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Abstract. An interconnector is an asset that gives the owner the right, but not the obligation,
to transmit electricity between two locations each hour of the day over a prefixed time period.

The financial value of the interconnector is given by a series of options that are written on the

price differential between two electricity markets, that is, a strip of European options on an
hourly spread. Since the hourly forward price is not directly observable on the market, Chapter 1

proposes a practical procedure to build an hourly forward price curve, fitting both base load and

peak load forward quotations. One needs a stochastic model, a valuation formula, and a calibra-
tion method to evaluate interconnection capacity contracts. To capture the main features of the

electricity price series, we model the energy price log-returns for each hour with a non-Gaussian

mean-reverting stochastic process. Unfortunately no explicit solution to the spread option val-
uation problem is available. Chapter 2 develops a method for pricing the generic spread option

in the non-Gaussian framework by extending the Bjerksund and Stensland (2011) approximation
to a Fourier transform framework. We also obtain an upper bound on the estimation error. The

method is applicable to models in which the joint characteristic function of the underlying assets

is known analytically. Since an option on the difference of two prices is a particular case of a
basket option, Chapter 3 extends our results to basket option pricing, obtaining a lower and an

upper bound on the estimated price. We propose a general lower approximation to the basket

option price and provide an upper bound on the estimation error. The method is applicable
to models in which the joint characteristic function of the underlying assets and the geometric

average is known. We test the performance of these new pricing algorithms, considering different

stochastic dynamic models. Finally, in Chapter 4, we use the proposed spread option pricing
method to price interconnectors. We show how to set up a calibration procedure: A market-

coherent calibration is obtained, reproducing the hourly forward price curve. Finally, we present

several examples of interconnector capacity contract valuation between European countries.
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Introduction

The White Rabbit put on his
spectacles. “Where shall I begin,
please your Majesty?” he asked.
“Begin at the beginning,” the King
said gravely, “and go on till you
come to the end: then stop.”

Lewis Carroll (1832–1898)

Electricity markets have been liberalized worldwide over the last 20 years. Before this period, elec-
tricity prices were generally determined by the regulatory authorities controlled by the government
of each individual country. Now many countries have reformed their power sector, leaving the price
determination to the market principles of supply and demand. One important consequence of this
is the trade of electricity delivery contracts on exchanges or through over-the-counter markets. En-
ergy has thus become an important asset class of investments, attracting not only traditional actors
in the energy markets, but also speculators such as banks and investment funds. However, the new
power market setting brings an increased uncertainty to the electricity price dynamic and many
markets exhibit very high rates of volatility, which are hardly found in any other assets. Energy
spot prices have several typical features, such as mean reversion toward a seasonally varying mean
level driven by the balance between demand and production. Another important characteristic is
the frequent occurrence of spikes, resulting from an imbalance between supply and demand. This
extreme behavior is also present in the difference between the prices of two locations. This price
difference is an economic incentive to transport electric power between countries, explaining why
an interconnection between two markets could be profitable. In the European power market, in-
terconnections between different countries play an important role in obtaining energy balance and
maintaining security of supply. Countries are connected by a complex web of transmission lines
and the exchange of electricity between European states is increasing. An interconnector is an asset
that gives the owner the right, but not the obligation, to transmit electricity between two locations
each hour of the day over a prefixed time period. The financial value of the interconnector is given
by a series of options that are written on the price differential between two electricity markets, that
is, a strip of European options on an hourly spread.

Evaluating interconnections between power markets is a very recent issue and requires financial
modeling and pricing tools. First, a stochastic model is required to describe the price dynamics.
A natural class of stochastic models to describe the log-price dynamics is a non-Gaussian mean-
reverting stochastic process in which specification jumps and seasonality must be included. We
model the price log-returns. Second, a pricing formula is required. Unfortunately, no explicit
solution to the spread option valuation problem has been available up to now and very little is
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INTRODUCTION 5

discussed in the literature about pricing spread options in the non-Gaussian setup. Furthermore,
we would like to use a general enough pricing method, for example requiring only that the joint
characteristic function of the log-returns of the assets is known; we could thus change the price
dynamics without changing the pricing method, provided the joint characteristic function of the
log-returns of the assets is known for the model in question. Hurd and Zhou (2009) have proposed
the best technique we are aware of, but their method has a drawback: It requires a bivariate Fourier
inversion. The first contribution of the present work is the derivation of a lower bound to the
value of an option on the spread of two prices, extending the method of Bjerksund and Stensland
(2011) to general processes. Our lower approximation turns out to be extremely accurate for many
stochastic dynamics, as confirmed by several numerical tests. The computation of our lower bound
requires a univariate Fourier inversion, versus the bivariate inversion required in the work of Hurd
and Zhou (2009). We also derive a general upper bound.

An option on the difference between two prices is a particular case of a more general contract, a
basket option. Basket options are hard to price and hedge as well as spread options and existing
pricing methods are not totally satisfying. Many of the methods have limited scope because they
require a basket value that is always positive and can be applied only in a geometric Brownian
motion setting. The study of pricing methods for general price dynamics is still underdeveloped.
The second contribution of the present work is the derivation of a lower bound for the value of a
basket option for general price processes, allowing the basket value to be negative. The only quantity
we need to know explicitly is the joint characteristic function of the log-returns of the assets and the
geometric average. The computation of our lower bound requires a univariate Fourier inversion and
an optimization. Numerical experiments show that the performance of our lower approximation is
comparable to that of the best methods in a geometric Brownian motion setting. A comparison
with Monte Carlo simulations shows the quality of the method even in the non-Gaussian case. In
addition, we derive a general upper bound.

Let us return to the valuation of interconnection contracts. Once we have chosen the model and
the spread option pricing method, we only need a calibration procedure to set the pricing method
according to market information. Regardless of the calibration procedure we could construct, a
remark is necessary. The interconnections are priced under a risk-neutral measure. However, the
underlying cannot be used to replicate derivative products in energy markets due to the non-
storability of electricity. The market is incomplete; thus arbitrage arguments do not immediately
lead to a unique price for derivatives. Moreover, liquid energy option markets are still rare and
data from average-based forward contracts are often the only information available. We need to
use historical data to overcome this issue. To calibrate the model, we obtain data from the real-
world probability measure P and transfer their information to an equivalent risk-neutral measure Q
setting. Since the market is incomplete, the measure Q is not uniquely determined and needs to be
chosen according to some criteria. Irrespective of the criteria chosen, it is important to fit the only
market information that is usually available on liquid markets, that is, forward contract quotations.
On the other hand, the inability to store electricity makes its price a pure flow variable and hence
all contracts need to specify a delivery period, so the electricity forward contract does not just pay
at a fixed date but over a period of time. Such delivery periods can differ from the settlement
period of each option composing an interconnection capacity contract. How can an hourly pricing
model incorporate the information given by contracts with longer delivery periods? A common
solution is to represent the forward prices by a term structure. We need a bootstrapping procedure
to extrapolate hourly forward prices from forward contract quotations.



6 INTRODUCTION

The most important paper concerning how to fit a forward price curve in the energy market is that
of Benth et al. (2007b). The authors derive a smooth instantaneous forward curve modeling the
forward price as the sum of a seasonality function and a polynomial spline. Given an instantaneous
forward curve, it is straightforward to compute an hourly curve. However, we do not directly use
the method of Benth et al. (2007b). The proposed method deals only with base load quotations.
Although from a theoretical point of view the method is still applicable even if we want to consider
peak load quotations, from a practical perspective this task is very challenging to implement.
Furthermore, hourly electricity prices in day-ahead markets do not follow a time series process but
are a panel of 24 cross-sectional hours that vary from day to day. This is because the microstructure
of many day-ahead markets is such that prices for all hours are quoted at the same moment in a
day. Therefore, hourly prices within a day behave cross-sectionally and hourly dynamics over days
behave according to time-series properties. Since the method of Benth et al. (2007b) is based on a
maximum smoothness criterion, each computed point depends on other points of the generated curve
and is set to determine the smoothest configuration. We decide to use the maximum smoothness
criterion only to mimic the time dependency. We compute a daily forward curve fitted to base load
forward quotations. Then, using the computed daily forward curve, an hourly shape is achieved
using statistical tools. The third contribution of the present work is the discussion of a practical
method to obtain an hourly forward price curve fitting both base load and peak load forward
quotations.

Once we choose the model and spread option pricing method and calibrate the model to market
data, we can finally evaluate the interconnection capacity contracts. Few studies discuss such issue.
The most valuable paper is that of Cartea and Pedraz (2012), who model the spread between
markets directly with a mean-reverting jump diffusion process, splitting the data between peak and
off-peak hours. We use a different approach and set up 24 models for each interconnected market,
describing the price of a specific hour of the day. We thus have many more parameters to calibrate
than Cartea and Pedraz (2012), but we do so for three reasons. First, we model the price and
not the spread because it is useful to have a model able to price not only spread options but also
other options written on the hourly price. We therefore do not need to change the model if we
want to price a different derivative contract, only the pricing method. Furthermore, a model for the
price could be useful for calibration purposes. A liquid energy option market is still in the distant
future for Europe, but things can change. If a liquid market were available for energy options on a
single asset, it would be possible to calibrate the model to option prices, obtaining a more detailed
estimation of the probability measure describing market prices. Second, splitting prices between
peak and off-peak hours is a strong approximation. Huisman et al. (2007) state that the statistical
characteristics of day-ahead prices do not exactly follow a peak/off-peak structure. The authors
show that the speed of mean reversion is different over the hours, with the lowest mean reversion
estimates for the hours 18:00 through 22:00. In addition, despite Huisman et al. (2007) identifying
a cross-sectional correlation structure between peak and off-peak prices within the same day, the
boundaries of such correlation blocks do not perfectly match the market definitions of peak and off-
peak hours. Third, modeling each hour separately allows us to fit the forward market information
reproduced by the bootstrapped hourly forward curve, adopting a risk-neutral pricing. Cartea and
Pedraz (2012) prefer to price the interconnectors under the real probability measure P and discount
cash flows by a risk-adjusted rate. However, they do not discuss how to choose the risk-adjusted
rate depending on the available forward market quotations; using forward market data, they only
provide no-arbitrage lower bounds for the value of a bidirectional interconnector. The fourth
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contribution of our work is a new approach to interconnection capacity contract valuation that
outperforms that of Cartea and Pedraz (2012) for the three reasons underlined above.

This work is organized as follows. Chapter 1 provides an introduction to energy markets and
energy forward contracts. It discusses the method of Benth et al. (2007b) and propose a procedure
to obtain an hourly forward curve, fitting both base load and peak load forward quotations. All the
steps of the procedure are discussed with the help of a practical curve construction example on the
German EEX (European Energy Exchange) market. Chapters 2 and 3 discuss options on the spread
of two assets and basket options, respectively. Providing a lower bound and an estimation of the
error, we propose general pricing methods in both cases and test their performance with numerical
experiments. Finally, Chapter 4 describes interconnection capacity contracts. It sets up a model
and discusses how to calibrate it. This study concludes with several examples of interconnection
valuations between European countries.



CHAPTER 1

Hourly Forward Price Curve Fitting

The purpose of models is not to fit
the data but to sharpen the
questions.

Samuel Karlin (1923–2007)

Modeling the energy forward price dynamics or marking an over-the-counter (OTC) product to the
market inevitably deals with the issue of representing forward prices by a term structure curve. The
settlement periods of OTC financial contracts traded in the market can differ from those traded
on the exchange. In marking to market, investors need to combine market prices to reflect the
“market” value of the OTC product. A forward curve that can be used to price electricity futures
with any settlement period is an essential tool.

Fitting a yield curve to market data in a fixed income market is a topic that has been extensively
studied. The seminal paper in this field is that of McCulloch (1971) and a survey of different
methods for constructing yield curves is provided by Anderson and Deacon (1996). The first
application to curve fitting in the energy market was that of Fleten and Lemming (2003), who
smoothen an electricity futures curve based on a bottom–up model called the MPS model. The MPS
model calculates weekly equilibrium prices and production quantities based on fundamental factors
for demand and production (e.g., temperature, fuel costs, snow levels, capacities). The approach
of Fleten and Lemming (2003) is non-parametric, in the sense that they derive a sequence of daily
(or any other appropriate time resolution) forward prices minimizing the least-squares distance to
the output from the MPS model. The optimization is constrained on the bid–ask spreads of market
prices and the curve is appropriately smoothened by a penalty term. Hildmann et al. (2011) propose
a method for the construction of an hourly forward price curve and fit a curve applying statistical
techniques such as LAD-lasso regression and median estimation to develop a robust calculation
method. The most important paper concerning how to fit forward price curve in the energy market
is that of Benth et al. (2007b). These authors derive a smooth instantaneous forward curve modeling
the forward price as the sum of a seasonality function and a polynomial spline. The proposed method
deals only with base load quotations. Although from a theoretical point of view their method is still
applicable even when considering peak load quotations, from a practical perspective this task is very
challenging to implement. We fill this gap with the methodology proposed in this chapter.

We propose a procedure to obtain an hourly forward curve, fitting both base load and peak load
forward quotations. Section 1 introduces energy markets and describes how electricity forward
contracts work. Section 2 focuses on a daily seasonality function to be used in the derivation of a
daily forward curve. The method of Benth et al. (2007b) is the kernel of the daily curve computation
and is described in Section 3. Once the daily forward curve is derived, we give it an hourly shape to

8



1. FORWARD CONTRACTS IN ENERGY MARKETS 9

consider both historical and peak load information. Section 4 models hourly seasonality and Section
5 computes the hourly forward curve. All the steps of the procedure are discussed with the help of a
practical curve construction example on the European Energy Exchange (EEX), implemented in the
Matlab computing environment. Section 6 presents backtesting results and how to set calibration
parameters.

1. Forward contracts in energy markets

Electricity has been called a flow commodity because of its non-storability. Electrical power is only
useful for practical purposes if it can be delivered during a period of time. Deregulated power
markets have market mechanisms to balance supply and demand where electricity is traded in an
auction system for standardized contracts. All contracts guarantee the delivery of a given amount
of power for a specified future time period. Some contracts prescribe physical delivery, while others
are financially settled. While the specifications and rules of trading for financial electricity contracts
vary among the different power exchanges, we briefly describe here some general features of energy
markets, referring the interested reader to Benth et al. (2008) for a detailed introduction.

By physical electricity contracts we mean contracts with actual consumption or production as part of
contract fulfillment. The contracts for physical delivery are usually organized between two different
markets: the real-time market and the day-ahead market (a two-settlement system). The spot day-
ahead price is a common reference price for financial energy contracts. On such markets, hourly
power contracts are traded daily for physical delivery in the next day’s 24-hour period (midnight to
midnight). Each morning, the players submit their bids for purchasing or selling a certain volume
of electricity for the different hours of the following day. Once the spot market is closed for bids,
at noon each day, the day-ahead price is derived for each hour next day. Strictly speaking, the
day-ahead market trades in electricity forward contracts with delivery over a specified hour the
next day.

Financial power contracts are linked to reference electricity spot prices (e.g. day-ahead prices) and
are settled in cash. One difference between physical electricity markets and financial markets is that
the latter is open to speculators, since the consumption or production of electricity is not required to
participate in the market. Basic exchange traded contracts are written on the (weighted) average of
the (hourly) reference price over a specified delivery period. During the delivery period the contract
is settled in cash against the system price. The specified reference price is typically the day-ahead
price. Contracts are not traded during the delivery period and market participants typically close
their positions beforehand. Let us see how to mathematically describe such contracts. Let S(t) be
the (day-ahead) spot price at time t. The strike price F at time t of an instantaneous zero-cost
forward contract paying S(T ) − F at time T is denoted by f(T ) and given by the risk-neutral
expectation

f(T ) = E[S(T )].

In electricity markets the forward contract does not just pay at time T but over a time period
[τ b, τe]. The strike of a zero-cost forward depends on the precise specification of when the money
is paid. There are two kinds of payouts for forward contracts: instant settlement and settlement
at maturity. In an instant settlement the contract pays (S(t)− F )∆t at time t. In a settlement at
maturity the payment of the whole amount is due at the end of the delivery period τe. By definition
of a forward contract, the strike F has to be set so that the contract is of zero cost at the time t
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we enter into it. So for settlement at maturity we have

E

[∫ τe

τb
(S(u)− F )du

]
= 0,

which leads to

F =
1

τe − τs

∫ τe

τb
f(u)du.

In the case of an instant settlement the money received can be invested in a riskless bank account,
so

E

[∫ τe

τb
(S(u)− F )er(τ

e−u)du

]
= 0.

Solving the equation in F yields

F =
r

er(τe−τs) − 1

∫ τe

τb
er(τ

e−u)f(u)du.

In both cases, the strike price F of an average-based forward contract turns out to be a weighted
average of all instantaneous forwards in that period, but for small delivery periods we can make
the first-order approximation

(1)
rer(τ

e−u)

er(τe−τs) − 1
≈ 1

τe − τs
.

It therefore only makes a small difference whether the money is settled at the end of the period or
on a daily basis.

Forward contracts are described above in continuous time. However, in practice, they are not
settled continuously over the delivery period but, rather, at discrete times. These discrete times
are usually days or hours. When a contract settlement period comprises all the hours in a day, we
call it a base load forward contract. A contract can even involve only a subset of the hours of a day.
The most common such contract is the peak load forward contract, where the settlement period
consists of the peak load hours between τ b and τe. Peak load hours are a subset of the hours of
a day in which the energy demand is supposed to be highest. The complementary set of hours is
called off peak. The definition of peak and off peak depends on the market. For example, the EEX
defines it as the average price over 8:00–20:00 and the APX Power UK defines it as the average
over 7:00–19:00, Monday to Friday. For simplicity, we consider markets in which peak hours are
from 8:00 to 20:00. Assuming time is measured in hours and assuming a settlement in N days with
τ b = t1, τ

e = tN , the strike price relations for base load and peak load contracts become

F base =
1

24N

N∑
i=1

24∑
h=1

f̂(ti, h), F peak =
1

12]BD

]BD∑
i=1

20∑
h=9

f̂(ti, h),

where f̂(ti, h) is the forward price for hour h of day ti and ]BD is the number of business days
of the forward settlement period. In this setting we do not consider that some days present with
23 or 25 hours when going from a legal to a solar hour count or vice versa. The following sections

describe a methodology to obtain f̂(ti, h), starting from market data. For a better understanding,
we present a numerical example of an hourly forward curve construction on the German market
(EEX). We build a curve at the valuation date t0 = 22/05/2012. Base load and peak load forward
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Table 1. EEX forward market data.

Start Date End Date F base F peak

22/05/12 22/05/12 42.750 49.000
23/05/12 23/05/12 42.450 47.880
24/05/12 24/05/12 38.380 43.250
25/05/12 25/05/12 36.980 41.130
26/05/12 27/05/12 28.350 N.A.
02/06/12 03/06/12 27.500 N.A.
28/05/12 03/06/12 35.125 41.625
04/06/12 10/06/12 36.850 43.875
11/06/12 17/06/12 39.400 47.500
18/06/12 24/06/12 40.625 49.000
25/06/12 01/07/12 40.210 50.500
01/07/12 31/07/12 40.175 49.025
01/08/12 31/08/12 38.775 47.250
01/09/12 30/09/12 44.475 53.000
01/09/12 31/12/12 50.600 63.300
01/01/13 31/03/13 51.900 65.000
01/01/13 31/12/13 48.725 60.250

quotations in euros per megawatt–hour (e/MWh) are listed in Table 1 and consists of contracts of
different lengths: days, weeks, weekends1, months, quarters, and calendar years.

2. Daily seasonality estimation

Due to the fact that forward contracts give information about time periods, such information may
obscure seasonality if the settlement period is long. This means we must specify a seasonal function
Λ(t) based on more information than can be read off the market prices. As do Benth et al. (2007b),
we base the estimation of Λ(t) on spot price data, which can be linked to forward prices. However,
since there is no clear arbitrage-free connection between spot prices and the forward curve in the
electricity market, the choice of seasonal function is ad hoc to some degree.

We begin by recording the hourly spot prices that are identified in day-ahead quotes. For our
numerical example, we consider the EEX hourly price from January 1, 2005, to May 22, 2012.
Should such data be missing, we replace it by the last available quote preceding the hour in question.
This occurs, for instance, when going from a legal to a solar hour count. In regression analysis,
classical estimation routines such as ordinary least squares are very sensitive to extreme observations
and outliers. One way to improve the robustness of the model is by cleaning the data with some
reasonable procedure to reject outliers. The outlier selection method we describe is proposed by
Truck et al. (2007), although they consider lower-performance filters than the Hodrick–Prescott
filter (see Hodrick and Prescott (1997)). Selection of the parameter λ in the filter definition follows
the method proposed by Pedersen (2001), who provides with an optimal selection of the Hodrick–
Prescott parameter to filter components with a period equal to or greater than a chosen figure.

1All the hours of the period are base load hours because weekend quotations refer to Saturday and Sunday.
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Appendix A briefly describes the Hodrick–Prescott filter and Pedersen’s criterion for the optimal
λ.

Here Srawh (t) denotes the spot price of hour h on day t. Hourly prices Srawh (t) lead to daily quotes
Sraw(t) by averaging the former over the day. The resulting time series of daily prices undergoes a
procedure to filter out outliers and replace them by “normal values.” We estimate a filtering trend
component whose purpose is to identify data outliers. This filtering trend is calculated using a
Hodrick–Prescott filter with a parameter λ set to perform a monthly smoothing, that is, filtering
out recurrent components with period equal to or exceeding a month. An outlier is then defined
as either a negative price or a price corresponding to an extreme deviation from the trend. The
extreme deviation is set equal to three times the standard deviation of the sample distribution of
discrepancies between the actual price and the trend. Once an outlier is identified, it is replaced in
the original series by the value estimated through the Hodrick–Prescott filter, the so-called normal
value referred to above. The filtering trend serves only to filter out data outliers. Figure 1 plots
the outliers detected for our EEX market example. We see how the German market changed its
behavior over the years and how the frequency of daily price spikes was higher during the first years
considered. In the last years of our analysis, the prices have a more regular pattern.
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Filtered prices
Filter for preprocessing
Identified Outliers

Figure 1. EEX daily prices after replacement of the spikes and original observa-
tions classified as outliers, using the Hodrick–Prescott filter technique.

The spot prices obtained after the outlier filtering procedure are denoted S (t). Each of the resulting
spot prices is then assumed to be represented as the sum of three additive components:

(2) S (t) = trend+ seasonality + noise.
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We want to extract the seasonality component to analyze and estimate it using a suitable parametric
function Λ(t). To do so, we estimate a cyclical trend component. This component aims to reproduce
the first additive term in formula (2). The cyclical trend is calculated using a Hodrick–Prescott
filter. The parameter λ is set to filter out recurrent components with a period equal to or exceeding
a year and a half. The rationale behind this choice is that economic movements with more than
one year are supposed to be related to macroeconomic phenomena, while pure seasonalities must
be searched in shorter periods. Furthermore, the longest settlement period quoted on the market
is the calendar year, so shorter period seasonalities should be hidden within them. The practical
choice of setting the period to a year and a half instead of just one year is to avoid any risk, while
filtering a time series, of introducing distortions near the cutoff frequency. Figure 2 estimates the
cyclical trend for EEX market daily prices.

Jul05 Nov06 Apr08 Aug09 Dec10 May12
0

20

40

60

80

100

120

 

 

Daily price
Filtered daily trend

Figure 2. Filtered trend Strend(t) and EEX daily price time series S(t).

We indicate the filtered trend with Strend(t). The resulting detrended series

Z(t) = S(t)− Strend(t)
constitutes the basis for our seasonal components analysis. We look for a parametric function to
fit Z(t). We use the following functional form:

(3) Λ(t) = a cos

(
4π

365
t+ b

)
+ Ddayd + Dmonthm,

where the dummy variables Dday and Dmonth are defined for each of the twelve months and each
of the seven days under analysis respectively. Official holidays are treated as if they were a typical
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Sunday. The function Λ(t) reproduces a semiannual periodicity plus daily and monthly dummies.
We even add a cosine with a six-month period. An analysis of periodicities is conducted using a
periodogram. We fit Λ(t) by minimizing the weighed discrepancy to the target path Z (t). This
goal amounts to solving the optimization problem

(4) min
θi
||e−α(tend−t)(Z(t)− Λ(t))||22.

and the parametric vector θi gathers all parameters defining the function Λ (t). For the example
of the German electricity market, we set α = 0.4. Figure 3 plot one year of the estimated Λ(t).
The estimated Λ(t) shows that prices are lower during Sundays and holidays than during weekdays.
Monthly prices seem to be lower when people usually have more holidays, such as during December,
January, July, and August.

Feb05 Mar05 May05 Jul05 Aug05 Oct05 Dec05
−15

−10
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0

5

Seasonality estimated over the first year

Figure 3. The function Λ(t) is computed over the first year of estimation.

3. From an instantaneous to a daily forward curve

The first step of our procedure to obtain an hourly forward price curve is to derive an instantaneous
forward price curve. To do so, we use the technique proposed by Benth et al. (2007b), which we
cover in this section.

Let

S = {[τ b1 , τe1 ], [τ b2 , τ
e
2 ], . . . , [τ bm, τ

e
m]}
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be a list of start and end dates for the settlement periods of m average-based forward contracts.

Assume that for k = 1, . . . ,m base load F basek and peak load F peakk forward contracts are quoted.2

Periods can overlap, so we construct a new list t1, ..., tn, as illustrated in Figure 4. We assume that
time is measured in days. The new list consists of the elements in S sorted in ascending order,

Figure 4. Splitting overlapping contracts.

with duplicate elements removed. At time u the instantaneous forward price curve f(u) is modeled
as

f(u) = Λ(u) + ε(u)

for the two continuous functions Λ(u) and ε(u), where Λ(u) represents the seasonality of the for-
ward curve and ε(u) is an adjustment function that captures the forward curve’s deviation from
seasonality. The adjustment function ε is assumed to be the following polynomial spline of order
four:

ε =


a1u

4 + b1u
3 + c1u

2 + d1u+ e1, u ∈ [t0, t1],
a2u

4 + b2u
3 + c2u

2 + d2u+ e2, u ∈ [t1, t2],
...

anu
4 + bnu

3 + cnu
2 + dnu+ en, u ∈ [tn−1, tn].

Moreover, the splines are assumed to be twice continuously differentiable. and with zero derivative
in tn. The parameter vector

x> = [a1, b1, c1, d1, e1, a2, b2, c2, d2, e2, . . . , an, bn, cn, dn, en]

is found by solving the convex quadratic programming problem

(5) min
x

∫ tn

t0

[ε′′(u; x)2]du

subject to the following constraints of continuity and smoothness at the knots, j = 1, . . . , n −
1:

(6) (aj+1 − aj)u4
j + (bj+1 − bj)u3

j + (cj+1 − cj)u2
j + (dj+1 − dj)uj + ej+1 − ej = 0,

(7) 4(aj+1 − aj)u3
j + 3(bj+1 − bj)u2

j + 2(cj+1 − cj)uj + dj+1 − dj = 0,

(8) 12(aj+1 − aj)u2
j + 6(bj+1 − bj)uj + 2(cj+1 − cj) = 0,

2Benth et al. (2007b) propose a procedure to constrain the curve between the bid and ask prices. We do not
treat this case, limiting our description to a curve obtained from mid or closing price quotations.
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and

(9) ε′(un; x) = 0,

(10) F basei =
1

τei − τ bi

∫ τei

τbi

(ε(u; x) + Λ(u)) du.

Equations (6) to (10) can be written in the form Ax = b. In writing equation (10), the kind
of settlement of the forward contract does not really matter, as seen in formula (1). Benth et al.
(2007b) show that the maximum smoothness problem (5) is equivalent to solving the linear equation
problem

(11)

[
2H A>

A 0

] [
x
λ

]
=

[
0
b

]
,

where the dimension of the left matrix is (8n+m−2)×(8n+m−2) and the solution vector and the
rightmost vector both have dimension (8n+m− 2). Here λ> = [λ1, λ2, ..., λ3n+m−2] is a Lagrange
multiplier vector and the matrix H is defined as

H =

h1 0
. . .

0 hn

 , hj =


144
5 ∆5

j 18∆4
j 8∆3

j 0 0
18∆4

j 12∆3
j 6∆2

j 0 0
8∆3

j 6∆2
j 4∆1

j 0 0
0 0 0 0 0
0 0 0 0 0

 ,
and

∆l
j = tlj − tlj−1.

Solving formula (11) numerically is standard, using LU factorization. Indicating with x∗ the solution
of the problem stated above, the instantaneous forward curve reads as

f (u) = Λ (u) + ε(u; x∗).

Once we obtain the instantaneous forward curve, the daily forward price computes as the arithmetic
average of instantaneous forward prices over day i:

(12) f̂(t0 + i) =

∫ t0+i+1

t0+i

f(u)du,

for i = 1, . . . , N , where N is the number of days between the starting date and the last end date.
Therefore N = tn − t0. This quantity is important in market practice because it represents a
prediction, under a risk-neutral probability measure, of the future spot price and is the starting
point from the hourly shaping described in the following sections. We deal with peak load quotations
when shaping the curve to an hourly profile. The daily curve computed for the EEX market example
with data in Table 1 is shown in Figure 5.

4. Hourly seasonality estimation

We now need to extrapolate the seasonality from the hourly prices to give the curve an hourly
shape. As pointed out by Huisman et al. (2007), hourly electricity prices in day-ahead markets
do not follow a time series process but comprise, instead, a panel of 24 cross-sectional hours that
vary from day to day. This is because the microstructure of many day-ahead market prices is
such that all hours are quoted at the same moment in a day. A trader uses exactly the same



4. HOURLY SEASONALITY ESTIMATION 17

Aug12 Nov12 Mar13 Jun13 Sep13
20

25

30

35

40

45

50

55

60

65

Figure 5. The computed daily forward price curve (blue line) and base load con-
tract quotations (red line).

information to set the price for hour h as to set the price for hour s (h being different from s).
The next day, the information set updates, but it updates simultaneously for hours 1 through
24. Therefore, hourly prices within a day behave cross-sectionally and hourly dynamics over days
behave according to time series properties. However, we consider separately each hourly time series
in the outlier identification step due to difficulties in handling multidimensional time series. The
procedure followed for estimating hourly seasonality mimics that described above for daily quotes,
with a few amendments. The following briefly describes the approach.

For each hour h, we compute a normalized hourly deviation from the day-ahead price, defined as
the average of the 24 hourly quoted prices:

Sh(t)− S(t)

S(t)
= trendh+seasonalityh+noiseh,

where h = 1, . . . , 24. As in the daily price case, we identify a filtering trend using a Hodrick–
Prescott filter with an optimal parameter for each hour, remove outliers, and then filter a cyclical
trend, again using a suitable Hodrick–Prescott filter.

We want to examine the normalized price deviation trends displayed in Figure 6 before modeling
market seasonality. In recent years, Germany has significantly increased its share of electricity
produced from renewable sources, mainly due to the Renewable Energy Act. The Renewable
Energy Act substantially impacts the dynamics of intra-day electricity. In the first years of our
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Figure 6. Function trendh(t) estimated for each hour h = 1, . . . , 24.

sample period, the higher intra-day trend prices were in the middle of the peak hours (10:00–
11:00, 11:00–12:00, and 12:00–13:00). However, in recent years the price of energy during evening
bands has greatly increased, in some cases to even higher than during peak hours. This increase
is the result of the entry of renewable energy into the electricity market, namely, wind power and
photovoltaics. When these operate at full capacity, mainly during daylight hours, they take over
all other forms of energy. Consequently, other energy sources, such as gas-fired power plants, have
been gradually confined to the peripheral hours of the day and are activated less frequently. When
the sun sets, however, the supplies of renewable energy suddenly disappear and the energy system
must cope with the not negligible rising consumption of the evening. Other energy sources, such
as gas-fired plants, are switched on to cover this energy demand, but this continuous “stop and
go” has a fixed cost and companies are well aware that they have just few hours in the day to gain
the margins needed to compensate at least for the fuel used. This explains the trends displayed in
Figure 6.

Once the trends are removed, periodic components are estimated on the residuals:

Zh(t) =
Sh(t)− S(t)

S(t)
− trendh (t) .

Although each market shows a different seasonality pattern, the analysis conducted on the residual
Zh(t) generally shows marked recurrences during mid-day and evening hours. Switching from a
legal to a solar hour count mainly affects consumption in the evening hours, from 18:00 to 21:00.
We therefore model each time series {Zh(t)} using 12 monthly dummy variables for the working
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days and 12 more for the non-working days, for a total of 24 dummy variables for each of the 24
hours. These variables are included in the matrix X. For every hour in the day, we estimate a
corresponding seasonal component using a weighted linear regression. This amounts to solving the
optimization problem

(13) min
gh
‖W1/2(Zh(t)−Xgh)‖22, h = 1, . . . , 24,

where the weighting matrix W is diagonal with wi,i = e−α(tend−t), with gh ∈ R24 for h = 1, . . . , 24.
Thereafter, the hourly seasonal component is shifted by a fixed amount so that the sum of the
differences is zero over the day. Some calibration results are displayed in Figure 7. We use α = 0.4
to give enough weight to the recent years of analysis. The behavior of the seasonality during mid-
day hours has changed significantly in recent years due to the energy market changes described.
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Figure 7. Normalized hourly deviation (blue) and fitted seasonality (red) for the
price of hours 6 (upper left), 12 (upper right), 18 (bottom left), and 24 (bottom
right).

5. Hourly shaping of the forward curve

This section describes how to construct an hourly forward curve from a daily forward curve and the
estimated hourly seasonality. We begin by defining the component of forward price quotes stemming
from spot trends. From the previous section, trendh (t) is defined by the Hodrick–Prescott filter for
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any time prior to the evaluation date t0 for which a spot quote is available and for any hour h in
the day. Assume that the last portion of this trend, namely, {trendh (t0) , h = 1, ..., 24}, is the sole

contributor to the time t0 quoted forward price curve. Since
∑24
h=1 trendh (t0) =: l may not vanish,

we define lh := trendh (t0)− l
24 , which implies that

∑24
h=1 lh = 0 by construction.

Our first estimate of the hourly quoted forward curve is made on a historical basis and is given
by

(14) f̄(t0 + i, h) := f̂(t0 + i)×
(

1 + lh + g∗h
>1m(i)

)
i = 1, . . . , N,

where

• t0 is the estimation date;

• t0 + i denotes the time corresponding to a day i in the future, measured in days;

• h represents an hour in day i, that is, h = 1, . . . , 24;

• f̂(t0 + i) is the forward price computed at time t0 for delivery over day i as defined in
formula (12);

• lh = trendh (t0)− l
24 , as defined at the beginning of this section;

• g∗h solves problem (13) stated in the previous section;

• 1m (i) is a 24-component vector with all zero elements except one: If day i is a working day
in month k, then the kth component of 1m (i) is set equal to one; if day i is a non-working
day in month k, then the (12 + k)th component of 1m (i) is set equal to one.

Concerning formula (14), first, we note that hourly prices are obtained by incrementing or decre-

menting each daily price by a percentage, represented by the quantity lh+g∗h
>1m(i). Figure 8 shows

such quantities computed for the German market example. We note a higher increment during the
second intra-day peak for many days of the year. The first intra-day peak still shows a higher
increment only during spring and summer business days, probably because of air conditioning. The
choice to model the relative distance between the daily price and the hourly price guarantees the
positivity of the hourly price. This is a decision commonly used in the literature. However, in recent
years the Renewable Energy Act has substantially impacted the dynamics of intra-day electricity
prices by increasing the likelihood of negative prices. Negative prices are still rare and related only
to few markets, although a slight modification of the methodology could be a possible development
to allow negative prices. For a detailed description of negative price phenomena in German energy
market, see Fanone et al. (2011).

Second, we consider some practical solutions in the construction of the curve. To ensure that
hourly deviations from the daily mean price sum to zero, we shift trends and seasonality estima-
tions. We introduce this solution because we consider each hourly deviation a unidimensional time
series. Describing hourly deviation as a multidimensional time series could be a possible theoretical
improvement in the methodology, allowing for the joint estimation of such elements.

Finally, we use n base load quotations and historical information to construct a curve with a time
horizon of N days such that tn = t0 + N . We assume that a broker provides a number n of peak
load quotes to the user, but the estimated forward prices need not be compatible with these quotes.
Therefore we modify our estimate to allow the constructed price to match market quotes.
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Figure 8. Computed percentage increments and decrements of the 24 hours of
the day. The upper panel denotes business days and the lower panel non-working
days. We plot a different profile for each month. The months are numbered from
one (January) to twelve (December).



22 1. HOURLY FORWARD PRICE CURVE FITTING

We now describe how to align the hourly curve to forward market quotations. To begin with, we
note that market quotes can refer to overlapping time periods in the future. For base load contracts,
the methodology of Benth et al. (2007b) easily manages overlapping contracts but, unfortunately,
we cannot use the same method in the peak load case. However, we can define some rules to split
quotations over non-overlapping periods. Without loss of generality, consider a simple example

with only two peak load quotations F peak1 and F peak2 with settlement periods [τ b1 , τ
e
1 ] and [τ b2 , τ

e
2 ],

respectively. We indicate with BD[a, b] the number of business days in the interval [a,b]. We
consider only the two most popular kinds of overlap in energy markets:

• τ b1 = τ b2 < τe1 < τe2 . We set t1 = τ b1 = τ b2 , t2 = τe1 , and t3 = τe2 . We define F̂Peak1 =

F peak1 on the settlement period [t1, t2] and F̂Peak2 =
Fpeak2 BD[t1,t3]−Fpeak1 BD[t1,t2]

BD[t2,t3] on the

settlement period [t2, t3].

• τ b1 < τ b2 < τe1 < τe2 . Since in this case two quotations define three intervals, we introduce

the rule F̂Peak1 = F̂Peak2 = FPeak1 to obtain a unique solution for F̂Peak3 . We set t1 = τ b1 ,

t2 = τ b2 , t3 = τe1 , and t4 = τe2 . We define F̂Peak1 = F peak1 on the settlement period [t1, t2],

F̂Peak2 = F peak1 on the settlement period [t2, t3], and F̂Peak3 =
Fpeak2 BD[t2,t4]−Fpeak1 BD[t2,t3]

BD[t3,t4]

on the settlement period [t3, t4].

Hence, we compute n implied peak load prices referring to non-overlapping time periods and denote

them F̂Peakj , for j = 1, . . . , n. In each period, we look for a coefficient l̂jh such that the historical
curve is perfectly reproduced. The simple idea here is that the information in peak load contracts
should affect only the economic trend of prices, without describing the impact of seasonality on
price movements. The hourly forward price curve is then defined as

(15) f̂(t0 + i, h) = f̂(t0 + i)×
(

1 + l̂jh + g∗h
>1m(i)

)
,

j = 1, . . . , n, h = 1, . . . , 24, and i ∈ [0, . . . , N ]. To compute l̂jh, let SPj be the settlement period
corresponding to the jth implied forward peak load and BDj be the subset of SPj comprising
only working days. We solve the optimization problem of minimizing the discrepancy between the

historical forward curve and the target function f̂(t0 + i, h):

min
l̂jh

24∑
h=1

∑
i∈SPj

(
f̄(t0 + i, h)− f̂(t0 + i, h)

)2

, j = 1, . . . , n,

under the constraints

1

24

24∑
h=1

f̂(t0 + i, h) = f̂(t0 + i), ∀i ∈ SPj , j = 1, . . . , n,

1

12#BDj

∑
i∈BDj

20∑
h=9

f̂(t0 + i, h) = F̂Peakj , j = 1, . . . , n.

This approach can be cast as a quadratic optimization problem with respect to the variables

l̂jh:

min
l̂jh

24∑
h=1

(l̂jh)2 − 2l̂jhlh, j, . . . , n,
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under constraints, for j = 1, . . . , n,
24∑
h=1

l̂jh = 0,

20∑
h=9

l̂jh =
#BDjF

Peak
j 12−

∑
i∈BDj f̂(t0 + i)

∑20
h=9

(
1 + g∗h

>1m(i)
)

∑
i∈BDj f̂(t0 + i)

.

The resulting hourly forward price curve compatible with peak load quotes is as in (15), where l̂jh
is computed by solving the quadratic optimization problem above. Figure 9 shows the final result
of our computation. Because of the large amount of data and the difficulty of displaying them
all simultaneously, we plot only the first month of the EEX hourly forward price curve generated.
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Figure 9. First month of the hourly forward price curve generated.

6. Backtesting and selecting α

This section describes a backtesting method to measure our curve’s goodness-of-fit technique and
presents the backtesting results of applying the hourly forward curve to several European markets,
in Table 2. We consider day-ahead prices for five European energy spot market starting on different
dates:

• Italy (MGP), data since January 1, 2005;
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• Germany (EEX), data since January 1, 2005;

• France (PNXT), data since January 1, 2006;

• Switzerland (SWISSIX), data since December 12, 2006;

• Czech Republic (CZ), data since January 1, 2008.

Backtesting is implemented as follows. We define an evaluation date in the past and use historical
spot data before the evaluation date to calibrate the model. Data after the evaluation date are
used to extrapolate forward quotations and to measure the quality of fit. Our experiments consider
three evaluation dates: December 31, 2009; June 30, 2010; and December 31, 2010. We calibrate
the model for each country considering a time period spanning from its respective start date to each
evaluation date. We consider four different values for the parameter α used in formulas (4) and
(13): 0.2, 0.4, 0.6 and 0.8. Forward contract quotations are obtained from spot prices delivered after
each evaluation date, averaged over base load and peak load hours. Our tests consider two different
settings of forward quotations. The first setting is comprised of monthly prices and is denoted M.
The second setting tries to reproduce the market structure: We compute monthly average prices for
three months. Then we compute the average prices over three-month periods, trying to reproduce
the information of quarterly contracts. We call this setting the monthly/quarterly setting and it is
denoted M/Q in Table 2. Curves evaluated December 31, 2009, and December 31, 2010, cover one
year. Curves evaluated June 30, 2010, cover six months. The same spot data that we averaged to
compute the forward quotations are used to check the curve fit. The distance between delivered
spot prices and forecasts is measured by the Euclidean norm of the hourly price difference.

The results of backtesting are displayed in Table 2. First, we see that the fit does not seem highly
dependent on the α parameter chosen. However, a comparative analysis, such as that in Table 2,
could suggest the best parameter to use, depending on the market and the evaluation date. Second,
curves obtained from monthly quotations are likely to perform better than those obtained from
monthly and quarterly quotations. Although this is due to the use of more information about market
prices, in many case the relative distance between the monthly curve and the monthly/quarterly
curve is negligible, showing the quality of the fitting procedure. Third, the curves generated for the
year 2010 have higher discrepancies with the spot data than those generated for 2011. This is the
case for every market except for the German one, where performance seems to be stabler.
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Table 2. Backtesting results.

Market Eval. Date Forward Length α = 0.2 α = 0.4 α = 0.6 α = 0.8
MGP 12/31/09 M 1y 1175 1118 1091 1080

12/31/09 MQ 1y 1176 1119 1094 1087
6/30/10 M 6m 783 742 728 725
6/30/10 MQ 6m 788 745 731 728
12/31/10 M 1y 879 853 821 811
12/31/10 MQ 1y 991 924 899 890

EEX 12/31/09 M 1y 823 798 781 773
12/31/09 MQ 1y 863 857 844 845
6/30/10 M 6m 565 536 516 493
6/30/10 MQ 6m 579 555 542 526
12/31/10 M 1y 745 728 723 723
12/31/10 MQ 1y 991 924 899 890

PNXT 12/31/09 M 1y 1134 1113 1102 1098
12/31/09 MQ 1y 1166 1158 1148 1149
6/30/10 M 6m 741 718 711 711
6/30/10 MQ 6m 751 729 724 728
12/31/10 M 1y 979 967 963 963
12/31/10 MQ 1y 1022 1012 1013 1017

SWISSX 12/31/09 M 1y 954 949 948 948
12/31/09 MQ 1y 908 893 893 894
6/30/10 M 6m 628 621 616 620
6/30/10 MQ 6m 539 539 548 562
12/31/10 M 1y 720 715 714 717
12/31/10 MQ 1y 828 830 834 839

CZ 12/31/09 M 1y 698 1073 1062 1057
12/31/09 MQ 1y 1409 1385 1374 1369
6/30/10 M 6m 882 871 864 860
6/30/10 MQ 6m 673 675 673 675
12/31/10 M 1y 752 746 746 749
12/31/10 MQ 1y 829 823 826 832



CHAPTER 2

A general semi-closed form spread option pricing formula

Although this may seem a paradox,
all exact science is dominated by
the idea of approximation.

Bertrand Russell (1872–1970)

A spread option is a contract written on the price difference of two underlying assets whose values
at time t are denoted by S1(t) and S2(t). We consider European-type options for which the buyer
has the right to be paid, at the maturity date T , the difference S2(T )−S1(T ), known as the spread.
To exercise the option, the buyer must pay at maturity a price K, known as the option’s strike
price. However, some financial spreads are not defined as the difference between just two prices;
they are defined, more generally, as a linear combination of financial variables, that is, a basket of
financial variables. The mathematical modeling we discuss in the following sections of this chapter
pertains only to the case of an option written on the difference of two prices. See Chapter 3 for the
basket option case.

The use of spread options is widespread despite the fact that pricing and hedging techniques are
still underdeveloped, because, depending on the stock model we consider, the pricing problem is or
is not solvable in closed form. In the Bachelier stock model, the price vector is assumed to evolve
according to a bivariate Brownian motion and the option price is easily computable in closed form.
If, instead, we consider price as a bivariate geometric Brownian motion and a zero option strike, we
obtain the celebrated Margrabe (1978) formula. The important case in which the strike is not equal
to zero does not have an explicit solution and few approximation methods have been developed.
The most popular approximation is given by the formula of Kirk (1995), which is the current market
standard. Carmona and Durrelman (2003a) obtain an analytical approximation formula using a
family of lower bounds and determine un upper bound. The two bounds return a price range that
is very tight for certain parameter values. Deng et al. (2008) approximate spread option price and
Greeks as a sum of one-dimensional integrals following the method developed by Pearson (1995).
Venkatramana and Alexander (2011) propose a closed-form approximation expressing the price of
a spread option as the sum of the prices of two compound options. Deelstra et al. (2010) develop
approximation formulas based on comonotonicity theory and moment matching methods. Finally,
Bjerksund and Stensland (2011) propose a lower bound, showing that their formula is more accurate
than Kirk’s approximation.

Very little is discussed in the literature about the pricing of spread options in a non-Gaussian setup.
Some asset classes, for example, energy price, require models with mean reversions and jumps and
the spread options pricing in such situations can be challenging. A Fourier transform was originally
introduced by Dempster and Hong (2002), who implement a valuation method based on the fast

26
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Fourier transform (FFT), applying the idea of Carr and Madan (2000). An FFT technique is also
applied by Hurd and Zhou (2009), who propose a pricing method based on an explicit formula for
the Fourier transform of the spread option payoff in terms of the gamma function. Their formula
requires a bivariate Fourier inversion. Cheang and Chiarella (2011) generalize Margrabe’s formula
to jump diffusion dynamics of the type originally introduced by Merton (1976) but do not discuss
the non-zero strike case or provide a numerical example. Closed form distribution free bounds and
optimal hedging strategies for spread options are derived in Laurence and Wang (2008).

The main contribution of the present work is the derivation of a lower bound, as in Bjerksund
and Stensland (2011), but for general processes. The only quantity we need to know explicitly is
the joint characteristic function of the log-returns of the two assets. In addition, the computation
of our lower bound requires a univariate Fourier inversion, as opposed to the bivariate inversion
required by Hurd and Zhou (2009). Finally, our bound turns out to be extremely accurate and
easily computable. To this regard we apply it to different non-Gaussian models, such as jump
diffusion models with different distributions of jump size, multivariate stochastic volatility models,
mixtures of variance gamma (VG), and a VG time changed model. Mean-reverting models are also
considered. Numerical examples are discussed for all these cases and benchmarked against Monte
Carlo simulations. The second contribution of this work is the derivation of a tight upper bound
based on the price of a new contract, the quadratic spread option. As for the lower bound, it can
be provided for very general processes, provided that the bivariate characteristic function is known
in closed form. The chapter outline is as follows. Section 1 describes spread in financial markets.
Section 2 describes the state of the art in spread option pricing. Section 3 generalizes the lower
bound of Bjerksund and Stensland (2011) for non-Gaussian models. Section 4 derives a new general
upper bound. Section 5 examines in more detail the bivariate geometric Brownian motion model,
discussing two additional bounds. The new lower bound improves the Bjerksund–Stensland bound,
but from a practical point of view the improvement is negligible. Section 6 briefly reviews several
non-Gaussian stochastic dynamic models used in financial applications. Section 7 presents some
numerical experiments.

1. Spread in financial markets

Spread is a popular financial quantity in money and foreign exchange markets, where certain spreads
are actively tracked. In the U.S. fixed income market, one of the most liquid spread instruments
is the note over bond spread, a spread between maturities. It is a yield curve spread created by
selling the 10-year U.S. Treasury note futures contract and buying the 30-year bond contract on
the Chicago Board of Trade (CBOT). Alternately, an equivalent position can be created in the
cash/repo market. An investor expecting inversion of a flat yield curve buys the bond contract
and sells the note contract in an appropriate ratio. An investor expecting a steepening yield curve
purchases the note contract and sells the bond contract in some proportion. Interest rate spreads are
also important when they involve the yield curves of different countries or different entities. Interest
rates (and, more importantly, the market’s perception of future interest rates) have a direct impact
on currency exchange rates. A currency offering a high interest rate often attracts purchases of
that currency, strengthening it against other currencies. Currencies offering low interest rates often
suffer from low demand and weaken as a result. Spreads between spot rates for different currencies
affect forward exchange rates and can indicate relative strength or weakness in currencies. Another
example is the bond spreads between the entities of an economic system where the same currency
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is used. This spread is interesting to monitor the distribution of wealth in the economic system. In
this sense, an important spread in the U.S. fixed income market is the municipal over bonds spread.
The municipal over bonds spread is the difference in price between the municipal bond futures
contract listed on the CBOT and the Treasury bond futures contract listed on the same exchange.
Comparing the credit quality of an American city or another local government with the credit
quality of the U.S. government, the municipal over bonds spread is sometimes used for determining
tax strategies. We find another example in the European Union, where bond spreads between
Germany and other European Union countries are used. Germany has the strongest economy of
the European Union and is used as a benchmark by financial actors. When the spread between
Germany’s bond rates and a peripheral country’s bond rates increases, that market’s actors are
losing trust in the peripheral country’s financial system.

In fixed income markets, the yields or spot rates at which instruments trade are modeled as com-
prising a benchmark yield or interest rate plus spreads attributed to factors such as credit risk,
liquidity, embedded options, and tax advantages. We discuss spreads concerning credit risk and
liquidity. The TED spread is an example of spread between credit quality levels in the U.S. fixed
income market. The TED spread is the difference between the interest rates on interbank loans
and those on short-term U.S. government debt; TED is an acronym formed from T -bill and ED,
the ticker symbol for Eurodollar futures contracts. Being a spread between a “risk-free” Treasury
rate and a comparable commercial rate, the TED spread offers an indication of market-wide credit
concern. More generally, it is useful for credit investors to have a measure to determine how much
they are being paid to compensate them for assuming the credit risk embedded within a specific
security. There is, in fact, a multiplicity of such measures. Most are called credit spreads since
they attempt to capture the difference in credit quality by measuring the return of the credit risk
security as a spread to some higher credit quality benchmark, typically either the government curve
or the same maturity London Inter-Bank Overnight Rate (Libor) swap rate (linked to the funding
rate of the AA-rated commercial banking sector). In the fixed rate bond market, the most widely
used credit spread measure is the yield spread, the difference between the yield to maturity of
the credit risky bond and the yield to maturity of an on-the-run Treasury benchmark bond with
similar but not necessarily identical maturity. A slight modification of this measure is the inter-
polated spread, or I-spread, which is the difference between the bond’s yield to maturity and the
linearly interpolated yield for the same maturity on an appropriate reference curve. The option
adjusted spread is the parallel shift to the Libor zero rate curve required so that the adjusted curve
reprices the bond. It was originally conceived as a measure of the amount of optionality priced into
a callable or puttable bond. The last credit spread concerning a fixed rate bond is the asset swap
spread, the spread over Libor paid on the floating leg in a par asset swap package. It is important
because it is a traded spread rather than an artificial measure such as the credit spreads listed
above. A floating rate note market has two important measures of credit risk: the discount margin
and the zero discount margin. The discount margin is a fixed add-on to the current Libor rate that
is required to reprice the bond. The zero discount margin is the parallel shift to the forward Libor
curve that is required to reprice the floating rate note. The last and probably the most important
credit spread is the credit default swap spread. The credit default swap spread is the contractual
spread that determines the cash flows paid on the premium leg of a credit default swap. Regarding
the liquidity task, the bid–ask spread is sometimes used as a market liquidity measure. Narrow
bid–ask spreads indicate greater liquidity. Indeed, in any market in equilibrium, there is generally
a difference between the best quoted ask price and the best quoted bid price, called the bid–ask
spread (or bid–offer spread). Depending upon the market, quotes can be expressed as actual prices,
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yields, implied volatilities, and so on. Bid–ask spreads are measured in similar units. The average
of the bid and ask prices is called the mid-offer price.

Spreads are popular even in several commodity markets. A temporal spread is a spread between
the same variable at two points in time. A temporal spread for the price of an agricultural product
prior to and after a harvest can be of interest, as can be the calendar spread between the prices of
natural gas in summer and winter. In commodity markets, spread options can even be based on the
differences between the prices of the same commodity at two different locations (locational spreads)
or between the prices of inputs to and outputs from a production process (processing spreads),
as well as between the prices of different grades of the same commodity (quality spreads). An
important example of spread frequently traded in agricultural futures markets is the so-called crush
spread, also known as the soybean complex spread, traded on the CBOT. The underlying indexes
comprise futures contracts of soybean, soybean oil, and soybean meal. The unrefined product is
the soybean and the derivative products are meal and oil. The spread is known as the crush spread
because soybeans are processed by crushing. The crush spread is quoted as the difference between
the combined sales value of soybean meal and soybean oil and the price of soybeans. Soybean
futures are traded in cents per bushel, soybean meal futures in dollars per short ton, and soybean
oil futures in cents per pound. As a result of these differences in units, conversion of meal and
oil prices to cents per bushel is necessary to determine the relations of the three commodities and
potential trading opportunities. The value [CS]t at time t of the crush spread in dollars per bushel
is defined as

[CS]t = 48[SM ]t/2000 + 11[SO]t/100− [S]t,

where [S]t is the futures price at time t of a soybean contract in dollars per bushel, [SO]t is the
futures price at time t of a contract of soy oil in dollars per 100 pounds, and [SM ]t is the price at
time t of a soy meal contract in dollars per ton. If we think of the crushing cost as a real constant,
then crushing soybeans is profitable when the spread [CS]t is greater than that real constant. The
crush spread gives market participants an indication of the average gross processing margin. It is
used by processors to hedge cash positions and by market participants for pure speculation. Notice
that the computation of the spread requires three prices, as well as the yield of oil and meal per
bushel. An option written on the crush spread is not a proper spread option but, rather, a basket
option. For an analysis of the crush spread market, see Johnson et al. (1991).

Regarding energy markets, the most frequently quoted spread options are the crack spread options
and the spark spread options. A crack spread is the simultaneous purchase (sale) of crude oil futures
and sale (purchase) of petroleum products futures (i.e., heating oil and/or gasoline). The magnitude
of this spread reflects the cost of refining crude oil into petroleum products. Crude oil prices are
usually quoted in dollars per barrel, while unleaded gasoline and heating oil prices are quoted in
dollars per gallon. A simple conversion of 42 gallons to the barrel needs to be applied to the data.
We indicate with [UG]t, [HO]t, and [CO]t the prices at time t of a futures contract of unleaded
gasoline, heating oil, and crude oil, respectively. Many popular crack spread contracts exist. The
3:2:1 crack spread involves three contracts of crude oil: two contracts of unleaded gasoline and one
contract of heating oil. The formula for such a spread is

[CS]t = 2[UG]t + 1[HO]t − [CO]t.

Note that the computation of the 3:2:1 crack spread requires three prices, so an option written on
such a spread is a basket option. The 1:1:0 gasoline crack spread involves one contract of crude oil
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and one contract of unleaded gasoline. Its value is given by the formula

[GCS]t = [UG]t − [CO]t.

The 1:0:1 heating oil crack spread involves one contract of crude oil and one contract of heating oil.
It is defined by the formula

[HOCS]t = [HO]t − [CO]t.

A spark spread is a proxy for the cost of converting a specific fuel (usually natural gas) into
electricity at a specific facility. It is the primary cross-commodity transaction in the electricity
markets. Mathematically, it can be defined as the difference between the price of electricity sold
by a generator and the price of the fuel used to generate it, provided these prices are expressed in
appropriate units. The most commonly traded contracts include the 4:3 spark spread and the 5:3
spark spread. The 4:3 spark spread involves four electric contracts and three contracts of natural
gas and its value is given by

[SS]4,3t = 4[E]t − 3[NG]t.

The 5:3 spark spread involves five electric contracts and three contracts of natural gas and its value
is given by

[SS]5,3t = 5[E]t − 3[NG]t.

Since spreads between indexes and financial variables are popular across different markets, options
written on these spreads are also popular. They are used to speculate, mitigate basis risk, and even
evaluate real assets:

• Consider, for example, certain commodity future contracts traded in the NYMEX and
IPE. We observe WTI and Brent futures prices are cointegrated, which means the spread
between the two is stationary. Thus this spread can be used as an indicator for buy
and sell trading strategy in several ways, for example, using technical trading rules or
forecasting the spread with econometric techniques. A financial market actor using such
a strategy to take a position in a spread option contract in expectation of a future gain,
despite significant risk of losing the initial outlay, is speculating. See Girma and Paulson
(1998, 1999) for papers on the profitability of spread-based trading strategies in petroleum
markets.

• Spread options can be used to mitigate the adverse movements of several indexes. Consider
the crack spread. The magnitude of this spread reflects the cost of refining crude oil into
petroleum products. A refinery’s output varies according to the plant design, its crude
slate, and its operational and maintenance program, which can be related to seasonal
product demand and changing market conditions. Therefore refineries take positions in
crack spread futures strategies according to their physical and operational requirements
and hedge against price fluctuations to mitigate risk or secure a profit margin on the
production output. A recent empirical analysis on the crack spread is that of Dempster
et al. (2008).

• Spread options are also relevant in investment valuation problems. For example, in the
energy industry a power generation unit can be priced using a real options approach.
The spark spread measures the difference between the costs of operating a gas-powered
generation unit, determined by the natural gas price, and the revenues from selling power
at the market price. Thus it determines the economic value of power plants that are used
to transform gas into electricity. In day-to-day operations, the plant operator generally
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consumes a particular gas unit only if the electricity spot price is greater than the cost
of generating that unit. If the generation profit is negative, it would be unreasonable to
burn a valuable commodity such as gas to obtain a low-valued product such as electricity.
One would instead sell gas in the market, buy power, and stop running the plant. The
flexibility of turning the plant on and off, based on market prices, represents a real option
for the asset owner and the power plant can be evaluated as a strip of European spark
spread options. For an example of investment valuation using spark spread options, see
Fusai and Roncoroni (2008).

• Eventually, the spread between the hourly day-ahead electricity prices of different countries
is another important spread in energy markets and a crucial quantity when evaluating an
interconnector capacity contract. An interconnector is an asset that gives the owner the
option to transmit electricity between two locations. In financial terms, the value of an
interconnector is the same as a strip of real options written on the spread between power
prices in two markets. The application of spread options in the modeling and valuation
of interconnector capacity contracts is discussed in Chapter 4.

2. Spread option pricing: A literature review

Let S1(t) and S2(t) be two stock price processes. An European spread option pays at the maturity
date T the amount

CK(T ) = (S1(T )− S2(T )−K)+.

The time 0 no-arbitrage fair price of the spread option is

(16) CK(0) = e−rTE
[
(S1(T )− S2(T )−K)+

]
,

where the expectation is with respect to a risk-neutral measure and r is the riskless interest rate.
Here, we have used the usual notation x+ for the positive part of x, that is, x+ = max{x, 0}. The
use of spread options is widespread, despite the fact that pricing and hedging techniques are still
underdeveloped. The pricing problem is or is not solvable in closed form, depending on the stock
model considered. In the simple case of the Bachelier stock model, the price vector is assumed to
evolve according to a bivariate Brownian motion and the option price is easily computed in closed
form. In the more interesting case of the bivariate Black–Scholes model (see Black and Scholes
(1973)), the stock price vector S(t) has components

(17) Sj(t) = Sj(t) exp[(r − δj − σ2
j /2)t+ σjWj(t)], j = 1, 2

where σ1, σ2 > 0, and W1,W2 are risk-neutral Brownian motions with instantaneous correlation
ρ, |ρ| < 1, r is the risk-free rate, and δj is the dividend yield or the instantaneous convenience yield,
depending on the nature of the underlying asset. If we consider spread options on futures, we have to
set δ1 = δ2 = r. With both S1(t) and S2(t) being log-normal, there is no known general formula for
the spread option value. However, a closed-form solution is available for the limiting case in which
K = 0, where the spread option collapses into an option to exchange one asset for another. The
option value in this case is given by the formula of Margrabe (1978). In the general case, however,
we must rely on either approximation formulas or extensive numerical methods. Approximation
formulas allow quick calculations and facilitate analytical tractability, whereas numerical methods
typically produce more accurate results. Practitioners are very focused on simple calculations and
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real-time solutions; hence a closed-form approximation formula is typically the preferred alternative.
In this modeling framework the standard market practice is given by Kirk’s formula

CKirkK (0) = e−rT
(
S1(0)e(r−δ1)TN(d1)− S2(0)e(r−δ2)TN(d2)

)
,(18)

where

d1 =
ln(S1(0)e(r−δ1)T /a) +

σ2
K

2 T

σK
√
T

, d2 = d1 − σK
√
T ,

σK =
√
σ2

1 − 2bρσ1σ2 + b2σ2
2 ,

a = S2(0)e(r−δ2)T +K and b = S2(0)e(r−δ2)T

S2(0)e(r−δ2)T+K
.

Bjerksund and Stensland (2011) propose a lower bound, showing their approximation is more ac-
curate than (18). The Bjerksund–Stensland approximation is

CBSK (0) = e−rT
(
S1(0)e(r−δ1)TN(d1)− S2(0)e(r−δ2)TN(d2)−KN(d3)

)+

,(19)

where quantity d1 is defined as in Kirk’s formula and

d2 =
ln(S1(0)e(r−δ1)T /a) + T (b2σ2

2 − 2bσ2
2 − σ2

1 + 2ρσ1σ2)/2

σK
√
T

,

d3 =
ln(S1(0)e(r−δ1)T /a) + T (b2σ2

2 − σ2
1)/2

σK
√
T

.

We note that in the case K = 0, both formulas collapse in Margrabe’s formula, providing the
exact result. Formula (19) is equivalent to the classical Black–Scholes formula when S1(t) = 0
or S2(t) = 0. We modified Bjerksund and Stensland’s formula by introducing the positive part
operator to avoid negative prices for deeply out of the money options. To obtain a stricter lower
bound, one could optimize the spread call value (19) above with respect to a and b, even if the
authors show that, with their initial choice a and b, there is very little to gain from implementing
such an optimization procedure. Before generalizing this formula to general stock dynamics (Section
3), we briefly describe other kinds of approximation for the spread option value.

A popular lower approximation formula is proposed by Carmona and Durrelman (2003a) and Car-
mona and Durrelman (2003b). The authors represent spot prices by two independent state variables
and model the correlation using trigonometric functions. They propose the formula

CCDK (0) = S2(0)e−δ2TN(d∗ + σ2 cos(θ∗ + φ)
√
T )(20)

−S1(0)e−δ1TN(d∗ + σ1 sin(θ∗ + φ)
√
T )−Ke−rTN(d∗),

where

cosφ = ρ, cosψ =
σ1 − ρσ2

σ
, σ =

√
σ2

1 + σ2
2 − 2ρσ1σ2

and

d∗ =
1

σ cos(θ∗ − ψ)
√
T

ln

(
S2(0)e−δ2Tσ2 sin(θ∗ + ψ)

S1(0)e−δ1Tσ1 sin(θ∗)

)
− 1

2
(σ2 cos(θ∗ + φ) + σ1 cos θ∗).
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The parameter θ∗ is computed as the solution of the equation

1

δ cos θ
ln

(
− βκ sin(θ + φ)

γ[β sin(θ + φ)− δ sin θ]

)
− δ cos θ

2
=

1

δ cos(θ + φ)
ln

(
− δκ sin θ

α[β sin(θ + φ)− δ sin θ]

)
− β cos(θ + φ)

2

and

α = S2(0)e−δ2T , γ = S1(0)e−δ1T , β = σ2

√
T , δ = σ1

√
T , and κ = Ke−rT .

The approximation (20) is a lower bound and is equal to the true option price when K = 0, or
S1(t) = 0, or S2(t) = 0, or ρ = ±1. In particular, (20) reduces to Margrabe’s formula when K = 0
and to the classical Black–Scholes formula when S1(t) = 0, or S2(t) = 0. The formula of Carmona
and Durrelman (2003a) not only works in the geometric Brownian motion framework, but also
can be rewritten for general log-normal processes, allowing the introduction of mean reversion and
jumps. Carmona and Durrelman (2003a) provide a rather accurate upper bound; however, it does
not reflect the extreme accuracy of their lower bound. Bjerksund and Stensland (2011) show that
optimizing formula (19) with respect to a and b is equivalent to solving formula (20).

Another general approximation formula in the log-normal setup is suggested by Deng et al. (2008),
who rewrite the spread option value as the sum of one-dimensional integrals, following the method
of Pearson (1995). Integrals I1, I2, and I3 are then approximated by a second-order expansion,
yielding the approximation

(21) CDLZK (0) = eν
2
1/2+µ1−rT I1 − eν

2
2/2+µ2−rT I2 −Ke−rT I3,

where

Ii ≈ J0(Ci, Di) + J1(Ci, Di)ε+
1

2
J2(Ci, Di)ε2

and

J0(u, v) = N

(
u√

1 + v2

)
,

J1(u, v) =
1 + (1 + u2)v2

(1 + v2)5/2
n

(
u√

1 + v2

)
,

J1(u, v) =
(6− 6u2)v2 + (21− 2u2 − u4)v4 + 4(3 + u2)v6 − 3

(1 + v2)11/2
u · n

(
u√

1 + v2

)
.
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The arguments Ci, Di, and ε are given by

C1 = C3 +D3%ν1 + ε%2ν2
1 +

√
1− %2ν1,

D1 = D3 + 2%ν1ε,

C2 = C3 +D3ν2 + εν2
2 ,

D2 = D3 + 2ν2ε,

C3 =
1

ν1

√
1− %2

(
µ1 − ln(R+K) +

ν2R

R+K
y0 −

ν2
2RK

2(R+K)2
y2

0

)
,

D3 =
1

ν1

√
1− %2

(
%ν1 −

ν2R

R+K
+

ν2
2RK

(R+K)2
y0

)
,

ε = − 1

2ν1

√
1− %2

ν2
2RK

(R+K)2
,

where R = eν2y0+µ2 and y0 is any real number close to zero. The quantities µj and νj appearing
in formula (21) are the mean and variance of price returns, respectively. The parameter % is
the instant correlation of the standardized log-prices, which, in the geometric Brownian motion
framework, become

µi = lnSi(0) + (r − δi − σ2
i /2)T, νi = σi

√
T and % = ρ.

The boundary conditions for K = 0, S1(0) = 0, and S2(0) = 0 are satisfied. The parameter y0 can
be freely chosen as a real number close to zero because formula (21) is based on a second-order
integral approximation. The method has been proven to be extremely fast and accurate. With the
same integral approximation technique, Deng et al. (2008) obtain a closed formula for the spread
option’s Greeks.

The last approximation formula we describe in the geometric Brownian motion setting is based on
an idea of Venkatramana and Alexander (2011). These authors express the price of a spread option
as the sum of the prices of two compound options. One compound option is to exchange vanilla call
options on the two underlying assets and the second is to exchange the corresponding put options.
Let Ui(0) and Vi(0) be the Black–Scholes option prices at time 0 for the calls and put options,
respectively. Let K1 = mK be the strike of U1 and V1 and let K2 = (m− 1)K be the strike of U2

and V2 for some real number m ≥ 1. Choosing m such that single-asset call options are deep in the
money, the risk-neutral price at time 0 of a European spread option can be expressed as

(22) CV AK (0) = e−rT (U1(0)N(d1U )− U2(0)N(d2U )− (V1(0)N(−d1V )− V2(0)N(−d2V ))) ,

where

d1A =
ln(A1(0)/A2(0)) + (δ2 − δ1 + σ2

A/2)T

σA
√
T

, d2A = d1A − σA
√
T



3. THE LOWER BOUND 35

and

σU =
√
ξ2
1 + ξ2

2 − 2ρξ1ξ2,

σV =
√
η2

1 + η2
2 − 2ρη1η2,

ξi = σi
Si(0)

Ui(0)

(
∂Ui(t)

∂Si(t)

)
t=0

,

ηi = σi
Si(0)

Vi(0)

∣∣∣∣∂Vi(t)∂Si(t)

∣∣∣∣
t=0

.

The authors show that formula (22) is a better approximation than Kirk’s formula and allows one
to properly quantify the correlation risk of the spread option.

There is very little literature about pricing spread options in a non-Gaussian setup. A Fourier
transform was originally introduced by Dempster and Hong (2002), who implement an FFT-based
valuation method, applying the idea of Carr and Madan (2000). The most advanced FFT-based
spread option pricing method is that proposed by Hurd and Zhou (2009). These authors introduce
a formula for general spread option pricing based on Fourier analysis of the spread option payoff
function. The method is applicable to models in which the joint characteristic function of the
underlying assets forming the spread is known analytically. This enables the authors to incorporate
stochasticity in the volatility and correlation structure by introducing, for example, additional
factors within an affine jump diffusion framework. Without loss of generality, the authors describe
the payoff as (ex1 − ex2 − 1)+. Let u = (u1, u2)ᵀ and X(t) = (lnS1(t), lnS2(t))ᵀ and consider the
joint characteristic function

ΦT (u) = ΦT (u1, u2) = E
[
eiu1 lnS1(T )+iu2 lnS2(T )

]
= E

[
eiu

ᵀX(T )
]
.

The value of this spread option can be computed as

(23) CHZK =
1

(2π)2
e−rT

∫ ∫
R2+iε

eiu
ᵀX(0)ΦT (u)P̂ (u)d2u,

where

P̂ (u) =
Γ(i(u1 + u2)− 1)Γ(−iu2)

Γ(iu1 + 1)
.

Authors describe how to solve the double Fourier integrals in formula (23) using a two-dimensional
FFT approximation. Such approximations involve both a truncation and discretization of the
integral and the two properties that determine their accuracy are the decay of the integrand of (23)
in u-space and the decay of the function CHZK in x-space.

3. The lower bound

Consider the problem (16). If K = 0 and S1(t), S2(t) are jointly log-normal, we have the so-
called Margrabe exchange option formula. Very little regarding non-zero strikes and non-Gaussian
processes is discussed in the literature, despite the relevance of a closed pricing formula in a number
of financial applications, such as those previously described.
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Let us define the event A

A =

{
ω :

S1 (T )

Sα2 (T )
>

ek

E (Sα2 (T ))

}
(24)

and let us consider the following lower bound to the spread option payoff:

(25) (S1 (T )− S2 (T )−K)
+ ≥ (S1 (T )− S2 (T )−K) 1(A).

Bjerksund and Stensland (2011) are able to explicitly compute

(26) Ck,αK (0) = e−rTE
[

(S1 (T )− S2 (T )−K) 1(A)

]
in the log-normal case. They also show that Ck,αK (0) is a very good approximation to the exact
spread option price CK(0) for suitable choices of the parameters α and k. In particular, they show
that their formula in the log-normal setup is more accurate than Kirk’s approximation.

We now generalize their result to a general bivariate stock price dynamic, provided that the joint
characteristic function of (lnS1(T ), lnS2(T ))ᵀ is available in closed form. Let u = (u1, u2)ᵀ and
X(t) = (lnS1(t), lnS2(t))ᵀ and consider the joint characteristic function

ΦT (u) = ΦT (u1, u2) = E
[
eiu1 lnS1(T )+iu2 lnS2(T )

]
= E

[
eiu

ᵀX(T )
]
.

Our main result is stated in the following proposition.

Proposition 1. The approximate spread option value Ck,αK (0) is given in terms of a Fourier in-
version formula as

Ck,αK (0) =

(
e−δk−rT

1

π

∫ +∞

0

e−iγkΨ(γ; δ, α)dγ

)+

,(27)

where

Ψ(γ; δ, α) =
ei(γ−iδ) ln(ΦT (0,−iα))

i(γ − iδ)

[
ΦT ((γ − iδ)− i,−α(γ − iδ))−

ΦT (γ − iδ,−α(γ − iδ)− i)−KΦT (γ − iδ,−α(γ − iδ))
]

and

α =
F2(0, T )

F2(0, T ) +K
,(28)

k = ln
(
F2(0, T ) +K

)
.(29)

Proof: See Appendix B, Section 1.

The quantity F2(0, T ) = E[S2(T )] in formulas (28) and (29) is the forward price of the second asset
at time 0 for delivery at future date T . Using the characteristic function properties, we can also
write F2(0, T ) = ΦT (0,−i). The parameter δ tunes an exponentially decaying term introduced to
allow the integration, as in Carr and Madan (2000) and Dempster and Hong (2002).

A few remarks can be made about the above formula. First, if the characteristic function ΦT (u) is
known analytically, then the Fourier transform of the lower bound can be expressed in closed form,
as well in terms of the complex function Ψ(γ; δ, α). The integral in (27) can be easily computed
using standard numerical quadratures (NIntegrate in Mathematica or quadgk in Matlab) or via
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Figure 1. The true exercise region B (red) and its approximation A (blue grid).

the FFT algorithm. The main point concerning the above formula is that the approximated option
price is obtained through a univariate Fourier inversion, while, for example, Hurd and Zhou (2009)
propose an analytical formula requiring a bivariate Fourier inversion. Although our formula is
supposed to be a lower bound to the exact price, the bound turns out to be so tight that in practice
it provides an estimate that is indistinguishable from the true price. A third point relates to the
free parameters, α and k. In theory, we could maximize the lower bound with respect to these
parameters. Again, in practice, this is not necessary because the educated guesses proposed by
Bjerksund and Stensland (2011) and described here and generalized to the expressions (28) and
(29) turn out to be very effective, in the non-Gaussian case as well. The fourth remark relates
to the positive part in formula (27). The positive part function is necessary because the original
Bjerksund and Stensland (2011) formulation can give negative prices for deeply out-of-the-money
options. In this case, we adopt a practical approach and set the value of the spread option to
zero.

For a better understanding of the approximation, see Figure 1. If we define the true exercise
set

B = {ω : S1(T ) ≥ S2(T ) +K} ,
the approximation replaces the set B by the set A defined in (24). In particular, the set A can be
rewritten as

A =

ω : S1(T ) ≥ ek Sα2 (T )

E
[
Sα2 (T )

]
 .

We can identify four regions in Figure 1. In region 1, sets A and B overlap and the true and
approximate payoffs are equal. In region 2, the true payoff is positive but small—indeed, S1(T )
is only slightly greater than S2(T ) + K—while the approximated payoff is zero. In regions 3 and
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4, the option payoff is zero while the approximated payoff is slightly negative. In the remaining,
white region, both payoffs are zero. The role of the free parameters k is to control the slope of
the frontier of the approximating exercise region A, while the parameter α controls both slope and
curvature. Finally, if K = 0, it follows that α = 1 and k = ln(ΦT (0,−i)), so that A ≡ B and the
approximated formula (27) gives the exact fair value of the exchange option.

4. The upper bound

To control the error of the approximation in (27), we provide an estimate of an upper bound of the
spread option price. Consider the quadratic spread option payoff

Q(T ) =
1

2
(S1(T )− S2(T )− L)21(S1(T )≥S2(T )).

Notice that the exercise region is the same as for an exchange option, that is, a spread option with
zero strike. The price of this new contract is given in the following proposition.

Proposition 2. The no-arbitrage price Q(0) of the quadratic spread option is given by the formula

Q(0) =
e−rT

2
E
[
(S1(T )− S2(T )− L)21(S1(T )≥S2(T ))

]
(30)

= e−δk−rT
1

2π

∫ +∞

0

e−iγkΞ(γ; δ, α)dγ,(31)

where

Ξ(γ; δ, α) =
ei(γ−iδ) ln(ΦT (0,−iα))

i(γ − iδ)

[
ΦT ((γ − iδ)− 2i,−α(γ − iδ)) +

ΦT (γ − iδ,−α(γ − iδ)− 2i) + L2ΦT (γ − iδ,−α(γ − iδ))−
2LΦT (γ − iδ − i,−α(γ − iδ)) + 2LΦT (γ − iδ,−α(γ − iδ)− i)−

2ΦT (γ − iδ − i,−α(γ − iδ)− i)
]

and α = 1 and k = ln(F2(0, T )).

Proof: See Appendix B, Section 2.

Consider now the function

π(x) = ∆K

N∑
j=1

max(x−∆K(j − 0.5) + L, 0),

where ∆K > 0 and N ∈ N+. We observe that the function π(x) and the payoff q(x) = 1
2 (x −

L)21(x≥0) are tangent in N points, exactly in xj = L + j∆K, and moreover q(x) ≥ π(x). This is
shown in Figure 2. If we set x = S1(T ) − S2(T ), π(x) is nothing more than a portfolio of spread
options with varying strikes Kj = ∆K(j − 0.5)−L and each option is held for an amount equal to
∆K. Therefore the fair value of this portfolio is

Π(0) = ∆K

N∑
j=1

CKj (0)

and clearly Q(0) ≥ Π(0), Q(0) being the fair value of the payoff q(S1(T )− S2(T )).
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Figure 2. Comparison of the payoff Q(T ) (red line) and the sub-replicating strat-
egy (black line). Here x = S1(T )− S2(T ).

Suppose we are interested in pricing a spread option having strike Kj̄ , with Kj̄ ∈ K1, · · · ,KN . We
can write

Q(0) ≥ Π(0) = ∆K

∑
j 6=j̄

CKj (0) + CKj̄ (0)

 ≥ ∆K

∑
j 6=j̄

C
αj ,kj
Kj

(0) + CKj̄ (0)

 ,

where the true prices CKj (0) of the spread options in the first sum are replaced by our lower bound

C
αj ,kj
Kj

(0) in the second sum and where αj = ΦT (0,−i)
ΦT (0,−i)+Kj and kj = ln(ΦT (0,−i)+Kj). Rearranging

terms, it follows that an upper bound for the spread option is given by

CKj̄ (0) ≤ Q(0)

∆K
−
∑
j 6=j̄

C
αj ,kj
Kj

(0) := UN,∆KKj̄
(0).

The computation of the upper bound UN,∆KK (0) requires the value of the deal Q(0), given in formula
(30), and the pricing of N spread option contracts via the lower bound approximation in formula
(27). The choice of the parameter L is arbitrary, except for the fact that we must guarantee that
Kj̄ ∈ {K1, · · · ,KN}.

Numerical examples show that this upper bound is extremely accurate.

5. The geometric Brownian motion case

This section discusses in more detail the geometric Brownian motion and presents a different ar-
gument to obtain Bjerksund and Stensland’s lower bound via the conditional expected value. In
addition, it explicitly computes the quantity Q(T ) in the upper bound given in the previous section.
Finally, this section proposes an improved lower bound and a second upper bound, following Rogers
and Shi (1995) for Asian options.
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We consider the dynamics in (17) and provide a different derivation of Bjerksund and Stensland’s
lower bound via conditional expected value theory. Define

R(t) =
S1(t)

S2(t)α
=

S1(0)

S2(0)α
et(r−δ1−σ

2
1/2−α(r−δ2−σ2

2/2))+σ1W1(t)−ασ2W2(t)

and set
√
tσRZ = σ1W1(t)− ασ2W2(t), σ2

R = σ2
1 − 2ρασ1σ2 + α2σ2

2 , Z ∼ N (0, 1).

We can rewrite the set A as

A =

{
ω : R(T ) >

ek

E[Sα2 (T )]

}
(32)

=

{
ω : Z ≥ d =

k − ln(R(0)E[Sα2 (T )])− T (r − δ1 − σ2
1/2− α(r − δ2 − σ2

2/2))√
TσR

}
.

If we set U = S1(T ) − S2(T ) − K, the Bjerksund–Stensland lower bound can be equivalently
rewritten as

E
[
U+
]
≥ E

[
U1(A)

]+
= E

[
E
[
U |Z

]
1(Z≥d)

]+
.

We observe that (W1(T ),W2(T )|Z)ᵀ ∼MN (µ,Σ), where

µ =
√
TZ

(
a1

a2

)
, Σ = T

(
1− a2

1 ρ− a1a2

ρ− a1a2 1− a2
2

)
, a1 =

σ1 − ρασ2

σR
, a2 =

σ1ρ− ασ2

σR
,

and therefore it follows that (S1(T ), S2(T )|Z)ᵀ ∼MLN (µ̂, Σ̂), where

µ̂ =

(
lnS1(0) + (r − δ1 − σ2

1/2)T + σ1a1

√
TZ

lnS2(0) + (r − δ2 − σ2
2/2)T + σ2a2

√
TZ

)
, Σ̂ = T

(
σ2

1(1− a2
1) σ1σ2(ρ− a1a2)

σ1σ2(ρ− a1a2) σ2
2(1− a2

2)

)
.

We can now compute the approximated payoff expectation

E
[
E
[
U |Z

]
1(Z≥d)

]+
= E

[(
elnS1(0)+(r−δ1−σ2

1a
2
1/2)T+σ1a1

√
TZ − elnS2(0)+(r−δ2−σ2

2a
2
2/2)T+σ2a2

√
TZ −K

)
1(Z≥d)

]+
.

By using the partial expectation property of the log-normal distribution and discounting, the above
expectation gives us Bjerksund and Stensland’s lower bound

(33) Cα,kK (0) = e−rT
(
S1(0)e(r−δ1)TN(σ1a1

√
T − d)−S2(0)e(r−δ2)TN(σ2a2

√
T − d)−KN(−d)

)+
,

where α and k, in the definition of a1, a2, and d, can be chosen to maximize the above formula or
can be set according to the guess of Bjerksund and Stensland.

We now show how to improve the lower bound. We note that

E
[
U+
]︸ ︷︷ ︸

True price

≥ E
[
E
[
U |Z

]+
1(Z≥d)

]︸ ︷︷ ︸
Improved lower bound

≥ E
[
E
[
U |Z

]
1(Z≥d)

]+︸ ︷︷ ︸
Bjerksund and Stensland’s lower bound

so a strengthened lower bound turns out to be

E
[
E
[
U |Z

]+
1(Z≥d)

]
= E

[(
elnS1(0)+(r−δ1−σ2

1a
2
1/2)T+σ1a1

√
TZ − elnS2(0)+(r−δ2−σ2

2a
2
2/2)T+σ2a2

√
TZ −K

)+
1(Z≥d)

]
= E

[(
elnS1(0)+(r−δ1−σ2

1a
2
1/2)T+σ1a1

√
TZ − elnS2(0)+(r−δ2−σ2

2a
2
2/2)T+σ2a2

√
TZ −K

)
1(D)

]
,
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where the set D is defined as

D ≡
{
z : elnS1(0)+(r−δ1−σ2

1a
2
1/2)T+σ1a1

√
TZ − elnS2(0)+(r−δ2−σ2

2a
2
2/2)T+σ2a2

√
TZ −K ≥ 0

}
∩
{
z ≥ d

}
.

The function appearing in the definition of the set D can have at most two real roots1 that can be
numerically calculated. One of the following three situations can occur:

(a) D = ∅;

(b) D = [d1, d2], where d1 ≤ d2 and d1, d2 ∈ R∗;

(c) D = [d1, d2] ∪ [d3, d4], where d1 ≤ d2 < d3 ≤ d4 and d1, d2, d3, d4 ∈ R∗.

Let us define a function F such that ∀d1 ≤ d2 and d1, d2 ∈ R∗, we have, ∀x ∈ R,

F (∅;x) = 0, F ([d1, d2];x) = N(x− d1)−N(x− d2),

and, ∀d1 ≤ d2 < d3 ≤ d4 and d1, d2, d3, d4 ∈ R∗,∀x ∈ R,

F ([d1, d2] ∪ [d3, d4];x) = F ([d1, d2];x) + F ([d3, d4];x).

We can write the following improved lower bound in terms of F as

Ĉα,kK (0) = e−rT
(
S1(0)e(r−δ1)TF (D;σ1a1

√
T )− S2(0)e(r−δ2)TF (D;σ2a2

√
T )−KF (D; 0)

)
.

Note that Cα,kK (0) = Ĉα,kK (0) when D = [d1, d2] and d1 = d and d2 = +∞. From a practical
perspective, this is often, but not always, the case. So in general we expect only a small improvement

from adopting Ĉα,kK (0) rather than Cα,kK (0). Numerical experiments confirm this.

Let us discuss now how to explicitly compute an upper bound that we call URS(0), because it
exploits ideas first proposed by Rogers and Shi (1995). Define the sets

B = {ω : S1(T ) ≥ S2(T ) +K}
and the set ARS :

ARS =

{
ω :

S1(T )

Sα2 (T )
>

ek

E[Sα2 (T )]
, B ⊆ A

}
.

The shape of the set ARS is shown in Figure 3. Here ARS is constructed requiring tangency between
the function describing the exercise frontier of B, that is, b(x) = x−K, and the function describing

the exercise frontier of ARS , that is, a(x) = (xE[S2(T )α]
ek

)1/α. We thus have U+ = U+1(ARS) and the
following equality is satisfied:

E
[
U+
]
− E

[
E
[
U1(ARS)|ARS

]+]
= E

[
U+1(ARS)

]
− E

[
E
[
U1(ARS)|ARS

]+]
.

Therefore, following Nielsen and Sandmann (2003), the error on the lower bound can be expressed
as

0 ≤ E
[
E
[
U+1(ARS)|ARS

]
− E

[
U1(ARS)|ARS

]+] ≤ 1

2
E[var(U |Z)1(Z>d)]

1/2E[1(Z>d)]
1/2,

where d is defined in (32). The conditional variance of U is

var(U |Z) = var(S1(T )|Z) + var(S2(T )|Z)− 2cov(S1(T ), S2(T )|Z).

1An exponential polynomial with N + 1 nonzero terms, i.e. A(z) =
∑N+1
j=1 αje

λjz with distinct λj ∈ R and

each αj ∈ R∗, can have at most N real roots.



42 2. A GENERAL SEMI-CLOSED FORM SPREAD OPTION PRICING FORMULA

Figure 3. The true exercise region B (red) and its approximation ARS (blue grid).

The conditional covariance matrix between S1(T ) and S2(T ) is given from properties of the log-
normal distribution so that

cov(Si(T ), Sj(T )|Z) = (eTσiσj(%ij−aiaj) − 1) exp{lnSi(0) + lnSj(0) +

T (2r − δi − δj − σ2
i a

2
i /2− σ2

ja
2
j/2) +

√
T (σiai + σjaj)Z)},

where %ij stands for the elements of the matrix

% =

(
1 ρ
ρ 1

)
.

The formula for the error ε is obtained by once again applying the partial expectation property of
the log-normal distribution and discounting. The upper bound is therefore

URS(0) := Ĉα,kK (0) + εα,k,

where

εα,k =
e−rT

2
N(−d)1/2

( 2∑
i=1

2∑
j=1

(−1)i+j
(
eTσiσj(%ij−aiaj) − 1

)
×

elnSi(0)+lnSj(0)+T (2r−δi−δj+aiajσiσj)N
(
− d+

√
T (σiai + σjaj)

))1/2

.

This upper bound URS(0) depends on the parameters α and k appearing in the definition of d, a1,
and a2 and can be minimized under the constraint B ⊆ ARS . In practice, we see that, numerically,
this upper bound is less tight than that obtained using the quadratic spread option argument.
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In this regard, in the bivariate geometric Brownian motion case, the quantity Q(0) in the upper

bound UN,∆KK is equal to

Q(0) =
e−rT

2

(
S1(0)2e(2r−2δ1+σ2

1)TN(2σ1a1

√
T − d)− 2LS1(0)e(r−δ1)TN(σ1a1

√
T − d)

+S2(0)2e(2r−2δ2+σ2
2)TN(2σ2a2

√
T − d) + 2LS2(0)e(r−δ2)TN(σ2a2

√
T − d) + L2N(−d)

−2S1(0)S2(0)e(2r−δ1−δ2−σ1a1/2−σ2a2/2+σ1σ2(ρ−a1a2))TN((σ1a1 + σ2a2)
√
T − d)

)
.

In this case, we set α = 1 and k = ln(ΦT (0,−i)).

6. Non-Gaussian stock price models

The following presents several stock price models for which we analyze the performance of our

lower and upper bounds. The numerical results show that bounds Cα,kK (0) and UN,∆KK (0) are very
accurate and that, from a practical point of view, the lower bound is indistinguishable from the
true price, estimated using Monte Carlo simulation.

Let S(t) = (S1(t), S2(t))ᵀ be the stock price vector and assume that the joint characteristic function
of X(t) = (lnS1(t), lnS2(t))ᵀ has the functional form ΦT (u) = eiu

ᵀX(0)ϕT (u). In the following,
we set e = (1, 1)ᵀ. We recall the expression of the characteristic function in the case of geometric
Brownian motion.

6.1. Geometric Brownian motion. In the well-known two-asset Black–Scholes model, the
vector S(t) has components

Sj(t) = Sj(t) exp[(r − δj − σ2
j /2)t+ σjWj(t)], j = 1, 2,

where σ1, σ2 > 0, and W1,W2 are risk-neutral Brownian motions with instantaneous correlation
ρ, |ρ| < 1, r is the risk-free rate, and δj is the continuous dividend yield paid by asset j. We
have

ϕT (u) = exp[iTuᵀ(r − δ)e− σ2/2)− uᵀΣuT/2],

where Σ = [σ2
1 , ρσ1σ2; ρσ1σ2, σ

2
2 ] and σ2 = diag (Σ).

6.2. Jump diffusion model I (normally distributed jump size). The second model is the
bidimensional jump diffusion model introduced by Cheang and Chiarella (2011). It generalizes the
above bidimensional geometric Brownian motion by adding two jump components. The components
of the stock price vector have the following functional form:

(34) Sj(t) = Sj(0) exp

[(
r − δj −

σ2
j

2
− λκj − λjκZj

)
t+ σjWj(t) +

Nj(t)∑
m=1

Zj(m) +

N(t)∑
n=1

Yj(n)

]
,

where σ1, σ2 > 0, and W1,W2 are risk-neutral Brownian motions with instantaneous correlation

ρ, |ρ| < 1. In addition,
∑N1(t)
m=1 Z1(m) and

∑N2(t)
m=1 Z2(m) are univariate compound Poisson processes,

driven, respectively, by the Poisson processes N1 and N2 with intensity rates λ1 and λ2. This
jump component is unique to each stock and describes the idiosyncratic shocks for that particular
asset only. The idiosyncratic jump sizes Z1 and Z2 are independently and identically distributed
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according to a Gaussian distribution N (αjj , ξ
2
jj). The model also allows for macroeconomic shocks

in the expression
N(t)∑
n=1

Y(n) =

(N(t)∑
n=1

Y1(n),

N(t)∑
n=1

Y2(n)

)ᵀ

,

which is a bivariate compound Poisson process with intensity rate λ. Under the risk-neutral measure
Q, the jump sizes Y are assumed to be independently and identically distributed according to a
multivariate normal MN (α,ΣY ), where α = (α1, α2)ᵀ and

ΣY =

(
ξ2
1 ρY ξ1ξ2

ρY ξ1ξ2 ξ2
2

)
.

Finally, the quantities κj and κZj , j = 1, 2 in (34) are, respectively,

κj =

∫
R2

[eyj − 1]mQ(dy) =

∫
R

[eyj − 1]mQ(dyj) = exp(αj + ξ2
j /2)− 1,

κZj =

∫
R

[ezj − 1]mQ(dzj) = exp(αjj + ξ2
jj/2)− 1.

The joint characteristic function is ΦT (u) = eiu
ᵀX(0)ϕT (u), where

ϕT (u) = exp
[
T
(
iuᵀγ − uᵀΣu/2 + λ1(eiu1α11−u2

1ξ
2
11/2 − 1) + λ2(eiu2α22−u2

2ξ
2
22/2 − 1) +

λ(eiu
ᵀα−uᵀΣYu/2 − 1)

)]
(35)

and Σ = [σ2
1 , ρσ1σ2; ρσ1σ2, σ

2
2 ], γj := r− δj−σ2

j /2−λκj−λjκZj , j = 1, 2. Formula (35) is obtained
by using a conditioning argument, whose details are provided in Appendix B, Section 3.

6.3. Jump diffusion model II (asymmetric Laplace distributed jump size). The third
model is the bidimensional jump diffusion model studied by Huang and Kou (2006). The difference
from the previous jump diffusion model in (34) is that idiosyncratic jump sizes Z1 and Z2 are inde-
pendently and identically distributed according to an asymmetric Laplace distribution AL(αjj , ξ

2
jj)

instead of being Gaussian. Macroeconomic shocks N follow a compound Poisson process with in-
tensity λ. Jump sizes Y are independently and identically distributed as a multivariate asymmetric
Laplace distribution MAL(α,ΣY ), where α = (α1, α2)ᵀ and

ΣY =

(
ξ2
1 ρY ξ1ξ2

ρY ξ1ξ2 ξ2
2

)
.

For a detailed description of the asymmetric Laplace distribution and its properties, see Kotz et al.
(2001). In this model the quantities κj and κZj , j = 1, 2 are, respectively,

κj =
1

1− αj − ξ2
j /2
− 1, κZj =

1

1− αjj − ξ2
jj/2

− 1.

As discussed by Huang and Kou (2006), the joint characteristic function is ΦT (u) = eiu
ᵀX(0)ϕT (u),

where

ϕT (u) = exp
[
T
(
iuᵀγ − uᵀΣu/2 + λ1/(1− iu1α11 + u2

1ξ
2
11/2) + λ2/(1− iu2α22 + u2

2ξ
2
22/2) +

λ/(1− iuᵀα+ uᵀΣYu/2)− λ1 − λ2 − λ
)]

(36)

and Σ = [σ2
1 , ρσ1σ2; ρσ1σ2, σ

2
2 ], γj := r − δj − σ2

j /2− λκj − λjκZj , j = 1, 2.
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6.4. Mean-reverting jump diffusion model. The fourth model is a mean-reverting jump
diffusion model that generalizes the model proposed by Hambly et al. (2009). For j = 1, 2, the spot
price process Sj(t) is defined as the exponential of the sum of three components: a deterministic
function fj(t), a Gaussian Ornstein–Uhlenbeck process Xj(t), and a mean-reverting process with a
jump component Yj(t):

Sj(t) = exp (fj(t) +Xj(t) + Yj(t)) ,
dXj = −αjXj(t)dt+ σjdWj ,
dYj = −αjYj(t−)dt+ J+

j dN
+
j − J

−
j dN

−
j .

The parameter σj is strictly positive and Wj is a risk-neutral Brownian motion. We assume a
speed of mean reversion αj > 0 for both the diffusion process Xj(t) and the jump process Yj(t).
The two Brownian motions have instantaneous correlation ρ, |ρ| < 1 and N+

j and N−j are Poisson

processes with intensity λ+
j and λ−j , respectively, and describe the positive and negative jump

arrivals separately. The terms J+
j and J−j are independent identically distributed random variables

representing the jump size and we assume they are exponentially distributed with parameters
0 < µ+

j < 1 and µ−j > 0, respectively. Assuming independence between the jump processes, we
obtain the joint characteristic function

ΦT (u) = exp
[
iu1

(
(X1(0) + Y1(0)) e−α1T + f1(T )

)
+ iu2

(
(X2(0) + Y2(0)) e−α2T + f2(T )

)
−

u2
1σ

2
1

4α1

(
1− e−2α1T

)
− u2

2σ
2
2

4α2

(
1− e−2α2T

)
− ρu1u2σ1σ2

α1 + α2

(
1− e−(α1+α2)T

)
+

λ+
1

α1
ln

(
1− iµ+

1 u1e
−α1T

1− iµ+
1 u1

)
+
λ+

2

α2
ln

(
1− iµ+

2 u2e
−α2T

1− iµ+
2 u2

)
+

λ−1
α1

ln

(
1 + iµ−1 u1e

−α1T

1 + iµ−1 u1

)
+
λ−2
α2

ln

(
1 + iµ−2 u2e

−α2T

1 + iµ−2 u2

)]
.

6.5. Three-factor stochastic volatility model. The fifth model is the stochastic volatility
model discussed by Dempster and Hong (2002) and Hurd and Zhou (2009). The risk-neutral
dynamics of the log-price vector X(t) = (lnS1(t), lnS2(t))ᵀ are given by

dX1 = (r − δ1 − σ2
1/2)dt+ σ1

√
vdW1,

dX2 = (r − δ2 − σ2
2/2)dt+ σ2

√
vdW2,

dv = κ(µ− v)dt+ σv
√
vdWv,

where
E[dW1dW2] = ρdt,
E[dW1dWv] = ρ1dt,
E[dW2dWv] = ρ2dt.

The characteristic function is ΦT (u) = eiu
ᵀX(0)ϕT (u), where

ϕT (u) = exp

[(
2ζ(1− e−θT )

2θ − (θ − γ)(1− e−θT )

)
v(0) +

iuᵀ(re− δ)T − κµ

σ2
v

[
2 ln

(
2θ − (θ − γ)(1− e−θT )

2θ

)
+ (θ − γ)T

]]
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and

ζ := −1

2

[
(σ2

1u
2
1 + σ2

2u
2
2 + 2ρσ1σ2u1u2) + i(σ2

1u1 + σ2
2u2)

]
,

γ := κ− i(ρ1σ1u1 + ρ2σ2u2)σv,

θ :=
√
γ2 − 2σ2

vζ.

6.6. VG mixture model. The sixth model is the exponential Lévy model described by Hurd
and Zhou (2009). A univariate VG process is a Lévy process with a Lévy characteristic triplet
(0, 0, ν), where the Lévy measure is ν = λ[e−a+x1x > 0 + e−a−x1x < 0]/|x| for λ, a± > 0. Here we
consider a bivariate VG model driven by three independent univariate VG processes Y1, Y2, Y with
parameters λ1, λ2, λY . Choosing λ1 = λ2 = (1 − α)λ, λY = αλ, the bivariate log return process
X(t) = (lnS1(t), lnS2(t))ᵀ is given by the mixture

X1(t) = X1(0) + Y1(t) + Y (t), X2(t) = X2(0) + Y2(t) + Y (t).

As discussed by Hurd and Zhou (2009), the joint characteristic function is given by ΦT (u) =
eiu

ᵀX(0)ϕT (u), where

ϕT (u) =

[
1 + i

(
1

a−
− 1

a+

)
(u1 + u2) +

(u1 + u2)2

a−a+

]−αλT
×[

1 + i

(
1

a−
− 1

a+

)
u1 +

u2
1

a−a+

]−(1−α)λT[
1 + i

(
1

a−
− 1

a+

)
u2 +

u2
2

a−a+

]−(1−α)λT

.

6.7. VG time changed model. The last model we consider is a bivariate VG process with
a time change by an independent integrated CIR process. This model was introduced by Ballotta
and Bonfiglioli (2012). The parameterization of the Lévy measure used by Ballotta and Bonfiglioli
(2012) is

ν(x) =
1

κ|x|
exp

[
θ

σ2
− |x|

√
θ2 + 2σ2/κ

σ2

]
.

Given the parameterization above, the characteristic function of a VG process is

(37) φ(u) = − 1

κ
ln
(

1− iuθκ+ u2σ
2

2
κ
)
.

If Yj(t), for j = 1, 2 are two independent VG processes with parameters σj , θj , κj and Z(t) a third
independent VG process with parameters σZ , θZ , and κZ , the authors introduce asset correlations
considering the dynamics Gj(t) = Yj(t) + ajZ(t), where aj ∈ R. The rate of time change of asset j
is modeled by a CIR process vj(s) = bjv(t), where bj > 0 and

dv(t) = k(η − v(t))dt+ λ
√
v(t)dW (t)

and W (t) is a Brownian motion common to the whole vector of time changes but independent of the
base process G(t) = (G1(t), G2(t))ᵀ. The clock of asset j is assumed to be the integrated variance
process Vj(t) = bjV (t), that is,

Vj(t) =

∫ t

0

vj(s)ds.
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Considering Bj(t) = Gj(Vj(t)), we define the stock price risk-neutral dynamics as

Sj(t) = Sj(0)e(r−δj)t eBj(t)

E[eBj(t)]
.

Assuming that b1 < b2, we give the joint characteristic function by ΦT (u) = eiu
ᵀX(0)ϕT (u),

where

ϕT (u) = φVT (−ig(u1, u2; a1, a2, b1, b2))eiu
ᵀ((re−δ)T−pT ),

with

g(u1, u2; a1, a2, b1, b2) = b1φ
Y1(u1) + b2φ

Y2(u2) + b1φ
Z(u1a1 + u2a2) + (b2 − b1)φZ(u2a2),

pT = (φVT (−ig(−i, 0; a1, a2, b1, b2)), φVT (−ig(0,−i; a1, a2, b1, b2)))ᵀ.

In the above expression φVT is the characteristic function of the integrated CIR process V that we
recall below for completeness, while the characteristic functions of Y1, Y2, and Z are, respectively,
indicated by φY1 , φY2 , and φZ and have the form in equation (37). The characteristic function of
the integrated CIR process V (t) is

φVt (u) = eA(u,t)+B(u,t)v(0)

A(u, t) =
2kη

λ2
ln

(
2ζ(u)e

ζ(u)+k
2 t

(ζ(u) + k)(eζ(u)t − 1) + 2ζ(u)

)
B(u, t) =

2iu(eζ(u)t − 1)

(ζ(u) + k)(eζ(u)t − 1) + 2ζ(u)

ζ(u) =
√
k2 − 2λ2iu.

7. Numerical results

This section discusses numerical results with reference to the models presented. We compute the
fair value of spread option contracts, spanning different strike prices, for each model presented
in Section 6. Numerical results are reported in Tables 1 to 7. Prices obtained via Monte Carlo
simulation are used as a benchmark. To reduce the simulation error, we use the lower bound as
a control variate.2 The number of simulations is chosen depending on the model, as indicated for
each table. The columns labeled C.I. length gives the length of the 95% mean-centered Monte Carlo
confidence interval. In all cases the confidence interval is so small that it allows us to appreciate
the accuracy of our lower bound. The lower bound is computed using the formula (27) and is

displayed in the column labeled Cα,kK . The integral is solved by a Gauss–Kronrod quadrature rule
using Matlab’s built-in function quadgk. Values obtained maximizing the lower bound with respect

to α and k are presented in the column labeled Cα
∗,k∗

K . However, we can see that the optimized

lower bound does not significantly improve the approximation provided by formula Cα,kK .

2We rewrite equation (16) as

CK(0) = Ck,αK (0) + e−rTE
[
(S1(T )− S2(T )−K)+

]
− e−rTE

[
(S1(T )− S2(T )−K)1(A)

]+
.

We calculate Ck,αK (0) with formula (27) and use Monte Carlo simulation to compute the two expected values, which

are highly correlated. The simulation error is thus reduced.
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The upper bound is shown in the column labeled UN,∆KK (0) and is computed by setting N and ∆K
as indicated for each table. Our numerical experiments show that the upper bound is quite good
in all cases, even though it does not achieve the same tightness as the lower bound, even when
minimized with respect to N and ∆K. When available, we show the numbers CHZK computed by
Hurd and Zhou (2009).

For the geometric Brownian motion case, in Table 1, we also present Kirk’s approximation formula,

the improved lower bound Ĉα
∗,k∗

K (0), and the Rogers–Shi-type upper bound URS(0). As noted

in the previous section, the lower bound Ĉα
∗,k∗

K (0) does not significantly improve with respect to

the approximation Ck,αK (0). In addition, the upper bound URS(0), although developed ad hoc for
the geometric Brownian motion case, seems to work worse than the more general upper bound

UN,∆KK (0).

Table 1. Prices for the geometric Brownian motion model for different choices of
K. The parameter values are S1(0) = 100, S2(0) = 96, ρ = 0.5, σ1 = 0.2, σ2 = 0.1,
δ1 = 0.05, δ2 = 0.05, r = 0.1, T = 1.0, M = 106, N = 1000, and ∆K = 0.5.

K Cα,kK Cα
∗,k∗

K Ĉα
∗,k∗

K CKirkK (0) CHZK MC C.I. length UN,∆KK (0) URS(0)

0.4 8.312461 8.312461 8.312461 8.312461 8.312461 8.312461 3.128× 10−8 8.330379 8.867626
0.8 8.114993 8.114993 8.114993 8.114993 8.114994 8.114994 7.059× 10−8 8.132623 8.633288
1.2 7.920819 7.920819 7.920819 7.920819 7.920820 7.920820 1.158× 10−7 7.938902 8.410323
1.6 7.729931 7.729931 7.729931 7.729931 7.729932 7.729933 1.896× 10−7 7.748035 8.195125
2.0 7.542322 7.542322 7.542322 7.542322 7.542324 7.542324 2.564× 10−7 7.560385 7.986151

2.4 7.357982 7.357982 7.357982 7.357982 7.357984 7.357984 3.283× 10−7 7.375900 7.782577
2.8 7.176899 7.176899 7.176899 7.176899 7.176902 7.176902 4.081× 10−7 7.194528 7.583903
3.2 6.999060 6.999060 6.999060 6.999060 6.999065 6.999065 5.155× 10−7 7.017144 7.389794

3.6 6.824452 6.824452 6.824452 6.824452 6.824458 6.824458 6.291× 10−7 6.842556 7.200013
4.0 6.653058 6.653058 6.653058 6.653058 6.653065 6.653065 7.217× 10−7 6.671121 7.014377
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Table 2. Prices for jump diffusion model I for different choices of K. The param-
eter values are S1(0) = 100, S2(0) = 96, δ1 = 0.03, δ2 = 0.05, σ1 = 0.15, σ2 = 0.1,
ρ = 0.5, r = 0.1, λ = 0.2, α1 = 0.06, α2 = 0.03, ξ1 = 0.03, ξ2 = 0.09, ρy = −0.8,
λ1 = 0.2, α11 = 0.02, ξ11 = 0.06, λ2 = 0.1, α22 = −0.07, ξ22 = 0.01, M = 106,
N = 1000, and ∆K = 0.5.

K Cα,kK Cα
∗,k∗

K MC C.I. length UN,∆KK (0)
0.4 8.561005 8.561005 8.561006 2.215× 10−7 8.584905
0.8 8.333472 8.333472 8.333473 3.514× 10−7 8.357044
1.2 8.109743 8.109743 8.109745 6.414× 10−7 8.133830
1.6 7.889839 7.889839 7.889841 9.603× 10−7 7.913949
2.0 7.673778 7.673778 7.673781 1.135× 10−6 7.697841
2.4 7.461575 7.461575 7.461580 1.338× 10−6 7.485474
2.8 7.253242 7.253242 7.253249 1.701× 10−6 7.276814
3.2 7.048788 7.048788 7.048797 2.468× 10−6 7.072875
3.6 6.848219 6.848219 6.848228 2.289× 10−6 6.872329
4.0 6.651536 6.651536 6.651548 3.089× 10−6 6.675600

Table 3. Prices for jump diffusion model II for different choices of K. The param-
eter values are S1(0) = 100, S2(0) = 96, δ1 = 0.03, δ2 = 0.05, σ1 = 0.15, σ2 = 0.1,
ρ = 0.5, r = 0.1, λ = 0.2, α1 = 0.06, α2 = 0.03, ξ1 = 0.03, ξ2 = 0.09, ρy = −0.8,
λ1 = 0.2, α11 = 0.02, ξ11 = 0.06, λ2 = 0.1, α22 = −0.07, ξ22 = 0.01, M = 106,
N = 1000, and ∆K = 0.5.

K Cα,kK Cα
∗,k∗

K MC C.I. length UN,∆KK (0)
0.4 8.585660 8.585660 8.591228 1.591× 10−4 8.622334
0.8 8.359561 8.359561 8.365381 1.630× 10−4 8.395902
1.2 8.137301 8.137301 8.143190 1.634× 10−4 8.174164
1.6 7.918901 7.918901 7.924987 1.665× 10−4 7.955787
2.0 7.704377 7.704377 7.710662 1.692× 10−4 7.741216
2.4 7.493741 7.493741 7.500078 1.698× 10−4 7.530414
2.8 7.287004 7.287004 7.293383 1.704× 10−4 7.323346
3.2 7.084171 7.084172 7.090606 1.712× 10−4 7.121034
3.6 6.885247 6.885247 6.891644 1.710× 10−4 6.922133
4.0 6.690231 6.690231 6.696675 1.713× 10−4 6.727070
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Table 4. Prices for the mean-reverting jump diffusion process for different choices
of K. The parameter values are f1(T ) = ln(30), f2(T ) = ln(26), X1(0) = 0,
X2(0) = 0, Y1(0) = 0, Y2(0) = 0, σ1 = 0.1, σ2 = 0.08, ρ = 0.5, r = 0.1, α1 = 0.6,
α2 = 0.6, λ+

1 = 0.025, λ−1 = 0.02, λ+
2 = 0.03, λ−2 = 0.025, µ+

1 = 0.3, µ−1 = 0.35,
µ+

2 = 0.3, µ−2 = 0.37, M = 106, N = 1500, and ∆K = 1.

K Cα,kK Cα
∗,k∗

K MC C.I. length UN,∆KK (0)
2.0 2.230264 2.230267 2.230267 5.035× 10−7 2.295558
2.2 2.083929 2.083933 2.083933 1.166× 10−6 2.149442
2.4 1.942230 1.942235 1.942235 1.273× 10−6 2.007675
2.6 1.805556 1.805562 1.805562 9.500× 10−7 1.869047
2.8 1.674271 1.674278 1.674278 1.442× 10−6 1.738926
3.0 1.548706 1.548715 1.548716 2.176× 10−6 1.614000
3.2 1.429154 1.429164 1.429164 1.233× 10−6 1.494667
3.4 1.315855 1.315867 1.315867 1.292× 10−6 1.381300
3.6 1.208999 1.209012 1.209013 2.071× 10−6 1.272490
3.8 1.108713 1.108727 1.108728 2.842× 10−6 1.173368
4.0 1.015062 1.015077 1.015078 2.570× 10−6 1.080355

Table 5. Prices for the three-factor stochastic volatility model for different choices
of K. The parameter values are S1(0) = 100, S2(0) = 96, ρ = 0.5, σ1 = 1.0,
σ2 = 0.5, ρ1 = −0.5, ρ2 = 0.25, δ1 = 0.05, δ2 = 0.05, v0 = 0.04, κ = 1.0, µ = 0.04,
σv = 0.05, r = 0.1, T = 1.0. M = 106, N = 1000, and ∆K = 0.5.

K Cα,kK Cα
∗,k∗

K CHZK MC C.I. length UN,∆KK (0)
2.0 7.548500 7.548500 7.548502 7.548503 1.304× 10−6 7.565996
2.2 7.453534 7.453534 7.453536 7.453537 1.246× 10−6 7.471050
2.4 7.359379 7.359379 7.359381 7.359382 1.467× 10−6 7.376733
2.6 7.266033 7.266033 7.266036 7.266038 1.728× 10−6 7.283569
2.8 7.173498 7.173498 7.173501 7.173503 1.836× 10−6 7.190568
3.0 7.081771 7.081771 7.081775 7.081776 2.037× 10−6 7.099266
3.2 6.990852 6.990852 6.990856 6.990857 1.823× 10−6 7.008368
3.4 6.900740 6.900740 6.900745 6.900746 2.261× 10−6 6.918094
3.6 6.811434 6.811434 6.811439 6.811441 2.423× 10−6 6.828970
3.8 6.722932 6.722932 6.722939 6.722939 2.516× 10−6 6.740003
4.0 6.635234 6.635234 6.635241 6.635244 2.980× 10−6 6.652730
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Table 6. Prices for the VG mixture model for different choices of K. The pa-
rameter values are S1(0) = 100, S2(0) = 96, ρ = 0.5, a+ = 20.4499, a− = 24.4499,
α = 0.4, λ = 10, r = 0.1, T = 1.0. M = 107, N = 1000, and ∆K = 0.5.

K Cα,kK Cα
∗,k∗

K CHZK MC C.I. length UN,∆KK (0)
2.0 9.727443 9.727444 9.727458 9.727496 7.343× 10−6 9.913274
2.2 9.629988 9.629990 9.630006 9.630018 5.596× 10−6 9.815834
2.4 9.533178 9.533180 9.533200 9.533196 4.294× 10−6 9.718898
2.6 9.437015 9.437017 9.437040 9.437025 3.306× 10−6 9.622878
2.8 9.341499 9.341501 9.341527 9.341505 2.540× 10−6 9.526996
3.0 9.246629 9.246632 9.246662 9.246633 1.946× 10−6 9.432460
3.2 9.152407 9.152410 9.152445 9.152409 1.496× 10−6 9.338254
3.4 9.058833 9.058837 9.058875 9.058834 1.159× 10−6 9.244552
3.6 8.965907 8.965911 8.965954 8.965907 8.913× 10−7 9.151769
3.8 8.873628 8.873633 8.873681 8.873629 6.752× 10−7 9.059125
4.0 8.781998 8.782003 8.782057 8.781999 5.093× 10−7 8.967829

Table 7. Prices for the VG time changed model for different choices of K. The
parameter values are S1 = 51, S2 = 47, M = 106, T = 1.0, v0 = 1.0, rf = 0.1,
a1 = 0.5971, a2 = 0.7801 σ1 = 0.2824, σ2 = 0.1849, σZ = 0.3497, δ1 = 0.018,
δ2 = 0.03, ν1 = 0.1726, ν2 = 2.2360, νZ = 0.2, θ1 = −0.1144, θ2 = 0.0962,
θZ = −1.0417, λ = 0.8332, k = 1.0992, η = 1.1275, b1 = 0.2219, b2 = 0.2351, ,
N = 1000, and ∆K = 0.5.

K Cα,kK Cα
∗,k∗

K MC C.I. length UN,∆KK (0)
2.0 4.946084 4.946121 4.946232 1.647× 10−5 5.157113
2.2 4.818943 4.818990 4.819121 1.937× 10−5 5.032578
2.4 4.693307 4.693365 4.693515 2.205× 10−5 4.906663
2.6 4.569215 4.569286 4.569475 2.621× 10−5 4.778981
2.8 4.446705 4.446791 4.446996 2.927× 10−5 4.659943
3.0 4.325819 4.325922 4.326171 3.418× 10−5 4.536848
3.2 4.206597 4.206720 4.207014 3.890× 10−5 4.420232
3.4 4.089081 4.089225 4.089553 4.298× 10−5 4.302436
3.6 3.973312 3.973481 3.973867 4.914× 10−5 4.183078
3.8 3.859334 3.859530 3.859974 5.530× 10−5 4.072572
4.0 3.747190 3.747416 3.747923 6.227× 10−5 3.958219



CHAPTER 3

A general semi-closed form basket option pricing formula

One should always generalize.

Carl Jacobi (1804–1851)

Basket options are popular in all kind of financial markets and are becoming increasingly widespread
in commodity and energy markets. Basket options are options whose payoff depends on the value
of a basket, that is, a portfolio of n assets of financial variables whose values at time t are denoted
S1(t), . . . , Sn(t). A basket call option gives the holder the right, but not the obligation, to purchase
a portfolio of assets at a fixed price K, known as the option’s strike price. We consider options of
the European type, for which the buyer has the right to exercise the option at the maturity date
T . An important subclass of basket options is spread options, where the underlying value is the
spread (i.e., the difference) between the prices of two or more financial variables. Spread options
are discussed in Chapter 2, which proposes a valuation method for the special case of options on
the difference between two asset prices.

Basket options are difficult to price and hedge because the underlying value is a weighted sum
of individual asset prices. The problem is similar to the Asian option valuation problem, where
the payoff is determined by the average underlying price over some predetermined period of time.
Almost all the literature on Asian or basket options pricing assumes the underlying asset prices
follow log-normal processes. The famous Black–Scholes formula cannot be applied directly, since
the sum of the log-normal random variables is not log-normal. Several approaches have been
proposed in the literature to solve the problem, including Monte Carlo simulations, tree-based
methods, partial differential equations, and analytical approximations. The last category is the most
appealing because most of the other methods are very complex and slow due to the large number
of possible state variables. However, we identify two weak points in the existing approximation
method literature:

(1) Many methods have limited scope because they require a basket value that is always
positive and cannot be applied in the basket spread option valuation.

(2) Few works study a non-Gaussian setting and almost all discuss specific non-Gaussian
dynamics. The study of general pricing methods is still underdeveloped.

This chapter presents a lower bound for general processes for the basket option value. The only
quantity we need to know explicitly is the joint characteristic function of the log-returns of the assets.
Moreover, the basket value is not required to always be positive. The lower bound computation
requires optimization of a univariate Fourier inversion and we test the bound on different models in
Gaussian and non-Gaussian settings. Numerical examples are discussed and benchmarked against
Monte Carlo simulations. In addition, we show an upper bound for general processes. The chapter
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outline is as follows: Section 1 reviews the literature on basket option pricing methods. Section
2 discusses a general lower approximation and Section 3 considers a general upper bound. The
geometric Brownian motion case is discussed in Section 4 and a non-Gaussian model is shown in
Section 5. Finally, Section 6 presents numerical experiments.

1. Basket option pricing: Literature review

Given a vector of weights w ∈ Rn, the arithmetic average of the stock prices at time T is

An (T ) =

n∑
k=1

wkSk (T ) .

We assume (but it is not necessary) that
∑n
k=1 wk = 1. The payoff of a fixed-strike arithmetic

basket option depends on the arithmetic average of the prices observed on a given date. The payoff
at time T is (An (T )−K)

+
. Here, we use the usual notation x+ for the positive part of x, that is,

x+ = max{x, 0}. The time t no-arbitrage fair price of the basket option is

Cw
K(t) = e−r(T−t)E

[
(An (T )−K)

+
]
,

where the expectation is with respect to a risk-neutral measure and r is the riskless interest
rate.

If we assume that the dynamic of the underlying follows a multivariate geometric Brownian mo-
tion, several results are available. Curran (1994) proposes a method based on conditioning on the
geometric mean, introducing the idea of a conditioning variable and conditional moment matching.
Assuming Λ is a random variable correlated with An and satisfying An ≥ K, whenever Λ ≥ κ for
some constant κ the option price is decomposed into two parts:

E
[
(An (T )−K)

+
]

= E [(An (T )−K) I(Λ > κ)] + E
[
(An (T )−K)

+
I(Λ < κ)

]
.

With Λ as the geometric average, the first part can be calculated exactly. The second part can
be computed approximately by conditional moment matching method. Rogers and Shi (1995)
derive lower and upper bounds for pricing Asian options through conditioning. The lower bound
is obtained using a conditioning variable Λ and Jensen’s inequality. Since the approach for Asian
options can be easily adapted to basket options and vice versa, Thompson (1999) and Beisser (2001)
extend to the basket option valuation the idea of Rogers and Shi (1995) and study the bound

(38) E
[
(An (T )−K)

+
]
≥ E

[
(E [An (T ) |Λ]−K)

+
]
.

The approximation in formula (38) is analytically computable under our assumptions. It is a lower
bound but it turns out to be very close to the true option value in many practical situations. Rogers
and Shi (1995) also give an upper bound to the true option value, which was later improved by
Nielsen and Sandmann (2003) as

E
[
(An (T )−K)

+
]
≤ E

[
(E [An (T ) |Λ]−K)

+
]

+
1

2
E [var(An (T ) |Λ)I(Λ < κ)]

1/2 E [I(Λ < κ)]
1/2

.

Other bounds to the true option price are proposed in the literature using comonotonicity theory.
Dhaene et al. (2002a) and Dhaene et al. (2002b) introduced the concept of comonotonicity and
discuss comonotonic lower and upper bounds. Vyncke et al. (2004) propose a two-moment matching
approximation with a convex combination of the comonotonic lower and upper bounds for Asian
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options while Vanmaele et al. (2004) suggest a similar approximation for basket options. Deelstra
et al. (2004) develop a general framework for pricing baskets and Asian options via conditioning and
derive lower and upper bounds based on comonotonic risks. Further extensions and applications
are discussed by Lord (2006).

Other authors have tried to approximate the basket using the moment matching method. The idea
is to approximate the payoff as

E
[
(An (T )−K)

+
]
≈ E

[(
Ân (T )−K

)+
]
,

where Ân (T ) is a random variable with a suitable distribution, chosen to be “close” to the distribu-
tion of An (T ). For example, Gentle (1993) approximates the arithmetic average in the basket payoff
by a geometric average. The fact that a geometric average of log-normal random variables is again
log-normally distributed allows for a Black–Scholes-type valuation formula for pricing the approxi-
mating payoff. Levy (1992) approximates the distribution of the basket by a log-normal distribution
such that its first two moments coincide with those of the original distribution of the weighted sum
of the stock prices. Huynh (1993) applies the Edgeworth expansion method proposed by Turnbull
and Wakeman (1991) to basket option valuation for Asian options. Milevsky and Posner (1998a)
use the reciprocal gamma distribution as an approximation for the distribution of the basket. The
motivation is the fact that the distribution of correlated log-normally distributed random variables
converges to a reciprocal gamma distribution as the dimension of the basket increases. Milevsky and
Posner (1998b) use distributions from the Johnson (1949) family as state–price densities to match
the higher moments of distribution of the arithmetic mean. Ju (2002) considers a Taylor expansion
of the ratio of the characteristic function of the arithmetic average with that of the approximating
log-normal random variable around zero volatility. Krekel et al. (2004) compare the performance
of certain pricing methods, concluding that the approximations of Ju (2002) and Beisser (2001)
are the most accurate in the geometric Brownian motion setting when wk > 0 for k = 1, . . . , n,
although the methods tend to slightly overprice and underprice, respectively.

Many of the methods listed above have limited validity or scope. They may require a basket
value that is always positive so they cannot be applied in the spread option valuation. Moreover,
they may not identify the effect of each individual volatility or pairwise correlation on the multi-
asset option price or its hedge ratios. To overcome these issues, Alexander and Venkatramanan
(2011) derive a general analytic approximation for pricing basket options expressing each option’s
price as a sum of the prices of various compound exchange options, each with different pairs of
subordinate multi- or single-asset options. The underlying asset prices are assumed to follow log-
normal processes, although their results can be extended to certain other price processes. The
case of a basket where not all the assets have a positive weight (wk < 0 for some k) is discussed
by Borovkova et al. (2007) and Deelstra et al. (2010) in a geometric Brownian motion setting.
Borovkova et al. (2007) approximates the basket distribution using a generalized family of log-
normal distributions. This approximation copes with negative basket values as well as the negative
skewness of the basket distribution and provides closed formulas for the option price and Greeks.
Deelstra et al. (2010) develop approximations formulae based on comonotonicity theory and moment
matching methods for spread options, basket spread options, and Asian basket spread options. In
addition, they compare the relative performances of several methods and explain how to choose
the best approximation technique as a function of spread characteristics. The authors conclude
that the shifted log-normal moment matching method of Borovkova et al. (2007) and their hybrid
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moment matching method based on the so-called improved comonotonic upper bound (ICUB)
are the two best-performing methods for basket spread option pricing. The ICUB-based moment
matching method seems to be the best method in the more general case of Asian basket spread
options.

Few results are available in the non-Gaussian setting. Flamouris and Giamouridis (2007) propose
the use of a simplified jump process, namely, Bernoulli jump process, to develop approximate bas-
ket option valuation formulas. Xu and Zheng (2009) show that a lower bound similar to that
of Rogers and Shi (1995) can also be calculated exactly in a special jump diffusion model with
constant volatility and two types of Poisson jumps (systematic and idiosyncratic jumps). An as-
ymptotic expansion approximation and a lower bound to basket option values for local volatility
jump diffusion models are studied by Xu and Zheng (2010a,b), respectively. However, it would
be useful to have a general enough pricing method. One could thus change the price dynamic
without changing the pricing method. Lower and upper bounds based on comonotonicity theory
are theoretically applicable to general dynamics, but research of such methods outside the geomet-
ric Brownian motion setting is still in its early stage. Hurd and Zhou (2009) propose a general
pricing method applicable to all stochastic dynamics, provided the joint characteristic function of
the log-underlying is known. Their pricing method is based on an explicit formula for the Fourier
transform of the spread option payoff in terms of the gamma function. Hurd and Zhou (2009)
propose their method for a two-dimensional spread option and describe how to generalize their
method to following multidimensional payoff

(S0(T )− S1(T )− · · · − Sn(T )−K)+.

The main drawback of this method is that it needs an n-dimensional fast Fourier transform (FFT)
to price an n-dimensional spread option. The next section derives a lower bound for the arithmetic
basket option value for general dynamics, provided the joint characteristic function of the log-
underlying and geometric average are known. Our method is very simple and requires optimization
of a one-dimensional Fourier inversion formula, as opposed to the n-dimensional FFT of Hurd and
Zhou (2009), regardless of basket dimension.

2. The lower bound

This section derives a lower bound formula for the arithmetic basket option in terms of its Fourier
transform. If we define A = {ω ∈ Ω : An (T ) > K}, the value of the fixed-strike basket option
is

Cw
K(t) = e−r(T−t)Et

[
(An (T )−K)

+
]

= e−rTE [(An (T )−K) I(A)](39)

≥ e−rTE [(An (T )−K) I(G)]
+

= Ĉw
K(t)(40)

for any event set G ∈ Ω, since An (T ) ≤ K for ω ∈ G −A. Thus, the choice of an event set G gives
us a lower bound for the option price. We choose the set G depending on the geometric average of
the underlying prices,

Gn (T ) = (Πn
k=1Sk (T )

wk)
1∑n

k=1
wk = Πn

k=1Sk (T )
wk .

Define Yn (T ) = lnGn (T ) . We choose G = {ω : Yn (T ) > κ}. This choice, which is intuitive and
technically convenient, also turns out to be very accurate. We address how to choose the parameter
κ shortly. Note that we introduced the positive part operator in (40); otherwise the lower bound
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to the option price could be negative. The term Xk (T ) is denoted the log-return over the period
[t, T ]:

Xk (T ) = ln

(
Sk (T )

Sk (t)

)
.

We assume that the risk-neutral joint characteristic function of the n stock returns is exponential
affine:

E
[
ei

∑n
k=1 γkXk(T )

]
= e〈A(γ,∆),X(t)〉+B(γ,∆),

where γ = [γ1, γ2, ..., γn]
′

and A and X are n-dimensional vectors, B is a scalar, ∆ = T−t, and 〈., .〉
stands for the inner product. As seen shortly, we are interested in finding the joint characteristic
function of the log-underlying and log-geometric average. Simple algebra shows that

Yn (T ) =

n∑
k=1

wkXk (T ) + Yn (t) ,

so the joint characteristic function of the log-returns and the log-geometric average is

ΦT (γ0,γ,w) = Et
[
ei

∑n
k=1 γkXk(T )+iγ0Yn(T )

]
(41)

= Et
[
ei

∑n
k=1(γk+wkγ0)Xk(T )+iγ0Yn(t)

]
= e〈A(γ+γ0w,∆),X(t)〉+B(γ+γ0w,∆)+iγ0Yn(t)

and γ + γ0w is the vector with components γk + γ0wk. In particular, the characteristic function
of the log-geometric average is given by ΦT (γ0,0,w). We now proceed to calculate the Fourier
transform of (40) with respect to κ.

Proposition 3. The lower bound of the basket option value Ĉw
K(t) is given in terms of a Fourier

inversion formula as

Ĉw
K(t) = max

κ

(
e−δκ−r(T−t)

1

π

∫ +∞

0

e−iγκΨ(γ; δ)dγ

)+

,(42)

where

Ψ(γ; δ) =
1

iγ + δ

[
n∑
k=1

wkSk (t) ΦT (γ − iδ,−iek,w)−KΦT (γ − iδ,0,w)

]
.(43)

Proof: See Appendix C, Section 1.

Note that the dumping factor exp(δκ) is introduced in (42) to ensure the existence of the Fourier
transform, as Carr and Madan (2000) does. Formula (43) indicates with ek the vector (0, . . . , 0, 1, 0, . . . , 0)ᵀ,
with 1 in the kth position. If the characteristic function ΦT (u) is known analytically, then the
Fourier transform of the lower bound can be expressed in closed form as well in terms of the
complex function Ψ(γ; δ). The integral in (42) can be easily computed using standard numerical
quadratures (NIntegrate in Mathematica or quadgk in Matlab) or via an FFT algorithm and the
target lower bound is obtained by maximization.
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To determine the optimal value of κ, we differentiate the argument of the positive part in (42) with
respect to κ and then search for a critical point equating it with zero. The maximum is obtained
for κ = κ∗ such that ∫ +∞

0

(iγ + δ)e−iγκ
∗
Ψ(γ; δ)dγ = 0

and can be computed with a numerical search. Alternatively, we can use the FFT algorithm
proposed by Carr and Madan (2000). The FFT output is a finite number of option prices at equally
spaced values for the parameter κ. Given (42), we compute the Fourier inverse with respect to k
via the FFT and we choose the maximum value as a lower bound to the price of the basket.

3. The upper bound

To control the error of the approximation in (42), we provide here an estimate of an upper bound
of the basket option price. Consider the quadratic payoff

Q(T ) =
1

2
(An (T )− L)

2
.

Given the moments and the mixed moments of the asset price vector S(T ), the no-arbitrage price
Q(t) of the quadratic payoff is easy to compute:

Q(t) =
e−r(T−t)

2

 n∑
k=1

w2
kE[S2

k(T )] + 2

n∑
k=1

n∑
j<k

wkwjE[Sk(T )Sj(T )]−

2L

n∑
k=1

wkE[Sk(T )] + L2

)
.(44)

Consider now the functions

π(x) = ∆K

Nc∑
j=1

(x−∆K(j − 0.5) + L)+ + ∆K

Np∑
j=1

(−x−∆K(j + 0.5) + L)+,

where ∆K > 0 and Nc, Np ∈ N+. We observe that the function π(x) and the function q(x) =
1
2 (x− L)2 are tangent in Nc + Np + 1 points, exactly in xj = L + j∆K for j = −Np, . . . , Nc, and
moreover q(x) ≥ π(x). This is shown in Figure 1. If we set x = An (T ), π(x) is nothing more than
a portfolio of call and put options on the basket. Strikes vary and equal Kc

j = ∆K(j − 0.5) − L
for call options and Kp

j = L − ∆K(j − 0.5) for put options. Each option is held for an amount
equal to ∆K. A put option on a basket with weights w and strike K is equal to a call option on
a basket with weights −w and strike −K. So, if we indicate with Cw

K(t) the value of a call option
on a basket with weights w and strike K, the fair value of portfolio Π(t) is

Π(t) = ∆K

 Nc∑
j=1

Cw
Kc
j
(t) +

Np∑
j=1

C−w−Kp
j
(t)


and clearly we must have Q(t) ≥ Π(t), Q(t) being the fair value of the payoff q(

∑n
k=1 wkSk (T )).

Suppose we are interested in pricing a basket option having strike Kj̄ , with Kj̄ ∈ Kc
1, · · · ,Kc

N . We
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Figure 1. Comparison of the payoff Q(T ) (red line) and a sub-replicating strategy
(blue line). Here x = An (T ).

can write

Q(t) ≥ Π(t) = ∆K

 Nc∑
j 6=j̄,j=1

Cw
Kc
j
(t) +

Np∑
j=1

C−w−Kp
j
(t) + Cw

Kj̄
(t)

 .

Rearranging terms, it follows that an upper bound for the basket option is given by

Cw
Kj̄

(t) ≤ UKj̄ (t) :=
Q(t)

∆K
−

Nc∑
j 6=j̄,j=1

Cw
Kc
j
(t)−

Np∑
j=1

C−w−Kp
j
(t).

The computation of the upper bound UK(t) requires the value of the deal Q(t), given in formula
(44), and the pricing of Nc +Np − 1 basket option contracts, which can be easily accomplished by
the lower bound approximation in formula (42). The choice of the parameter L is arbitrary, except
for the fact that we must guarantee Kj̄ ∈ Kc

1, · · · ,Kc
Nc

.

4. The geometric Brownian motion case

This section discusses in more detail the geometric Brownian motion case. It shows the joint
characteristic function involved in formula (42), explicitly computes formula (40), and suggests a
starting point for the maximization procedure.

We consider a multivariate Black–Scholes model. The dynamics are given by

d

 S1(t)
...

Sn(t)

 = Diag(S(t))
(

(r1− q)dt+
√

ΣdW(t)
)
,(45)
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where r is the risk-free rate, q is the vector of dividend yields for each asset, 1 is a vector whose
entries are all equal to one, Σ is the variance–covariance matrix, and W is an n-dimensional
Brownian motion. The risk-neutral joint characteristic function of the n stock returns in the
geometric Brownian motion case is

E
[
ei〈γ,X(T )〉

]
= eiγ

ᵀm− 1
2γ

ᵀΣγ(T−t),(46)

where

m =

(
r1− q− 1

2
V ec(Σii)

)
(T − t).(47)

We are interested in the computation of the joint characteristic function of the log-returns and the
log-geometric average, as in formula (41),

E
[
ei〈γ,X(T )〉+iγ0Yn(T )

]
= E

[
ei〈γ,X(T )〉+iγ0(〈w,X(T )〉+Yn(t))

]
= eiγ0Yn(t)E

[
ei(γ

ᵀ+γ0w
ᵀ)X(T )

]
.

Thus, in the geometric Brownian motion case, the solution is

ΦT (γ0,γ,w) = eiγ0Yn(t)+i(γᵀ+γ0w
ᵀ)m− 1

2 (γᵀ+γ0w
ᵀ)Σ(γ+γ0w)(T−t).(48)

Formula (48) can be used to compute the lower bound as in Proposition 3; however, in the geometric
Brownian motion setting, the formula (40) can be explicitly computed as a function of the parameter
κ. We now show this result.

Let us introduce the notation

ln(S(t)) =

 logS1(t)
...

logSn(t)

 .

We consider the set

G = {ω : Yn (T ) > κ}

=

{
ω : wᵀ

(
ln(S(t)) +

(
r1− q− 1

2
V ec(Σii)

)
(T − t) +

√
ΣW(T − t)

)
> κ

}
.

We see that wᵀ
√

ΣW(T−t) has the same distribution as a univariate Brownian motion σ∗W ∗(T−t),
where σ∗ =

√
wᵀΣw. Considering m as in formula (47), we can write the set G as

G =

{
ω : Z > d =

κ−wᵀ (ln(S(t)) + m)

σ∗
√
T − t

}
,

where Z is a standard normal random variable. We can write the expectation in (40) as

E [(An (T )−K)I(G)]
+

= E [E [An (T )−K|G] |(G)]
+

= E [E [An (T )−K|Z] I(Z > d)]
+
.

Conditionally to the random variable Z, the vector W is distributed like a multivariate normal
with mean µ and variance V , with their elements defined for k, j = 1, . . . , n as

µk = Zak
√
T − t, Vkj = (T − t)(ρkj − akaj), ak =

∑n
j=1 wjρkj

√
Σjj

σ∗
, ρkj =

Σkj√
ΣkkΣjj
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and we indicate with Σkj the element of Σ in position (k, j). Due to this fact, S(T )|Z follows a

multivariate log-normal MLN (µ̂, V̂ ), where, for k, j = 1, . . . , n,

µ̂k = lnSk(t) + (r − qk − Σkk/2)(T − t) + ak
√

Σkk(T − t)Z,

V̂kj = (T − t)
√

ΣkkΣjj(ρkj − akaj).
We can now compute the inner expectation of the payoff, using the log-normal distribution prop-
erties

E
[
E [An (T )−K|Z] 1(Z≥d)

]+
= E

[(
n∑
k=1

wke
lnSk(t)+(r−qk1−Σkka

2
k/2)(T−t)+ak

√
Σkk(T−t)Z −K

)
I (Z ≥ d)

]+

.

We solve the above expectation by using the partial expectation property of the log-normal distri-
bution. Discounting and maximizing with respect to κ, we obtain the lower bound

(49) Ĉw
K(t) = max

κ
e−r(T−t)

(
n∑
k=1

wkSk(t)e(r−qk)(T−t)N (ak
√

Σkk(T − t)− d)−KN (−d)

)+

.

We indicate with N (·) the standard normal distribution function. The formula above still depends
on maximization with respect to the parameter κ, involved in the definition of d. Maximization
must be carried out by a numerical search, equating to zero the first derivative with respect to κ.
We need to solve the equation

(50)

n∑
k=1

wkSk(t)e(r−qk)(T−t)φ(ak
√

Σkk(T − t)− d)−Kφ(−d) = 0,

where we indicate with φ(·) the standard normal density function. Using a linearization argu-
ment, we can provide the starting point κstart of the numerical search. We approximate the term
φ(ak

√
Σkk(T − t)− d) in formula (50) with a first-order Taylor expansion centered at −d,

φ(ak
√

Σkk(T − t)− d) = φ(−d) + ak
√

Σkk(T − t)φ′(−d) = φ(−d) + dak
√

Σkk(T − t)φ(−d),

obtaining
n∑
k=1

wkSk(t)e(r−qk)(T−t)
(

1 + dak
√

Σkk(T − t)
)
−K = 0.

Substituting the definition of d and rearranging terms, it is easy to obtain the following approxi-
mation for the value of κ in which the option price is maximum:

κstart = σ∗
∑n
k=1 wkSk(t)e(r−qk)(T−t) −K∑n

k=1 wkak
√

ΣkkSk(t)e(r−qk)(T−t) +

n∑
k=1

wk

(
lnSk(t) +

(
r − qk −

Σkk
2

)
(T − t)

)
.

5. A non-Gaussian stock price model

This section presents an example of a non-Gaussian multidimensional stock price model. We gen-
eralize the jump diffusion process with an asymmetric Laplace distributed jump size (discussed in
Chapter 2, Section 6) to the multidimensional case.
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The components of the stock price vector, for k = 1, . . . , n, have the form

(51) Sk(t) = Sk(0) exp

[(
r−qk−

σ2
k

2
−λκk−λkκZk

)
t+σkWk(t)+

Nk(t)∑
mZ=1

Zk(mZ)+

N(t)∑
mY =1

Yk(mY )

]
,

where σk > 0, for k = 1, . . . , n, and Wk,Wj are risk-neutral Brownian motions with instantaneous

correlation ρkj , |ρ| < 1, for k, j = 1, . . . , n. In addition,
∑Nk(t)
mZ=1 Zk(mZ), for k = 1, . . . , n, are n uni-

variate compound Poisson processes driven by the Poisson processes Nk with intensity rate λk. This
jump component is unique to each stock and describes the idiosyncratic shocks for that particular
asset only. The idiosyncratic jump sizes Zk are independently and identically distributed according
to an asymmetric Laplace distribution AL(αkk, ξ

2
kk). The model also allows for macroeconomic

shocks in the expression

N(t)∑
mY =1

Y(mY ) =

 N(t)∑
mY =1

Y1(mY ), . . . ,

N(t)∑
mY =1

Yn(mY )

ᵀ

,

which is a n-dimensional compound Poisson process with intensity rate λ. Under the risk-neutral
measure Q the jump sizes Y are assumed to be independently and identically distributed according
to a multivariate asymmetric Laplace distributionMAL(α,ΣY ), where α = (α1, . . . , αn)ᵀ and ΣY

is an n× n matrix whose elements are defined as

(ΣY)k,j = ξkξjρ
Y
kj , kj = 1, . . . , n.

Finally, the quantities κk and κZk , k = 1, . . . , n, in (51) are, respectively,

κk =

∫
R2

[eyk − 1]mQ(dy) =

∫
R

[eyk − 1]mQ(dyk) =
1

1− αk − ξ2
k/2
− 1,

κZk =

∫
R

[ezk − 1]mQ(dzk) =
1

1− αkk − ξ2
kk/2

− 1.

The joint characteristic function of the log-returns is

E
[
ei〈γ,X(T )〉

]
= exp

[
(T − t)

(
iγᵀη − γᵀΣγ/2 +

λ

1− iγᵀα+ γᵀΣYγ/2
− λ+

n∑
k=1

(
λk

1− iγkαkk + γ2
kξ

2
kk/2

− λk
))]

,(52)

where (Σ)k,j = σkσjρk,j and ηk := r − qk − σ2
k/2− λκk − λkκZk , k = 1, . . . , n.

We are interested in the computation of the joint characteristic function of the log-returns and the
log-geometric average, as in formula (41):

E
[
ei〈γ,X(T )〉+iγ0Yn(T )

]
= E

[
ei〈γ,X(T )〉+iγ0(〈w,X(T )〉+Yn(t))

]
= eiγ0Yn(t)E

[
ei(γ

ᵀ+γ0w
ᵀ)X(T )

]
.



62 3. A GENERAL SEMI-CLOSED FORM BASKET OPTION PRICING FORMULA

Thus the solution is

ΦT (γ0,γ,w) = exp

[
iγ0Yn(t) + (T − t)

(
i (γᵀ + γ0w

ᵀ)η − (γᵀ + γ0w
ᵀ) Σ (γ + γ0w) /2 +

λ

1− i (γᵀ + γ0wᵀ)α+ (γᵀ + γ0wᵀ) ΣY (γ + γ0w) /2
− λ+

n∑
k=1

(
λk

1− i (γk + γ0wk)αkk + (γk + γ0wk)
2
ξ2
kk/2

− λk

))]
.(53)

6. Numerical results

In this section we discuss some numerical results with reference to the models presented. We first
examine the geometric Brownian motion case, comparing the performance of our method to that
of other methods in the literature. Krekel et al. (2004) compare the performance of the pricing
methods proposed by Levy (1992), Gentle (1993), Milevsky and Posner (1998a,b), Beisser (2001),
and Ju (2002). They conclude that the approximations of Ju (2002) and Beisser (2001) are the
most accurate in the geometric Brownian motion setting when wk > 0 for k = 1, . . . , n, although
they tend to slightly overprice and underprice, respectively. We reproduce experiments of Krekel
et al. (2004) in Tables 1 to 5. Each table shows the values for Ĉw

K(t) computed by using our
pricing formula with the results obtained by Krekel et al. (2004) with the methods of Ju (2002) and
Beisser (2001). We also compute a benchmark for the valuation using a Monte Carlo simulation
with 106 simulation trials and show the length of the computed mean centered 95% confidence
interval. Finally, we show the results for the upper bound UK(t) proposed in Section 3. The upper
bound is obtained by setting Nc = 100 and Np = 0 (the basket cannot take negative values in these
experiments). The parameter ∆K is set to minimize the upper bound, using a numeric search.
We denote the matrix Σ in formula (45) as (Σ)kj = ρkjσkσj and the default model parameters
are

T − t = 5.0, r = 0, n = 4, K = 100,

Sk(t) = 100 qk = 0 σk = 40%, wk = 0.25 for k = 1, . . . , n,

ρkj = 0.5 k 6= j.

The first group of test is performed as follows:

• Table 1 shows the effect of simultaneously changing all correlations from ρ = ρkj = 0.1 to
ρ = 0.95.

• With all the other parameters set to the default values, the strike K is varied from 50 to
150 in Table 2.

• Table 3 shows the results of varying the same starting price Sk(t) = S(t) between 50 and
150.

• Volatilities are changed simultaneously between 5% and 100%, yielding the results in Table
4.

• In Table 5 we change volatilities simultaneously between 5% and 100% but σ1 is set to
100%.
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Regarding the numerical results, we note two points. First, the values Ĉw
K(t) obtained with our

method produces results equal to those produced with the method of Beisser (2001). The lower
approximation of Beisser (2001) is obtained, solving the problem of Rogers and Shi (1995) in formula
(38), assuming a suitable conditioning variable. The basket call is estimated by the weighted sum
of (artificial) European call prices. The setting of the valuation problem is slightly different and a
different conditioning variable is chosen, but the computed values are the same in practice. Second,

Table 1. Varying the correlations simultaneously.

ρ Ĉw
K(t) Beisser Ju MC IC length UK(t)

0.1 20.12 20.12 21.77 21.69 0.02976 27.49
0.3 24.21 24.21 25.05 25.04 0.01911 30.23
0.5 27.63 27.63 28.01 28.01 0.01064 33.36
0.7 30.62 30.62 30.74 30.74 0.004702 36.13
0.8 31.99 31.99 32.04 32.04 0.002481 38.04
0.95 33.92 33.92 33.92 33.92 0.0002894 41.5

Table 2. Varying the strike.

K Ĉw
K(t) Beisser Ju MC IC length UK(t)

50 54.16 54.16 54.31 54.31 0.004699 59.86
60 47.27 47.27 47.48 47.48 0.006221 52.94
70 41.26 41.26 41.52 41.52 0.007375 47.09
80 36.04 36.04 36.36 36.35 0.00854 41.76
90 31.53 31.53 31.88 31.88 0.009609 37.33
100 27.63 27.63 28.01 28.01 0.01062 33.36
110 24.27 24.27 24.67 24.66 0.0115 29.93
120 21.36 21.36 21.77 21.76 0.01218 26.85
130 18.84 18.84 19.26 19.25 0.01262 24.53
140 16.65 16.65 17.07 17.06 0.01325 22.44
150 14.75 14.75 15.17 15.17 0.01412 20.51

Table 3. Varying the price.

Sk(t) Ĉw
K(t) Beisser Ju MC IC length UK(t)

50 4.16 4.16 4.34 4.34 0.007479 6.86
60 7.27 7.27 7.51 7.509 0.008631 10.41
70 11.26 11.26 11.55 11.55 0.009727 15.18
80 16.04 16.04 16.37 16.37 0.009957 20.38
90 21.53 21.53 21.89 21.89 0.01043 26.54
100 27.63 27.63 28.01 28 0.0105 33.36
110 34.27 34.27 34.66 34.65 0.01056 40.74
120 41.36 41.36 41.75 41.74 0.01076 48.63
130 48.84 48.84 49.23 49.23 0.01079 56.96
140 56.65 56.65 57.04 57.04 0.01083 64.02
150 64.75 64.75 65.13 65.13 0.01051 72.78
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Table 4. Varying the volatilities simultaneously.

σ Ĉw
K(t) Beisser Ju MC IC length UK(t)

0.05 3.53 3.53 3.53 3.53 5.644× 10−5 3.59
0.1 7.04 7.04 7.05 7.05 0.0003358 7.27
0.15 10.55 10.55 10.57 10.57 0.0009116 11.07
0.2 14.03 14.03 14.08 14.08 0.001891 15.03
0.3 20.91 20.91 21.08 21.08 0.005237 23.47
0.4 27.63 27.63 28.01 28.01 0.01083 33.35
0.5 34.15 34.15 34.84 34.82 0.01813 43.89
0.6 40.41 40.41 41.52 41.49 0.02851 60.97
0.7 46.39 46.39 47.97 47.96 0.04283 86.33
0.8 52.05 52.05 54.09 54.13 0.05894 129.4
1 62.32 62.32 64.93 65.42 0.09682 321.6

Table 5. Varying the volatilities simultaneously with σ1 = 100%.

σ Ĉw
K(t) Beisser Ju MC IC length UK(t)

0.05 19.45 19.45 35.59 19.46 0.0005861 152.2
0.1 20.84 20.84 36.19 20.97 0.004047 152.8
0.15 22.6 22.6 36.93 23.01 0.009306 148.2
0.2 24.69 24.69 37.8 25.38 0.01408 148.8
0.3 29.52 29.52 39.97 30.6 0.02125 151.3
0.4 34.72 34.72 42.66 36.06 0.02738 154.5
0.5 39.96 39.96 45.84 41.51 0.0342 158.8
0.6 45.05 45.05 49.39 46.82 0.04273 165.4
0.7 49.88 49.88 53.21 51.95 0.05364 176.5
0.8 54.39 54.39 57.17 56.78 0.0666 197.2
1 62.32 62.32 64.93 65.42 0.09654 321.6

the upper bound does not appear to be very tight, even if we try to minimize it with respect to the
free parameter ∆K. In addition, it appears to be very sensitive to the volatility of the model. In
only a few situations is the upper bound close to the true price, mainly for low volatility levels, as
shown in Table 4. Given these poor results, we do not use it anymore in the remaining tests.

The second numerical experiment concerns the valuation of basket spread options. Deelstra et al.
(2010) compare the relative performances of several methods and conclude that the shifted log-
normal moment matching method of Borovkova et al. (2007) and their hybrid moment matching
method based on the so-called ICUB are the two best-performing methods for basket spread option
pricing. We reproduce their experiments in Tables 6 to 9. Each table shows the values Ĉw

K(t)
computed by using our pricing formula and the results of Deelstra et al. (2010). We also compute
a benchmark via Monte Carlo simulation with 106 trials, also providing the length of a 95% con-
fidence interval. These experiments use T − t = 1 and r = 5%. The remaining model parameters
are indicated for each table. Our results confirm that the shifted log-normal moment matching and
ICUB-based hybrid moment matching methods are the best for basket spread option pricing in the
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geometric Brownian motion case. They are better than the approximation Ĉw
K(t) in almost all sit-

uations. Deelstra et al. (2010) also test a comonotonic lower bound, among others. They conclude
that such a lower approximation does not perform as well as the shifted log-normal moment match-
ing method or the ICUB-based hybrid moment matching. Since the idea behind their comonotonic
lower bound is similar to our lower approximation, the computed results are not surprising.

The last test in the geometric Brownian motion framework concerns the implied volatility surface
generated by the model. The test investigates whether the pricing method can be useful to calibrate
the model to an implied volatility surface. Furthermore, recalling that options on indices are basket

Table 6. In this table w = [1;−1;−1], S(t) = [100; 24; 46], σ = [0.4; 0.22; 0.3],
ρ12 = 0.17, ρ13 = 0.91, ρ23 = 0.41.

K Ĉw
K(t) SLN MMICUB MC IC length

15 17.2435 19.6925 19.5231 19.6796 0.0245036
20 13.4984 16.7345 16.5673 16.7033 0.0298483
25 10.1956 14.146 13.9944 14.1079 0.0348811
30 7.40244 11.9059 11.779 11.8447 0.0395552
35 5.14929 9.9851 9.8876 9.927 0.043695
40 3.42276 8.3506 8.2837 8.27783 0.0463941
45 2.16972 6.9683 6.9305 6.91537 0.0487735

Table 7. In this table w = [1;−1;−1;−1], S(t) = [100; 100; 50; 70], σ =
[0.5; 0.15; 0.2; 0.17], ρkj = 0.9 for all k and j.

K Ĉw
K(t) SLN MMICUB MC IC length

−90 0.0967632 2.4884 2.4043 2.41311 0.0478315
−100 0.41189 3.482 3.3098 3.31895 0.0506866
−110 1.39163 4.9521 4.6565 4.65662 0.0490433
−120 3.75078 7.1616 6.7643 6.77166 0.0424209
−130 8.18408 10.519 10.2529 10.2641 0.0319529
−140 14.8344 15.6048 15.8233 15.8428 0.0207096
−150 23.1375 22.9793 23.4623 23.4726 0.0109605

Table 8. In this table w = [1;−1;−1;−1], S(t) = [100; 60; 40; 30], σ =
[0.16; 0.23; 0.32; 0.43], ρ12 = 0.42, ρ13 = 0.5, ρ14 = 0.3, ρ23 = 0.24, ρ24 = 0.42,
ρ34 = 0.35.

K Ĉw
K(t) SLN MMICUB MC IC length

−5 0.780148 1.3847 1.5248 1.43949 0.0105866
−10 1.49831 2.2538 2.378 2.28151 0.0114167
−20 4.0638 4.9936 5.0508 4.94776 0.0119248
−30 8.31642 9.2153 9.1939 9.13061 0.0113287
−40 14.1503 14.8764 14.8006 14.782 0.0099275
−50 21.247 21.7566 21.6606 21.685 0.00825845
−60 29.2471 29.5647 29.4747 29.5315 0.00668519
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Table 9. In this table w = [1;−1;−1], S(t) = [100; 63; 12], σ = [0.21; 0.34; 0.63],
ρ12 = 0.87, ρ13 = 0.3, ρ23 = 0.43.

K Ĉw
K(t) SLN MMICUB MC IC length

2.5 23.3605 23.1681 23.5137 23.5944 0.00278116
10 16.7954 16.8591 17.1363 17.2054 0.00356326

17.5 10.7091 11.3394 11.3854 11.4126 0.00453313
25 5.50174 6.9203 6.6579 6.6013 0.00548593

32.5 1.79652 3.7629 3.3226 3.1898 0.00617322
40 0.16223 1.7925 1.395 1.25122 0.00574751

47.5 0 0.7369 0.4861 0.601204 0.00443468

options, we would like to investigate whether by assuming log-normality in the underlying, we
can generate a smile effect when we price options on an index. Even if each asset has a constant
volatility, the resulting basket implied volatility could be skewed by the fact that a weighted sum
of log-normal random variables is not log-normal. The model parameters are set to r = 0.01,
Sk(t) = 100, qk = 0, σk = 40%, and wk = 0.25 for k = 1, . . . , n = 4. The correlation parameter
ρkj = ρ = 0.5 for k 6= j. Figure 2 plots the implied volatility surface of a single asset and that of
the whole basket. We compute the surfaces for T − t ∈ [0.3, 2] and K ∈ [50, 150]. The volatility
of each component of the basket is flat and equal to 40%. The volatility of the basket shows a flat
area equal to 30.98% for a large number of strikes and maturities. The surface is no longer flat for
short maturities and small strike prices.
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Figure 2. The volatility surface computed for one asset (a) compared to the
surface computed for the basket (b).
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The last group of numerical tests considers a non-Gaussian model: the jump diffusion model in
formula (51). Model parameters are set as follows:

r = 0.01, T − t = 1, n = 4, λ = 1, S(t) = [100; 100; 100; 100],

qk = 0, αk = −0.05, αkk = −0.05, ξk = 0.5, ξkk = 0.3, λk = 0.5, k = 1, . . . , n,

ρkj = 0.5, ρYkj = 0.5, k 6= j.

Again a Monte Carlo simulation with 106 trials is used as a benchmark. The results are shown
in Tables 10 to 13 and confirm the results obtained in the Gaussian setting. The complexity of
jump diffusion dynamics does not affect the quality of the pricing method. The method seems to
be more accurate when we have positive weights (Tables 10 and 11), but the error is small even
with negative weights (Tables 12 and 13).

Finally, we show the volatility surface of a single asset and that of the whole basket in the jump
diffusion setting. The model parameters are set as above. We compute the implied volatility surface
for T − t ∈ [0.3, 2] and K ∈ [50, 150]. The results are shown in Figure 3. Both surfaces show a smile
for short maturities and flatten when T − t increases.

Table 10. In this table w = [0.25; 0.25; 0.25; 0.25].

K Ĉw
K(t) MC IC length

50 51.8308 51.9409 0.0054
60 43.4117 43.5845 0.0074
70 35.9380 36.1770 0.0092
80 29.5579 29.8506 0.0107
90 24.2847 24.6209 0.0122
100 20.0267 20.3932 0.0135
110 16.6370 17.0241 0.0147
120 13.9554 14.3489 0.0155
130 11.8337 12.2239 0.0163
140 10.1463 10.5322 0.0171
150 8.7932 9.1745 0.0178

Table 11. In this table w = [0.1; 0.2; 0.3; 0.4].

K Ĉw
K(t) MC IC length

50 51.9290 52.0429 0.0062
60 43.5869 43.7589 0.0079
70 36.1999 36.4301 0.0097
80 29.8988 30.1796 0.0116
90 24.6850 25.0034 0.0127
100 20.4631 20.8000 0.0136
110 17.0885 17.4437 0.0145
120 14.4058 14.7670 0.0150
130 12.2719 12.6289 0.0157
140 10.5661 10.9177 0.0164
150 9.1913 9.5354 0.0168
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Table 12. In this table w = [1; 2;−1;−1].

K Ĉw
K(t) MC IC length

50 78.6610 80.9336 0.1209
60 72.9709 75.0441 0.1177
70 67.6566 69.5829 0.1122
80 62.7123 64.5501 0.1093
90 58.1280 59.9357 0.1082
100 53.8906 55.6950 0.1061
110 49.9841 51.8095 0.1038
120 46.3909 48.2431 0.1017
130 43.0919 45.0147 0.0971
140 40.0676 42.0448 0.0914
150 37.2981 39.3566 0.0913

Table 13. In this table w = [1; 0.5; 0.5;−1].

K Ĉw
K(t) MC IC length

50 62.5819 64.2222 0.0989
60 55.9870 57.4383 0.0946
70 49.9674 51.2696 0.0902
80 44.5278 45.7233 0.0720
90 39.6555 40.8078 0.0654
100 35.3239 36.4893 0.0649
110 31.4964 32.7106 0.0626
120 28.1301 29.4110 0.0620
130 25.1792 26.5345 0.0617
140 22.5977 24.0332 0.0596
150 20.3415 21.8462 0.0597
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Figure 3. The volatility surface computed for one asset (a) compared to that
computed for the basket (b).



CHAPTER 4

Interconnecting Electricity Markets

Any fact becomes important when
it’s connected to another.

Umberto Eco (1932– )

In the European power market, interconnections between different countries play an important
role in obtaining energy balance and maintaining security of supply. Countries are connected by
a complex web of transmission lines and the exchange of electricity between European states is
increasing. Two main driving factors are behind this development: First, there is an uneven spatial
distribution of load centers and generation plants across Europe, which requires energy transport
over long distances. Second, there is a mix of different-generation technologies between the countries
because of different environmental and political conditions, which leads to different energy price
levels during the day. This price difference is an economic incentive to transport electric power
between European countries. As discussed in the literature (see, for example, Benth et al. (2008)
and Clewlow and Strickland (2000)), electricity prices are characterized by extreme volatility and
large upward and downward jumps, as well as fast mean reversion to seasonal trends. This extreme
behavior is also present in the differences between the prices of two locations and explains why
interconnecting two markets can be profitable.

Energy transmission between European power markets is characterized by load patterns, structural
patterns that are a function of supply sources, regional supply and demand balances, and the rel-
ative costs of supply. For example, France typically exports low-cost base load power generated
by its nuclear plants to its neighbors. In addition, the direction and level of flow between major
markets is very changeable. Figure 1 compares the inter-country flows at 10:00 on two dates in
2011. We note the stable exporting status of France but also the dynamic changes in direction of
certain flows and countries changing from being net exporters to net importers (e.g., Germany).
In Germany, fluctuations in renewable energy production need to be supported by generation flex-
ibility from neighboring markets. Flows from flexible hydropower capacity in Scandinavia and the
Alpine region and flexible thermal capacity in the Netherlands and Eastern Europe help maintain
the system balance. Energy market integration through interconnection offers economic benefits:
increased competition, enhanced liquidity, and greater diversity of supply. Power interconnections,
or transportation capacities, are a core component of European companies’ energy portfolios. En-
ergy companies seek to reduce economic rents and risk and enhance security of supply. Furthermore,
interconnectors will become increasingly important as intermittent renewable capacity grows in Eu-
rope. It is therefore essential for companies to understand energy transportation capacity value and
how it can be used in portfolio optimization and risk management.

71
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Figure 1. Comparison of European power load flows.

An interconnector is an asset that gives the owner the right, but not the obligation, to transmit
electricity between two locations each hour of the day over a prefixed time period. Therefore the
financial value of the interconnector is determined by a series of options that are written on the
price differential between two electricity markets, that is, a strip of European options on the spread.
Spread option valuation is a popular task in financial modeling, as discussed in Chapter 2. However,
evaluating interconnections between power markets is a very recent issue and is discussed only in
a few studies. The most valuable paper on this topic is that of Cartea and Pedraz (2012), who
directly model the spread between markets with a mean-reverting jump diffusion process. They
also propose a valuation tool that uses real options theory to price hypothetical interconnectors
between five pairs of European neighboring countries.

This chapter proposes a valuation procedure that uses real options theory to price interconnections
between energy markets. We select a bidimensional stochastic model to describe the energy price
dynamics of a specified hour of interconnected countries and calibrate it to historical spot prices and
forward market data. The forward price curve bootstrapping methodology proposed in Chapter
1 plays a fundamental role during the calibration step. Finally, by using the semi-closed option
formula proposed in Chapter 2 to evaluate spread options, we price interconnections between five
European countries.

This chapter is organized as follows: Section 1 introduces the pricing framework for evaluating
transmission capacity contracts. Section 2 discusses the stochastic model used to describe energy
prices. Section 3 discusses market data involved in the model calibration. Section 4 calibrates the
model and, finally, Section 5 presents the numerical results of evaluating interconnections.
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1. Pricing interconnection capacity contracts

This section introduces the general pricing framework for the valuation of transmission capacity
contracts. Let S1,h(t) and S2,h(t) be two stochastic processes representing the spot1 prices of the
hth hour of the day for two interconnected locations at time t. We model the dynamic of each hour
of the day separately. Indeed, as noted by Huisman et al. (2007), hourly electricity prices in day-
ahead markets do not follow a time series process but are a panel of 24 cross-sectional hours that
vary from day to day. We now consider the spread between prices of the hth hour of the day. Recall
that an European spread option with strike price L pays at maturity date T the amount

(S1,h(T )− S2,h(T )− L)+

and its time 0 no-arbitrage fair price is the discounted conditional expectation

(54) ChL(0, T ) = e−rTE0

[
(S1,h(T )− S2,h(T )− L)+

]
.

An interconnection capacity contract gives the owner the right, but not the obligation, to trans-
mit electricity between two locations during a predetermined set of days {T1, . . . , Tn} and hours.
Without loss of generality, we consider contracts that allow the transmission of base load flows of
energy; so in our setting h = 1, . . . , 24. The owner of the contract gains the positive difference of
prices between the two countries, net of transmission costs. We assume here an equal transmission
cost K for every hour of the day and all times of the year. As noted by Cartea and Pedraz (2012),
when the difference between the two prices is too large, in at least one of the locations it does
not seem plausible to take positions at the prices that produced such large spreads. Following the
approach of Cartea and Pedraz (2012), we assume that during times of extreme price deviations,
the owner of the interconnector can take positions in both markets; however, we limit the extent
to which the owner can profit from the situation. We denote by M the maximum spread level at
which it is feasible to take positions in both locations. For simplicity, we assume that this liquidity
cap is the same for every hour of the day and all times of the year. Assume that the buyer of the
contract can transmit energy from location 2 to location 1. Every hour h of the day T , the owner
of the right can buy energy from location 2, paying S2,h(T ), and sell it in location 1 at S1,h(T ),
with a transmission cost K. The profit of such a strategy will be S1,h(T )−S2,h(T )−K, if positive.
Thus, we can model the right to transmit energy from location 2 to location 1 using options on the
spread S1,h(t) − S2,h(t). However, the payoff of an interconnection contract depends not only on
the transmission costs but also on the depth of the interconnected power markets; so we structure
it as a difference of call options written on the spread (bull spread strategy). In financial terms,
the payoff of an energy transmission right from location 2 to location 1 is composed of 24 strips of
capped spread options with maturity Ti for i = 1, . . . , n and its value at time 0 is

(55) IC(0) =

24∑
h=1

n∑
i=1

(
ChK(0, Ti)− ChM (0, Ti)

)
.

1The owner of the interconnector capacity needs to schedule flows according to market prices in the two inter-

connected locations. In practice these decisions are usually made based on the day-ahead market and transmission

costs. Thus, we assume that the decision to use the interconnector to dispatch electricity from location 1 to location
2, or vice versa, is based on the hourly market prices observed in the day-ahead market, net of transmission costs.

The convention in the market and the literature is to treat day-ahead prices as spot prices, even though the former
have the structure of a forward contract.
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The value of the energy transmission right from location 1 to location 2 is obtained using the formula
(55) and switching the position of S1,h(T ) and S2,h(T ) in the formula (54). The computation of
(55) comes from 24×n evaluations of equation (54). In Chapter 2, Proposition 1 proposes a general
method to solve the problem in (54) when the Ti joint characteristic function of the log-returns of
the two prices

ΦhTi(u) = ΦhTi(u1, u2) = E
[
eiu1 lnS1,h(Ti)+iu2 lnS2,h(Ti)

]
is known explicitly. The following section discusses a spot price model and defines its characteristic
function ΦhTi(u).

2. Stochastic spot price model

This section introduces the stochastic model we use to describe energy spot prices. The classic
process for the spot dynamics of commodity prices is described by the so-called Schwartz (1997)
model, defined as the exponential of an Ornstein–Uhlenbeck process. Schwartz’s seminal paper
considers storable commodities and does not deal with seasonality, but it serves as a starting point
for a number of articles proposing no-arbitrage models for the dynamics of electricity prices. The
model proposed by Schwartz is a geometric one because of the exponential involved in its definition.
Lucia and Schwartz (2002), Cartea and Figueroa (2005) and Geman and Roncoroni (2006), among
others, provide examples of geometric no-arbitrage models. Another choice is to consider the no-
arbitrage arithmetic models, where the price dynamic is modeled as a linear combination of pure
jump processes (e.g., Benth et al. (2007a)). This framework involves no exponential function and the
positivity of the spot is achieved by allowing positive jumps only. The advantage of this formulation
is that semi-analytic formulas for option prices on forwards with a delivery period can be derived.
However, a full analysis of this class of models still seems to be in its early stages. Other models
examined in the literature are the so-called equilibrium and hybrid models (e.g., Bessembinder and
Lemmon (2002); Barlow (2002); Pirrong and Jermakyan (2008); Cartea and Villaplana (2008)). Our
work discusses a bivariate geometric spot price model characterized by seasonality, mean reversion,
and jumps. The unidimensional version of this model in energy price modeling is discussed by
many authors (e.g., Deng (1999); Villaplana (2003); Hambly et al. (2009)). Our model is able to
reproduce typical features of electricity spot price dynamics, such as seasonality, mean reversion,
and the occurrence of spikes.

Consider a couple of interconnected power markets. We model the two prices of every hour h for
h = 1, . . . , 24 and consider a bidimensional continuous time process for each hour. Since the payoff
we want to evaluate depends on prices for the same hour h, we assume independence between the
dynamics concerning the different hours of the day. We model 24 independent pairs of prices. For
j = 1, 2 and h = 1, . . . , 24, the risk-neutral spot price process Sj,h(t) is defined as the exponential
of the sum of three components, namely, a deterministic function fj,h(t), a Gaussian Ornstein–
Uhlenbeck process Xj,h(t), and a mean-reverting process with a jump component Yj,h(t):

Sj,h(t) = exp (fj,h(t) +Xj,h(t) + Yj,h(t)) ,(56)

dXj,h = −αj,hXj,h(t)dt+ σj,hdWj,h,

dYj,h = −αj,hYj,h(t−)dt+ J+
j,hdN

+
j,h − J

−
j,hdN

−
j,h.

The parameter σj,h is strictly positive and Wj,h, is a risk-neutral Brownian motion. We assume a
speed of mean reversion αj,h > 0 for both the diffusion process Xj,h(t) and the jump process Yj,h(t).
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The two Brownian motions have instantaneous correlation ρ, |ρ| < 1. The Poisson processes N+
j,h

and N−j,h have intensity λ+
j,h and λ−j,h, respectively, and describe the positive and negative jump

arrivals separately. The independent identically distributed random variables J+
j,h and J−j,h represent

the jump size and we assume they are exponentially distributed with parameters 0 < µ+
j,h < 1 and

µ−j,h > 0, respectively. Note that the model requires µ+
j,h < 1. This restriction is to be expected,

since the T forward price at time 0 is given by

(57) Fj,h(0, T ) = E0[Sj,h(T )] = E0[exp (fj,h(T ) +Xj,h(T ) + Yj,h(T ))].

Since Yj,h(T ) contains terms involving jumps with an exponential distribution, the expectation in
(59) diverges if the upper tail of the jump distribution is sufficiently large. The model in (56) is able
to reproduce typical features of electricity spot price dynamics such as seasonality, mean reversion,
and the occurrence of spikes. However, this model does not claim to fully represent all of the
features of electricity prices. Historical data indicate varying volatility over time and hence would
require the introduction of an additional stochastic volatility process. A further process describing
the stochastic component of the seasonality might be needed to better capture the forward price
dynamics. Finally, the risk of spike occurrence is likely to be seasonal rather than constant, as in
our choice.

If we assume independence between the jump processes, the joint characteristic function of the
model in (56) is

ΦhT (u) = exp
[
iu1

(
(X1,h(0) + Y2,h(0)) e−α1,hT + f1,h(T )

)
+

iu2

(
(X2,h(0) + Y2,h(0)) e−α2,hT + f2,h(T )

)
−

u2
1σ

2
1,h

4α1,h

(
1− e−2α1,hT

)
−
u2

2σ
2
2,h

4α2,h

(
1− e−2α2,hT

)
− ρu1u2σ1,hσ2,h

α1,h + α2,h

(
1− e−(α1,h+α2,h)T

)
+

λ+
1,h

α1,h
ln

(
1− iµ+

1,hu1e
−α1,hT

1− iµ+
1,hu1

)
+
λ+

2,h

α2,h
ln

(
1− iµ+

2,hu2e
−α2,hT

1− iµ+
2,hu2

)
+

λ−1,h
α1,h

ln

(
1 + iµ−1,hu1e

−α1,hT

1 + iµ−1,hu1

)
+
λ−2,h
α2,h

ln

(
1 + iµ−2,hu2e

−α2,hT

1 + iµ−2,hu2

)]
.(58)

We can evaluate each spread option, plugging (58) into our pricing formula (see Chapter 2, Propo-
sition 1). Moreover, we can easily obtain an expression for the forward price from the characteristic
function, which will be useful during the calibration of the model to a market forward curve. We
have

F1,h(0, T ) = ΦhT ([−i, 0]ᵀ) and F2,h(t, T ) = ΦhT ([0,−i]ᵀ);

so the forward price for j = 1, 2 is

Fj,h(0, T ) = = exp

[
(Xj,h(0) + Yj,h(0)) e−αj,hT + fj,h(T ) +

σ2
j,h

4αj,h

(
1− e−2αj,hT

)
+

λ+
j,h

αj,h
ln

(
1− µ+

j,he
−αj,hT

1− µ+
j,h

)
+
λ−j,h
αj,h

ln

(
1 + µ−j,he

−αj,hT

1 + µ−j,h

)]
.(59)
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3. Market data

This section presents an example of interconnection capacity valuation using the pricing framework
previously described. It also describes the market data we use to calibrate the model and the
interconnection pricing. We consider five European countries: Italy, Germany, France, Switzerland,
and the Czech Republic. We evaluate the following interconnections between these countries:

• Transmission of energy from Switzerland to Italy (SWI → ITA) and from Italy to Switzer-
land (ITA→ SWI),

• Transmission of energy from France to Italy (FRA → ITA) and from Italy to France
(ITA→ FRA),

• Transmission of energy from Germany to France (GER → FRA) and from France to
Germany (FRA→ GER),

• Transmission of energy from France to Switzerland (FRA→ SWI) and from Switzerland
to France (SWI → FRA),

• Transmission of energy from Czech Republic to Germany (CZR → GER) and from
Germany to Czech Republic (GER→ CZR).

We consider one-year-long base load interconnections, which give the right to transmit 1 MWh of
energy for every hour of the year 2011. The evaluation date of the contracts is December 31, 2010.
We use two kinds of market data to calibrate the models. The first kind consists of the historical
series of day-ahead spot prices. We consider the following day-ahead prices for five European energy
spot markets, starting at different dates:

• Italy (MGP), data since January 1, 2005;

• Germany (EEX), data since January 1, 2005;

• France (PNXT), data since January 1, 2006;

• Switzerland (SWISSX), data since December 12, 2006;

• Czech Republic (CZ), data since January 1, 2008.

Time series are considered in the euro currency for all markets. The last price of each series refers
to the evaluation date. Any missing data are replaced by the last available quote preceding the hour
in question. This case occurs, for instance, when changing from a legal to a solar hour count.

Exponential models such as (56) do not allow negative or zero prices. However, some markets have
energy prices that are less than or equal to zero. Negative prices mean that the destruction of a
commodity has more value than its creation. Indeed, a balance between supply and demand must
always exist in a power network. Power supply can be higher than demand primarily at night. This
nightly imbalance is caused, for instance, by the installation of non-flexible power plants. Reducing
the output of such generators is hardly possible from a technical point of view or involves high
shutdown costs. Thus, negative prices are acceptable to power suppliers because the opportunity
costs of a shutdown period would be much higher. Generally, prices are negative or equal to zero
during only a short period of time and mainly at night. As a practical choice, should any of our
data be less or equal to zero, we replace it with the value of one. Fanone et al. (2011) presents an
empirical study of the reasons for negative prices.
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The second market data input consists of a list of forward contract quotations, provided in Table
1. This table shows the prices converted in euros per megawatt–hour (e/MWh), for the Swiss
and Czech markets. The lack of liquidity of forward markets around Christmas leads to biased
prices on the evaluation date. We therefore consider prices quoted on December 23, 2010. Forward
contract quotations are fundamental in calibrating the risk-neutral version of the model. We do so
using the bootstrapping procedure described in Chapter 1, obtaining an hourly market estimation
of the quantity Fj(t, T ) in formula (59), denoted Fmktj,h (0, T ). This estimation depends on a weight

parameter we set equal to 0.8 to estimate the seasonality contribution, solving equation (4). The
pricing model is calibrated according to the information of such hourly forward price curves.2

Table 1. Forward market data.

Start Date End Date F baseITA F peakITA F baseGER F peakGER F baseFRA F peakFRA F baseSWI F peakSWI F baseCZR F peakCZR

01/01/11 31/01/11 68.25 80.50 56.38 71.63 62.40 79.20 68.09 80.56 53.15 71.50

01/02/11 28/02/11 68.25 80.50 54.61 68.14 58.80 70.00 65.51 74.56 52.05 67.00

01/03/11 31/03/11 66.50 78.50 52.23 62.20 54.40 67.50 59.70 69.19 50.50 61.75
01/04/11 30/06/11 63.60 74.10 47.19 57.32 47.10 60.50 49.40 61.56 45.60 57.25
01/07/11 30/09/11 71.00 82.75 48.44 58.48 48.55 59.50 49.00 60.05 46.70 58.85

01/10/11 31/12/11 70.90 82.25 54.59 66.42 60.60 73.70 65.00 76.45 52.60 66.55

The Italian market has some peculiarities. Interconnection capacity contracts do not concern the
Italian national single price but they do affect zonal prices. In the Italian day-ahead market,
the national single price is the average of zonal prices weighted for total purchases and net of
purchases for pumped-storage units and purchases by neighboring countries’ zones. A zonal price is
defined as the electricity price that is set in the energy market for each of Italy’s geographical and
virtual zones.3 These zonal prices are highly correlated with the national single price. However, the
available forward contract quotations refer to the Italian national price. In interconnection contract
valuation, it is popular for practitioners to compute Italian hourly forward curves for the national
price. Then they modify the computed curves to reproduce the relation between the national price
and a zonal price, using statistical tools. For simplicity’s sake, we neglect this detail and consider
the national price as underlying the spread options, as in other markets under examination.

4. Model estimation

The model in formula (56) is discussed in a no-arbitrage risk-neutral setting, but the calibration of
the model parameters in such a framework is not trivial. Due to the non-storability of electricity,
the underlying cannot be used to replicate derivative products in energy markets. The market is
incomplete; therefore arbitrage arguments do not immediately lead to a unique price for derivatives.
To calibrate the model and obtain a unique price for a particular derivative we want to trade in the
market, we need many liquidly traded derivatives in addition to the underlying. In practice, liquid
energy option markets are still rare and such information is not readily available. Only information
from average-based forward contracts is available in our valuation example and we use historical data
to overcome this problem. To calibrate the model, we obtain data from the real-world probability
measure P and transfer their information to an equivalent risk-neutral measure Q setting. Since the

2Forward contracts quotations are even considered by Cartea and Pedraz (2012), who discuss how to obtain

no-arbitrage lower bounds on the value of a bidirectional interconnector, using forward market data.
3See Gestore Mercati Energetici’s website at http://www.mercatoelettrico.org.
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market is incomplete, the measure Q is not uniquely determined and needs to be chosen according
to certain criteria. Kluge (2006) discusses in more detail the change in probability measure for the
model in formula (56): The author restricts the set of possible risk-neutral measures to remain in
the same class of models and provides a link between real-world and risk-neutral parameters. Once
the relation between the P model and Q model is identified, one way of choosing a measure Q is
to pick that which is closest to P in a metric sense.4 However, following Hambly et al. (2009) and
Kluge (2006), we adopt a pragmatic approach: We estimate all parameters from historical data and
then calibrate the function fj,h(t) to the observed forward curve. In other words we are assuming
that the price under the historical probability measure P is defined as

Sj,h(t) = exp
(
f∗j,h(t) +Xj,h(t) + Yj,h(t)

)
,(60)

dXj,h = −αj,hXj,h(t)dt+ σj,hdWj,h,

dYj,h = −αj,hYj,h(t−)dt+ J+
j,hdN

+
j,h − J

−
j,hdN

−
j,h,

where the only difference from the risk neutral model in equation (56) is the function f∗j,h(t) and
we assume

fj,h(t) = f∗j,h(t) + gj,h(t),

gj,h(t) s.t. Fj,h(0, T ) = Fj,h(0, T )mkt

and the forward price Fj,h(0, T ) is computed under Q. This is equivalent to saying we choose a
risk-neutral measure Q that changes as few parameters of the P model as possible. We now propose
a procedure to calibrate the model to market data.

We consider the market data described in Section 3. We first estimate the model parameters for
each market and then determine the correlation coefficient between every pair of interconnected
market hour prices. We consider separately each hour of each market, so we can omit the subscript
j in our model specification, but we emphasize that the procedure we discuss leads to different
estimated parameters for each hour of each market. Since model (60) consists of three components,
Sh(t) = exp (f∗h(t) +Xh(t) + Yh(t)), and only Sh(t) is observable, estimating parameters becomes
non-trivial: We have to separate the three components to estimate their parameters. We consider
the logarithm of the spot price of each hour h = 1, . . . , 24:

lnSh(t) = f∗h(t) +Xh(t) + Yh(t).

The function f∗h(t) models the trend and season components of the logarithmic spot price:

f∗h(t) = trendh(t) + seasonalityh(t).

The trend is estimated using a Hodrick–Prescott filter, denoted Hh,λh(t). Using Pedersen’s method,
the parameter λh of the filter is set to filter out recurrent components with a period equal to or
exceeding a year and a half. The rationale behind this choice is that economic movements of more
than a year are supposed to be related to macroeconomic phenomena, whereas pure seasonalities
must be searched for in shorter periods. The practical choice to set the period equal to a year and a
half instead of just one year is due to the risk, when filtering a time series, of introducing distortions
near the cutoff frequency. A brief description of the Hodrick–Prescott filter and Pedersen’s criterion
for the optimal choice of λh is given in Appendix A.

4Hubalek and Sgarra (2009) discuss the different choices of an equivalent martingale measure with reference to
Lévy processes.
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Seasonality is estimated with the parametric function

Λh(t) = ah cos

(
4π

365
t+ bh

)
+ Ddaydh + Dmonthmh,

where the dummy variables Dday and Dmonth are defined for each of the twelve months and each
of the seven days under analysis. Official holidays are treated as typical Sundays. We add up even
a cosine with a six-month period. The function Λh(t) reproduces a semiannual periodicity plus
daily and monthly dummies and is estimated to fit lnSh(t)−Hh,λh(t) with a non-linear regression.
We show in Tables 2 to 6 the estimated Hodrick–Prescott filter parameter λh and the seasonality
parameters of the function Λh(t) for each hour and each market. First, we note that, depending
on the historical series under concern, Pedersen’s method gives different estimates for λh, but their
order of magnitude is always between 107 and 108. The absolute value of the coefficient ah in the
definition of Λh(t) gives us information about the magnitude of semiannual seasonality. From one
hour to the next, semiannual seasonality is very similar in every market, except for the Czech one.
We observe higher values of ah during the morning at about sunrise and during the evening at
about sunset. The Czech market follows this pattern as well, but the magnitude of ah early in
the morning is three to four times higher than in the other markets. Regarding weekly seasonality,
the estimate of daily dummies provides the same information for all markets. We note a common
behavior during the central hours of the day: The Saturday parameter d7 and especially the Sunday
parameter d1 are usually lower than the weekday parameters. However, we do not observe such
behavior for the early morning or late night hours. Seasonalities are very different from one market
to another and, due to the large number of parameters, are not easily interpreted. However, we note
a few similarities. For all markets during the summer, seasonality coefficients tend to be greater
in July than in the other months. This is likely caused by a higher energy demand due to air
conditioning usage during the hottest month of the year. The Swiss and French market seasonality
parameters are definitely higher during winter, while those of the German market are high from
October to February, except for December and January. Energy demand is probably lower during
December and January because of holidays. Finally, Italy and the Czech Republic exhibit similar
seasonality, but the contribution of their summer parameters to the seasonality function is higher
than in Germany.
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Once the non-parametric trend and parametric seasonality are estimated, we separate them from
the stochastic process component

Zh(t) = lnSh(t)−Hh,λh(t)− Λh(t) = Xh(t) + Yh(t).

The last value of the time series of Zh(t) concerns our evaluation date and is input data for our
pricing formula. Such values are shown in Table 7.

Table 7. The computed process Z(t) on December 31, 2010.

αh ITA GER FRA SWI CZR

h = 1 −0.26342 0.12408 −0.12838 −0.28483 0.27097

h = 2 −0.40381 0.10700 −0.10825 −0.50895 0.31080

h = 3 −0.55397 0.096343 −0.25398 −0.62438 0.22027
h = 4 −0.56940 −0.072232 −0.41036 −0.70699 0.11620

h = 5 −0.55491 −0.15925 −0.37509 −0.61493 −0.20572

h = 6 −0.69825 −0.099510 −0.34517 −0.73811 −0.17784
h = 7 −0.52263 0.16580 −0.21596 −0.59989 −0.71336

h = 8 −0.42415 −0.19487 −0.37086 −0.21618 −0.59366
h = 9 −0.40267 −0.31108 −0.29207 −0.29901 −0.88127

h = 10 −0.35237 −0.29792 −0.22043 −0.15052 −0.67571
h = 11 −0.34732 −0.30027 −0.15457 −0.11360 −0.47048
h = 12 −0.33569 −0.19689 −0.12401 −0.11507 −0.40785

h = 13 −0.29660 −0.25311 −0.096574 −0.17319 −0.45823
h = 14 −0.27726 −0.18952 −0.12180 −0.17148 −0.42755
h = 15 −0.39077 −0.21674 −0.21991 −0.34519 −0.35042

h = 16 −0.39664 −0.24581 −0.24722 −0.35762 −0.29813
h = 17 −0.45776 −0.33727 −0.32087 −0.18563 −0.33782
h = 18 −0.55312 −0.38230 −0.42248 −0.31100 −0.56164

h = 19 −0.44668 −0.33276 −0.46318 −0.25530 −0.87593
h = 20 −0.34675 −0.42027 −0.24619 −0.17941 −0.97530

h = 21 −0.30591 −0.37114 −0.20882 −0.17820 −0.84224
h = 22 −0.25487 −0.20853 −0.17415 −0.30863 −0.59191
h = 23 −0.26881 −0.14483 −0.17129 −0.23479 −0.22134

h = 24 −0.15347 −0.19261 −0.095600 −0.20527 0.069359

The dynamic of Zh(t) is given by

(61) dZh(t) = −αhZh(t)dt+ σhdWh + J+
h dN

+
h − J

−
h dN

−
h .

The exact discrete time model of (61) is

(62) Zh(t+ δt) = exp(−αhδt)Zh(t) + σh

√
1− exp(−2αhδt)

2αh
εh(t),

where δt is equal to 1/365. The model in (62) is a discrete time AR(1) model with a non-normal
error term εh(t). Indeed, εh(t) reflects the information given by Brownian motion and the expo-
nential jumps. The quantity ξh = exp(−αhδt) can be easily estimated by ordinary least squares.
Rearranging terms, we use the following estimator for the mean reversion parameter

αh = − ln ξh
δt

.

However, the following remark is necessary. When the residual term εh(t) is white noise, the ordinary
least squares estimator of αh corresponds to a maximum likelihood estimator. However, when



86 4. INTERCONNECTING ELECTRICITY MARKETS

the residual term is not normal, ordinary least squares provides only a quasi-maximum likelihood
estimate: The estimator is biased and should be corrected. We do not discuss this issue further,
but see Ullah et al. (2010).5 For every market, the augmented Dickey–Fuller test on deseasonalized
prices (every hour using different lags, from one to 21) suggests the rejection of the unit root
hypothesis in favor of mean-reverting alternatives in all cases. Table 8 shows the estimated speed
of mean reversion. Values are estimated on a yearly basis. They are very high and the processes
mean-revert to their equilibrium level very rapidly. The half-life of the exponential decays varies
from 12 hours to almost three days, depending on the market and the hour considered. On average,
the speed of mean reversion is higher in the Czech market and lower in the Swiss one. In the
Czech market, the speed of mean reversion is high during the entire day. The other four markets
exhibit a clustering of the mean reversion speeds. We see high mean reversion levels in the morning
(particularly from 7:00 to 9:00) and relatively low values during the evening (from 18:00 to 23:00).

Table 8. Estimated mean reversion parameters.

αh ITA GER FRA SWI CZR

h = 1 268.25 480.40 317.41 208.16 504.40

h = 2 288.94 434.76 260.91 234.97 474.64
h = 3 369.42 400.09 257.95 274.77 392.09
h = 4 260.16 448.64 314.94 255.85 404.11

h = 5 255.31 442.08 302.25 302.91 409.10
h = 6 261.96 459.78 290.59 295.56 449.73

h = 7 406.46 502.25 390.49 428.15 597.59

h = 8 393.52 534.12 355.74 345.50 641.54
h = 9 307.82 385.14 257.68 268.79 449.50

h = 10 328.71 278.84 206.40 172.90 746.97

h = 11 308.50 248.59 179.15 163.41 717.69
h = 12 296.37 385.87 158.97 155.47 645.23

h = 13 259.67 441.24 138.84 151.95 689.16

h = 14 263.14 246.18 122.49 167.44 715.15
h = 15 293.85 350.97 129.52 172.71 665.37

h = 16 299.48 341.62 156.19 182.46 441.47
h = 17 270.13 371.26 203.38 171.43 708.55
h = 18 236.71 217.97 161.60 135.76 661.87

h = 19 210.47 234.50 136.61 112.73 817.77
h = 20 254.05 191.30 150.63 100.78 807.96
h = 21 271.51 195.32 184.07 102.30 253.94

h = 22 280.71 205.96 143.65 134.00 308.45
h = 23 233.06 223.20 333.28 143.30 385.44
h = 24 257.78 373.79 352.74 198.92 575.08

We now examine the residuals of the autoregressive model. It is very difficult to remove every
sign of the autocorrelation generated by the seasonality in our data using such a simple model,
especially at higher frequencies (e.g., weekly). However, the analysis of autocorrelation and partial
autocorrelation is satisfactory for every market. The residuals are mostly small fluctuations around

5For example, if εh(t) follows an asymmetric Laplace distribution, few theoretical results are also available.
Trindade et al. (2010) derive the marginal distribution of the process and calculate the exact confidence bands for

minimum mean-squared error linear predictors. The authors also discuss the conditional maximum likelihood-based

inference and provide corresponding asymptotic results.
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zero, but from time to time they are rather extreme jumps. Moreover, the residuals are far from
being normally distributed, as proven by many statistical tests we performed. This motivates our
model’s use of a mix of Brownian motion and a jump process. The next step is to identify the jumps
and to separate them from the Brownian motion. We apply recursive filtering to implement this
procedure. The filter identifies as a jump all data whose absolute value is more than three standard
deviations from the mean. The filtering is performed recursively, in the sense that after the jumps
are identified, these are removed, the level is computed again, and new jumps are identified. The
procedure is iterated until the level remains the same and no new jumps are found.

Once the jumps are identified, we estimate their intensity and distribution. We separate positive
from negative jumps. The parameter λ+

h is given by the ratio of the number of positive jumps

to the number of total observations. Similarly, the parameter λ−h is estimated by the ratio of the
number of negative jumps to the number of total observations. Then, dividing by 365, we obtain
a yearly basis estimation. The parameters µ+

h and µ−h are, respectively, the means of the positive
and negative jump distributions (in absolute value). One drawback of the algorithm is that it is
unable to detect small jumps within a few standard deviations of the change in the mean-reverting
process. The implication is that the jump mean parameter will be upward biased. This bias needs
to be taken into account when estimating the parameters of the jump size distribution. We cannot
find a sample from the jump distributions J+ and J−. We have a sample from the conditional
distributions J+

h |J
+
h > γ+

h and J−h |J
−
h > γ−h , where we denote by [γ−h , γ

+
h ] the thresholds used in

the iterative jump filtering procedure. The parameters are estimated using the following expressions
for the conditional mean of the exponential distribution:

E[J+
h |J

+
h > γ+

h ] = γ+
h + µ+

h , E[J−h |J
−
h > γ−h ] = γ−h + µ−h .

We obtain µ+
h and µ−h by calculating the difference between the sample mean of detected jumps

and the last thresholds used in the jump filtering.

Table 9 shows the results of the jump filtering procedure. The upper panel shows the annual
intensities of positive and negative jumps for each market. The lower panel shows the estimated
exponential distribution parameters. The jump intensities vary considerably with the market
and the hour. The average number of (positive and negative) jumps per day varies between 7
(Italy) and 17 (Czech Republic); the minimum jump intensity is estimated for the 18th hour of the
Italian market (almost three jumps per year) and the greatest jump intensity is estimate for the
seventh hour of the Italian market (50 jumps per year). Jumps occur with the lowest frequency
in the Italian market and with the highest frequency in the Czech market. The highest frequency
of jumps occurs in the earliest hours of the day (from 00:00 to 9:00) for the German and Czech
markets. A higher arrival rate of jumps in the Swiss market occurs between 6:00 and 9:00, while
we see no such clustering in the Italian or French markets. On average, the positive jumps (sudden
increases in price) are a bit more likely than the negative ones (sudden price drops) for all the
markets we analyze. In Germany, Switzerland, and the Czech Republic, the jump distributions
lead to more negative extreme values than positive ones and jumps are likely to be larger during
the first half of the day than during the second half. In Italy and France the distribution of positive
and negative jumps is more symmetric and we do not notice a pronounced difference between the
distribution of jumps across the hours of the day.
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Table 9. Estimated jump intensity parameters.

ITA ITA GER GER FRA FRA SWI SWI CZR CZR

λ+
h λ−h λ+

h λ−h λ+
h λ−h λ+

h λ−h λ+
h λ−h

h = 1 2.5 10.7 2 9.67 0.8 10.8 2.96 6.9 5.33 19.3
h = 2 1.67 5.33 3.17 14.7 1.6 12.4 1.48 7.15 5.33 25.6

h = 3 1.83 3.66 5.17 18 1.2 11.6 1.48 9.12 5 30
h = 4 2.67 3.83 4.17 21 0.6 5.4 2.46 7.89 3.33 24.3
h = 5 2.67 3.5 3.83 21 0.8 4.8 3.2 8.38 4.66 24

h = 6 2.33 2.5 4.83 16.2 0.8 6.4 3.7 6.9 11.3 18
h = 7 3.33 11.5 6.67 16.2 5.6 10.4 9.86 8.87 32 18.6
h = 8 3 5.66 9 11.2 5.2 7.2 12.8 9.86 25 16
h = 9 3 5.33 5.83 6.67 4.8 8 4.93 5.18 6.99 9.66

h = 10 3.17 2.67 6.67 4.33 6.4 5.2 4.93 4.44 3 5.66
h = 11 3.17 3.17 7.33 3.5 5.2 3.8 5.67 4.44 3 2.66
h = 12 2.33 2.5 9.5 2.5 5.8 2.6 7.64 4.68 4 3.33

h = 13 6.33 3.33 5.67 3 6 3 4.93 3.94 2 4
h = 14 6.83 4.16 5.33 4.33 5 3 5.18 3.94 2 5.33
h = 15 3.66 4.5 5.33 4.67 4.4 4.6 4.44 4.93 2.66 8.66

h = 16 3.33 4.83 5.17 6.5 4.4 6.6 2.71 4.93 4.66 10.3

h = 17 3.33 4.5 5.17 6.67 5.6 8.2 3.45 4.19 2.66 6.66
h = 18 2.33 0.833 6.33 5.33 6 6.8 5.42 3.2 3 6.33

h = 19 3.83 3.66 7.5 4.5 7.2 5.8 4.93 3.45 2.66 5.66

h = 20 4 2.5 5.5 4.5 4.4 3.8 3.45 2.71 1.67 7.66
h = 21 4.5 2.33 2.5 3 4.8 4.8 2.22 4.68 3.66 3.66

h = 22 3 2.5 3 3.33 3.6 4.6 2.46 6.9 3.66 6.33
h = 23 5 3.83 2.83 2.83 4.8 2.4 4.19 5.18 3.33 8.66
h = 24 3.33 7.5 3.33 8.33 4.8 2.4 2.46 7.15 2.66 12.7

µ+
h µ−h µ+

h µ−h µ+
h µ−h µ+

h µ−h µ+
h µ−h

h = 1 0.0622 0.137 0.264 0.712 0.628 0.386 0.0506 0.205 0.525 2.1

h = 2 0.0762 0.138 0.324 1.1 0.364 0.336 0.304 0.368 0.479 2.01
h = 3 0.364 0.539 0.329 1.23 0.607 0.398 0.464 0.532 0.549 1.74
h = 4 0.161 0.195 0.321 1.14 1 1.08 0.297 0.61 0.513 1.65

h = 5 0.153 0.173 0.345 1.02 0.843 1.16 0.283 0.763 0.481 1.85
h = 6 0.133 0.169 0.22 0.897 0.756 0.49 0.218 0.498 0.303 1.87
h = 7 0.0808 0.154 0.195 1.19 0.189 0.527 0.223 0.674 0.553 2.07
h = 8 0.0939 0.204 0.191 1.26 0.178 0.436 0.209 0.512 0.376 2.19

h = 9 0.0904 0.197 0.337 0.925 0.273 0.286 0.139 0.496 0.361 1.55
h = 10 0.0877 0.157 0.346 0.577 0.326 0.347 0.148 0.239 0.282 1.4
h = 11 0.0551 0.112 0.333 0.483 0.424 0.322 0.158 0.215 0.202 2.45

h = 12 0.103 0.0928 0.338 0.679 0.385 0.41 0.169 0.173 0.18 1.48
h = 13 0.112 0.0743 0.326 0.508 0.244 0.222 0.114 0.131 0.278 1.31
h = 14 0.101 0.105 0.327 0.284 0.168 0.146 0.107 0.174 0.297 1.21

h = 15 0.117 0.159 0.387 0.629 0.189 0.171 0.0971 0.211 0.282 0.706

h = 16 0.117 0.135 0.315 0.528 0.211 0.186 0.0932 0.23 0.155 0.46
h = 17 0.0852 0.099 0.312 0.523 0.224 0.321 0.0978 0.159 0.299 0.873

h = 18 0.084 0.204 0.329 0.205 0.209 0.24 0.203 0.161 0.269 0.948

h = 19 0.0647 0.0898 0.325 0.267 0.259 0.165 0.225 0.148 0.253 1.18
h = 20 0.0709 0.0809 0.249 0.144 0.291 0.271 0.131 0.1 0.158 0.884

h = 21 0.0717 0.0727 0.148 0.129 0.252 0.212 0.0816 0.112 0.153 0.193
h = 22 0.0975 0.0485 0.0608 0.0784 0.219 0.134 0.0712 0.124 0.14 0.264

h = 23 0.0921 0.0694 0.094 0.133 0.203 0.652 0.0478 0.0996 0.139 0.263

h = 24 0.0741 0.139 0.18 0.372 0.193 0.746 0.0728 0.104 0.313 0.761
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Once we separate diffusion and jumps, the following step is the estimation of the diffusion pa-
rameters. We compute the diffusion coefficient χh of the Gaussian noise, removing jumps from
residuals and computing a standard deviation on the remaining data. Equation (62) describes the
link between the discrete parameter χh and the continuous parameter σh, that is,

σh = χh

√
2αh

1− exp(−2αhδt)
.

Table 10 shows the estimated volatilities. We note very high volatility levels: On average, they are
higher in the Czech market and lower in the Italian and Swiss markets. Regarding the distribution
of volatilities during the day, we observe the same pattern in almost all markets, with higher
volatilities during the early morning, particularly between 3:00 and 9:00.

Table 10. Estimated volatility parameters.

σh ITA GER FRA SWI CZR

h = 1 3.1023 5.4948 5.0568 3.9176 11.475
h = 2 4.4694 6.6205 5.2665 5.2853 15.316
h = 3 5.4539 7.8292 6.2965 6.1833 15.958

h = 4 4.9683 9.7609 8.9593 7.1848 20.072
h = 5 4.9791 9.1509 9.4772 7.8882 18.728
h = 6 4.9585 8.0090 7.8209 6.5877 14.412

h = 7 4.3078 10.711 7.9917 6.1831 11.511
h = 8 4.3794 9.2339 6.8065 4.5297 11.472
h = 9 3.8727 6.3036 4.8936 4.1829 6.6376

h = 10 4.5266 4.7048 4.0550 3.3616 7.2690
h = 11 4.4108 4.3376 3.6891 3.2599 6.6783
h = 12 4.4388 5.2137 3.5529 3.3268 6.0353
h = 13 3.2115 5.1595 3.0399 2.9828 5.9059
h = 14 3.0905 4.1829 3.0225 3.1207 6.0983

h = 15 3.8446 5.0069 3.2016 3.2414 5.7313
h = 16 4.1264 5.0079 3.5586 3.4775 4.4312
h = 17 4.1872 5.0759 4.0831 3.4348 5.8064

h = 18 4.0668 3.9716 3.6402 3.0284 5.7393
h = 19 3.4528 3.9244 3.3145 2.6991 6.5874
h = 20 3.3275 3.5022 3.0727 2.3787 6.1820

h = 21 3.0540 3.4013 2.9826 1.9947 2.8352
h = 22 2.9282 3.2053 2.8800 2.1673 2.6883
h = 23 2.1530 3.1228 3.6001 2.2165 2.8412
h = 24 2.1897 3.8093 3.9991 3.1446 4.7419

The next step is the computation of the function fh(T ) in model (56). Since we have a model for
each hour, we compute 24 separate functions. We already estimated such quantities from historical
data preceding the valuation date:

f∗h(t) = Hh,λh(t) + Λh(t).

We now need its risk-neutral specification fh(T ) that will allow us to reproduce forward market
quotations at the maturity date T . Therefore, each function is defined by a vector of the daily
values of the days for which each option should be evaluated, that is, Ti for i = 1, . . . , n. For each
hour in question, the forward curve bootstrapping algorithm output is an n-dimensional vector with
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elements Fh(0, Ti). Rearranging the terms of equation (59), we obtain, for i = 1, . . . , n,

fh(Ti) = lnFh(0, Ti)− (Xh(0) + Yh(0)) e−αhTi − σ2
h

4αh

(
1− e−2αhTi

)
−

λ+
h

αh
ln

(
1− µ+

h e
−αhTi

1− µ+
h

)
−
λ−h
αh

ln

(
1 + µ−h e

−αhTi

1 + µ−h

)
.(63)

The risk adjusted trend-seasonality function is computed using formula (63).

The last parameter in formula (58) is the correlation coefficient ρh between two prices of a given
hour h for a pair of markets. The parameter is estimated by a sample correlation between the
Gaussian residuals of the two markets. We computed such correlations on our dataset and show
the results in Table 11. We see that estimated parameters are always positive: Under our model’s
assumptions, the energy prices of the five markets tend to move simultaneously up or down. The
higher correlations involve the Germany–Czech Republic and France–Switzerland pairs. The Italian
market seems to be the least correlated of the other four countries. For almost all pairs of markets,
the correlation is higher during peak load hours than off peak. Evaluating the interconnections,
we do not need all the parameters estimated in Table 11, only the correlation between neighboring
interconnections. However, for the sake of completeness, we provide information for every possible
market pair to appreciate more details. For example, Italy’s correlations with neighboring countries
(France and Switzerland) are, on average, slightly higher than those with Germany and the Czech
Republic.

Table 11. Estimated correlation parameters.

ρh ITA-GER ITA-FRA ITA-SWI ITA-CZR GER-FRA GER-SWI GER-CZR FRA-SWI FRA-CZR SWI-CZR

h = 1 0.119 0.114 0.125 0.084 0.42 0.281 0.326 0.352 0.219 0.146
h = 2 0.125 0.137 0.193 0.115 0.365 0.279 0.31 0.376 0.242 0.209

h = 3 0.135 0.145 0.217 0.0779 0.435 0.295 0.312 0.432 0.296 0.24
h = 4 0.0911 0.151 0.174 0.065 0.436 0.301 0.283 0.409 0.281 0.208
h = 5 0.0858 0.129 0.187 0.054 0.367 0.298 0.278 0.402 0.301 0.291

h = 6 0.0846 0.0931 0.115 0.0944 0.368 0.32 0.309 0.356 0.318 0.233
h = 7 0.0952 0.132 0.0971 0.105 0.362 0.247 0.395 0.379 0.275 0.263
h = 8 0.13 0.141 0.214 0.0607 0.422 0.278 0.466 0.412 0.15 0.166

h = 9 0.19 0.176 0.19 0.26 0.412 0.307 0.529 0.438 0.356 0.323
h = 10 0.138 0.164 0.148 0.227 0.379 0.287 0.49 0.457 0.425 0.329
h = 11 0.124 0.193 0.208 0.173 0.416 0.366 0.478 0.498 0.435 0.377

h = 12 0.145 0.211 0.257 0.175 0.438 0.443 0.53 0.534 0.442 0.404
h = 13 0.197 0.256 0.296 0.315 0.403 0.365 0.552 0.508 0.395 0.355
h = 14 0.182 0.234 0.272 0.29 0.366 0.335 0.403 0.466 0.387 0.312
h = 15 0.175 0.223 0.219 0.297 0.388 0.338 0.518 0.446 0.405 0.361

h = 16 0.158 0.199 0.177 0.221 0.421 0.359 0.519 0.398 0.433 0.36

h = 17 0.166 0.229 0.195 0.199 0.477 0.356 0.474 0.367 0.386 0.307
h = 18 0.175 0.248 0.223 0.174 0.402 0.351 0.362 0.437 0.36 0.327

h = 19 0.168 0.166 0.23 0.196 0.376 0.328 0.372 0.426 0.348 0.333
h = 20 0.138 0.197 0.202 0.208 0.338 0.282 0.338 0.443 0.341 0.324
h = 21 0.123 0.151 0.133 0.193 0.365 0.255 0.365 0.347 0.385 0.274

h = 22 0.115 0.102 0.094 0.149 0.293 0.187 0.321 0.228 0.319 0.185

h = 23 0.0792 0.0961 0.0833 0.106 0.334 0.204 0.262 0.262 0.336 0.213
h = 24 0.0396 0.0604 0.0471 0.092 0.372 0.186 0.324 0.287 0.25 0.123
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The following algorithm summarizes the calibration procedure on M interconnected markets:

for h = 1:24
for m = 1:M

filter Hodrick-Prescott cyclical trend for market m, hour h;
estimate the seasonality function for market m, hour h;
estimate the mean reversion coefficient with an AR(1) for market m, hour h;
filter jumps for market m, hour h;
estimate jump parameters for market m, hour h;
estimate Gaussian volatility for market m, hour h;
estimate the function f(t) for market m, hour h;

end
compute correlation between Gaussian residuals of every market for hour h;

end

5. Numerical results

This section discusses the results of valuing interconnection capacity in neighboring European coun-
tries. Based on the market data described in Section 3 and parameters estimated in Section 4, we
compute the market value of a one-year-long interconnection that gives the owner the right to
transmit 1 MWh of electricity between two markets during base load times in the year 2011. As
argued by Cartea and Pedraz (2012), it does not seem plausible to exploit large price spreads,
due to liquidity reasons in the two markets. We cap the maximum spread at different levels:
M ∈ {10, 20, 30, 40, 50,∞} e/MWh, where we allow M = ∞ to include the case where there are
no liquidity constraints. The transmission cost K can vary across different interconnections. The
value of the interconnector is affected by changes in K: The higher K, the lower the value of the
interconnection. For simplicity’s sake, we consider three cases in our analysis: zero transmission
costs, K = 0 e/MWh, and fixed transmission costs of 5 e/MWh and 10 e/MWh for each possible
interconnection.6

Table 12 shows the results of our valuation. The most valuable interconnections concern the right
to transmit energy to Italy, because prices in the Italian market are usually much higher than
in France or Switzerland. Consequently, the same connections are not worth much when used to
transmit energy from Italy to France and Switzerland: there are not many profitable hours during
the year for such dealing. The other three interconnections under analysis do not show such a big
difference between the values of the two interconnector’s directions. The interconnections between
France and Germany and between Germany and the Czech Republic are almost equally profitable
in both directions. However, there are differences. At the valuation date, the transmission of energy
from the Czech Republic to Germany was expected to be worth more than the option to transmit
energy in the opposite direction. Similarly, the option to buy energy in Germany and sell it in
France was expected to be more profitable than the reverse. Finally, price levels in Switzerland
are usually lower than in France and the valuation results confirm that the option to transmit

6In some markets (e.g., the Italian market), energy transmission can be subject to costs and profits involving
green certificates, which can affect the parameter K setting. Therefore the parameter K is not required to be strictly

positive.
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energy from France to Switzerland is more convenient than the reverse. Table 12 shows the effect
of the liquidity cap is different across the markets in our study. For example, consider the case
where K = 0 e/MWh and we buy energy in Germany and sell it in France. On the evaluation
date, the price levels between these two markets are close. If the cap is reduced from M = ∞ to
M = 10 e/MWh, the value of the interconnection decreases by almost 35%. If we draw the same
comparison transmitting energy from France to Italy, the value of the interconnection decreases by
more than 55%. This is because the difference in forward prices between Italy and France is larger.
We note a similar pattern when comparing the same interconnections with different transmission
costs. Consider the M = 50 e/MWh case. Going from K = 0 to K = 5 e/MWh, the value of
the interconnection GER→FRA (buying energy in Germany and selling it in France) decreases by
about 40%. The same analysis on the interconnection ITA→FRA show a value reduction of only
23%. As a general result, different effects of the liquidity cap and transmission costs are due to
the particular features of the spread in each market, that is, differences in forward prices, mean
reversion rates, volatilities, jump intensities, and jump sizes.

Table 12. Values of a one-year interconnector lease for different strike prices K
and liquidity caps M .

K = 0 M = 10 M = 20 M = 30 M = 40 M = 50 M =∞
FRA → ITA 62, 503 105, 632 129, 068 139, 285 143, 113 145, 085
ITA → FRA 10, 927 15, 426 17, 202 17, 912 18, 211 18, 621

SWI → ITA 55, 697 91, 409 109, 747 117, 581 120, 556 122, 123
ITA → SWI 14, 864 20, 856 22, 988 23, 703 23, 942 24, 101
FRA → SWI 38, 870 55, 458 60, 910 62, 478 62, 916 63, 127

SWI → FRA 22, 565 30, 553 33, 089 33, 929 34, 245 34, 676
FRA → GER 25, 356 34, 129 36, 758 37, 589 37, 889 38, 253
GER → FRA 35, 383 50, 667 56, 288 58, 288 59, 025 59, 685
CZR → GER 33, 031 47, 743 53, 195 55, 094 55, 704 56, 145

GER → CZR 25, 757 35, 162 38, 488 39, 901 40, 619 41, 944

K = 5 M = 10 M = 20 M = 30 M = 40 M = 50 M =∞
FRA → ITA 29, 169 72, 298 95, 733 105, 950 109, 779 111, 751
ITA → FRA 4, 317 8, 816 10, 592 11, 302 11, 601 12, 011
SWI → ITA 25, 483 61, 195 79, 533 87, 367 90, 342 91, 909

ITA → SWI 5, 903 11, 895 14, 027 14, 742 14, 980 15, 140
FRA → SWI 16, 087 32, 676 38, 128 39, 696 40, 133 40, 344
SWI → FRA 8, 681 16, 669 19, 205 20, 046 20, 362 20, 793
FRA → GER 9, 780 18, 553 21, 182 22, 013 22, 313 22, 677

GER → FRA 14, 518 29, 801 35, 423 37, 423 38, 160 38, 820

CZR → GER 13, 687 28, 399 33, 852 35, 751 36, 361 36, 802
GER → CZR 10, 016 19, 421 22, 747 24, 159 24, 878 26, 202

K = 10 M = 10 M = 20 M = 30 M = 40 M = 50 M =∞
FRA → ITA 0 43, 129 66, 565 76, 781 80, 610 82, 582

ITA → FRA 0 4, 499 6, 275 6, 985 7, 284 7, 693

SWI → ITA 0 35, 712 54, 050 61, 884 64, 860 66, 427
ITA → SWI 0 5, 992 8, 124 8, 839 9, 078 9, 237

FRA → SWI 0 16, 589 22, 041 23, 608 24, 046 24, 257
SWI → FRA 0 7, 988 10, 524 11, 364 11, 680 12, 111
FRA → GER 0 8, 773 11, 402 12, 233 12, 533 12, 897

GER → FRA 0 15, 283 20, 905 22, 904 23, 642 24, 302

CZR → GER 0 14, 712 20, 165 22, 064 22, 673 23, 115
GER → CZR 0 9, 405 12, 731 14, 144 14, 862 16, 187
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APPENDIX A

The Hodrick–Prescott filter

The Hodrick–Prescott filter (Hodrick and Prescott (1997)) is a mathematical tool used in macroe-
conomics, especially business cycle theory, to separate the cyclical component of a time series from
raw data. It is used to obtain a smoothed-curve representation of a time series, one that is more
sensitive to long-term than to short-term fluctuations. The idea of the filter is to additively de-
compose a time series {xi} into a trend {τi} and a noise component {εi} using an optimization
algorithm. Two quantities are necessary:

(1) Measure of convexity

52ti := ti+1 − 2ti + tt−1.

(2) Measure of smoothness

tend−1∑
i=2

(52ti)
2.

The purpose of the filter is to find a trend T := {τi} that is as close as possible to the observed
price path {xi}, that is, solve

min
(τt)

tend
t=1

tend∑
i=1

(xi − τi)2.

We even require the filter within the class of time-dependent functions showing a fixed degree of
smoothness. Hodrick and Prescott (1997) show that this problem allows an analytic solution—hence
the name Hodrick–Prescott filter—obtained through the Lagrange formulation

min
{τt}

[
tend∑
t=1

(xt − τt)2 + λ

tend∑
t=1

[(τt+1 − τt)− (τt − τt−1)]2

]
.

The solution is

T = [I + λ ∗ F ]−1X,

where

• I := identity matrix,

• F := sparse matrix with non-zero elements given by
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F (1, 1) = F (n, n) = 1,
F (1, 2) = F (n, n− 1) = −2,
F (2, 1) = F (n− 1, n) = −2,
F (2, 2) = F (n− 1, n− 1) = 5,
F (i, i) = 6, i = 3...n− 2,
F (i, i+ 2) = F (i+ 2, i) = 1, i = 1...n− 2,
F (i, i+ 1) = F (i+ 1, i) = −4, i = 2...n− 2 6= 1, 2.

The Hodrick–Prescott filter is a low-pass filter and, depending on the parameter λ, filters trend
functions at different frequencies. To filter specific frequencies of the time series, we need a criterion
to determine the optimal value of the smoothing parameter λ. The criterion we briefly describe is
proposed by Pedersen (2001). Let H∗(ω) be the power transfer function of an ideal business cycle
filter at frequency ω, where ω comprises n discrete equally ∆ω-spaced values with steps between
zero and π, ω ∈ W = (ω1 < ω2 < · · · < ωn) with ω1 = 0 and ωn = π, and let H(ω) be the power
transfer function of some distorting business cycle filter. We than have

H(ω) =

∣∣∣∣ 4λ(1− cos(ω))2

4λ(1− cos(ω)) + 1

∣∣∣∣2 ,
H∗(ω) = 1(ω ≥ ωc).

We indicate by Sx(ω) the power spectral density function of the signal {xi}. Suppose we want
to filter out frequencies lower than a threshold ωc. The optimal criterion is λ such that Qw is
minimum, where

Qw =
∑
ω∈W

|H(ω)−H∗(ω)|v(ω)

and

v(ω) =
2Sx(ω)∆ω∑

ω∈W 2Sx(ω)∆ω
.

The Q-statistics could be interpreted as the variance of the difference between the ideal filtered
spectrum and the suboptimal filtered spectrum.



APPENDIX B

Proofs for Chapter 2

1. Proof of Proposition 1

We observe that E
[
Sα2 (T )

]
= ΦT (0,−iα), so we can rewrite the set A defined in (24) as

A = {ω : lnS1 (T )− α lnS2 (T ) > k − ln ΦT (0,−iα)}
= {ω : X1(T )− αX2(T ) + ln ΦT (0,−iα) > k} .

Following Carr and Madan (2000) and Dempster and Hong (2002), we multiply the expected value
of the option approximation (26) by an exponentially decaying term, tuned by a parameter δ, so
that it is square integrable in k over the negative axis. Then we apply the Fourier transform to this
modified lower bound price:

Ψ(γ; δ, α) =

∫
R
eiγk+δkE

[
(S1 (T )− S2 (T )−K) 1(A)

]
dk

=

∫
R
eiγk+δk

[∫
R

∫ +∞

k−ln ΦT (0,−iα)+αX2(T )

(
eX1(T ) − eX2(T ) −K

)
f (X1, X2) dX1dX2

]
dk

=

∫
R

∫
R

[∫ X1(T )+ln ΦT (0,−iα)−αX2(T )

−∞
eiγk+δkdk

](
eX1(T ) − eX2(T ) −K

)
f (X1, X2) dX1dX2

=
1

iγ + δ

∫
R

∫
R
ei(γ−iδ)(X1(T )−αX2(T )+ln ΦT (0,−iα))

(
eX1(T ) − eX2(T ) −K

)
f (X1, X2) dX1dX2

=
ei(γ−iδ) ln(ΦT (0,−iα))

i(γ − iδ)

[
E
[
ei(γ−iδ−i)X1(T )−iα(γ−iδ)X2(T )

]
− E

[
ei(γ−iδ)X1(T )+i(−αγ+iαδ−i)X2(T )

]
−KE

[
ei(γ−iδ)(X1(T )−αX2(T ))

]]
=

ei(γ−iδ) ln(ΦT (0,−iα))

i(γ − iδ)

[
ΦT (γ − i(δ + 1),−α(γ − iδ))− ΦT (γ − iδ,−αγ + iαδ − i)

−KΦT (γ − iδ,−(γ − iδ)α)
]
.

The lower bound is given by an inverse transform and depends on the parameters α and k. The
optimal lower bound is achieved using the maximization

max
k,α

e−δk−rT
1

π

∫ + inf

0

e−iγkΨ(γ; δ, α)dγ.
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In practice, the optimization can be replaced by an educated guess, as suggested by Bjerksund and
Stensland (2011), setting

α =
F2(0, T )

F2(0, T ) +K
, k = ln(F2(0, T ) +K),

where F2(0, T ) is the forward price of the second asset at time 0 for delivery at a future date
T .

2. Proof of Proposition 2

Using the same arguments as in the previous Section, we have

Ξ(γ; δ, α) =

∫
R
eiγk+δkE

[
(S1 (T )− S2 (T )− L)

2
1(A)

]
dk

=

∫
R
eiγk+δk

[∫
R

∫ +∞

k−ln ΦT (0,−iα)+αX2(T )

(
eX1(T ) − eX2(T ) − L

)2

f (X1, X2) dX1dX2

]
dk

=

∫
R

∫
R

[∫ X1(T )+ln ΦT (0,−iα)−αX2(T )

−∞
eiγk+δkdk

](
e2X1(T ) + e2X2(T ) + L2 − 2LeX1(T )

−2eX1(T )+X2(T ) + 2LeX2(T )
)
f (X1, X2) dX1dX2

=
1

iγ + δ

∫
R

∫
R
ei(γ−iδ)(X1(T )−αX2(T )+ln ΦT (0,−iα))

(
e2X1(T ) + e2X2(T ) + L2 − 2LeX1(T )

−2eX1(T )+X2(T ) + 2LeX2(T )
)
f (X1, X2) dX1dX2

=
ei(γ−iδ) ln(ΦT (0,−iα))

i(γ − iδ)

[
E
[
ei(γ−iδ−2i)X1(T )−iα(γ−iδ)X2(T )

]
− E

[
ei(γ−iδ)X1(T )+i(−αγ+iαδ−2i)X2(T )

]
+L2E

[
ei(γ−iδ)(X1(T )−αX2(T ))

]
− 2LE

[
ei(γ−iδ−i)X1(T )−iα(γ−iδ)X2(T )

]
+

2LE
[
ei(γ−iδ)X1(T )+i(−αγ+iαδ−i)X2(T )

]
− 2E

[
ei(γ−iδ−i)X1(T )+i(−αγ+iαδ−i)X2(T )

]]
=

ei(γ−iδ) ln(ΦT (0,−iα))

i(γ − iδ)

[
ΦT ((γ − iδ)− 2i,−α(γ − iδ))

+ΦT (γ − iδ,−α(γ − iδ)− 2i) + L2ΦT (γ − iδ,−α(γ − iδ))
−2LΦT (γ − iδ − i,−α(γ − iδ)) + 2LΦT (γ − iδ,−α(γ − iδ)− i)

−2ΦT (γ − iδ − i,−α(γ − iδ)− i)
]
.

We can obtain Q(0) by an inverse Fourier transform, discounting and setting parameters α = 1 and
k = ln(F2(0, T )).
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3. Derivation of formula (35)

The characteristic function is

E[eiu
ᵀX(T )] = eiu

ᵀ(X(0)+γT )E
[

exp
{
iu1

(
σ1W1(T ) +

N1(T )∑
m=1

Z1(m) +

N(T )∑
n=1

Y1(n)
)

+iu2

(
σ2W2(T ) +

N2(T )∑
m=1

Z2(m) +

N(T )∑
n=1

Y2(n)
)}]

= eiu
ᵀ(X(0)+γT )

∞∑
n=0

∞∑
n1=0

∞∑
n2=0

e−λT (λT )n

n!

e−λ1T (λ1T )n1

n1!

e−λ2T (λ2T )n2

n2!
β(n, n1, n2),

where

β(n, n1, n2) = E
[

exp
{
iu1

(
σ1W1(T ) +

N1(T )∑
m=1

Z1(m) +

N(T )∑
n=1

Y1(n)
)

+ iu2

(
σ2W2(T ) +

N2(T )∑
m=1

Z2(m) +

N(T )∑
n=1

Y2(n)
)}∣∣∣N(T ) = n,N1(T ) = n1, N2(T ) = n2

]
.

Conditioning to the event {N(T ) = n,N1(T ) = n1, N2(T ) = n2}, β(n, n1, n2) is the characteristic
function of a bivariate normal variable B(n, n1, n2), where

B(n, n1, n2) ∼MN
((

n1α11 + nα1

n2α22 + nα2

)
,

(
n1ξ

2
11 + nξ2

1 + σ2
1T nρY ξ1ξ2 + σ1σ2ρT

nρY ξ1ξ2 + σ1σ2ρT n2ξ
2
22 + nξ2

2 + σ2
2T

))
.

We therefore obtain

β(n, n1, n2) = exp
{
iu1(n1α11 + nα1) + iu2(n2α22 + nα2)− u2

1(n1ξ
2
11 + nξ2

1 + σ1T )/2−
u2

2(n2ξ
2
22 + nξ2

2 + σ2T )/2− u1u2(nρY ξ1ξ2 + σ1σ2ρT )
}
,

which results in

E[eiu
ᵀX(T )] = eiu

ᵀ(X(0)+γT )−T (λ+λ1+λ2+u2
1σ

2
1/2+u2

2σ
2
2/2+u1u2σ1σ2)

∞∑
n1=0

en1(ln(λ1T )+iu1α11−u2
1ξ

2
11/2)

n1!
×

∞∑
n2=0

en2(ln(λ2T )+iu2α22−u2
2ξ

2
22/2)

n2!

∞∑
n=0

en(ln(λT )+iu1α1+iu2α2−u2
1ξ

2
1/2−u

2
2ξ

2
2/2−u1u2ξ1ξ2ρY )

n!
.

Straightforward calculations lead to the formula (35).



APPENDIX C

Proofs for Chapter 3

1. Proof of Proposition 3

We denote by f (Xk, Yn) the joint bivariate probability density of Xk(T ) and the log-geometric
average Yn(T ). We consider the lower bound to the basket option payoff in T , as in formula
(40):

E [(An(T )−K) I(G)] ,

where G = {ω : Yn (T ) > κ}. We introduce the dumping factor exp(δκ) according to Carr and
Madan (2000) and compute the Fourier transform with respect to κ. We obtain

Ψ(γ; δ) =

∫
R
eiγκ+δκE [(An(T )−K) I(G)] dκ

=

∫
R
eiγκ+δκ

[
n∑
k=1

wkE [(Sk(T )−K) I(G)]

]
dκ

=

∫
R
eiγκ+δκ

[
n∑
k=1

wk

∫
R

∫ +∞

κ

(
Sk (t) eXk(T ) −K

)
f (Xk, Yn) dXkdYn

]
dκ

=

n∑
k=1

wk

∫
R

∫
R

[∫ Yn

−∞
eiγκ+δκ

(
Sk (t) eXk(T ) −K

)
f (Xk, Yn) dκ

]
dXkdYn

=

n∑
k=1

wk

∫
R

∫
R

[∫ Yn

−∞
eiγκ+δκdκ

](
Sk (t) eXk(T ) −K

)
f (Xk, Yn) dXkdYn

=
1

iγ + δ

n∑
k=1

wk

∫
R

∫
R
ei(γ−iδ)Yn(T )

(
Sk (t) eXk(T ) −K

)
f (Xk, Yn) dXkdYn

=
1

iγ + δ

[
n∑
k=1

wk

[
Sk (t)E

(
ei(γ−iδ)Yn(T )+Xk(T )

)
−KE

(
ei(γ−iδ)Yn(T )

)]]

=
1

iγ + δ

[
n∑
k=1

wk (Sk (t) ΦT (γ − iδ,−iek,w)−KΦT (γ − iδ,0,w))

]
.

Remembering the dumping factor, we read the Fourier inversion as

e−δκ

π

∫ +∞

0

e−iγκΨ(γ; δ)dγ.

Formula (42) is obtained by discounting, applying the positive part function, and maximizing with
respect to κ.

103


