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Abstract. We provide a new proof to the known result on rigidity of Iwasawa nilpotent
Lie groups [5, 12]. More precisely, we use Tanaka’s prolongation theory for establishing the
rigidity type of those nilpotent groups. This note aims to complement [8], where we use the
point of view of Tanaka prolongations for studying rigidity in the general setting of nilpotent
stratified Lie groups. When the group is of Iwasawa type, a special formalism occurs, which
is related to the theory of semisimple Lie groups, namely the formalism of root systems. We
use this language in order to classify the rigidity types.
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1 Introduction

In [8], we consider the question of rigidity of stratified nilpotent Lie groups.
This is the study of those diffeomorphisms on such a group whose differential
preserves the horizontal bundle, that is the left invariant subbundle correspond-
ing with the generating layer in the algebra. A classical problem is to investigate
the family of contact mappings. Rigidity is the property that the family of lo-
cal contact mappings form a finite dimensional space. In more precise terms
this means that the dimension of the space of vector fields which generate local
contact maps is finite. In [8] we apply an algebraic method due to Tanaka [10]
as a unified technique to determine rigidity or nonrigidity of various classes of
Carnot groups, such as H-type groups, Iwasawa groups, Métivier groups [6],
groups satisfying the rank one condition [7]. Due to the special properties of
Iwasawa nilpotent Lie groups coming from the formalism of the root systems,
we decided to dedicate this separated note to these cases.



2 Notation and Preliminaries

Let g be a simple Lie algebra with Killing form B and Cartan involution θ.
Let k⊕ p be the Cartan decomposition of g. Fix a maximal abelian subalgebra
a of p and denote by a′ its dual. For α ∈ a′, set

gα = {X ∈ g : [H,X] = α(H)X},

where H ∈ a. When α 6= 0 and gα is not trivial, α is said to be a restricted root
of g with respect to a, and gα is the root space of α. We denote by Σ the set of
the restricted roots and call it the root system of g. Choose an ordering � on a′,
thus defining the subsets Σ+ and ∆ = {δ1, . . . , δr} of positive and simple positive
restricted roots. It is well-known that there is exactly one root ω, called the
highest root, that satisfies ω � α (strictly) for every other root α. Since we shall
always work with the restricted root spaces, we forget the adjective “restricted”
when refering to roots. Every root α ∈ Σ+ can be written as α =

∑r
i=1 niδi

with uniquely defined non-negative integers n1, . . . , nr, and the positive integer
ht(α) =

∑r
i=1 ni is called the height of α. The root space decomposition of

g is g = m ⊕ a ⊕
⊕

α∈Σ gα, where m = {X ∈ k : [X,H] = 0, H ∈ a} . Writing
Σ− = −Σ+, one has that Σ = Σ+ ∪ Σ− and the Iwasawa nilpotent Lie algebra

n =
⊕
γ∈Σ−

gγ ,

is stratified in the usual sense, that is [ni, nj ] = ni+j , where ni =
⊕

ht(γ)=i g−γ ,
i = −ht(ω), . . . ,−1. To any Iwasawa nilpotent Lie algebra n there is a root
system Σ associated.

The subspace n−1 generates the whole algebra n via Lie brackets, and it
identifies with a subspace of the tangent space at the identity to N . By left
translation, n−1 defines a subbundle of the tangent bundle called the horizontal
bundle which we denote by H. A contact map is a diffeomorphism from an
open subset of N into N whose differential preserves H. Contact vector fields
are vector fields on N that generate one parameter families of contact mappings.
A contact vector field V ∈ X(N) satisfies [V,H] ⊂ H. The group N is rigid if
the Lie algebra of contact vector fields has finite dimension. We call N nonrigid
otherwise. The condition [V,H] ⊂ H yields a system of partial differential
equations for the coefficients of V . The space of solutions of this system has
been studied in [5] and [12]. In this article, unless otherwise stated, n will always
be an Iwasawa nilpotent Lie algebra.
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3 Tanaka prolongation

Let n = n−s ⊕ · · · ⊕ n−1 be a stratified nilpotent (not necessarily Iwasawa)
Lie algebra. The Tanaka prolongation of n is the graded Lie algebra Prol(n)
given by the direct sum Prol(n) =

⊕
k∈Z gk(n), where gk(n) = {0} for k < −s,

gk(n) = nk for −s ≤ k ≤ −1, and for each k ≥ 0, gk(n) is inductively defined by

gk(n) =
{
u ∈

⊕
p<0

gp+k(n)⊗ gp(n)∗ | u([X,Y ]) = [u(X), Y ] + [X,u(Y )]
}
,

with g0(n) consisting of the strata preserving derivations of n. If u ∈ gk(n),
where k ≥ 0, then the condition in the definition becomes the Jacobi identity
upon setting [u,X] = u(X) when X ∈ n. Furthermore, if u ∈ gk(n) and
v ∈ g`(n), where k, ` ≥ 0, then [u, v] ∈ gk+`(n) is defined inductively according
to the Jacobi identity, that is

[u, v](X) = [u, [v,X]]− [v, [u,X]].

Define the subalgebra

h =
⊕
k≥−1

hk ⊂ Prol(n, g0)

where the subspaces hk ⊂ gk are defined as follows: set

n̂ = n−s ⊕ · · · ⊕ n−2

and for k ≥ −1 define

hk = {u ∈ gk | [u, n̂] = {0}} . (1)

It follows that [hk, g−1] ⊂ hk−1 for k ≥ 0.
In [10], Tanaka shows that the rigidity of a stratified nilpotent Lie group can

be determined by studying the Tanaka prolongation of the Lie algebra. More
precisely, the algebra of contact vector fields on N is finite dimensional if and
only if Prol(n) is finite dimensional. In fact more is true [10, Corollary 2, page
76]: the group N is rigid if and only if hk = 0 for some integer k ≥ −1. Tanaka’s
theory provides some relatively simple tests for rigidity, at least at the levels
h−1, h0, and h1, moreover it also provides a definition of rigidity type as the
smallest integer k greater or equal to −1 such that hk = {0}. If n is nonrigid,
we shall say that it is of infinite type.
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4 Rigidity

Root systems are classified by means of their Dynkin diagrams (see [1] for an
insight). The nonisomorphic standard root systems are An, n ≥ 1, Bn, n ≥ 2,
Cn, n ≥ 3, Dn, n ≥ 4. Beside these, there are the exceptional systems E6,
E7, E8, F4, G2 and the reducible system BCr, r ≥ 1. The subindex counts
the number of simple roots generating the system. Whenever α is a root, 2α is
never a root, unless α ∈ BCr. To every root system there is associated one or
more real simple Lie algebras, each coming with the relative Iwasawa nilpotent
component. We classify the rigidity types of all Iwasawa nilpotent Lie algebras
using this correspondence. Let n be such a nilpotent Lie algebra with root
system Σ.

Proposition 1. If Σ is one of the following: An, n ≥ 4, Bn, Cn, n ≥ 3,
Dn, n ≥ 4, E6, E7, E8, F4, G2, BCr, r ≥ 2, then n is rigid with rigidity type
−1. If Σ = A3, then it is of type 0.

Proof. Let ∆ = {δ1, . . . , δr} be a system of simple roots of Σ and write ∆− =
−∆. We fix a basis of g−δj for every j = 1, . . . , r and thus a basis of n−1. Then
we choose a basis for every root space relative to a negative root. This yields
a stratified basis of n. It is well known that if the sum of two roots α and β
is still a root, then for every vector X in gα there exists a vector Y in gβ such
that [X,Y ] 6= 0, and viceversa. In order to show that h−1 = {0}, it is then
sufficient to prove that every negative simple root can be summed to at least
another root of height less or equal than −2.

In the cases An, n ≥ 4, Bn, n ≥ 3, Cn, n ≥ 3, Dn, n ≥ 5, E6, E7, E8,
F4, investigation of the Dynkin diagrams shows directly that every (negative)
simple root can be summed to a root of height minus two. In particular, this
implies that every vector in the chosen basis for n−1 does not commute with at
least one vector in n−2.

If Σ = D4, then the same remark above holds for all vectors in the root
spaces relative to δ1, δ3 and δ4. We conclude that h−1 = {0} by observing that
δ2 can be summed to δ1 + δ2 + δ3 + δ4.

If Σ = G2, then δ1 can be summed to δ1 + δ2 and δ2 can be summed to
3δ1 + δ2.

If Σ = BCr with r ≥ 2, then it contains the root system Br. So if r ≥ 3,
then the considerations made above for the case when the root system is of type
Br show that n is of type −1. If r = 2 then Σ+ = {δ1, δ2, δ1 + δ2, 2δ1, 2δ1 +
δ2, 2(δ1 + δ2)}. So δ1 can be summed to δ1 + δ2 and δ2 can be summed to 2δ1,
thus showing that the corresponding n is of type −1.

Finally if Σ = A3 then ∆ = {δ1, δ2, δ3} and h−1 = g−δ2 , because δ2 can be
summed to δ1 and δ3 only. We show that h0 = 0. Pick D ∈ h0. From (1) and
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the remark thereafter, Dn−1 ⊂ g−δ2 and D = 0 on nj with j ≤ −2. Suppose
that DX 6= 0 for some X ∈ n−1. Assume first that X ∈ g−δ2 . Then there exists
Y ∈ g−δ1 such that [DX,Y ] 6= 0. This implies that

0 = D[X,Y ] = [DX,Y ] + [X,DY ] = [DX,Y ],

because 2δ2 is not a root, and so we get a contradiction. Therefore Dg−δ2 = 0.
Choose now X ∈ g−δ3 with DX 6= 0. If Y ∈ g−δ1 is such that [DX,Y ] 6= 0,
then [DX,Y ] is in g−δ1−δ2 . On the other hand, [X,DY ] is in g−δ2−δ3 and
so the contradiction D[X,Y ] 6= 0 arises, and we conclude that Dg−δ3 = 0.
Finally, take X ∈ g−δ1 and pick Y ∈ g−δ3 such that [DX,Y ] 6= 0. Then
D[X,Y ] = [DX,Y ] + [X,DY ], where the two summands belong to disjoint root
spaces, thus giving a contradiction and proving h0 = {0}. QED

The remaining cases need to be studied explicitly, since their behavior with
respect to the rigidity question may change, even for algebras corresponding to
the same root system.

If Σ = A2, then n is an H-type Lie algebra by [4]. More precisely there
are exactly four algebras with root system A2. We know by [9] that H-type
algebras are rigid when the dimension of the centre is greater than two, hence
they are of infinite type if and only if the centre is of dimension two. Looking
at [4, Proposition 4.1] we then conclude that there are two nonrigid nilpotent
algebras relative to A2, namely the three dimensional Heisenberg algebra and
its complexification. The remaining two algebras are the nilpotent components
in the Iwasawa decomposition of sl(3,H), where H denotes the quaternions,
and the Iwasawa decomposition of e(6,−26). By [8, Theorem 4], these nilpotent
algebras are of type 1.

If Σ = A1, then n is the abelian Lie algebra Rn, which is trivially of infinite
type.

If Σ = B2, then ∆ = {δ1, δ2} and Σ+ = {δ1, δ2, δ1 + δ2, δ1 + 2δ2}. So n has
step three and the following three cases occur [4]:

δ1 δ2 δ1 + δ2 δ1 + 2δ2

1 n n 1
2 2 2 2
3 4 4 3

where each number indicates the dimension of the root space relative to the
root in the same column. The nilpotent Lie algebras described in the first row
correspond to the simple Lie algebras so(2, 2 + n). If n = 1, then n is the Engel
Lie algebra, which is well known to be of infinite type [11, 7, 8]. If n > 1, then
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using [2, Proposition 4.3] we can set bases g−δ1 = RX, g−δ2 = span{Y1, . . . , Yn}
so that [X,Yi] 6= [X,Yj ] for every i 6= j and [X,Y1], . . . , [X,Yn] are a basis
of g−δ1−δ2 . Moreover h−1 = g−δ1 . We show that h0 = {0}. If D ∈ h0 then
Dn−1 ⊂ g−δ1 and for every i = 1, . . . , n we have

0 = D[X,Yi] = [DX,Yi] + [X,DYi] = [DX,Yi],

since 2δ1 is not a root. It follows that DX = 0. If DYi = λiX then for every
i 6= j we have

0 = D[Yi, Yj ] = λi[X,Yi]− λj [X,Yj ],

which yields λi = 0 for every i. It follows that h0 = {0} and n is of type 0.
The second row of (4) corresponds with the complexified Engel Lie algebra,

which is nonrigid (see e.g. [8, Theorem 3]).
The third row of (4) corresponds with the nilpotent component of the simple

Lie algebra sp(2, 2). In this case we compute explicitly a basis of n and the
bracket relations. We do this relying on the fact that g−δ2 + g−δ1−δ2 + g−δ1−2δ2

is a H-type algebra [3, Theorem 3.8]. This and the proof of Proposition 4.3 in [4]
give n−1 = span{X1, . . . , X7}, n−2 = span{Y1, . . . , Y4}, n−3 = span{Z1, Z2, Z3}
and the bracket table is

X1 X2 X3 X4 X5 X6 X7 Y1 Y2 Y3 Y4

X1 0 0 0 0 −Y1 −Y2 −Y3 Z1 Z2 Z3 0
X2 0 0 0 0 −Y2 Y1 −Y4 Z2 −Z1 0 Z3

X3 0 0 0 0 −Y4 −Y3 Y2 0 Z3 −Z2 Z1

X4 0 0 0 0 −Y3 Y4 Y1 Z3 0 −Z1 −Z2

X5 Y1 Y2 Y4 Y3 0 0 0 0 0 0 0
X6 Y2 −Y1 Y3 −Y4 0 0 0 0 0 0 0
X7 Y3 Y4 −Y2 −Y1 0 0 0 0 0 0 0
Y1 −Z1 −Z2 0 −Z3 0 0 0 0 0 0
Y2 −Z2 Z1 −Z3 0 0 0 0 0 0 0 0
Y3 −Z3 0 Z2 Z1 0 0 0 0 0 0 0
Y4 0 −Z3 −Z1 Z2 0 0 0 0 0 0 0

Given these bracket relations, a direct but rather long calculation shows that
h0(n) = {0}.

If Σ = BC1, then n is H-type by [2]. Except for the 2n + 1-dimensional
Heisenberg algebra which is nonrigid, the remaining cases are H-type algebras
with center of dimension 3 and 7, and so they are rigid of type 1 by [8].
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[6] G. Métivier: Hypoellipticité analytique sur des groupes nilpotents de rang 2, Duke Math.
J., 47, 195–221, 1980.

[7] A. Ottazzi: A sufficient condition for nonrigidity of Carnot groups, Math. Z., 259, 617–
629, 2008.

[8] A. Ottazzi, B. Warhurst: Algebraic prolongation and rigidity of Carnot groups,
Monatsh. Math., 2009, DOI 10.1007/s00605-009-0170-7.

[9] H.M. Reimann: Rigidity of H-type groups, Math. Z., 237, n. 4, 697-725, 2001.

[10] N. Tanaka: On differential systems, graded Lie algebras and pseudogroups, J. Math.
Kyoto Univ., 10, 1–82, 1970.

[11] B. Warhurst: Jet spaces as nonrigid Carnot groups, J. Lie Theory, 15, n. 1, 341–356,
2005.

[12] K. Yamaguchi: Differential systems associated with simple graded Lie algebras, Progress
in differential geometry, Adv. Stud. Pure Math., 22, 413–494, Math. Soc. Japan, Tokyo,
1993.

7




