w:

(3.27) w(t, y) =
∑
n≥0

∑
0≤l≤n

2

t−
1
4

(2n+1)(1+2ν)(ln y + (
1

2
+ ν) ln t)lAn,l(y).

1This choice has no speci�c meaning here. To produce an approximate solution with an error verifying (3.10)
it is su�cient to require (2N + 3)ε1 > 3(1 + 2ν)/2, 0 < ε1 <

1+2ν
20

, see (3.24) and (3.45), (3.46).
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As it will become clear later, to prove Proposition 3.2, it is su�cient to consider only three �rst
terms of expansion (3.27). Therefore, we look for an approximate solution of the form

wapss (t, y) =t−(1+2ν)/4A0,0(y) + t−3(1+2ν)/4A1,0(y)

+ t−5(1+2ν)/4
(
A2,0(y) + (ln y + (

1

2
+ ν) ln t)A2,1(y)

)
.

Substituting this ansatz into the expression −itwdt + (L+ α0)w − |w|4w one gets

−itdw
ap
ss

dt
+ (L+ α0)wapss − |wapss |4wapss = t−(1+2ν)/4S0,0(y) + t−3(1+2ν)/4S1,0(y)

+ t−5(1+2ν)/4(S0,0(y) + (ln y + (
1

2
+ ν) ln t)S2,1(y)) + S(t, y),

(3.28)

where

Sn,0(y) = (L+ µn)An,0(y), n = 0, 1,
S2,1(y) = (L+ µ2)A2,1(y),

S2,0(y) = (L+ µ2)A2,0(y)− iνA2,1(y)− 2
y∂yA2,1(y)− A2,1(y)

y2 − |A0,0(y)|4A0,0(y),

S(t, y) = −|wapss (t, y)|4wapss (t, y) + t−5(1+2ν)/4|A0,0(y)|4A0,0(y).

Here µn = α0 + i
4(2n+ 1)(1 + 2ν).

We require that Sn,l = 0, n = 0, 1, 2, l = 0, 1, which means that the corresponding An,l have to
solve

(3.29)


(L+ µn)An,0 = 0, n = 0, 1,
(L+ µ2)A2,1 = 0,

(L+ µ2)A2,0 = iνA2,1 + 2
y∂yA2,1 +

A2,1

y2 + |A0,0|4A0,0

.

In addition, in order to have the matching with the inner region, An,l have to satisfy

(3.30) An,l(y) =
∑
k≥l

α
(k)
l,2k−n−1y

2k−n−1, y → 0.

Lemma 3.6. There exists a unique solution of (3.29) that as y → 0 admits an asymptotis

expansion of the form

(3.31) An,l(y) =
∑
k≥l

dn,k,ly
2k−n−1,

with d0,0,0 = α
(0)
0,−1, d1,1,0 = α

(1)
0,0 and d2,1,0 = α

(1)
0,−1.

Proof. First of all note that the equation (L + µ)f = 0 has a basis of solutions e1(y, µ), e2(y, µ)
such that:
(i) e1(y, µ) = 1

y + (µ− i
4)ẽ1(y, µ), where ẽ1 is an entire function of y and µ, odd with respect to y;

(ii) e2 is a entire function of y and µ, even with respect to y, and as y → 0, e2(y, µ) = 1 +O(y2).
Two �rst equations of (3.29) together with (3.31) give

(3.32) A0,0(y) = α
(0)
0,−1e1(y, µ0), A1,0(y) = α

(1)
0,0e2(y, µ1).

We next consider the remaining equations of (3.29). Equation (L + µ2)A2,1(y) = 0 and (3.31)
yield A2,1(y) = c0e1(y, µ2), with some constant c0. Then, for A2,0 we have (L + µ2)A2,0 = F ,
where

F = c0(iν +
2

y
∂y + y−2)e1(y, µ2) + |A0,0|4A0,0.
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As y → 0, F has an asymptotic expansion of the form

F (y) =
∑
i≥−2

κiy
2i−1,

with some coe�cients κi, κ−2 and κ−1 + c0 being independent of c0.
Write A2,0(y) = −κ−2

6y3 + Ã2,0(y). Then Ã2,0 solves

(3.33) (L+ µ2)Ã2,0 = F̃ ,

where F̃ = F + κ−2

6 (L+ µ2) 1
y3 has the following asymptotics as y → 0:

F̃ (y) =
∑
i≥−1

κ̃iy
2i−1, κ̃−1 = κ̃0

−1 + c0,

with κ0
−1 independent of c0. Take c0 = −κ0

−1. Then Equation (3.33) has a unique solution of the
form

Ã2,0(y) = α
(1)
0,−1e1(y, µ2) + a C∞odd function.

Remark 3.7. By uniqueness, An,l given by Lemma 3.6 verify matching conditions (3.30). Note
also that all An,l are entire functions of α0 and ν.

We next study the behavior of An,l as y → +∞. To this purpose notice that for any µ ∈ C,
equation (L + µ)f = 0 has a basis of solutions f1(y, µ), f2(y, µ) such that yf1, yf2 are smooth
functions in both variables and as y → +∞ one has

(3.34) f1(y, µ) = y−1/2+2iµ(1 +O(y−2)), f2(y, µ) = ei
y2

4 y−5/2−2iµ(1 +O(y−2)).

These asymptotics are uniform in µ on compact subsets of C and can be di�erentiated any number
of times with respect to y.
Decomposing A1,0, A2,0, A2,1 in the basis f1, f2 one gets

(3.35)
An,0(y) = dn1f1(y, µn) + dn2f2(y, µn), n = 0, 1,
A2,1(y) = d2

1f1(y, µ2) + d2
2f2(y, µ2),

with some coe�cients dnj , j = 1, 2, n = 0, 1, 2. As a consequence, as y → +∞, one has

(3.36)
A0,0(y) = d0

1y
2iα0−1−ν(1 +O(y−2)) + d0

2e
iy2/4y−2iα0−2+ν(1 +O(y−2)),

A1,0(y) = d1
1y

2iα0−2−3ν(1 +O(y−2)) + d1
2e
iy2/4y−2iα0−1+3ν(1 +O(y−2)),

A2,1(y) = d2
1y

2iα0−3−5ν(1 +O(y−2)) + d2
2e
iy2/4y−2iα0+5ν(1 +O(y−2)).

Asymptotics (3.36) can be di�erentiated any number of times with respect to y.
Let us now consider A2,0 and write it as

(3.37) A2,0(y) = 2d2
1ν ln yf1(y, µ2)− 2(ν + 1)d2

2 ln yf2(y, µ2) + Â2,0(y).

Then Â2,0(y) solves

(3.38) (L+ µ2)Â2,0 = G,
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with G = d2
2G1 +G2, where

G1 = −d2
2(1 + 2ν)(2y−1∂y + y−2 − i)f2(y, µ2),

G2 = |A0,0|4A0,0 + d2
1(1 + 2ν)(2y−1∂y + y−2)f1(y, µ2).

It follows from the asymptotics (3.34), (3.36) that Gj , j = 1, 2, has the following behavior as
y → +∞,

G1(y) = eiy
2/4y−2iα0G1,1(y), G2(y) =

3∑
m=−2

eimy
2/4y−2iα0ν(2m−1)G2,m(y),

∂lyG1,1(y) = O(y−2+5ν−l),

∂lyG2,m(y) = O(y−5−5ν−|m|(1−2ν)−l), −2 ≤ m ≤ 3,

for any l ≥ 0, provided ν is su�ciently small.
Integrating (3.38) one gets

(3.39) Â2,0(y) = λ1f1(y, µ2) + λ2f2(y, µ2) + d2
2g1(y) + g2(y).

Here λi, i = 1, 2, is a constant and gi, i = 1, 2, is the solution of (L + µ2)gi = Gi, with the
following behavior as y → +∞:

(3.40)

g1(y) = eiy
2/4y−2iα0g1,1(y),

g2(y) =
∑3

m=−2 e
imy2/4y−2iα0ν(2m−1)g2,m(y),

∂lyg1,1(y) = O(y−2+5ν−l),

∂lyg2,m(y) = O(y−5−5ν−m(1−2ν)−l), m = 0, 1

∂lyg2,m(y) = O(y−7−5ν−|m|(1−2ν)−l), m = −2,−1, 2, 3,

for any l ≥ 0.
Denote

ψapss (t, ρ) = t−(1+2ν)/4wapss (t, t−(1+2ν)/2ρ),

χapss (t, ρ) = ψapss (t, ρ)−W (ρ),

Rss(t, ρ) = t−5(1+2ν)/4S(t−(1+2ν)/2ρ, t).

The next lemma is a direct consequence of (3.30), (3.34), (3.36), (3.37), (3.39) and (3.40).

Lemma 3.8. For any α0, ν ∈ R su�ciently small there exists T (α0, ν) > 0 such that for t ≥
T (α0, ν) the following holds.

(i) χapss (t) veri�es

‖χapss (t)‖
L∞( 1

10
t

1
2 +ν−ε1≤ρ≤10t

1
2 +ν+ε2 )

≤ Ct−
1
2
−ν ,(3.41)

‖ρ−k∂lρχapss (t)‖
L∞( 1

10
t

1
2 +ν−ε1≤ρ≤10t

1
2 +ν+ε2 )

≤ Ct−1−2ν , k + l = 1,(3.42)

‖ρ−k∂lρχapss (t)‖
L∞( 1

10
t

1
2 +ν−ε1≤ρ≤10t

1
2 +ν+ε2 )

≤ C(|α0|+ |ν|)t−1−2ν , k + l = 2,(3.43)

‖ρ−k∂lρχapss (t)‖
L2(ρ2dρ, 1

10
t

1
2 +ν−ε1≤ρ≤10t

1
2 +ν+ε2 )

≤ Ct−(1+2ν)(1−2ε2)/4, 1 ≤ k + l ≤ 2,(3.44)

(ii) The error Rss(t) admits the estimate

(3.45) ‖ρ−k∂lρRss(t)‖L2(ρ2dρ, 1
10
t

1
2 +ν−ε1≤ρ≤10t

1
2 +ν+ε2 )

≤ Ct−(2+ 1
4

)(1+2ν)+5ε1/2, 0 ≤ k + l ≤ 2.
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(iii) The di�erence ψapin (ρ, t)− ψapss (t, ρ) veri�es

(3.46) |∂lρ(ψ
ap
in (t)− ψapss (t))| ≤ Cρ−2−lt−(1+2ν)(ln t+ t3(1+2ν)/2−(2N+3)ε1).

for any l ≥ 0 and 1
10 t

1
2

+ν−ε1 ≤ ρ ≤ 10t
1
2

+ν−ε1.

3.2.3 The remote region

We next consider the remote region |x| ≥ 1
10 t

1/2+ε2 . In this region we take as an approximate
solution to (3.1) the following radial pro�le:

uapout(t, x) = v1(t, x) + v2(t, x) + v3(t, x),

where

v1(t, x) = eiα0 ln t[d0
1t
−(1+ν)/2f1(y, µ0) + d1

1t
−(2+3ν)/2f1(y, µ1)], y = t−1/2|x|,

v2(t, x) = Θδ

(
x
t

)
eiα0 ln t

[
d0

2t
−(1+ν)/2f2(y, µ0) + d1

2t
−(2+3ν)/2f2(y, µ1)+

+t−(3+5ν)/2
(
d2

2g1(y)−
(
d2

2(2ν + 1) ln
(
|x|
t

)
− λ2

)
f2(y, µ2)

)]
,

Θδ(ξ) = Θ( ξδ ), Θ ∈ C∞0 (R3) is radial, Θ(ξ) =

{
1 if |ξ| ≤ 1
0 if |ξ| ≥ 2

.

Finally, v3(t, x) is given by

v3(t, x) =
ei
|x|2
4t

t5/2
v̂3

(x
t

)
, v̂3 = −iz∆Θδ − 2i∇z · ∇Θδ,

where

z(ξ) = d0
2|ξ|−2iα0−2+ν + d1

2|ξ|−2iα0−1+3ν − (d2
2(2ν + 1) ln |ξ| − λ2)|ξ|−2iα0+5ν .

It follows from the asymptotics (3.34) that for t ≥ T with some T = T (δ) > 0 and any l ≥ 0, one
has

|∇lv1(t, x)| ≤ Cl|x|−l−1−ν ,
1

10
t1/2+ε2 ≤ |x|,

|∇lv2(t, x)| ≤ Cl
t3/2

∣∣∣x
t

∣∣∣l−2+ν
,

1

10
t1/2+ε2 ≤ |x| ≤ 2δt.

(3.47)

Furthermore, v2 can be written as

v2(t, x) = v2,0(t, x) + v2,1(t, x),

v2,0(t, x) =
ei
|x|2
4t

t3/2
Θδ

(x
t

)
z
(x
t

)
, v2,1(t, x) =

ei
|x|2
4t

t3/2
Θδ

(x
t

)
v̂2,1(t, x),

(3.48)

with v̂2,1 verifying, for any l ≥ 0,

(3.49) |∇lv̂2,1(t, x)| ≤ Clt3−ν |x|−l−4+ν ,
1

10
t1/2+ε2 ≤ |x| ≤ 2δt.

We next address v3. One has

‖∇lv3(t)‖L∞(|x|≥ 1
10
t1/2+ε2 ) ≤ Clt

−5/2δ−4+l+ν ,

‖∇lv3(t)‖L2(|x|≥ 1
10
t1/2+ε2 ) ≤ Clt

−1δ−5/2+l+ν ,
(3.50)
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for any l ≥ 0 and t ≥ T (δ).
As a direct consequence of estimates (3.47), (3.49), (3.50), one obtains

‖uapout(t)‖L∞(|x|≥ 1
10
t

1
2 +ε2 )

≤ Ct−( 1
2

+ε2)(1+ν),

‖|x|−1uapout(t)‖L∞(|x|≥ 1
10
t

1
2 +ε2 )

≤ Ct−5/4,

‖∇luapout(t)‖L∞(|x|≥ 1
10
t

1
2 +ε2 )

≤ Ct−5/4, l = 1, 2,

‖∇luapout(t)‖L2(|x|≥ 1
10
t

1
2 +ε2 )

≤ Cδν+l−1/2, l = 1, 2,

‖∇l(uapout(t)− v2,0(t))‖
L2(|x|≥ 1

10
t

1
2 +ε2 )

≤ Ct−
1
2

( 1
2

+ε2)(1+2ν), l = 1, 2,

‖|x|−1(uapout(t)− v2,0(t))‖
L2(|x|≥ 1

10
t

1
2 +ε2 )

≤ Ct−
1
2

( 1
2

+ε2)(1+2ν)/2,

(3.51)

provided 3
8 ≤ ε2 <

1
2 , ν is su�ciently small and t ≥ T (δ).

Denote
uapss (t, x) = eiα0 ln tt−1/4wapss (t, t−1/2|x|),

and consider the di�erence uapss (t, x)− uapout(t, x). For 1
10 t

1/2+ε2 ≤ |x| ≤ 10t1/2+ε2 one has

(3.52) uapss (t, x)− uapout(t, x) = eiα0 ln tt−(3+5ν)/2((d2
1(1 + 2ν) ln |x|+ λ1)f1(y, ν2) + g2(y)),

which together with (3.34) and (3.40) implies that

(3.53) |∇l(uapout − uapss )| ≤ Cl(| ln t|t−( 1
2

+ε2)(3+5ν+l) + t−( 1
2

+ε2)(3+5ν+1)),

for any l ≥ 0 and 1
10 t

1/2+ε2 ≤ |x| ≤ 10t1/2+ε2 , provided 3
8 ≤ ε2 <

1
2 and ν is su�ciently small.

We next analyze the error Rout(t) = −idu
ap
out
dt (t)−4uapout(t)− |u

ap
out(t)|4u

ap
out(t). It has the form

Rout(t, x) = −e
i
|x|2
4t

t9/2

[
tv̂2,1(t, x)∆Θδ

(x
t

)
+ 2t2∇v̂2,1(t, x) · ∇Θδ

(x
t

)
+∆v̂3

(x
t

)]
− |uapout|4u

ap
out.

(3.54)

Combined with (3.47), (3.49), (3.50), representation (3.54) gives for 3
8 ≤ ε2 <

1
2 and ν su�ciently

small,

(3.55) ‖∇lRout(t)‖L2(|x|≥ 1
10
t1/2+ε2 ) ≤ Ct

− 9
4

(1+2ν), t ≥ T (δ), l = 0, 1, 2.

3.2.4 Proof of Proposition 3.2

We are now in position to conclude the proof of Proposition 3.2. Fix ε2 such that 3
8 ≤ ε2 <

1
2 and

consider the radial pro�le uap(t, x) de�ned by

uap(t, x) =Θ(t−1/2+ε1x)uapin(t, x) + (1−Θ(t−1/2+ε1x))Θ(t−1/2−ε2x)uapss (t, x)

+ (1−Θ(t−1/2−ε2x))uapout(t, x), x ∈ R3,

where uapin(t, x) = eiα0 ln ttν/2ψapin (t, tν |x|). Write uap as uap(t, x) = eiα0 ln ttν/2(W (y) + χap(t, y)),
y = tνx. By Lemma 3.5 (estimates (3.21), (3.22)), Lemma 3.8 (estimates (3.41), (3.42), (3.43))
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and (3.51) one has

‖χap(t)‖L∞ ≤ Ct−(1+2ν)/2(3.56)

‖|y|−1χap(t)‖L∞ + ‖∇χap(t)‖L∞ ≤ Ct−1−2ν ,(3.57)

‖|y|−2χap(t)‖L∞ + ‖|y|−1∇yχap(t)‖L∞ ≤ C(|ν|+ |α0|)t−1−2ν ,(3.58)

‖∇2χap(t)‖L∞ ≤ C(|ν|+ |α0|)t−1−2ν .(3.59)

All the estimates stated in this subsection are valid for ν su�ciently small and t ≥ T (α0, ν, δ).
Furthermore, it follows from Lemma 3.5 (estimate (3.23)), Lemma 3.8 (estimate (3.43)) and two
last inequalities in (3.51) that

‖∇lχap(t)‖L2(|y|≤10t1/2+ν+ε2 ) ≤ Ct
−(1+2ν)(1−2ε2)/4, l = 1, 2,

‖∇l(χap(t)− χap0 (t))‖L2(|y|≥t1/2+ν+ε2 ) ≤ Ct
−(1+2ν)/4, l = 1, 2,

(3.60)

where χap0 (t, y) = e−iα0 ln tt−ν/2v2,0(t, t−νy).
Inequalities (3.60) imply, in particular,

‖∇lχap(t)‖L2(R3) ≤ Ct−ν(l−1)δν+l−1/2, l = 1, 2.

Moreover, introducing ζ∗(x) = π−3/2e3iπ/4
∫
R3 dξe

ix·ξΘδ(2ξ)z(2ξ) and observing that ζ∗ ∈ Ḣs(R3)
for any s > 1/2− ν, and ‖∇l(v2,0 − ei∆tζ∗)‖L2(|x|≥tγ) → 0 as t→ +∞ for any γ > 1−2ν

3−2ν and any
l ≥ 1, one obtains that

eiα(t)χap(t, λ(t)·)− eit∆ζ∗ → 0 in Ḣ1 ∩ Ḣ2 as t→ +∞.

This concludes the proof of the �rst part of Proposition 3.2.
We next consider the error R = −iduapdt −∆uap − |uap|4uap. It has the form

R = E1 + E2 + E3 + E4.

where

E1 =i(
1

2
− ε1)t−1(uapin(t, x)− uapss (t, x))Θ̃(t−1/2+ε1x)

− 2t−1/2+ε1(∇uapin(t, x)−∇uapss (t, x)) · ∇Θ(t−1/2+ε1x)

− t−1+2ε1(uapin(t, x)− uapss (t, x))∆Θ(t−1/2+ε1x),

E2 =i(
1

2
+ ε2)t−1(uapss (t, x)− uapout(t, x))Θ̃(t−1/2−ε2x)

− 2t−1/2−ε2(∇uapss (t, x)−∇uapout(t, x)) · ∇Θ(t−1/2−ε2x)

− t−1−2ε2(uapss (t, x)− uapout(t, x))∆Θ(t−1/2−ε2x),

Θ̃(ξ) = ξ · ∇Θ(ξ),

and E3, E4 are given by

E3 =Θ(t−1/2+ε1x)Rin(t, x) + (1−Θ(t−1/2+ε1x))Θ(t−1/2−ε2x)Rss(t, x)

+ (1−Θ(t−1/2−ε2x))Rout(t, x),

E4 =Θ(t−1/2+ε1x)(|uapin |
4uapin − |u

ap|4uap)
+ (1−Θ(t−1/2+ε1x))Θ(t−1/2−ε2x)(|uapss |4uapss − |uap|4uap)
+ (1−Θ(t−1/2−ε2x))(|uapout|4u

ap
out − |uap|4uap).
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Here
Rin(t, x) = eiα0 ln tt5ν/2Rin(t, tν |x|), Rss(t, x) = eiα0 ln tt5ν/2Rss(t, tν |x|).

First we adress E1. By lemma 3.8 (iii) we have

(3.61) ‖E1‖H2 ≤ Ct−9(1+2ν)/4+ν+5ε1/2 ln t ≤ Ct−(2+ 3
20

)(1+2ν).

Similarly, from (3.53) we get for E2:

(3.62) ‖E2‖H2 ≤ Ct−1−( 1
2

+ε2)( 3
2

+5ν) ln t ≤ Ct−(2+ 1
4

)(1+2ν).

Next, we consider E3. From Lemma 3.5 (ii) , Lemma 3.8 (ii) and (3.55) it is apparent that

(3.63) ‖E3‖H2 ≤ Ct−
9
4

(1+2ν)+5ε1/2 ≤ Ct−(2+ 3
20

)(1+2ν).

Finally, applying Lemma 3.5 (estimates (3.21), (3.22)), Lemma 3.8 (estimates (3.41), (3.42),(3.43),(3.46))
and (3.51), (3.53), it is not di�cult to check that

(3.64) ‖E4‖H2 ≤ Ct−3(1+2ν).

Combining (3.61), (3.62), (3.63), (3.64), we get (3.10), which concludes the proof of Proposition
3.2.

3.3 Construction of an exact solution

We are now in position to prove Theorem 3.1. Consider (3.1) and write u(t, x) = eiα0 ln ttν/2Ψ(τ, y),

where y = tνx and τ = t1+2ν

1+2ν . Further decomposing Ψ as

Ψ(τ, y) = Ψap(τ, y) + f(τ, y), Ψap(τ, y) = e−iα0 ln tt−ν/2uap(t, x),

where uap is the approximate solution of (3.1) given by Proposition (3.2), we get the following
equation for the remainder f

(3.65) i
d~f

dτ
= H(τ)~f + F(f) + r, ~f =

(
f

f̄

)
,

where

H(τ) = H + τ−1l,

H = −4σ3 − 3W 4σ3 − 2W 4σ3σ1, l =
α0

2ν + 1
σ3 − i

ν

2ν + 1
(
1

2
+ y · ∇),

F(f) =

(
F (f)

−F (f)

)
, F (f) = F1(f) + F2(f)

F1(f) = V1(τ)f + V2(τ)f,

V1(τ) = 3(W 4 − |Ψap(τ)|4), V2(τ) = 2(W 4 − (Ψap(τ))2|Ψap(τ)|2),

F2(f) = −|Ψap + f |4(Ψap + f) + |Ψap|4Ψap + 3|Ψap|4f + 2(Ψap)2|Ψap|2f,

r =

(
r

−r

)
, r(τ, y) = t−5ν/2e−iα0 ln tR(t, x).
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R being the error given by Proposition 3.2. Note that by Proposition 3.2 one has

‖Vi(τ)‖W 2,∞(R3) ≤ C(|α0|+ |ν|)τ−1, i = 1, 2,(3.66)

‖Ψap(τ)‖W 2,∞(R3) ≤ C,(3.67)

‖r(τ)‖H2(R3) ≤ Cτ−2− 1
8 ,(3.68)

for any τ ≥ τ0 with some τ0 > 0.
Our intention is to solve (3.65) with zero condition at τ = +∞ by a �x point argument. To carry

out this analysis we will need some energy type estimates for the linearized equation id
~f
dτ = H(τ)~f .

The required estimates are collected in the next subsection, their proofs being removed to Section
4.

3.3.1 Linear estimates

We start by recalling some basic spectral properties of the operator H (a more detailed discussion
and the proofs can be found, for example, in [19]). Since we are considering only radial solutions,
we will view H as an operator on L2

rad(R3;C2) with domain D(H) = H2
rad(R3;C3). H satis�es

the relations
σ3Hσ3 = H∗, σ1Hσ1 = −H.

The essential spectrum of H �lls up the real axis. The discrete spectrum of H consists of two
simple purely imaginary eigenvalues iλ0, −iλ0, λ0 > 0. The corresponding eigenfunctions ζ+,
ζ− are in S(R3) and can be chosen in such a way that ζ− = σ1ζ+ = ζ̄+. Notice also that
HW

(
1
−1

)
= HW1

(
1
1

)
= 0. which means that H has a resonance at zero.

Consider the projection of the linearized equation id
~f
dτ = H(τ)~f onto the essential spectrum of H:

(3.69) i
d~f

dτ
= PH(τ)P ~f.

Here P is the spectral projection of H onto the essential spectrum given by

P = I − P+ − P−, P± =
< ·, σ3ζ∓ >

< ζ±, σ3ζ∓ >
ζ±,

< ·, · > is the scalar product in L2(R3,C2).
Let U(τ, s) be the propagator associated to Equation (3.69). In Section 4 we prove the following
results.

Proposition 3.9. There exists a constant C > 0 such that

‖U(τ, s)f‖H2 ≤ C
( s
τ

)C(|α1|+|ν1|)
‖f‖H2 ,

for any s ≥ τ > 0 and any f ∈ H2
rad. Here α1 = α0

1+2ν , ν1 = ν
1+2ν .

3.3.2 Contraction argument

We now transforme (3.65) into a �x point problem. Rewrite (3.65) in the following integral form

(3.70) f(τ) = J(f)(τ),
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where

J(f)(τ) = J0(f)(τ) + J+(f)(τ) + J−(f)(τ),

J0(f)(τ) = i

∫ +∞

τ
dsU(τ, s)P (F1(f(s)) + r(s)),

J+(f)(τ) = i

∫ +∞

τ
dseλ0(τ−s)P+(F2(f(s)) + r(s)),

J−(f)(τ) = −i
∫ τ

τ1

dse−λ0(τ−s)P−(F2(f(s)) + r(s)),

F1(f) = F(f) + s−1l(P+ + P−)~f,

F2(f) = F(f) + s−1l ~f,

τ1 ≥ max{τ0, 1} to be �xed later (slightly abusing notation we identify in (3.70) C2 vectors of the
form

(f
f̄

)
with their �rst component f).

Our intention is to view J as a mapping in the space C([τ1,+∞), H2
rad) equipped with the norm

‖|f |‖ = sup
τ≥τ1
‖f(τ)‖H2τ1+1/16

and to show that J is contraction of the unite ball ‖|f |‖ ≤ 1 into itself provided |α0| + |ν| is
su�ciently small and τ1 is chosen su�ciently large. Indeed, by (3.67), (3.66) one has, for any
f, g ∈ H2 with ‖f‖H2 ≤ 1, ‖g‖H2 ≤ 1,

‖F1(f)−F1(g)‖H2 ≤ C(‖f‖H2 + ‖g‖H2 + (|α0|+ |ν|)τ−1)‖f − g‖H2 ,

‖P±(F2(f)−F2(g))‖ ≤ C(‖f‖H2 + ‖g‖H2 + (|α0|+ |ν|)τ−1)‖f − g‖H2 ,

which together with (3.68) and Proposition 3.9 gives

‖|J(f)‖| ≤ 1

2
+ Cτ

−1/16
1 , ‖|J(f)− J(g)‖| ≤ (

1

2
+ Cτ

−1/16
1 )‖|f − g‖|,

for any f, g ∈ {‖|h‖| ≤ 1}, provided |α0| + |ν| is su�cientlt small. This means that for τ1

su�ciently large, J is a contraction of the unit ball ‖|f‖| ≤ 1 into itself and consequently, has a
unique �xe point f that satis�es

‖f(τ)‖H2 ≤ τ−1−1/16, ∀τ ≥ τ1,

which together with Proposition 3.2 gives Theorem 3.1.

3.4 Linearized evolution

In this section we prove Proposition 3.9. The proof will be achieved by combining the results
of [19] with a careful spectral analysis of the operator H around zero energy. More precisely, in
subsection 1 we consider the operator H as before, restricted to the subspace of radial functions,
and construct a basis of Jost solutions for the equation Hζ = Eζ. In subsection 2 we study
the spectral decomposition of H near E = 0. Finally, in subsection 3 we prove Proposition 3.9
by combining the results of the previous two subsections with the coercivity properties of H
established in [19].
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3.4.1 Solutions to the equation Hζ = Eζ.

In this subsection we construct a basis of Jost solutions of the equation Hζ = Eζ, E ∈ R. Since
the subject is completely standard we will only brie�y sketch the proofs (see also [9], [34] for a
closely related construction in the context of energy subcritical NLS). Recall that

H = −(∂2
ρ + 2ρ−1∂ρ)σ3 + V (ρ), V =

(
V1 V2

−V2 −V1

)
,

V1(ρ) = −3W 4(ρ), V2(ρ) = −2W 4(ρ), W (ρ) = (1 + ρ2/3)−1/2.

We emphasize that V (ρ) is a smooth function of ρ that decays as ρ−4 as ρ → ∞. Since σ1H =
−Hσ1 it su�ces to consider the case E ≥ 0, so we write E = k2, k ≥ 0. It will be convenient for
us to remove the �rst derivative in H. In order to do that set f = ρζ, then one gets

(3.71) H̃f = Ef, H̃ = −∂2
ρσ3 + V (ρ).

We will consider the operator H̃ on R, to recover the original radial R3 problem it su�ces to
restrict H̃ to the subspace of odd functions.
We start by constructing the most rapidly decaying solution to (3.71).

Lemma 3.10. For all k ≥ 0 there exists a real solution f3(ρ, k) of the equation

(3.72) H̃f = k2f,

such that f3(ρ, k) = e−kρχ3(ρ, k), where χ3 is C∞ function of (ρ, k) ∈ R×R∗+ verifying χ3(ρ, k) =(
0
1

)
+ a(ρ, k),

|∂lρ∂mk a(ρ, k)| ≤ Cl < ρ >−2−l+m (1 + k < ρ >)−1−m,m = 0, 1,

|∂lρ∂2
ka(ρ, k)| ≤ Cl < ρ >−l (1 + k < ρ >)−3 ln

(
1

k < ρ >
+ 2

)
,

(3.73)

for all ρ ≥ 0, k > 0 and l ≥ 0.

Proof. One writes the following integral equation for χ3:

χ3(ρ, k) =

(
0

1

)
−
∫ +∞

ρ
K(ρ− s, k)σ3V (s)χ3(s, k)ds,

K(ξ, k) =

( sin kξ
k 0

0 sinh kξ
k

)
ekξ.

The statement of the lemma follows then from the estimate

|∂lkK(ξ, k)| ≤ Cl
|ξ|l+1

< kξ >l+1
, ξ ≤ 0, k ≥ 0, l ≥ 0

and the decay properties of V :

|∂lρV (ρ)| ≤ Cl < ρ >−4−l, ρ ∈ R, l ≥ 0,

by standard Volterra iterations.

We next construct the oscillating solutions to Equation (3.72).
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Lemma 3.11. For all k ≥ 0 there exists a solution f1(ρ, k) of Equation (3.72) such that f1 is a

smooth function of (ρ, k) ∈ R× R∗+ of the form f1(ρ, k) = eikρ(
(

1
0

)
+ b(ρ, k)), where b veri�es

|b(ρ, k)| ≤ C(< ρ >−2 +ke−kρ),

|∂ρb(ρ, k)| ≤ C(< ρ >−3 +k2e−kρ),

|∂kb(ρ, k)| ≤ C(< ρ >−1 + < kρ > e−kρ),

|∂2
ρkb(ρ, k)| ≤ C(< ρ >−2 +k < kρ > e−kρ),

(3.74)

for all ρ ≥ 0, 0 ≤ k . 1. In addition, one has

|∂2
kb(ρ, k)| ≤ C ln

(
1

k
+ 1

)
,

for all 0 ≤ ρ . 1, 0 < k . 1.

Proof. To construct f1 we will reduce the order of the system (3.72) by means of the substitution
f1 = z0f3 + z1

(
1
0

)
. Further setting z2 = z′0f3,2, f3 =

(f3,1

f3,2

)
, we get that z =

(
z1
z2

)
solves

− z′′1 − k2z1 + V11z1 + V12z2 = 0,

− z′2 + kz2 + V21z1 + V22z2 = 0.
(3.75)

Here

V11 = V1 − V2
f3,1

f3,2
, V12 =

2

f2
3,2

(f3,1f
′
3,2 − f ′3,1f3,2),

V21 = V2, V22 = − 1

f3,2
(f ′3,2 + kf3,2).

By Lemma 3.10, there exists R > 0 independent of k, such that the functions Vij(ρ, k), i, j = 1, 2
are smooth in both variables for k > 0 and ρ ≥ R and verify for all l ≥ 0, ρ ≥ R, k > 0,

|∂lρVj1(ρ, k)| ≤ Cl < ρ >−4−l, j = 1, 2,

|∂lρ∂kV11(ρ, k)| ≤ Cl < ρ >−5−l< kρ >−2,

|∂lρ∂2
kV11(ρ, k)| ≤ Cl < ρ >−4−l< kρ >−3 ln

(
1

kρ
+ 2

)
,

|∂lρ∂mk Vj2(ρ, k)| ≤ Cl < ρ >−3−l+m< kρ >−1−m, j = 1, 2, m = 0, 1,

|∂lρ∂2
kV22(ρ, k)| ≤ Cl < ρ >−1−l< kρ >−3 ln

(
1

kρ
+ 2

)
,

(3.76)

Writing for z the following integral equation

z(ρ, k) = eikρ
(

1

0

)
−
∫ ∞
ρ

(
sin k(ρ−s)

k 0

0 e−k(s−ρ)

)(
V11 V12

V21 V22

)
z(s, k)ds,

and taking into account (3.76), one proves easily the existence of a smooth solution satisfying

|∂lρ∂mk (e−ikρz1 − 1)|+ < ρ > |∂lρ∂mk (e−ikρz2)| ≤ Cl < ρ >−2−l+m< kρ >−1−m, m = 0, 1,

|∂nρ ∂2
k(e−ikρz1 − 1)|+ |∂nρ ∂2

k(e−ikρz2)| ≤ C ln

(
1

kρ
+ 2

)
, n = 0, 1,

(3.77)
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for all ρ ≥ R, k > 0, l ≥ 0.
To reconstruct f1, we set

z0(ρ, k) =

∫ ρ

R

z2(s, k)

f3,2(s, k)
ds−

∫ +∞

R

z2(s, 0)

f3,2(s, 0)
ds.

Then, for ρ ≥ R, the statement of Lemma 3.11 follows directly from (3.77) and Lemma 3.10. To
cover the case x ≤ R one can invoke the Cauchy problem with initial data at ρ = R.

Note that since k2 ∈ R, f2(·, k) = f1(·, k) is also a solution of (3.72).

Remark 3.12. Recall that the equation H̃f = 0 has a basis of explicit solutions ρΦ±(ρ)
(

1
±1

)
, ρΘ±(ρ)

(
1
±1

)
,

with Φ±, Θ± given by (3.18). Comparing the behavior of ρΦ±, ρΘ±, with the asymptotics of
f1(ρ, 0), f3(ρ, 0), one gets

(3.78) f1(ρ, 0) =
1

2
ρ(ξ0(ρ) + ξ1(ρ)), f3(ρ, 0) =

1

2
ρ(ξ1(ρ)− ξ0(ρ)),

where ξ0 = 1√
3
W
(

1
−1

)
, ξ1 = − 2√

3
W1

(
1
1

)
.

Next, we construct an exponentially growing solution at +∞.

Lemma 3.13. For any k > 0, there exists a solution f4(ρ, k) to (3.72) such that f4 = ekρχ4 with

χ4 verifying

∂lρ(χ4(ρ, k)−
(

0

1

)
) = Ok(ρ

−3−l), ρ→ +∞.

Proof. We construct f4 by means of the following integral equation:

χ4(ρ, k) =

(
0

1

)
+

∫ +∞

ρ

(
0 0
0 1

2k

)
V χ4(s, k)ds

+

∫ ρ

R1

(
ek(s−ρ) sin k(ρ−s)

k 0

0 e2k(s−ρ)

2k

)
V χ4(s, k)ds.

(3.79)

For k > 0 and R1 su�ciently large (depending on k), the operator generating (3.79) is small
on the space of bounded continuous functions. Therefore, (3.79) has a solution χ4 verifying
|χ4(ρ, k)| ≤ C, ρ ≥ R1. Iterating this bound one gets that χ4(ρ, k) −

(
0
1

)
= Ok(ρ

−3) as ρ → ∞.
Finally, the estimates for the derivatives can be obtained di�erentiating (3.79).

We now brie�y describe some properties of the solutions fj , j = 1, . . . , 4 that we will need later.
Recall that the Wronskian w(f, g) = 〈f ′, g〉R2 − 〈f, g′〉R2 does not depend on ρ if f and g are
solutions of (3.71).
The estimates of Lemmas 3.10, 3.11, 3.13 lead to the relations:

(3.80) w(f1, f2) = 2ik, w(f1, f3) = w(f2, f3) = 0, w(f3, f4) = −2k, k > 0,

the three �rst relations being valid for k = 0 as well. Notice also that by Lemmas 3.10, 3.11,
∂kf1(ρ, 0), ∂kf3(ρ, 0), are solutions of the equation H̃f = 0 verifying for ρ ≥ 0,

∣∣∂kf1(ρ, 0)−
(
iρ

0

)∣∣ ≤ C, ∣∣∂2
kρf1(ρ, 0)−

(
i

0

)∣∣ ≤ C

< ρ >2
,

∣∣∂kf3(ρ, 0) +

(
0

ρ

)∣∣ ≤ C

< ρ >
,
∣∣∂2
kρζ3(ρ, 0) +

(
0

1

)∣∣ ≤ C

< ρ >2
,
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As a consequence, one has

w(∂kf1|k=0, f1|k=0) = i, w(∂kf1|k=0, f3|k=0) = 0,

w(∂kf3|k=0, f1|k=0) = 0, w(∂kf3|k=0, f3|k=0) = −1.
(3.81)

In addition to scalar Wronskian we will use matrix Wronskians. If F , G are 2×2 matrix solutions
of (3.72), their matrix Wronskian

W (F,G) = F t
′
G− F tG′

is independent of ρ.
Set gj(ρ, k) = fj(−ρ, k), j = 1, . . . , 4. Since the potential V is even, gj , j = 1, . . . , 4 are again
solutions of (3.72) which have the same asymptotic behavior as ρ→ −∞ as fj as ρ→ +∞.
Consider the matrix solutions F , G, de�ned by

F = (f1, f3), G = (g1, g3).

Denote D(k) = W (F,G). It follows from Lemmas 3.10, 3.11 that D is smooth for k > 0 and
admits the estimate

(3.82) |∂2
kD(k)| ≤ C ln

(
1

k
+ 1

)
, 0 < k . 1.

In addition, by (3.78), (3.80), (3.81), one has

(3.83) D(0) = 0, ∂kD(0) =

(
−2i 0

0 2

)
.

3.4.2 Scattering solutions and the distorted Fourier transform in a vicinity of

zero energy

Set

(3.84) F(ρ, k) = F (ρ, k)s(k),

where s(k) = Dt−1
(k)
(

2ik
0

)
. By (3.82), (3.83), s =

(
s1
s2

)
is a smooth function of k for 0 < k < k0

(k0 su�ciently small), continuous up to k = 0, verifying

s1(0) = −1, s2(0) = 0,

|∂ks(k)| ≤ C| ln k|, 0 < k ≤ k0.
(3.85)

By construction, one has
w(F , g1) = 2ik, w(F , g3) = 0,

for any 0 ≤ k < k0. As a consequence,

(3.86) F(ρ, k) = r1(k)g1(ρ, k) + g2(ρ, k) + r2(k)g3(ρ, k), 0 ≤ k < k0,

with some coe�cients r1(k), r2(k) that, by (3.78), (3.85), verify

(3.87) r1(0) = r2(0) = 0.

Computing the Wronskians w(F , F̄) and w(F , Ḡ), where G(ρ, k) = F(−ρ, k), one gets

|s1(k)|2 + |r1(k)|2 = 1, r1(k)s1(k) + r1(k)s1(k) = 0, 0 ≤ k < k0.



94
Chapter 3. Nondispersive vanishing and blow up at in�nity for the energy critical nonlinear

Schrödinger equation in R3

One can write the following Wronskian representation for r1:

(3.88) r1(k) = s1(k)
w(g2, f1)

2ik
+ s2(k)

w(g2, f3)

2ik
, k 6= 0.

Using (3.85) and the relations

w(g2, f3)|k=0 = w(g2, f1)|k=0 = ∂kw(g2, f1)|k=0,

one easily deduces from (3.88) that r1 is smooth for 0 < k < k0, continuous up to k = 0, and
veri�es

(3.89) |∂kr1(k)| ≤ C| ln k|, 0 < k < k0,

which in its turn, implies that r2 is smooth for 0 < k < k0, continuous up to k = 0 and admits a
similar estimate:

(3.90) |∂kr2(k)| ≤ C| ln k|, 0 < k < k0.

Introduce the following odd solution of (3.72):

e(ρ, k) = F(−ρ, k)−F(ρ, k).

By (3.84), (3.86),

(3.91) e = a1f1 + f2 + a2f3, aj = rj − sj , j = 1, 2.

It follows from (3.85), (3.87), (3.89), (3.90) that

(3.92) a1(0) = 1, a2(0) = 0,

and

(3.93) |∂kaj | ≤ C| ln k|, 0 < k < k0, j = 1, 2,

which together with Lemmas 3.10, 3.11 implies the following result.

Lemma 3.14. One has:

(i) e(ρ, k) = e0(ρ, k)+e1(ρ, k), where e0(ρ, k) = a1(k)eikρ
(

1
0

)
+e−ikρ

(
1
0

)
and the remainder e1(ρ, k)

admits the estimates

|e1(ρ, k)| ≤ C(< ρ >−2 +k| ln k|e−kρ), ρ ≥ 0,

|∂ke1(ρ, k)| ≤ C| ln k|(< ρ >−1 +e−kρ/2), ρ ≥ 0,

‖e1(·, k)‖L2(R+) ≤ C,

‖ρe1(·, k)‖L2(R+) + ‖∂ke1(·, k)‖L2(R+) ≤ Ck−1/2| ln k|,

(3.94)

for any 0 < k ≤ k0.

(ii) (ρ∂ρ − k∂k)e(ρ, k) = eikρ
(

1
0

)
k∂ka1(k) + e2(ρ, k), with e2(ρ, k) verifying

|e2(ρ, k)| ≤ C(< ρ >−1 +k| ln k|e−kρ/2), ρ ≥ 0,

‖e2(·, k)‖L2(R+) ≤ C,
(3.95)

for any 0 < k ≤ k0.
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For 0 < κ < k0, introduce the operators Eκ : L2(R+,C2)→ L2(R3,C2),

(EκΦ)(y) =
1

23/2π

∫
R+

dkθκ(k)E(y, k)Φ(k), Φ ∈ L2(R+,C2),

where E(y, k) is a 2× 2 matrix given by

E(y, k) = ρ−1(e(ρ, k), σ1e(ρ, k)), ρ = |y|,

θκ(k) = θ(κ−1k), θ is a C∞ even function verifying θ(k) =

{
1 if |k| ≤ 1/4
0 if |k| ≥ 1/2

.

Since e(ρ, k) is a solution of the equation H̃e = k2e, one has HEκ = Eκk2σ3.
By Lemma 3.14 (i), the operators Eκ are bounded uniformly with respect to κ ≤ k0. The action
of the adjoint operators E∗κ : L2(R3,C2)→ L2(R+,C2) is given by

(E∗κu)(k) =
1

23/2π
θκ(k)

∫
R3

dyE∗(y, k)u(y), u ∈ L2(R3,C2).

Clearly,

(3.96) E∗κσ3ζ± = 0

for any 0 < κ ≤ k0.
The following relation is a standard consequence of the asymptotics given by Lemma 3.14 (i),

(3.97) E∗κ2
σ3Eκ1σ3 = θκ1(k)θκ2(k),

for any 0 < κ1, κ2 ≤ k0.

Remark 3.15. Notice that because of the presence of the cut o� function θκ, Eκ is bounded as
an operator from L2([0, k0]) to Hm(R3) for any m ≥ 0, uniformly in κ ≤ k0.

We next introduce quasi-resonant functions hκ(y), 0 < κ ≤ k0, by setting

hκ =
√

2Eκ
(

1

0

)
.

Lemma 3.16. For any 0 < κ ≤ k0, hκ ∈< y >−1 L2(R3) and as κ→ 0, one has

(3.98) ‖hκ‖L2(R3) = O(κ1/2), ‖yhκ‖L2(R3) = O(κ−1/2),

(3.99) < hκ, σ3(ξ0 + ξ1) >= 4π +O(κ1/2 lnκ), < hκ, σ3(ξ1 − ξ0) >= O(κ1/2 lnκ).

Proof. Applying Lemma 3.14 (i), we decompose hκ as follows:

hκ(y) = hκ,0(y) + hκ,1(y) + hκ,2(y),

hκ,0(y) =
1

2πρ
κθ̂(κρ)

(
1

0

)
,

hκ,1(y) =
1

2πρ

∫
R+

dkeikρ(a1(k)− 1)θκ(k)

(
1

0

)
,

hκ,2(y) =
1

2πρ

∫
R+

dkθκ(k)e1(ρ, k),

(3.100)
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where θ̂(ρ) =
∫
R e

ikρθ(k)dk, ρ = |y|.
Clearly, hκ,0 ∈< y >−1 L2(R3) and one has

(3.101) ‖hκ,0‖L2(R3) ≤ Cκ1/2, ‖yhκ,0‖L2(R3) ≤ Cκ−1/2.

Consider hκ,i, i = 1, 2. It follows from (3.92), (3.93), (3.94) that

(3.102) ‖hκ,i‖L2(R3) ≤ Cκ, ‖yhκ,i‖L2(R3) ≤ Cκ1/2| lnκ|, i = 1, 2,

which together with (3.101) leads to the estimates

(3.103) ‖hκ‖L2(R3) ≤ Cκ1/2, ‖yhκ‖L2(R3) ≤ Cκ−1/2.

We next compute < hκ, σ3(ξ1 ± ξ0) >. By (3.101), (3.102), we have

< hκ, σ3(ξ1 ± ξ0) >=< hκ,0, σ3(ξ1 ± ξ0) > +O(κ1/2 lnκ),

< hκ,0, σ3(ξ1 − ξ0) >= O(κ),

< hκ,0, σ3(ξ1 + ξ0) >= 2κ

∫
R
dρθ̂(κρ) +O(κ) = 4π +O(κ),

(3.104)

which gives (3.99).

3.4.3 Proof of Proposition 3.9

We start by deriving some coercivity bounds for the operator H.

Lemma 3.17. There exists κ0, 0 < κ0 ≤ k0, and C > 0 such that

(3.105) 〈Hf, σ3f〉 ≥ Cκ‖∇f‖2L2(R3),

for any 0 < κ ≤ κ0 and any f ∈ Ḣ1
rad(R3,C2) verifying

(3.106) 〈f, σ3ζ−〉 = 〈f, σ3ζ+〉 = 〈f, σ3hκ〉 =
〈
f, σ3σ1h̄κ

〉
= 0.

Remark 3.18. Notice that since ζ±, hκ ∈< y >−1 L2(R3) the scalar products that appear in
(3.106) are well de�ned for any f ∈ Ḣ1.

Proof. The proof of Lemma 3.17 is based on the following result which is due to Duyckaerts and
Merle:

Lemma 3.19. There exists c0 > 0 such that

〈Hf, σ3f〉 ≥ c0‖∇f‖2L2(R3),

for any f ∈ Ḣ1
rad(R3,C2) verifying

〈f, σ3ζ−〉 = 〈f, σ3ζ+〉 = 〈f,∆ξ0〉 = 〈f,∆ξ1〉 = 0,

see [19] for the proof.
Let f ∈ Ḣ1

rad such that (3.106) holds. One can write f as

f = α0ξ0 + α1ξ1 + g,
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where

αj = − 〈f,∆ξj〉
‖∇ξj‖L2(R3)

2

, j = 0, 1,

and g ∈ Ḣ1
rad veri�es

〈g, σ3ζ−〉 = 〈g, σ3ζ+〉 = 〈g,∆ξ0〉 = 〈g,∆ξ1〉 = 0.

Therefore, by Lemma 3.19,

(3.107) 〈Hf, σ3f〉 = 〈Hg, σ3g〉 ≥ c0‖∇g‖2L2(R3).

Furthermore, since f veri�es (3.106), one has

A(κ)

(
α0

α1

)
=

(
〈g, σ3hκ〉〈
g, σ3σ1h̄κ

〉),
where

A(κ) = −
( 〈

ξ0, σ3hκ
〉
〈ξ1, σ3hκ〉

〈hκ, σ3ξ0〉 − 〈hκ, σ3ξ1〉

)
.

By (3.99),

A(κ) = −2π

(
1 1
1 −1

)
+O(κ1/2 lnκ), κ→ 0.

Therefore, for κ su�ciently small, one has

|α1|+ |α2| ≤ C‖∇g‖L2(R3)‖ < y > hκ‖L2(R3) ≤ Cκ−1/2‖∇g‖L2 .

As a consequence,
‖∇f‖L2(R3) ≤ Cκ−1/2‖∇g‖L2 .

Combining this inequality with (3.107) we get (3.105).

Next, we prove

Lemma 3.20. There exists κ1, 0 < κ1 ≤ k0, and C > 0 such that for any 0 < κ ≤ κ1 one has

‖f‖H1(R3) ≤
C

κ
‖∇f‖L2(R3),

for all f ∈ H1
rad(R3) verifying E∗κf = 0.

Proof. By (3.92), (3.93) and Lemma 3.14 (i), E∗κf can be written as

(E∗κf)(k) = Φ0(k) + Φr(k),

where

Φ0(k) =
1

23/2π
θκ(k)f̌(k),

f̌(k) = 2
∫
R3 dy

cos k|y|
|y| f(y), and the remainder Φr satis�es

‖Φr‖L2(R+) ≤ Cκ1/2‖f‖L2(R3).

Therefore, E∗κf = 0 implies

(3.108) ‖f̌‖L2(0,κ/4) ≤ Cκ1/2‖f‖L2(R3).
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Notice also that for any f ∈ H1
rad and any 0 < κ ≤ 1 one has

‖f‖H1(R3) ≤ C(‖f̌‖L2(0,κ/4) + κ−1‖∇f‖L2(R3)).

Combining this inequality with (3.108), we get

‖f‖H1(R3) ≤
C

κ
‖∇f‖L2(R3),

provided κ is su�ciently small.

We �nally combine Lemmas 3.17, 3.20 to derive the following result which will be in the heart of
the proof of Proposition 3.9

Lemma 3.21. There exists κ2, 0 < κ2 ≤ k0, and C > 0 such that for any 0 < κ ≤ κ2 one has

(3.109) 〈Hf, σ3f〉 ≥ Cκ3‖f‖2H1 −
κ

C
‖E∗κσ3f‖2L2(R+),

for any f ∈ H1
rad(R3,C2) verifying 〈f, σ3ζ±〉 = 0.

Proof. Write f = f1 + f2, where f1 = Eκσ3E∗κσ3f and f2 = f − f1. One clearly has

(3.110) ‖f1‖H1(R3) ≤ C‖E∗κσ3f‖L2(R+), ‖Hf1‖L2(R3) ≤ Cκ2‖E∗κσ3f‖L2(R+),

for any 0 < κ ≤ k0.
Consider f2. It follows from (3.96), (3.97) that for any κ′ ≤ κ/2,

• 〈f2, σ3ζ±〉 = 0;

• E∗κ′σ3f2 = 0;

• 〈f2, σ3hκ′〉 =
〈
f2, σ3σ1h̄κ′

〉
= 0.

Hence, by Lemmas 3.17, 3.20, one has

(3.111) 〈Hf2, σ3f2〉 ≥ Cκ3‖f2‖2H1(R3),

provided κ is su�ciently small.
Combining (3.110), (3.111) one gets (3.109).

We are now in the position to prove Proposition 3.9. Consider the equation

i
du

dτ
= PH(τ)Pu,

u(s) = f,
(3.112)

where

H(τ) = H + τ−1l, l = α1σ3 − iν1(
1

2
+ y · ∇),

α1, ν1 ∈ R, s > 0 and f ∈ S(R3) verifying 〈f, σ3ζ±〉 = 0.
Fix κ such 0 < κ ≤ κ2 and consider the functional G1(τ) = 〈Hu, σ3u〉+c0‖E∗κσ3u‖2L2(R+). Clearly,

(3.113) G1(τ) ≤ C‖u(τ)‖2H1(R3).
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Moreover, since 〈u(τ), σ3ζ±〉 = 0, choosing c0 su�ciently large we get:

(3.114) G1(τ) ≥ c1‖u(τ)‖2H1(R3).

We next compute the derivative d
dτG1. One has

i
d

dτ
〈Hu, σ3u〉 =

2i

τ
Im < lu, σ3Hu >,

which implies

(3.115)

∣∣∣∣ ddτ 〈Hu, σ3u〉
∣∣∣∣ ≤ C

τ
(|α1|+ |ν1|)‖∇u(τ)‖2L2(R3).

Next, we address ‖E∗κσ3u‖2L2(R3). Denote Φ(τ) = E∗κσ3u(τ). Then Φ(τ, k) solves

(3.116) iΦτ = k2σ3Φ +
1

τ
Y,

where
Y = E∗κσ3lu.

Integrating by parts and applying Lemma 3.14 (ii), one can rewrite Y in the form

Y (τ, k) = Y0(τ, k) + Y1(τ, k),

where
Y0(τ, k) = iν1k∂kΦ(τ, k),

and Y1(τ, k) admits the estimate

‖Y1(τ)‖L2(R+) ≤ C(|α1|+ |ν1|)‖u(τ)‖L2(R3).

Therefore, (3.116) gives ∣∣∣∣ ddτ ‖Φ(τ)‖2L2(R+)

∣∣∣∣ ≤ C

τ
(|α1|+ |ν1|)‖u(τ)‖2L2(R3).

Combining this inequality with (3.116) and taking into account (3.114) one gets

(3.117)

∣∣∣∣ ddτ G1(τ)

∣∣∣∣ ≤ C

τ
(|α1|+ |ν1|)‖u(τ)‖2H1(R3) ≤

C

τ
(|α1|+ |ν1|)G1(τ).

Integrating we obtain

G1(τ) ≤ C
( s
τ

)C(|α1|+|ν1|)
G1(s), 0 < τ ≤ s,

which by (3.113), (3.114), leads to the bound

(3.118) ‖U(τ, s)f‖H1(R3) ≤ C
( s
τ

)C(|α1|+|ν1|)
‖f‖H1(R3),

for any 0 < τ ≤ s and any f ∈ H1
rad. To control the higher regularity, consider the functional

G2(τ) =
〈
H2u, σ3Hu

〉
+ c2G1(τ). One has

C−1‖u‖2H3(R3) ≤ G2 ≤ C‖u‖2H3(R3),
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provided c2 is chosen su�ciently large.
Computing the derivative d

dτ

〈
H2u(τ), σ3Hu(τ)

〉
and taking into account (3.117) we get

(3.119)

∣∣∣∣ ddτ G2(τ)

∣∣∣∣ ≤ C

τ
(|α1|+ |ν1|)‖u(τ)‖2H3(R3) ≤

C

τ
(|α1|+ |ν1|)G2(τ).

which implies

(3.120) ‖U(τ, s)f‖H3(R3) ≤ C
( s
τ

)C(|α1|+|ν1|)
‖f‖H3(R3),

for any 0 < τ ≤ s.
The H2 bounded stated in Proposition 3.9 follows from (3.118), (3.120) by interpolation.



Acknowledgements

First of all I would like to thank my Supervisors Dott. R. Adami and Dott. D. Noja at Univeristà
degli Studi di Milano-Bicocca, and Prof. G. Perelman at Université Paris-Est for all the fruitful
discussions and their patience they had in this years. In particular, I am grateful to Prof. Perelman
for having accept the cotutelle project during my second year in the Ph.D program, Dott. Noja
for having supported me in such international adventure and Dott. Adami for having had the
idea to begin that all.
I thank Prof. A. Komech and Prof. J. Krieger that kindly accepted to be Referees of this thesis
which I hope they found not completely boring.
I also want to thank the member of the Defence Committee: Prof. Hajer Bahouri, Prof. Dario
Bambusi, Dott. Diego Noja, and Prof. Galina Perelman.
I am very grateful for the kindness, the niceness as well as the helpfulness of all the people of the
"Dipartimento di Matematica e Applicazioni" in Milan and the "Laboratoire LAMA" in Paris.
In particular, I wish to turn my thought to all the Ph.D students which are really too many to
be all named.
Finally, I thank all the professors (some of them are great friends as well) that I met and encour-
aged me in this long, di�cult, and beautiful way. They also are a lot hence I hope none will get
o�ended if I do not write down all their names. Together with them, I would like to thank all my
family and my friends that often not only had to bear that strange and exotic thing named Math
but also supported and still support me in �nding and walking along my way.

101





Bibliography

[1] R. Adami, G. Dell'Antonio, R. Figari, and A. Teta. The Cauchy problem for the Schrödinger
equation in dimension three with concentrated nonlinearity. Ann. I. H. Poincaré, 20:477�500,
2003.

[2] R. Adami, G. Dell'Antonio, R. Figari, and A. Teta. Blow-up solutions for the Schrödinger
equation in dimension three with a concentrated nonlinearity. Ann. I. H. Poincaré, 21:121�
137, 2004.

[3] R. Adami, D. Noja, and C. O. Orbital and asymptotic stability for standing waves of a NLS
equation with concentrated nonlinearity in dimension three. II. in preparation.

[4] R. Adami, D. Noja, and C. O. Orbital and asymptotic stability for standing waves of a
NLS equation with concentrated nonlinearity in dimension three. Journal of Mathematical

Physics, arxiv.org/pdf/1207.5677, to appear.

[5] R. Adami and A. Teta. A class of nonlinear Schrödinger equations with concentrated non-
linearity. Journal of functional analysis, 180:148�175, 2001.

[6] S. Albeverio, F. Gesztesy, R. Högh-Krohn, and H. Holden. Solvable models in quantum

mechanics. American Mathematical Society, Providence, 2005.

[7] H. Berestycki and P. L. Lions. Nonlinear scalar �eld equations, i existence of a ground state.
Archive for Rational Mechanics and Analysis, 82:313�345, 1983.

[8] V. S. Buslaev, A. I. Komech, A.E. Kopylova, and D. Stuart. On asymptotic stability of
solitary waves in Schrödinger equation coupled to nonlinear oscillator. Communications in

partial di�erential equations, 33:669�705, 2008.

[9] V. S. Buslaev and G. Perelman. Scattering for the nonlinear Schrödinger equation: states
close to a soliton. St.Petersbourg Math J., 4:1111�1142, 1993.

[10] V. S. Buslaev and G. Perelman. On the stability of solitary waves for nonlinear Schrödinger
equations. Amer.Math.Soc.Transl., 164(2):75�98, 1995.

[11] V. S. Buslaev and C. Sulem. On asymptotic stability of solitary waves for nonlinear
Schrödinger equation. Ann. I. H. Poincaré, 20:419�475, 2003.

[12] T. Cazenave. Semilinear Schrödinger equations. American Mathematical Scociety- Courant
Institut of Mathematical Sciences, 2003.

[13] T. Cazenave and P. L. Lions. Orbital stability of standing waves for some nonlinear
Schrödinger equations. Comm. Math. Phys., 85:549�561, 1982.

103



104 Bibliography

[14] S. Cuccagna. Stabilization of solution to nonlinear Schrödinger equations. Comm.Pure

App.Math., 54:1110�1145, 2001. erratum ibid. 58, 147 (2005).

[15] S. Cuccagna and T. Mizumachi. On asymptotic stability in energy space of ground states for
nonlinear Schrödinger equations. Comm.Math.Phys., 284:51�87, 2008.

[16] P. D'Ancona, V. Pierfelice, and A. Teta. Dispersive estimate for the Schroedinger equation
with point interaction. Math. Meth. in Appl. Sci., 29:309�323, 2006.

[17] R. Donninger and J. Krieger. Nonscattering solutions and bluw up at in�nity for the critical
wave equation. Preprint arXiv:1201.3258v1, 2012.

[18] N. Dorr and B. A. Malomed. Soliton supported by localized nonlinearities in periodic media.
Phys.Rev. A, 83:033828�1, 033828�21, 2011.

[19] T. Duyckaerts and F. Merle. Dynamic of threshold solutions for energy-critical NLS. Geo-

metric and Functional Analysis, 18(6):1787�1840, 2009.

[20] G. Fibich and X. P. Wang. Stability of solitary waves for nonlinear Schrödinger equation
with inhomogeneous nonlinearities. Physica D, 175:96�108, 2003.

[21] J. Fröhlich, S. Gustafson, B. L. G. Jonsson, and I. M. Sigal. Solitary wave dynamics in an
External Potential. Comm. Math. Phys., 250:613�642, 2004.

[22] Z. Gang and I. M. Sigal. Relaxation of solitons in nonlinear schrödinger equations with
potentials. Adv. Math., 216:443�490, 2007.

[23] F. Genoud and C. A. Stuart. Schrödinger equations with a spatially decaying nonlinearity:
existence and stability of standing waves. DCDS, 21:137�186, 2008.

[24] J. Ginibre and G. Velo. On a class of nonlinear Schrödinger equations.I. The Cauchy problem,
general case. Journal of Functional Analysis, 32:1�32, 1979.

[25] J. Ginibre and G. Velo. On a class of nonlinear Schrödinger equations.II. Scattering theory,
general case. Journal of Functional Analysis, 32:33�71, 1979.

[26] R. T. Glassey. On the blowing up of solutions to the Cauchy problem for nonlinear
Schrödinger equations. Journal of Mathematical Physics, 18:1794�1797, 1977.

[27] I. S. Gradshteyn and I.M. Ryzhik. Tables of integrals, series and products. 1965.

[28] M. Grillakis, J. Shatah, and W. Strauss. Stability theory of solitary wawes in the presence
of symmetry I. Journal of Functional Analysis, 94:308�348, 1987.

[29] M. Grillakis, J. Shatah, and W. Strauss. Stability theory of solitary wawes in the presence
of symmetry II. Journal of Functional Analysis, 74:160�197, 1987.

[30] S. Gustafson, K. Nakanishi, and T. P. Tsai. Asymptotic stability and completeness in the en-
ergy space for nonlinear schrödinger equations with small solitary waves. Int.Math.Res.Not.,
66:3559�3584, 2004.

[31] C. E. Kenig and F. Merle. Global well-posedness, scattering and blow-up for the energy-
critical, focusing, non-linear Schrödinger equation in the radial case. Acta Mathematica,
201:147�212, 2008.



Bibliography 105

[32] E. Kirr and Ö. Mizrak. Asymptotic stability of ground states in 3d nonlinear schrödinger
equation including subcritical cases. Journal of functional analysis, 257:3691�3747, 2009.

[33] A. I. Komech, E. A. Kopylova, and D. Stuart. On asymptotic stability of solitary waves for
Schrödinger equation coupled to nonlinear oscillator, II. Comm. Pure Appl. Anal., 202:1063�
1079, 2012.

[34] J. Krieger and W. Schlag. Stable manifolds for all monic supercritical NLS in one dimension.
Journal of the American Mathematical Society, 19:815�920, 2006.

[35] J. Krieger, W. Schlag, and D. Tataru. Slow blow-up solutions for the H1(R3) critical focusing
semilinear wave equation in R3. Duke Math. J., 147:1�53, 2009.

[36] B. A. Malomed and M. Y. Azbel. Modulational instability of a wave scattered by a nonlinear
centre. Phys.Rev. B, 47:10402�10406, 1993.

[37] D. Noja and A. Posilicano. Wave equations with concentrated nonlinearities.
J.Phys.A:Math.Gen., 38:5011�5022, 2005.

[38] C. O. and G. Perelman. Nondispersive vanishing and blow up at in�nity for the energy critical
nonlinear Schrödinger equation in R3. St. Petersburg Mathematical Journal, to appear.

[39] G. Perelman. Blow up dynamics for equivariant critical Schrödinger maps. preprint 2012.

[40] M. Reed and B. Simon. Methods of modern mathematical physics. IV: Analysis of operators.
Academic Press, 1977.

[41] I.M. Sigal. Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperi-
odic solutions. Commun. Math. Phys., 2:297�320, 1993.

[42] A. So�er and M. Weinstein. Multichannel nonlinear scattering for nonintegrable equations.
Comm.Math.Phys., 133:119�146, 1990.

[43] A. So�er and M. Weinstein. Multichannel nonlinear scattering for nonintegrable equations
II. the case of anisotropic potentials and data. J.Di�.Eq., 98:376�390, 1992.

[44] A. So�er and M. Weinstein. Selection of the ground state for nonlinear Schrödinger equations.
Rev. Math. Phys., 16(8):977�1071, 2004.

[45] A. A. Sukhorukov, Y. S. Kivshar, O. Bang, J. J. Rasmussen, and P. L. Christiansen. Non-
linearity and disorder: Classi�cation and stability of nonlinear impurity modes. Phys.Rev.

E, 63:036601�18, 2001.

[46] T. Tao. Global behaviour of nonlinear dispersive and wave equations. Current Developments

in Mathematics, 2006:255�340, 2008.

[47] T. Tao. Why are solitons stable? Bull. Amer. Math. Soc., 46:1�33, 2009.

[48] T. P. Tsai and H. T. Yau. Asymptotic dynamics of nonlinear Schrödinger equations:
resonance-dominated and dispersion-dominated solutions. Comm.Pure.Appl.Math, 55:153�
216, 2002.

[49] Tai-Peng Tsai and Horng-Tzer Yau. Relaxation of excited states in nonlinear Schrödinger
equations. Int. PM.



106 Bibliography

[50] Tai-Peng Tsai and Horng-Tzer Yau. Asymptotic dynamics of nonlinear Schrödinger equations.
Comm. Pure. Appl. Math, LV:0153�0216, 2002.

[51] T.P. Tsai and H.T. Yau. Relaxation of excited states in nonlinear Schrödinger equations.
Int.Math.Res.Not., 31:1629�1673, 2002.

[52] M. Weinstein. Modulational stability of ground states of nonlinear Schrödinger equations.
SIAM J.Math.Anal., 16:472�491, 1985.

[53] M. Weinstein. Lyapunov stability of ground states of nonlinear dispersive evolution equations.
Comm.Pure.Appl.Math, 39:51�68, 1986.


	Abstract
	Résumé
	Introduction
	I Orbital and asymptotic stability for standing waves of a NLS equation with concentrated nonlinearity in dimension three
	Absence of nonvanishing eigenvalues
	Introduction
	Preliminaries
	Hamiltonian structure
	Standing waves
	Linearization of H(u) around 

	Orbital stability
	The case = 1

	Spectral and dispersive properties of linearization L
	The resolvent and the spectrum of the linearized operator
	Dispersive estimates for the linearized problem in the case (0, 1/2)

	Modulation equations
	Time decay of weak solutions
	Frozen linearized problem
	Duhamel's representation
	Proof of Proposition 1.25

	Asymptotic stability
	Appendices
	The generalized kernel of the operator L
	Proof of the resolvent formula
	The dynamics generated by L along the generalized kernel

	Presence of purely imaginary eigenvalues
	Introduction
	Modulation equations
	Frozen spectral decomposition
	Asymptotic expansion of dynamics

	Canonical form of the equations
	Canonical form of the equation for h
	Canonical form of the equation for 
	Canonical form of the equation for 
	Canonical form of the equation for z

	Majorants
	Initial conditions
	Definition of the majorants
	The equation for y
	The equation for PcT h1
	Uniform bounds for the majorants

	Large time behavior of the solution and scattering asymptotics
	Large time behavior of the solution of equation (2.2)
	Scattering asymptotics

	Appendices
	Eigenfunctions associated to i and generalized eigenfunctions
	Proof of Lemma 2.8



	II Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schrödinger equation in R3
	Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schrödinger equation in R3
	Introduction
	Setting of the problem and statement of the result

	Approximate solutions
	The inner region
	The self-similar region
	The remote region
	Proof of Proposition 3.2

	Construction of an exact solution
	Linear estimates
	Contraction argument

	Linearized evolution
	Solutions to the equation H=E.
	Scattering solutions and the distorted Fourier transform in a vicinity of zero energy
	Proof of Proposition 3.9


	Acknowledgements
	Bibliography


