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Introduction

An almost D-structure on a 2n-dimensional manifold M is an endomorphism K of the
tangent bundle TM such that K2 = IdTM and the two eigendistributions TM± with
eigenvalue ±1 have the same rank n. An almost D-structure K is said to be integrable or
to be a D-structure if TM± are involutive. It turns out that the integrability condition is
equivalent to the vanishing of the torsion tensor NK .

The basic idea of the D-geometry is to replace the field of complex numbers C with
the algebra of double numbers D (namely D := {x + τy | x, y ∈ R} where τ2 = +1), and
consequently the model space of such a D-geometry is given by the set Dn of the n-tuples
of double numbers. In some sense, the D-geometry is a counterpart of complex geometry,
and while this one is elliptic, that one shows his hyperbolic side (e.g., the characteristic
equation of D-holomorphic functions is the wave equation, while that one of holomorphic
complex functions is elliptic).

Obviously there are a lot of parallelisms between D-geometry and complex geometry,
but there is also a large number of links between D-structures and other geometric struc-
tures (e.g., product structures [5], pseudo-Riemannian geometry, Bochner-Kähler metrics
[16], bi-Lagrangian structures [30], Lorentzian surfaces).

For example, D-structures naturally appear in the context of bi-Lagrangian structures
on a symplectic manifold (M,ω) (namely a pair of Lagrangian transverse foliations on M)
which is equivalent to assign a D-Kähler structure on M (i.e. a pair (K, g) of a D-structure
K and a pseudo-Riemannian metric g of signature (n, n) such that g(K·,K·) = −g(·, ·) and
whose fundamental form ω(·, ·) = g(·,K·) is closed, see [16, § 5.2]).

The D-complex structures have been introduced more than fifty years ago and studied
by many authors: e.g. P.K. Rashevskij [68], P. Libermann [57]. Because of the many con-
nections to various branches of mathematics and physics as listed before, the D-structures
are presented with many different names, e.g. almost product structures or hyperbolic struc-
tures. A very used name is the one introduced by P. Libermann in her Ph.D. Thesis [56],
that is para-complex structures (that name is also used by many other authors in the liter-
ature, see e.g. [2, 20, 21], and the reference therein). Nevertheless, through this thesis we
will follow the recent terminology introduced by F.R. Harvey and H.B. Lawson in [40].

Indeed, F.R. Harvey and H.B. Lawson [40], motivated by the study of calibrated sub-
manifolds in semi-Riemannian geometry (see [60]) and by the optimal transport problem
(see [48]), focused on the geometry of Special Lagrangian submanifolds in a D-Kähler
manifold with trivial canonical bundle, that is the D-analogous of the Calabi-Yau case
(this arguments will be covered in Chapter 4). Other recent results relate the D-complex
structures to important analysis problem, e.g., C.D. Hill and P. Nurowsky in [42] gave
an application of CR D-complex structures to the study of systems of partial differential
equations and systems of ordinary differential equations, while M. Chursin, L. Schäfer and
K. Smoczyk [18] studied the mean curvature flow in (almost) D-Kähler manifolds.

Nevertheless, there are also differences with the complex geometry. For example, there
exist compact manifolds without any complex structure which admit a D-Kähler metric
(see e.g. [61] where it is constructed a family of D-Kähler metrics on a nilmanifold which

v
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does not carry any complex structure). On the other hand, it is known that a sphere of even
dimension does not have any D-structure by topological obstructions (see [29, Corollary
2.5] or [71]). Furthermore we find a D-Kähler Ricci flat metric on a manifold which does
not admit any Kähler structure (see 4.2). As far as we know there is not a cohomological
decomposition which could give topological obstructions to the existence of D-structures
or D-Kähler structures as in the complex case.

In some sense, the D-geometry is settled between the complex geometry and a real
pseudo-Riemannian geometry, depending on the choice of the coordinates, and both view-
points have their strengths and weaknesses. If on a manifold we use the D-coordinates, we
get a lot of parallelisms to complex geometry, but we have to be careful because we do not
work with a field and we have divisors of zero (indeed, D is a ring and is not an integral
domain so it is not a field). If we work with the null coordinates, we lose the complex
viewpoint and a lot of good ideas coming from complex geometry. Through this work we
will try to keep an eye on both these possibilities, to keep the best from each side.

We start this thesis recalling the standard definitions and the main properties of D-
complex structures, trying to underline useful similarities and different behavior with re-
spect to the complex structures. We also turn our attention on CR D-structures, which
we will use through this work. At the end of the first chapter, we focus on automorphisms
group of D-structures, which is infinite dimensional. However, under some restricting as-
sumptions, we show that such a group is finite (see Proposition 1.8.20 and Corollary 1.8.21).

The first question we wonder relates to the study of small deformations of D-structures
on a compact D-manifold. The starting point is the paper by C. Medori and A. Tomassini
[61], in which are defined and constructed curves of (almost) D-complex structures.

In analogy to the classical theory of deformations of complex structures developed by
K. Kodaira and D.C. Spencer (see [51, 52]), a Differential Graded Lie Algebra (A, [[·, ·]], ∂K)
(shortly DGLA) is introduced in [61] to characterize small deformations of a D-structure
K on a compact manifold M . It turns out that these deformations are parametrized by
1-degree elements of A satisfying the Maurer-Cartan equation, where the space of 1-degree
elements is A1 = Γ(M,∧0,1

K (M) ⊗ T 1,0M), i.e. the space of endomorphisms of TM anti-
commuting with K (see 2.3.9).

We first construct a new DGLA Â such that Â1 = A1 (i.e. in the new DGLA we
have the 1-degree elements of A that parametrized the deformations), then we construct
a DGLA injective homomorphism which allows to embed Â in the differential graded Lie
algebra F of skew-symmetric derivations on ∧0,∗

K (M). More precisely we get:

Theorem 2.4.2 ([69, Theorem 2.3]). The map q : Â → F is a DGLA homomorphism, i.e.
q is an injective map satisfying:

[q(ϕ), q(ψ)] = q([[ϕ,ψ]]) (equivalently [kϕ,kψ] = k[[ϕ,ψ]]) (2.4.7)

and

δKq(ϕ) = q(∂K ϕ) (equivalently δKkϕ = k∂K ϕ). (2.4.8)

(Such a theorem, as well as other results of Chapter 2 of this thesis, is already published
in our paper [69] J. Geom. Phys., 2012. In this thesis we try to motivate and explain better
these results).

As a consequence, we can describe the integrability condition of the deformations in
terms of a suitable operator k (see Section 2.4 and Corollary 2.4.5). Moreover, we are able
to restate the Maurer-Cartan integrability condition of [61] in the D-holomorphic setting
(see Remark 2.4.8).
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Always in the paper [69], we study the analogous problem for CR D-structures. An
almost CR D-structure of codimension 2k on a (m + 2k)-manifold M is a pair (H,K)
where H is a distribution and K ∈ End(H) is an almost D-complex structure. Inspired
by a work of P. de Bartolomeis and F. Meylan [22], we focus on strictly CR D-structures,
that is a contact manifold (M, ξ) with an integrable CR D-complex structure K on the
contact distribution. We construct a deformation theory for such structures and an appro-
priate DGLA and we show that the integrable deformations must satisfy a Maurer-Cartan
condition, as in the previous case. Indeed, we get the following:

Theorem 2.5.11 ([69, Theorem 3.9]). Let K ∈ D(ξ) be a strictly CR D-structure on a
compact contact manifold (M, ξ), and let K̂ ∈ D(ξ) be given by:

K̂ = (Id +ϕ)K(Id +ϕ)−1, where ϕK +Kϕ = 0, ϕt = ϕ. (2.5.10)

Let ϕ̃ be the operator associated to ϕ via the isomorphism m:

m : ξ −→ ξ0,1, X 7−→ X̃ =
1

2
(X + τKX).

Then

NK̂ = 0⇐⇒ ∂K ϕ̃+
1

2
[[ϕ̃, ϕ̃]] = 0.

Furthermore, we restate the integrability condition in the DGLA of skew-symmetric
derivations of ∧0,∗

K (ξ) (see Theorem 2.5.9 and Remark 2.5.13), as done for D-structures.
We stress that the study of deformations using DGLAs does not involve the local (D-
holomorphic) coordinates, hence it describes intrinsically the deformations of the D-struc-
ture K on a manifold, as well as it describes intrinsically the deformations of the CR
D-structure K.

We construct some examples of strictly CR D-structures on some nilmanifolds, proving
that on nilmanifold with structure equations isomorphic to (0, 0, 12, 13, 14 + 23) (for nota-
tions and conventions, see Chapter 1, more precisely on nilmanifold see Section 1.6) there
does not exist any strictly CR D-structure (see Proposition 2.6.4).

A problem dealing with D-complex structures is that one has to handle with semi-Rie-
mannian metrics and not with Riemannian ones. In particular, one can try to reformulate a
D-Dolbeault cohomological theory for D-complex structures, in the same vein as Dolbeault
cohomology theory for complex manifolds: but one suddenly finds that such D-Dolbeault
groups are in general not finite-dimensional (for example, yet the space of D-holomorphic
functions on the product of two equi-dimensional manifolds is not finite-dimensional). In
fact, one loses the ellipticity of the second-order differential operator associated to such D-
Dolbeault cohomology. Therefore, it would be interesting to find some other (well-behaved)
counterpart to D-Dolbeault cohomology groups.

It turns out that also the investigation of a D-complex version of the complex ∂ ∂-
Lemma is not a good way to look for such structures. In fact, we prove in this thesis that
there are no D-complex manifolds satisfying a D-complex ∂ ∂-Lemma (see Proposition
3.1.11).

Recently, T.-J. Li and W. Zhang considered in [55] some subgroups, called H+
J (M ;R)

and H−J (M ;R), of the real second de Rham cohomology group H2
dR(M ;R) of an almost

complex manifold (M, J), characterized by the type of their representatives with respect to
the almost complex structure (more precisely, H+

J (M ;R), respectively H−J (M ;R), contains
the de Rham cohomology classes admitting a J-invariant, respectively J-anti-invariant,
representative): in a sense, these subgroups behave as a “generalization” of the Dolbeault
cohomology groups to the complex non-Kähler and non-integrable cases. In particular,
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these subgroups seem to be very interesting for 4-dimensional compact almost complex
manifolds and in studying relations between cones of metric structures, see [55, 27, 11]. In
fact, T. Drǎghici, T.-J. Li and W. Zhang proved in [27, Theorem 2.3] that every almost
complex structure J on a 4-dimensional compact manifold M induces the decomposition
H2
dR(M ;R) = H+

J (M ;R)⊕H−J (M ;R); the same decomposition holds true also for compact
Kähler manifolds, thanks to Hodge decomposition (see, e.g., [55]), while examples of com-
plex and almost complex structures in dimension greater than 4 for which it does not hold
are known.

In our joint work with D. Angella [9] Differ. Geom. and App. (2012), we reformulate
T.-J. Li and W. Zhang’s theory in the almost D-complex case, constructing subgroups of
the de Rham cohomology linked with the almost D-complex structure. In particular, we
are interested in studying when an almost D-complex structure K on a manifold M induces
the cohomological decomposition

H2
dR(M ;R) = H2 +

K (M ;R)⊕H2−
K (M ;R)

through the D-complex subgroups H2 +
K (M ;R), H2−

K (M ;R) of H2
dR(M ;R), made up of the

classes admitting a K-invariant, respectively K-anti-invariant representative; such almost
D-complex structures will be called C∞-pure-and-full (at the 2-nd stage), miming T.-J. Li
and W. Zhang’s notation in [55].

We prove some results and provide some examples showing that the situation, in the
(almost) D-complex case, is very different from the (almost) complex case.

In particular, in Example 3.6.1 and in Example 3.6.2, we show that compact D-Kähler
manifolds (that is, D-complex manifolds endowed with a symplectic form which is anti-
invariant under the action of the D-complex structure) need not to satisfy the cohomolog-
ical decomposition through the D-complex subgroups we have introduced. Furthermore,
Example 3.6.5 shows a 4-dimensional almost D-complex nilmanifold that does not satisfy
such a D-complex cohomological decomposition, providing a difference with [27, Theorem
2.3] by T. Drǎghici, T.-J. Li and W. Zhang.

Nevertheless, with the aim to write a partial counterpart of [27, Theorem 2.3] in the
D-complex case, we prove in Theorem 3.3.4 that a product M ×N of two equidimensional
manifolds equipped with the standard D-complex structure is always C∞-pure-and-full at
every stage and pure-and-full at every stage (see Section 3.2 for the definition of pure-and-
full property). Moreover, we get the following:

Theorem 3.5.14 ([9, Theorem 3.17]). Every invariant D-complex structure on a 4-dimen-
sional nilmanifold is C∞-pure-and-full at the 2-nd stage and hence also pure-and-full at the
2-nd stage.

We also prove that such a theorem is optimal, because the hypothesis on integrability,
nilpotency and dimension can not be dropped out (see Remark 3.5.15).

However, in this thesis we improve such a result, showing that on any Lie algebra the
D-complex structures are always C∞-pure at the 1-st stage (see Proposition 3.5.16), and
proving that on a 4-dimensional nilmanifold, the dimensions of H2 +

K and of H2−
K depend

only on the underlying Lie algebra (see Theorem 3.5.18).
Lastly, in [9] we study explicit examples of deformations of D-complex structures. In

particular, we provide examples showing that the dimensions of the D-complex subgroups
of the cohomology can jump along a curve of D-complex structures (see Proposition 3.7.7).
Next we show this following result:

Theorem 3.7.3 ([9, Theorem 4.2]). The property of being D-Kähler is not stable under
small deformations of the D-complex structure.

Indeed, we construct on a nilmanifold which admits only a symplectic 2-form ω, a
deformation of a D-complex structures Kt such that ω is a Kähler form only for t = 0 (see
Example 3.7.2).



INTRODUCTION ix

Such a theorem provides another strong difference with respect to the complex case
(indeed, recall that the property of admitting a Kähler metric is stable under small defor-
mations of the complex structure, as proved by K. Kodaira and D.C. Spencer in [52]).

For more information and results on deformations of complex structures, see e.g. [70, 8].

Finally, we study the Ricci-flat D-Kähler manifolds. As their name suggests, these
manifolds are D-Kähler manifolds with Ricci-flat metric, and in the D-settings they are
the D-analogous of the usual complex Calabi-Yau manifolds. Since there is a symplectic
form ω, it makes sense to consider Lagrangian submanifolds. F.R. Harvey and H.B. Lawson
in [40] studied a particular submanifold class of Ricci-flat D-Kähler manifolds, namely the
Split Special Lagrangian Submanifold, proving that they are closed related to calibrated
submanifolds in semi-Riemannian geometry (see the Ph.D. Thesis of J. Mealy [60]) and
that they provide a natural setting for the optimal transport problem (see, e.g., Y.-H. Kim,
R.J. McCann and M. Warren [48]). Moreover, they found some useful properties, e.g. a
Lagrangian submanifold has constant phase if and only if it is a minimal submanifold.

With the aim to extend such a result to a larger class of manifolds, we drop the inte-
grability of the D-structure (i.e. the Kähler hypothesis), and turn our attention to a more
general class of manifolds, these endowed with a symplectic structure and having a parallel
(n, 0)-form.

The first problem to deal with is to find a suitable connection which could give the
required parallel condition. Since the D-structures are no more integrable, we need a con-
nection different from the usual Levi-Civita connection. We focus on the set of D-Hermitian
connections, i.e. metric connections such that ∇K = 0, and we give some properties (see
Section 4.4). Indeed, we developed a theory which is the D-complex analogous of the study
of Hermitian connection made by P. Gauduchon [37] (see also [45]). Moreover, we found
that the D-Chern connection is what we need, and we are able to state the following result
(which can be thought as an extension of [40, Proposition 16.3]):

Theorem 4.5.7. Let (M, g,K) be an almost D-Hermitian manifold such that the fun-
damental 2-form ω is closed and there exists a no-where vanishing (n, 0)-form ε that is
parallel with respect to the D-Chern connection, i.e. ∇1ε = 0. Let L ⊂ M be an oriented
non-degenerate Lagrangian submanifold of M . Then for any vector V ∈ TL tangent to the
Lagrangian submanifold it holds:

V (θ) = −i
H̃L
ω = −iH1

L
ω +

∑
i=1

g(V, T 1(ei, ei)). (4.5.16)

In the previous theorem, we have used the following notation (see Chapter 4 for more
informations): θ is the phase function, H̃L is the D-complex mean curvature vector field,
T 1 is the torsion of the D-Chern connection and H1

L is the mean curvature vector of the
D-Chern connection.

This thesis is organized as follows.
In Chapter 1 we introduce the basic notions of D-structures and of CR D-structures and
other notations, results and properties useful through the further Chapters.
Chapter 2 is devoted to the deformation theory of D-structures and of strictly pseudo-
convex CR structures. First we recall some definitions and properties of the DGLA, and
we review the classical deformation theory of complex manifolds. Then, with the aid of
[61], we construct the deformation theory for D-complex structures. In Section 2.4 we
construct another DGLA and we build the DGLA injection q which allows to restate the
Maurer-Cartan condition for integrable deformations. Finally, we study the deformation of
CR D-complex manifolds, providing some examples.
The cohomological properties of D-manifolds is the topic discussed in Chapter 3. We
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start recalling some properties of D-complex cohomology. In particular we investigate K-
invariant and K-anti-invariant subgroups of the de Rham cohomology group, defining the
notion of pure-and-full of a D-complex structure. Then we focus on solvmanifolds, and
we construct some examples which show that D-complex case is very different from the
complex case. In Section 3.7 we show that being a D-Kähler manifold is not stable for
deformations of the D-complex structure.
Finally, in Chapter 4, we study Ricci-flat D-Kähler manifolds and D-Hermitian connections,
to extend a result by F.R. Harvey and H.B. Lawson (see [40]) to non-integrable case, i.e.
we restate their result for Lagrangian submanifolds of almost D-complex manifolds. We
also construct some explicit examples of Ricci-flat D-Kähler manifolds over nilmanifolds (it
is known that the only Calabi-Yau nilmanifold is the torus, hence again we note a strong
difference with the complex case).



Chapter 1

Introduction to D-structures

D-complex geometry arises naturally as a counterpart of complex geometry. Indeed, an
almost D-complex structure (also called almost D-structure) on a manifold M is an endo-
morphism K of the tangent bundle TM whose square K2 is equal to the identity on TM
and such that the rank of the two eigenbundles corresponding to the eigenvalues {−1, 1}
of K are equi-dimensional (for an almost complex structure J ∈ End(TM), one requires
just that J2 = − IdTM ).

In this chapter we (briefly) recall some definitions and results on D-complex structures
(for more details, results and motivations see [2], [20], [21] and [40] and the references
therein). We start with the definition of the Double numbers D and then we turn our
attention to D-structure on vector spaces and then on manifolds.

In Sections 1.4 and 1.5 we study the relations between the D-complex structure K
and the pseudo-Riemannian metric g, recalling the definitions and properties of D-Kähler
manifolds.

The last part of this chapter is devoted to CR D-manifolds. We focus on D-structures on
contact manifolds, in particular on strictly CR D-structures, recalling some definitions and
results. We end with a study of automorphism group of D-structures and CR D-structures.

Notation. Through the paper we will use the following conventions: smooth functions (also
differentiable functions) means functions of class C∞, and differentiable maps between
manifolds are also assumed to be of class C∞.
Manifolds are assumed to be C∞-manifolds and satisfying the second axiom of countability.
We denote by ⊗kV and ∧kV the k-th tensor power and k-th exterior power of a vector
bundle V over a manifold M . If the vector bundle is the cotangent bundle T ∗M we shorten
the notation for the exterior product by ∧kM . We denote by TM the tangent bundle
to the manifold M , and we often will use the same symbol TM for the differentiable
sections X(M) = Γ(M,TM). This identification between the vector bundle and the space
of differentiable sections of such a bundle will be done for most of the vector bundles (for
example, Ωk(M) = Γ(M,∧kT ∗M) will be also denoted by ∧kM).
All manifolds are assumed orientable, except in this first Chapter, where non-orientable
manifolds are allowed when explicitly specified (this because here we introduce the main
tools and describe the general aspects of Double manifolds). In the rest of the paper any
non-orientable manifold is explicitly declared (see also Remark 1.4.6).

1.1 Preliminaries on Double numbers

1.1.1 Algebra of Double numbers

We denote by D the set of the double numbers (para-complex, hyperbolic or Lorentzian
numbers), that is the 2-dimensional algebra over R endowed with a natural operation of

1



2 CHAPTER 1. INTRODUCTION TO D-STRUCTURES

sum, a multiplication by real number and a (distributive and associative) multiplication ∗
defined by:

(x, y) ∗ (x′, y′) := (xx′ + yy′, xy′ + x′y). (1.1.1)

In analogy with the complex numbers, we set τ := (0, 1) (called para-complex imaginary
unit or also D-complex imaginary unit), then τ2 = 1 and we can write

D := {z = x+ τy | x, y ∈ R, τ2 = 1}, (1.1.2)

so D is the real algebra generated by 1 and τ . We call Re z = x and Im z = y the real and
(para-)imaginary part of the double number z = x+ τy.

However, choosing the basis e :=
1

2
(1 + τ), ē :=

1

2
(1− τ), we get

D = eR⊕ ēR = {z = ue+ vē | u, v ∈ R} (1.1.3)

where u, v are called the adapted-coordinates or null-coordinates of z, since e2 = e, ē2 = ē
and eē = 0. We will call standard coordinates the real-imaginary coordinates x, y. Note
also the relations:

τe = e, τ ē = −ē. (1.1.4)

Thus we see that D is just the algebra of 2× 2 diagonal matrices

(
u 0
0 v

)
over R. (Note

that our notation for the adapted coordinates is slightly different from the one used by
F.R. Harvey and H.B. Lawson in [40], in fact they switch e with ē and u with v).

The conjugate of z = x+ τy is naturally defined by

z̄ := x− τy = ve+ ēu (1.1.5)

and moreover zz̄ defines a quadratic form of signature (1, 1):

〈z, z〉 := zz̄ = x2 − y2 = uv. (1.1.6)

The algebra D is normed in the sense that 〈z ∗w, z ∗w〉 = 〈z, z〉〈w,w〉 and this is the only
commutative normed algebra other than the real and complex numbers, in fact D is the
Clifford algebra Cl0,1 (see [20]).

The double number z ∈ D is invertible if and only if zz̄ 6= 0 (hence D is not an integral
domain), and double numbers such that zz̄ = 0 are called null elements. We denote by D∗

the group of the invertible elements and for z ∈ D∗ we have

z−1 :=
z̄

〈z, z〉
. (1.1.7)

Obviously the null elements are of the form z = x± τx (or z = ue, z = vē) and D∗ has four
connected components. Often, especially in physics, elements with strictly negative norm
are called time-like numbers, and elements with strictly positive norm are called space-like
numbers. We denote by D+ the space-like component of D∗ containing 1.

We can define the exponential function

exp : D
'−→ D+

z 7−→ exp(z) := exp(x)(cosh y + τ sinh y)

= e exp(u) + ē exp(v)

(1.1.8)

which gives an isomorphism with inverse

log : D+ → D

z 7−→ log(z) := log
(√

(x+ y)(x− y)
)

+ τ log

(√
x+ y

x− y

)
= e log(u) + ē log(v).

(1.1.9)



1.1. PRELIMINARIES ON DOUBLE NUMBERS 3

The unitary subgroup U1(D) := {z ∈ D | zz̄ = 1} has two connected components,
parameterized by ± exp(τθ) for θ ∈ R, and it is an hyperbola replacing the unit circle of
complex numbers C, for this it is also known as the space-like unit sphere.

1.1.2 D-holomorphic functions

Now treat D as R2 and consider a smooth D-valued function F on an open set U ∈ D.
We can split F , using standard-coordinates (i.e. the real and imaginary) or the adapted-
coordinates, in the following sense:

F : U −→ D

z = x+ τy 7−→ F (z) = f(x, y) + τg(x, y)

= ue+ vē = f̂(u, v)e+ ĝ(u, v)ē

(1.1.10)

where f, g, f̂ , ĝ are real-valued functions. We can define also the 1-forms:

d z := dx+ τ d y = e du+ ēd v and d z̄ := dx− τ d y = e d v + ē du (1.1.11)

with duals
∂

∂ z
: =

1

2

(
∂

∂ x
+ τ

∂

∂ y

)
= e

∂

∂ u
+ ē

∂

∂ v
,

∂

∂ z̄
: =

1

2

(
∂

∂ x
− τ ∂

∂ y

)
= e

∂

∂ v
+ ē

∂

∂ u
.

(1.1.12)

A differentiable function F : U → D is D-holomorphic or para-holomorphic if

∂

∂ z̄
F = 0, (1.1.13)

that is, writing F as in (1.1.10) and
∂

∂ z̄
as in (1.1.12), if it satisfies the (para-)Cauchy-

Riemann conditions:

∂

∂ x
f(x, y) =

∂

∂ y
g(x, y)

∂

∂ x
g(x, y) =

∂

∂ y
f(x, y). (1.1.14)

Writing F in the null coordinates, the D-holomorphic condition becomes:

∂

∂ z̄
F = e

∂

∂ v
f̂(u, v) + ē

∂

∂ u
ĝ(u, v) = 0 (1.1.15)

showing that a smooth function is D-holomorphic if and only if f̂ = f̂(u) and ĝ = ĝ(v).
It follows that satisfying the para-Cauchy-Riemann conditions (1.1.14) (or (1.1.15)) does
not assure the analyticity as in the complex case. In fact, it is possible to construct the
following example:

Example 1.1.1. Let F : D→ D defined as

F (x+ τy) =

[
exp

(
− 1

(x+ y)2

)
+ exp

(
− 1

(x− y)2

)]
+ τ

[
exp

(
− 1

(x+ y)2

)
− exp

(
− 1

(x− y)2

)]
.

(1.1.16)

It easily follows that F is a D-holomorphic function but it is not analytic. Moreover the
conditions (1.1.14) (or (1.1.15)) alone do not imply the existence of further derivatives
other than the first one: defining F as F := f̂(u)e + ĝ(v)ē with f̂ , ĝ ∈ C1(R) (that is real
continuous function with continuous first derivative), we get such an example.
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Note that:
∂ F = 0 and F ∈ R implies F = c ∈ R is constant.

In fact, writing in null-coordinates, we get from ∂ F = 0:

F (u, v) = ef(u) + ēg(v)

since F ∈ R, we have that f(u) − g(v) = 0, and by differentiating in
∂

∂ u
and in

∂

∂ v
, we

obtain that f(u) = g(v) = c. In conclusion F (u, v) = ec+ ēc = c.

Remark 1.1.2. Indeed, we have:

∂2

∂ z ∂ z̄
=

1

4

(
∂2

∂ x2
− ∂2

∂ y2

)
=

∂2

∂ u ∂ v
(1.1.17)

which is the wave equation and an hyperbolic operator, so we lack the regularity of the

complex case (where
∂2

∂ z ∂ z̄
=

1

4

(
∂2

∂ x2
+

∂2

∂ y2

)
is an elliptic operator).

We introduce the following operators, in analogy with the complex case:

d := dx ∧ ∂

∂ x
+ d y ∧ ∂

∂ y
, dD := dx ∧ ∂

∂ y
+ d y ∧ ∂

∂ x
,

∂ := d z ∧ ∂

∂ z
, ∂ := d z̄ ∧ ∂

∂ z̄
,

∂+ := du ∧ ∂

∂ u
, ∂− := d v ∧ ∂

∂ v
.

(1.1.18)

These operators satisfy the following relations:

d = ∂+ ∂ = ∂+ + ∂−, dD = τ(∂− ∂) = τ(∂+− ∂−),

∂ =
1

2
(d+τ dD) = e ∂+ +ē ∂−, ∂ =

1

2
(d−τ dD) = e ∂−+ē ∂+,

d d = dD dD = ∂2 = ∂
2

= ∂2
+ = ∂2

− = ∂ ∂+ ∂ ∂ = ∂+ ∂−+ ∂− ∂+ = 0,

d dD = −2τ ∂ ∂ = 2 ∂+ ∂− .

(1.1.19)

Remark 1.1.3. Some authors use the notations du and dv for ∂+ and ∂− respectively (e.g.
[40]).

1.1.3 Double n-Space

The set of n-ples of double numbers is denoted by Dn and is called the double n-space.
Obviously as before

Dn := {(z1, . . . , zn) | zi ∈ D} (1.1.20)

is isomorphic to Rn⊕Rn and we will call (x1, . . . , xn, y1, . . . , yn) (respectively (u1
+, . . . , u

n
+,

u1
−, . . . , u

n
−)) the underlying real coordinates depending on the choice of the standard-coor-

dinates (respectively the null-coordinates). We have replaced the previous notation (u, v)
for the adapted-coordinates with the most glaring notation (u+, u−) (see e.g. [2]).

As before, we can introduce differential operators on D-valued forms by extending the
previous ones (see (1.1.12) and (1.1.18)) in a natural way, for example:

∂ :=

n∑
i=1

d zi ∧ ∂

∂ zi
, ∂ :=

n∑
i=1

d z̄i ∧ ∂

∂ z̄i
,

∂+ :=

n∑
i=1

dui+ ∧
∂

∂ ui+
, ∂− :=

n∑
i=1

dui− ∧
∂

∂ ui−
.

(1.1.21)
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Again, the relations (1.1.19) are satisfied.

A D-valued smooth function F over an open set U ⊂ Dn is D-holomorphic if ∂ F =
0. As before, it follows that F is D-holomorphic if it satisfies the para-Cauchy-Riemann
conditions if and only if in the null-coordinates F = f(u1

+, . . . , u
n
+)e+ g(u1

−, . . . , u
n
−)ē with

f, g real functions.

On Dn we have the standard D-valued Hermitian inner product 〈·, ·〉 and a real inner
product (a pseudo-metric) (·, ·) defined by:

〈z, w〉 :=
n∑
i=1

ziw̄i (z, w) := Re〈z, w〉 := Re

(
n∑
i=1

ziw̄i

)
z, w ∈ Dn. (1.1.22)

The associated quadratic form 〈z, z〉 = (z, z) =

n∑
i

(xi)2 − (yi)2 =

n∑
i

ui+u
i
− has (n, n)-

signature (neutral or split signature). If we denote by ω =
n∑
i

dxi ∧ d yi = −1

2

n∑
i

dui+ ∧

dui− the standard symplectic form on R2n, we get as in the complex case:

〈z, w〉 = (z, w)− τω(z, w) z, w ∈ Dn. (1.1.23)

The multiplication by τ induces an automorphism K in Dn (Kz = τz). This isomor-
phism acts on standard-coordinates (resp. null-coordinates) in the following way:

K(xi) = yi K(yi) = xi

K(ui+) = +ui+ K(ui−) = −ui−.
(1.1.24)

Note that K2 = + Id in contrast to the complex case where J2 = − Id. Such an endomor-
phism is what we use to generalize the Double numbers to manifold and to construct the
D-complex structure (see next sections 1.2 and 1.3).
We see also that K is an anti-isometry for the Hermitian inner product and for the sym-
plectic form: 〈Kz,Kw〉 = −〈z, w〉, ω(Kz,Kw) = −ω(z, w). Moreover these elements are
related by the equation:

(z,Kw) = ω(z, w). (1.1.25)

The D-linear maps from Dn to Dm correspond to the set Mm,n(D) of the m×n-
matrices with entries in D. By standard algebra, square matrices A,B ∈ Mn(D) have a
D-determinant with the usual properties, e.g.:

detDA
t = detDA, detD(AB) = detDAdetDB, AÃt = (detDA) Idn (1.1.26)

(where ·t denotes the transpose operator and Ã is the cofactor matrix of A). Hence A has
inverse A−1 if and only if detDA has an inverse, that is if detDA ∈ D∗. We will denote
by GLn(D) ⊂Mn(D) the group of invertible square matrices of Mn(D).

We have, as in the complex case detDAdetDA = detRA, where in detRA the matrix
is thought as an element of M2n(R). In the null-coordinates A = eB + ēC ∈ Mn(D) with
B,C ∈Mn(R) and for the D-determinant the formula

detDA = edetRB + ēdetRC (1.1.27)

holds. It follows that GLn(D) ∼= GLn(R)×GLn(R) and that detDA ∈ D+ if and only if
detRB > 0 and detRC > 0.
Each linear map from Dn to Dm decomposes into the sum of a D-linear map (the so called



6 CHAPTER 1. INTRODUCTION TO D-STRUCTURES

(1, 0)-part) and an anti-D-linear map ((0, 1)-part), then the Jacobian of a smooth map
F : U ⊂ Dn → Dm splits as:

JacR(F ) = Jac1,0
D (F ) + Jac0,1

D (F ) =
∂ F

∂ z
+
∂ F

∂ z̄
(1.1.28)

and F is D-holomorphic if J0,1
R (F ) =

∂ F

∂ z̄
= 0, that is if JR(F ) is D-linear. A smooth

function between open subsets of Dn is bi-D-holomorphic if F is D-holomorphic and J1,0
D (F )

is non-null (i.e. invertible).

Since D is not a field, Dn is not, strictly speaking, a vector space over D, but an algebra
over D. By this reason a vector Z = (zi) ∈ Dn will be called regular if one of the following
equivalent conditions is satisfied:

1. Z and KZ are linearly independent on R, where K is the natural extension of (1.1.24)
to the component zi of Z, i.e., it is the multiplication by τ of every component zi of
Z,

2. for z ∈ D, it holds that if zZ = 0, then z = 0.

Proof of the equivalence. Setting z = a+ τb with a, b ∈ R we see that

zZ = (a+ τb)(z1, . . . , zn) = a(z1, . . . , zn) + bK(z1, . . . , zn), (1.1.29)

this easily shows the equivalence between previous points 1 and 2.

Given a matrix A ∈Mn(D), denote by A∗ the conjugate transpose Āt. Let (x1, . . . , xn,
y1, . . . , yn) be the standard basis for Dn. A set of regular vectors v1, . . . , vn ∈ Dn is a
space-like D-unitary basis for Dn if v1, . . . , vn,Kv1, . . . ,Kvn is a real orthonormal basis
with (vi, vi) = 1 and (Kvi,Kvi) = −1 for all i. The unitary group Un(D) is the set of
matrices A satisfying one of the following equivalent conditions:

1. (Az,Az) = (z, z) for all z ∈ Dn,

2. AA∗ = Id (or equivalently A∗A = Id),

3. Ax1, . . . , Axn is a space-like D-unitary basis.

Note that Un(D) has two components determined by detDA = ±eτθ ∈ U1(D) (see (1.1.8)).
We call U+

1 (D) the component containing the identity. We have also the special linear
group SLn(D) := {A ∈ GLn(D) | detDA = 1} and the special unitary group SUn(D) :=
{A ∈ Un(D) | detDA = 1}. Computing in the null-coordinate A = eB + ēC we have:

A ∈ Un(D)⇔ A = eB + ē(Bt)−1 for some B ∈ GLn(R),

A ∈ U+
n (D)⇔ A = eB + ē(Bt)−1 for some B ∈ GL+

n (R),

A ∈ SL+
n (D)⇔ A = eB + ēC for some B,C ∈ SL+

n (R),

A ∈ SUn(D)⇔ A = eB + ē(Bt)−1 for some B ∈ SLn(R),

(1.1.30)

thus Un(D) ∼= GLn(R), U+
n (D) ∼= GL+

n (R), SLn(D) ∼= SLn(R)×SLn(R) and SUn(D) ∼=
SLn(R) and no one of these subgroups of GLn(D) ∼= GLn(R)×GLn(R) is compact.
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1.2 D-complex vector spaces

Our goal is to carry the structures of D and Dn on a manifold. The first step is to define
a D-complex structure over a vector space. We start with the following:

Definition 1.2.1. Let V be a finite dimensional real vector space. A D-complex structure
(or, briefly D-structure, also called para-complex structure) on V is an endomorphism K :
V → V such that:

1. K is an involution, that is K2 = IdV ;

2. the eigenspaces V ± := ker(IdV ∓K) of K with eigenvalues ±1 respectively have the
same dimension.

A vector space V endowed with a D-complex structure K, denoted by (V,K), will be called
D-complex (or para-complex ) vector space.
A pseudo-Euclidean metric (·, ·) on V is said to be compatible with the D-complex structure
if (K·,K·) = −(·, ·), that is if K is an anti-isometry, and (·, ·) will be called a D-Hermitian.
A homomorphism between D-complex vector spaces (V,K), (V ′,K ′) is a linear map L :
V → V ′ satisfying L ◦K = K ′ ◦ L.

It follows from point 2 of the above Definition 1.2.1 that V must have even dimension
2n, that dimV + = dimV − = n and that K has to be non-trivial (i.e. K 6= IdV ). We
note also that if (·, ·) is compatible with K, then it must have signature (n, n) and V ± are
null-subspaces for the pseudo-Euclidean metric, since

(X±, X±) = −(KX±,KX±) = −(X±, X±) for every X± ∈ V ±. (1.2.1)

The double space Dn is a D-complex vector space with the multiplication by τ as a
D-complex structure. Conversely, any D-complex vector space (V,K) can be regarded as
a D-module via the isomorphism

(x+ τy)v = xv + yKv v ∈ V, x, y ∈ R (1.2.2)

(we see that from this point of view, homomorphisms between D-complex vector spaces
correspond to D-linear maps). This isomorphism can be set also in the null-coordinates as
(eu+ + ēu−)v = 1

2u+(v + Kv) + 1
2u−(v − Kv). Note that v + Kv (resp. v − Kv) is the

projection of v over the eigenspace V + (resp. V −).
In fact, if (V,K) is a D-complex vector space, then there exists a basis of eigenvectors

{u1
+, . . . , u

n
+, u

1
−, . . . , u

n
−} such that Kuj+ = uj+ and Kuj− = −uj−, and we can identify K

with the diagonal matrix:

K =

(
Idn

− Idn

)
. (1.2.3)

However, there exists also a basis of vectors {x1, . . . , xn, y1, . . . , yn} (called standard-coor-
dinates) such that Kxi = yi and Kyi = xi. In such a basis K can be identified with the
matrix

K =

(
Idn

Idn

)
. (1.2.4)

Summarizing up, we have the following possible identifications:

Dn ∼= (Rn×Rn,
(

Idn
− Idn

)
) ∼= (Rn×Rn,

(
Idn

Idn

)
)

(zi = xi + τyi) 7→ (xi + yi, xi − yi) 7→ (xi, yi)

(zi = eui+ + ēui−) 7→ (ui+, u
i
−) 7→

(
1

2
(ui+ + ui−),

1

2
(ui+ − ui−)

)
.

(1.2.5)
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As one can see, the two basis {u1
+, . . . , u

n
+, u

1
−, . . . , u

n
−} and {x1, . . . , xn, y1, . . . , yn} are

different. In particular the last one is composed by regular vectors, while no-one of the first
one is so.

Definition 1.2.2. Let (V,K) be a D-complex vector space. A vector v ∈ V is called
regular if it satisfies one of the following equivalent conditions:

1. v /∈ V + and v /∈ V −,

2. D · v is a one-dimensional D-complex vector space over D,

3. v and Kv are linearly independent over R,

4. for z ∈ D, it holds that zv = 0⇒ z = 0.

Proof of the equivalence. 1⇔ 2 : Writing v = v++v− ∈ V +⊕V −, we have (D·v)± = R·v±.
Then D · v is a one-dimensional D-complex vector space if and only if v± 6= 0.
1⇔ 3 : Assuming v 6= 0, if Kv = av for any a ∈ R, then v = K2v = a2v and a = ±1. The
other implication is trivial.
3⇔ 4 : It is a consequence from (a+ τb)v = av + bKv.

Let K be a D-complex structure on V . We define the D-complexification (or para-
complexification) of V as V D := V ⊗R D, and we extend K to a D-linear endomorphism
of V D also called K. Note that the D-complexification of a vector space is different from
the isomorphism (1.2.2): indeed, we have that dimR V = 2n and dimR V

D = 4n while the
dimensions as a free module over D are respectively dimD V = n and dimD V

D = 2n. If
we set

V 1,0 := {v ∈ V D | Kv = τv} = {v + τKv | v ∈ V },
V 0,1 := {v ∈ V D | Kv = −τv} = {v − τKv | v ∈ V }

(1.2.6)

then we have V D = V 1,0⊕V 0,1 and the subspace V 1,0 (resp. V 0,1) is called D-holomorphic
subspace (resp. anti-D-holomorphic).

The D-complex structure on V induces a D-complex structure K∗ on the dual space
V ∗ by:

K∗(α)(V ) = α(Kv) (1.2.7)

for α ∈ V ∗, v ∈ V . If there is no confusion, we will denote by K the D-complex structure
both on V and on V ∗. Consequently, V ∗ splits in the two eigespaces V+ and V− of K. As
before, we have the following split of V ∗D = V ⊗R D = V1,0 ⊕ V0,1, where

V1,0 := {α ∈ V ∗D | Kα = τv} = {α+ τKα | α ∈ V ∗},
V0,1 := {α ∈ V ∗D | Kα = −τv} = {α− τKα | α ∈ V ∗}.

(1.2.8)

We denote by ∧p,qV ∗D the subspace of V ∗D spanned by the elements α∧β with α ∈ ∧pV1,0

and β ∈ ∧qV0,1. Then:

∧rV ∗D =
⊕
p+q=r

∧p,qV ∗D, (1.2.9)

and if {α1, . . . αn} is a basis of V1,0, then {ᾱ1, . . . ᾱn} is a basis of V0,1, and thus {αi1 ∧ · · ·∧
αip ∧ ᾱi1 · · · ∧ ᾱiq} with 1 6 i1 < · · · < ip 6 n, 1 6 i1 < · · · < iq 6 n is a basis for ∧p,qV ∗D.

Remark 1.2.3. Since D is a ring, we note some differences with the classical linear algebra:

1. In a D-complex vector space (V,K), the D-span of a vector v is not necessarily a
D-vector space. This is the reason for which we introduce the definition of regular
vector (Definition 1.2.2).
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2. If L : V → V ′ is D-linear map, the image and kernel of L are K-invariant real
subspace of V and V ′, but they may not be D-complex subspaces, since L(V +) and
L(V −) have not equal dimension. The same for ker(L)±.

3. It still holds that: L is injective if and only if kerL = {0}.

4. Note that the spaces V 1,0 and V 0,1 are not the “eigenspaces” (and ±τ are not “eigen-
values”) of the extension K of the D-complex structure K in a D-complexificated
space V D, because V D is a D-module, and not a vector space over D.

On a D-complexificated vector space, it is possible to define an Hermitian form in two
ways. A D-Hermitian form on V D is a map h : V D×V D → D such that

1. h is D-linear in the first entry and D-anti-linear in the second entry:

h(zZ,W ) = zh(Z,W ) h(Z, zW ) = z̄h(Z,W ) Z,W ∈ V D, z ∈ D; (1.2.10)

2. h(Z,W ) = h(W,Z).

Otherwise ĥ : V D×V D → D is a D-Hermitian symmetric form on V D if it is a symmetric
D-linear form such that:

1. the spaces V 1,0 and V 0,1 are isotropy:

ĥ(V 1,0, V 1,0) = ĥ(V 0,1, V 0,1) = 0; (1.2.11)

2. ĥ(Z̄, W̄ ) = ĥ(Z,W ), Z,W ∈ V D.

A D-Hermitian (symmetric) form is said to be non-degenerate if it has a trivial kernel, i.e.
kerh = {Z ∈ V D | h(Z, V D) = 0} = {0}.

Obviously these definitions are related: if ĥ is a D-Hermitian symmetric form, then the
form h defined by h(Z,W ) := ĥ(Z, W̄ ) is a D-Hermitian form, and vice-versa. Moreover
giving a pseudo-Euclidean metric (·, ·) compatible with K there exists a D-Hermitian sym-
metric form ĥ := (·, ·)D, where (·, ·)D is the natural D-bilinear extension of (·, ·). Hence we
have:

Proposition 1.2.4 ([2, Lemma 3.4]). On a D-complex vector space (V,K) there exists a
natural 1-1 correspondence between pseudo-Euclidean metric g compatible with K and the
non degenerate D-Hermitian symmetric form ĥ, and hence there is also a 1-1 correspon-
dence with the set of non-degenerate Hermitian form h.

1.3 D-structures on manifolds

Now we are able to carry D-structures over manifolds. Indeed, we will see that a D-manifold
is locally like Dn, moreover it has a D-complex structure on the tangent bundle.

Definition 1.3.1. An almost D-complex structure on a 2n-manifold M is an endomorphism
field K ∈ End(TM) such that:

1. K2 = + IdTM ,

2. the two eigendistributions TM± := ker(Id∓K) have the same rank n.
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An almost D-structure is said to be integrable if the eigendistribution TM± are integrable
(remind that a distribution D is integrable if it is tangent to a foliation F), in this case K
is called a D-complex structure.
The pair (M,K) is called an (almost) Double manifold, or briefly an (almost) D-complex
manifold.
A smooth map f : (M,K) → (M ′,K ′) between two (almost) D-complex manifolds is
D-holomorphic if

d f ◦K = K ′ ◦ d f. (1.3.1)

If we focus on this definition, we note that the dimension of an almost D-complex
manifold is necessarily even. Equivalently, an almost D-complex structure on M is a
splitting of the tangent bundle TM in a direct sum of two subbundles TM± of the same
fiber dimension, or it may be alternatively defined as a G-structure on M with structural
group GLn(R)×GLn(R) (and the last one was the definition used by Libermann [57], [56]).

Remark 1.3.2. There is also a strong link with complex geometry. In fact, let M be a
2n-dimensional compact manifold. Consider K ∈ End(TM) such that K2 = λ IdTM where
λ ∈ {−1, 1}: if λ = −1, we call K an almost complex structure; if λ = 1, we call K an
almost D-complex structure.

Example 1.3.3. It has been shown by many authors (for example [21]) that there are
almost D-complex structures also on the tangent bundle of a manifold M . Let ∇ be a
linear connection on M . For every X ∈ TM we denote by Xv and Xh the vertical and
horizontal lift with respect to the connection ∇. We set:

K(Xv) = Xv, K(Xh) = −Xh; K ′(Xv) = Xh, K ′(Xh) = Xv. (1.3.2)

We see that (TM,K) and (TM,K ′) are almost D-complex manifolds. Moreover, it is
known that K is integrable if and only if the connection ∇ has vanishing curvature, while
K ′ is integrable if and only if ∇ has vanishing both curvature and torsion.

Example 1.3.4. Consider the Klein bottle K as a quotient of the square [−1, 1]×[−1, 1] ⊂
R2, where we make the following identification:

(−1, y) ∼ (1, y) for − 1 ≤ y ≤ 1

(x,−1) ∼ (−x, 1) for − 1 ≤ x ≤ 1.
(1.3.3)

Now consider the foliations determinated by the vertical and horizontal lines of R2. It is
easy to see that these foliations define a D-complex integrable structure on the quotient K.

The Nijenhuis tensor NK (also called torsion tensor) of an almost D-complex structure
K is defined by:

NK(X,Y ) := [KX,KY ]−K[KX,Y ]−K[X,KY ] + [X,Y ] X,Y ∈ TM. (1.3.4)

In the well known complex case, the integrable condition is related with the vanishing of
Nijenhuis tensor (Newlander-Niremberg theorem [65]). In the D-complex case not only we
have an analogous result by Frobenius theorem, but we can also obtain other equivalence
to the integrability condition. In fact we have:

Proposition 1.3.5. Given an almost D-complex manifold (M,K), the following conditions
are equivalent:

1. (integrability) K is integrable (as in Definition 1.3.1);

2. (involutive property) the subbundles TM± are involutive, i.e. [TM+, TM+] ⊂ TM+

and [TM−, TM−] ⊂ TM−;
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3. the Nijenhuis tensor of K vanishes, NK = 0;

4. (existence of adapted-coordinates) for any point p there exist local real coordinates
u1

+, . . . , u
n
+, u

1
−, . . . , u

n
− : U → A+×A− ⊂ Rn×Rn defined on an open neighbourhood

U of p such that dui± ◦K = ±dui± ;

5. (existence of D-holomorphic coordinates) there exists on M an atlas (Uα, ϕα) of local
D-holomorphic chart, i.e. ϕα : M ⊃ Uα → Dn are D-holomorphic in the sense
of (1.3.1): dϕα ◦ K = τ dϕα (or that the transition functions ϕα ◦ ϕ−1

β are D-

holomorphic: ∂ ϕα ◦ ϕ−1
β = 0);

Proof. 1⇔ 2 : This is the Frobenius theorem.
2 ⇔ 3 : Writing X = X+ + X− and Y = Y + + Y − with respect to the decomposition
TM = TM+ ⊕ TM−, an easy computation gives:

NK(X,Y ) = 2(Id−K)[X+, Y +] + 2(Id +K)[X−, Y −], (1.3.5)

and noting that Id∓K are the projections over TM±, we get the equivalence.
1⇔ 4 : Fix a point p ∈M . By Frobenius theorem applied to distribution TM+, there exist
functions ui− on an open neighborhood p ∈ U which are constant on the leaves of TM+

and such that dui− are linearly independent. Similarly, we can find functions ui+ constant
on the leaves of TM− and such that dui+ are linearly independent. From transversality of
the two foliations we conclude that ui+, u

i
− is a system of local coordinates. The property

dui± ◦K = ±dui± easily follows from the construction of ui±.
5 ⇒ 3 : Given a D-complex atlas as in 5. we see that K on M is the pull-back of the
D-complex structure from Dn (consider K to be the multiplication by τ), and obviously
the associated Nijenhuis tensor NK = Nτ is zero.
4⇒ 5 : The adapted system of coordinates defines a system of D-holomorphic coordinates

by Re zi =
ui+ + ui−

2
and Im zi =

ui+ − ui−
2

, where K is the multiplication by τ . From

dui± ◦K = ±dui± follows that

d zi ◦K = (dRe zi + τ d Im zi) ◦K = d Im zi + τ dRe zi = τ d zi. (1.3.6)

This shows that the functions zi are indeed D-holomorphic, and form a coordinate system.
Now it is sufficient to observe that we can cover M by coordinate domains U as above and
that the coordinate changes are D-holomorphic.

Example 1.3.6. Any D-complex vector space (V,K) is a D-manifold, as well as Dn is a D-
manifold, with the multiplication by τ as a D-complex structure. In analogy with (1.2.5) we
will call the standard D-structure Kn of Dn ∼= R2n = {(x1, . . . , xn, y1, . . . , yn) | xi, yj ∈ R}
the following:

Kn

(
∂

∂ xj

)
=

∂

∂ yj
Kn

(
∂

∂ yj

)
=

∂

∂ xj
, (1.3.7)

while we will called the adapted D-structure K̂n of Dn ∼= R2n = {(u1
+, . . . , u

n
+, u

1
−, . . . , u

n
−) |

ui+, u
j
− ∈ R} the following one:

K̂n

(
∂

∂ uj+

)
=

∂

∂ uj+
K̂n

(
∂

∂ uj−

)
= − ∂

∂ uj−
. (1.3.8)

Example 1.3.7. Any product M = M+ ×M− of two smooth n-manifolds M+,M− is a
D-manifold. In fact, on TM = T (M+×M−) = T (M+) ⊕ T (M−) we set a D-complex
structure K on M by K|TM+ = Id and K|TM− = − Id. It is easy to see that K is integrable
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and T (M±) = TM±. We will call such a K the natural D-complex structure or the product
structure on M+ ×M−.
The 2n-torus T2n := Sn×Sn has a natural D-complex structure K given by the product
structure, and we will call (T2n,K) the standard D-complex torus (obviously, here Sn

denotes the product of n circumferences, and not the n-sphere).

Remark 1.3.8. It has to be noted that the notion of D-complex structures (Definition
1.3.1) can be generalized to the notion of (almost) product structures. Indeed, a pair of
complementary distributions B, C of constant rank p and q respectively, defines an almost
product structure on a manifold M if TM = B⊕C and dimM = p+ q. The almost product
structure is called integrable if both the distributions are integrable. Equivalently, there
exists an endomorphism field K ∈ End(TM) such that +1 is an eigenvalue of multiplicity p
and −1 is an eigenvalue of multiplicity q. Then we see that (almost) D-complex structures
are (almost) product structures where the two distributions have the same constant rank
(for more results on (almost) product structures see, e.g., [77, 78], [6] or [64]).

The previous Proposition 1.3.5 shows that any D-complex manifold is locally of the form
as Example 1.3.7, that is locally there is a product structure (for this reason (almost) D-
complex structures are often called (almost) product structures, despite the rank dimension
of the distributions). It is also true that a D-manifold can be much more complicated as
the following example shows.

Example 1.3.9. Let M1,M2 be two smooth 3-dimensional manifolds, and let S1 (resp. S2)
be a 2-dimensional integrable foliation on M1 (resp. M2). We will denote by L1, L2 the
1-dimensional foliations transversal to S1, S2. Then we have the two transversal foliations
F1 = S1×L2 and F2 = L1×S2 on M = M1×M2. By the integrability of Sk (since Lk
is a 1-dimensional foliation it is always integrable), the pair F1, F2 defines an integrable
D-complex structure K on M = M1×M2 which is different from that one of Example
1.3.7.

Let (M,K) be an almost D-complex manifold (not necessarily integrable). Then it is
possible to extend the D-complex structure K on the cotangent bundle (as done for vector
space in (1.2.7))

K∗(α)(X) = α(KX) for α ∈ T ∗M, X ∈ TM. (1.3.9)

Note that this extension is so that K (and K∗) can commute with the usual duality between
TM and T ∗M . The decomposition TM = TM+ ⊕ TM− implies an analogous decomposi-
tion on T ∗M = T ∗M+ ⊕ T ∗M−, and hence induces a bigrading on ∧•T ∗M . Therefore:

∧rT ∗M =
⊕
p+q=r

∧p,q+,−(M) where ∧p,q+,− (M) = ∧pT ∗M+ ⊗ ∧qT ∗M−. (1.3.10)

Sections of ∧p,q+,−T
∗M are called differential forms of degree (p+, q−) (or briefly (p+, q−)-

form), and the space of these sections will be denoted by Ωp,q
+,−(M) or by the same symbols

∧p,q+,− if no confusion is possible (read the Notation remark at the beginning of this Chapter
1). We will use something similar for the other sections of ∧•T ∗M .
Note that the space T ∗M+ (resp. T ∗M−) is the annihilator of TM− (resp. TM+).

We define in an almost D-complex manifold (M,K) the operator dD := K∗ ◦d ◦K∗ and
the following:

∂+ := π∧p+1,q
+−

◦ d : ∧p,q+,−(M) −→ ∧p+1,q
+,− (M),

∂− := π∧p,q+1
+−

◦ d : ∧p,q+,−(M) −→ ∧p,q+1
+,− (M).

(1.3.11)
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Similar considerations can be made on the D-complex tangent bundle TDM = TM⊗D.
For any p ∈M we have the following decomposition of TD

p M :

TD
p M = T 1,0

p M ⊕ T 0,1
p M (1.3.12)

where:

T 1,0
p M := {Z ∈ TD

p M | KZ = τZ} = {X + τKX | X ∈ TpM},
T 0,1
p M := {Z ∈ TD

p M | KZ = −τZ} = {X − τKX | X ∈ TpM}.
(1.3.13)

Also the D-complex cotangent bundle (TD)∗M can be split into the “±τ -eigenbundles” (see
the point 4 of Remark 1.2.3):

∧1,0
K (M) = {α+τK∗α | α ∈ (TD)∗M} ∧0,1

K (M) = {α−τK∗α | α ∈ (TD)∗M} (1.3.14)

(we will drop the subscript K if it is clear from the context) and the bundle ∧r(TD)∗M of
the D-complex r-forms divides in

∧r(TD)∗M =
⊕
p+q=r

∧p,qK (M) where ∧p,qK (M) = ∧p,0K (M)⊗ ∧0,q
K (M). (1.3.15)

Again we can introduce the following operators:

∂ := π∧p+1,q
K

◦ d : ∧p,qK (M) −→ ∧p+1,q
K (M),

∂ := π∧p,q+1
K

◦ d : ∧p,qK (M) −→ ∧p,q+1
K (M).

(1.3.16)

If K is integrable and (M,K) is a D-complex manifold, then we can use null-coordinates.
Hence

TM+ = span

{
∂

∂ ui+
| i = 1, . . . , n

}
TM− = span

{
∂

∂ ui−
| i = 1, . . . , n

}
(1.3.17)

and setting:

∂+ :=

n∑
i=1

dui+ ∧
∂

∂ ui+
, ∂− :=

n∑
i=1

dui− ∧
∂

∂ ui−
(1.3.18)

the exterior differential d can be decomposed as d = ∂+ + ∂−. In a similar way using
D-holomorphic coordinates we get T 1,0

p M = span{∂ / ∂ zi}, ∧1,0
K (M) = span{d zi} and

analogous for T 0,1
p M and ∧0,1

K (M). Moreover, the exterior differential can be written as
d = ∂+ ∂ where:

∂ :=

n∑
i=1

d zi ∧
∂

∂ zi
, ∂ :=

n∑
i=1

d z̄i ∧
∂

∂ z̄i
. (1.3.19)

From d2 = 0, these operators are related by the following equations:

d = ∂+ ∂ = ∂+ + ∂−, dD = τ(∂− ∂) = τ(∂+− ∂−) = K∗ ◦ d ◦K∗,

∂ =
1

2
(d+τ dD) = e ∂+ +ē ∂−, ∂ =

1

2
(d−τ dD) = e ∂−+ē ∂+,

d d = dD dD = ∂2 = ∂
2

= ∂2
+ = ∂2

− = ∂ ∂+ ∂ ∂ = ∂+ ∂−+ ∂− ∂+ = 0,

d dD = −2τ ∂ ∂ = 2 ∂+ ∂− .

(1.3.20)

As in the complex case, we can read the integrability condition NK as a splitting of the
differential d.
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Lemma 1.3.10. The following conditions are equivalent:

1. d(Λ1,0
+,−(M)) ⊆ Λ2,0

+,−(M)⊕ Λ1,1
+,−(M),

2. TM+ is closed under bracket of vectors,

3. d(Λ1,0
K (M)) ⊆ Λ2,0

K (M)⊕ Λ1,1
K (M),

4. TM1,0 is closed under bracket of vectors,

5. NK(X,Y ) = 0 for all vector fields X,Y .

Proof. To see the equivalence of 1 and 2, let α ∈ Λ0,1
+,−(M), and use the formula

dα(X,Y ) = Xα(Y )− Y α(X)− α(X,Y ) = −α([X,Y ]) X,Y ∈ TM+. (1.3.21)

We proceed analogously to show the equivalence between 3 and 4.
Now from (1.3.5) we have:

NK(X,Y ) = 4
(
[X+, Y +]− + [X−, Y −]+

)
(1.3.22)

that shows the equivalence of 1 and 2 with the last point 5. We note also that the following
formula:

NK(X,Y ) = Re
(
[X − τKX, Y − τKY ] + τK[X − τKX, Y − τKY ]

)
= 8 Re

(
[X1,0, Y 1,0]0,1

) (1.3.23)

leads to the equivalence between 5 and the points 3 and 4.

Corollary 1.3.11. An almost D-complex structure K is integrable if and only if d splits
as

d = ∂+ + ∂− (1.3.24)

or, equivalently, if d splits as
d = ∂+ ∂ . (1.3.25)

1.4 D-Hermitian metrics

Now we introduce a suitable notion of metric:

Definition 1.4.1. An (almost) D-hermitian manifold (M,K, g) is an (almost) D-complex
manifold endowed with a pseudo-Riemannian metric g such that K is an anti-isometry for
g, i.e. g(K·,K·) = −g(·, ·).

Note that g has signature (n, n) and the spaces TM+ and TM− are null spaces for g.
As explained before (see Proposition 1.2.4) we can extend g to a D-complexification

form h such that:

h(X,Y ) = h(Y,X) and h(KX,Y ) = τh(X,Y ) = −h(X,KY ) X,Y ∈ TM. (1.4.1)

(In the sequel, we identify g with its D-complexification if it makes no confusion.)
We can define the fundamental 2-form ω (or Kähler form) of the D-hermitian manifold

(M,K, g) as:
ω(·, ·) := g(·,K·). (1.4.2)

Moreover, if we express h in terms of its real and imaginary parts we get:

h(·, ·) = g(·, ·)− τω(·, ·). (1.4.3)
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Notice that the fundamental 2-form satisfies K∗ω(·, ·) = ω(K·,K·) = −ω(·, ·) and is hence
of type (1+, 1−) (or, equivalently when considered as a D-valued form, ω is of type (1, 1)).

Now let (M,K, g) be a D-Hermitian manifold (that is K integrable), then we can write
h and ω in terms of local D-holomorphic coordinates. Setting hi,j̄ = h(∂ / ∂ zi, ∂ / ∂ z̄j) we
get:

h =
∑
i,j̄

(
hi,j̄ d z

i ⊗ d z̄j + hj̄,i d z̄
j ⊗ d zi

)
where hj̄,i = hi,j̄ ,

g = Re(h) =
1

2
(h+ h̄) =

∑
i,j̄

gi.j̄(d z
i ⊗ d z̄j + d z̄i ⊗ d zj),

ω = − Im(h) = −τ
2

(h− h̄) =
∑
i,j̄

ωi,j̄ d z
i ∧ d z̄j ,

(1.4.4)

and from ω(·, ·) = g(·,K·), we have ωi,j̄ = −τgi,j̄ . Moreover, since TM+ and TM− are null
for both ω and g, we have that for every X ∈ TM ω(X, ·) and g(X, ·) are 1-forms. Hence
we can introduce a bundle isomorphism:

A : TM+ '−→ T ∗M−

X+ 7−→ AX+

(1.4.5)

such that, writing X = X+ + X−, Y = Y + + Y − with respect to the decomposition
TM+ ⊕ TM−, we have:

g(X,Y ) = AX+(Y −) +AY −(X+) ω(X,Y ) = AX+(Y −)−AY −(X+). (1.4.6)

This leads us to the following:

Remark 1.4.2. As opposed to the complex Hermitian case, the isomorphism (1.4.5) shows
that the existence of a D-Hermitian metric on M puts further topological restrictions on
the bundle TM . For example, any product M = M+×M− of two n-manifolds with the D-
complex structure as in Example 1.3.7 is a D manifold, but (1.4.5) tells us that a Hermitian
metric exists on M if and only if both M+, M− are parallelizable. In fact, for any (x, y) in
M+×M− we have an isomorphism

A : (TxM)+ = Tx(M+) −→ T ∗y (M−) = (T ∗yM)− (1.4.7)

given by (1.4.5). Picking a basis for Tx(M+) and moving y ∈ M− we get a parallelization
of T (M−). Symmetry gives a parallelization of the other factor.

Furthermore, we have:

Proposition 1.4.3. An almost D-Hermitian 2n-manifold (M,K, g) is almost symplectic,
and hence orientable.

Proof. We use the fundamental 2-form ω(·, ·) = g(·,K·). From the properties of g, we see
that ω is bilinear, skew-symmetric and non-degenerate, then ω(·, ·) is an almost symplectic
form, ωn 6= 0 and it is a multiple of the volume form. Hence M is orientable.

Now let us investigate a bit on the existence of such a metric on an almost complex
manifold (M,K) with the following two examples.

Example 1.4.4. Take M = N ×N to be the product of two copies of a non-orientable
manifold N . We have seen (Example 1.3.7) that M has a natural almost D-complex
structure K, but it follows from Proposition 1.4.3 that there exists no pseudo-Riemannian
metric g compatible with the natural complex structure K.
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On the other hand, it is possible to find pseudo-Riemannian metric g with signature
(n, n) which does not admit any (almost) D-complex structure, as shown in the next Ex-
ample 1.4.5.

Example 1.4.5. Let N be a non-orientable n-manifold as in the previous Example 1.4.4,
and take on N a positive definite Riemannian metric g+ and a negative definite Riemannian
metric g−. Then on M = N ×N the product metric g = g+× g− has signature (n, n), but
using Proposition 1.4.3 we see that there is no (almost) D-structure K which is an anti-
isometry for g. In fact, using the natural almost D-complex structure K of Example 1.3.7,
we see that g(KX,KY ) = g(X,Y ).

Remark 1.4.6. As Examples 1.3.4 and 1.4.4 show, the existence of a D-complex structure
does not implies the orientability of the manifold, unlike the complex case. Also the exis-
tence of a neutral metric does not assure the existence of a compatible D-complex metric
(see Example 1.4.5). To avoid such cases, and since we used to work with metric on mani-
fold, we require for the rest of this paper to deal with orientable manifold. All the definitions
made till now are still valid, with the obvious slight changes. E.g. on Proposition 1.3.5
we will require that the transition functions are orientation-preserving. In the D-complex
atlas this means that the coordinate functions not only are D-holomorphic, but also that
the Jacobian of the changes of coordinates has determinant in D+.

1.5 D-Kähler metrics

We now consider the following natural class of Hermitian double manifolds.

Definition 1.5.1. A Hermitian D-manifold (M,K, g) is said to be Kähler if the funda-
mental 2-form

ω(·, ·) = g(·,K·) (1.5.1)

is closed, i.e. dω = 0.

Some basic properties of complex Kähler manifolds carry over to this context.

Remark 1.5.2. Even if the metric g is not a definite-metric, there still exists the Levi-Civita
connection Dg of g (we will drop the upper index g if not necessary). This connection is
the unique connection such that g is parallel along D (i.e. Dg = 0) and torsion-free (see
e.g. [14]).

Proposition 1.5.3. Let (M,K, g) be an almost D-Hermitian manifold. Then M is Kähler
if and only if K is parallel in the Levi-Civita connection D (i.e. DK = 0).

Proof. If K is parallel with respect to D then:

NK(X,Y ) = [KX,KY ]−K[KX,Y ]−K[X,KY ] + [X,Y ]

= DKXKY −DKYKX −KDKXY +KDYKX
−KDXKY +KDKYX +DXY −DYX

=
(
K(DYK)− (DKYK)

)
X −

(
K(DXK)− (DKXK)

)
Y = 0

(1.5.2)

so K is integrable. Moreover, setting ω(·, ·) = g(·,K·), we easily see from DK = Dg = 0
that Dω = 0.
Vice-versa, a computation shows that for every X,Y, Z ∈ TM :

2g
(
(DXK)Y, Z

)
= 2
(
g(DX(KY ), Z)− g(KDXY,Z)

)
= 2
(
g(DX(KY ), Z) + g(DXY,KZ)

)
(1.5.3)
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then expanding we get:

2g
(
(DXK)Y,Z

)
= Xg(KY,Z) +KY g(X,Z)− Zg(X,KY )

+ g([X,KY ], Z)− g([X,Z],KY )− g([KY,Z], X)

+Xg(Y,KZ) + Y g(X,KZ)−KZg(X,Y )

+ g([X,Y ],KZ)− g([X,KZ], Y )− g([Y,KZ], X)

= −Xω(Y, Z)− Y ω(Z,X)− Zω(X,Y )

+ ω([X,Y ], Z) + ω([Z,X], Y )± ω([Y, Z], X)

+KY g(X,Z) +Xg(Y,KZ)−KZg(X,Y )

+ g([X,KY ], Z)− g([KY,Z], X)− g([X,KZ], Y )− g([Y,KZ], X).

(1.5.4)

Using the formula of differential of a 2-form we obtain:

2g
(
(DXK)Y, Z

)
= −dω(X,Y, Z)− ω([Y, Z], X)± ω([KY,KZ], X)

−KY ω(KZ,X)−Xω(KY,KZ)−KZω(X,KY ) + ω([X,KY ],KZ)

− ω([X,KZ],KY )− g([KY,Z], X)− g([Y,KZ], X)

= −dω(X,Y, Z)− ω([Y, Z], X)− dω(X,KY,KZ)

− ω([KY,KZ], X)− g([KY,Z], X)− g([Y,KZ], X)

(1.5.5)

and finally:

2g
(
(DXK)Y,Z

)
= −dω(X,Y, Z)− dω(X,KY,KZ)

g
(
K[Y,Z] +K[KY,KZ]− [KY,Z]− [Y,KZ], X

)
= dω(X,Y, Z) + dω(X,KY,KZ)− g

(
NK(Y,Z),KX

)
.

(1.5.6)

If NK = dω = 0 it follows that DK = 0.

The D-Kähler manifolds are closely related to the existence of Lagrangian foliations.
In fact we have:

Proposition 1.5.4. A D-Hermitian manifold (M,K, g) is Kähler if and only if (M,ω) is
symplectic and there is a pair of transversal Lagrangian foliations F± (i.e. a bi-Lagrangian
manifold).

Proof. If (M,K, g) is D-Kähler, then the fundamental 2-form ω(·, ·) := g(·,K·) is a sym-
plectic form and TM± are involutive null-spaces for ω, hence they are a pair of transversal
Lagrangian foliations.
Vice-versa, given a symplectic manifold (M,ω) with two transversal Lagrangian foliations
F±, we define K : TM → TM such that K|F± = ± Id. Since F± are foliations, we
see that K is an integrable D-complex structure. Moreover, it is known (see Chapter 4)
that there exists an unique torsion-free connection ∇ such that ∇K = ∇ω = 0. Setting
g(·, ·) = ω(·,K·) it follows that g is a D-Hermitian metric and ∇g = 0, then the Levi-Civita
connection of g is D = ∇. We conclude using the previous Proposition 1.5.3.

Because of the previous result, D-Kähler manifolds are also referred to as bi-Lagrangian
manifolds (e.g. [16] and [31]).

Proposition 1.5.5. Let (M, g) be a connected pseudo-Riemannian 2n-manifold. Then
there exists a D-complex structure K such that (M,K, g) is D-Kähler if and only if the
holonomy group of (M, g) is a subgroup of the D-unitary group, i.e. if and only if there
exists a p ∈ M and a linear isometry TpM ∼= R2n which identifies the holonomy group
Holp(M, g) with Un(D).
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Proof. If (M, g,K) is a D-Kähler manifold, then follows that

Holp(M, g) ⊂ Un(D) (1.5.7)

because of Un(D) is isomorphic to Aut(TpM, gp,Kp).
Vice-versa, assume that ψ ◦ Holp(M, g) ◦ ψ−1 ⊂ Un(D) where ψ : TpM → Dn ∼= R2n is a
linear isometry. We want to define a D-complex structure on (M, g). Then we can do it
on TpM by pulling back the standard D-complex structure on R2n, i.e. Kp := ψ ◦K0 ◦ψ−1

(where K0, g0 denote the standard structure on R2n, i.e. when identified with Dn). We
see that Kp is an anti-isometry for gp (because K0 is an anti-isometry for g0 and ψ is an
isometry). Now Kp can be extended (by parallel transport) to a parallel anti-isometric para-
complex structure K on (M, g), since Kp is invariant under the holonomy group Holp(M, g).
Hence, by Proposition 1.5.3, (M, g,K) is a D-Kähler manifold.

Example 1.5.6. Let M be a orientable surface dimRM = 2 which admits a pseudo-Rie-
mannian metric g, whose signature is (1, 1), i.e. let M be a Lorentzian surface. Then, there
exists a basis of vector fields {X,Y } such that

g(X,X) = +1 g(Y, Y ) = −1 g(X,Y ) = 0. (1.5.8)

We can introduce an almost D-complex structure K by K(X) = Y and K(Y ) = X. It
follows that K and g are compatible, and since the distributions T±M = {X ± Y } are
1-dimensional, they are involutive and integrable, and so the almost D-complex structure
K is integrable. Hence every Lorentzian surface is a D-complex manifold. Moreover, it is
also symplectic, since every 2-form is closed. Hence we see that the manifold is a D-Kähler
surface. Then we have that:

Proposition 1.5.7. Every orientable surface is Lorentzian if and only if it is a D-Kähler
surface.
The only compact Lorentzian (equivalently D-Kähler) surface is the torus T2, which is the
unique compact example of a D-Hermitian surface.

The last part of the proposition follows from topological obstruction (a surface admits
a pseudo-Riemannian metric of signature (1, 1) only if has vanishing Euler characteristic,
see e.g. [14]), and it is known that the only compact Lorentzian surfaces is the torus. As
obvious, any D-Hermitian surface of dimension 2 is Lorentzian.

These D-complex manifolds, called Ricci-flat D-Kähler manifolds, that play a role simi-
lar to that one of Calabi-Yau manifolds in complex geometry, will be detailed in the Chapter
4.

1.6 Invariant D-complex structures on solvmanifolds

In this section we will recall some notions on solvmanifolds and nilmanifolds, which form a
large class of examples of D-manifolds.

Let M := Γ\G be a 2n-dimensional solvmanifold (resp. nilmanifold), that is, a compact
quotient of a connected simply-connected solvable (resp. nilpotent) Lie group G by a co-
compact discrete subgroup Γ. Set (g, [·, ·]) the Lie algebra which is naturally associated
to the Lie group G; given a basis {e1, . . . , e2n} of g, the Lie algebra structure of g is
characterized by the structure constants

{
ck`m
}
`,m,k∈{1,...,2n} ⊂ R such that, for any k ∈

{1, . . . , 2n},
dg e

k :=
∑
`,m

ck`m e
` ∧ em , (1.6.1)
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where
{
e1, . . . , e2n

}
is the dual basis of g∗ of {e1, . . . , e2n} and dg := d : g∗ → ∧2g∗ is defined

by
g∗ : −→ ∧2g∗

α 7−→ dg α(·, ·) := −α ([·, ·]) .
(1.6.2)

Notation. To shorten the notation, we will refer to a given solvmanifold M := Γ\G writing
the structure equations of its Lie algebra: for example, writing

M :=
(
04, 12, 34

)
,

we mean that there exists a basis of the naturally associated Lie algebra g, let us say
{e1, . . . , e6}, whose dual will be denoted by

{
e1, . . . , e6

}
and with respect to which the

structure equations are 
d e1 = d e2 = d e3 = d e4 = 0

d e5 = e1 ∧ e2 =: e12

d e6 = e1 ∧ e3 =: e34 ,

where we also shorten eAB := eA ∧ eB. By identification (1.6.2) this also means that
[e1, e2] = −e5, [e1, e3] = −e6 and all other brackets are zero.
Recall that, by Malcev theorem [59, Theorem 7], given a nilpotent Lie algebra g with
rational structure constants, then the connected simply-connected Lie group G naturally
associated to g admits a co-compact discrete subgroup Γ, and hence there exists a nilman-
ifold M := Γ\G whose Lie algebra is g and such that the basis {e1, . . . , en} of the dual
algebra g∗ defines a basis of global 1-forms for M := Γ\G. If the Lie algebra is not a
nilmanifold, we will describe the existence of a compact quotient where again the basis of
g∗ is a global frame of 1-forms.

A linear almost D-complex structure on g is given by an endomorphism K ∈ End(g)
such that K2 = Idg and the eigenspaces g+ and g− corresponding to the eigenvalues +1
and −1 respectively of K are equi-dimensional, i.e. dimR g+ = dimR g− = 1

2 dimR g.
Moreover, recall that a linear almost D-complex structure on g is said to be integrable (and
hence it is called a linear D-complex structure on g) if g+ and g− are Lie-subalgebras of g,
i.e. [

g+, g+
]
⊆ g+ and

[
g−, g−

]
⊆ g− . (1.6.3)

In fact, a Lie algebra g = g1 ⊕ g2 such that g1, g2 satisfy the above equation (1.6.3) is also
called a double Lie algebra, because of g1 and g2 are subalgebras of g and linear D-complex
structure may be called in this way (see e.g. [58, 7, 6]).

A G-invariant (almost) D-complex structure Kinv on M is a D-complex structure on
M induced by a D-complex structure on G which is invariant under the left-action of G
on itself given by translations. Note that any G-invariant (almost) D-complex structure is
determined by a linear almost D-complex structure on g, equivalently, it is defined by the
datum of two subspaces g+ and g− of g such that

g = g+ ⊕ g− and dimR g+ = dimR g− =
1

2
dimR g ; (1.6.4)

indeed, one can define K ∈ End(g) as K|g+ = Id and K|g− = − Id and then K ∈ End(TM)
by translations. Note that the almost D-complex structure K on M is integrable if and
only if the linear almost D-complex structure K on g is integrable.

Notation. On a solvmanifold M := Γ\G, with respect to the given basis {ej}j , writing
that the (almost) D-complex structure K is defined as

K := (− + + − − +) (1.6.5)
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we mean that

g+ := R 〈e2, e3, e6〉 and g− := R 〈e1, e4, e5〉 ,

or, equivalently, that

K(d e1) = −d e1 K(d e2) = + d e2 K(d e3) = +d e3

K(d e4) = −d e4 K(d e5) = −d e5 K(d e6) = + d e6,

this because of K∗ commutes with the canonical isomorphism between g and g∗ (see (1.3.9)).
Dealing with invariant objects on M , we mean objects induced by objects on G which are
invariant under the left-action of G on itself given by translations.

1.7 CR D-Manifolds

For the sake of completeness we start giving a general definition of CR D-manifolds (see
[42]). Then we focus on those ones arising from a contact form and we recall some properties
of contact manifolds. We also introduce the notion of strictly CR D-structure, which is
analogue to the complex one.

Definition 1.7.1. An almost CR D-structure (also called almost para-CR structure) of
co-dimension k on an (2n+ k)-dimensional manifold M is a pair (H,K) where H ⊂ TM is
a rank 2n distribution and K ∈ End(H) is a D-complex structure onH, i.e. K2 = + Id with
K 6= ± Id and the ±1-eigendistributions H± ⊂ H of K have the same rank n. An almost
CR D-structure is called CR D-structure if it is integrable, i.e. the eigendistributions H±
are involutive.

Remark 1.7.2. It has to be noted that this Definition 1.7.1 can be generalized in a similar
way as the (almost) product structures generalized the (almost) D-complex structures (see
Remark 1.3.8). Namely a weak almost CR D-structure (also called weak almost para-CR
structure) of co-dimension k on an (m+k)-dimensional manifold M is a pair (H,K) where
H ⊂ TM is a rank m distribution and K ∈ End(H) satisfies K2 = + Id with K 6= ± Id.
Again a (weak) almost CR D-structure is called (weak) CR D-structure if it is integrable,
i.e. the eigendistributions H± are involutive. We easily see that if the ±1-eigendistributions
H± have the same rank n, then (H,K) is an (almost) CR D-structure, and some authors
call them strong (almost) CR D-structure, to emphasize the difference with the weaker
case (e.g. [3]).

Note that the Nijenhuis tensor NK of an almost CR D-complex structure

NK(X,Y ) := [KX,KY ]−K[KX,Y ]−K[X,KY ] + [X,Y ] X,Y ∈ H, (1.7.1)

is not well defined in general, since [X,Y ] may not be in H. So that the Nijenhuis tensor
makes sense it is sufficient to require that

[KX,Y ] + [X,KY ] ∈ H equivalently [X,Y ] + [KX,KY ] ∈ H X,Y ∈ H. (1.7.2)

Sometimes, the above condition is used by some authors as an integrability condition, but
we stress that it is weaker than our request of involutive distributions. However, it is still
true that if the distributions H± are involutive, then NK is well defined overH and NK = 0.
Vice versa, if K satisfies (1.7.2) and NK = 0, then the distributions H± are involutive and
the CR D-structure is integrable.

In particular we have to deal with almost CR D-structures of co-dimension 1, and in
this setting the contact structure plays a fundamental role, so we recall some notions.
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Let M be a (2n+1)-dimensional manifold. A contact form is the datum of an α ∈ ∧1M
such that

α ∧ (dα)n 6= 0 everywhere on M, (1.7.3)

which is equivalent to say that:

1. α never vanishes on M , and

2. dα|kerα is everywhere non degenerate (i.e. α restricts to a symplectic form on the
2n-dimensional distribution ξ = kerα).

A tangent distribution ξ on M of co-dimension 1 is called a contact structure if it can be
locally defined by the Pfaffian equation α = 0 for some choice of the contact form α, and
in this case (M, ξ) is called contact manifold. We denote the space of the sections of ξ by
H(ξ), i.e. the space of ξ-valued vector fields on M .

Given a contact manifold (M, ξ) and a contact form α we denote with Rα the Reeb
vector field of α, i.e. the unique vector field such that:

iRα dα = 0, α(Rα) = 1. (1.7.4)

Remark 1.7.3. The Reeb vector field of a contact manifold (M, ξ) satisfies the following
properties:

1. TM = ξ ⊕ RRα,

2. [Rα, X] ∈ H(ξ) for every X ∈ H(ξ).

We give the following:

Definition 1.7.4. Let (M, ξ) be a contact manifold. We define D(ξ) to be the set of the
almost D-complex structures K on ξ which are dα-pseudo-calibrated, namely dα(K·,K·) =
−dα(·, ·) where α is a contact form.

Remark 1.7.5. We note that:

• D(ξ) does not depend on the choice of α;

• Using that for a 2-form ω it holds:

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]), (1.7.5)

if K ∈ D(ξ) then for X,Y ∈ H(ξ):

dα(KX,KY ) = −dα(X,Y )⇐⇒ [KX,KY ] + [X,Y ] ∈ H(ξ)

⇐⇒ [KX,Y ] + [X,KY ] ∈ H(ξ)
(1.7.6)

and hence NK is well defined on H(ξ). Moreover:

NK ∈ (∧0,2
K ξ∗)⊗ ξ. (1.7.7)

If K ∈ D(ξ) then the condition of “weaker integrability” (1.7.2) is satisfied, and NK

is well defined.

Definition 1.7.6. A strictly CR D-structure on a contact manifold (M, ξ) is the datum of
a K ∈ D(ξ) satisfying NK(X,Y ) = 0 for every X,Y ∈ H(ξ).

Observe that:
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• K ∈ D(ξ) is a strictly CR D-structure if and only if [ξ0,1, ξ0,1] ⊂ ξ0,1, where ξ0,1 =
{z ∈ ξ ⊗D | KZ = −τZ}.

• Given X ∈ TDM , then:

X ∈ ξD ⇐⇒ X1,0 ∈ ξ1,0 ⇐⇒ X0,1 ∈ ξ0,1.

Given (M, ξ), set N := M ×Rs then (N,µα) is called the symplectization of (M, ξ) with
respect to α, where the symplectic form µα is defined by

µα := d (exp(s)α) . (1.7.8)

Now starting with a given CR D-structure on (M, ξ) we want to define a D-structure on
(N,µα). Let K be a D-structure defined on kerα. We define the extended D-structure on
TN as follows: we set

KRα := S KS := Rα where S :=
∂

∂ s
. (1.7.9)

Remark 1.7.7. If K ∈ D(ξ) then µα(·,K·) is a Hermitian metric of signature (n+ 1, n+ 1)
on TM .

1.8 Automorphisms of D-manifolds and CR D-manifolds

A D-complex manifold M can be viewed as a manifold M together with a G-structure, and
this view point is used in complex Kähler geometry to see that the automorphism group is
finite. We recall briefly the G-structures (we refer to [72] or [49]).

Let M be a differentiable manifold of dimension n, and let L(M) be the bundle of
linear frames over M . Then L(M) is a principal fiber bundle over M with structure
group GLn(R). Let G be a Lie subgroup of GLn(R), by a G-structure on M we mean a
differentiable subbundle P of L(M) with structure group G. A G-structure P on M is
said integrable if every point of M has a coordinate neighbourhood U with local coordinate

system {x1, . . . , xn} such that the cross section

{
∂

∂ x1
, . . . ,

∂

∂ xn

}
of L(M) over U is a

cross section of P over U (such a local coordinate system will be called admissible). If{
y1, . . . , yn

}
is another admissible local coordinate system on V , then the Jacobian matrix(

∂ yi

∂ xj

)
i,j=1,...,n

is in G at each point of U ∪ V .

Let P and P ′ be two G-structures over M and M ′. Let f be a diffeomorphism of M
onto M ′ and f∗ : L(M)→ L(M ′) the induced isomorphism on bundles. If f∗ maps P into
P ′, then f is an isomorphism of the G-structure P onto G-structure P ′. If M = M ′ and
P = P ′, then an isomorphism f is called an automorphism of the G-structure P .

Now a vector field X on M is called a infinitesimal automorphism of a G-structure P
if it generates a local 1-parameter group of automorphisms of P .

There is a correspondence between theG-structure and the linear transformation leaving
some tensor K invariant. More precisely:

Proposition 1.8.1 ([49, Proposition 1.2]). Let K be a tensor over the vector space Rn and
G the group of linear transformations of Rn leaving K invariant. Let P be a G-structure on
M , and let K the tensor field on M defined by both P and K in a natural manner.

Then P is integrable if and only if each point of M has coordinate neighbourhood with
local coordinate system {x1, . . . , xn} with respect to which the components of K are constant
functions on U .
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Now, from the above Proposition 1.8.1, we get:

Proposition 1.8.2 ([49, Proposition 1.3]). Let K be a tensor over the vector space Rn and
G the group of linear transformations of Rn leaving K invariant. Let P be a G-structure on
M and let K be the tensor field on M defined by K and P as in Proposition 1.8.1. Then:

1. a diffeomorphism f : M → M is an automorphism of P if and only if f leaves K
invariant;

2. a vector field X on M is an infinitesimal automorphism of P if and only if LXK = 0,
where LX denotes the Lie derivation with respect to X.

This last proposition explains a possible link between G-structures and automorphisms.
Now we study infinitesimal automorphisms of an integrable G-structure by a local point

of view. Without loss of generality, assume that M = Rn and P = Rn×G. Let {x1, . . . , xn}
be the natural coordinate system in Rn and let X be a vector field in a neighbourhood of
the origin 0 of Rn. We expand its components into power series:

X =
∑

ξi
∂

∂ xi

ξi =
∞∑
k=0

1

k!

n∑
j1,...,jk=1

aij1,...,jkx
j1 · · ·xjk

(1.8.1)

where aij1,...,jk ∈ R are symmetric in the subindex j1, . . . , jk. Note that X is an infinitesimal

automorphism of the G-structure P if and only if the matrix

(
∂ ξi

∂ xj

)
i,j

belongs to the Lie

algebra g of G, and we conclude the following remark.

Remark 1.8.3. X as before is an infinite automorphism of the G-structure P if and only if
the matrix

(
aij1,...,jk

)
i,j`=1,...,n

∈ g for any fixed choice j1, . . . , ĵ`, . . . , jk.

By the previous Remark 1.8.3, it makes sense to introduce the following definition: let
g be a Lie subalgebra of gln(R) and let gk be the space of symmetric multi-linear mappings:

S : Rn× . . .×Rn −→ Rn (1.8.2)

such that, for each fixed vectors v1, . . . , vk ∈ Rn, the linear transformation

v ∈ Rn 7−→ S(v, v1, . . . , vk) ∈ Rn (1.8.3)

is in g. In particular g0 = g. We call gk the k-th prolongation of g. The first integer k such
that g = 0 is called the order of g, and then gk+1 = gk+2 = · · · = 0. If gk 6= 0 for all k, then
g is of infinite type.

Proposition 1.8.4. A Lie algebra g ⊂ gln(R) is of infinite type if it contains a matrix of
rank 1 as an element.

We will said that a Lie algebra g ⊂ gln(R) is elliptic if it contains no matrix of rank 1.
Hence, if g is of finite order, then it is elliptic.

Example 1.8.5. Take G = GLp(R)×GLq(R) and g = glp(R) + glq(R) and p + q = n.
Explicitly:

GLp(R)×GLq(R) =

{(
A 0
0 B

)
| A ∈ GLp(R), B ∈ GLq(R)

}
glp(R) + glq(R) =

{(
A 0
0 B

)
| A ∈ glp(R), B ∈ glq(R)

}
.

(1.8.4)
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It is easy to see that g contains elements of rank 1 and, hence, is of infinite type. The
GLp(R)×GLq(R)-structure is in a natural one-to-one correspondence with the set of pairs
(S, S′), where S and S′ are complementary distributions of dimension p and q respectively,
hence it defines an almost product structure (see Remark 1.3.8).

Example 1.8.6. Setting in the previous Example 1.8.5 p = q = n we get that theGLn(R)×
GLn(R)-structure defines a D-complex structure and it is of infinite type.

It should be recalled that the finiteness for the automorphism group of complex Kähler
structures is based on the ellipticity of the geometric structure. But we have seen (Examples
1.8.5 and 1.8.6) that a product structure is of infinite type and not elliptic, and also the
D-complex structure is not elliptic, hence the usual technique of complex Kähler manifolds
does not work on D-complex manifolds. Till now, it is unknown for us if there is a general
answer to this problem, while it is known that there are some results on homogeneous D-
manifolds and on some class of CR D-manifold, and for the sake of completeness we will
remind here.

1.8.1 Automorphisms of homogeneous D-manifolds

In this Section, we will remind a known results about automorphisms of D-complex mani-
folds. It is due to N. Tanaka [73], but it is far to be a general results: indeed, as we will
see, this result concerns homogeneous D-Kähler manifolds (Remark 1.8.11).

We begin with two definitions.

Definition 1.8.7. A simple graded Lie algebra of the first kind is a datum of a Lie algebra
g = g−1 + g0 + g1 such that:

1. g is finite dimensional simple Lie algebra;

2. g is a graded Lie algebra, i.e. g = ⊕igi (direct sum) and [gi, gj ] ⊂ gi+j for i, j =
−1, 0, 1.

We will use (differential) graded Lie algebra in Chapter 2 (see 2.1).

Definition 1.8.8. Let g be a finite dimensional Lie algebra over R, h be a subalgebra of g
and m 6= 0 be a subspace of g. The system (g; h;m) is called an affine symmetric triple if
it satisfies:

1. g = h + m (as a direct sum);

2. [h,m] ⊂ m and [m,m] ⊂ h.

Moreover (g; h;m) will be called simple if g is simple, and will also be called of reducible
type if it is reducible the linear isotropy representation ρ of h on m defined by:

ρ : h −→ m

ρ(X)Y := [X,Y ] X ∈ h, Y ∈ m.
(1.8.5)

Given a simple graded Lie algebra of the first kind g = g−1 + g0 + g1 we can construct
an affine symmetric triple (g; h;m) by:

h = g0 m = g−1 + g1. (1.8.6)

Also the converse is true:

Lemma 1.8.9 ([73, Lemma 2.7] or [13]). Any symmetric triple of simple and reducible
type is associated with a simple graded Lie algebra of the first kind. Furthermore, such an
association is unique in a suitable sense.
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The affine symmetric triples are strictly connected with the product structures, as shown
by S. Kaneyuki and M. Kozai [47] (see also [36]).

The symmetric triple gives rise to a “standard” non-compact affine symmetric space
G/H which is endowed with a product structure. In fact, let G be a connected simply-
connected Lie group with Lie algebra g and let H ⊂ G be a subgroup with Lie algebra
g0, then g−1 and g1 are naturally associated to (invariant) subbundles E+ and E− of the
tangent bundle T (G/H) of G/H.

Theorem 1.8.10 ([73, Theorem 2.8]). Let g be simple graded Lie algebra of the first kind
and assume that g is of the classical type. If g is isomorphic with a definite Möebius (graded)
Lie algebra, then there is an isomorphism of Aut(G/H) onto the diffeomorphism group of
a sphere. Otherwise, there is an isomorphism of G onto Aut(G/H).

Remark 1.8.11. It has to be noted that such a result is far from being optimal. In fact, it
treats of homogeneous manifolds, and moreover, such a manifolds are naturally endowed
with a pseudo-Riemannian metric compatible with the D-complex structure (see [73, Sec-
tion 2.5]).

There is another result concerning the homogeneous D-Kähler manifold, due to S. Kane-
yuki. A triple (M = G/H,F±, ω) is a D-Kähler symmetric space if M = G/H is an
(homogeneous) D-Hermitian manifold with a symplectic form ω and admitting a pair of
two H-invariant transversal Lagrangian foliations F± (we recall that by Theorem 1.5.4 this
is equivalent to the D-Kählerness).

Theorem 1.8.12 ([46, Theorem 8.1 and Theorem 8.4]). Let (M = G/H,F±, ω) be a D-
Kähler symmetric space. If G is of type BCr or if G has rank r ≥ 2, then the automorphism
group Aut(M,F±, ω) is equal to G.

Some other results on homogeneous D-Kähler manifolds can be found in [1]. We also
note that this last result can be seen in a broader framework questions: namely, given an
homogeneous manifold M = G/H, an interesting problem is to wonder when the automor-
phism group (or other groups acting on the manifold M) is isomorphic to the Lie group G
(for more about this subject see [67]).

1.8.2 Automorphisms of CR D-manifolds

Now we turn our attention to the CR D-structures. Giving an (almost) CR D-complex man-
ifold (M,H,K), we study when the automorphism group Aut(H,K) is finite dimensional.
To answer to this problem, we will use a construction made by N. Tanaka about “tower” of
canonical principal bundles obtained by extending a given Lie algebra (see [74, 75], see also
[4]), jointly with a theorem by S. Kobayashi (see [49]) which allows to bound the dimension
of Aut(H,K) with the dimension of the Tanaka prolongation.

We will proceed as follows: we first associate a Lie algebra to the distribution H, then
we prolong that Lie algebra using the N. Tanaka construction, then we see when such a
prolongation is finite, and finally we use the Kobayashi’s Theorem to deduce the dimension
of Aut(H,K). We will mainly refer to [3].

Let (M,H,K) be a CR D-manifold. It is possible to associate a Lie algebra m(x) to
any point x ∈M in the following way.

We consider the filtration of the Lie algebra X(M) of vector fields defined inductively
by:

Γ(H)−1 = Γ(H),

Γ(H)−i = Γ(H)−i+1 + [Γ(H),Γ(H)−i+1], for − i < −1.
(1.8.7)

Then at any point x ∈M we get:

Hx = H−1(x) ⊂ H−2(x) ⊂ . . . ⊂ H−d+1(x) ⊂ H−d(x) ⊂ . . . ⊂ TxM (1.8.8)
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where we have defined
H−i(x) := {Xx | X ∈ Γ(H−i)}. (1.8.9)

Set

m−i(x) =
H−i(x)

H−i+1(x)
. (1.8.10)

We recall the following definitions.

Definition 1.8.13. A Lie algebra g has a gradation of depth k if g is a direct sum decom-
position

g =
∑
−k≤i

gi = g−k + g−k+1 + · · ·+ g0 + . . . (1.8.11)

such that [gi, gj ] ⊂ [gi+j ] for i, j ≥ −k and g−k 6= 0. Such a Lie algebra g =
∑

gi is also
called graded Lie algebra (of depth k).
A graded Lie algebra g =

∑
gi is called:

1. fundamental if the negative part m =
∑

i<0 gi is generated by g−1;

2. non degenerate if X ∈ g−1 and [X, g−1] = 0 implies X = 0 (equivalently, if 0 6= X ∈
g−1, then exists Y ∈ g−1 such that [X,Y ] 6= 0);

3. effective (or transitive) if the non-negative part g0 + g1 + . . . contains no non-trivial
ideal of g.

Assuming H−d(x) = TxM , we easily see that m(x) =
∑

im−i(x) defines a fundamental
negatively graded Lie algebra of depth d.

A distribution H is called a regular distribution of depth d and type m if all the graded
fundamental Lie algebras m(x) are isomorphic to a given graded Lie algebra m =

∑
im−i.

Definition 1.8.14. A pair (m =
∑

im−i,K0), where m is a fundamental negatively graded
Lie algebra, and K0 is an involutive endomorphism of m−1 such that K2

0 = + Id and
the ±1-eigespaces m±−1 are commutative subalgebras of m(x), is called an integrable CR
D-algebra.

An (almost) CR D-structure (H,K) on a manifold M is regular of type (m,K0) and
depth d if, for any x ∈ M , the pair (m(x),Kx) is isomorphic to (m,K0), and will be called
non-degenerate if the corresponding graded Lie algebra is non-degenerate.

Remark 1.8.15. A regular almost CR D-structure of type (m,K0) is integrable (in the
sense of Definition 1.7.1) if and only if the Lie algebra (m,K0) is integrable (in the sense of
Definition 1.8.14).

Now we turn our attention to the full prolongation g(m) of a negatively graded funda-
mental Lie algebra m. Such a prolongation, introduced by N. Tanaka (see e.g. [74, 75]), is
the maximal graded Lie algebra

g(m) = g−d(m) + · · ·+ g−1(m) + g0(m) + g1(m) + . . . (1.8.12)

whose negative part is g−d(m) + · · · + g−1(m) = m and such that the following condition
holds:

X ∈ gk(m), k ≥ 0 and [X, g−1(m)] = 0 implies X = 0. (1.8.13)

This full prolongation can be defined inductively, and it was proved by N. Tanaka [74] that
always exists and that it is unique up to automorphisms and it is related with a tower of
canonical principal bundles.

Indeed, since the Tanaka prolongation is defined inductively, each positive element is
constructed starting from g0(m). However, it is possible to choose a subalgebra g′0 of g0(m)
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and repeat the inductively construction. This is useful, since such a construction gives a
tower of canonical principal bundles even if it begins with g′0 instead of g0(m). Tanaka
has also shown that when this prolongation is finite, then the tower ends with an absolute
parallelism. Given a negatively graded fundamental Lie algebra m and a subalgebra g′0
of g0(m), we will denote the prolongation of m + g′0 constructed inductively from g′0 by
(m + g′0)∞ := m + g′0 + g′1 + . . ..

Definition 1.8.16. A graded Lie algebra m + g′0 is called of finite type if its prolongation
(m+ g′0)∞ is a finite dimensional Lie algebra, and is called of semisimple type if (m+ g′0)∞

is a finite dimensional semisimple Lie algebra.

Provided that such a prolongation is finite, Tanaka has proved that in this tower the
automorphisms of the “lower” levels can be pull back to automorphisms of “upper” levels,
and that at the last level we obtain an {e}-structure. Moreover, by a result of Kobayashi,
the dimension of automorphism group is less than or equal to the dimension of the maximal
prolongation. We recall the Kobayashi Theorem.

Theorem 1.8.17 ([49, Theorem 3.2]). Let M be a n-dimensional manifold with an {e}-
structure (i.e. an absolute parallelism). Let U be the group of automorphism of the {e}-
structure. Then U is a Lie transformation group such that dimU ≤ dimM .

For our purposes this theorem can be restate as:

Theorem 1.8.18 (see [4, Theorem 5.5]). Let M be a manifold and let π : P → M be a
G′0-structure with g′0 = Lie(G′0) of finite k and G′0 ⊂ GLn(R). Then, the automorphism
group Aut(π) is a Lie group of dimension less then or equal to

dim(m + g′0)∞ = dim(Rn + g′0 + . . .+ g′k−1). (1.8.14)

From this last theorem we see that, if we want to study the automorphism group of
CR D-manifolds, it is important that the first step of the prolongation, namely g′0, is
“compatible” with the D-structure K. Hence to construct our prolongation, we will look
for g′0 with this property.

Let (H,K) be a regular CR D-structure of type (m,K0). We define the following Lie
algebra g0(m,K0) to be the subalgebra of g0(m) consisting of any A ∈ g0(m) such that
A|m−1 commutes with K0, more explicitly:

g0(m,K0) : = Der(m,K0)

= {A ∈ Der(m) | A(mj) ⊂ mj ∀j < 0 and A|m−1 ◦K0 = K0 ◦A|m−1}.
(1.8.15)

We see that g0(m,K0) is the Lie algebra of the Lie group Aut(m,K0), and we define the
prolongation of g(m,K0) := m + g0(m,K0) as the Lie algebra:

(g(m,K0))∞ = m−d + . . .+ m−1 + g0(m,K0) + g1 + . . . (1.8.16)

where inductively gi = {X ∈ g(m) | [X,m−1] ⊂ gi−1} for any i ≥ 1. By construction,
(g(m,K0))∞ is a subalgebra of the full prolongation g(m).

Now the problem turns to wonder when such a prolongation is finite, and the following
lemma gives us a condition to understand the finiteness of the prolongation (g(m,K0))∞.

Lemma 1.8.19 ([3, Lemma 3.2]). Let (m =
∑

i<0 mi,K0) be an integrable CR D-algebra
and let g0(m,K0) to be as in (1.8.15). Then the graded Lie algebra g(m,K0) is of finite
type if and only if m is non-degenerate.

Finally, we conclude with the following proposition, which is a consequence of Theorem
1.8.18 and of Lemma 1.8.19.
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Proposition 1.8.20 (see [3, Section 4.3]). Let (M,H,K) be a regular non-degenerate CR
D-manifold of type (m, K0) and depth d. Then the automorphism group Aut(M,H,K) has
finite dimension.

Now let K be a strictly CR D-structure on a contact manifold (M, ξ), with contact
form α. Since dα is non-degenerate on ξ, we get that for any fixed X ∈ ξ, there exists
a Y ∈ ξ such that 0 6= dα(X,Y ) = −α([X,Y ]), i.e. [X,Y ] ∈ RRα (here Rα is the Reeb
vector field, see the previous Section 1.7). The corresponding filtration (1.8.8) is of depth
2:

H−1 = ξ,

H−2 = [ξ, ξ] = RRα + ξ = TM
(1.8.17)

which is the same in any point x ∈M , and

m−1 = ξ m−2 = TM/ξ = RRα. (1.8.18)

Then a strictly CR D-structure on a contact manifold (M, ξ) is fundamental, regular, non-
degenerate and of depth 2. We have proved the following:

Corollary 1.8.21. Let let K be a strictly CR D-structure on a contact manifold (M, ξ).
Then the automorphism group Aut(M,H,K) has finite dimension.



Chapter 2

Deformations of D-structures

In this chapter we are interested in the study of small deformations of D-structures on a
compact D-manifold. In particular, we focus on the algebraic aspects of the theory.

We start this chapter by recalling the definition of Differential Graded Lie Algebra
(shortly DGLA) (C, [·, ·], d) and some preliminary results and facts on this topic (see
Section 2.1).

In Section 2.2 we review the classical theory of deformations of complex structures devel-
oped by K. Kodaira and D.C. Spencer (see [51] [52]), which involves the local holomorphic
coordinates, into the DGLA setting. It has to be noted that the study of deformations of
complex structure J (resp. D-complex structures K) using DGLA does not involve the
local holomorphic (resp. D-holomorphic) coordinates, hence it describes intrinsically the
deformations of the complex structure J (resp. of the D-complex structure K).

A Differential Graded Lie Algebra (A, [[·, ·]], ∂K) (shortly DGLA) is introduced by
C. Medori and A. Tomassini in [61] to characterize small deformations of a D-structure
K on a compact manifold M . Such deformations are parametrized by 1-degree element of
A. In Section 2.3 we remind their construction, in particular we define the bracket [[·, ·]]
and the operator ∂K , which will be useful in the following sections, and we describe the
theory of curves of D-complex structures on a fixed manifold.

Section 2.4 is devoted to prove that the integrability condition of a small deformation
can be viewed as a Maurer-Cartan equation in the space F of skew-symmetric derivations
on ∧0,∗

K (M) (see Corollary 2.4.5). To do this, we first construct a new differential graded

Lie algebra Â and then we prove that there is a DGLA injective homomorphism q : Â → F
(see Theorem 2.4.2). The new DGLA Â is constructed such that Âi = Ai for i ≥ 1, so the
1-degree elements that parametrize the deformations can be read as elements in the new
DGLA Â. Moreover, we are able to show that the condition of integrability found in [61,
Theorem 4.2] (see Theorem 2.3.9 below) can be tested both on the real setting or in the
D-complexificated setting (see Remark 2.4.8).

In the second part of the chapter we study the analogous problem for CR D-structures.
We focus on D-structures on contact manifolds, in particular on strictly CR D-structures
(see Section 1.7). Recently C.D. Hill and P. Nurowsky in [42] gave an application of these
structures in a context of ODE’s and PDE’s systems.

In 2.5 we investigate deformations of CR D-structures on contact manifolds (M, ξ) as
done in the complex CR case by P. de Bartolomeis and F. Meylan (see [22]). We construct
the DGLA BK(ξ) of such deformations and we prove that the integrability condition is
related to a Maurer-Cartan equation (see Theorem 2.5.11). Furthermore, we restate the
integrability condition in the DGLA of skew-symmetric derivations of ∧0,∗

K (ξ) (see Theorem
2.5.9 and Remark 2.5.13).

Finally in 2.6, we construct some examples of families of CR D-structures on the gener-
alized Heisenberg group and on another compact quotient of nilpotent Lie group studying

29
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their deformations, proving that there exists a 5-dimensional nilpotent Lie algebra which
does not admit a CR D-structure (see Proposition 2.6.4).

The main results of this chapter have been published by the author in the paper [69].

2.1 Preliminaries on DGLA (differential graded Lie alge-
bras)

In order to develop the deformation theory of D-manifold analogue to the theory of K. Ko-
daira and D.C. Spencer [51] for complex manifolds, we need to recall some algebraic facts.

Following K. Fukaya [34] we recall some notions on DGLA. By results in classical theory,
these structures are related to the deformation theory (see [51], [52], [22] and [61]).

Let R be a commutative ring with unit.

Definition 2.1.1. A differential graded Lie algebra (C, [·, ·], d) (DGLA for short) is the
datum of:

1 a graded R-module C =
⊕

p∈ZCp;

2 a bilinear map [·, ·] : C × C → C such that:

(a) [Cr, Cs] ⊆ Cr+s,
(b) for homogeneous elements a, b, c we have:

• [a, b] = −(−1)|a||b|[b, a] (where |a| denotes the degree of a, e.g. if a ∈ Cs
then |a| = s),

• the graded Jacobi identity:

[[a, b], c] + (−1)(|a|+|b|)|c|[[c, a], b] + (−1)(|b|+|c|)|a|[[b, c], a] = 0; (2.1.1)

3 an operator d : C → C of 1-degree such that:

(a) d ◦ d = 0,

(b) for homogeneous elements a, b ∈ C we have

d[a, b] = [d a, b] + (−1)|a|[a,d b]. (2.1.2)

Let (C, [·, ·], d) be a DGLA. For γ ∈ C1 and a ∈ C we set

dγ a := d a+ [γ, a], (2.1.3)

and we have that:

dγ [a, b] = d[a, b] + [γ, [a, b]]

= [d a, b] + (−1)|a|[a,d b]

+ (−1)(|a|+|b|)|γ|
(

(−1)(|a|+|b|)|γ|[[γ, a], b] + (−1)(|b|+|γ|)|a|[[b, γ], a]
)

= [dγ a, b] + (−1)|a| ([a,d b] + [a, [γ, b]])

= [dγ a, b] + (−1)|a|[a,dγ b].

We recall the Maurer-Cartan equation:

d γ +
1

2
[γ, γ] = 0 (2.1.4)

and we set
MC(C) := {γ ∈ C1 | γ satisfies (2.1.4)}. (2.1.5)

In general dγ fails to be a derivation, since d2
γ 6= 0, but it is known that (see [34]):
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Proposition 2.1.2. Let (C, [·, ·], d) be a DGLA. If γ ∈MC(C), then dγ · := d ·+ [γ, ·] is
a derivation of 1-degree in the DGLA (C, [·, ·], d) (i.e. d2

γ = 0).

Proof. In fact, we have:

d2
γ a = dγ(d a+ [γ, a])

= d2 a+ [γ,d a] + d[γ, a] + [γ, [γ, a]]

= [γ,d a] + [d γ, a]− [γ,d a] +
1

2
[[γ, γ], a]

= [d γ +
1

2
[γ, γ], a] = 0.

2.2 Review of deformations of complex structures

Here we briefly recall the Kodaira theory of deformations of complex structures. For further
results on complex deformations, look at [51, 52] or [54], while we refer mainly to [63, 44]
and [50].

Let B be a complex (respectively, differentiable) manifold. A family {Mt}t∈B of compact
complex manifolds is said to be a complex-analytic (respectively, differentiable) family of
compact complex manifolds if there exists a complex (respectively, differentiable) manifold
X and a surjective holomorphic (respectively, smooth) map π : X→ B such that:

1. π−1(t) = Mt for any t ∈ B, and

2. π is a proper holomorphic (respectively, smooth) submersion.

A compact complex manifold M is said to be a deformation of a compact complex manifold
N if there exists a complex-analytic family {Mt}t∈B of compact complex manifolds, and
b0, b1 ∈ B such that Mb0 = M and Mb1 = N .

A complex-analytic family π : X→ B of compact complex manifolds is said to be trivial
if X is bi-holomorphic to πB : B×Mb → B for some b ∈ B (where πB : B×Mb → B
denotes the natural projection onto B); it is said to be locally trivial if, for any b ∈ B,
there exists an open neighbourhood U of b in B such that π : X|π−1(U) → U is trivial. The
following theorem by C. Ehresmann [28] states the local triviality of a differentiable family
of compact complex manifolds (see, e.g., [50, Theorem 2.3, Theorem 2.5], [63, Theorem
1.4.1]).

Theorem 2.2.1 (see [28]). Let {Mt}t∈B be a differentiable family of compact complex
manifolds. For any s, t ∈ B, the manifolds Ms and Mt are diffeomorphic.

As a consequence of Ehresmann’s theorem above, a complex-analytic family {Mt}t∈B
of compact complex manifolds with B contractible can be viewed as a family of complex
structures on a compact differentiable manifold.

Given a compact manifold M let J be a complex structure on M , let J ′ be an (almost)
complex structure on M . We want to compare these structures. It is known that J induces
a decomposition TMC = T 1,0

J M⊕T 0,1
J M , and similarly J ′ induces TMC = T 1,0

J ′ M⊕T
0,1
J ′ M .

Suppose that J ′ is “sufficiently close” to J , then the projection π
T 0,1
J M

gives an isomorphism

between T 0,1
J ′ M and T 0,1

J M . Then we get a map:

T 0,1
J M

(π
T
0,1
J

M
)−1

−−−−−−−→ T 0,1
J ′ M

(π
T
1,0
J

M
)−1

−−−−−−−→ T 1,0
J M. (2.2.1)
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This map can be view as a (0, 1)-form with values in the bundle T 1,0
J M , i.e. as an element

ξ ∈ ∧0,1M ⊗ T 0,1M . Conversely, this element determines the subspace T 1,0
J ′ M and thus

J ′. In local coordinates, if {z1, . . . , zn} are a local holomorphic coordinates on M for the
complex structure J , then we can write ξ ∈ ∧0,1M ⊗ T 0,1M as:

ξ =
∑
i,j

hji (z) d z̄
i ⊗ ∂

∂ zj
(2.2.2)

and the corresponding space TM is spanned by the images of
∂

∂ z̄i
, in other words, by the

n vector fields:
∂

∂ z̄i
+
∑
j

hji (z) d z̄
i ⊗ ∂

∂ zj
for i = 1, . . . , n. (2.2.3)

From now on for this entire section, let M be a fixed compact n-dimensional manifold
with a complex structure J , and let B be a small ball centered at the origin of Cm. We
will see B as the space of parameters, or the basis for the deformation. Let π : X→ B be
a family of deformations of M over B such that M = π−1(0). We will denote by J the
complex structure of X. By Ehresmann Theorem, we see that all the fibers of the map π
are compact complex manifolds, and they are all diffeomorphic to M . One can think the
fibers π−1(z) as a small deformations of the central fiber M .

Since we have X ' M ×B as differentiable manifold, we have that all vertical and
horizontal slices are complex submanifolds: each horizontal slice {z}×B carries the same
complex structure of B, while the complex structure Jt on the vertical slice M ×{t} varies
with t ∈ B and, in general, agrees with that of M only for t = 0.

Now, we describe in local coordinates. Let {z1, . . . , zn} be a local holomorphic coordi-
nates on M and let {t1, . . . , tm} be the holomorphic coordinates on the disk B. Of course,
these coordinates are not holomorphic for the complex structure J , but together with their
conjugates {z̄1, . . . , z̄n, t̄1, . . . , t̄m} we have a smooth coordinates system on M ×B. We
may write a generic element ξ(t) ∈ ∧0,1M ⊗T 0,1M describing the changing of holomorphic
coordinates as:

ξ(t) =
∑
i,j

hji (z, t)d z̄
i ⊗ ∂

∂ zj
. (2.2.4)

We see that hui (z, 0) = 0 and at any point (z, t) ∈M ×B we have:

∧0,1X = span

 ∂

∂ z̄i
+
∑
j

hji (z, t)
∂

∂ zj
,

∂

∂ t̄k


∣∣∣∣∣∣
1≤i≤n, 1≤k≤m

. (2.2.5)

We turn our attention to the differential manifold M ×B, leaving the complex manifold
(X,J ). In general a section ξ(t) ∈ ∧0,1M ⊗ T 0,1M defines an almost complex structure on
M ×B and it might not come from a complex structure. We are interested in when the
deformation corresponding to ξ(t) is integrable, i.e. we are looking for family of complex
manifold. In order to do this, it is useful to introduce the following bracket on ∧0,1M ⊗
T 1,0M . Given two sections ψ,ϕ ∈ ∧0,1M ⊗ T 1,0M such that

ψ =
∑
i,j

aji d z̄
i ⊗ ∂

∂ zj
= α⊗X ϕ =

∑
`,k

bjk d z̄
` ⊗ ∂

∂ zk
= β ⊗ Y (2.2.6)

then we define the bracket [·, ·] : ∧0,1M ⊗ T 1,0M → ∧0,2M ⊗ T 1,0M as:

[ψ,ϕ] :=
∑
i,j,k,`

d z̄i ∧ d z̄` ⊗
[
aji

∂

∂ zj
, bk`

∂

∂ zk

]
∈ ∧0,2M ⊗ T 1,0M. (2.2.7)
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We also define the del-bar operator ∂ : ∧0,1M ⊗ T 1,0M → ∧0,2M ⊗ T 1,0M by:

∂ ψ =
∑
i,j,k

∂ aji
∂ z̄k

d z̄k ∧ d z̄i ⊗ ∂

∂ zj
∈ ∧0,2M ⊗ T 1,0M. (2.2.8)

These definitions are independent of the choice of local holomorphic coordinates, and can
be extended in a similar way to any bundles ∧0,pM ⊗ T 1,0M for p > 1.

Then it holds:

Theorem 2.2.2. Let M be a compact manifold endowed with an integrable almost complex
structure J . A smooth section ξ(t) ∈ ∧0,1M ⊗ T 1,0M defines an almost complex structure
Jt on M ×B. The almost complex structure Jt is integrable if and only if ξ(t) satisfies the
Maurer-Cartan equation:

∂ ξ(t) +
1

2
[ξ(t), ξ(t)] = 0 ∀ t ∈ B. (2.2.9)

It is easy to see that, with the definition of (2.2.7) and (2.2.8) suitably extended,
(∧0,p ⊗ T 1,0M, ∂, [·, ·]) defines a DGLA and that the condition (2.2.9) is the classical
Maurer-Cartan obstruction. In fact, one has:

• The bracket is defined as:

[·, ·] : (∧0,pM ⊗ T 1,0M)× (∧0,qM ⊗ T 1,0M) −→ ∧0,p+qM ⊗ T 1,0M[
ᾱ⊗X, β̄ ⊗ Y

]
:=
(
β̄ ∧ LY ᾱ

)
⊗X +

(
ᾱ ∧ LX β̄

)
⊗ Y +

(
ᾱ ∧ β̄

)
⊗ [X, Y ]

(2.2.10)

where LWϕ := ιW dϕ+ d (ιWϕ) is the Lie derivative of ϕ along W ;

• The del-bar operator is defined as:

∂ : ∧0,1M ⊗ T 1,0M −→ ∧0,2M ⊗ T 1,0M

∂ ϕ
(
Z̄, W̄

)
:=

[
Z̄, ϕ

(
W̄
)]1,0 − [W̄ , ϕ

(
Z̄
)]1,0 − ϕ ([Z̄, W̄ ]) , (2.2.11)

where X1,0 := X − i J X is the (1, 0)-component of X with respect to the complex
structure J .

2.3 Deformations of D-manifolds

In this section, we first introduce some key tools to understand the space of deformations
of D-structures, then we recall some results on the DGLA (A, [[·, ·]], ∂K) governing such
deformations. Finally we describe curves of D-structures. The main reference for this
section is [61].

Given an almost D-manifold (M,K), we set:

(∧0,p
K T ∗M)R ⊗ TM := {ϕ ∈ Γ(M,∧p(M)⊗ TM) |

ϕ(X1, . . . ,KXj , . . . , Xp) = −Kϕ(X1, . . . , Xp) ∀j = 1, . . . , p}.
(2.3.1)

Remark 2.3.1. We observe that

• (∧0,0
K T ∗M)R ⊗ TM is the set of smooth vector fields.

• (∧0,1
K T ∗M)R ⊗ TM = {ϕ ∈ End(TM) | ϕK +Kϕ = 0}.
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• with the notation of Definition 4.3.1 (∧0,2
K T ∗M)R ⊗ TM is a subspace of ΩIII (see

Section 4.3).

For X,Y ∈ Γ(M), we set

[[X,Y ]] :=
1

2

(
[X,Y ] + [KX,KY ]− 1

2
NK(X,Y )

)
. (2.3.2)

Observe that if θ ∈ (∧0,p
K T ∗M)R ⊗ TM , then the map

(X0, . . . , Xp) 7→
∑

0≤j≤k≤p
(−1)j+kθ([[Xj , Xk]], X0, . . . , X̂j , . . . , X̂k, . . . , Xp)

defines an element of (∧0,p+1
K T ∗M)R ⊗ TM .

Definition 2.3.2. Let

∂K : (∧0,p
K T ∗M)R ⊗ TM −→ (∧0,p+1

K T ∗M)R ⊗ TM

be the operator defined as follows:

1. For X ∈ Γ(M) set

(∂K X)Y :=
1

2

(
[Y,X]−K[KY,X] +

1

2
NK(X,Y )

)
.

2. For θ ∈ (∧0,p
K T ∗M)R ⊗ TM set

∂Kθ(X0, . . . , Xp) :=

p∑
j=0

(−1)j
(
∂K θ(X0, . . . , X̂j , . . . , Xp)

)
(Xj)+∑

0≤j≤k≤p
(−1)j+kθ([[Xj , Xk]], X0, . . . , X̂j , . . . , X̂k, . . . , Xp).

Following [61], we construct the DGLA of deformations of D-structures over a fixed
compact D-manifold (M,K).

Let Ω0,p
K (M) be the space of the sections of the bundle of (0, p)-forms on (M,K). Denote

by Γ(M,∧0,p
K (M)⊗ T 1,0M) the space of sections of the vector bundle ∧0,p

K (M)⊗ T 1,0(M).
Set

Ap :=

{
Γ(M,∧0,p

K (M)⊗ T 1,0(M)) 0 ≤ p ≤ n,
0 otherwise

and
A :=

⊕
p∈Z
Ap.

Note that the real vector space Ap is a module over D.
In the sequel, we shall consider the following isomorphism m:

m : TM −→ T 1,0M

X 7−→ 1

2
(X + τKX)

(2.3.3)

and the corresponding isomorphism, also denoted by m:

m : (∧0,p
K T ∗M)R ⊗ TM −→ Ap

ϕ 7−→ 1

2
(ϕ+ τKϕ).

(2.3.4)

Note that m−1(ψ) = (ψ + ψ̄).
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Remark 2.3.3. For Z,W sections of T 1,0M , we can define a bracket on T 1,0M using the
isomorphism m (see (2.3.3)):

[[Z,W ]] := m[[m−1(Z),m−1(W )]] = [Z,W ]

and identifying ∂k with m ◦ ∂k ◦m−1 we can also define an operator ∂K on T 1,0M :

(∂KW )(Z̄) :=
1

2
([Z̄,W ] + τK[Z̄,W ]).

Moreover for ϕ ∈ (∧0,1
K T ∗M)R ⊗ TM we obtain that:

∂K ϕ(X,Y ) = (∂K(ϕY ))(X)− (∂K(ϕX))(Y )− ϕ([[X,Y ]]).

We recall here the definitions of the bracket [[·, ·]] and of the operator ∂K which make
(A, [[·, ·]], ∂K) a DGLA (see [61]).

Definition 2.3.4. The bracket [[·, ·]] : Ap ×Aq −→ Ap+q is defined in the following way:

1. For every Z,W ∈ A0 set:
[[Z,W ]] = [Z,W ]

where [·, ·] is the usual bracket on vector fields.

2. For every Z ∈ A0 and ϕ ∈ A1, then [[ϕ,Z]] = −[[Z,ϕ]] ∈ A1 is defined by:

[[ϕ,Z]](W̄ ) = [ϕW̄ , Z] +
1

2
ϕ([Z, W̄ ]− τK[Z, W̄ ]).

3. For every ϕ ∈ A1, then [[ϕ,ϕ]] ∈ A2 is defined by:

[[ϕ,ϕ]](Z̄, W̄ ) = 2[ϕZ̄, ϕW̄ ]− 2ϕ([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ]). (2.3.5)

4. For ϕ,ψ ∈ A1, then [[ϕ,ψ]] ∈ A2 is defined by:

[[ϕ,ψ]] =
1

2
([[ϕ+ ψ,ϕ+ ψ]]− [[ϕ,ϕ]]− [[ψ,ψ]]) .

5. For α ∈ Ω0,p
K (M) and β ∈ Ω0,q

K (M), ϕ,ψ ∈ A1, set:

[[α ∧ ϕ, β ∧ ψ]] = (−1)qα ∧ β ∧ [[ϕ,ψ]] + (−1)q(kψα) ∧ β ∧ ϕ+ α ∧ (kϕβ) ∧ ψ,

where kϕ is a skew-symmetric derivation of 1-degree of Ω0,∗
K (M) defined as follows:

for smooth function f

(kϕf)(Z̄) = ∂ f(ϕ(Z̄)) = ϕ(Z̄)f = (ϕZ̄f)

and for α ∈ Ω0,1
K (M)

(kϕα)(Z̄, W̄ ) = ϕZ̄α(W̄ )− ϕW̄α(Z̄)− α([ϕZ̄, W̄ ]− [Z̄, ϕW̄ ]).

6. In the general case, we extend [[·, ·]] by bilinearity to any pair of elements of A.

Definition 2.3.5. Define the ∂K operator ∂K : Ap → Ap+1 as follows:

1. For Z ∈ A0 and W ∈ T 0,1M , set

(∂K Z)(W̄ ) =
1

2
([W̄ , Z] + τK[W̄ , Z]).
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2. For ϕ ∈ A1 and Z,W ∈ T 1,0M set:

(∂K ϕ)(Z̄, W̄ ) = (∂K ϕ(W̄ ))Z̄ − (∂K ϕ(Z̄))W̄ − ϕ([Z̄, W̄ ]).

3. Extend in the general case ∂K by Leibniz rule, i.e.

(∂K α ∧ ϕ) = (∂K α) ∧ ϕ+ (−1)|α|(α ∧ (∂K ϕ)).

Remark 2.3.6. Since the D-structure is integrable and using the isomorphism m between
(∧0,p

K T ∗M)R⊗TM and Ap (see (2.3.4)), it follows that the bracket [[·, ·]] and the differential
∂k in Definition 2.3.4 and in Definition 2.3.5 are related with the ones in the equation (2.3.2)
and Definition 2.3.2. Namely, we have used the following identification (see also Remark
2.3.3):

[[X,Y ]] = m−1[[m(X),m(Y )]] and ∂K = m−1 ◦ ∂K ◦m. (2.3.6)

Now we recall some facts and results on curves of D-structures over a compact almost
D-manifold (M,K).

Let Kn denote the standard D-structure on R2n (see Example 1.3.6) and consider the
space of the linear D-structure on R2n:

X (n) := {P ∈ GL(2n,R) | P 2 = Id, tr(P ) = 0}.

Then we have the following:

Proposition 2.3.7 ([61, Proposition 3.1]). There exists a neighborhood U of Kn in X (n)
such that every P ∈ U can be written in a unique way as

P = (Id +L)Kn(Id +L)−1,

where KnL+ LKn = 0 and det(Id +L) 6= 0.

Proof. For the sake of completeness, we recall the proof. Observe that GL2n(R) acts tran-
sitively on the space X (n) of the D-complex structures on R2n by:

P 7→ APA−1 A ∈ GL2n(R) P ∈ X (n). (2.3.7)

The isotropy group at Kn is:

H(n) := {A ∈ GL2n(R) | AKn −KnA = 0}. (2.3.8)

Then X (n) = GL2n(R)/H(n), the projection π : GL2n → X (n) is a H(n)-principal bundle
and π(A) = AKnA

−1. Since we have local triviality of this bundle, there exists a local
section σ and an open set U such that:

σ : U −→ GL2n(R)

Kn 7→ σ(Kn) = Id
(2.3.9)

and for any P ∈ U it holds that σ(P )Knσ
−1(P ) = P .

Now, we split the Lie algebra gl2n(R) into a sum s(n)⊕ h(n) defined by:

s(n) := {X ∈ gl2n(R) | XKn +KnX = 0}
h(n) := {X ∈ gl2n(R) | XKn −KnX = 0},

(2.3.10)

and we define the projection over s(n) (resp. h(n)) by:

S : gl2n(R) −→ s(n) X
S7−→ 1

2

(
X −KnXKn

)
H : gl2n(R) −→ h(n) X

H7−→ 1

2

(
X +KnXKn

)
.

(2.3.11)
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Now, by definition of H we get immediately H(σ(Kn)) = Id, then, choosing U small enough,
H(σ(P )) ∈ H(n) for all P ∈ U . Then we define a new section over U by:

σ̂(P ) = σ(P )
(
H(σ(P ))

)−1
. (2.3.12)

Note that, since if Y ∈ h(n) then also Y −1 ∈ h(n), we have

H(σ̂(P )) = H
(
σ(P )

(
H(σ(P ))

)−1
)

=
1

2

(
σ(P )

(
H(σ(P ))

)−1
+Knσ(P )

(
H(σ(P ))

)−1
Kn

)
=

1

2

(
σ(P )

(
H(σ(P ))

)−1
+Knσ(P )Kn

(
H(σ(P ))

)−1
)

=
1

2

(
σ(P ) +Knσ(P )Kn

)(
H(σ(P ))

)−1

=
(
H(σ(P )

)(
H(σ(P ))

)−1
= Id,

(2.3.13)

and also:

σ̂(Kn) = σ(Kn)
(
H(σ(Kn))

)−1
= Id

(
H(Id)

)−1
= Id . (2.3.14)

We see that the section σ̂ is uniquely determined by the previous conditions (2.3.13) and
(2.3.14), namely σ̂(Kn) = Id and H(σ̂(P )) = Id. Then, using the split (2.3.10), for every
D-structure P we have:

P = σ(P )Knσ
−1(P ) = σ(P )

(
H(σ(P ))

)−1(
H(σ(P ))

)
Knσ

−1(P )

= σ(P )
(
H(σ(P ))

)−1
Kn

(
H(σ(P ))

)
σ−1(P ) = σ̂(P )Knσ̂(P )−1

=
(
H(σ̂(P )) + S(σ̂(P ))

)
Kn

(
H(σ̂(P )) + S(σ̂(P ))

)−1

=
(
Id +L

)
Kn

(
Id +L

)−1
,

(2.3.15)

where we have set L := S(σ̂(P )), thence LKn +KnL = 0. This concludes the proof.

Let Kt (for t small, −ε < t < ε) be a curve of almost D-structures on a compact M
such that K0 = K. Then, as a consequence of the previous proposition, Kt can be written
as

Kt = (Id +ϕt)K(Id +ϕt)
−1 where ϕt = tϕ+ o(t), ϕtK +Kϕt = 0.

We note that the space of such ϕt is nothing else but (∧0,1
K T ∗M)R⊗TM (see Remark 2.3.1).

Moreover we have that
d

d t
Kt

∣∣∣∣
t=0

= 2ϕK (2.3.16)

and the following result:

Proposition 2.3.8 ([61, Proposition 3.2]). Let Kt be a curve of almost para-complex struc-
tures, defined for −ε < t < ε, such that K0 = K. Then

d

d t
NKt(X,Y )

∣∣∣∣
t=0

= 4(∂K ϕ)(X,Y )−NK(ϕX, Y )−NK(X,ϕY )−ϕ
(
NK(X,Y )

)
. (2.3.17)

Proof. By previous Proposition 2.3.7, we can write:

Kt = (Id +ϕt)K(Id +ϕt)
−1 where ϕt = tϕ+ o(t), ϕtK +Kϕt = 0. (2.3.18)
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Now, recalling (2.3.16), we get:

d

d t
NKt(X,Y )

∣∣∣∣
t=0

= [2ϕKX,KY ] + [KX, 2ϕKY ]− 2ϕK ([KX,Y ] + [X,KY ])

−K ([2ϕKX,Y ] + [X, 2ϕKY ])

= 2
(
−[KϕX,KY ]− [KX,KϕY ] +Kϕ ([KX,Y ] + [X,KY ])

+K ([KϕX,Y ] + [X,KϕY ])±K ([ϕX,KY ] + [KX,ϕY ])

± [ϕX, Y ]± [X,ϕY ]
)

= 2
(
−NK(ϕX, Y )−NK(X,ϕY ) +Kϕ ([KX,Y ] + [X,KY ])

−K ([ϕX,KY ] + [KX,ϕY ]) + [ϕX, Y ] + [X,ϕY ]
)
.

(2.3.19)

On the other hand, using Definition 2.3.2 we have:

4(∂K ϕ)(X,Y ) = 4
(
∂K(ϕY )(X)− ∂K(ϕX)(Y )− ϕ([[X,Y ]])

)
= 2
(

[X,ϕY ]−K[KX,ϕY ] +
1

2
NK(ϕY,X)

− [Y, ϕX] +K[KY,ϕX]− 1

2
NK(ϕX, Y )

− ϕ
(
[X,Y ] + [KX,KY ]− 1

2
NK(X,Y )

))
.

(2.3.20)

Note that

−ϕ
(
2[X,Y ] + 2[KX,KY ]−NK(X,Y )

)
− ϕ

(
NK(X,Y )

)
= −2ϕ(K[KX,Y ] +K[X,KY ]),

(2.3.21)
hence the proof of the proposition follows from the above equality.

Now we study the relations between a curve of D-structures and a fixed compatible
2-form.

Let (M,K) be a D-Hermitian manifold and let ω be a 2-form. K is ω-calibrated if

ω(K·,K·) = −ω(·, ·)

that is, if ω(K·, ·) = −ω(·,K·). Let Kt be a curve of D-structures such that Kt is ω-
calibrated for any |t| < ε. Then we have (using 2.3.16):

ω(Kt·, ·) = − ω(·,Kt·)
d

d t
ω(Kt·, ·)

∣∣∣∣
t=0

=− d

d t
ω(·,Kt·)

∣∣∣∣
t=0

ω(ϕK·, ·) = − ω(·, ϕK·)
ω(ϕK·, ·) = − ω(K·, ϕ·).

Hence, if we set the pseudo-Riemannian metric g(·, ·) := ω(·,K·), we have

g(ϕK·,K·) = −g(K·,Kϕ·) = g(K·, ϕK·), i.e. ϕ = ϕt (2.3.22)

where the transposition is taken with respect to the pseudo-metric g.

Finally, we recall the following theorem which characterizes the integrable deformations
of D-structures.
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Theorem 2.3.9 ([61, Theorem 4.2]). Let (M,K) be a compact D-manifold. Then the map
between

{ϕ ∈ Γ(M,End(TM)) | ϕK+Kϕ = 0, ∂k ϕ+
1

2
[[ϕ,ϕ]] = 0, det(Id+ϕ) 6= 0}

and
{K̂ ∈ Γ(M,End(TM)) | K̂2 = Id, NK̂ = 0},

given by
ϕ 7−→ K̂ = (Id +ϕ)K(Id +ϕ)−1

is a bijection between a neighborhood of 0 ∈ Γ(M,End(TM)) and a neighborhood of K.

The theorem is an easy consequence of the following lemma:

Lemma 2.3.10 ([61, Proposition 4.1]). Let K be a D-structure on a manifold M , and
let K̂ = (Id +ϕ)K(Id +ϕ)−1 be an almost D-complex structure with ϕK + Kϕ = 0 and
det(Id +ϕ) 6= 0. Then

(Id +ϕ)−1NK̂((Id +ϕ)(X), (Id +ϕ)(Y )) = 4(Id−ϕ2)−1

(
∂K ϕ+

1

2
[[ϕ,ϕ]]

)
(X,Y )

(2.3.23)
for X,Y ∈ TM .

Proof of Lemma 2.3.10. First note that the formula is equivalent to:

(Id +ϕ)NK̂((Id +ϕ)(X), (Id +ϕ)(Y )) = 4

(
∂K ϕ+

1

2
[[ϕ,ϕ]]

)
(X,Y ). (2.3.24)

This formula is proven by a straightforward computation, using that NK = 0, ϕK+Kϕ = 0
and the Definition 2.3.2 and equation (2.3.2). Because the techniques are similar to those
ones of Lemma 2.4.7 the whole proof is omitted.

Proof of Theorem 2.3.9. Now the theorem follows from the previous Proposition 2.3.7 and
the Lemma 2.3.10. This concludes the proof of the theorem.

2.4 Deformations of D-structures as derivations

Let (M,K) be a D-complex compact manifold. In this section, we restate the condition
∂k ϕ + 1

2 [[ϕ,ϕ]] = 0 of the previous theorem in terms of skew-symmetric derivations on

∧0,∗
K (M), giving a different (but equivalent) condition to verify if a deformation is integrable

(Corollary 2.4.5). To do this, the key tool is the Theorem 2.4.2. We proceed as done by
P. de Bartolomeis and F. Meylan in [22] for the CR-complex case.

Before stating the theorem, we need some preliminaries. First of all, we introduce a
new graded algebra:

Âp :=

{
Γ(M,∧0,p

K (M)⊗ T 1,0M) 1 ≤ p ≤ n,
0 otherwise

and set Â :=
⊕
p∈Z
Âp. (2.4.1)

Note that Âp = Ap for p 6= 0.

Now for any ϕ ∈ Âp we want to define a p-degree skew derivation kϕ : ∧0,∗
K (M) →

∧0,∗
K (M) (i.e. a p-degree skew derivation kϕ : Ω0,q

K (M) → Ω0,q+p
K (M) for any q). We

proceed as follows:

For (p = 1) take ϕ ∈ Â1.
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• If q = 0 we define kϕ as follows (set f a smooth function and Z ∈ T 1,0M):

(kϕf)(Z̄) := ∂ f(ϕ(Z̄)) = ϕ(Z̄)f = (ϕZ̄f). (2.4.2)

If q = 1 we define kϕ as follows (set γ ∈ Ω0,1
K (M) and Z,W ∈ T 1,0M):

(kϕγ)(Z̄, W̄ ) := ϕZ̄γ(W̄ )− ϕW̄γ(Z̄)− γ([ϕZ̄, W̄ ]− [Z̄, ϕW̄ ]). (2.4.3)

• Since
kϕ(fγ) = (kϕf) ∧ γ + fkϕγ,

we can extend kϕ as a 1-degree skew derivation, that is if β =
∑
β1 ∧ · · · ∧ βq ∈

Ω0,q
K (M), q > 1 we have:

kϕβ :=

q∑
j=1

(−1)(1+j)β1 ∧ · · · ∧ kϕβj ∧ · · · ∧ βq. (2.4.4)

For (p > 1) we write ψ ∈ Âp as a sum of elements of the form αi∧ϕi with αi ∈ Ω0,p−1
K (M)

and ϕi ∈ Â1 then we set
kαi∧ϕi := αi ∧ kϕi (2.4.5)

and kψ is just the sum of the expression above.

Now we consider in Âp the same operators [[·, ·]] and ∂K as defined in Definitions 2.3.4
and 2.3.5.

Let F be the space of skew-symmetric derivations on ∧0,∗
K (M) and consider the usual

bracket defined on homogeneous elements as

[F,G] := F ◦G− (−1)|F ||G|G ◦ F and set δKF := [∂K , F ],

then an easy computation proves the following:

Proposition 2.4.1. (F , [·, ·], δK) is a DGLA.

Define q to be a map between (Â, [[·, ·]], ∂K) and (F , [·, ·], δK):

q : Â −→ F , ϕ 7−→ kϕ. (2.4.6)

We are ready to state the following:

Theorem 2.4.2. The map q : Â → F is a DGLA homomorphism, i.e. q is an injective
map satisfying:

[q(ϕ), q(ψ)] = q([[ϕ,ψ]]) (equivalently [kϕ,kψ] = k[[ϕ,ψ]]) (2.4.7)

and
δKq(ϕ) = q(∂K ϕ) (equivalently δKkϕ = k∂K ϕ). (2.4.8)

To prove that q is an injective DGLA homomorphism we need the following two lem-
mata.

Lemma 2.4.3. Let ϕ ∈ Â1 and γ ∈ Ω0,2
K (M). Then kϕ satisfies the following:

kϕγ(Z̄, W̄ , Ū) = S
Z,W,U

ϕ(Z̄)γ(W̄ , Ū)− S
Z,W,U

γ([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ], Ū) (2.4.9)

where S
Z,W,U

denotes the cyclic sum over Z,W,U ∈ T 1,0M .
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Proof of Lemma 2.4.3. We apply the definition of kϕ for γ = α∧β, where α, β ∈ Ω0,1
K (M),

i.e. using (2.4.4) we get:

kϕγ = kϕα ∧ β = (kϕα) ∧ β − α ∧ (kϕβ).

Now taking Z,W,U ∈ T 1,0M we get:

kϕγ(Z̄, W̄ , Ū) = (kϕα) ∧ β(Z̄, W̄ , Ū)− α ∧ (kϕβ)(Z̄, W̄ , Ū)

=
1

2

{
kϕα(Z̄, W̄ )β(Ū)− kϕα(W̄ , Z̄)β(Ū)

+ kϕα(Ū , Z̄)β(W̄ )− kϕα(Z̄, Ū)β(W̄ )

+ kϕα(W̄ , Ū)β(Z̄)− kϕα(Ū , W̄ )β(Z̄)
}

+
1

2

{
α(Z̄)kϕβ(W̄ , Ū)− α(Z̄)kϕβ(Ū , W̄ )

+ α(W̄ )kϕβ(Ū , Z̄)− α(W̄ )kϕβ(Z̄, Ū)

+ α(Ū)kϕβ(Z̄, W̄ )− α(Ū)kϕβ(W̄ , Z̄)
}
.

Then we expand using (2.4.3):

kϕγ(Z̄, W̄ , Ū) =

=
1

2

{
{ϕZ̄α(W̄ )− ϕW̄α(Z̄)− α([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ])}β(Ū)

−{ϕW̄α(Z̄)− ϕZ̄α(W̄ )− α([ϕW̄ , Z̄] + [W̄ , ϕZ̄])}β(Ū)

+{ϕŪα(Z̄)− ϕZ̄α(Ū)− α([ϕŪ, Z̄] + [Ū , ϕZ̄])}β(W̄ )

−{ϕZ̄α(Ū)− ϕŪα(Z̄)− α([ϕZ̄, Ū ] + [Z̄, ϕŪ ])}β(W̄ )

+{ϕW̄α(Ū)− ϕŪα(W̄ )− α([ϕW̄ , Ū ] + [W̄ , ϕŪ ])}β(Z̄)

−{ϕŪα(W̄ )− ϕW̄α(Ū)− α([ϕŪ, W̄ ] + [Ū , ϕW̄ ])}β(Z̄)
}

−1

2

{
α(Z̄){ϕW̄β(Ū)− ϕŪβ(W̄ )− β([ϕW̄ , Ū ] + [W̄ , ϕŪ ])}

−α(Z̄){ϕŪβ(W̄ )− ϕW̄β(Ū)− β([ϕŪ, W̄ ] + [Ū , ϕW̄ ])}
+α(W̄ ){ϕŪβ(Z̄)− ϕZ̄β(Ū)− β([ϕŪ, Z̄] + [Ū , ϕZ̄])}
−α(W̄ ){ϕZ̄β(Ū)− ϕŪβ(Z̄)− β([ϕZ̄, Ū ] + [Z̄, ϕŪ ])}
+α(Ū){ϕZ̄β(W̄ )− ϕW̄β(Z̄)− β([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ])}

−α(Ū){ϕW̄β(Z̄)− ϕZ̄β(W̄ )− β([ϕW̄ , Z̄] + [W̄ , ϕZ̄])}
}
.

(2.4.10)

Since ϕZ̄ ∈ T 1,0M , we can see it as derivation, then:

(ϕZ̄α(W̄ ))β(Ū) + α(W̄ )(ϕZ̄β(Ū)) = ϕZ̄(α(W̄ )β(Ū)).

Using this and summing up all the terms, we get from (2.4.10) the first term of the right
hand side of formula (2.4.9):

ϕZ̄α ∧ β(W̄ , Ū) + ϕW̄α ∧ β(Ū , Z̄) + ϕŪα ∧ β(Z̄, W̄ ).

In the same way, we can see that:

−α([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ])β(Ū) + α(Ū)β([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ]) =

= −α ∧ β([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ], Ū)

= −γ([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ], Ū).
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We sum again and we get the second term of (2.4.9):

−γ([ϕZ̄,W̄ ] + [Z̄,ϕW̄ ], Ū)− γ([ϕW̄ ,Ū ] + [W̄ ,ϕŪ ], Z̄)− γ([ϕŪ,Z̄] + [Ū ,ϕZ̄], Ū)

and the lemma is proved.

Lemma 2.4.4. Let ψ ∈ Â2 and β ∈ Ω0,1
K (M). Then kψ satisfies the following:

kψβ(Z̄, W̄ , Ū) = S
Z,W,U

ψ(Z̄, W̄ )β(Ū)− S
Z,W,U

β([ψ(Z̄, W̄ ), Ū ]) (2.4.11)

where Z,W,U ∈ T 1,0M .

Proof of Lemma 2.4.4. Applying the definition of kψ for ψ = α ∧ ϕ (see (2.4.5)), we have:

kψβ(Z̄, W̄ , Ū) = α ∧ kϕβ(Z̄, W̄ , Ū)

=
1

2

{
α(Z̄)kϕβ(W̄ , Ū)− α(Z̄)kϕβ(Ū , W̄ )

+ α(W̄ )kϕβ(Ū , Z̄)− α(W̄ )kϕβ(Z̄, Ū)

+ α(Ū)kϕβ(Z̄, W̄ )− α(Ū)kϕβ(W̄ , Z̄)
}

and then we get the second part of (2.4.10). First, notice that we have

α(Z̄)ϕW̄β(Ū)− α(W̄ )ϕZ̄β(Ū) = α ∧ ϕ(Z̄, W̄ )β(Ū) = ψ(Z̄, W̄ )β(Ū)

and since there are two terms like this, we can sum and simplify the 1
2 , and we get the first

term of the right hand of (2.4.11):

ψ(Z̄, W̄ )β(Ū) + ψ(W̄ , Ū)β(Z̄) + ψ(Ū , Z̄)β(W̄ ).

Now observe that, since β ∈ Ω0,1
K (M), we have that β(X) = β(X0,1) = β(X + Y 1,0) for

all vector fields X,Y (here X1,0 denotes the projection of X over T 1,0M). Hence, since
ϕW̄ ∈ T 1,0M , we have

−α(Z̄)β([ϕW̄ , Ū ]) = −β
(
α(Z̄)(ϕW̄ (Ū)− Ū(ϕW̄ ))

)
= −β

(
α(Z̄)ϕW̄ (Ū)− α(Z̄)Ū(ϕW̄ )

)
= −β

(
α(Z̄)ϕW̄ (Ū)− Ū(α(Z̄)ϕW̄ ) + Ū(α(Z̄))ϕW̄

)
= −β

(
[α(Z̄)ϕW̄ , Ū ]

)
− Ū(α(Z̄))β(ϕW̄ )

= −β
(
[α(Z̄)ϕW̄ , Ū ]

)
.

Now we have

−β([α(Z̄)ϕW̄ , Ū ]) + β([α(W̄ )ϕZ̄, Ū ]) = −β([α ∧ ϕ(Z̄, W̄ ), Ū ])

= −β([ψ(Z̄, W̄ ), Ū ])

and finally we get the last term of (2.4.11).

Now we are ready to prove the Theorem 2.4.2.

Proof of Theorem 2.4.2. Step 1: Injectivity of the map q.
If kϕ = kψ then, in particular, we have

ϕ(Z̄)(f) = kϕf(Z̄) = kψf(Z̄) = ψ(Z̄)(f)

for every smooth function f and for every vector field Z ∈ T 1,0M , and we get ψ = ϕ.
Step 2: Proof of (2.4.7).
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We have to prove that kϕ ◦ kϕ = 1
2k[[ϕ,ϕ]]. First of all, take ϕ ∈ Â1, a smooth function f

and Z,W ∈ T 1,0M . By (2.4.4), (2.4.2) and (2.3.5) we get:

kϕ ◦ kϕf(Z̄, W̄ ) = ϕZ̄kϕf(W̄ )− ϕW̄kϕf(Z̄)− kϕf([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ])

= ϕZ̄ϕW̄f − ϕW̄ϕZ̄f − ϕ([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ])f

= [ϕZ̄, ϕW̄ ]f − ϕ([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ])f

=
1

2
[[ϕ,ϕ]](Z̄, W̄ )f =

1

2
k[[ϕ,ϕ]]f(Z̄, W̄ )

where the last equivalence follows from equation (2.4.5). Since
∑
αi ∧ ψi = [[ϕ,ϕ]] ∈ Â2

with αi ∈ Ω0,1
K (M) and ϕ ∈ Â1, by linearity we can write:

k[[ϕ,ϕ]]f(Z̄, W̄ ) = k∑
αi∧ψif(Z̄, W̄ ) =

∑
αi ∧ kψif(Z̄, W̄ )

=
∑(

αiZ̄kψif(W̄ )− αiW̄kψif(Z̄)
)

=
∑(

αiZ̄ψiW̄f − αiW̄ψiZ̄f
)

=
∑

αi ∧ ψi(Z̄, W̄ )f = [[ϕ,ϕ]](Z̄, W̄ )f.

(2.4.12)

Now take γ ∈ Ω0,1
K (M). Using Lemma 2.4.3 we get (we drop the index Z,W,U on the cyclic

sum, as it is clear from the context):

kϕ◦kϕγ(Z̄, W̄ , Ū) = (SϕZ̄kϕγ(W̄ , Ū))−Skϕγ([ϕZ̄, W̄ ] + [Z̄, W̄ ], Ū) =

= S(ϕZ̄{ϕW̄γ(Ū)− ϕŪγ(W̄ )− γ([ϕW̄ , Ū ] + [W̄ , ϕŪ ])})

−S
(
ϕ([ϕZ̄, W̄ ]+[Z̄, ϕW̄ ])γ(Ū)− ϕŪγ([ϕZ̄, W̄ ]+[Z̄, ϕW̄ ])

− γ
(
[ϕ([ϕZ̄, W̄ ]+[Z̄, ϕW̄ ]), Ū ] + [[ϕZ̄, W̄ ]+[Z̄, ϕW̄ ], ϕŪ ]

))
= S(ϕZ̄ϕW̄γ(Ū))−S(ϕZ̄ϕŪγ(W̄ ))

−SϕZ̄γ([ϕW̄ , Ū ]+[W̄ , ϕŪ ])

−Sϕ([ϕZ̄, W̄ ]+[Z̄, ϕW̄ ]γ(Ū))

+ SϕŪγ([ϕZ̄, W̄ ]+[Z̄, ϕW̄ ])

−Sγ([ϕ([ϕZ̄, W̄ ]+[Z̄, ϕW̄ ]), Ū ])

+ Sγ([[ϕZ̄, W̄ ], ϕŪ ]) + Sγ([[Z̄, ϕW̄ ], ϕŪ ]).

If we rewrite the terms, we can observe that:

S(ϕZ̄ϕW̄γ(Ū))−S(ϕZ̄ϕŪγ(W̄ )) = S(ϕZ̄ϕW̄γ(Ū))−S(ϕW̄ϕZ̄γ(Ū))

= S([ϕZ̄, ϕW̄ ]γ(Ū));

and that:

−SϕZ̄γ([ϕW̄ , Ū ] + [W̄ , ϕŪ ]) + SϕŪγ([ϕZ̄, W̄ ]+[Z̄, ϕW̄ ]) =

= −SϕZ̄γ([ϕW̄ , Ū ] + [W̄ , ϕŪ ]) + SϕZ̄γ([ϕW̄ , Ū ]+[W̄ , ϕŪ ]) = 0,

and using the Jacobi identity (2.1.1)

Sγ([[ϕZ̄, W̄ ], ϕŪ ]) + Sγ([[Z̄, ϕW̄ ], ϕŪ ])

= Sγ([[ϕZ̄, W̄ ], ϕŪ ]) + Sγ([[W̄ , ϕŪ ], ϕZ̄])

= −Sγ([[ϕŪ, ϕZ̄], W̄ ]).
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Now using Lemma 2.4.4 we have:

kϕ◦kϕγ(Z̄, W̄ , Ū) = S(ϕZ̄ϕW̄γ(Ū))−S(ϕW̄ϕZ̄γ(Ū))

−Sϕ([ϕZ̄, W̄ ]+[Z̄, ϕW̄ ]γ(Ū))

−Sγ([[ϕŪ, ϕZ̄], W̄ ])

−Sγ([ϕ([ϕZ̄, W̄ ]+[Z̄, ϕW̄ ]), Ū ])

=
1

2
S
{

(2[ϕZ̄, ϕW̄ ]− 2ϕ([ϕZ̄, W̄ ]+[Z̄, ϕW̄ ]))γ(Ū)
}

− 1

2
Sγ([2[ϕZ̄, ϕW̄ ]− 2ϕ([ϕZ̄, W̄ ]+[Z̄, ϕW̄ ]), Ū ])

=
1

2
S[[ϕ,ϕ]](Z̄, W̄ )γ(Ū)− 1

2
Sγ(

[
[[ϕ,ϕ]](Z̄, W̄ ), Ū

]
)

=
1

2
k[[ϕ,ϕ]]γ(Z̄, W̄ , Ū).

For the general case we can argue by induction: assume that, for all α ∈ ∧0,q
K (M):

kϕkϕα =
1

2
k[[ϕ,ϕ]]α.

Let β ∈ ∧0,q+1
K (M) such that β = γ ∧ α with α ∈ ∧0,q

K (M) and γ ∈ ∧0,1
K (M). Then:

kϕkϕβ = kϕ(kϕγ ∧ α+ γ ∧ kϕα)

= (kϕkϕγ) ∧ α+ kϕγ ∧ kϕα− kϕγ ∧ kϕα+ γ(kϕkϕα)

= (
1

2
k[[ϕ,ϕ]]γ) ∧ α+ γ ∧ (

1

2
k[[ϕ,ϕ]]α)

=
1

2
k[[ϕ,ϕ]](γ ∧ α) =

1

2
k[[ϕ,ϕ]]β.

Moreover, take ψ,ϕ ∈ Â1. Then:

k[[ψ,ϕ]] =
1

2
(k[[ψ+ϕ,ψ+ϕ]] − k[[ψ,ψ]] − k[[ϕ,ϕ]])

= kψ+ϕ ◦ kψ+ϕ − kψ ◦ kψ − kϕ ◦ kϕ
= kψkψ + kψkϕ + kϕkψ + kϕkϕ − kψkψ − kϕkϕ
= [kψ,kϕ].

Finally, again by induction we have

k[[α∧ψ,β∧ϕ]] = [kα∧ψ,kβ∧ϕ],

and by the definition of the bracket [·, ·] in F we get:

[kϕ,kϕ] = kϕ ◦ kϕ − (−1)|kϕ|kϕ ◦ kϕ = 2kϕ ◦ kϕ.

By linearity we can extend this demonstration to elements β ∈ ∧0,q+1
K (M) not of the form

β = γ ∧ α, and this achieves the proof of (2.4.7).
Step 3: Proof of (2.4.8).
Let f be a function, Z,W ∈ T 1,0M and ϕ ∈ Â1. Since ∂K ϕ ∈ Â2 and using the same
argument as in (2.4.12), we observe that the right side of (2.4.8) is:

k∂K ϕ(f)(Z̄, W̄ ) = (∂K ϕ)(Z̄, W̄ )(f)

=
(
(∂K ϕW̄ )(Z̄)− (∂K ϕZ̄)(W̄ )− ϕ([Z̄, W̄ ])

)
(f) =

=
(1

2
([Z̄,ϕW̄ ]+τK[Z̄,ϕW̄ ]−[W̄ ,ϕZ̄]−τK[W̄ ,ϕZ̄])− ϕ[Z̄,W̄ ]

)
(f).

(2.4.13)
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On the left side of (2.4.8) we have:

δKkϕ(f) = [∂K ,kϕ](f) = (∂K kϕ + kϕ ∂K)(f).

Consequently:

∂K kϕ(f)(Z̄, W̄ ) = ∂K(kϕfW̄ (Z̄))− ∂K(kϕfZ̄)(W̄ )− kϕf([Z̄, W̄ ])

= Z̄(kϕfW̄ )− W̄ (kϕfZ̄)− kϕf([Z̄, W̄ ])

and

kϕ ∂K(f)(Z̄, W̄ ) = ϕZ̄ ∂K f(W̄ )− ϕW̄ ∂K f(Z̄)− ∂K f([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ]).

Hence we have:

(∂K kϕ+kϕ ∂K)(f)(Z̄, W̄ ) =

= Z̄(kϕfW̄ )− W̄ (kϕfZ̄)− kϕf([Z̄, W̄ ])

+ ϕZ̄ ∂K f(W̄ )− ϕW̄ ∂K f(Z̄)

− ∂K f([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ])

= Z̄(ϕW̄ )(f)− W̄ (ϕZ̄)(f)− ϕ([Z̄, W̄ ])(f)

+ ϕZ̄(W̄ )(f)− ϕW̄ (Z̄)(f)

− 1

2
([ϕZ̄, W̄ ]+[Z̄, ϕW̄ ]−τK([ϕZ̄, W̄ ]+[Z̄, ϕW̄ ]))(f)

where in the last equality we use that ∂K f(X) = ∂ f(X) = 1
2(X − τKX)(f) if X ∈ TM .

We can see that this last expression coincides with (2.4.13), since Z̄(ϕW̄ )(f)−ϕW̄ (Z̄)(f) =
[Z̄, ϕW̄ ](f). Then we have:

k∂K ϕ(f) = δKkϕ(f).

Now let γ ∈ Ω0,1
K (M) and Z,W,U ∈ T 1,0M . We have, using Lemma 2.4.4 and the definition

of ∂K ϕ (Definition 2.3.5):

k∂K ϕ(Z̄, W̄ , Ū) = S ∂K ϕ(Z̄, W̄ )γ(Ū)−Sγ([∂K ϕ(Z̄, W̄ ), Ū ])

= S(∂K(ϕW̄ )(Z̄)− ∂K(ϕZ̄)(W̄ )− ϕ([Z̄, W̄ ]))γ(Ū)

−Sγ([∂K(ϕW̄ )(Z̄)− ∂K(ϕZ̄)(W̄ )− ϕ([Z̄, W̄ ]), Ū ]).

Expanding the previous (using the definition of ∂K ϕW̄ ):

k∂K ϕ(Z̄, W̄ , Ū) = S
1

2
([Z̄, ϕW̄ ] + τK[Z̄, ϕW̄ ])γ(Ū)

−S
1

2
([W̄ , ϕZ̄] + τK[W̄ , ϕZ̄])γ(Ū)−Sϕ([Z̄, W̄ ])γ(Ū)

−Sγ(
1

2
[[Z̄, ϕW̄ ] + τK[Z̄, ϕW̄ ], Ū ])

+ Sγ(
1

2
[[W̄ , ϕZ̄] + τK[W̄ , ϕZ̄], Ū ]) + Sγ([ϕ([Z̄, W̄ ]), Ū ]).

(2.4.14)

The left hand of (2.4.8) is:

δKkϕ = [∂K ,kϕ] = ∂K kϕ + kϕ ∂K .

Hence, using the definition of ∂K and of kϕ:

∂K kϕγ(Z̄, W̄ , Ū) = S ∂K kϕγ(W̄ , Ū)(Z̄)−Skϕγ([Z̄, W̄ ], Ū)

= SZ̄(kϕγ)(W̄ , Ū)−Skϕγ([Z̄, W̄ ], Ū)

= SZ̄{ϕW̄γ(Ū)− ϕŪγ(W̄ )− γ([ϕW̄ , Ū ] + [W̄ , ϕŪ ])}
−Sϕ([Z̄, W̄ ])γ(Ū) + SϕŪγ([Z̄, W̄ ])

+ Sγ([ϕ([Z̄, W̄ ]), Ū ] + [[Z̄, W̄ ], ϕŪ ]).
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We also have, using Lemma 2.4.3:

kϕ ∂K γ(Z̄, W̄ , Ū) = SϕZ̄(∂K γ)(W̄ , Ū)−S ∂K(γ)([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ], Ū)

= SϕZ̄{W̄γ(Ū)− Ūγ(W̄ )− γ([W̄ , Ū ])}
−S ∂K(γ)([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ], Ū).

Now, using the Jacobi identity (2.1.1), we observe that:

γ([[Z̄, W̄ ], ϕŪ ]) = γ([Z̄, [W̄ , ϕŪ ]])− γ([W̄ , [Z̄, ϕŪ ]])

and using the fact that ∂K γ ∈ Ω0,2
K (M) we can take the (0, 1)-part, then we get:

∂K(γ)([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ], Ū) =

= ∂K γ(
1

2
{[ϕZ̄, W̄ ] + [Z̄, ϕW̄ ]− τK([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ])}, Ū)

=
1

2
{[ϕZ̄, W̄ ] + [Z̄, ϕW̄ ]− τK([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ])}γ(Ū)

− 1

2
Ū{γ([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ]− τK([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ]))}

− 1

2
γ([[ϕZ̄, W̄ ] + [Z̄, ϕW̄ ]− τK([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ]), Ū ]).

Finally we have:

(∂K kϕ+kϕ ∂K)γ(Z̄, W̄ , Ū) = SZ̄{ϕW̄γ(Ū)− ϕŪγ(W̄ )}
−SZ̄{γ([ϕW̄ , Ū ] + [W̄ , ϕŪ ])}
−Sϕ([Z̄, W̄ ])γ(Ū) + SϕŪγ([Z̄, W̄ ])

+ Sγ([ϕ([Z̄, W̄ ]), Ū ])

+ Sγ([Z̄, [W̄ , ϕŪ ]])− γ([W̄ , [Z̄, ϕŪ ]])

+ SϕZ̄{W̄γ(Ū)− Ūγ(W̄ )− γ([W̄ , Ū ])}

−S
1

2
{[ϕZ̄, W̄ ] + [Z̄, ϕW̄ ]− τK([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ])}γ(Ū)

+ S
1

2
Ū{γ([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ]− τK([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ]))}

+ S
1

2
γ([[ϕZ̄, W̄ ] + [Z̄, ϕW̄ ]− τK([ϕZ̄, W̄ ] + [Z̄, ϕW̄ ]), Ū ]).

(2.4.15)

Using that 1
2 Ū{γ([ϕZ̄, W̄ ]+ [Z̄, ϕW̄ ]−τK([ϕZ̄, W̄ ]+ [Z̄, ϕW̄ ]))} = Ūγ([ϕZ̄, W̄ ]+ [Z̄, ϕW̄ ])

and possibly using the cycling sum, we see that (2.4.14) and (2.4.15) are equal.
As before, the general case follows by induction and this concludes the proof of the theorem.

From Theorem 2.4.2 we are able to rewrite the integrability condition ∂K ϕ+1
2 [[ϕ,ϕ]] = 0

as follows:

Corollary 2.4.5. Let q given by

q : Â −→ F ϕ 7−→ kϕ,

then:

1. (im q, [·, ·], δK) is a DGLA;

2. (Â, [[·, ·]], ∂K) is a DGLA isomorphic to the previous one;
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3. we have that
ϕ ∈MC(Â)⇐⇒ kϕ ∈MC(F),

i.e. ∂K ϕ+ 1
2 [[ϕ,ϕ]] = 0 if and only if δKkϕ + 1

2 [kϕ,kϕ] = 0.

Proof. The statement follows from Theorem 2.4.2 and from the Definition of MC (equation
(2.1.5)).

Remark 2.4.6. We observe the following:

• Let C(g) be the center of a Lie algebra g (i.e. C(g) := {a ∈ g | [a, b] = 0 ∀b ∈ g}). It
is easy to see that C(Â) = 0. Indeed, if ϕ,ψ ∈ Â, and f is a smooth function, then

[[ϕ, fψ]] = f [[ϕ,ψ]] + kϕf ∧ ψ.

Take now ψ ∈ C(Â), hence 0 = [[ϕ, fψ]] = kϕf ∧ ψ for all f and for all ψ. If we
choose ψ 6= 0 such that ψ(Z̄) = Z, then kϕf = 0 for all functions f and hence kϕ = 0.
Now by the injectivity of the map q we have that ϕ = 0.

• Moreover setting ∂ϕ := ∂K +[[ϕ, ·]] (see (2.1.3)) we have that:

∂
2
ϕ = 0⇐⇒ ∂K ϕ+

1

2
[[ϕ,ϕ]] = 0⇐⇒

⇐⇒ δKkϕ +
1

2
[kϕ,kϕ] = 0⇐⇒ (∂K +kϕ)2 = 0,

where, on the first equivalence, we use that ∂
2
K = 0 and that the center of Â is zero,

the equivalence in the middle is given by Corollary 2.4.5, the last equivalence is a
direct consequence of the definitions.

We end this section with the following lemma.

Lemma 2.4.7. Let (M,K) be a compact D-manifold, and let K̂ defined by:

K̂ = (Id +ϕ)K(Id +ϕ)−1, where Kϕ+ ϕK = 0, det(Id +ϕ) 6= 0. (2.4.16)

Then:

(Id +ϕ)−1NK̂((Id +ϕ)(Z̄), (Id +ϕ)(W̄ )) = 4(Id−ϕ2)−1

(
∂K ϕ+

1

2
[[ϕ,ϕ]]

)
(Z̄, W̄ )

for Z,W ∈ T 1,0M .

Proof. If Z,W ∈ T 1,0M , then:

NK(Z̄, W̄ ) = [Z̄, W̄ ] + [KZ̄,KW̄ ]−K[KZ̄, W̄ ]−K[Z̄,KW̄ ]

= 2[Z̄, W̄ ] + 2τK[Z̄, W̄ ].

Moreover we have:

(Id +ϕ)
1

2
(X − τKX) =

1

2
((Id +ϕ)X − τ(Id +ϕ)KX)

=
1

2
((Id +ϕ)X − τK̂(Id +ϕ)X).

Using this fact together with (Id−ϕ2) = (Id−ϕ)(Id +ϕ) we have:

(Id−ϕ2)(Id +ϕ)−1NK̂((Id +ϕ)(Z̄), (Id +ϕ)(W̄ ))

= (Id−ϕ)NK̂((Id +ϕ)(Z̄), (Id +ϕ)(W̄ ))

= 2(Id−ϕ)
{

[(Id +ϕ)(Z̄), (Id +ϕ)(W̄ )]

+ τK̂[(Id +ϕ)(Z̄), (Id +ϕ)(W̄ )]
}
.
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By the definition of K̂ (see equation (2.4.16)) we have K̂ = (Id +ϕ)(Id−ϕ)−1K, and
combining this with the previous equation we get

(Id−ϕ2)(Id +ϕ)−1NK̂((Id +ϕ)(Z̄), (Id +ϕ)(W̄ ))

= 2
{

(Id−ϕ)[(Id +ϕ)(Z̄), (Id +ϕ)(W̄ )]

+ τ(Id +ϕ)K[(Id +ϕ)(Z̄), (Id +ϕ)(W̄ )]
}
.

Now applying the facts that ϕ̃(X) =
1

2
(ϕX − τϕKX) and that ϕ̃(Z̄) = ϕ(Z̄), a straight-

forward computation shows that:

(Id−ϕ2)(Id +ϕ)−1NK̂((Id +ϕ)(Z̄), (Id +ϕ)(W̄ ))

= 4 ∂K ϕ̃(Z̄, W̄ ) + 4[ϕ̃Z̄, ϕ̃W̄ ]

− 2ϕ
(
[Z̄, ϕW̄ ] + [ϕZ̄, W̄ ]− τK[Z̄, ϕW̄ ]− τK[ϕZ̄, W̄ ]

)
= 4 ∂K ϕ̃(Z̄, W̄ ) + 4[ϕ̃Z̄, ϕ̃W̄ ]− 4ϕ̃([Z̄, ϕW̄ ] + [ϕZ̄, W̄ ])

= 4

(
∂K ϕ̃+

1

2
[[ϕ̃, ϕ̃]]

)
(Z̄, W̄ )

where, in the last equivalence, we use the equation (2.3.5). This ends the proof of the
lemma.

Note that this Lemma 2.4.7 is the analogous of 2.3.10 (see [61]) written in the D-setting.
We will need it in Section 2.5, but we put it here since it holds for a general D-manifold.
We can also merge the Theorem 2.3.9 and Lemmas 2.3.10 and 2.4.7 to get the following:

Remark 2.4.8. Let (M,K) be a compact D-manifold, and let K̂ defined by:

K̂ = (Id +ϕ)K(Id +ϕ)−1, where Kϕ+ ϕK = 0, det(Id +ϕ) 6= 0. (2.4.17)

Then the integrability condition NK̂ = 0 is equivalent to the vanishing of ∂K ϕ+ 1
2 [[ϕ,ϕ]],

which can be tested either on real vectors X,Y ∈ TM or on D-complexificated vectors
Z̄, W̄ ∈ T 0,1.

2.5 Deformations of CR D-structures

In this section, we are interested in studying the deformations of a D-structure on a
fixed compact contact manifold (M, ξ). The deformations of strictly pseudo-convex CR-
structures have been studied in [22].

As done in the D-structures case, we first construct the DGLA BK(ξ) of deformations of
strictly CR D-structures and discuss the integrability condition (Maurer-Cartan equation
(2.1.4)). Then we explicit the injection of the DGLA BK(ξ) in the space of skew derivations
E and we write an equivalent condition to the integrability.

Let (M, ξ,K) be a strictly CR D-structure with dimM = 2n + 1 (see Section 1.7 for
basic definitions). Fix a contact form α and extend K on the α-symplectization of (M, ξ)
(see equations (1.7.8) and (1.7.9)). We can show the following proposition similar to the
complex case.

Proposition 2.5.1. Let (M, ξ) be a contact manifold, α be a contact form and K ∈ D(ξ).
Then:

NK(X,Y ) ∈ ξ ∀X,Y ∈ TN

∂K Rα = −1

4
NK(Rα, ·).

(2.5.1)
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Proof. Since K ∈ D(ξ), we have that NK(X,Y ) ∈ ξ for X,Y ∈ ξ (see (1.7.7)). Moreover,
since iRα dα = 0 and α(Rα) = 1, for every X ∈ ξ we have

0 = dα(Rα, X) = Rα(α(X))−X(α(Rα))− α([Rα, X]) = −α([Rα, X])

namely [Rα, X] ∈ ξ for every X ∈ ξ. Furthermore [Rα,
∂
∂ s ] = 0, i.e. [Rα, X] = 0 for every

X ∈ TN . Now, since α(S) = 0 and [S,X] = 0 for all X ∈ TN , we get the first part of the
thesis from the definition of NK(X,Y ).
To prove the second part, we calculate (using Definition 2.3.2):

∂K Rα(X) =
1

2
([X,Rα]−K[KX,Rα]) +

1

4
NK(Rα, X).

Since [S,X] = 0, we get:

NK(Rα, X) = [KRα,KX] + [Rα, X]−K[KRα, X]−K[Rα,KX]

= [S,KX] + [Rα, X]−K[S,X]−K[Rα,KX]

= [Rα, X]−K[Rα,KX].

Hence:

∂K Rα(X) =
1

2
([X,Rα]−K[KX,Rα]) +

1

4
([Rα, X]−K[Rα,KX])

=
1

4
([X,Rα]−K[KX,Rα]) = −1

4
NK(Rα, X).

Now on a strictly CR D-structure (M, ξ,K) we fix a contact form α and as before we
extend K on the α-symplectization of (M, ξ). Define

BpK(ξ) :=
{
γ ∈ (∧0,p

K (ξ))R ⊗ ξ | ∂K γ ∈ (∧0,p+1
K (ξ))R ⊗ ξ

}
. (2.5.2)

We can prove the following:

Lemma 2.5.2. Let γ ∈ (∧0,p
K )R⊗ ξ. Then γ ∈ BpK(ξ) if and only if for any X0, . . . , Xp ∈ ξ

we have:
p∑
j=0

(−1)j dα(Xj , γ(X0, . . . , X̂j , . . . , Xp)) = 0, (2.5.3)

where α is a contact form for ξ. Consequently, the previous definition of BpK does not
depend on α.

Proof. By Proposition 2.5.1 we have that NK(X,Y ) ∈ H(ξ) . By Remark 1.7.5, we have
that [X,Y ] + [KX,KY ] ∈ H(ξ), then by equation (2.3.2) [[X,Y ]] ∈ H(ξ) for X,Y ∈ H(ξ)
and γ([[Xj , Xk]], X0, . . . , X̂j , . . . , X̂k, . . . , Xp) ∈ ξ. So, given γ ∈ (∧0,p

K (ξ))R ⊗ ξ we have
that:

∂K γ ∈ (∧0,p+1
K (ξ))R ⊗ ξ ⇐⇒∑

(−1)j(∂K γ(X0, . . . ,X̂j , . . . ,Xp))(Xj)∈ξ ⇐⇒∑
(−1)j

1

2

(
[Xj ,γ(X0, . . . ,X̂j , . . . ,Xp)]−K[KXj ,γ(X0, . . . ,X̂j , . . . ,Xp)]

−1

2
NK(γ(X0, . . . , X̂j , . . . , Xp), Xj)

)
∈ ξ

(2.5.4)

for any X0, . . . , Xp ∈ ξ. Since NK ∈ ξ, we see that it is enough to compute the tangential
component [X,Y ]ξ of [X,Y ] with respect to the decomposition TM = ξ⊕RRα (see Remark
1.7.5). Indeed, we have dα(X,Y ) = −α([X,Y ]) on ξ, then using α(Rα) = 1, it follows that

[X,Y ]ξ = [X,Y ] + dα(X,Y )Rα. (2.5.5)
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Finally, using (2.5.4) and (2.5.5) we have that γ ∈ BpK(ξ) if and only if the condition (2.5.3)
holds.
The last part of the lemma is a consequence of the properties of the Reeb vector field Rα
(see Remark 1.7.5).

Remark 2.5.3. It has to be noted that:

• B0
K(ξ) = 0.

• B1
K(ξ) = {ϕ ∈ End(ξ) | ϕK + Kϕ = 0, ϕ = ϕt} where the transposition ·t is taken

with respect to the pseudo-metric gK(·, ·) = dα(·,K·). The condition ϕ = ϕt is due
to the compatibility between the contact form α and the curve of D-structures for
small t (see equation (2.3.22)).

We have the following:

Lemma 2.5.4.

dimBpK(ξ) = 2n

(
n

p

)
− 2

(
n

p+ 1

)
.

Proof. We fix a local basis of ξ. The lemma follows using (2.5.3) and that dα is everywhere
non degenerate at ξ.

Via the isomorphism m (see (2.3.3)):

m : ξ −→ ξ1,0

X 7−→ 1

2
(X + τKX)

(2.5.6)

we define Sp ⊂ (∧0,p
K (ξ))R ⊗ ξ as the space

Sp := {γ ∈ (∧0,p
K (ξ))R ⊗ ξ | γ =

l∑
r=1

βr ∧ ϕr} (2.5.7)

where β1, . . . , βl ∈ ∧0,p−1
K (ξ) and ϕ1, . . . , ϕl ∈ B1

K(ξ). We have:

Lemma 2.5.5. Sp ⊂ BpK(ξ) and

dimSp = 2

n−1∑
k=0

((
n

p

)
−
(
k

p

))
where we use the convention that

(
k
p

)
= 0 if k < p.

Proof. Take for simplicity γ = β∧ϕ ∈ (∧0,p
K (ξ))R⊗ ξ (the general case follows by linearity).

By Lemma 2.5.2, γ ∈ BpK(ξ) if and only if (2.5.3) holds. By definition we have that:

γ(X1, . . . , Xp) =
1

p!

∑
σ

sgn(σ)β(Xσ1 , . . . , Xσp−1)ϕ(Xσp)

and hence: ∑
j

dα(Xj , γ(X0, . . . , X̂j , . . . , Xp)) =

=
1

p!

∑
σ

sgn(σ)β(Xσ0 , . . . , Xσp−1)
∑
j

dα(Xj , ϕ(Xσp)) = 0,

since ϕ ∈ B1
K(ξ). Hence if γ ∈ Sp then γ ∈ BpK(ξ).

The computation of dimSp is easy and it is left to the reader.
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Proposition 2.5.6. Let BpK(ξ) given by (2.5.2) and Sp given by (2.5.7). Then:

BpK(ξ) = Sp.

Proof. We already know that Sp ⊂ BpK(ξ), then we only need to show that the spaces have
the same dimension. Using the fundamental relation(

m+ 1

n+ 1

)
=

(
m

n

)
+

(
m

n+ 1

)
on the dimension of BpK(ξ) in Lemma 2.5.4 we have:

dimBpK(ξ) = 2n

(
n

p

)
− 2

(
n

p+ 1

)
= 2n

(
n

p

)
− 2

((
n− 1

p

)
+

(
n− 1

p+ 1

))
.

Iterating, we get:

dimBpK(ξ) = 2n

(
n

p

)
− 2

n−1∑
k=0

(
k

p

)
= 2

n−1∑
k=0

((
n

p

)
−
(
k

p

))

and by Lemma 2.5.5 we obtain that dimBpK(ξ) = dimSp.

Now we are able to construct the DGLA of deformations of a strictly CR D-structure.
Set

BK(ξ) :=
⊕
p∈Z
BpK(ξ).

Then we can show the following:

Theorem 2.5.7. Let (M, ξ) be a compact contact manifold endowed with a strictly CR
D-structure K and let ∂K be as in Definition 2.3.2. Then:

∂
2
K = 0 on BK(ξ). (2.5.8)

Proof. By Proposition 2.5.6 it is enough to prove (2.5.8) on B1
K(ξ). Recall (see Remark

2.5.3) that ϕ ∈ B1
K(ξ) if and only if Kϕ+ϕK = 0 and ϕ = ϕt with respect to gK . We have

that:

dα(ϕ(X),KY ) = gK(ϕ(X), Y ) = gK(X,ϕ(Y )).

Hence we have:

gK(X,ϕ(Y )) = dα(X,Kϕ(Y )) = −dα(KX,ϕ(Y )) = dα(ϕ(Y ),KX).

By remark 1.7.5 and since dα(X,Y ) = −α([X,Y ]) for X,Y ∈ ξ it follows that:

[KX,ϕ(Y )] + [ϕ(X),KY ] ∈ H(ξ) (2.5.9)

for X,Y ∈ H(ξ). A straightforward computation, taking into account (2.5.9) and the fact

that NK vanishes on H(ξ), shows that ∂
2
K ϕ(X,Y, Z) = 0 for all X,Y, Z ∈ H(ξ). Hence

∂
2
K = 0.

Summing up, in view of the isomorphism m (see (2.5.6)), BpK(ξ) can be viewed as the
space:

{γ ∈ ∧0,p
K (ξ)⊗ ξ0,1 | ∂K γ ∈ ∧0,p+1

K (ξ)⊗ ξ0,1}
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or, equivalently (by Lemma 2.5.2), as:

{γ ∈ ∧0,p
K (ξ)⊗ ξ0,1 |

p∑
j=0

(−1)j dα(Z̄j , γ(Z̄1, . . . ,
̂̄Zj . . . , Z̄p)) = 0,

∀ Z0, . . . , Zp ∈ ξ0,1},

and hence we have that ϕ ∈ B1
K(ξ) if and only if

0 = dα(ϕ(Z̄), W̄ ) + dα(Z̄, ϕ(W̄ ))

for all Z,W ∈ ξ1,0. Thus, by Remark 1.7.5 we have:

[ϕ(Z̄), W̄ ] + [Z̄, ϕ(W̄ )] ∈ ξ1,0 ⊕ ξ0,1.

Now for any ϕ ∈ BpK(ξ) we want to define a p-degree skew derivation kϕ : ∧0,∗
K (ξ) →

∧0,∗
K (ξ). We proceed in the same way as we did in Section 2.4, namely:

For (p = 1) take ϕ ∈ B1
K(ξ).

• If q = 0 we define kϕ as follows (set f a smooth function and Z ∈ ξ1,0):

(kϕf)(Z̄) := ∂ f(ϕ(Z̄)) = ϕ(Z̄)f = (ϕZ̄f).

If q = 1 we define kϕ as follows (set γ ∈ ∧0,1
K (ξ) and Z,W ∈ ξ1,0):

(kϕγ)(Z̄, W̄ ) := ϕZ̄γ(W̄ )− ϕW̄γ(Z̄)− γ([ϕZ̄, W̄ ]− [Z̄, ϕW̄ ]).

• Since
kϕ(fγ) = (kϕf) ∧ γ + fkϕγ,

we can extend kϕ as a 1-degree skew derivation, i.e. if β =
∑
β1 ∧ · · · ∧ βq ∈

∧0,q
K (ξ), q > 1 we have:

kϕβ :=

q∑
j=1

(−1)(1+j)β1 ∧ · · · ∧ kϕβj ∧ · · · ∧ βq.

For (p > 1) we write ψ ∈ BpK(ξ) as a sum of elements of the form αi∧ϕi with αi ∈ ∧0,p−1
K (ξ)

and ϕi ∈ B1(ξ) then we set
kαi∧ϕi := αi ∧ kϕi

and kψ is just the sum of the expression above.

Now we consider the same operators [[·, ·]] and ∂K in BK(ξ) as defined before (see
Definition 2.3.4 and Definition 2.3.5). Observe that the definitions are well posed, in fact
we have the following:

Lemma 2.5.8. Let ϕ,ψ ∈ B1
K(ξ). Then [[ϕ,ψ]] ∈ B2

K(ξ).

Proof. A straightforward computation together with the Jacobi identity shows that [[ϕ,ψ]]
verifies the conditions of Lemma 2.5.2, and hence we get the proof of lemma.

Again, let us introduce the space E of skew-symmetric derivations on ∧0,∗
K (ξ), with the

bracket defined on homogeneous elements by

[F,G] := F ◦G− (−1)|F ||G|G ◦ F

and set
δKF := [∂K , F ],

then we have that (E , [·, ·], δK) is a DGLA.
Now we define a map q between (BK(ξ), [[·, ·]], ∂K) and (E , [·, ·], δK) as done in (2.4.6)

and we get the analogous to the Theorem 2.4.2.
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Theorem 2.5.9. The map q defined by:

q : BK(ξ) −→ E , ϕ 7−→ kϕ,

is a DGLA homomorphism, i.e. q is an injective map satisfying:

[q(ϕ), q(ψ)] = q([[ϕ,ψ]]) (equivalently [kϕ,kψ] = k[[ϕ,ψ]])

and

δKq(ϕ) = q(∂K ϕ) (equivalently δKkϕ = k∂K ϕ).

Proof. The proof proceeds as the one of Theorem 2.4.2.

Corollary 2.5.10. Let q : BK(ξ)→ E given as in Theorem 2.5.9. Then:

1. (im q, [·, ·], δK) is a DGLA;

2. (BK(ξ), [[·, ·]], ∂K) is a DGLA isomorphic to the previous one;

3. we have that

ϕ ∈MC(BK(ξ))⇐⇒ kϕ ∈MC(E),

i.e. ∂K ϕ+ 1
2 [[ϕ,ϕ]] = 0 if and only if δKkϕ + 1

2 [kϕ,kϕ] = 0.

Now we can state the CR version of the Theorem 2.3.9:

Theorem 2.5.11. Let K ∈ D(ξ) be a strictly CR D-structure on a compact contact man-
ifold (M, ξ), and let K̂ ∈ D(ξ) be given by:

K̂ = (Id +ϕ)K(Id +ϕ)−1, where ϕK +Kϕ = 0, ϕt = ϕ. (2.5.10)

Let ϕ̃ be the operator associated to ϕ via the isomorphism m:

m : ξ −→ ξ0,1, X 7−→ X̃ =
1

2
(X + τKX).

Then

NK̂ = 0⇐⇒ ∂K ϕ̃+
1

2
[[ϕ̃, ϕ̃]] = 0.

Proof. The theorem is a consequence of the following Lemma 2.5.12, which is the CR version
of Lemma 2.4.7 and whose proof is similar to that one of Lemma 2.4.7 and therefore it is
omitted.

Lemma 2.5.12. Let K̂ ∈ D(ξ) given by (2.5.10) and such that det(Id +ϕ) 6= 0. Then:

(Id +ϕ)−1NK̂

(
(Id +ϕ)(Z̄), (Id +ϕ)(W̄ )

)
= 4(Id−ϕ2)−1

(
∂K ϕ+

1

2
[[ϕ,ϕ]]

)
(Z̄, W̄ )

for Z,W ∈ ξ1,0.

Remark 2.5.13. Since the center of BK(ξ) is zero, setting ∂ϕ := ∂K +[[ϕ, ·]] (see equation
(2.1.3)) and arguing as in Remark 2.4.6 it follows that:

∂
2
ϕ = 0⇐⇒ ∂K ϕ+

1

2
[[ϕ,ϕ]] = 0⇐⇒

⇐⇒ δKkϕ +
1

2
[kϕ,kϕ] = 0⇐⇒ (∂K +kϕ)2 = 0.
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2.6 Examples of deformations of CR D-structures

We end this chapter with some examples of CR D-structures and their deformations. We
focus on 5-dimensional nilmanifolds, proving that there exists a 5-dimensional nilpotent Lie
algebra that does not admit any CR D-structure (see Proposition 2.6.4).

Example 2.6.1. Let h(3) be the 3-dimensional real Heisenberg Lie algebra. Then we can
find a basis {e1, e2, e3} of h∗ such that:

d e1 = d e3 = 0 d e2 = e1 ∧ e3.

Therefore, denoting by {X1, X2, X3} the dual basis of {e1, e2, e3}, we obtain that [X1, X3] =
−X2 and the other brackets are zero. Let H(3) be the Heisenberg group:

H(3) =

A =

1 x z
0 1 y
0 0 1

 | x, y, z ∈ R


and let M3 = Γ\H(3) be any compact quotient of H(3), then α := e2 is a contact form
and ξ = kerα = Span{X1, X3}, which makes (M3, ξ) a contact manifold.
Let K ∈ End(ξ) be the D-structure defined by:

K(X1) = X3 K(X3) = X1.

It is easy to verify that K is a strictly CR D-structure on the contact manifold (M3, ξ).
Now, setting t = (t1, t2) ∈ R2, every invariant endomorphism ϕ of ξ anti-commuting

with K and such that ϕt = ϕ has the following form:

ϕt =

(
t1 t2
−t2 −t1

)
with respect to the basis of ξ. A computation yields to

∂k ϕ̃t = 0 [[ϕ̃t, ϕ̃t]] = 0

then for |t| < ε it follows that Kt = (Id +ϕt)K(Id +ϕt)
−1 is a 2-parameter family of strictly

CR D-structures on (M3, ξ) with K0 = K.

Example 2.6.2 (Generalized Heisenberg group). Let H(2n + 1) denote the (2n + 1)-di-
mensional real Heisenberg group, i.e.

H(2n+ 1) =

A =

1 X z
0 Idn Y t

0 0 1

 | X,Y ∈ Rn, z ∈ R


(where t denote the transposition).

This is a connected, simply-connected nilpotent Lie group. Let h2n+1 be the Lie algebra
of H(2n+ 1), then we can find a basis {e1, . . . , en, f1, . . . , fn, α} of h∗2n+1 such that:

d ei = d f j = 0 dα =
n∑
i=1

ei ∧ f i.

Therefore, denoting by {X1, . . . , Xn, Y1, . . . , Yn, Z} the dual basis of {e1, . . . , en, f1, . . . ,
fn, α}, we obtain that [Xi, Yj ] = −δijZ and the other brackets are zero. In view of the
nilpotency of H(2n + 1), by Malcev theorem there exists uniform discrete Γ subgroup of
H such that M2n+1 = Γ\H(2n+ 1) will be a compact quotient and hence a nilmanifold.
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Then we get that α is a contact form and ξ = kerα = Span{X1, . . . , Xn, Y1, . . . , Yn}, namely
(M2n+1, ξ) is a contact manifold.

Let K ∈ End(ξ) be the D-structure defined by:

K(Xi) = Yi K(Yi) = Xi.

It is easy to verify that K is a strictly CR D-structure on the contact manifold (M2n+1, ξ).
Moreover, with respect to the basis {X1, . . . , Xn, Y1, . . . , Yn} of ξ, every invariant endomor-
phism ϕ of ξ, anti-commuting with K, and such that ϕt = ϕ has the following form:

ϕt =

(
A B
−B −A

)
where A,B are real n×n symmetric matrices which depend on a n(n+1)-parameter family
t = {t1, . . . , tn(n+1)}. A direct computation yields to

∂K ϕ̃t +
1

2
[[ϕ̃t, ϕ̃t]] = 0.

Therefore for |t| < ε it follows that Kt = (Id +ϕt)K(Id +ϕt)
−1 is a n(n + 1)-parameter

family of strictly CR D-structures on (M, ξ) with K0 = K.

Example 2.6.3. Let n be a Lie algebra with basis {X1, . . . , X5} and let be the dual n∗

with basis {e1, . . . , e5} of invariant 1-forms.
Suppose that the structure equations are:

d e1 = d e2 = d e3 = 0, d e4 = e12, d e5 = e13 + e24,

i.e.
[X1, X2] = −X4, [X1, X3] = −X5, [X2, X4] = −X5

and all the other brackets vanish. Let N be the simply-connected nilpotent Lie group with
Lie algebra n and let M = Γ\N be any compact quotient of N (by Malcev theorem [59]
there exists such a quotient). Hence, using the notation of Section 1.6, we get

M := (0, 0, 0, 12, 13 + 24). (2.6.1)

We have that α = e5 is a contact form and ξ = kerα = Span{X1, . . . , X4}. Let
K ∈ End(ξ) be the D-structure defined by

K(X1) = X2, K(X2) = X1, K(X3) = −X4, K(X4) = −X3.

It turns out that K is a strictly CR D-structure. Setting t = (t1, . . . , t6), every invariant
endomorphism ϕ anti-commuting with K and such that ϕt = ϕ has the following form:

ϕt =


t1 t2 t3 t4
−t2 −t1 t4 t3
t5 t6 −t1 t2
t6 t5 −t2 t1

 ,

with respect to the basis {X1, . . . , X4} of ξ. A straightforward computation shows that:

∂K ϕ̃t = 0, [[ϕ̃t, ϕ̃t]] = 0.

Consequently, for |t| < ε, Kt = (Id +ϕt)K(Id +ϕt)
−1 gives rise to a 6-parameter family of

strictly CR D-structures on (M, ξ), with K0 = K.
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We have the property below:

Proposition 2.6.4. If M = Γ\G is a 5-dimensional nilmanifold endowed with an invariant
contact form and with an invariant strictly CR D-structure, then the Lie algebra of G can
be isomorphic to

(0, 0, 0, 12, 13 + 24) or to (0, 0, 0, 0, 12 + 34), (2.6.2)

but it is not isomorphic to (0, 0, 12, 13, 14 + 23).

Proof. We recall (see [19] or [76]) that if a nilmanifold M of dimension 5 admits an invariant
contact form, then the Lie algebra of G is isomorphic to one of the following

(0, 0, 12, 13, 14 + 23), (0, 0, 0, 12, 13 + 24), (0, 0, 0, 0, 12 + 34). (2.6.3)

By the previous examples, we have proved that if a 5-dimensional nilmanifold has Lie
algebra isomorphic to (0, 0, 0, 12, 13+24) (Example 2.6.3) or to (0, 0, 0, 0, 12+34) (Example
2.6.2 with n = 2), then M admits a strictly CR D-structures.
Let n be the Lie algebra (0, 0, 12, 13, 14 + 23) and let {e1, . . . , e5} be a basis of n∗ with
dual basis {X1, . . . , X5}. Now we prove that n does not admit an invariant strictly CR
D-structure. First of all, any generic contact form is proportional to α = e5 + a1e

1 +
a2e

2 + a3e
3 + a4e

4, with ai ∈ R. Then, since X5 /∈ kerα, we get kerα = ker e5 = ξ =
span{X1, X2, X3, X4}. Note that the structure equations imply that [X1, Xj ] 6= 0 for j =
1, . . . , 4, furthermore, if {U1, . . . , U4} is an other basis of ξ, then there is an element of such
a basis, say U1, such that

[U1, Uj ] 6= 0 for j = 2, 3, 4. (2.6.4)

Now suppose that there exists an invariant strictly CR D-structure and, without losing of
generality, let U1, U2 be a basis for ξ1,0 and U3, U4 be a basis for ξ0,1. By the integrability
condition (see Remark 1.7.5), we have [ξ1,0, ξ1,0] ⊂ ξ1,0 but since ξ1,0 is generated by two
elements, for the nilpotent condition it must be a nilpotent 1-step group, hence [ξ1,0, ξ1,0] =
0, and the same holds for ξ0,1, and by (2.6.4) we get an absurd.



Chapter 3

Cohomological properties of
D-manifolds

We start this chapter by recalling some cohomological properties of the D-complex man-
ifolds, focusing on the definitions of ∂±-Dolbeault groups and showing that these groups
are not finite-dimensional. As a consequence, a D-complex version of the ∂ ∂-Lemma can
not hold (see Section 3.1).

In Section 3.2, we recall what a D-complex structure is, we introduce the problem of
studying D-complex subgroups of cohomology and we introduce the concept of C∞-pure-
and-full D-complex structure to mean a structure inducing a D-complex decomposition in
cohomology.

The relations between C∞-pureness, C∞-fullness, pureness and fullness is the argument
of Section 3.3. We also use these relations to study the D-complex decompositions in (co)-
homology for product manifolds (we prove that every manifold given by the product of two
equi-dimensional differentiable manifolds is C∞-pure-and-full with respect to the natural
D-complex structure, see Theorem 3.3.4).

In Section 3.4, we introduce analogous definitions at the linear level of the Lie algebra
associated to a (quotient of a) Lie group. In particular, we prove that, for a completely-
solvable solvmanifold with an invariant D-complex structure, the problem of the existence
of a D-complex cohomological decomposition reduces to such a (linear) decomposition at
the level of its Lie algebra (see Proposition 3.4.4).

In Section 3.5, we prove Theorem 3.5.14, saying that every invariant D-complex struc-
ture on a 4-dimensional nilmanifold is C∞-pure-and-full at the 2nd stage. Moreover we
show that the dimensions of H2 +

K and of H2−
K depend only on the underlying Lie algebra

(see Theorem 3.5.18).
In the next Section 3.6, we give some examples to show that the hypotheses we assume

on Theorem 3.5.14 can not be dropped out. Moreover, we provide examples showing that
admitting D-Kähler structures does not imply being C∞-pure-and-full (see Proposition
3.6.4).

In Section 3.7, we study deformations of D-complex structures, providing an example
to prove Theorem 3.7.3 and showing that, in general, jumping for the dimensions of the
D-complex subgroups of cohomology can occur.

The main results of this chapter have been published by the author and D. Angella in
[9]. The Section 3.1.2 and Theorem 3.5.18 are original results by the author.

Notation. We follow the notation of Chapter 1. In particular, for solvmanifold and nil-
manifold, we refer to Section 1.6. Moreover, we add that in writing the cohomology of
M (which is isomorphic to the cohomology of the complex (∧•g∗, dg) if M is completely-
solvable, see [41] and Section 3.4 below), we list the harmonic representatives with respect
to the invariant metric g :=

∑
` e
` � e` instead of their classes.

57
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3.1 Preliminaries on D-complex cohomology

In this section we first briefly recall some definitions and results on the cohomology of D-
complex manifold (e.g. a D-version of the Dolbeault Lemma), then we show that it is not
possible to introduce a ∂ ∂-Lemma for D-complex manifolds.

3.1.1 Some simple remarks on D-complex Dolbeault cohomology

Let M be a 2n-dimensional manifold with an almost D-complex structure K. In Chapter
1 we have seen that there is a natural decomposition T ∗M = T ∗M+ ⊕ T ∗M− into the
corresponding eigenbundles (see Section 1.3). Therefore, for any ` ∈ N, on the space of
`-forms on M , we have the decomposition:

∧`M := ∧` (T ∗M) = ∧` (T ∗M+ ⊕ T ∗M−)

=
⊕
p+q=`

∧p (T ∗M+)⊗ ∧q (T ∗M−) =:
⊕
p+q=`

∧p, q+−M
(3.1.1)

where, for any p, q ∈ N, the natural extension of K on ∧•M acts on ∧p, q+−M := ∧p (T ∗M+)⊗
∧q (T ∗M−) as (+1)p (−1)q Id. In particular, for any ` ∈ N,

∧`M =
⊕

p+q=`, q even

∧p, q+−M︸ ︷︷ ︸
=: ∧`+K M

⊕
⊕

p+q=`, q odd

∧p, q+−M︸ ︷︷ ︸
=: ∧`−K M

(3.1.2)

where

K|∧`+K M = Id and K|∧`−K M = − Id . (3.1.3)

If an (integrable) D-complex structure K is given, then the exterior differential splits
as d = ∂+ + ∂− (see Section 1.3).

In particular, the condition d2 = 0 gives
∂2

+ = 0

∂+ ∂−+ ∂− ∂+ = 0

∂2
− = 0

(3.1.4)

and hence one could define the ∂+-D-Dolbeault cohomology as

H•,•∂+ (M ;R) :=
ker ∂+

im ∂+
, (3.1.5)

see [53]. Unfortunately, one can not hope to adjust the Hodge theory of the complex case
to this non-elliptic context, as we show with the following example (see also Proposition
3.1.11 below).

Example 3.1.1. Take M1 and M2 two differentiable manifolds having the same dimension:
then, M1×M2 has a natural D-complex structure whose eigenbundles decomposition corre-
sponds to the decomposition T (M1 ×M2) = TM1⊕TM2; it is straightforward to compute
that the space H0,0

∂+
(M1 ×M2) of ∂+-closed functions on M1×M2 is not finite-dimensional,

being

H0,0
∂+

(M1 ×M2) ' C∞ (M2) .
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Obviously, on an (integrable) D-complex manifold (M,K), the exterior differential splits

also as d = ∂+ ∂ (see Section 1.3), and the condition d2 = 0 gives ∂2 = 0 and ∂
2

= 0,
thus we could also define the ∂-D-Dolbeault cohomology as

H•,•
∂

(M ;R) :=
ker ∂

im ∂
, (3.1.6)

(see [53]). These operators, and these cohomological groups, are related to each others (see
Theorem 3.1.4 below), and also with this cohomology one can not hope to adjust the Hodge
theory of the complex case to this context.

Indeed, all these operators, namely ∂+, ∂−, ∂ and ∂ verify a Dolbeault Lemma, as
shown in [53] and in [20].

Lemma 3.1.2 (D-Dolbeault Lemma for ∂+ and ∂− [20, Lemma 1]). Let U ∼= U+×U− be
an open set such that U± are simply-connected. Then the equation ∂± θ

± = 0 implies the
existence of a real-valued function F± such that

θ± = ∂± F
± . (3.1.7)

The function F± is unique up to addition of a real-valued function f∓ which satisfies
∂± f∓ = 0.

Proof. The uniqueness statement is obvious. To prove the existence, suppose e.g. that
∂+ θ

+ = 0 on U ∼= U+ × U−. Then we can define a function F+ on U+ × U− ∼= U by

F+(z+, z−) :=

∫
γ
θ+ d s , (3.1.8)

where z± := (z1
±, . . . , z

n
±) and the integration is over any path γ from (0, z−) to (z+, z−),

(where s is its arc length) contained in U+ × {z−}. The condition ∂+θ
+ = 0 ensures that

the integral is path independent. In fact, it implies that the one-form θ+|U+×{z−} is closed

and hence exact, since U+ is simply connected.

By Proposition 1.3.5, it follows that each point in an arbitrary D-complex manifold
(M,K) has a neighbourhood U ∼= U+ × U− ⊂ M . This leads us to the following theo-
rem, which state that, locally, a ∂+-closed (p+, q−)-form (with p ≥ 1) is ∂+ -exact (and
analogously for ∂−).

Theorem 3.1.3 ([53, Theorem 1.2.8]). Let (M,K) be a D-complex manifold, and let U ∼=
U+ × U− ⊂M be an open set such that U± are simply-connected.

Then any ∂+-closed form ϕ ∈ ∧p.q+,−(U), p ≥ 1 is ∂+-exact. Likewise, any ∂−-closed
form ψ ∈ ∧p.q+,−(U), q ≥ 1 is ∂−-exact.

It has to be noted that such a result holds for (D-complexificated) (p, q)-forms too.
Indeed, using the isomorphism described in equation (1.2.5), it is possible to relate the
∂±-Dolbeault Lemma with the one for the operators ∂, ∂ in the following way:

Proposition 3.1.4 ([53, Proposition 1.2.10]). For a D-complex manifold (M,K), there is
an R-linear isomorphism:

j : ∧p,q+,−(M)×∧q,p+,−(M) −→ ∧p,qK (M)

(ϕ,ψ) 7−→ 1

2
(1 + τ)ϕ+

1

2
(1− τ)ψ = eϕ+ ēψ,

(3.1.9)
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such that the following diagram commutes:

∧p,q+,−(M)×∧q,p+,−(M)
j

//

∂−× ∂+
��

∧p,qK (M)

∂
��

∧p,q+1
+,− (M)×∧q+1,p

+,− (M)
j

// ∧p,q+1
K (M).

(3.1.10)

This gives us the following:

Corollary 3.1.5 ([53, Corollary 1.2.11]). For U ∼= U+ × U− ⊂ M such that U± are
simply-connected, any ∂-closed form ϕ ∈ ∧p.qK (M), q ≥ 1, is ∂-exact.

With suitable modifications an analogous statement says that any ∂-closed form ϕ ∈
∧p.qK (M), p ≥ 1, is ∂-exact.

Remark 3.1.6. Note that the isomorphism constructed in (1.2.5) (see also Proposition 3.1.4)
holds for all p, q ≥ 0, then cohomological properties can be read on the D-complexificated
(p, q)-forms or on the (p+, q−)-forms, and the isomorphism j makes a correspondence
between ∂±-closed forms and ∂-closed forms, and between ∂±-exact forms and ∂-exact
forms (and similarly between ∂± and ∂).
For example, on a product manifold M1×M2 the Example 3.1.1 and Proposition 3.1.4 tell
us that

H0,0

∂
(M1 ×M2) ' C∞ (M2) , (3.1.11)

and also H0,0

∂
(M1 ×M2) is infinite dimensional.

3.1.2 ∂ ∂-Lemma for D-structures

It is natural to ask if there are relations between the D-complex Dolbeault cohomologies
and the classical de-Rham cohomology, and also if there is a D-complex version of the
∂ ∂-Lemma for complex manifold (also called d dc-Lemma). This Lemma says that on a
compact Kähler manifolds it holds that:

ker ∂ ∩ ker ∂ ∩ im d = im(∂ ∂), (3.1.12)

(equivalently, it holds kerd∩ ker dc ∩ imd = im(d dc)). A complex structure J on a manifold
M (not necessarily Kähler) which satisfies the ∂ ∂-Lemma is a complex structure J that
verifies (3.1.12) (i.e. every ∂-closed ∂-closed d-exact form is ∂ ∂-exact). It turns out that
such equation (3.1.12) has interesting consequence on the cohomology groups of the complex
manifolds (e.g. for compact complex manifolds satisfying the ∂ ∂-Lemma, the Bott-Chern
cohomology coincides with the Dolbeault cohomology). See [25] or the recent [12] for more
results on manifold satisfying the ∂ ∂-Lemma.

Coming back to the D-setting, the question is if it is possible to have a similar ∂ ∂-
Lemma by using the operator ∂ and ∂ (or ∂+ and ∂−). Unfortunately, the answer is no,
as we shall prove (see Corollary 3.1.12 below). Indeed, we see that a D-complex manifold
is provided with two differential forms ∂+ and ∂−, and there is a classical results that says
that if a manifold with a double complex (∂+, ∂−) such that d = ∂+ + ∂− satisfies the
∂+ ∂−-Lemma, then the cohomology groups of de-Rham and of ∂+-Dolbeault must have
the same dimension. By Remark 3.1.6, also a ∂ ∂-Lemma can not hold for any compact
D-complex manifold.

We briefly recall such a result, then we investigate the D-complex case. We start with
the following Lemma.
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Lemma 3.1.7 ([25, Lemma 5.15]). Let (K•,•, d′,d′′) be a double complex of vector spaces
(or objects of any abelian category), and let (K•, d) be the associated simple complex (i.e.
d = d′+d′′ and Kn =

∑
p+q=nK

p,q). For each integer n the following conditions are
equivalent:

(a)n in Kn it holds:
ker d′ ∩ ker d′′ ∩ imd = im(d′ d′′); (3.1.13)

(b)n in Kn it holds:

ker d′′ ∩ imd′ = im(d′ d′′) and ker d′ ∩ im d′′ = im(d′ d′′); (3.1.14)

(c)n in Kn it holds:
ker d′ ∩ ker d′′ ∩

(
imd′+ imd′′

)
= im(d′ d′′); (3.1.15)

(a)∗n−1 in Kn−1 it holds:
imd′ ∩ imd′′ ∩ ker d = ker(d′ d′′); (3.1.16)

(b)∗n−1 in Kn−1 it holds:

imd′′+ kerd′ = ker(d′ d′′) and imd′+ kerd′′ = ker(d′ d′′); (3.1.17)

(c)∗n−1 in Kn−1 it holds:

im d′+ imd′′+
(
ker d′ ∩ ker d′′

)
= ker(d′ d′′). (3.1.18)

Remark 3.1.8. Note that if the above equivalent conditions of Lemma 3.1.7 hold for every n,
then the double complex vector space (K•,•, d′, d′′) satisfies a d′ d′′-Lemma, as a consequence
of (a)n. Moreover, if it happens, the natural maps in the following commutative diagram
are all isomorphisms (see [25, Remark 5.16]):

H•,•BC :=
ker d′ ∩ ker d′′

im(d′ d′′)

wwnnnnnnnnnnnn

((PPPPPPPPPPPP

��

H•,•
d′

:=
ker d′

imd′

((PPPPPPPPPPPP
H•d :=

ker d

im d

��

H•,•
d′′

:=
ker d′′

im d′′

vvnnnnnnnnnnnn

H•,•A :=
ker(d′ d′′)

im d′+ imd′′

(3.1.19)

Remark 3.1.9. Every integrable complex structure J on a manifold gives a double complex,
since d = ∂+ ∂, and if (M,J) satisfies any of the equivalent conditions above for all n,
then it is said to satisfies the ∂ ∂-Lemma, as specified before. In the complex setting the
upper cohomology group is known as the Bott-Chern cohomology group, the lower one is the
Aeppli cohomology group, the right (resp. left) ones are the classical Dolbeault cohomology
groups and the central cohomology group is the classical de-Rham cohomology group, and
we have isomorphism between all of this groups:

H•,•BC(M)

xxqqqqqqqqqq

&&MMMMMMMMMMM

��

H•,•
∂

(M)

&&MMMMMMMMMM
H•dR(M ;C)

��

H•,•∂ (M)

xxqqqqqqqqqqq

H•,•A (M)

(3.1.20)
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(Bott-Chern cohomology group has been recently studied by the author jointly with D. An-
gella and M.G. Franzini in the paper [8]).

Now coming back to D-complex structure, we know (see Section 1.3 equation (1.3.20))
that on a D-complex manifold we can split the differential in two ways, namely:

d = ∂+ ∂ = ∂+ + ∂− . (3.1.21)

Let (M,K) be a D-complex manifold, then (∧•,•+,−(M), ∂+, ∂−) and (∧•,•(M), ∂, ∂) are
double complexes and (∧•(M),d) is the associated simple complex. We say that M satisfies
the ∂+ ∂−-Lemma if it satisfies any of the equivalent conditions of Lemma 3.1.7 for all n,
with d′ = ∂+ and d′′ = ∂− i.e. if it holds:

ker ∂+ ∩ ker ∂− ∩ im d = im(∂+ ∂−). (3.1.22)

Other than Dolbeault cohomology, it is possible to introduce the ∂+ ∂−-Bott-Chern and
∂+ ∂−-Aeppli cohomologies:

H•,•BC(M) :=
ker ∂+ ∩ ker ∂−

im ∂+ ∂−
, H•,•A (M) :=

ker ∂+ ∂−
im ∂+ + im ∂−

, (3.1.23)

and similarly we can introduce the D-Bott-Chern and D-Aeppli cohomologies using ∂ and
∂.

Likewise we say that M satisfies the D-complex ∂ ∂-Lemma if it satisfies any of the
equivalent conditions of Lemma 3.1.7 for all n with d′ = ∂ and d′′ = ∂

Remark 3.1.10. It is possible to introduce the analogous notions of D-complex ∂ ∂-Lemma
if holds:

ker ∂ ∩ ker ∂ ∩ im d = im(∂ ∂), (3.1.24)

and of d dD-Lemma if holds:

ker d∩ ker dD ∩ im d = im(d dD). (3.1.25)

We observe that all these conditions are equivalent, indeed for D-complex forms being ∂+-
closed and ∂−-closed is the same as being ∂-closed and ∂-closed (and it is also the same
as being d-closed and dD-closed), while being ∂+ ∂−-exact is equivalent to being ∂ ∂-exact
(and equivalent to d dD-exact), because of (1.3.20).

If M satisfies the D-complex ∂+ ∂−-Lemma then, by Remark 3.1.8, we have that the
following maps are all isomorphisms:

H•,•BC(M)

xxqqqqqqqqqq

&&MMMMMMMMMM

��

H•,•∂+ (M)

&&MMMMMMMMMM
H•dR(M ;R)

��

H•,•∂− (M)

xxqqqqqqqqqq

H•,•A (M)

(3.1.26)

Note that by Remark 3.1.6 the same will happen using ∂ and ∂ instead of ∂±.

In particular, a compact D-complex manifold satisfying the ∂+ ∂−-Lemma must have
∂+-D-Dolbeault cohomology isomorphic to the de-Rham cohomology, and hence finite di-
mensional, but there are not examples of such manifolds. In fact we have:
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Proposition 3.1.11. In a 2n-dimensional D-manifold (M,K), the D-complex Dolbeault
cohomology groups Hp,0

∂−
(M,R) are infinite dimensional for 0 ≤ p ≤ n.

Analogously, the cohomological groups H0,q
∂+

(M,R) (for 0 ≤ q ≤ n), H0,q
∂ (M,D) (for 0 ≤

q ≤ n) and Hp,0

∂
(M,D) (for 0 ≤ p ≤ n) are not finite-dimensional.

Proof. The idea is basically to construct an example of form which is ∂−-closed but which
can not be ∂−-exact (and the same for the other operators). We start by showing that the
space of ∂−-closed functions is infinite dimensional, by arguing as in Example 3.1.1.

Let U ∼= U+ × U− ⊂ M be an open set such that U± are simply-connected, and let
(zi+, z

i
−) be the adapted-coordinates (as shown in the Proposition 1.3.5 every D-complex

manifold has locally this product structure). It is easy to see that every C∞c (U)-function
f : U → R such that f = f(z+) is a ∂−-closed function (by a C∞c (U)-function we mean
the set of smooth functions with compact support K := supp(f) ⊂ U). However, since
functions are 0-forms, there may not exist any form α such that ∂− α = f . Now we extend
f to a global function f̃ on M by setting f̃ = 0 out of the support K := supp(f) and f̃ = f
on K.
Using the isomorphism (1.2.5) we easily see that ef̃ is a D-holomorphic function (and it
is not ∂-exact). Analogously, every smooth function g ∈ C∞c (U) such that g = g(z−) can
be extended to a global function g̃ on M such that ∂+ g̃ = 0, and again ēg̃ is a ∂-closed
function.

Now it is easy to extend such a construction to p-forms. In the local coordinates (zi+, z
i
−)

on U ∼= U+ × U− ⊂M , let α = d z+
i1
∧ · · · ∧ d z+

ip
be a (p+, 0−)-form on U , where suppose

1 ≤ i1 ≤ . . . ≤ ip ≤ n, and let f̃ = f(z+) be as before. Then we easily have that f̃α is

a ∂−-closed (p+, 0−)-form, but it is not exact. Similarly, ef̃α is a ∂-closed non-∂-exact
(p, 0)-form, and setting β = d z−i1 ∧· · ·∧d z

−
ip

, we have that g̃β is a ∂+-closed (0+, p−)-form,

but it is not exact, as well as ēg̃β is a ∂-closed (0, p)-form but not ∂-exact.

We summarize on the following:

Corollary 3.1.12. Any compact D-complex manifold does not satisfy the D-complex ∂ ∂-
Lemma.

The fact that some groups H•,•∂+ (M,R) are infinite dimensional takes us to look for
cohomological properties related to the D-complex structure in some finite subgroup of
H`
dR. For this reason we will study subgroups of de-Rham cohomology in a compact almost

D-manifold.

3.2 D-complex subgroups of cohomology and of homology

Let (M,K) be a compact almost D-complex manifold and let 2n := dimM .
The problem we are considering is when the decomposition

∧•M =
⊕
p,q

∧p, q+−M = ∧•+
K M ⊕ ∧•−K M (3.2.1)

moves to cohomology.
The same problem has been studied for the complex case by T.-J. Li and W. Zhang (see,

e.g., [55]). While in the complex case this study is motivated by the analysis of symplectic
cones (the tamed one and the calibrated one), in the D-complex case we are interested
in understand the cohomology of D-manifolds, since we have to deal with a D-Dolbeault
cohomology which is infinite dimensional, as seen in the previous Section 3.1.2 (we refer,
e.g., to [55, 26] and the references therein for precise definitions, motivations and results
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concerning this problem, related ones and the notion of C∞-pure-and-fullness in almost
complex geometry).

Here and later, we mime T.-J. Li and W. Zhang (see e.g. [55]). For any p, q, ` ∈ N, we
define

H
(p,q)
K (M ;R) :=

{
[α] ∈ Hp+q

dR (M ;R) | α ∈ ∧p, q+−M
}

(3.2.2)

and

H`+
K (M ;R) :=

{
[α] ∈ H`

dR (M ;R) | Kα = α
}

=
{

[α] ∈ H`
dR (M ;R) | α ∈ ∧`+

K M
}
,

H`−
K (M ;R) :=

{
[α] ∈ H`

dR (M ;R) | Kα = −α
}

=
{

[α] ∈ H`
dR (M ;R) | α ∈ ∧`−K M

}
.

(3.2.3)

Remark 3.2.1. Note that, if K is integrable, then, for any ` ∈ N,

H`+
K =

⊕
p+q=`, q even

H
(p,q)
K (M ;R) (3.2.4)

and

H`−
K =

⊕
p+q=`, q odd

H
(p,q)
K (M ;R) . (3.2.5)

We introduce the following definitions.

Definition 3.2.2. For ` ∈ N, an almost D-complex structure K on the manifold M is said
to be

• C∞-pure at the `-th stage if

H`+
K (M ;R) ∩ H`−

K (M ;R) = {0} ; (3.2.6)

• C∞-full at the `-th stage if

H`+
K (M ;R) + H`−

K (M ;R) = H`
dR (M ;R) ; (3.2.7)

• C∞-pure-and-full at the `-th stage if it is both C∞-pure at the `-th stage and C∞-full
at the `-th stage, or, in other words, if it satisfies the cohomological decomposition

H`
dR (M ;R) = H`+

K (M ;R) ⊕ H`−
K (M ;R) . (3.2.8)

Consider (M, K) a compact almost D-complex manifold and let 2n := dimM . Denote
by D•M := D2n−•M the space of currents on M , that is, the topological dual space of
∧•M . Define the de Rham homology H•(M ;R) of M as the homology of the complex
(D•M, d), where d : D•M → D•−1M is the dual operator of d : ∧•−1 M → ∧•M . Note
that there is a natural inclusion T· : ∧•M ↪→ D•M = D2n−•M given by

η 7→ Tη :=

∫
M
· ∧ η , (3.2.9)

and in particular, one has that dTη = Td η. Moreover, one can prove that H•dR(M ;R) '
H2n−•(M ;R) (see, e.g., [24]).
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The action of K on ∧•M induces, by duality, an action on D•M (again denoted by K) and
hence a decomposition

D`M =
⊕
p+q=`

D+−
p, q M ; (3.2.10)

note that, for any p, q ∈ N, the space D+−
p, q M = Dn−p, n−q

+− is the dual space of ∧p, q+−M and
that T· : ∧p, q+− M ↪→ Dp, q

+−M . As in the smooth case, we set

DK
•+M :=

⊕
q even

D+−
•, q M and DK

•−M :=
⊕
q odd

D+−
•, q M , (3.2.11)

so K|DK•±M = ± Id for ± ∈ {+, −} and

D•M = DK
•+M ⊕ DK

•−M . (3.2.12)

For any p, q, ` ∈ N, we define

HK
(p,q) (M ;R) :=

{
[α] ∈ Hp+q (M ;R) | α ∈ D+−

p, q M
}

(3.2.13)

and

HK
`+ (M ;R) := {[α] ∈ H` (M ;R) | Kα = α} ,

HK
`− (M ;R) := {[α] ∈ H` (M ;R) | Kα = −α} .

(3.2.14)

We introduce the following definitions.

Definition 3.2.3. For ` ∈ N, an almost D-complex structure K on the manifold M is said
to be

• pure at the `-th stage if

HK
`+ (M ;R) ∩ HK

`− (M ;R) = {0} ; (3.2.15)

• full at the `-th stage if

HK
`+ (M ;R) + HK

`− (M ;R) = H` (M ;R) ; (3.2.16)

• pure-and-full at the `-th stage if it is both pure at the `-th stage and full at the `-th
stage, or, in other words, if it satisfies the homological decomposition

H` (M ;R) = HK
`+ (M ;R) ⊕ HK

`− (M ;R) . (3.2.17)

3.3 D-complex decompositions in homology and cohomology

As in the complex case (see [55, Proposition 2.30] and also [10, Theorem 2.1]), there are links
between C∞-pure-and-full and pure-and-full concepts. In fact, using the same arguments
as in [55], we get:

Proposition 3.3.1 ([9, Proposition 1.4]). Let (M, K) be a 2n-dimensional compact almost
D-complex manifold. Then, for every ` ∈ N, the following implications hold:

C∞-full at the `-th stage +3

��

pure at the `-th stage

��
full at the (2n− `) -th stage +3 C∞-pure at the (2n− `) -th stage .

(3.3.1)
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Proof. Since, for every p, q ∈ N, we have H
(p,q)
K (M ;R)

T·
↪→ HK

(n−p,n−q)(M ;R) and H`
dR(M ;R)

' H2n−`(M ;R), we get that the two vertical arrows are obvious.
To prove the horizontal arrows, consider 〈·, ·〉 the duality pairing D`M × ∧`M → R or
the induced non-degenerate pairing H`

dR(M ;R) × H`(M ;R) → R. Let K is C∞-full at
the `-th stage; suppose that there exists c = [γ+] = [γ−] ∈ HK

`+(M ;R) ∩HK
`−(M ;R) with

γ+ ∈ DK
`+M and γ− ∈ DK

`−M , then〈
H`(M ;R), c

〉
=
〈
H`+
K (M ;R), [γ−]

〉
+
〈
H`+
K (M ;R), [γ−]

〉
= 0

and therefore c = 0 in H`(M ;R); hence K is pure at the `-th stage.
A similar argument proves the bottom arrow.

Corollary 3.3.2 ([9, Corollary 1.5]). If the almost D-complex structure K on the manifold
M is C∞-full at every stage, then it is C∞-pure-and-full at every stage and pure-and-full at
every stage.

Remark 3.3.3. It follows, from the Corollary above 3.3.2, that on a compact 4-dimensional
manifold, being C∞-full at the 2-nd stage implies being C∞-pure at the 2-nd stage.

Recall (see Example 1.3.7) that, given M1 and M2 two differentiable compact manifolds
with dimM1 = dimM2 = n, the product M1 ×M2 inherits a natural D-complex structure
K, given by the decomposition

T (M1 ×M2) = TM1 ⊕ TM2 ; (3.3.2)

in other words, K acts as Id on M1 and − Id on M2. For any ` ∈ N, using the Künneth
formula (see e.g. [17]), one gets

H`
dR (M1 ×M2;R) '

⊕
p+q=`

Hp (M1;R) ⊗ Hq (M2;R)

=

 ⊕
p+q=`, q even

Hp (M1;R) ⊗ Hq (M2;R)


︸ ︷︷ ︸

⊆H`+
K (M1×M2;R)

⊕

 ⊕
p+q=`, q odd

Hp (M1;R) ⊗ Hq (M2;R)


︸ ︷︷ ︸

⊆H`−
K (M1×M2;R)

⊆ H`+
K (M1 ×M2;R) + H`−

K (M1 ×M2;R) .

Therefore, using also Corollary 3.3.2, one gets the following result (compare it with [26,
Proposition 2.6]).

Theorem 3.3.4 ([9, Corollary 1.6]). Let M1 and M2 be two equi-dimensional compact
manifolds. Then the natural D-complex structure on the product M1×M2 is C∞-pure-and-
full at every stage and pure-and-full at every stage.

Remark 3.3.5. Note that in the complex case things go different, indeed T. Drǎghici, T.-
J. Li and W. Zhang show in [26, Proposition 2.6], that the product (M1×M2, J1 + J2),
where (M1, J1) and (M2, J2) are two compact almost complex C∞-pure-and-full manifolds
such that b1(M1) = 0 or b1(M2) = 0, is a C∞-pure-and-full manifold. As the authors say,
in the complex setting it is not known if the statement holds without the assumption on
b1.
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3.4 The cohomology of completely-solvable solvmanifolds
and its D-complex subgroups

Now let us focus on the quotient manifolds, in particular on nilmanifolds and solvmanifolds.
We will use the same notation as in Section 1.6.

Recall that the translation induces an isomorphism of differential algebras between the
space of forms on g∗ and the space ∧•invM of invariant differential forms on M :

(∧•g∗, dg)
'−→
(
∧•invM, db∧•invM

)
; (3.4.1)

moreover, by K. Nomizu’s and A. Hattori’s theorems (see resp. [66] and [41]), if M is
a nilmanifold or, more in general, a completely-solvable solvmanifold, then the natural
inclusion (

∧•invM, db∧•invM
)
↪→ (∧•M, d) (3.4.2)

is a quasi-isomorphism, hence

H• (∧•g∗, dg) ' H•
(
∧•invM, db∧•invM

)
=: H•inv(M ;R)

'−→ H•dR(M ;R) . (3.4.3)

In this section, we study D-complex decomposition in cohomology at the level of H• (g;R)
:= H• (∧•g∗, dg).

Recall that the linear almost D-complex structure K on g defines a splitting g = g+⊕g−
into eigenspaces and hence, for every ` ∈ N, one gets also the splitting

∧`g∗ =
⊕
p+q=`

∧p
(
g+
)∗ ⊗ ∧q(g−)∗ =:

⊕
p+q=`

∧p, q+− g
∗ , (3.4.4)

where, for any p, q ∈ N, one has K|∧p, q+− g∗ = (+1)p (−1)q Id.

As already done for manifolds, we introduce also the splitting of the differential forms
into their K-invariant and K-anti-invariant components:

∧•g∗ = ∧•+
K g∗ ⊕ ∧•−K g∗ (3.4.5)

where

∧•+
K g∗ :=

⊕
q even

∧•, q+− g
∗ and ∧•−K g∗ :=

⊕
q odd

∧•, q+− g
∗ . (3.4.6)

We define, for any p, q, ` ∈ N, the following subspace of the cohomology group Hp+q(g;R):

H
(p,q)
K (g;R) :=

{
[α] ∈ Hp+q (g;R) | α ∈ ∧p, q+− g

∗} ,

H`+
K (g;R) :=

{
[α] ∈ H` (g;R) | Kα = α

}
,

H`−
K (g;R) :=

{
[α] ∈ H` (g;R) | Kα = −α

}
.

We have the following definitions.

Definition 3.4.1. For ` ∈ N, a linear almost D-complex structure on the Lie algebra g is
said to be

• linear C∞-pure at the `-th stage if

H`+
K (g;R) ∩ H`−

K (g;R) = {0} ;
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• linear C∞-full at the `-th stage if

H`+
K (g;R) + H`−

K (g;R) = H` (g;R) ;

• linear C∞-pure-and-full at the `-th stage if it is both C∞-pure at the `-th stage and C∞-
full at the `-th stage, or, in other words, if it satisfies the cohomological decomposition

H` (g;R) = H`+
K (g;R) ⊕ H`−

K (g;R) .

Given a completely-solvable solvmanifold, we want to study the connection between the
C∞-pure-and-fullness of an invariant almost D-complex structure and the linear C∞-pure-
and-fullness of the corresponding linear almost D-complex structure on the associated Lie
algebra.
We need the following result by J. Milnor.

Lemma 3.4.2 ([62, Lemma 6.2]). Any connected Lie group that admits a discrete subgroup
with compact quotient is unimodular and in particular admits a bi-invariant volume form
η.

The previous Lemma is used to prove the following result, for which we refer to [32,
Theorem 2.1] by A. Fino and G. Grantcharov.

Lemma 3.4.3. Let M :=: Γ\G be a solvmanifold and call g the Lie algebra that is naturally
associated to the connected simply-connected Lie group G. Denote by K an invariant almost
D-complex structure on M or equivalently the associated linear almost D-complex structure
on g. Let η be the bi-invariant volume form on G given by Lemma 3.4.2 and suppose that∫
M η = 1. Define the map

µ : ∧•M → ∧•invM , µ(α) :=

∫
M
αbm η(m) .

One has that

µb∧•invM = Idb∧•invM
and that

d (µ(·)) = µ (d ·) and K (µ(·)) = µ (K·) .

Proof. The proof is similar to that one of [32, Theorem 2.1] and therefore it is omitted.

Then we can prove the following result (a similar result for almost complex structures
has been obtained also by A. Tomassini and A. Fino in [33, Theorem 3.4]).

Proposition 3.4.4 ([9, Proposition 2.4]). Let M :=: Γ\G be a completely-solvable solv-
manifold and call g the Lie algebra that is naturally associated to the connected simply-
connected Lie group G. Denote by K an invariant almost D-complex structure on M or
equivalently the associated linear almost D-complex structure on g. Then, for every ` ∈ N
and for ± ∈ {+, −}, the injective map

H`±
K (g;R)→ H`±

K (M ;R)

induced by translations is an isomorphism.
Furthermore, for every ` ∈ N, the linear D-complex structure K ∈ End(g) is linear C∞-
pure (respectively, linear C∞-full) at the `-th stage if and only if the D-complex structure
K ∈ End(TM) is C∞-pure (respectively, C∞-full) at the `-th stage.
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Proof. Consider the map µ : ∧• M → ∧•invM defined in Lemma 3.4.3. The thesis follows
from the following three observations.
Since d (µ(·)) = µ (d ·), one has that µ sends d-closed (respectively, d-exact) forms to d-
closed (respectively, d-exact) invariant forms and so it induces a map

µ : H•dR(M ;R)→ H•inv(M ;R) ' H• (g;R) .

Since K (µ(·)) = µ (K·), for ± ∈ {+, −}, one has

µ
(
∧•±K M

)
⊆ ∧•±K invM ,

where ∧•±K invM := ∧•±K M ∩ ∧•invM ' ∧
•±
K g∗, hence

µ
(
H•±K (M ;R)

)
⊆ H•±K (g;R) .

Lastly, since M is a completely-solvable solvmanifold, its cohomology is isomorphic to the
invariant one (see [41]) and hence the condition µb∧•invM= Idb∧•invM gives that µ is the
identity in cohomology.

3.5 C∞-pure-and-fullness of low-dimensional D-complex solv-
manifolds

We turn our attention on solvmanifold (see Section 1.6 for notations and basic properties).

Let (a, [·, ·]) be a Lie algebra and consider the lower central series {an}n∈N defined, by
induction on n ∈ N, as {

a0 := a

an+1 := [an, a] for n ∈ N
;

note that {an}n∈N is a descending sequence of Lie algebras:

a = a0 ⊇ a1 ⊇ · · · ⊇ aj−1 ⊇ aj ⊇ · · · .

Recall that the nilpotent step of a is defined as

s (a) := inf {n ∈ N | an = 0} ,

so s (a) < +∞ means that a is nilpotent.

In particular, if the linear D-complex structure K on the Lie algebra g induces the
decomposition g = g+ ⊕ g−, we consider

s+ := s
(
g+
)

and s− := s
(
g−
)

;

since g+ ⊂ g and g− ⊂ g, we have obviously that

s+ ≤ s (g) and s− ≤ s (g) .

We start with the following easy lemma.

Lemma 3.5.1 ([9, Lemma 3.5]). Let g be a 2n-dimensional nilpotent Lie algebra, that
is, s (g) < +∞. Let K be a linear D-complex structure on g, inducing the decomposition
g = g+ ⊕ g−. Then, setting s± := s (g±) for ± ∈ {+, −}, we have

1 ≤ s+ ≤ n− 1 and 1 ≤ s− ≤ n− 1 .
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Proof. The proof follows easily observing that, for ± ∈ {+, −}, we have dimR (g±)
0

= n

dimR (g±)
k ≤ max {n− k − 1, 0} for k ≥ 1

,

as a consequence of the nilpotent condition and of the integrability property.

We have the following result, to be compared with previous Theorem 3.3.4.

Proposition 3.5.2 ([9, Proposition 3.6]). Let g be a Lie algebra. If K is a linear D-
complex structure on g with eigenspaces g+ and g− such that [g+, g−] = {0}, then K is
linear C∞-pure-and-full at every stage.

Proof. Since g = g+ ⊕ g−, and since g+ commutes with g− (i.e [g+, g−] = {0}), one can
write g = g+×g−. Now using Künneth formula as in Theorem 3.3.4 one gets the thesis.

Therefore, from Proposition 3.4.4, one gets the following corollary.

Corollary 3.5.3 ([9, Corollary 3.7]). Let M :=: Γ\G be a completely-solvable solvman-
ifold endowed with an invariant D-complex structure K. Call g the Lie algebra naturally
associated to the Lie group G and consider the linear D-complex structure K ∈ End(g)
induced by K ∈ End(TM). Suppose that the eigenspaces g+ and g− of K ∈ End(g) satisfy
[g+, g−] = {0}. Then K is C∞-pure-and-full at every stage and pure-and-full at every stage.

Recall the following definition.

Definition 3.5.4. A linear D-complex structure on a Lie algebra g is said to be Abelian
if the induced decomposition g = g+ ⊕ g− satisfies [g+, g+] = {0} = [g−, g−], namely,
s+ = 1 = s−.
A D-complex structure on a solvmanifold is Abelian, if its associated linear D-complex
structure on the corresponding Lie algebra is Abelian.

Remark 3.5.5. Note that every linear D-complex structure on a 4-dimensional nilpotent
Lie algebra is Abelian, as a consequence of Lemma 3.5.1.

Theorem 3.5.6 ([9, Corollary 3.10]). Let g be a Lie algebra and K be a linear Abelian
D-complex structure on g. Then K is linear C∞-pure at the 2-nd stage.

Proof. Denote by π+ : ∧• g∗ → ∧•+
K g∗ the map that gives the K-invariant component of a

given form. Recall that d η := −η ([·, ·]) for every η ∈ ∧1g∗; therefore, since [g+, g+] = 0
and [g−, g−] = 0, we have that

π+
K

(
im
(
d : ∧1 g∗ → ∧2g∗

))
= {0} .

Suppose that there exists [γ+] = [γ−] ∈ H2 +
K (g; R) ∩H2−

K (g; R), where γ+ ∈ ∧2 +
K g∗ and

γ− ∈ ∧2−
K g∗; let α ∈ ∧1g∗ be such that γ+ = γ− + dα. Since π+

K (dα) = 0, we have that
γ+ = 0 and hence [γ+] = 0, so K is linear C∞-pure at the 2-nd stage.

Remark 3.5.7. We note that the condition of K being Abelian in Theorem 3.5.6 can not
be dropped, not even partially. In fact, Example 3.7.1 shows that the Abelian assumption
just on g− is not sufficient to have C∞-pureness at the 2-nd stage. Another example on a
(non-unimodular) solvable Lie algebra is given below.
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Example 3.5.8 (There exists a 4-dimensional (non-unimodular) solvable Lie algebra with
a non-Abelian D-complex structure that is not linear C∞-pure at the 2-nd stage). Consider
the 4-dimensional solvable Lie algebra defined by

g := (0, 0, 0, 13 + 34) ;

note that g is not unimodular, since d e124 = e1234, see Lemma 3.5.12.
Set the linear D-complex structure

K := (+ + − −) ;

note that K is not Abelian, since [g+, g+] = 0 but [g−, g−] = R 〈e3〉 6= {0}.
A straightforward computation yields that g is linear C∞-full (in fact we have H2 (g;R) =
R
〈
e12, e34

〉
⊕
〈
e23, e13

〉
and H+

K (g;R) = R
〈
e12, e34

〉
, H−K (g;R) = R

〈
e23, e13

〉
) but linear

non-C∞-pure, since

H2 +
K (g;R) 3

[
e34
]

=
[
e34 − d e4

]
= −

[
e13
]
∈ H2−

K (g;R)

and
[
e34
]
6= 0.

As a corollary of Theorem 3.5.6 and using Proposition 3.4.4, we get the following result.

Corollary 3.5.9 ([9, Corollary 3.13]). Let M :=: Γ\G be a completely-solvable solvmani-
fold endowed with an invariant Abelian D-complex structure K. Then K is C∞-pure at the
2-nd stage.

Remark 3.5.10. For a D-complex structure on a compact manifold, being Abelian or being
C∞-pure at the 2-nd stage is not a sufficient condition to have C∞-fullness at the 2-nd stage.
Indeed, Example 3.6.1 provides a D-complex structure on a 6-dimensional solvmanifold that
is Abelian, C∞-pure at the 2-nd stage and non-C∞-full at the 2-nd stage.

Remark 3.5.11. In particular, recalling Remark 3.5.5, invariant D-complex structures on
4-dimensional nilmanifolds are C∞-pure at the 2-nd stage.

Now we will focus on the C∞-fullness property, but while for invariant Abelian D-
complex structures on higher-dimensional nilmanifolds we can not hope to have, in general,
C∞-fullness at the 2-nd stage (see Example 3.6.1), for 4-dimensional nilmanifolds we can
prove that every invariant D-complex structure is in fact also C∞-full at the 2-nd stage, see
Theorem 3.5.14: to prove this fact, we need the following lemmata.
The first one is a classical result (see, e.g., [39]).

Lemma 3.5.12. Let g be a unimodular Lie algebra of dimension n. Then

d |∧n−1g∗ = 0 .

Lemma 3.5.13. Let g be a unimodular Lie algebra of dimension 2n endowed with an
Abelian linear D-complex structure K. Then

d |∧n, 0+− g∗⊕∧0, n+− g∗ = 0 .

Proof. Consider the basis(
g+
)∗

= R
〈
e1, . . . , en

〉
and

(
g−
)∗

= R
〈
f1, . . . , fn

〉
where g = g+⊕ g− is the decomposition into eigenspaces induced by K. Being K Abelian,
the general structure equations are of the form{

d ej =
∑n

h, k=1 a
j
hk e

h ∧ fk

d f j =
∑n

h, k=1 b
j
hk e

h ∧ fk
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for some ajhk, b
j
hk ∈ R and j ∈ {1, . . . , n}.

A straightforward computation yields

d
(
e1 ∧ · · · ∧ en

)
=

n∑
`=1

(−1)`+1e1 ∧ · · · ∧ d e` ∧ · · · ∧ en

=
n∑
`=1

(−1)`+1e1 ∧ · · · ∧
n∑

h, k=1

a`hk e
h ∧ fk ∧ · · · ∧ en

=

n∑
`=1

(−1)`+1e1 ∧ · · · ∧
n∑
k=1

a``k e
` ∧ fk ∧ · · · ∧ en

=

n∑
`=1

(−1)`+1(−1)n−`

(
n∑
k=1

a``k

)
e1 ∧ · · · ∧ en ∧ fk

= (−1)n+1
n∑
k=1

(
n∑
`=1

a``k

)
e1 ∧ · · · ∧ en ∧ fk

(3.5.1)

where, for any k ∈ {1, . . . , n},
n∑
`=1

a``k = 0 ,

since it is the coefficient of

0 = d
(
e1 ∧ · · · ∧ en ∧ f1 ∧ · · · ∧ fk−1 ∧ fk+1 ∧ · · · ∧ fn

)
= d

(
e1 ∧ · · · ∧ en

)
∧ f1 ∧ · · · ∧ fk−1 ∧ fk+1 ∧ · · · ∧ fn

+ (−1)ne1 ∧ · · · ∧ en ∧ d
(
f1 ∧ · · · ∧ fk−1 ∧ fk+1 ∧ · · · ∧ fn

)
= d

(
e1 ∧ · · · ∧ en

)
∧ f1 ∧ · · · ∧ fk−1 ∧ fk+1 ∧ · · · ∧ fn + (−1)n

= (−1)n+1
n∑
k=1

(
n∑
`=1

a``k

)
e1 ∧ · · · ∧ en ∧ fk ∧ f1 ∧ · · · ∧ fk−1 ∧ fk+1 ∧ · · · ∧ fn

(3.5.2)

which is zero by Lemma 3.5.12. Analogously, we get the same for f i and
∑

h b
h
hk = 0.

We can now prove the following result.

Theorem 3.5.14 ([9, Theorem 3.17]). Every invariant D-complex structure on a 4-dimen-
sional nilmanifold is C∞-pure-and-full at the 2-nd stage and hence also pure-and-full at the
2-nd stage.

Proof. (We see that the C∞-pureness at the 2-nd stage follows from Remark 3.5.5 and
Corollary 3.5.9.)
From Lemma 3.5.13 one gets that, on every 4-dimensional D-complex nilmanifold, the D-
complex invariant component of an invariant 2-form is closed and hence also the D-complex
anti-invariant component of a closed invariant 2-form is closed. In fact, we can say that the
decomposition ∧+g∗ ⊕ ∧−g∗ moves to cohomology: let α be a closed 2-form, then:

0 = dα = d(α2,0 + α0,2) + dα1,1 (3.5.3)

and we see, by the Lemma 3.5.13, that both the invariant and anti-invariant components
are closed. Then the linear D-complex structure is linear C∞-full at the 2-nd stage; by
Proposition 3.4.4, the D-complex structure is hence C∞-full at the 2-nd stage (note that at
this point we can deduce the C∞-pure at the 2-nd stage from 3.3.1).
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Remark 3.5.15. We note that Theorem 3.5.14 is optimal. Indeed, we can not grow dimen-
sion (see Example 3.6.1 and Example 3.6.2), nor change the nilpotent hypothesis with solv-
able condition (see Example 3.7.1), nor drop the integrability condition on the D-complex
structure (see Example 3.6.5).

It is possible to wonder what happens at other stages on nilmanifolds: in general, it
is not possible to give a general behavior. However, for invariant structure and for the
1-stage, it is possible to give the following:

Proposition 3.5.16. Let K be a linear D-complex structure on a Lie algebra g. Then it
is C∞-pure at the 1-st stage.

Proof. We note that on g∗ there are not exact 1-forms, so, given a closed invariant (resp.
anti-invariant) form α ∈ H1 +

K (g,R) (resp. α ∈ H1−
K (g,R)) we have that it is impossible to

find an other representative of the class [α] which belongs to H1−
K (g,R) (resp. H1 +

K (g,R)).

Remark 3.5.17. It follows that nilmanifolds and solvmanifolds endowed with invariant D-
complex structure are all C∞-pure at the 1-st stage.

There is another interesting consequence from Theorem 3.5.14 above (we will see that
things go different on higher dimensions, see Examples 3.7.1, 3.7.5 and 3.7.6).

Theorem 3.5.18. For every invariant D-complex structure on a 4-dimensional nilmanifold
the dimension of H2 +

K and of H2−
K are invariant of the D-complex structure, i.e. they are

constant and depending only on the nilpotent Lie algebra.
More precisely we have dimH2 +

K (M,R) = 2 and dimH2−
K (M,R) = dimH2

dR(M,R)− 2.

Proof. Let M = G/Γ be a compact quotient of a 4-dimensional nilpotent Lie group G
whose Lie algebra is g. From Lemma 3.5.13, it follows that elements of ∧2,0

+−g and of ∧0,2
+−g

are closed. It is easy to see that both ∧2,0
+−g and of ∧0,2

+−g are non-null and have only one

element. Focus on α ∈ ∧2,0
+−g, we will prove that α is not an exact form. Suppose

α = dβ ∈ ∧2,0
+−M (3.5.4)

for some 1-form β. Since α is not zero and there exist 2 elements, said X1, X2 ∈ g+ such
that:

0 6= α(X1, X2) = dβ(X1, X2) = −β([X1, X2]). (3.5.5)

By Remark 3.5.5 the invariant D-complex structure need to be Abelian, hence [X1, X2] = 0,
which is a contradiction. The same happens for ∧0,2

+−g.
Now, using Proposition 3.4.4 we get the statement for H2 +

K (M,R).

We see that ∧2,0
+−⊕∧

0,2
+− = H2 +

K (M,R) and dimH2 +
K (M,R) = dim

(
∧2,0

+−⊕∧
0,2
+−
)

= 2. Now,
we know that the Betti numbers are invariant of the nilmanifold, and by Theorem 3.5.14
we can write:

dimH2−
K (M,R) = dimH2

dR(M,R)− dimH2 +
K (M,R) = dimH2

dR(M,R)− 2 (3.5.6)

which shows that such a dimension does not depend on the D-complex structure, but only
on the nilmanifold.

3.6 Some examples of non-C∞-pure-and-full (almost) D-com-
plex nilmanifolds

Now, using the notation of 1.6 and the results in the previous sections, we provide examples
of invariant (almost) D-complex structures on nilmanifolds.

Firstly, we give two examples of non-C∞-pure or non-C∞-full nilmanifolds admitting
D-Kähler structures.



74 CHAPTER 3. COHOMOLOGICAL PROPERTIES OF D-MANIFOLDS

Example 3.6.1 (There exists a 6-dimensional D-complex nilmanifold that is C∞-pure at
the 2-nd stage and non-C∞-full at the 2-nd stage and admits a D-Kähler structure). Indeed,
take the nilmanifold

M :=
(
04, 12, 13

)
(as in Section 1.6 we refer to a nilpotent Lie group G, a compact quotient M = Γ\G, whose
Lie algebra g has dual g∗ with structure equations define above) and define the invariant
D-complex structure K setting

K := (− + + − −+) .

By Nomizu’s theorem (see [66]), the de Rham cohomology of M is given by

H2
dR(M ;R) ' H2

dR(g;R) = R
〈
e14, e15, e16, e23, e24, e25, e34, e36, e26 + e35

〉
.

Note that
H2 +
K (g;R) = R

〈
e14, e15, e23, e36

〉
and

H2−
K (g;R) = R

〈
e16, e24, e25, e34

〉
,

hence H2 +
K ∩ H2−

K = {0}, since no invariant representative in the class
[
e26 + e35

]
is of

pure type with respect to K (indeed, the space of invariant d-exact 2-forms is R
〈
e12, e13

〉
).

It follows that K ∈ End (g) is linear non-C∞-full at the 2-nd stage and linear C∞-pure at
the 2-nd stage and hence, by Proposition 3.4.4, K ∈ End(TM) is C∞-pure at the 2-nd
stage (being K Abelian, see Definition 3.5.4, one can also argue using Corollary 3.5.9) and
non-C∞-full at the 2-nd stage.
Moreover, we observe that

ω := e16 + e25 + e34

is a symplectic form compatible with K, hence (M, K, ω) is a D-Kähler manifold.

Example 3.6.2 (There exists a 6-dimensional D-complex nilmanifold that is non-C∞-pure
at the 2-nd stage (and hence non-C∞-full at the 4-th stage) and admitting a D-Kähler
structure). Take the nilmanifold M defined by

M :=
(
03, 12, 13 + 14, 24

)
and the invariant D-complex structure K defined as

K := (+ − + − + −) .

Note that, since [e2, e4] = −e6, one has that [g−, g−] 6= {0} and hence K is not Abelian
(see Definition 3.5.4).
We have

H2 +
K (g;R) 3

[
e13
]

=
[
e13 − d e5

]
= −

[
e14
]
∈ H2−

K (g;R)

and therefore we get that

0 6=
[
e13
]
∈ H2 +

K (g;R) ∩ H2−
K (g;R) ,

namely, K ∈ End(g) is not linear C∞-pure at the 2-nd stage, hence K ∈ End(TM) is not
C∞-pure at the 2-nd stage; furthermore, by Proposition 3.3.1, we have also that K is not
C∞-full at the 4-th stage.
Moreover, we observe that

ω := e16 + e25 + e34

is a symplectic form compatible with K, hence (M, K, ω) is a D-Kähler manifold.
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Remark 3.6.3. Note that higher-dimensional examples of D-Kähler non-C∞-full, respec-
tively non-C∞-pure, at the 2-nd stage structures can be obtained taking products with
standard D-complex tori (see Example 1.3.7).

In contrast with the complex case (see, e.g., [55]), the previous two examples prove the
following result:

Proposition 3.6.4 ([9, Proposition 3.3]). To have a D-Kähler structure is not a sufficient
condition to be C∞-pure at the 2-nd stage nor being C∞-full at the 2-nd stage.

Moreover, also on 4 dimensional compact manifolds things go different between complex
and the D-complex structures. In fact, it was proved by T. Drǎghici, T.-J. Li and W. Zhang
that every almost complex structure on a 4-dimensional compact manifold induces an al-
most complex decomposition at the level of the real second de Rham cohomology group,
(see [27, Theorem 2.3]), while our following Example 3.6.5 shows that an analogous result
does not hold in general in the almost D-complex case.

Example 3.6.5 (There exists a 4-dimensional almost D-complex nilmanifold which is
non-C∞pure-and-full at the 2-nd stage). Indeed, take the nilmanifold M defined by

M := (0, 0, 0, 12)

(namely, the product of R and the Heisenberg group) and define the invariant almost D-
complex structure by the eigenspaces

g+ := R 〈e1, e3 − e2〉 and g− := R 〈e2, e4〉 .

Note that K is not integrable, since [e1, e3 − e2] = e4, [e2, e4] = 0.
Note that we have

H2 +
K (g;R) 3

[
e13
]

=
[
e13 + d e4

]
=
[
e13 + e12

]
=
[
e1 ∧ (e3 + e2)

]
∈ H2−

K (g;R)

and therefore we get that

0 6=
[
e13
]
∈ H2 +

K (g;R) ∩ H2−
K (g;R) .

Then, K is not C∞-pure at the 2-nd stage and, by Proposition 3.3.1, is not C∞-full at the
2-nd stage. Indeed, the closed 2-form e24 does not admit any representative in H2 +

K (g;R)
nor in H2−

K (g;R), since:

H2 +
K (g;R) = {e13} H2−

K (g;R) = {e1 ∧ (e3 + e2), e14, e3 ∧ (e2 + e3)}. (3.6.1)

3.7 Behavior of Hp+
K and Hp−

K under small deformations

In this section, we study explicit examples of deformations of D-complex structures on
nilmanifolds and solvmanifolds. We refer to Chapter 2 (see also [61, 69]) for more results
about deformations of D-complex structures.

The following examples show a curve {Kt}t∈R of D-complex structures on a 4-dimen-
sional solvmanifold; while K0 is linear C∞-pure-and-full at the 2-nd stage for t 6= 0 one
proves that Kt is neither C∞-pure at the 2-nd stage nor C∞-full at the 2-nd stage (Example
3.7.1). Moreover, K0 admits a D-Kähler structure and Kt does not admit a D-Kähler
structure (Example 3.7.2). In particular, this curve provides an example of the instability
of D-Kählerness under small deformations of the D-complex structure and it proves also
that the nilpotency condition in Theorem 3.5.14 can not be dropped out.



76 CHAPTER 3. COHOMOLOGICAL PROPERTIES OF D-MANIFOLDS

Example 3.7.1 (There exists a 4-dimensional solvmanifold endowed with an invariant
D-complex structure such that it is C∞-pure-and-full at the 2-nd stage and it has small
deformations that are not C∞-pure-and-full at the 2-nd stage). Consider the 4-dimensional
solvmanifold defined by

M := (0, 0, 23, −24)

(see, e.g., [15]).
By Hattori’s theorem (see [41]), it is straightforward to compute

H2
dR(M ;R) = R

〈
e12, e34

〉
.

For every t ∈ R, consider the invariant D-complex structure with respect to the basis {e1,
. . . , e4}

Kt :=


−1 0 0 0
0 1 0 −2t
0 0 1 0
0 0 0 −1

 .

In particular, for t = 0, we have

K0 = (− + +−) .

It is straightforward to check that K0 is C∞-pure-and-full at the 2-nd stage (note however
that K0 is not Abelian): in fact,

H2 +
K0

(M ;R) = {0} and H2−
K0

(M ;R) = H2
dR(M ;R) ;

in particular, we have

dimRH
2 +
K0

(M ;R) = 0 , dimRH
2−
K0

(M ;R) = 2.

For every t ∈ R, we have that

g+
Kt

= R 〈e2, e3〉 and g−Kt = R 〈e1, e4 + t e2〉 :

in particular,
[
g+
Kt
, g+

Kt

]
= R 〈e3〉 ⊆ g+

Kt
and

[
g−Kt , g

−
Kt

]
= {0}, which proves the integrabil-

ity of Kt, for every t ∈ R.
Furthermore, for t 6= 0, we get

H2−
Kt

(M ;R) 3
[
e34
]

=

[
e34 +

1

t
d e3

]
=

[
e34 +

1

t
(e23 + t e43 − t e43)

]
=

[
1

t
(e2 − t e4) ∧ e3

]
∈ H2 +

Kt
(M ;R)

and therefore we have that

0 6=
[
e34
]
∈ H2−

Kt
(M ;R) ∩ H2 +

Kt
(M ;R) .

In particular, for t 6= 0, it follows that Kt is not C∞-pure at the 2-nd stage and hence it is
not C∞-full at the 2-nd stage, as a consequence of Proposition 3.3.1 (in fact, no invariant
representative in the class

[
e12
]

=
[
e1 ∧ (e2 − te4) + te14

]
is of pure type with respect to

Kt, the space of invariant d-exact 2-forms being R
〈
(e2 − t e4) ∧ e3 − t e34, (e2 − t e4) ∧ e4

〉
).

Therefore, for t 6= 0, we have

dimRH
2 +
Kt

(M ;R) = 1 , dimRH
2−
Kt

(M ;R) = 1.
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Note that, in this example, for every t ∈ R one has s
(
g−Kt
)

= 0 and s
(
g+
Kt

)
= 1 but for

t 6= 0 the D-complex structure Kt is not C∞-pure at the 2-nd stage, therefore the Abelian
condition on just g− in Theorem 3.5.6 is not sufficient to have C∞-pureness at the 2-nd
stage, as announced in Remark 3.5.7.
Note moreover that, in this example, the functions

R 3 t 7→ dimRH
2 +
Kt

(M ;R) ∈ N and R 3 t 7→ dimRH
2−
Kt

(M ;R) ∈ N

are, respectively, lower-semi-continuous and upper-semi-continuous.

Example 3.7.2 (There exists a 4-dimensional solvmanifold endowed with an invariant
D-complex structure such that it admits a D-Kähler structure and it has small deformations
that are not D-Kähler). Consider the solvmanifold M with K0 and the deformations Kt

as in the previous Example 3.7.1. We see that M admits a symplectic form ω := e12 +
e34 which is compatible with the D-complex structure K0: therefore, (M, K0, ω) is a D-
Kähler manifold. Instead, for t 6= 0, one has H−Kt (M ;R) = R

〈
e34
〉

and therefore, if a
Kt-compatible symplectic form ωt exists, it should be in the same cohomology class as e34

and then it should satisfy

Vol(M) =

∫
M
ωt ∧ ωt =

∫
M
e34 ∧ e34 = 0 ,

which is not possible; therefore, for t 6= 0, there is no symplectic structure compatible
with the D-complex structure Kt: in particular, (M, Kt) for t 6= 0 admits no D-Kähler
structure.

Indeed, the previous example proves the following result, giving a strong difference be-
tween the D-complex and the complex cases (compare with the stability result of Kähler-
ness proved by K. Kodaira and D. C. Spencer in [52], saying that on a Kähler manifold the
deformations of complex structure Jt are all Kähler for t small).

Theorem 3.7.3 ([9, Theorem 4.2]). The property of being D-Kähler is not stable under
small deformations of the D-complex structure.

Example 3.7.1 proves also the following instability result (a similar result holds also in
the complex case, see [10, Theorem 3.2]).

Proposition 3.7.4 ([9, Proposition 4.3]). The property of being C∞-pure at the 2-nd stage
or C∞-full at the 2-nd stage is not stable under small deformations of the D-complex struc-
ture.

We recall that T. Drǎghici, T.-J. Li and W. Zhang proved in [27, Theorem 5.4] that,
given a curve of almost complex structures on a 4-dimensional compact manifold, the dimen-
sion of the almost complex anti-invariant subgroup of the real second de Rham cohomology
group is upper-semi-continuous and hence (as a consequence of [27, Theorem 2.3]) the di-
mension of the almost complex invariant subgroup of the real second de Rham cohomology
group is lower-semi-continuous. This result holds no more true in dimension greater than
4 (see [11]).
We provide two examples showing that the dimensions of the D-complex invariant and anti-
invariant subgroups of the cohomology can jump along a curve of D-complex structures,
proving that the dimensions are neither upper- nor lower- semi-continuous.

Example 3.7.5 (There exists a curve of D-complex structures on a 6-dimensional nilman-
ifold such that the dimensions of the D-complex invariant and anti-invariant subgroups
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of the real second de Rham cohomology group jump (lower-semi-continuously) along the
curve). Consider the 6-dimensional nilmanifold

M := (0, 0, 0, 12, 13, 24) .

By Nomizu’s theorem (see [66]), it is straightforward to compute

H2
dR(M ;R) = R

〈
e14, e15, e23, e26, e35, e25 + e34

〉
.

For every t ∈ [0, 1], consider the invariant D-complex structure with respect to the basis
{e1, . . . , e6}

Kt :=



1
−1

(1− t)2 − t2

(1− t)2 + t2
2t(1− t)

(1− t)2 + t2

2t(1− t)
(1− t)2 + t2

−(1− t)2 − t2

(1− t)2 + t2

1
−1


. (3.7.1)

For 0 ≤ t ≤ 1, one checks that

g+
Kt

= R 〈e1, (1− t) e3 + t e4, e5〉 and g−Kt = R 〈e2, t e3 − (1− t) e4, e6〉 ;

one can easily verify that the integrability condition of Kt is satisfied for every t ∈ [0, 1].
Indeed:

[e1, (1− t)e3 + te4] = −(1− t)e5 ∈ g+
Kt

[e1, e5] = [(1− t)e3 + te4, e5] = 0 ∈ g+
Kt

[e2, te3 − (1− t)e4] = (1− t)e6 ∈ g−Kt [e2, e6] = [te3 − (1− t)e4, e6] = 0 ∈ g−Kt .
(3.7.2)

In particular, for t ∈ {0, 1}, one has

K0 = (+ − + − +−) and K1 = (+ − − + +−) .

It is straightforward to check that K0 and K1 are C∞-pure-and-full at the 2-nd stage and

H2
dR(M ;R) = R

〈
e15, e26, e35

〉︸ ︷︷ ︸
= H2+

K0
(M ;R)

⊕ R
〈
e14, e23, e25 + e34

〉︸ ︷︷ ︸
= H2−

K0
(M ;R)

= R
〈
e14, e15, e23, e26

〉︸ ︷︷ ︸
= H2+

K1
(M ;R)

⊕ R
〈
e35, e25 + e34

〉︸ ︷︷ ︸
= H2−

K1
(M ;R)

;

therefore
dimRH

2 +
K0

(M ;R) = 3 and dimH2−
K0

(M ;R) = 3

and
dimRH

2 +
K1

(M ;R) = 4 and dimH2−
K1

(M ;R) = 2 .

Instead, for 0 < t < 1, one has

H2 +
Kt

(M ;R) = R
〈
e14, e15, e23, e26

〉
and

H2−
Kt

(M ;R) = R
〈
e14, e23, e25 + e34

〉
;
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it follows that, for 0 < t < 1, the D-complex structure Kt is neither C∞-pure at the 2-nd
stage nor C∞-full at the 2-nd stage (in fact e35 /∈ H2 +

Kt
(M ;R) and e35 /∈ H2−

Kt
(M ;R) while

e14 ∈ H2 +
Kt

(M ;R) ∩H2−
Kt

(M ;R) ); moreover, for 0 < t < 1, one gets

dimRH
2 +
Kt

(M ;R) = 4 and dimH2−
Kt

(M ;R) = 3 ;

in particular, the functions

[0, 1] 3 t 7→ dimRH
2 +
Kt

(M ;R) ∈ N and [0, 1] 3 t 7→ dimRH
2−
Kt

(M ;R) ∈ N

are non-constant and both lower-semi-continuous.

The previous examples show that the dimension of the D-complex anti-invariant sub-
group of the de Rham cohomology dimRH

− in general is not upper-semi-continuous (it is
such in Example 3.7.1) nor lower-semi-continuous (it is such in Example 3.7.5). We end this
section with an example showing that also the dimension of the D-complex invariant sub-
group of the de Rham cohomology (i.e. dimRH

+) in general is not lower-semi-continuous
(it is such in Example 3.7.1 and in Example 3.7.5).

Example 3.7.6 (There exists a curve of D-complex structures on a 6-dimensional nilman-
ifold such that the dimensions of the D-complex invariant and anti-invariant subgroups
of the real second de Rham cohomology group jump (upper-semi-continuously) along the
curve). Consider the 6-dimensional nilmanifold

M := (0, 0, 0, 12, 13, 24) .

By Nomizu’s theorem (see [66]), it is straightforward to compute

H2
dR(M ;R) = R

〈
e14, e15, e23, e26, e35, e25 + e34

〉
.

For every t ∈ [0, 1], consider the invariant D-complex structure

Kt :=



1
−1

−1
1

(1− t)2 − t2

(1− t)2 + t2
2t(1− t)

(1− t)2 + t2

2t(1− t)
(1− t)2 + t2

−(1− t)2 − t2

(1− t)2 + t2


.

For 0 ≤ t ≤ 1, one verifies that

g+
Kt

= R 〈e1, e4, (1− t) e5 + t e6〉 and g−Kt = R 〈e2, e3, t e5 − (1− t) e6〉 ;

one can straightforwardly check that the integrability condition of Kt is satisfied for every
t ∈ [0, 1]. Furthermore, one can prove that Kt is Abelian for every t ∈ [0, 1], hence it is in
particular C∞-pure at the 2-nd stage by Corollary 3.5.9.
In particular, for t ∈ {0, 1}, one has

K0 = (+ − − + +−) and K1 = (+ − − + −+) .

An easy computation shows that

H2
dR(M ;R) = R

〈
e14, e15, e23, e26

〉︸ ︷︷ ︸
= H2+

K0
(M ;R)

⊕ R
〈
e35, e25 + e34

〉︸ ︷︷ ︸
= H2−

K0
(M ;R)
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and K0 is C∞-pure-and-full at the 2-nd stage, while K1 is C∞-pure at the 2-nd stage,
non-C∞-full at the 2-nd stage and

H2
dR(M ;R) = R

〈
e14, e23, e35

〉︸ ︷︷ ︸
= H2+

K1
(M ;R)

⊕ R
〈
e15, e26

〉︸ ︷︷ ︸
= H2−

K1
(M ;R)

⊕R
〈
e25 + e34

〉
,

where
R
〈
e25 + e34

〉
∩
(
H2 +
K1

(M ;R)⊕H2−
K1

(M ;R)
)

= {0} ;

therefore
dimRH

2 +
K0

(M ;R) = 4 and dimH2−
K0

(M ;R) = 2

and
dimRH

2 +
K1

(M ;R) = 3 and dimH2−
K1

(M ;R) = 2 .

Instead, for 0 < t < 1, one has

H2 +
Kt

(M ;R) = R
〈
e14, e23

〉
and

H2−
Kt

(M ;R) = R
〈
t e26 + (1− t) e25 + (1− t) e34

〉
,

while
R
〈
e15, e35, e26

〉
∩
(
H2 +
Kt

(M ;R)⊕H2−
Kt

(M ;R)
)

= {0} ;

it follows that, for 0 < t < 1, the D-complex structure Kt is C∞-pure at the 2-nd stage and
non-C∞-full at the 2-nd stage; moreover, for 0 < t < 1, one gets

dimRH
2 +
Kt

(M ;R) = 2 and dimH2−
Kt

(M ;R) = 1 :

in particular, the functions

[0, 1] 3 t 7→ dimRH
2 +
Kt

(M ;R) ∈ N and [0, 1] 3 t 7→ dimRH
2−
Kt

(M ;R) ∈ N

are non-constant and both upper-semi-continuous.

We resume the contents of Examples 3.7.1, 3.7.5 and 3.7.6 in the following proposition.

Proposition 3.7.7. Let M be a compact manifold and let {Kt}t∈I be a curve of D-complex
structures on M , where I ⊆ R. Then, in general, the functions

I 3 t 7→ dimRH
2 +
Kt

(M ;R) ∈ N and I 3 t 7→ dimRH
2−
Kt

(M ;R) ∈ N

are not upper-semi-continuous or lower-semi-continuous.



Chapter 4

D-Kähler Ricci-flat metrics

In this chapter, we will address some results concerning the Ricci-flat D-Kähler mani-
folds and their special Lagrangian submanifolds. These manifolds are D-Kähler manifolds
with trivial canonical bundle, that is the D-analogous of the Calabi-Yau manifolds in the
D-settings. Since there is a symplectic form ω, it makes sense to consider Lagrangian sub-
manifolds. Recently, F.R. Harvey and H.B. Lawson [40] show that this setting is closed
related to calibrated submanifolds in semi-Riemannian geometry (see [60]) and to the op-
timal transport problem (see [48]).

After presenting some properties of Ricci-flat D-Kähler manifolds, we try to extend
such properties to a larger class of almost D-Hermitian manifolds.

We begin this chapter recalling some results and properties about Ricci-flat D-Kähler
metrics (see Section 4.1) and giving some examples of such manifolds, remarking the dif-
ference of the D-setting with the usual complex case (see Section 4.2).

Then in Section 4.3 we introduce the space Ω2(TM), that is the natural space where to
study the D-Hermitian connections, which will be introduced in the next Section 4.4.

Finally in Section 4.5 we give a generalization of a result of F.R. Harvey and H.B. Lawson
(see [40, Proposition 16.3]) concerning Lagrangian submanifolds of symplectic almost D-
complex manifolds.

4.1 Properties of D-Kähler Ricci flat metrics

Definition 4.1.1. A D-line bundle on an arbitrary manifold M (not necessarily D-ma-
nifold) is a family of free D-modules over M which is locally isomorphic to U ×D on an
open set U of M , and whose transition functions are smooth D+-valued functions.
A (D-)holomorphic line bundle over a D-manifold M is a D-line bundle such that the
transition functions are D-holomorphic.

We note that the transition functions are chosen on D+ because we want the orientabil-
ity of the line bundle.

The bundle κ := ∧n,0K M of the holomorphic n-forms on a D-complex manifold M

is called canonical bundle. We see that it has transition functions given by detD

(
∂ zi

∂ zj

)
,

which are holomorphic with values in D+. In local standard-coordinates or null-coordinates
we can write a holomorphic n-form Φ as:

Φ = F (z)d z1 ∧ · · · ∧ d zn

= ef(u1
+, . . . , u

n
+)du−+ ∧ · · · ∧ dun+ + ēg(u1

−, . . . , u
n
−)du1

− ∧ · · · ∧ dun−.
(4.1.1)

We make the following definition, in analogy with the complex case.

81
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Definition 4.1.2. A D-Calabi-Yau manifold is a D-Hermitian manifold M which has
a nowhere vanishing holomorphic section ε of the canonical bundle ∧n,0K (M) (we do not

require M to be Kähler). We call the curvature of the canonical line bundle on ∧n,0K the
2-form Ω defined by:

Ω = τ ∂ ∂ log ||ε||. (4.1.2)

We have:

Proposition 4.1.3. On a D-Calabi-Yau manifold the curvature Ω of the canonical bundle
is independent of the section ε.

Proof. In local holomorphic coordinates z = (z1, . . . , zn) we have ε = f(z) d z1 ∧ · · · ∧ d zn,
where f(z) is a D-holomorphic function such that ‖ε‖2 = cf(z)f(z) with c = c(z) > 0. In
particular f(z) has positive norm:

τ ∂ ∂ log ||ε|| = τ ∂ ∂ log ‖c‖+ τ ∂ ∂ log(f(z)f(z)) = τ ∂ ∂ log ||c||. (4.1.3)

If we change coordinates to z′, the determinant of ∂ z/ ∂ z′ gives a new coefficient c′ =
c(∂ z/ ∂ z′)(∂ z/ ∂ z′) and again τ ∂ ∂ log ‖c‖ = τ ∂ ∂ log ‖c′‖ since the coordinates change is
holomorphic.

Proposition 4.1.4. Let (M,K, g) be a D-Kähler manifold, and Ω the curvature of its
canonical bundle as above and set Ric as the Ricci curvature of the Levi-Civita connection
on TM . Then we have:

Ω(X,Y ) = −Ric(X,KY ). (4.1.4)

Furthermore, the canonical bundle is flat if and only if the Ricci curvature of M is zero.

Proof. The proof is similar to the complex case and therefore it is omitted (see also [2,
Proposition 5.6] to compare Ω and Ric in local coordinates).

Definition 4.1.5. A Ricci-flat Kähler D-manifold (M, g, ω, ε) is a D-Kähler manifold with
Ric = 0.

Remark 4.1.6. We see that a Ricci-flat Kähler D-manifold has holonomy group contained in
the group SUn(D), exactly as, in the complex case, it happens to the Calabi-Yau manifolds
to have holonomy group contained in SUn(C).

We can characterize these manifolds with a property similar to that one which happens
for complex case (see e.g. [43]). We describe this property in the D-complex setting or in
the adapted-setting, as we done in the following two propositions.

Proposition 4.1.7 ([40, Proposition 11.2]). A Ricci-flat Kähler D-manifold is equivalent
to the data of a symplectic 2n-dimensional manifold (M,ω) together with two d-closed real
n-forms ψ,ϕ such that:

1. Φ := ψ + τϕ is a decomposable (i.e. simple) D-valued n-form,

2. Φ ∧ ω = 0, i.e. ψ ∧ ω = ϕ ∧ ω = 0,

3. it happens that

Φ ∧ Φ̄ =

{
ωn if n even,

−τωn if n odd.
(4.1.5)
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Proof. First of all, note that given a Ricci-flat Kähler D-manifold, then we have that Φ ∈ κ
satisfies the previous conditions, provided that ψ and ϕ are its real and imaginary parts.
Conversely, let (M,ω) be a symplectic manifold satisfying point 1 to 3. Because of 1, we
can write locally Φ := ψ + τϕ = θ1 ∧ · · · ∧ θn for some 1-forms θ1, . . . , θn. Let Σ be the
subbundle of T ∗M ⊗D spanned by θ1, . . . , θn. Note that if θi is a null-element in T ∗M ⊗D
(say τθi = θi), then locally:

θi ∧ θi = (d ei + τ d ei) ∧ (d ei − τ d ei) = 0 (4.1.6)

which is in contrast with 3 and the fact that ωn 6= 0 (since the manifold is symplectic).
Then by 0 6= Φ ∧ Φ̄ = ωn (resp. −τωn) we have T ∗M = Σ + Σ̄ and this defines an almost
D-complex structure on M : a 1-form α is of type (1, 0) if and only if α∧Φ = 0. Obviously
θi ∈ ∧1,0 and they form a basis of (1, 0)-forms.
Now let us show that such a D-structure is integrable: take α ∈ ∧1,0 and write:

dα =
∑
i,j

aijθ
i ∧ θj +

∑
i,j

bijθ
i ∧ θ̄j +

∑
i,j

cij θ̄
i ∧ θ̄j . (4.1.7)

But since α ∧ Φ = 0 we get by the closeness of Φ:

0 = d(α ∧ Φ) = d(α) ∧ Φ− α ∧ d(Φ) = d(α) ∧ Φ; (4.1.8)

this implies cij = 0 and hence d∧1,0 ⊂ ∧2,0 + ∧1,1, which shows that such a D-structure is
integrable. In fact, this implies that given X,Y ∈ T 1,0M then [X,Y ] ∈ T 1,0M and then we
apply the Frobenius theorem.
Finally we see that ω, as a 2-form, can be split in a similar way as in (4.1.7). Condition
2 implies that ω has no (0, 2)-part, and since it is real we have ω ∈ ∧1,1M . Setting
g(·, ·) := ω(·,K·) we have that (M,ω,K) is a D-Kähler manifold.
Finally, since Ψ is closed we see it is an holomorphic n-form, and by condition 3 we get that
it is a non-vanishing holomorphic section of κ with constant length, hence ∂ ∂ log ||Ψ|| = 0
and by Proposition 4.1.4 it is a Ricci-flat manifold.

Proposition 4.1.8 ([40, Proposition 11.3]). A Ricci-flat Kähler D-manifold is equivalent
to the data of a symplectic 2n-dimensional manifold (M,ω) together with two d-closed real
n-forms α, β such that:

1. Φ := eα+ ēβ is D-valued n-form and the real forms α, β are decomposable,

2. Φ ∧ ω = 0, i.e. α ∧ ω = β ∧ ω = 0,

3. α ∧ β = ωn.

Proof. Set α = ψ + ϕ and β = ψ − ϕ and note that

(α1 ∧ · · · ∧ αn)e+ (β1 ∧ · · · ∧ βn)ē = (α1e+ β1ē) ∧ · · · ∧ (βne+ αnē). (4.1.9)

Then it easily follows the equivalence between Propositions 4.1.7 and 4.1.8.

4.2 Examples of D-Kähler Ricci flat manifolds

In the following examples, we construct a Ricci-flat Kähler D-structure on nilmanifolds,
showing how different are the complex and the double geometry. In fact, it is well known
that the only Kähler nilmanifold is the torus, and hence it is the only example of Calabi-Yau
structure over nilmanifolds.
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Example 4.2.1. Let g be the nilpotent Lie algebra which dual space g∗ is defined by the
structure equations: 

d e1 = d e2 = 0

d e3 = e1 ∧ e2

d e4 = e1 ∧ e3

d e5 = e2 ∧ e3

d e6 = e1 ∧ e4.

LetG be a simply-connected nilpotent Lie group whose Lie algebra is g. By Malcev theorem,
there exists a discrete subgroup Γ ⊂ G and hence a quotient M = Γ\G, and {ei} is a basis
of global 1-forms. With the notation of Section 1.6 we have:

g := (0, 0, 12, 13, 23, 14). (4.2.1)

We can define an almost D-complex structure K given by:

K(e1) = e1 K(e2) = −e2 K(e3) = −e3

K(e4) = e4 K(e5) = −e5 K(e6) = e6.

We set

g := −1

6
e1 � e5 +

1

6
e2 � e4 − e3 � e4 + e2 � e6.

It is easy to verify that:

1. K is a D-complex integrable structure, since NK = 0 where NK is the torsion tensor
of the D-structure K;

2. the pseudo-Riemannian metric g is compatible with K
(i.e. g(KX,KY ) = −g(X,Y ));

3. the fundamental Kähler form ω(·, ·) = g(·,K·) is closed, where

ω = +
1

6
e1 ∧ e5 +

1

6
e2 ∧ e4 − e3 ∧ e4 + e2 ∧ e6.

Then, (M,K,ω) defines a Kähler D-manifold. Now we want to prove that it is also a
Ricci-Flat Kähler D-manifold. Now we set:

ϕ =
1

2

(
e1 ∧ e4 ∧ e6 + e2 ∧ e3 ∧ e5

)
ψ =

1

2

(
e1 ∧ e4 ∧ e6 − e2 ∧ e3 ∧ e5

)
Φ = ϕ+ τψ.

We can see that Φ is a global (3, 0)-form no-where vanishing, indeed

α1 :=
(e1 + e2)

2
+
τ(e1 − e2)

2
,

α2 :=
(e4 + e3)

2
+
τ(e4 − e3)

2
,

α3 :=
(e6 + e5)

2
+
τ(e6 − e5)

2

is a basis of (1, 0)-forms, and is easy to see that Φ∧αi is zero for i = 1, 2, 3 (in fact we have
α1 ∧ α2 ∧ α3 = Φ).
Moreover we have:
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1. ϕ,ψ are closed real 3-forms,

2. Φ is a simple (decomposable) D-valued 3-form,

3. Φ ∧ ω = 0,

4. Φ ∧ Φ = −τω3

then (M, g,K) is a D-Kähler Ricci flat manifold (as stated in Proposition 4.1.7), and the
global (n, 0)-form (a (3, 0)-form in this case) is Φ.

Example 4.2.2. We construct a similar example for the nilpotent Lie algebra n defined
by the structure equations: 

d e1 = d e2 = d e3 = 0

d e4 = e1 ∧ e2

d e5 = e1 ∧ e3 + e1 ∧ e4

d e6 = e2 ∧ e4.

Let G′ be a simply-connected nilpotent Lie group whose Lie algebra is n. By Malcev
theorem, there exists a discrete subgroup Γ ⊂ G′ and hence a discrete quotient N = Γ\G′,
and {ei} is a basis of global 1-forms.
We define a D-complex structure K by:

K(e1) = e1 K(e2) = −e2 K(e3) = e3

K(e4) = −e4 K(e5) = e5 K(e6) = −e6,

and set

ω = +
1
3
√

6
e1 ∧ e6 +

1
3
√

6
e3 ∧ e4 − 1

3
√

6
e5 ∧ e2

which is a (1, 1)-closed form. Moreover we have the (1, 0)-forms:

ϕ1 :=
(e1 + e2)

2
+
τ(e1 − e2)

2
,

ϕ2 :=
(e3 + e4)

2
+
τ(e3 − e4)

2
,

ϕ3 :=
(e5 + e6)

2
+
τ(e5 − e6)

2

and we define a (3, 0) form Φ = ϕ1 ∧ ϕ2 ∧ ϕ3 closed and no-where vanishing and we have
that:

Φ ∧ Φ = −τω3.

Again, by Proposition 4.1.7, we get an other example of Ricci-flat Kähler D-manifold.

4.3 The space Ω2(TM)

Our goal is to extend some results from the theory of Ricci-flat D-Kähler manifolds to other
manifolds, dropping out the D-Kähler condition. But to obtain this, we have that K is no
more parallel with respect to Levi-Civita connection (if not, by Proposition 1.5.3 it follows
that the manifold is D-Kähler). As in the complex case, there are two ways to work with
non-Kähler manifolds. The first one is working with Levi-Civita connection despite the
fact that DK 6= 0. A result that can be obtained in this way is a classification of almost
D-Hermitian structures: by studying the behavior of Dω (where ω is the fundamental 2-
form), P. Gadea and J.M. Masque [35] obtained a classification of such structures similar
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to the classification of almost Hermitian structures made by A. Gray and L.M. Hervella
[38].

The second way is to find some other connections ∇ with torsion, preserving both K
and g (in fact, we use metric connections).

However, in this section we follow the second way, so we will study the set of D-
Hermitian canonical connections:

{∇g = ∇K = 0} (4.3.1)

in a similar way as done by P. Gouduchon on almost complex Hermitian manifolds [37].
The study of this set has been done in the D-complex case by S. Ivanov and S. Zamkovoy
[45]. We will recall some properties of such connection and try to complete the picture of
these connections.

We begin with the study of the space Ω2(TM).
Let (M, g,K) be an almost D-Hermitian manifold. The integrability and the closeness

of the fundamental 2-form are not necessary conditions through this section.
First of all, consider the space of TM -valued 2-forms, that we will denoted by Ω2(TM),

and the same notation will be used for the space of sections. As obvious, such a space is
isomorphic to TM ⊗ ∧2TM , hence a B ∈ Ω2(TM) can be identified with a tri-linear form
which is anti-symmetric on the last two entries, i.e.:

B(X,Y, Z) = g(X,B(Y, Z)). (4.3.2)

In particular, ∧3M ⊂ Ω2(TM), and the Bianchi projector :

b : Ω2(TM) −→ ∧3M

b(B)(X,Y, Z) =
1

3
(B(X,Y, Z) +B(Y, Z,X) +B(Z,X, Y ))

(4.3.3)

is surjective, and ker b is the set of all the B satisfying the Bianchi identity.
Moreover, fixed an orthonormal basis {X1, . . . , X2n} for g such that

g(Xi, Xi) =

{
+1 if 0 6 i 6 n

−1 if n+ 1 6 i 6 2n
and Xn+i = KXi for 0 6 i 6 n, (4.3.4)

we define the trace projector by:

tr : Ω2(TM) −→ ∧1M

trB(X) =
2n∑
i=1

B(Xi, Xi, X).
(4.3.5)

Because of the trace is onto, we want to define a function, denoted by ·̃, from the space of
1-forms into the space Ω2(TM) such that for a 1-form α it happens that tr(α̃) = α. This
function is defined by:

·̃ : ∧1M −→ Ω2(TM)

α̃(X,Y, Z) =
1

2n− 1

(
α(Z)g(X,Y )− α(Y )g(X,Z)

)
.

(4.3.6)

It easily follows from (4.3.5) that if β ∈ ∧3M then trβ = 0 and if α ∈ ∧1M then bα̃ = 0,
and we get the following decomposition as in the complex case (see [37, Equations (1.2.4),
(1.2.5)]):

Ω2(TM) = ∧1M ⊕ (Ω2(TM))0 ⊕ ∧3M, (4.3.7)
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this means that any B ∈ Ω2(TM) can be written as:

B = t̃rB +B0 + bB, (4.3.8)

where ∧1M and ∧3M are the images of (4.3.6) and of (4.3.3) respectively, and (Ω2(TM))0

is the set of elements satisfying Bianchi identity and trace-free.

It is possible to divide the space Ω2(TM) into 3 other sub-classes as follows:

Definition 4.3.1. We say that element B ∈ Ω2(TM) is:

1. of type I if B(KX,KY ) = −B(X,Y ),

2. of type II if B(KX,Y ) = KB(X,Y ),

3. of type III if B(KX,Y ) = −KB(X,Y ),

for any X,Y ∈ TM . The subspaces of Ω2 will be denoted respectively by ΩI, ΩII and
ΩIII. All elements B ∈ Ω2(TM) can be written, accordingly with this decomposition, in
the following way B = BI +BII +BIII.

It follows that the projections over ΩI, ΩII and ΩIII are given respectively by:

BI(X,Y ) =
1

2

(
B(X,Y )−B(KX,KY )

)
,

BII(X,Y ) =
1

4

(
B(X,Y ) +KB(KX,Y ) +KB(X,KY ) +B(KX,KY )

)
,

BIII(X,Y ) =
1

4

(
B(X,Y )−KB(KX,Y )−KB(X,KY ) +B(KX,KY )

)
.

(4.3.9)

Remark 4.3.2. Some authors use the notation type (1, 1), (2, 0), (0, 2) for type I, II, III
respectively (see e.g. S. Ivanov and S. Zamkovoy [45]). We stress that this type decomposi-
tion is different from the decomposition in (1.3.10) (i.e. the (p+, q−)-type decomposition)
or that one in (1.3.15) (i.e. the (p.q)-type decomposition). In particular, these elements
are real (we have not D-complexificated the tangent bundle) and the type II = (2, 0) and
III = (0, 2) are not conjugate each other, as (4.3.9) shows. To avoid this confusion we prefer
the notation as in Definition 4.3.1. However, these type decompositions are related, as the
next Proposition 4.3.3 shows.

We introduce the involution In of Ω2(TM) defined by:

InB(X,Y, Z) = B(X,KY,KZ) X,Y, Z ∈ TM. (4.3.10)

Note that In2 = + Id and the eigenspace with respect to +1 (resp. −1) is ΩII ⊕ΩIII (resp.
ΩI).

Any ψ ∈ ∧3M has hence two decompositions: one as a 3-form, and one as a section of
Ω2(TM). In other words, in addition to the type decomposition ψ = ψI + ψII + ψIII, as a
3-form we can write ψ = ψ+ + ψ− where ψ+ = ψ2,1

+− + ψ1,2
+− and ψ− = ψ3,0

+− + ψ0,3
+− with

respect to ∧3M = ∧3,0
+−M ⊕ ∧

2,1
+−M ⊕ ∧

1,2
+−M ⊕ ∧

0,3
+−M . Explicitly we have:

ψ+(X,Y, Z) =
1

4

(
3ψ(X,Y, Z)− ψ(X,KY,KZ)− ψ(KX,Y,KZ)− ψ(KX,KY,Z)

)
,

ψ−(X,Y, Z) =
1

4

(
ψ(X,Y, Z) + ψ(X,KY,KZ) + ψ(KX,Y,KZ) + ψ(KX,KY,Z)

)
,

(4.3.11)
and we will denote these spaces by ∧3,+M and ∧3,−M .

These two decompositions are related by the following:
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Proposition 4.3.3. For any ψ ∈ ∧3M ⊂ Ω2(TM) it holds:

ψ− = ψIII and ψ+ = ψII + ψI. (4.3.12)

Proof. The first equality is a consequence of (4.3.9) and of (4.3.11) when we read the III
part as a 3-form through the identification (4.3.2). The second one now follows easily by
subtraction and by the splitting of Ω2(TM) and of ∧3M as explained before (or it follows
by a similar argument to the previous one).

Moreover, from this proposition and the fact that InψI = −ψI and that InψII = ψII

(and the same for the (III)-type), we can write:

ψI =
1

2

(
ψ+ − In(ψ+)

)
, (4.3.13)

and hence

ψII =
1

2

(
ψ+ + In(ψ+)

)
. (4.3.14)

Now we investigate the relationship between the decomposition of type I, II and III and
the decomposition (4.3.8). For any of the subspaces ΩI, ΩII, ΩIII the following properties
are valid:

Proposition 4.3.4. The space ΩI can be split in ΩI
s ⊕ ΩI

a, where ΩI
s := ker(b|ΩI) and ΩI

a

is orthogonal to ΩI
s.

Moreover, the Bianchi projector b : ΩI
a

∼=→ ∧3,+M is an isomorphism, in particular, for any
A ∈ ΩI

a we have that bA ∈ ∧3,+M and

A =
3

4
(bA− In(bA)), (4.3.15)

i.e. on α ∈ ∧3,+M the inverse of Bianchi projector is
3

4
(α− Inα) =: b−1(α) ∈ ΩI

a.

Proof. The first part of the proposition is obvious.
Let A ∈ ΩI

a, and consider bA ∈ ∧3 (this because of (4.3.8)). We see that if X,Y, Z ∈
TM+ then A(X,Y, Z) = A(X,KY,KZ) = −A(X,Y, Z) hence bA has no (3+, 0−)-part.
Analogously we have the vanishing of the (0+, 3−)-part, and we get that bA ∈ ∧3,+M .
The Bianchi projector is injective, since if bA = 0, then A ∈ ΩI

s ∩ ΩI
a = {0} and A = 0.

To prove the surjectiveness, let α+ be in ∧3,+M . By Proposition 4.3.3 α+ = αI + αII and

by (4.3.13) αI =
1

2

(
α+ − In(α+)

)
. By using (4.3.13) we have:

b(αI) =
1

2

(
b(α+)− b(Inα+)

)
=

1

2

(
α+ +

1

3
α+
)

=
2

3
α+

(4.3.16)

i.e. α+ =
3

2
b(αI). Again using (4.3.13) we obtain (4.3.15).

Proposition 4.3.5. The Bianchi projector b : ΩII
∼=→ ∧3,+M is an isomorphism. More

precisely, for any B ∈ ΩII, we have that bB ∈ ∧3,+M and

B =
3

2
(bB + In(bB)) (4.3.17)

i.e. on α ∈ ∧3,+M the inverse of Bianchi projector is
3

2
(α+ Inα) =: b−1(α) ∈ ΩII.

Moreover, if B ∈ ΩII then trB = 0, that is B is trace-free.
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Proof. Let B ∈ ΩII, and consider bB ∈ ∧3M (this because of (4.3.8)). If X,Y, Z ∈
TM+ then B(X,Y, Z) = B(X,KY,Z) = −B(KX,Y, Z) = −B(X,Y, Z) hence bB has no
(3+, 0−)-part. An analogous computation for the (0+, 3−)-part gets that bB ∈ ∧3,+M .
To prove injectiveness, let bB = 0, and computing on (X,KY,KZ) we obtain:

0 = B(X,KY,KZ) +B(KY,KZ,X) +B(KZ,X,KY ) + 0

= B(X,Y, Z)−B(Y,Z,X)−B(Z,X, Y ) + 3bB(X,Y, Z)

= 2B(X,Y, Z)

(4.3.18)

i.e. B = 0.
Now take β+ ∈ ∧3,+M , then Proposition 4.3.3 yields β+ = βI + βII and equation (4.3.14)

gives βI =
1

2

(
β+ + In(β+)

)
. Using (4.3.14) we have:

b(βII) =
1

2

(
b(β+) + b(Inβ+)

)
=

1

2

(
β+ − 1

3
β+
)

=
1

3
β+,

(4.3.19)

i.e. β+ = 3b(βII). From this last equality, and using (4.3.14), we obtain (4.3.17).
Finally, an easy computation shows that, if B ∈ ΩII, then:

trB(X) =
2n∑
i=1

B(ei, ei, X) =
n∑
i=1

B(ei, ei, X) +B(en+i, en+i, X)

=
n∑
i=1

B(ei, ei, X) +B(Kei,Kei, X) =
n∑
i=1

B(ei, ei, X)−B(ei, ei, X) = 0.

(4.3.20)

This ends the proof of the proposition.

Proposition 4.3.6. For any C ∈ ΩIII, we have that bC ∈ ΩIII. In particular as a 3-form,
bC ∈ ∧3,−M .

Proof. By (4.3.8), given C ∈ ΩIII it holds bC ∈ ∧3M . If X,Y ∈ TM+, Z ∈ TM− then:

bC(X,Y, Z) =
1

3

(
C(X,Y, Z) + C(Y,Z,X) + C(Z,X, Y )

)
=

1

3

(
−C(X,Y,KZ)− C(Y,KZ,X) + C(KZ,X, Y )

)
=

1

3

(
−C(KX,Y, Z)− C(KY,Z,X)− C(Z,KX, Y )

)
=

1

3

(
−C(X,Y, Z)− C(Y,Z,X)− C(Z,X, Y )

)
= −bC(X,Y, Z).

(4.3.21)

Hence bC has no (2+, 1−)-part. Analogously for the (1+, 2−)-part, and we get that bC ∈
∧3,+M . By Proposition 4.3.3, we have also bC ∈ ΩIII.

Remark 4.3.7. From Propositions 4.3.4 and 4.3.5 we see that there is an isomorphism Ψ
between ΩII and ΩI

a:

Ψ : ΩII ∼=−→ ΩI
a

Ψ(B) =
3

4
(bB − In(bB)) for B ∈ ΩII,

Ψ−1(A) =
3

2
(bA+ In(bA)) for A ∈ ΩI

a.

(4.3.22)
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4.4 Special Hermitian connection on D-manifolds

We now have all the necessary tools to introduce the D-Hermitian connections.

Definition 4.4.1. A connection ∇ on an almost D-Hermitian manifold is said to be D-
Hermitian if ∇ is both metric:

∇g = 0 (4.4.1)

and the almost D-complex structure K is parallel for ∇ (or ∇ is compatible with the almost
D-complex structure, briefly ∇ is D-compatible):

∇K = 0, i.e. ∇XKY = K∇XY X, Y ∈ TM. (4.4.2)

We define the potential A for a D-Hermitian connection ∇ as:

A(X,Y, Z) := g(∇XY, Z)− g(DXY,Z) X,Y, Z ∈ TM, (4.4.3)

and the torsion of a connection as:

T∇(X,Y ) := ∇XY −∇YX −∇[X,Y ] X,Y ∈ TM, (4.4.4)

(we will drop the upper index in T∇ when there is no confusion about the connection with
respect to the torsion is considered).

Recall the following properties for the Levi-Civita connection D:

Dg = 0 i.e. DXg(Y,Z) = Xg(Y,Z) = g(DXY, Z) + g(Y,DXZ) (4.4.5)

TD = 0 i.e. [X,Y ] = DXY −DYX. (4.4.6)

Remark 4.4.2. Note that while the torsion T∇ of any connection is an element of Ω2(TM)
(even if the connection is not D-compatible or is not metric), the same is not true for a
generic potential. However, the potential of a D-Hermitian connection is in Ω2(TM), since
∇g = 0, in fact (using the identification (4.3.2)):

A(X,Y, Z) = g(∇XY,Z)− g(DXY, Z)

= −g(Y,∇XZ) +∇Xg(Y,Z) + g(Y,DXZ)−DXg(Y, Z)

= −g(∇XZ, Y ) +Xg(Y,Z) + g(DXZ, Y )−Xg(Y,Z)

= −g(∇XZ, Y ) + g(DXZ, Y ) = −A(X,Z, Y ).

(4.4.7)

Remark 4.4.3. Setting T (X,Y, Z) = g(X,T (X,Y )), the potential and the torsion of a D-
Hermitian connection are related by:

T = −A+ 3bA A = −T +
3

2
bT. (4.4.8)

In particular it follows from (4.4.8):

bA =
1

2
bT trA = −trT. (4.4.9)

Moreover, the decomposition (4.3.8) yields A0 = −T 0.

We conclude that any D-Hermitian connection is completely determinated by its torsion
(or, equivalently, by its potential).
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Proof of (4.4.8) and (4.4.9). In fact:

T (X,Y, Z) = g(X,∇Y Z −∇ZY − [Y,Z])

= g(X,∇Y Z) + g(∇ZX,Y )− Zg(X,Y ) + g(X,−DY Z +DZY )

= A(Y, Z,X) + g(∇ZX,Y )− Zg(X,Y )− g(DZX,Y ) + Zg(X,Y )

= A(Y, Z,X) +A(Z,X, Y )±A(X,Y, Z) = −A(X,Y, Z) + 3bA(X,Y, Z),

(4.4.10)

while for the second one of (4.4.8), using that both∇ andD are metrics and that Levi-Civita
is torsion-free, we get:

2A(X,Y, Z) = 2g(∇XY, Z)± g(∇YX,Z)± g([X,Y ], Z)− 2g(DXY,Z)

= T (Z,X, Y ) + g(∇XY,Z) + g(∇YX,Z) + g([X,Y ], Z)− 2g(DXY,Z)

= T (Z,X, Y )± g([Z,X], Y )± g(∇ZX,Y )− g(Y,∇XZ) +Xg(Y,Z)

− g(X,∇Y Z) + Y g(X,Z) + g(DXY −DYX,Z)− 2g(DXY,Z)

= T (Z,X, Y ) + T (Y, Z,X) + g([Z,X], Y )− g(∇ZX,Y ) + g(DXY,Z)

+ g(Y,DXZ)− g(X,∇Y Z) + g(DYX,Z) + g(X,DY Z)− g(DXY +DYX,Z)

= T (Z,X, Y ) + T (Y,Z,X) + g(DZX −DXZ, Y ) + g(X,∇ZY )

− Zg(X,Y ) + g(Y,DXZ)− g(X,∇Y Z) + g(X,DY Z)

= T (Z,X, Y ) + T (Y,Z,X) + g(DZX,Y ) + g(X,∇ZY )− g(DZX,Y )

− g(X,DZY )− g(X,∇Y Z) + g(X,DY Z)

= T (Z,X, Y ) + T (Y,Z,X) + g(X,∇ZY −∇Y Z) + g(X,DY Z −DZY )

= T (Z,X, Y ) + T (Y,Z,X) + g(X,∇ZY −∇Y Z − [Z, Y ]).

(4.4.11)

Hence by definitions of Bianchi projector (4.3.3) and of torsion (4.4.4) we have from the
previous equation:

A(X,Y, Z) =
1

2
(T (Z,X, Y ) + T (Y,Z,X) + T (X,Y, Z)− 2T (X,Y, Z))

= −T (X,Y, Z) +
3

2
bT (X,Y, Z).

(4.4.12)

Now the first one of (4.4.9) follows from (4.4.8):

3bA = T +A =
3

2
bT (4.4.13)

and the second one from the fact that tr(b) = 0 (see (4.3.5)):

trA = −trT +
3

2
tr(bT ) = −trT. (4.4.14)

This concludes the proof.

Remark 4.4.4. On an almost D-Hermitian manifold, also the following tensors can be
considered as elements of Ω2(TM): the Nijenhuis tensor

NK(X;Y,Z) = g(X,NK(Y,Z)), (4.4.15)

and the covariant derivative of the D-Kähler form with respect to the Levi-Civita connection

Dω(X,Y, Z) =
(
DXω

)
(Y, Z). (4.4.16)
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Indeed, while the first one is an immediate consequence of the definition of Nijenhuis tensor,
for the second one we have:(

DXω
)
(Y,Z) = Xω(Y,Z)− ω(DXY, Z)− ω(Y,DXZ)

= −Xω(Z, Y ) + ω(Z,DXY ) + ω(DXZ, Y ) = −
(
DXω

)
(Y,Z)

(4.4.17)

which justifies that Dω(X,Y, Z) ∈ Ω2(TM).

We have the following proposition, which explains the relations between NK , dω,
Dω(X,Y, Z) and the decomposition type exposed before.

Proposition 4.4.5 ([45, Proposition 3.1]). We have, on an almost D-Hermitian manifold,
the following properties:

1. the Nijenhuis tensor NK is of type III. Moreover we have:

3bNK = 4(dD ω)−; (4.4.18)

2. the component (Dω)I vanishes identically, i.e. we have:

Dω = (Dω)II + (Dω)III; (4.4.19)

3. more precisely, we have that the component (Dω)III is determined by NK as follows:

(Dω)III(X,Y, Z) =
1

4

(
NK(KX,Y, Z)−NK(KY,Z,X)−NK(KZ,X, Y )

)
= −1

2
(g(DX(K)Y +DKX(K)KY,Z))

(4.4.20)

or, equivalently:

(Dω)III(X,Y, Z) = (dω)−(X,Y, Z) +
1

2
NK(KX,Y, Z); (4.4.21)

4. the component (Dω)II is determinated by (dω)+, more precisely:

(Dω)II(X,Y, Z) =
1

2

(
dω+(X,Y, Z) + dω+(X,KY,KZ)

)
. (4.4.22)

Proof. We separate the proof into four points.
Proof of 1. From (1.3.4) we have:

NK(KX,Y ) = −KNK(X,Y ) (4.4.23)

then NK ∈ ΩIII. Using (4.3.11) we have:

(dD ω)−(X,Y, Z) =
1

4

(
dD ω(X,Y, Z) + dD ω(X,KY,KZ)+

dD ω(KX,Y,KZ) + dD ω(KX,KY,Z)
)

= −1

4

(
+dω(KX,KY,KZ) + dω(KX,Y, Z)

+ dω(X,KY,Z) + dω(X,Y,KZ)
)
.

(4.4.24)

We expand using the following relation for the differential dα of a 2-form α

dα(X,Y, Z) = Xα(Y,Z) + Y α(Z,X) + Zα(X,Y )

− α([X,Y ], Z)− α([Y,Z], X)− α([Z,X], Y )
(4.4.25)
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we get:

(dD ω)−(X,Y, Z) = −1

4

(
KXg(KY,Z) +KY g(KZ,X) +KZg(KZX,Y )

− g([KX,KY ], Z)− g([KY,KZ], X)− g([KZ,KX], Y )

+KXg(Y,KZ) + Y g(Z,X) + Zg(KX,KY )

− g([KX,Y ],KZ)− g([Y,Z], X)− g([Z,KX],KY )

+Xg(KY,KZ) +KY g(Z,KX) + Zg(X,Y )

− g([X,KY ],KZ)− g([KY,Z],KX)− g([Z,X], Y )

+Xg(Y, Z) + Y g(KZ,KX) +KZg(X,KY )

− g([X,Y ], Z)− g([Y,KZ],KX)− g([KZ,X],KY )
)
.

(4.4.26)

We simplify using (1.4.2) and (4.3.3) to obtain

(dD ω)−(X,Y, Z) =
1

4

(
g(Z, [KX,KY ] + [X,Y ]−K[KX,Y ]−K[X,KY ])

+ g(X, [KY,KZ] + [Y,Z]−K[KY,Z]−K[Y,KZ])

+ g(Y, [KZ,KX] + [Z,X]−K[KZ,X]−K[Z,KX])
)

=
1

4

(
g(Z,NK(X,Y )) + g(X,NK(Y, Z) + g(Y,NK(Z,X)

)
=

3

4
bNK(X,Y, Z),

(4.4.27)

which concludes the proof of 1.

Proof of 2. An easy computation shows:

Dω(X,Y, Z) = (DXω)(Y, Z)

= DXω(Y, Z)− ω(DXY,Z)− ω(Y,DXZ)

= Xg(Y,KZ)− g(DXY,KZ)− g(Y,KDXZ)

= Xg(Y,KZ)−Xg(Y,KZ) + g(Y,DXKZ) + g(KY,DXZ)

= g(Y,DXKZ) +Xg(KY,Z)− g(DXKY,Z)

= −g(KY,KDXKZ) +Xg(KY,Z)− g(DXKY,Z)

= −ω(KY,DXKZ) +DXω(KY,KZ)− ω(DXKY,KZ)

= (DXω)(KY,KZ) = Dω(X,KY,KZ),

(4.4.28)

and by (4.3.9) we have:

DωI(X,Y, Z) =
1

2

(
DXω(Y,Z)−DXω(KY,KZ)

)
= 0. (4.4.29)

Proof of 3. We first prove the (4.4.20). Using (4.3.3) we have:

(Dω)III(X,Y, Z) =
1

4

(
(Dω)(X,Y, Z) + (Dω)(KX,KY,Z)

+ (Dω)(KX,Y,KZ) + (Dω)(X,KY,KZ)
)

=
1

4

(
(DXω)(Y,Z) + (DKXω)(KY,Z)

+ (DKXω)(Y,KZ) + (DXω)(KY,KZ)
)
.

(4.4.30)
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Hence:

(Dω)III(X,Y, Z) =
1

4

(
Xg(Y,KZ)− g(DXY,KZ)− g(Y,KDXZ)

+KXg(KY,KZ)− g(DKXKY,KZ)− g(KY,KDKXZ)

+KXg(Y,Z)− g(DKXY,Z)− g(Y,KDKXKZ)

+Xg(KY,Z)− g(DXKY,Z)− g(KY,KDXKZ)
)

=
1

4

(
−g(DXY,KZ) + g(KY,DXZ)− g(DKXKY,KZ) + g(Y,DKXZ)

− g(DKXY,Z) + g(KY,DKXKZ)− g(DXKY,Z) + g(Y,DXKZ)
)
.

(4.4.31)

Finally, since Levi-Civita is a metric connection:

(Dω)III(X,Y, Z) =
1

4

(
−g(DXY,KZ)− g(DXKY,Z) +Xg(KY,Z)

− g(DKXKY,KZ)− g(DKXY,Z) +KXg(Y, Z)

− g(DKXY, Z)− g(DKXKY,KZ) +KXg(KY,KZ)

− g(DXKY,Z)− g(DXY,KZ) +Xg(Y,KZ)
)

= −1

2

(
g(DXY +DKXKY,KZ) + g(DKXY +DXKY,Z)

)
= −1

2
g(−KDXY −KDKXKY +DKXY +DXKY,Z)

= −1

2
g(DX(K)Y +DKX(K)Y,Z).

(4.4.32)

On the other hand we have:

NK(KX,Y, Z)−NK(KY,Z,X)−NK(KZ,X, Y ) =

= g(KX, [KY,KZ]−K[KY,Z]−K[Y,KZ] + [Y, Z])

− g(KY, [KZ,KX]−K[KZ,X]−K[Z,KX] + [Z,X])

− g(KZ, [KX,KY ]−K[KX,Y ]−K[X,KY ] + [X,Y ])

(4.4.33)

now, using that D is torsion-free:

NK(KX,Y, Z)−NK(KY,Z,X)−NK(KZ,X, Y ) =

= g(KX,DKYKZ −DKZKY +DY Z −DZY )

+ g(X,DKY Z −DZKY +DYKZ −DKZY )

− g(KY,DKZKX −DKXKZ +DZX −DXZ)

− g(Y,DKZX −DXKZ +DZKX −DKXZ)

− g(KZ,DKXKY −DKYKX +DXY −DYX)

− g(Z,DKXY −DYKX +DXKY −DKYX).

(4.4.34)
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Finally, using that D is metric we obtain:

NK(KX,Y, Z)−NK(KY,Z,X)−NK(KZ,X, Y ) =

= −g(DKYKX,KZ) +KY g(KX,KZ)− g(DYKX,Z) + Y g(KX,Z)

− g(KX,DKZKY +DZY )− g(X,DZKY +DKZY )

− g(DKYX,Z) +KY g(X,Z)− g(DYX,KZ) + Y g(X,KZ)

+ g(DKZKY,KX)−KZg(KY,KX)

− g(DKXKY,KZ) +KXg(KY,KZ)

+ g(DZKY,X)− Zg(KY,X)− g(DXKY,Z) +Xg(KY,Z)

+ g(DKZY,X)−KZg(Y,X)− g(DXY,KZ) +Xg(Y,KZ)

+ g(DZY,KX)− Zg(Y,KX)− g(DKXY,Z) +KXg(Y,Z)

− g(KZ,DKXKY −DKYKX +DXY −DYX)

− g(Z,DKXY −DYKX +DXKY −DKYX)

= −2
(
g(KZ,DKXKY +DXY ) + g(Z,DKXY +DXKY )

)
= −2g(Z,−KDKXKY −KDXY +DKXY +DXKY )

= −2g(KZ,DKX(K)Y +DX(K)Y ).
(4.4.35)

Comparing this last equation with (4.4.32) we get the (4.4.20). Now the equation (4.4.21)
follows from equations (4.4.18) and the fact that NK ∈ ΩIII:

(Dω)III(X,Y, Z) =
1

4

(
NK(KX,Y, Z)−NK(KY,Z,X)−NK(KZ,X, Y )

)
=

1

4

(
NK(KX,KY,KZ)−NK(KY,KZ,KX)

−NK(KZ,KX,KY )±NK(KX,KY,KZ)
)

=
1

2
NK(KX,Y, Z)− 3

4
bNK(KX,KY,KZ)

=
1

2
NK(KX,Y, Z)− (dD ω)−(KX,KY,KZ)

=
1

2
NK(KX,Y, Z) + (dω)−(X,Y, Z).

(4.4.36)

Proof of 4. We have that

b(Dω) =
1

3
dω, (4.4.37)

indeed:

b(Dω)(X,Y, Z) =
1

3
(Dω(X,Y, Z) +Dω(Y,Z,X) +Dω(Z,X, Y ))

=
1

3

(
Xω(Y, Z)− ω(DXY,Z)− ω(Y,DXZ)

+ Y ω(Z,X)− ω(DY Z,X)− ω(Z,DYX)

+ Zω(X,Y )− ω(DZX,Y )− ω(X,DZY )
)

=
1

3

(
Xω(Y, Z) + Y ω(Z,X) + Zω(X,Y )

− ω(DXY −DYX,Z)− ω(DZX −DXZ, Y )− ω(DY Z −DZY,X)
)

(4.4.38)
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and since D has no torsion:

b(Dω)(X,Y, Z) =
1

3

(
Xω(Y,Z) + Y ω(Z,X) + Zω(X,Y )

− ω([X,Y ], Z)− ω([Z,X], Y )− ω([Y,Z], X)
)

=
1

3
dω(X,Y, Z).

(4.4.39)

From (4.4.19), we split D = DII +DIII getting:

b(Dω) = b(DωII) + b(DωIII) =
1

3
dω+ +

1

3
dω− (4.4.40)

and by Propositions 4.3.5 and 4.3.6 we have:

b(DωII) =
1

3
dω+. (4.4.41)

Finally, again using Proposition 4.3.5 we have:

DωII(X,Y, Z) =
3

2

(
b(DωII)(X,Y, Z) + In

(
b(DωII)

)
(X,Y, Z)

)
=

3

2

(1

3
dω+(X,Y, Z) + In

1

3
dω+(X,Y, Z)

)
=

1

2

(
dω+(X,Y, Z) + dω+(X,KY,KZ)

) (4.4.42)

which ends the proof.

Proposition 4.4.6 ([45, Theorem 3.2]). For any D-Hermitian connection ∇, let T be its
torsion, view as element of Ω2(TM). Then:

1. The component T III of T is independent of ∇ and verifies:

T III = −4NK ; (4.4.43)

where NK is the Nijenhuis tensor of K.

2. The skew symmetric part of (T II − T I
a) is independent of ∇ and we have:

b(T II − T I
a) = −1

3
(dD ω)+. (4.4.44)

Equivalently, the sum (T II + Ψ−1T I
a) ∈ ΩII is independent of ∇ and satisfies:

(T II + Ψ−1T I
a) = (Dω)II(K·, ·, ·) = −1

2

(
(dD ω)+ + In(dD ω)+

)
. (4.4.45)

3. T is entirely determined by its component T I
s and its component (bT )+, which can be

chosen arbitrarily.

Proof. A straightforward computation shows that the linear connection ∇ = D + A is
Hermitian if and only if the potential A satisfies

A(X,KY,Z) +A(X,Y,KZ) = (Dω)(X,Y, Z). (4.4.46)

From equation (4.4.8), we get that ∇ is Hermitian if and only if

T (X,KY,Z) + T (X,Y,KZ)− 3

2

(
bT (X,KY,Z) + bT (X,Y,KZ)

)
= −(Dω)(X,Y, Z).

(4.4.47)
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Now T I satisfies, by definition, T I(KY,KZ) = −T I(Y, Z), i.e. as an element of TM ⊗∧2M
it holds: T I(X,KY,Z) = −T I(X,Y,KZ). Hence the previous equation (4.4.47) can be
split in two equations taking the II-part and III-part, since its I-part is zero, getting the
following:

2T III(KX,Y, Z)− 3
(
(bT )III(KX,Y, Z)

)
= −(Dω)III(X,Y, Z) (4.4.48)

−2T II(KX,Y, Z)− 3

2

(
(bT )II(X,KY,Z) + (bT )II(X,Y,KZ)

)
= −(Dω)II(X,Y, Z)

(4.4.49)

Then the assertion 1. follows from equations (4.4.48) and (4.4.21), since an easy computa-
tion shows that:

(dω)−(X,Y, Z) = 3(bT )III(KX,Y, Z). (4.4.50)

From (4.4.49), using Proposition 4.3.5 and Remark 4.3.7 we obtain:

−(Dω)II(KX,Y, Z) = −2T II(X,Y, Z)− 3

2

(
(bT )II(KX,KY,Z) + (bT )II(KX,Y,KZ)

)
= −2T II(X,Y, Z)− 3(bT )II(KX,KY,Z)

= T II(X,Y, Z) +
3

2
b(T )I(X,Y, Z) +

3

2
b(T )I(X,KY,KZ)

= T II(X,Y, Z) + Ψ−1(T )I(X,Y, Z)

(4.4.51)

because of a long computation shows

−3(bT )II(KX,KY,Z) =
3

2
b(T )I(X,Y, Z) +

3

2
b(T )I(X,KY,KZ) + 3T II(X,Y, Z). (4.4.52)

The equation (4.4.45) follows now from the point 4 of the previous Proposition 4.4.5.
Equation (4.4.44) now is obtained by a direct computation, or by (4.4.18) together with
the following identities:

T II − T I =
1

4
NK + In(T ) (4.4.53)

3b
(
In(T )

)
= −dD ω. (4.4.54)

Finally, (4.4.52) follows from the previous points 1. and 2.

We get the following corollary:

Corollary 4.4.7. More precisely, for any real 3-form ψ+ of type (1, 2) + (2, 1) and any
section Bs of ΩIs, there exists a unique D-Hermitian connection whose torsion T satisfies
the following two conditions:

T I
s = Bs (bT )+ = ψ+. (4.4.55)

The other parts of the torsion are determined by

b(T I
a) =

1

2

(
ψ+ +

1

3
(dD ω)+

)
b(T II) =

1

2

(
ψ+ − 1

3
(dD ω)+

)
T III = NK .

(4.4.56)

Explicitly, the torsion is given by:

T = −1

4
NK −

1

8
(dD ω)+ − 3

8
In(dD ω)+ +

9

8
ψ+ +

3

8
In(ψ+) +Bs. (4.4.57)



98 CHAPTER 4. D-KÄHLER RICCI-FLAT METRICS

Proof. The equation (4.4.56) easy follows from equations (4.4.43) and (4.4.44) and the fact
that (bT )+ = b(T )II + b(T )I = ψ+. The second part of the corollary is a consequence of
the split T = T I

a + T I
s + T II + T III and the Propositions 4.3.5 and 4.4.6

We are ready to introduce the set of canonical D-connection:

Definition 4.4.8. A D-Hermitian connection is called canonical if its torsion T satisfies
the following conditions:

T I
s = 0 (bT )+ = −2t− 1

3
(dD ω)+ (4.4.58)

for some real number t. We will denote by ∇t the D-Hermitian canonical connection
corresponding to a parameter t ∈ R.

Combining with (4.4.57), we see that the torsion T t of a D-Hermitian canonical con-
nection ∇t is given by:

T t = −NK −
3t− 1

4
(dD ω)+ − t+ 1

4
In(dD ω)+. (4.4.59)

Moreover, by (4.4.8), the connection ∇t itself is related to the Levi-Civita connection D by:

g(∇tXY,Z) = g(DXY,Z)− T t(X,Y, Z) +
3

2
bT t(X,Y, Z) (4.4.60)

and by Proposition 4.4.5 we have also:

g(∇tXY,Z) = g(DXY, Z)−1

2
g(DXK)(KY,Z)− t

4

(
(dD ω)+(X,Y, Z)−(dD ω)+(X,KY,KZ)

)
.

(4.4.61)
In the set of canonical D-Hermitian connections {∇t | t ∈ R} we distinguish the follow-

ing ones:

t = 0. The canonical connection ∇0, called the first canonical connection, is the orthogonal
projection of the Levi-Civita connection D into the affine space of the D-Hermitian
connections. This connection is characterized by the conditions:

T I
s = 0 T II = 0. (4.4.62)

In particular if K is integrable, the torsion of ∇0 is of type I. Moreover, if (dω)+ = 0,
all the canonical connections degenerate to the first canonical connection ∇0.

t = −1. The connection ∇−1 is characterized by the condition:

T +NK is totally skew-symmetric (4.4.63)

i.e. T + NK is a 3-form. In particular, if K is integrable, ∇−1 is characterized
by its torsion being totally skew-symmetric. We shall call this connection the Bis-
mut connection, since in the complex case such a connection has been considered by
J.M. Bismut.

t = 1. The connection∇1 is called the second canonical connection or the Chern connection.
It is characterized by the condition:

T I = 0. (4.4.64)

We focus on the Chern connection for which we have another characterization by using
the relation with the intrinsic operator ∂K defined before (see Chapter 2).
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Remark 4.4.9. We see that any D-Hermitian connection determines a “Cauchy-Riemann

operator”, denoted by ∂
∇

and defined as the (0, 1)-part of ∇:

∂
∇
X Y =

1

2

(
∇XY +K∇KXY

)
. (4.4.65)

In this manner a similar operator, denoted by ∂
t
, is attached to each canonical D-Hermitian

connection ∇t.

Proposition 4.4.10. For any almost D-Hermitian structure and any canonical connection

∇t, the corresponding D-Cauchy-Riemann operator ∂
t

is related to the intrinsic Chauchy-
Riemann operator ∂ of K by:

g(∂
t
X Y, Z) = g(∂X Y, Z) +

t− 1

4

(
(dD ω)+(X,Y, Z)− (dD ω)+(X,KY,KZ)

)
. (4.4.66)

Remark 4.4.11. In particular, for the Chern connection we have the identification, on the

space of (0, p)-forms, of ∂
1

:= (∇1)0,1 with the usual operator ∂ |∧0,p
K := π∧0,p+1

K
◦ d.

Then, we have recovered on a (M,K) D-manifold with K integrable the following:

Corollary 4.4.12 ([45, Theorem 3.5]). Let (M,K) be a 2n-dimensional D-Hermitian man-
ifold, with integrable D-structure K. Then:

1. there exists a unique D-Hermitian connection ∇1 on M with torsion T 1 ∈ Ω2(TM)
such that:

T 1(KX,Y ) = KT (X,Y ). (4.4.67)

This connection is the canonical connection obtained by t = 1 and given by:

g(∇1
XY, Z) = g(DXY,Z)− 1

2
dω(KX,Y, Z). (4.4.68)

2. The curvature R1 := [∇1,∇1]−∇1
[·,·] is of “type I” in the sense that

R1(KX,KY ) = −R1(X,Y ). (4.4.69)

Remark 4.4.13. If NK = 0 and the D-structure is integrable, then the identification ∂
1

:=
(∇1)0,1 with ∂ (see Remark 4.4.11) can be extended on space of p-form. Hence the Chern
connection is the unique connection such that:

∇1g = 0, ∇1K = 0, ∇0,1 = ∂ . (4.4.70)

4.5 Some generalizations on minimal Lagrangian submani-
folds

We recall some properties of Lagrangian submanifold of Dn. Let LAG denote the set of
oriented non-degenerate Lagrangian n-planes in Dn.

The set LAG decomposes into 2n+ 2 connected components

LAG =
⋃

p+q=n

LAG±p,q (4.5.1)

where LAG±p,q consists of planes for which the induced metric has signature (p, q) and
orientation + or − when compared to a fixed chosen model. In general such a positive
model is the standard definite positive Lagrangian plane Rn in Dn. Each LAG+

p,q and
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LAG−p,q is an orbit of the unitary group U+
n (D), and the pair LAG+

p,q ∪ LAG−p,q is an orbit
of Un(D).

Note that if we choose Rn as oriented model planes we have that

±τ q d z|P = exp(τθP ) d volP for P ∈ LAG±p,q, (4.5.2)

where θP ∈ R and d volP is the unit (positive) volume form on P .

If L ⊂ Dn is an oriented connected non-degenerate Lagrangian submanifold of signature
p, q, then all its tangent planes lie either in LAG+

p,q or in LAG−p,q depending on the orientation
of L and we say that L is of type LAG+

p,q or of type LAG−p,q respectively. Therefore by (4.5.2)
we get that

±τ q d z|L = exp(τθ)d volL. (4.5.3)

The smooth real-valued function θ on L is the phase function on L, and L has constant
phase if θ is constant.

We have the following important result.

Proposition 4.5.1 ([40, Proposition 16.3]). Let L ⊂ Dn be an oriented non-degenerate
Lagrangian submanifold which is connected. Then L is a minimal (mean curvature zero)
submanifold if and only if L has constant phase.

This proposition is a consequence of the following Lemma.

Lemma 4.5.2 ([40, Formula (16.3)]). Let L ⊂ Dn be an oriented non-degenerate La-
grangian submanifold which is connected. Then, for any tangent vector field V on L we
have:

V (θ) = g(KV,HL) = iHLω, (4.5.4)

where HL is the mean curvature flow of L.

Remark 4.5.3. It has been proved by F.R. Harvey and H.B. Lawson [40] that the previous
relations (Proposition 4.5.1 and Lemma 4.5.2) holds also for a Lagrangian submanifold L
of a D-Kähler Ricci-flat manifold M (see [40, Remark 16.6]).

We will extend these results to a class of symplectic almost D-Hermitian manifolds
which admit a no-where vanishing D-holomorphic n-form. To do this, the necessary tool
will be the D-Chern connection (or first canonical connection) defined in the previous
Section 4.4.

In fact in this section we will consider (M, g,K, ε), where K is an almost D-complex
structure, ω a symplectic form such that ω(·, ·) = g(·,K·) is closed, and ε ∈ ∧n,0K M is a
(n, 0)-form satisfying:

1. ε ∧ ε̄ =
(−1)

n(n+1)
2 τn

n!
ωn, i.e. ε ∧ ε̄ is a multiple of the volume form of M , and hence

is a no-where vanishing (n, 0)-form,

2. ε is parallel with respect to the D-Chern connection, i.e. ∇1ε = 0.

We remind also some definitions. Let {e1, . . . , en} be a local g-orthonormal frame for
a submanifold N of M . Denote by (·)⊥ the normal component in TM with respect to
N . The mean curvature vector of the submanifold N , with respect to a connection ∇, is
HN =

∑n
i=1(∇eiei)⊥. In particular, we are interested in the mean curvature vector of the

Chern connection, denoted by

H1
N =

n∑
i=1

(∇1
eiei)

⊥. (4.5.5)
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We also define the D-complex mean curvature vector of the submanifold N in a similar way
to the definition of the complex mean curvature vector (see e.g. [23]) as:

H̃N =

n∑
i=1

(KDeiKei)⊥. (4.5.6)

We now state two lemmata.

Lemma 4.5.4. Let N be a Lagrangian submanifold of an almost D-Hermitian manifold
M , and fix an orthonormal frame {e1, . . . , ed} of TN where d = dimN . The Levi-Civita
and the Chern connections satisfy the following equation:

d∑
j

g(∇1ej ,Kej) =

d∑
j

g(Dej ,Kej). (4.5.7)

Proof. The equality follows from a simple calculation, and the fact that ∇1 = D+
1

2
KD(K)

=
1

2
(D +KDK) (see Section 4.4). Indeed, we have:

∑
j

g(∇1ej ,Kej) =
∑
j

g
(1

2
(D +KDK)ek,Kek

)
=
∑
j

1

2

(
g(Dej ,Kej) + g(KDKej ,Kej)

)
=
∑
j

1

2

(
g(Dej ,Kej)− g(DKej , ej)

)
=
∑
j

1

2

(
g(Dej ,Kej) + g(Kej ,Dej) +Dg(ej ,Kej)

)
.

(4.5.8)

We conclude because of g(ej ,Kej) = ω(ej , ej) = 0 since N is Lagrangian.

Remark 4.5.5. It has to be noted that the previous Lemma 4.5.4 does not require that the

Lagrangian submanifold is non-degenerate nor of dimension n =
1

2
dimM .

Lemma 4.5.6. It holds:
V (θ) =

∑
k

g(∇1
V ek,Kek). (4.5.9)

Proof. Let V be a vector field tangent to the Lagrangian submanifold L, and fix {e1, . . . , en}
an orthonormal frame of L. Then, since V is also a derivation, we get:

V (θ) = τexp(−τθ)V (exp(τθ)) = τexp(−τθ)V (ε(e1, . . . , en)). (4.5.10)

Using that ∇1ε = 0 we have:

V (ε(e1, . . . , en)) =
∑
k

ε(e1, . . . ,∇1
V ek, . . . , en). (4.5.11)

We can write ∇1
V ek in the orthonormal components. In fact, since L is non-degenerate,

{e1, . . . , en,Ke1, . . . ,Ken} defines a local orthonormal frame of TM , hence:

∇1
V ek =

∑
i

g(∇1
V ek, ei)ei + g(∇1

V ek,Kei)Kei, (4.5.12)
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and the fact that ∇1 is metric implies that:

0 = (∇1g)(ei, ei) = ∇1(g(ei.ei))− g(∇1ei, ei)− g(ei,∇1ei) = −2g(∇1ei, ei). (4.5.13)

In a local frame we have that ε(ei,Kei, ,W1, . . . ,Wn) = ε(ei, ei,W1, . . . ,Wn) = 0 for any
Wi ∈ TL, then:

V (ε(e1, . . . , en)) =
∑
k

ε(e1, . . . ,∇1
V ek, . . . , en)

=
∑
k

ε(e1, . . . , g(∇1
V ek,Kek)Kek, . . . , en)

=
∑
k

g(∇1
V ek,Kek)ε(e1, . . . ,Kek, . . . , en)

=
∑
k

g(∇1
V ek,Kek)τexp(τθ).

(4.5.14)

Then, from (4.5.11) and (4.5.14), we have:

V (θ) =
∑
k

g(∇1
V ek,Kek), (4.5.15)

which concludes the proof.

We can now state the main result:

Theorem 4.5.7. Let (M, g,K) be an almost D-Hermitian manifold such that the fun-
damental 2-form ω is closed and there exists a no-where vanishing (n, 0)-form ε that is
parallel with respect to the D-Chern connection, i.e. ∇1ε = 0. Let L ⊂ M be an oriented
non-degenerate Lagrangian submanifold of M . Then for any vector V ∈ TL tangent to the
Lagrangian submanifold it holds:

V (θ) = −i
H̃L
ω = −iH1

L
ω +

∑
i=1

g(V, T 1(ei, ei)). (4.5.16)

Proof. From the definition of torsion (4.4.4) we obtain:∑
k

g(∇1
V ek,Kek) =

∑
k

g(∇1
ek
V,Kek) +

∑
k

g([V, ek],Kek) + g(T 1(V, ek),Kek)

= −
∑
k

g(K∇1
ek
V, ek) + g(T 1(V, ek),Kek)

(4.5.17)

because of ω|L = 0 and [V, ek] ∈ TL. Recalling that ∇1K = 0 gives us:

−
∑
k

g(K∇1
ek
V, ek) + g(T 1(V, ek),Kek) = −

∑
k

g(∇1
ek
KV, ek) + g(T 1(V, ek),Kek),

(4.5.18)
and finally, since ∇1 is metric, we have:

−
∑
k

g(∇1
ek
KV, ek) + g(T 1(V, ek),Kek) =

∑
k

g(KV,∇1
ek
ek)

+ ekg(KV, ek) + g(T 1(V, ek),Kek)

=
∑
k

g(KV,∇1
ek
ek) + g(T 1(V, ek),Kek).

(4.5.19)
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Hence from this last equation and (4.5.5) and (4.5.9) we have the first part of theorem:

V (θ) = −iH1
L
ω +

∑
k

g(T 1(V, ek),Kek). (4.5.20)

Now, coming back to (4.5.9), we can change ∇1 with the Levi-Civita connection D, as done
in (4.5.8): ∑

k

g(∇1
V ek,Kek) =

∑
k

g(DV ek,Kek)

=
∑
k

g(DekV,Kek) + g([V, ek],Kek)

= −
∑
k

g(V,DekKek) +Dekg(V,Kek)

=
∑
k

g(KV,KDekKek)

= −i
H̃L
ω(V ),

(4.5.21)

where in the first equality we use that D is torsion-free, in the second one that D is metric,
and g([V, ek],Kek) = g(V,Kek) because L is Lagrangian. This concludes the proof.

The following corollary is an easy consequence of this theorem, and it underlines the
difference with the complex case, where the phase of a Lagrangian plane is related with the
Maslov class, and hence it defines a closed form.

Corollary 4.5.8. In the same hypothesis of Theorem 4.5.7, V (θ) defines a class in H1 if
and only if HL is an Hamiltonian field for ω.

Corollary 4.5.9. In the same hypothesis of Theorem 4.5.7, a Lagrangian submanifold is
minimal for the D-complex mean curvature if and only if it has constant phase.

Proof. The proof is an easy consequence of the main Theorem 4.5.7.
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[5] Andrada A.: Complex product structures on 6-dimensional nilpotent Lie algebras,
Forum Math., 20 (2008), No. 2, 285–315.

[6] Andrada A., Barberis M.L., Dotti I.G., Ovando G.P., Product structures on four di-
mensional solvable Lie algebras, Homology Homotopy Appl. 7 (2005), No. 1, 9–37.

[7] Andrada A., Salamon S.: Complex product structures on Lie algebras, Forum Math.,
17 (2005), No. 2, 261–295.

[8] Angella D., Franzini M.G., Rossi F.A.: Degree of non-Kählerianity for 6-dimensional
nilmanifolds, available Preprint on-line arXiv: 1210.0406 [math.DG]

[9] Angella D., Rossi F.A.: Cohomology of D-complex manifolds, Differ. Geom. and App.,
30 (2012), 530–547. DOI: 10.1016/j.difgeo.2012.07.003. Available preprint on-line
arXiv: 1201.2503 [math.DG].

[10] Angella D., Tomassini A.: On cohomological decomposition of almost-complex mani-
folds and deformations, J. Symplectic Geom. 9 (2011), No. 3, 403–428.

[11] Angella D., Tomassini A.: On the cohomology of almost-complex manifolds, Internat.
J. Math. 23, 1250019 (2012), 25 pp., DOI: 10.1142/S0129167X11007604.

[12] Angella D., Tomassini A.: On the ∂ ∂-Lemma and Bott-Chern cohomology, to appear
in Invent. Math., DOI: 10.1007/s00222-012-0406-3.

[13] Berger M.: Les espaces symétriques noncompacts, Ann. Sci. École Norm. Sup. (3), 74
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