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Abstract

In this paper Zenga’s distribution is applied to 114 household incomes
distributions from a panel survey conducted by Eurostat. Previous works
showed the good behaviour of the model to describe income distributions
and analyzed the possibility to impose restrictions on the parametric space
so that the fitted models comply with some characteristics of interest
of the samples. This work is the first application of the model on a
wide number of distributions, showing that it can be used to describe
incomes distributions of several countries. Maximum likelihood method
on grouped data and methods based on the minimization of three different
goodness of fit indexes are used to estimate parameters. The restriction
that imposes the equivalence between the sample mean and the expected
value of the fitted model is also considered. It results that the restriction
should be used and the changes in fitting are analyzed in order to suggest
which estimation method use jointly to the restriction.

Keywords: Zenga’s model, income distributions, inequality.

1 Introduction

In this paper, several applications of the density function proposed by Zenga
(2010) for non-negative variables are presented. Zenga’s distribution is charac-
terized by three parameters: a scale parameter µ > 0, which is equal to the
expected value, and the shape parameters α > 0 and θ > 0. This new density
is particularly suitable for modelling income distributions since it is positively
skewed and it has Paretian right tail.

For θ > 1, Zenga (2010) has obtained the expressions of the distribution
function, the moments, the truncated moments, the mean deviation and Zenga’s
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point inequality A(x) at x = µ (see Zenga, 2007). Zenga et al. (2011) have
generalized the previous results to the case θ > 0. First applications of the
model to empirical income distributions (Italy, Swiss, US and UK) can be found
in Zenga et al. (2012). They estimated the parameters through the method
of moments, D’Addario’s invariant method and by minimizing the Mortara’s
goodness of fit index (A1). Porro and Arcagni (2012) applied the maximum
likelihood method and made some further research on the method of moment,
obtaining its analytical solution.

In this paper, Zenga’s density function has been applied to 114 household
income distributions taken from the European Community Household Panel
survey (Eurostat, 2003). The parameters are estimated by maximum likelihood
on grouped data and by minimizing three different goodness of fit measures
(the Mortara index A1 the quadratic K. Pearson index A2 and the modified
quadratic index A′

2).
The paper is organized as follows. Zenga’s model and its main properties

are presented in section 2. Section 3 is devoted to the illustration of the dataset
and of the criterion for the division of each empirical distribution into 25 classes.
The estimation methods and the goodness of fit indexes are defined in section
4. In section 5 the overall results of the application are provided. In the same
section it is illustrated the use of Zenga’s model to compare different income
distributions which allow to make considerations about inequality measures such
as the Gini index, the Zenga inequality index, the I(p) curve and the Lorenz
curve. Finally, section 6 is devoted to conclusions.

2 Definition of the model

Zenga (2010) introduced a new three parameter density function for non-negative
variables considering a mixture of Polisicchio’s truncated Pareto densities (see
Polisicchio, 2008) with Beta weights. The Polisicchio density is

f(x : µ; k) =

{

√
µ

2
k0.5(1− k)−1x−1.5, µk ≤ x ≤ µ

k , µ > 0, 0 < k < 1

0 otherwise,
(1)

and the mixture is obtained adopting the following Beta density as mixing
distribution on the parameter k:

g(k : α; θ) =







kα−1(1− k)θ−1

B(α; θ)
, 0 < k < 1, θ > 0, α > 0

0 otherwise,

where B(α; θ) is the Beta function. Then, the density function of the Zenga’s
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model resulted

f(x : µ;α; θ) =

=

∫ 1

0

f(x : µ; k)g(k : α; θ)dk =

=







1
2µB(α;θ)

(

x
µ

)−1.5
∫

x
µ

0 kα+0.5+1(1− k)θ−2dk, 0 < x < µ

1
2µB(α;θ)

(

µ
x

)1.5 ∫ µ

x

0 kα+0.5+1(1− k)θ−2dk, µ < x
(2)

=







1
2µB(α;θ)

(

x
µ

)−1.5
∑∞

i=1 IB
(

x
µ : α− 0.5 + i; θ

)

, 0 < x < µ

1
2µB(α;θ)

(

µ
x

)1.5 ∑∞

i=1 IB
(

µ
x : α− 0.5 + i; θ

)

, µ < x,

while the distribution function is

F (x : µ;α; θ) =

=







































1
B(α;θ)

{

∑∞

i=1 IB
(

x
µ : α+ i− 1; θ

)

+

−
(

x
µ

)−0.5
∑∞

i=1 IB
(

x
µ : α+ i− 0.5; θ

)

}

, 0 < x ≤ µ

1− 1
B(α;θ)

{

(

µ
x

)0.5 ∑∞

i=1 IB
(

µ
x : α+ i− 0.5; θ

)

+

−∑∞

i=1 IB
(

µ
x : α+ i; θ

)}

, µ < x,

(3)

where µ > 0, α > 0 and θ > 0 and IB(x : α; θ) is the Incomplete Beta function
(see Zenga, 2010; Zenga et al., 2011).

Let X be a random variable following the density function (2). Zenga et al.
(2011) determined that

E(Xr) =
µr

(2r − 1)B(α; θ)

2r−1
∑

i=1

B(α− r + 1; θ) for r < (α+ 1) (4)

which shows that the distribution has Paretian right tail. If r = 1, from expres-
sion (4) it follows that E(X) = µ, which, indeed, is always finite. Moreover,

µ is also scale parameter, since f(x : µ;α; θ) = 1
µf

(

x
µ : 1;α; θ

)

. The expected

value is always greater than the median, because F (µ : µ;α; θ) ≥ 0.5, therefore
Zenga’s model is positively skewed (see Zenga, 2010). As observed in Zenga
(2010) and Zenga et al. (2011), the shape parameters α and θ regulate the
behaviour of the density (2) when x tends to 0 and µ, respectively. In detail

lim
x→µ

f(x : µ;α; θ) =

{

B(α+0.5;θ−1)
2µB(α;θ) , θ > 1

∞, 0 < θ ≤ 1;
(5)

lim
x→0

f(x : µ;α; θ) =







0, α > 1
1
3
θ
µ , α = 1

∞, 0 < α < 1.

(6)
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From expression (5) it follows that θ determines if the density (2) is finite for
x = µ or not. Expressions (4) and (6) show that α controls the behaviour of the
tails of the density function. Porro (2011) and Porro and Arcagni (2012) deter-
mined that α is an inverse inequality indicator and that θ is a direct inequality
indicator.

We conclude this section remembering that, if θ > 1, the analytical expres-
sions (2) and (3) are given by

f(x : µ;α; θ) =







1
2µB(α;θ)

(

x
µ

)−1.5

IB
(

x
µ : α+ 0.5; θ − 1

)

, 0 < x ≤ µ

1
2µB(α;θ)

(

µ
x

)1.5
IB

(

µ
x : α+ 0.5; θ − 1

)

, µ < x,

F (x : µ;α; θ) =







































1
B(α;θ)

{

IB
(

x
µ : α; θ − 1

)

+

−
(

x
µ

)−0.5

IB
(

x
µ : α+ 0.5; θ − 1

)

}

, 0 < x ≤ µ

1− 1
B(α;θ)

{

(

µ
x

)0.5
IB

(

µ
x : α+ 0.5; θ − 1

)

+

−IB
(

µ
x : α+ 1; θ − 1

)}

, µ < x.

This observation is particularly useful from the computational point of view,
since, in almost all cases of practical interest, it is reasonable to assume that
the value of f(µ : µ;α; θ) is finite.

3 Data and classes definition

We fitted Zenga’s model to 114 household income distributions from the Euro-
pean Community Household Panel (ECHP), conducted by Eurostat (2003). The
data of the ECHP were collected from 1994 to 2001 and regards 15 European
Member States: Austria (since 1995), Belgium, Denmark, Finland (since 1996),
France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal,
United Kingdom, Spain and Sweden (since 1997). In Table 1, for each sample
distribution, are shown the sample size (n), the mean (x̄), the ratio between
median and mean (me/x̄), the Gini index (G) and the Zenga inequality index
(I) (see Zenga, 2007). The sample size and these statistics are presented in
order to illustrate the main features of the income sample distributions, with
particular emphasis on inequality.

Eurostat provides the micro-data expressed in National Currency. All the
estimation procedures considered in this paper, require a preliminary grouping
of the micro-data. We have grouped the observations into classes following
the proposal of Zenga et al. (2012). For completeness, this grouping scheme is
recalled below. The empirical distributions have different sample sizes n and
different extreme values. Therefore, a general and uniform grouping scheme
is obtained subdividing each distribution into s = 25 classes starting from the
relative frequency f ′

j (for j = 1, ..., s). The chosen values of f ′
j, and the related

cumulative relative frequencies p′j are reported in Table 2.
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Country Year

1994 1995 1996 1997 1998 1999 2000 2001
Austria n 3367 3281 3130 2952 2809 2637 2535

x̄ 380824 383425 372720 374034 388136 397799 398877
me/x̄ 0.8781 0.8903 0.8891 0.8964 0.8838 0.8942 0.8937
G 0.3415 0.3299 0.3251 0.3181 0.3361 0.3238 0.3190
I 0.6904 0.6787 0.6707 0.6609 0.6853 0.6688 0.6621

Belgium n 3454 3343 3191 3013 2863 2691 2558 2342
x̄ 1017973 1039514 1043165 1061628 1085580 1141939 1177792 1223753
me/x̄ 0.8548 0.8589 0.8548 0.8617 0.8541 0.8346 0.8156 0.8394
G 0.3518 0.3521 0.3461 0.3374 0.3391 0.3566 0.3634 0.3553
I 0.7026 0.7025 0.6941 0.6819 0.6831 0.7000 0.7034 0.6958

Denmark n 3478 3218 2951 2740 2505 2381 2273 2279
x̄ 196699 205366 207620 216906 225742 233853 243061 248249
me/x̄ 0.8845 0.8807 0.8759 0.8911 0.9023 0.9160 0.8971 0.9177
G 0.3171 0.3182 0.3191 0.3060 0.3133 0.3116 0.3141 0.3149
I 0.6549 0.6576 0.6593 0.6430 0.6556 0.6535 0.6583 0.6606

Finland n 4138 4103 3917 3818 3101 3106
x̄ 149293 146438 147498 151305 153805 160284
me/x̄ 0.9206 0.9263 0.9244 0.9003 0.8853 0.8750
G 0.2961 0.3057 0.3247 0.3339 0.3374 0.3487
I 0.6350 0.6513 0.6787 0.6867 0.6883 0.7014

France n 7108 6680 6556 6142 5849 5594 5332 5268
x̄ 156187 159616 162640 163536 165895 170341 171196 175603
me/x̄ 0.8074 0.8578 0.8562 0.8577 0.8664 0.8500 0.8582 0.8692
G 0.3879 0.3461 0.3426 0.3416 0.3337 0.3432 0.3335 0.3287
I 0.7367 0.6962 0.6896 0.6900 0.6807 0.6886 0.6771 0.6729

Germany n 6196 6329 6252 6156 5955 5845 5687 5559
x̄ 49992 48704 49782 51273 51404 53103 55371 56521
me/x̄ 0.8991 0.9188 0.9163 0.9242 0.9304 0.9180 0.9201 0.9204
G 0.3238 0.3083 0.2960 0.2866 0.2885 0.2931 0.2914 0.2944
I 0.6766 0.6572 0.6374 0.6245 0.6271 0.6327 0.6294 0.6324

Greece n 5480 5173 4851 4543 4171 3952 3893 3895
x̄ 2935058 3262795 3550018 3856494 4246580 4410062 4648298 4804914
me/x̄ 0.8120 0.8198 0.8184 0.8070 0.8183 0.8192 0.8232 0.8213
G 0.4068 0.3982 0.3877 0.3985 0.4030 0.3954 0.3845 0.3828
I 0.7625 0.7518 0.7419 0.7513 0.7562 0.7478 0.7358 0.7340

Holland n 5139 5035 5097 5019 4922 4981 4976 4824
x̄ 46397 47168 48358 50331 51757 54366 54942 57589
me/x̄ 0.9347 0.9125 0.9071 0.9270 0.9334 0.9226 0.9341 0.9283
G 0.2989 0.3179 0.3221 0.2922 0.2872 0.2927 0.2746 0.2894
I 0.6417 0.6683 0.6725 0.6319 0.6254 0.6335 0.6065 0.6274

Ireland n 4038 3569 3164 2935 2723 2372 1944 1757
x̄ 15996 17068 17503 18545 20232 21016 22160 24636
me/x̄ 0.8497 0.8445 0.8381 0.8410 0.8255 0.8441 0.8779 0.8766
G 0.3573 0.3698 0.3706 0.3713 0.3917 0.3828 0.3726 0.3742
I 0.7043 0.7178 0.7180 0.7180 0.7374 0.7323 0.7246 0.7264

Italy n 6915 7004 7026 6627 6478 6273 5989 5525
x̄ 30981 33274 34195 34438 36347 37678 38851 40183
me/x̄ 0.8527 0.8349 0.8527 0.8593 0.8585 0.8496 0.8590 0.8601
G 0.3554 0.3548 0.3423 0.3393 0.3376 0.3338 0.3310 0.3381
I 0.7121 0.7077 0.6939 0.6904 0.6869 0.6790 0.6768 0.6855

Luxembourg n 1010 2976 2471 2651 2521 2550 2373 2428
x̄ 1502184 1584630 1637555 1636614 1683883 1717866 1804012 1846854
me/x̄ 0.8433 0.8732 0.8726 0.8670 0.8657 0.8458 0.8582 0.8635
G 0.3397 0.3093 0.3007 0.3049 0.3010 0.3090 0.3018 0.2982
I 0.6866 0.6412 0.6306 0.6352 0.6293 0.6395 0.6300 0.6250

Portugal n 4787 4870 4807 4767 4666 4645 4606 4588
x̄ 1664684 1761507 1886649 1998450 2114116 2255393 2353262 2577289
me/x̄ 0.7638 0.7770 0.7918 0.8015 0.8239 0.8109 0.8190 0.8046
G 0.4455 0.4295 0.4167 0.4120 0.4130 0.4074 0.4017 0.4038
I 0.7921 0.7782 0.7666 0.7611 0.7637 0.7568 0.7526 0.7523

Spain n 7142 6449 6133 5714 5439 5301 5048 4950
x̄ 2198713 2316971 2442086 2510380 2625487 2814373 2967596 3115968
me/x̄ 0.8225 0.8260 0.8216 0.8155 0.8137 0.8277 0.8198 0.8251
G 0.3727 0.3639 0.3655 0.3736 0.3680 0.3643 0.3700 0.3679
I 0.7219 0.7112 0.7127 0.7218 0.7151 0.7111 0.7167 0.7155

Sweden n 5286 5208 5165 5116 5085
x̄ 213864 222074 225094 234192 249974
me/x̄ 0.9594 0.9366 0.9462 0.9332 0.9290
G 0.2827 0.2956 0.2928 0.3024 0.3048
I 0.6206 0.6373 0.6345 0.6481 0.6488

United Kingdom n 5041 4999 4991 4958 4975 4935 4866 4779
x̄ 13990 15230 15490 17011 18470 17964 19506 21006
me/x̄ 0.8629 0.8461 0.8624 0.8655 0.8479 0.8532 0.8596 0.8676
G 0.3625 0.3744 0.3576 0.3456 0.3636 0.3612 0.3569 0.3536
I 0.7157 0.7261 0.7085 0.6939 0.7138 0.7113 0.7084 0.7036

Table 1: Sample size (n), sample mean (x̄), ratio between sample median and
sample mean (me/x̄), Gini inequality index (G) and Zenga inequality index (I)
of the 114 micro-data distributions.

5



j f ′
j p′j j f ′

j p′j j f ′
j p′j j f ′

j p′j j f ′
j p′j

1 0.010 0.010 6 0.050 0.150 11 0.100 0.500 16 0.050 0.850 21 0.010 0.960
2 0.010 0.020 7 0.050 0.200 12 0.100 0.600 17 0.050 0.900 22 0.010 0.970
3 0.015 0.035 8 0.050 0.250 13 0.100 0.700 18 0.020 0.920 23 0.010 0.980
4 0.015 0.050 9 0.050 0.300 14 0.050 0.750 19 0.015 0.935 24 0.010 0.990
5 0.050 0.100 10 0.100 0.400 15 0.050 0.800 20 0.015 0.950 25 0.010 1.000

Table 2: Prefixed relative frequencies f ′
j and cumulative relative frequencies p′j

of the s = 25 intervals.

Obviously, the quantity np′j are not necessarily integers. Therefore, Zenga
et al. (2012) defined pj as the cumulative relative frequencies such that the npj
are the rounded values of np′j .

Now, the class Cj , for j = 1, 2, . . . , s, is defined as

Cj = {x(npj−1+1), . . . , x(npj)}

where p0 = 0, x(0) = 0 and x(npj) is the pj-quantile of the observed distribution.
In the study of income distributions the value of the arithmetic mean is very
important. So it seams useful to have a bound equal to the sample mean x̄ of
the observed distribution. This goal is achieved substituting the x(npj) nearest
to x̄ with x̄, itself.

In conclusion, the (integer) frequencies nj are given by

nj = n(pj − pj−1); j = 1, 2, . . . , s; with p0 = 0

and the true relative frequencies fj of each class are

fj =
nj

n
= pj − pj−1; j = 1, 2, . . . , s.

For j = 1, 2, . . . , s − 1 observe that through this procedure, if x(npj) = v is a
repeated value of the sample, some observations equal to v are attributed to
the class of index j and the remaining to the class of index j + 1, so that the
relative frequencies fj are not far from the prefixed ones f ′

j .

4 Estimation methods and goodness of fit in-

dexes

Some of the estimation methods considered in this paper, are based on well
known goodness of fit indexes. These indexes are based on the evaluation of the
discrepancy between the observed frequencies nj and the theoretical frequencies

n̂j =







n · F (x1 : µ;α; θ) , j = 1
n {F (xj : µ;α; θ) − F (xj−1 : µ;α; θ)} , j = 2, 3, . . . , s− 1
n {1− F (xj−1 : µ;α; θ)} , j = s

(7)

where xj is the upper bound of the j-th class, for j = 1, 2, . . . , s−1, and xs = ∞.
We considered the Mortara index A1, the quadratic K. Pearson index A2 and
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the modified quadratic index A′
2, which are defined as follow

A1 =
1

n

s
∑

j=1

|nj − n̂j |
n̂j

n̂j =
1

n

s
∑

j=1

|nj − n̂j |
nj

nj =
1

n

s
∑

j=1

|nj − n̂j |,

A2 =







1

n

s
∑

j=1

∣

∣

∣

∣

nj − n̂j

n̂j

∣

∣

∣

∣

2

n̂j







1/2

=







1

n

s
∑

j=1

|nj − n̂j |2
n̂j







1/2

,

A′

2 =







1

n

s
∑

j=1

∣

∣

∣

∣

nj − n̂j

nj

∣

∣

∣

∣

2

nj







1/2

=







1

n

s
∑

j=1

|nj − n̂j |2
nj







1/2

.

The parameters of Zenga’s distribution can be estimated by numerical mini-
mization of A1, A2 and A′

2:

• minimum A1 estimates

(µ̂, α̂, θ̂)A1
= argmin

µ,α,θ
A1(µ, α, θ);

• minimum A2 estimates

(µ̂, α̂, θ̂)A2
= argmin

µ,α,θ
A2(µ, α, θ);

• minimum A′
2 estimates

(µ̂, α̂, θ̂)A′

2
= argmin

µ,α,θ
A′

2(µ, α, θ).

We also apply the maximum likelihood method on grouped data. In these
case, the likelihood function is obtained from the multinomial distribution with
parameters n and

πj(µ, α, θ) =







F (x1 : µ;α; θ) , j = 1
F (xj : µ;α; θ)− F (xj−1 : µ;α; θ) , j = 2, 3, . . . , s− 1
1− F (xj−1 : µ;α; θ) , j = s.

The likelihood and log-likelihood functions are

L(µ, α, θ;n1, . . . , ns) =
n!

∏s
j=1 nj !

s
∏

j=1

πj(µ, α, θ)
nj ; (8)

logL(µ, α, θ;n1, . . . , ns) = log
n!

∏s
j=1 nj !

+

s
∑

j=1

nj log πj(µ, α, θ);

and the maximum likelihood estimates are defined as follow

(µ̂, α̂, θ̂)L = argmax
µ,α,θ

logL(µ, α, θ;n1, . . . , ns).
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The considered estimation methods require the optimization of complicated
functions and the analytical solution can not be obtained. Therefore the esti-
mates are found by numerical procedures which need the definition of a starting
point. Porro and Arcagni (2012) have obtained the analytical solution of method
of moments, which do not perform well but they can be easily calculated. We
used this estimates as starting point in our numerical procedure. For complete-
ness, here, we recall that the expression of the method of moments estimates
are






















































µ̂ = x̄

θ̂ =

−





1

3

x̄2

m2
− 3

x̄m2

m3
− 1



+

√

√

√

√

√

[

1

3

x̄2

m2
− 3

x̄m2

m3
− 1

]2

+ 4

[

1

3

x̄2

m2
− 3

5
x̄
m2

m3

] [

18

5

x̄ m2

m3
+ 2

]

2

[

1

3

x̄2

m2
− 3

5
x̄
m2

m3

]

α̂ =

−(θ̂ − 1) +

√

(

θ̂ − 1
)2

+ 4

[

1

3

x̄2

m2
θ̂
(

θ̂ + 1
)

+ θ̂

]

2

wherem2 and m3 are respectively the empirical variance and the empirical third
central moment.

As aforementioned, the sample mean x̄ is an important statistic when study-
ing income distributions. For this reason we study also the fitting of the Zenga’s
model to the empirical data imposing the restriction µ = x̄.

The goodness of fit indexes A1, A2 and A′
2 can be also used to evaluate the

performance of the estimation methods. Defining the absolute relative frequency
deviations

aj =
|nj − n̂j |

n̂j

a′j =
|nj − n̂j |

nj

it can be observed that

A1 = M1(aj ; n̂j) = M1(a
′

j ;nj)

A2 = M2(aj ; n̂j)

A′

2 = M2(a
′

j ;nj)

that is, Mortara index A1 is both the arithmetic mean of aj with weights n̂j

and the arithmetic mean of a′j with weights nj , A2 index is the quadratic mean
of aj with weights n̂j and A′

2 index is the quadratic mean of a′j with weights
nj . Therefore

A1 ≤ A2

A1 ≤ A′

2
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and the variance of aj with weights n̂j and the variance of a′j with weights nj

can be obtained as follows

V ar(aj ; n̂j) = A2
2 −A1

2

V ar(a′j ;nj) = A′
2
2 −A1

2.
(9)

Small differences between A1 index and quadratic indexes (A2 or A′
2) mean low

variability of absolute relative frequency deviations, and a “uniform” fitting of
the model on the whole range of the empirical distribution.

To take into account the differences between the sample mean and the ex-
pected value of the r.v. with distribution function equal to the fitted model, we
evaluate the relative absolute deviation of µ̂ from x̄

ρE =
|µ̂− x̄|

x̄
. (10)

For the restricted model, ρE is equal to zero.

5 Application

For each of the 114 empirical distributions we have obtained the values of the
three parameters (µ;α;θ) by the four estimation methods introduced in section 4.
Note that the parameters have also been evaluated imposing the restriction µ =
x̄. For each estimated model we have evaluated the three indexes of goodness
of fit, A1, A2 and A′

2.
In section 5.1 for each of the 15 countries and for each estimation method

(with and without restriction on µ) we present only some “syntheses” of the in-
dexes of goodness of fit. Viceversa, in section 5.2 for two empirical distributions
(Germany 2001 and Greece 2001) the detailed results are given.

5.1 Overall results

The principal aim of this section is to analyze the variation of the fitting due
to the restriction on µ. Thus, for each of the European Member State analyzed
we provide the mean and the Mean Absolute Deviation (MAD) of the goodness
of fit indexes. We also point out for which countries the income distribution is
best described by the model.

Minimization of goodness of fit indexes

Here we consider the estimation methods based on the minimization of the
goodness of fit indexes A1, A2 and A′

2. Table 3 shows the mean and the MAD
(in brackets) of the objective function by estimation method (both without
and with restriction) and country. As an example, the value 0.1151 related to
“Italy” and “minA1/A1” is obtained averaging the values of A1 obtained fitting
the unrestricted Zenga’s model using the method of the minimum A1 on the
8 Italian income distributions from 1994 to 2001. In the last row are provided
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the global means. The means by country which are lower than the global one
are marked in bold type in order to indicate the countries for which Zenga’s
model fit best. It can be observed that, whatever the method, the best results
are obtained for Austria, France, Germany, Greece, Luxembourg and Portugal.

Estimation method minA1 rest.minA1 minA2 rest.minA2 minA′
2 rest.minA′

2

g.d.f. index A1 A1 A2 A2 A′
2 A′

2

Austria

mean 0.1093 0.1379 0.1694 0.1846 0.1786 0.1831

(MAD) (0.0071) (0.0091) (0.0114) (0.0131) (0.0112) (0.0117)

Belgium

mean 0.1495 0.1542 0.2125 0.2194 0.1970 0.2008

(MAD) (0.0086) (0.0090) (0.0314) (0.0343) (0.0108) (0.0094)

Denmark

mean 0.2144 0.2205 0.2801 0.2887 0.2758 0.2815
(MAD) (0.0062) (0.0118) (0.0117) (0.0176) (0.0187) (0.0166)

Finland

mean 0.1393 0.1834 0.2026 0.2343 0.2191 0.2257
(MAD) (0.0100) (0.0113) (0.0111) (0.0221) (0.0141) (0.0156)

France

mean 0.0817 0.0913 0.1565 0.1636 0.1390 0.1408

(MAD) (0.0042) (0.0083) (0.0202) (0.0219) (0.0090) (0.0097)

Germany

mean 0.0788 0.1183 0.1482 0.1718 0.1556 0.1636

(MAD) (0.0053) (0.0066) (0.0236) (0.0284) (0.0117) (0.0131)

Greece

mean 0.1110 0.1350 0.1913 0.2071 0.1829 0.1870

(MAD) (0.0094) (0.0095) (0.0128) (0.0127) (0.0080) (0.0087)

Holland

mean 0.1440 0.1823 0.2268 0.2479 0.2237 0.2281
(MAD) (0.0066) (0.0085) (0.0086) (0.0110) (0.0079) (0.0080)

Ireland

mean 0.1928 0.2338 0.3458 0.3477 0.2906 0.2941
(MAD) (0.0203) (0.0347) (0.0340) (0.0354) (0.0383) (0.0412)

Italy

mean 0.1151 0.1277 0.2196 0.2346 0.1787 0.1828

(MAD) (0.0161) (0.0161) (0.0383) (0.0433) (0.0193) (0.0203)

Luxembourg

mean 0.0871 0.0881 0.1308 0.1321 0.1194 0.1203

(MAD) (0.0155) (0.0154) (0.0325) (0.0336) (0.0210) (0.0206)

Portugal

mean 0.1206 0.1407 0.1730 0.1823 0.1796 0.1875

(MAD) (0.0109) (0.0113) (0.0128) (0.0129) (0.0112) (0.0130)

Spain

mean 0.1206 0.1432 0.2533 0.2555 0.2044 0.2087
(MAD) (0.0137) (0.0164) (0.0295) (0.0280) (0.0221) (0.0225)

Sweden

mean 0.1829 0.2256 0.2502 0.2822 0.2671 0.2707
(MAD) (0.0225) (0.0183) (0.0257) (0.0281) (0.0252) (0.0231)

United Kingdom

mean 0.1370 0.1653 0.1900 0.2048 0.1988 0.2015

(MAD) (0.0072) (0.0091) (0.0073) (0.0105) (0.0096) (0.0100)

Overall mean

0.1310 0.1544 0.2094 0.2224 0.1988 0.2032

Table 3: Minimization methods, goodness of fit indexes, mean and Mean Abso-
lute Deviation (bold: values lower than the global mean).
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Maximum likelihood method on grouped data

Indexes A1, A2 and A′
2 are also used to evaluate the fitting of the maximum

likelihood method. In Table 4 mean and MAD by countries are evaluated for
all the three indexes. Therefore maximum likelihood method can be compared
with all the methods based on the minimization of the goodness of fit indexes.
Indexes A1, A2 and A′

2 are not the objective function of the maximum likelihood
method, thus the values of such indexes are not lower than the ones obtained
with the methods that minimize them. By the global means of Tables 3 and 4
it can be observed that the increment is small.

As observed with the previous methods, the best fitting is obtained again
for Austria, France, Germany, Greece, Luxembourg and Portugal, regardless
the index.
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Estimation method ML rest.ML
g.d.f. index A1 A2 A′

2 A1 A2 A′
2

Austria

mean 0.1223 0.1712 0.1880 0.1428 0.1857 0.1873

(MAD) (0.0073) (0.0120) (0.0147) (0.0077) (0.0137) (0.0130)

Belgium

mean 0.1563 0.2229 0.2182 0.1603 0.2298 0.2214
(MAD) (0.0097) (0.0427) (0.0245) (0.0116) (0.0454) (0.0212)

Denmark

mean 0.2217 0.2834 0.2937 0.2245 0.2897 0.2863
(MAD) (0.0081) (0.0121) (0.0291) (0.0115) (0.0185) (0.0192)

Finland

mean 0.1539 0.2044 0.2317 0.1862 0.2349 0.2282
(MAD) (0.0103) (0.0114) (0.0180) (0.0110) (0.0226) (0.0163)

France

mean 0.0969 0.1634 0.1553 0.1030 0.1699 0.1543

(MAD) (0.0064) (0.0233) (0.0152) (0.0083) (0.0251) (0.0153)

Germany

mean 0.0938 0.1523 0.1705 0.1233 0.1759 0.1713

(MAD) (0.0088) (0.0286) (0.0191) (0.0089) (0.0340) (0.0181)

Greece

mean 0.1190 0.1940 0.1917 0.1374 0.2087 0.1902

(MAD) (0.0106) (0.0135) (0.0089) (0.0098) (0.0133) (0.0097)

Holland

mean 0.1657 0.2332 0.2475 0.1884 0.2537 0.2434
(MAD) (0.0100) (0.0103) (0.0115) (0.0092) (0.0127) (0.0109)

Ireland

mean 0.2378 0.3559 0.3105 0.2437 0.3570 0.3106
(MAD) (0.0293) (0.0346) (0.0446) (0.0358) (0.0356) (0.0450)

Italy

mean 0.1432 0.2369 0.2123 0.1515 0.2522 0.2123

(MAD) (0.0214) (0.0481) (0.0367) (0.0243) (0.0541) (0.0355)

Luxembourg

mean 0.0933 0.1348 0.1271 0.0936 0.1367 0.1270

(MAD) (0.0189) (0.0380) (0.0296) (0.0189) (0.0403) (0.0286)

Portugal

mean 0.1303 0.1742 0.1862 0.1448 0.1831 0.1925

(MAD) (0.0128) (0.0134) (0.0129) (0.0122) (0.0133) (0.0149)

Spain

mean 0.1407 0.2661 0.2380 0.1532 0.2689 0.2410
(MAD) (0.0162) (0.0295) (0.0260) (0.0160) (0.0262) (0.0259)

Sweden

mean 0.1958 0.2537 0.2918 0.2305 0.2838 0.2811
(MAD) (0.0185) (0.0272) (0.0374) (0.0182) (0.0290) (0.0300)

United Kingdom

mean 0.1501 0.1915 0.2081 0.1673 0.2056 0.2049

(MAD) (0.0085) (0.0077) (0.0125) (0.0097) (0.0108) (0.0110)

Overall mean

0.1469 0.2155 0.2161 0.1614 0.2279 0.2152

Table 4: Maximum likelihood method, goodness of fit indexes, mean and Mean
Absolute Deviation (bold: values lower than the global mean).

Implications of the restriction on the expected value

We now analyze the changes of the goodness of fit due to the introduction of
the restriction on the expected value. In Table 5 the values of, the relative
deviation of the expected value from the arithmetic mean (see expression 10),
ρE are reported for each estimation method without restriction on the expected
value. By the global means we observe that the lowest deviation, on average, is
obtained with the method of the minimum A′

2, which is equal to 0.0245.
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Estimation method minA1 minA2 minA′
2 ML

Austria

mean 0.0790 0.0523 0.0222 0.0403
(MAD) (0.0071) (0.0055) (0.0072) (0.0052)

Belgium

mean 0.0324 0.0373 0.0186 0.0244

(MAD) (0.0234) (0.0155) (0.0134) (0.0145)

Denmark

mean 0.0370 0.0422 0.0297 0.0208

(MAD) (0.0296) (0.0287) (0.0064) (0.0142)

Finland

mean 0.0989 0.0760 0.0330 0.0637
(MAD) (0.0255) (0.0216) (0.0078) (0.0147)

France

mean 0.0420 0.0297 0.0123 0.0224

(MAD) (0.0140) (0.0122) (0.0055) (0.0091)

Germany

mean 0.0644 0.0503 0.0283 0.0441
(MAD) (0.0052) (0.0114) (0.0052) (0.0087)

Greece

mean 0.1016 0.0687 0.0288 0.0530
(MAD) (0.0152) (0.0066) (0.0066) (0.0075)

Holland

mean 0.1003 0.0580 0.0237 0.0446
(MAD) (0.0149) (0.0094) (0.0032) (0.0073)

Ireland

mean 0.1492 0.0284 0.0250 0.0250

(MAD) (0.0616) (0.0194) (0.0211) (0.0218)

Italy

mean 0.0554 0.0590 0.0225 0.0437
(MAD) (0.0139) (0.0163) (0.0059) (0.0153)

Luxembourg

mean 0.0097 0.0082 0.0049 0.0067

(MAD) (0.0075) (0.0090) (0.0028) (0.0051)

Portugal

mean 0.0898 0.0509 0.0470 0.0476
(MAD) (0.0140) (0.0104) (0.0067) (0.0092)

Spain

mean 0.0710 0.0202 0.0292 0.0251

(MAD) (0.0093) (0.0095) (0.0050) (0.0035)

Sweden

mean 0.1122 0.0829 0.0220 0.0641
(MAD) (0.0201) (0.0099) (0.0091) (0.0064)

United Kingdom

mean 0.1156 0.0602 0.0217 0.0478
(MAD) (0.0188) (0.0105) (0.0056) (0.0080)

Overall mean

0.0759 0.0468 0.0245 0.0371

Table 5: ρE , mean and Mean Absolute Deviation (bold: values lower than the
global mean).

The results reported in Table 3 allows to evaluate the implications on the
fitting of the introduction of the restriction. Since we are observing the values
of the objective function, the restriction of the parametric space increases the
goodness of fit indexes, in other words, it reduces the fitting of the model to the
empirical distributions.

It can be observed that, on average the restriction increases the objective
function of the method of the minimum A1 of 0.0234, but it reduces the average
ρE from 0.0759 to zero. For the method of the minimum A2 the increment of the
objective function is 0.0130 and the reduction of ρE is 0.0468. For the method
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of the minimum A′
2 the increment of the objective function is 0.0044 and the

reduction of ρE is 0.0245. It can be therefore observed that the loss in terms of
fitting is lower than the gain in terms of ρE for each estimation method based
on the minimization of goodness of fit indexes. We also observe that the lowest
loss of fitting is obtained with the method of the minimum A′

2.
The introduction of the restriction, on average, reduces the ρE of the max-

imum likelihood from 0.0371 to zero. In Table 4 it can be observed that the
increment of the indexes A1 and A2 are still lower than the gain in terms of ρE .
The indexes can also decrease with the introduction of the restriction. It can
be observed by comparing the third and the sixth columns of table 4 referred
to the index A′

2 of the unrestricted and restricted models.

Final remarks about global results

We suggest to estimate the parameters with the restriction on µ because this
restriction can be easily applied to the Zenga’s model and, moreover, the mean
is one of the most important statistics in the study of incomes (D’Addario,
1934, 1939; Dagum, 1977; McDonald, 1984; McDonald and Ransom, 2008). The
results show that in general the higher values of the A1, A2 and A′

2 indexes due
to the restriction are lower than the reduction of ρE . Among the estimation
methods considered the lowest loss in fitting are obtained with the method of
the minimum A′

2 and the maximum likelihood method.
Table 6 summarizes the average values of the variances defined in equation

(9) to compare the estimation methods in therms of uniformity.

Restrictions

no restrictions µ = x̄
Uniformity Estimation method Estimation method

measures minA1 minA2 minA′
2 ML minA1 minA2 minA′

2 ML

average A2
2 −A1

2 0.0886 0.0232 0.0871 0.0271 0.0727 0.0238 0.0875 0.0281

average A′
2
2 −A1

2 0.0472 0.0380 0.0174 0.0264 0.0223 0.0283 0.0166 0.0212

Table 6: Comparison of the uniformity of the fitting (bold: most uniform fitting
over the estimation methods).

It can be observed that, depending on the uniformity measure used, on average
the most uniform fitting is obtained with the methods of the minimum A2 and
of the minimum A′

2.
From these considerations emerges that with the restriction the recom-

mended estimation methods are the method of the minimum A′
2 and the maxi-

mum likelihood method.

5.2 Specific cases

In this section two specific cases are presented to show the behaviour of the
Zenga’s distribution and the consequences of the introduction of the restriction
on µ.
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Figure 1: Histogram of Germany 2001 distribution and Zenga’s model estimated
by the method of minimum A′

2 with and without restriction on µ.

Figure 1 shows the histogram of the Germany 2001 income distribution and
the density functions of the Zenga’s model with parameters estimated by the
method of the minimum A′

2 both without restrictions and with restriction on
µ. In the following table, we provide the parameters estimates, and the values
of A1, A2, A

′
2 and ρE .

Parameter estimates µ̂ α̂ θ̂ A1 A2 A′
2 ρE

Unrestricted model 57857.65 2.6756 3.0430 0.1024 0.1318 0.1428 0.0236
Restricted model 56521.40 2.7189 3.1012 0.1147 0.1428 0.1490 0

Table 7: Germany 2001, parameters estimates and goodness of fit indexes ob-
tained with the method of minimum A′

2.

Imposing the restriction on µ we observe an increase of α̂ and θ̂. The varia-
tion of α̂ decreases the inequality by changing the tails, viceversa the variation
of θ̂ increases the inequality. Therefore, to evaluate the consequences on the
inequality due to the restriction on µ some specific statistics have to be evalu-
ated. The table below shows the actual arithmetic mean, Gini index (G) and
Zenga’s inequality index (I) (see Zenga, 2007) compared with the correspond-
ing indexes evaluated on the theoretical models with the previous parameter
estimates. The inequality indexes of the estimated model are obtained through
numerical procedures.
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Statistics mean/expected value G I
Empirical distribution 56521.40 0.2944 0.6324

Unrestricted model 57857.65 0.3021 0.6382
Restricted model 56521.40 0.3018 0.6376

Table 8: Germany 2001, comparison between empirical and theoretical distri-
butions.

The indexes G and I of the fitted models, are higher than the actual ones.
Note that in this example the restriction also makes the theoretical values closer
to the actual ones. The absolute differences between the inequality indexes of
the restricted model and the empirical distribution are 0.0052 for I and 0.0074
for G.

To evaluate how the fitted models reproduce the empirical distribution, it
can also be useful to compare the Zenga (2007) I(p) and the Lorenz L(p) curves.
Figure 2 represents the two inequality curves. Differences between the inequality
curves of the restricted and unrestricted models are not significant and observ-
able. For this particular application there is only an intersection point between
theoretical and actual curves. Both the curves show that the theoretical models
underestimate the inequality for low incomes and overestimate the inequality
for high incomes.
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Figure 2: Zenga and Lorenz curves of Germany 2001 empirical distribution and
of the correspondent estimated models.
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Figure 3: Histogram of Greece 2001 distribution and Zenga’s model estimated
by the method of minimum A′

2 with and without restriction on µ.

Figure 3 shows the histogram of the Greece 2001 distribution and the density
functions of the estimated models by the method of the minimum A′

2 both with
and without the restriction on µ. The estimated parameters, the goodness of fit
indexes and the relative deviation of the expected value from the actual mean
are provided in Table 9.

Parameter estimates µ̂ α̂ θ̂ A1 A2 A′
2 ρE

Unrestricted model 4927569 2.3169 4.2245 0.1473 0.2136 0.1967 0.0255
Restricted model 4804914 2.3714 4.3440 0.1541 0.2181 0.1993 0

Table 9: Greece 2001, parameters estimates and goodness of fit indexes obtained
with the method of minimum A′

2.

The A′
2 indexes are higher than the ones obtained for the Germany 2001

empirical distribution.
In the following table the actual arithmetic mean and inequality indexes are

compared with the corresponding indexes evaluated on the theoretical models
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Statistics mean/expected value G I
Empirical distribution 4804914 0.3828 0.7340

Unrestricted model 4927569 0.3962 0.7406
Restricted model 4804914 0.3958 0.7398

Table 10: Greece 2001, comparison between empirical and theoretical distribu-
tions.

As observed for the Germany 2001 distribution, the introduction of the re-
striction on µ reduces the difference between actual and theoretical inequality
indexes. The absolute differences between the inequality indexes of the restricted
model and the empirical distribution are 0.0058 for I and 0.0130 for G.

By Figure 4 it can be observed that the behaviour of the theoretical and the
actual inequality curves is similar to the behaviour observed for Germany 2001.
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Figure 4: Zenga and Lorenz curves of Greece 2001 empirical distribution and of
the correspondent estimated models.

Now we show how the model can be used to compare two different distribu-
tions. Let

X1 ∼ f(x : µ̂1 = x̄1; α̂1; θ̂1)

X2 ∼ f(x : µ̂2 = x̄2; α̂2; θ̂2)

be r.v. with Zenga’s density function and parameters estimated by method of
the minimum A′

2 with the restriction on µ, respectively on the Germany 2001
and the Greece 2001 empirical distributions. The comparison between µ̂1 and
µ̂2 allow to evaluate the difference in the “magnitude” of the distributions. Eu-
rostat (2003) states that incomes are expressed in national currency (NC) and
that “normally comparisons are made in equivalent units (purchasing power
standards - PPS) taking into account differences in the NC’s purchasing power.
This is obtained by DIVIDING the NC amounts by the purchasing power pari-
ties (PPP)”. The PPP of Germany 2001 is equal to 1.9930 and the one of Greece

18



2001 is equal to 277.2001. Therefore we have to consider the variables

Y1 = X1/1.9930
Y2 = X2/277.2001.

Since µ is scale parameter we can say that

Y1 ∼ f(y : µ̂1/1.9930; α̂1; θ̂1)

Y2 ∼ f(y : µ̂2/277.2001; α̂2; θ̂2)

are variables with Zenga’s density function and that the inequality indexes do
not change. We summarize in the following table the parameters and the in-
equality indexes of the variables Y1 and Y2.

Yi µ̂i/PPPi α̂i θ̂i Gi Ii
Germany 2001 Y1 28359.76 2.7189 3.1012 0.3018 0.6376
Greece 2001 Y2 17337.35 2.3714 4.3440 0.3958 0.7398

Table 11: Comparison between Greece 2001 and Germany 2001 income distri-
butions on the basis of fitted models parameters.

By Table 11 we can observe that on average the PPS in Germany 2001
is higher than the PPS in Greece 2001. Accordingly to both Gini and Zenga
indexes, the inequality is higher in Greece than in Germany. The higher in-
equality of the Greece distribution is confirmed by the higher tails, α̂2 < α̂1,
and by θ̂2 > θ̂1 (see Porro, 2011; Porro and Arcagni, 2012).

In order to compare the inequality of the income distributions in Germany
and Greece, we show the Lorenz curve and Zenga curve (Zenga, 2007).
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Figure 5: Comparison of the Zenga and Lorenz curves of the estimated models.

By Figures 5 it can be observed that inequality of Greece 2001 is always
higher than inequality of Germany 2001, therefore the estimated model on
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Greece 2001 is larger than the one estimated on Germany 2001 in the Lorenz
ordering and in the ordering based on the Zenga curve.

6 Conclusions

This paper proposes an application of Zenga’s model on a wide number of house-
hold income distributions. The estimation method used are: minimization of
goodness of fit indexes (A1, A2 and A′

2) and maximum likelihood on grouped
data. Each method has been applied without restrictions and with restriction
on µ.

We observed that, for each index and estimation method, the best results
are obtained with the empirical distributions of the same countries: Austria,
France, Germany, Greece, Luxembourg and Portugal. By the values of ρE , we
observed that the introduction of the restriction on µ implies, on average, a
loss of fitting lower than the gain in terms of relative distance of the expected
value from the actual mean. In particular, the lowest values of ρE are observed
with the method of minimum A′

2 and the method of the maximum likelihood.
With these methods the introduction of the restriction implies also the lowest
variations of parameters estimates and the lowest loss in fitting. The method of
minimum A′

2 also maximize the uniformity of the fitting, therefore we suggest
to use this method when the restriction on µ is imposed.

We chose two specific cases (Germany 2001 and Greece 2001) to show how
Zenga’s model can be used to compare different income distributions. By these
two examples it can be observed that the restriction on µ reduces the difference
between the actual inequality indexes (Gini’s index and Zenga’s index) and the
ones related to the estimated model. We also compared the actual inequality
curves (Lorenz curve and Zenga curve) and the ones of the estimated models.
Therefore we observed that the inequality curves of the estimated models do
not change significantly with the restriction on µ. However, empirical and the-
oretical inequality curves intersect only in one point and it is observable that
Zenga’s model underestimates the inequality for low incomes and overestimates
the inequality for high incomes. These last considerations are limited to the two
examples we have shown, but they suggest further research to study the effects
of a restriction on a global inequality index.
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