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Abstract. There are several three-valued logical systems. They give the
impression of a scattered landscape. The majority of the works on this
subject gives the truth tables, sometimes an Hilbert style axiomatization
in a basic propositional language and a completeness theorem with re-
spect to those truth tables. We show that all the reasonable connectives
in three-valued logics can be built starting from few of them. Never-
theless, the issue of the usefulness of each system in relation with the
third truth value is often neglected. Here, we review the interpretations
of the third truth value. Then, we focus on the unknown case, suggested
by Kleene. We show that any formula in three-valued logics can be en-
coded as a fragment of an epistemic logic (formulae of modal depth 1,
with modalities in front of literals), preserving all tautologies and in-
ference rules. We study in particular, the translation of Kleene, Gödel,
 Lukasiewicz and Nelson logics. This work enables us to lay bare the lim-
ited expressive power of three-valued logics in uncertainty management.

1 Introduction

Classical Boolean logic has a remarkable advantage over many others: the defi-
nition of its connectives is not questionable, even if the truth values true (1) and
false (0) can be interpreted in practice in different ways. Moreover, there is com-
plete agreement on its model-based semantics. Its formal setting seems to ideally
capture the “targeted reality”. The situation is quite different with many-valued
logics, where we replace the two truth values by an ordered set L with more than
two truth values. The simplest case is three-valued logic where we add a single
intermediate value denoted by 1

2 . Naively, we might think that three-valued logic
should be as basic as Boolean logic: the set {0, 12 , 1} is the most simple example
of bipolar scale, isomorphic to the set of signs {−, 0,+}. However, there is quite
a number of three-valued logics since the extension to three values of the Boolean
connectives is not unique. Worse, there is no agreement on the interpretation of
this third truth value in the literature. Several interpretations of such a third
truth value have been proposed. Here is a (probably not exhaustive) list:
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1. Possible: the oldest interpretation due to Lukasiewicz [4]. Unfortunately,
it seems to have introduced some confusion between modalities and truth
values, that is still looming in some parts of the many-valued logic literature.

2. half-true: it is the natural understanding in fuzzy logic [13]: if it is true that
a man whose height is 1.80 m. is tall and it is false that a man with height
1.60 m. is tall, we can think that it is half-true that a man whose height is
1.70 m. is tall. Then 1

2 captures the idea of borderline.
3. Undefined : this vision is typical of the studies on recursive functions modelled

by logical formulae and it can be found in Kleene works [16]. A formula is
not defined if some of its arguments are out of its domain. So, in this case
the third truth value has a contaminating effect.

4. Unknown: in the same book, Kleene suggests this alternative interpretation
of the intermediate value. It is the most usual point of view outside the fuzzy
set community. Unfortunately, it suffers from the confusion between truth
value and epistemic state, which generates paradoxes [22, 7], just like the
 Lukasiewicz proposal.

5. Inconsistent : in some sense, it is the dual of “unknown”. Several works try
to tame the contradiction by means of a truth value (Priest, Belnap, and
some paraconsistent logics for instance). This standpoint has been criticized
as also generating paradoxes [10, 6].

6. Irrelevant : this point of view is similar to “undefined” but with the opposite
effect: abstention. If a component of a formula has 1

2 as truth value, the truth
value of the whole formula is determined by the remaining components.

In the present work, we are interested in the fourth interpretation unknown of
1
2 (so, also in the first one). The idea that unknown can be a truth value seems
to originate from a common usage in natural language, creating a confusion
between true and certainly true (or yet provable), false and certainly false. In
the spoken language, saying “it is true” is often short for “I know that it is
true”. We mix up, in this way, the idea of truth per se with the assertion of
truth. The latter reveals some information possessed by the speaker (its epistemic
state). The value unknown is in conflict with certainly true and certainly false.
It corresponds to an epistemic state where neither the truth nor the falsity of a
Boolean proposition can be asserted. The truth values true (1) and false (0) are
of ontological nature (which means that they are part of the definition of what
we call proposition3), whereas unknown as well as certainly true and certainly
false have an epistemic nature: they reflect a knowledge state. Mathematically,
certainly true, certainly false and unknown are subsets of truth values, that is {1},
{0} and {0, 1}. The convention used here is the following: a subset T ⊆ L of truth
values attached to a proposition p contains the truth values that are possible for
p in the considered knowledge state (the values outside T are impossible)4. For
instance, {1} encodes certainly true since the only possible truth value is true.
Mixing up true and certainly true is the same as confusing an element with a

3 and not that they represent Platonist ideals.
4 Belnap[2] follows another convention: T represents a conjunction of truth values.

Then, {0, 1} encodes contradiction and the empty set represents unknown.
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singleton. The use of qualifiers such as certainly immediately suggests the use of
modal logic, just as  Lukasiewicz “truth value” possible does. Clearly, unknown
means that true and false are possible5. Already in 1921, Tarski had the idea of
translating the modalities possible and necessary into  Lukasiewicz three-valued
logic. The modal Possible is defined on {0, 12 , 1} as ♦x = ¬x→L x = min{2x, 1}
with  Lukasiewicz negation and implication. In this translation, possible thus
means that the truth value is at least 1

2 . So the question is: which of the two is
the most expressive language? modal logic or three-valued logic?

To address this question, we adopt the opposite point of view: rather than
trying to translate modal logic into a three-valued one, it seems more fruitful
to do the converse. According to the discussion of the epistemic nature of the
interpretation of 1

2 here chosen, the framework of some epistemic logic looks
convenient. In particular, and we will show this in the following, it is more
expressive than all the three-valued logics of unknown, the interest of which
proves marginal in practice.

The paper develops as follows: we recall an elementary variant of epistemic
logic, sufficient for our translation. It is a fragment of the logic KD, where we
can express only Boolean propositional formulae prefixed by a modality (nesting
of modalities is not allowed). It has a simple semantics in term of subsets of
interpretations. We show how it is possible to translate propositions of the form
“the truth value of three-valued proposition φ is in T ⊆ {0, 12 , 1}” by a Boolean
modal formula. In the following section, we explain that only very few connectives
are required to generate all the other connectives known in three-valued logics
(essentially the minimum on {0, 12 , 1} and its residuated implication, as well
as an involutive negation). Some three-valued logics like  Lukasiewicz’s can thus
express all the others. In the remaining sections, we consider several three-valued
logics and translate them into MEL. We show that the tautologies of one are
theorems of the other and the converse. On the contrary, the converse translation
is impossible: only a fragment of MEL can be translated into a three-valued
logic, the one where modalities are placed only in front of literals. In particular,
Tarski’s translation from ♦φ into ¬φ→L φ is valid only if φ is a literal.

2 Connectives in three-valued logics

According to the discussion in the introduction, we must not use the same sym-
bols for Boolean truth values and the ones of the three-valued logic as long as 1

2
means unknown, since the latter should be seen as subsets of the former. We will
use 0 and 1 in the Boolean case and 3 = {0,1, 12} in three-valued logics. Since
1
2 is interpreted as unknown, 0,1, 12 will be considered as epistemic truth-values
and 0, 1 as ontic ones. Moreover, we equip 3 with a total order ≤: 0 < 1

2 < 1,
often referred to as the truth ordering [2].

Conjunction, implication and negation on the set of values 0, 12 ,1 can be
defined by minimal intuitive properties.

5 Actually, Lukasiewicz proposed this idea for the study of contingent futures: it is
possible that the battle will be won or lost.
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Definition 1. A conjunction on 3 is a binary mapping ∗: 3× 3 7→ 3 such that

(C1) If x ≤ y then x ∗ z ≤ y ∗ z;
(C2) If x ≤ y then z ∗ x ≤ z ∗ y;
(C3) 0 ∗ 0 = 0 ∗ 1 = 1 ∗ 0 = 0 and 1 ∗ 1 = 1.

We note that (C3) requires that ∗ be an extension of the connective AND
in Boolean logic. Then, the monotonicity properties (C1-C2) imply 1

2 ∗ 0 =
0∗ 12 = 0. If we consider all the possible cases, there are 14 conjunctions satisfying
definition 1. Among them, only six are commutative and only five associative.
These five conjunctions are already known in literature and precisely, they have
been studied in the following logics: Sette [19], Sobociński [20],  Lukasiewicz [4],
Kleene [16], Bochvar [3]. The idempotent and commutative Kleene conjunction
and disjunction (the minimum, denoted by u and the maximum denoted by t)
are present in 3 due the total order assumption (x u y = y u x = x if and only
if x ≤ y if and only if x t y = y t x = y).

In the case of implication, we can give a general definition, which extends
Boolean logic and supposes monotonicity (decreasing in the first argument, in-
creasing in the second).

Definition 2. An implication on 3 is a binary mapping →: 3×3 7→ 3 such that

(I1) If x ≤ y then y → z ≤ x→ z;
(I2) If x ≤ y then z → x ≤ z → y;
(I3) 0→ 0 = 1→ 1 = 1 and 1→ 0 = 0.

From the above definition we derive x → 1 = 1, 0 → 1 = 1 and 1
2 →

1
2 ≥

{1 → 1
2 ,

1
2 → 0}. There are 14 implications satisfying this definition. Nine of

them are known and have been studied. Besides those implications named after
the five logics mentioned above, there are also those named after Jaśkowski [15],
Gödel [12], Nelson [17], Gaines-Rescher [11]. Gödel implication is present in 3
due to the total order and using the residuation:

x u y ≤ z if and only if x ≤ y →G z.

It is such that y →G z = 1 if y ≤ z and z otherwise.
Finally, there are only three possible negations that extend the Boolean nega-

tion, that is if 0′ = 1 and 1′ = 0:

1. ∼ 1
2 = 0. It corresponds to an intuitionistic negation (it satisfies the law of

contradiction, not the excluded middle).
2. ¬ 1

2 = 1
2 . It is an involutive negation.

3. − 1
2 = 1. It corresponds to a paraconsistent negation (as it satisfies the law

of excluded middle, not the one of contradiction).

The intuitionistic negation is definable by Gödel implication as ∼x = x →G 0.
Finally, despite the existence of several known systems of three-valued logics,
we can consider that in the above setting, there is only one encompassing three-
valued structure. That is, all the connectives satisfying the above definitions,
can be obtained from a structure equipped with few primitive connectives [5].
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Proposition 1. We denote by 3 the set of three elements without any structure
and by 3 the same set equipped with the usual order 0 < 1

2 < 1 or equivalently,
3 = (3,u,→G). All 14 conjunctions and implications can be expressed in any of
the following systems:

– (3,¬) = (3,u,→G,¬);
– (3,→K) where →K is Kleene implication (max(1− x, y));
– (3,→L,0) where →L is  Lukasiewicz implication (min(1, 1− x+ y));
– (3,→K ,∼,0) where →K is Kleene implication and ∼ the intuitionistic nega-

tion.

So, in the first two cases, we assume a residuated chain, whereas in the other two,
we can derive it from the other connectives. We remark also that the intuitionistic
negation can be replaced by the paraconsistent negation in the last item. The
above result differs from functional completeness, since it only deals with three-
valued functions that coincide with a Boolean connective on {T, F}.

3 A simple information logic

Admitting that the concept of “unknown” refers to a knowledge state rather than
to an ontic truth value, we may keep the logic Boolean and add to its syntax the
capability of stating that we ignore the truth value (1 or 0) of propositions. The
natural framework to syntactically encode statements about knowledge states of
propositional logic (PL) statements is modal logic, and in particular, the logic
KD. Nevertheless, only a very limited fragment of this language is needed here:
the language MEL [1].

Consider a set of propositional variables V = {a, b, c, . . . , p, . . . } and a stan-
dard propositional language L built on these symbols along with the Boolean
connectives of conjunction and negation (∧,′ ). As usual, disjunction α∨β stands
for (α′ ∧ β′)′, implication α → β stands for α′ ∨ β, and tautology > for α ∨ α′.
Let us build another propositional language L� whose set of propositional vari-
ables is of the form V� = {�α : α ∈ L} to which the classical connectives can
be applied. It is endowed with a modality operator � expressing certainty, that
encapsulates formulas in L. We denote by α, β, . . . the propositional formulae of
L, and φ, ψ, . . . the modal formulae of L�. In other words

L� = �α : α ∈ L|¬φ|φ ∧ ψ|φ ∨ ψ|φ→ ψ.

The logic MEL [1] uses the language L� with the following axioms:

1. φ→ (ψ → φ)
2. (ψ → (φ→ µ))→ ((ψ → φ)→ (ψ → µ))
3. (φ′ → ψ′)→ (ψ → φ)

(RM) : �α→ �β if ` α→ β in PL.
(M) : �(α ∧ β)→ (�α ∧�β)
(C) : (�α ∧�β)→ �(α ∧ β)
(N) : �>
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(D) : �α→ ♦α

and the inference rule is modus ponens. As usual, the possible modality ♦ is
defined as ♦α ≡ (�α′)′. The first three axioms are those of PL and the other
those of modal logic KD. (M) and (C) can be replaced by axiom (K):

(K) : �(p→ q)→ (�p→ �q).

MEL is the subjective fragment of KD (or S5) without modality nesting.
The MEL semantics is very simple [1]. Let Ω be the set of L interpretations:

{ω : V → {0, 1}}. The set of models of α is [α] = {ω : ω |= α}. A (meta)-
interpretation of L� is a non-empty set E ⊆ Ω of interpretations of L interpreted
as an epistemic state. We define satisfiability as follows:

– E |= �α if E ⊆ [α] (α is certainly true in the epistemic state E)
– E |= φ ∧ ψ if E |= φ and E |= ψ;
– E |= φ′ if E |= φ is false.

MEL is sound and complete with respect to this semantics [1].
We remark that in this framework, uncertainty modeling is Boolean but

possibilistic. The satisfiability E |= �α can be written as N([α]) = 1 in the
sense of a necessity measure computed with the possibility distribution given by
the characteristic function of E. Axioms (M) and (C) lay bare the connection
with possibility theory [7], as they state the equivalence between (�α ∧ �β)
and �(α ∧ β). We can justify the choice of this minimal modal formalism. It is
the most simple logic to reason on incomplete propositional information6. We
only need to express that a proposition in PL is certainly true, certainly false or
unknown as well as all the logical combinations of these assertions.

4 The principles of the translation

We denote by v(a) ∈ 3 the epistemic truth value of the variable a ∈ L. The
assertion v(a) ∈ T ⊆ 3 informs about the knowledge state of a Boolean variable
which we also denote by a. Stricto sensu, we should not use the same notation
for three-valued propositional variables and Boolean ones. However, we will do
it for the sake of simplicity assuming that a possesses an epistemic truth value
v(a) and an ontic truth-value t(a) ∈ {0, 1}. If we interpret the three epistemic
truth-values 0,1, 12 as certainly true, certainly false and unknown respectively,
we can encode the assignment of such truth-values to a propositional variable
a in MEL as follows. We denote by T (v(a) ∈ T ) the translation into MEL of

6 We can debate whether MEL is an epistemic or a doxastic logic. This formalism
does not take side, since axiom D is valid in both S5 and KD45 and the axiom T of
knowledge (�α→ α) is not expressible in MEL, which is the subjective fragment of
S5 as much as a KD45 fragment. We kept the term “epistemic” in reference to the
idea of an information state, whether it is consistent with reality or not.
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the statement v(a) ∈ T and define it as follows, in agreement with the intended
meaning of the epistemic truth-values:

T (v(a) = 1) = �a T (v(a) = 0) = �a′ T (v(a) = 1
2 ) = ♦a ∧ ♦a′

T (v(a) ≥ 1
2 ) = ♦a T (v(a) ≤ 1

2 ) = ♦a′

We remark that these definitions shed light on the acceptability or not of the ex-
cluded middle law and the contradiction principle in the presence of the unknown
value: a is always ontologically true or false, but �a∨�a′ is not a tautology nor
♦a ∧ ♦a′ a contradiction in MEL.

In parallel we can express 3-valued valuations in the form of special epistemic
states that serve as interpretations of the language L� of MEL. Given a 3-valued
valuation v, denote by Ev, the partial Boolean model defined by t(a) = 1 if and
only if v(a) = 1 and t(a) = 0 if and only if v(a) = 0. Such an epistemic state
Ev has a particular form: it is the set of propositional interpretations of a non-
contradictory conjunction of literals ∧v(a)=1a

∧
∧v(a)=0a

′. Conversely, for any
MEL epistemic state E (a disjunction of propositional interpretations) we can
assign a single 3 valued interpretation vE :

∀a, vE(a) =


1 E � �a

0 E � �a′

1
2 otherwise

The map E 7→ vE is not bijective, it defines an equivalence relation on epistemic
states and Ev = ∪{E : vE = v} is the partial Boolean model induced by v. Let
us now consider the fragment of MEL where we can put modalities only in front
of literals, that is L`

� = �a|�a′|φ′|φ ∧ ψ|φ ∨ ψ.

Proposition 2. Let α be a formula and Γ a set of formulae built on the language
of the fragment L`

�. Then, Γ ` α if and only if ∀v,Ev |= Γ implies Ev |= α.

In the following, we consider four known three-valued logics and show that,
insofar as the third truth-value means unknown, they can be expressed in MEL:
Kleene, Gödel three-valued intuitionistic,  Lukasiewicz and Nelson logics. The
two first ones can be viewed as fragments of the latter. Especially, we show that
L`
� exactly characterizes any of  Lukasiewicz and Nelson logics as we will see in

the next sections. We start with the simplest logic.

5 The Kleene Fragment of MEL

The best known and often used logic to represent uncertainty due to incomplete
information is Kleene logic. The connectives are simply the min u, the max t,
the involutive negation ¬. A material implication a →K b := ¬a t b is then
derived. The involutive negation preserves the De Morgan laws between u and
t. The syntax of Kleene logic is the same as the one of propositional logic
(replacing ∧,∨,′ by u,t,¬). Besides, it is known that Kleene logic does not have
any tautology (there is no formula α such that ∀v, v(α) = 1).
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We first show that all the assignments of epistemic truth values to Kleene
formulae, in the form v(α) ∈ T ⊆ 3 can be translated into MEL. Using the
translation of atoms in Section 4, the translation of other formulae is

T (v(α u β) ≥ i) = T (v(α) ≥ i) ∧ T (v(β) ≥ i), i ≥ 1
2

T (v(α t β) ≥ i) = T (v(α) ≥ i) ∨ T (v(β) ≥ i), i ≥ 1
2

T (v(α u β) ≤ i) = T (v(α) ≤ i) ∨ T (v(β) ≤ i), i ≤ 1
2

T (v(α t β) ≤ i) = T (v(α) ≤ i) ∧ T (v(β) ≤ i), i ≤ 1
2

T (v(¬α) = 1) = T (v(α) = 0) = (T (v(α) ≥ 1
2 ))′

T (v(¬α) ≥ 1
2 ) = T (v(α) ≤ 1

2 ) = (T (v(α) = 1))′

The translation of Kleene implication can be obtained in this way; we can define
it directly as follows using standard material implication →.

T (v(α→K β) = 1) = T (v(α) ≥ 1
2 )→ T (v(β) = 1)

T (v(α→K β) ≥ 1
2 ) = T (v(α) = 1)→ T (v(β) ≥ 1

2 )

If α = a, β = b are atoms, we obtain �¬a ∨�b and ♦¬a ∨ ♦b respectively. The
translation into MEL lays bare the meaning of Kleene implication: a →K b is
“true” means that b is certain if a is possible.

Example 1. Consider the formula α = ¬(a u (¬(b t ¬c))). Then, T (v(α) = 1) =
T (v(au (¬(bt¬c))) = 0). So, we get T (v(a) = 0)∨T (v(¬(bt¬c)) = 0) = �a′∨
T (v(bt¬c) = 1) and finally, �a′∨T (v(b) = 1)∨T (v(¬c) = 1) = �a′∨�b∨�c′.
Note that we could more simply put α in conjunctive normal form as ¬a∨ b∨¬c
then put � in front of each literal.

A knowledge base B in Kleene logic is a conjunction of formulae supposed to
have designated truth value 1. We can always transform this base in conjunctive
normal form (CNF), that is, a conjunction of disjunction of literals (without
simplifying terms of the form a t ¬a). Its translation into MEL consists of the
same set of clauses, where we put the modality � in front of each literal. It is
easy to see that the translation of any propositional tautology (if we replace each
literal l by �l in its CNF) will no longer be a tautology in MEL.

Finally we see that the fragment of MEL that exactly captures the language of
Kleene logic contains only the set (conjunctions) of disjunctions of the elementary
formulae of the form �a or �a′ : LK

� = �a|�a′|φ ∨ ψ|φ ∧ ψ ⊂ L`
�. We remark

that the modal axioms of MEL cannot be expressed in this fragment.
Nevertheless, we can use MEL to reason in Kleene logic. We note that the

modus ponens applies to literals (since from �a and �a′ ∨ �b, we can derive
�b in MEL). The same counterpart of the resolution principle is also valid. It
is like a propositional logic without tautologies but with such standard rules of
inference. At the semantic level we can prove the following result.

Proposition 3. Let α be a formula in Kleene logic. For each model v of α, the
epistemic state Ev is a model (in the sense of MEL) of T (v(α) = 1). Conversely,
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for each model in the sense of MEL (epistemic state) E of T (v(α) = 1) the 3-
valued interpretation vE is a model of α in the sense that vE(α) = 1.

We can easily verify the completeness of the Kleene fragment in MEL with
respect to the models of the form Ev in the sense that T (B) ` T (v(α) = 1) in
MEL if and only if ∀v,Ev � T (B) implies Ev � T (v(α) = 1).

6 From  Lukasiewicz three-valued logic to MEL and back

 Lukasiewicz three-valued logic  L3 is a language powerful enough to express all
connectives laid bare in section 2. It has been axiomatized by M. Wajsberg [24],
using a language based on (V,→L,¬), the modus ponens rule and the following
axioms:

(W1) (α→L β)→L ((β →L γ)→L (α→L γ))
(W2) α→L (β →L α)
(W3) (¬β →L ¬α)→L (α→L β))
(W4) (((α→L ¬α)→L α)→L α)

The truth-table of the implication →L is given by table 1 and the involutive
negation of Kleene logic is recovered as ¬a := a →L 0. We can also define two

→L 0 1
2

1

0 1 1 1
1
2

1
2

1 1

1 0 1
2

1

� 0 1
2

1

0 0 0 0
1
2

0 0 1
2

1 0 1
2

1

⊕ 0 1
2

1

0 0 1
2

1
1
2

1
2

1 1

1 1 1 1

Table 1.  Lukasiewicz implication, conjunction and disjunction truth tables.

pairs of conjunction and disjunction connectives: (u,t) and (�,⊕). The former
pair is Kleene’s, recovered as a t b = (a →L b) →L b and a u b = ¬(¬a t ¬b).
The other pair is a⊕ b := ¬a→L b and a� b := ¬(¬a⊕¬b) explicitly described
in Table 1.  Lukasiewicz implication is translated into MEL as:

T (v(α→L β) = 1) = [T (v(α) = 1)→ T (v(β) = 1)]

∧ [T (v(α) ≥ 1
2 )→ T (v(β) ≥ 1

2 )]

T (v(α→L β) ≥ 1
2 ) = T (v(α) = 1)→ T (v(β) ≥ 1

2 )

The translation of T (v(α→L β) = 1) is the same for all the 3-valued residuated
implications. In the case of atoms, we have T (v(a→L b) ≥ 1

2 ) = (�a)′ ∨♦b and
T (v(a →L b) = 1) = ((�a)′ ∨ �b) ∧ ((♦a)′ ∨ ♦b) = �a′ ∨ �b ∨ ((�a)′ ∧ ♦b)).
T (v(a →L b) = 1) thus means : if a is certain then so is b and if a is possible
then so is b. The translation of the connectives � and ⊕ is:

T (v(α⊕ β) = 1) = T (v(α) = 1) ∨ T (v(β) = 1) ∨ (T (v(α) ≥ 1
2 ) ∧ T (v(β) ≥ 1

2 ))

T (v(α⊕ β) ≥ 1
2 ) = T (v(α) ≥ 1

2 ) ∨ T (v(β) ≥ 1
2 )
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T (v(α� β) = 1) = T (v(α) = 1) ∧ T (v(β) = 1)

T (v(α� β) ≥ 1
2 ) = [T (v(α) ≥ 1

2 ) ∧ T (v(β) = 1)] ∨ [T (v(α) = 1) ∧ T (v(β) ≥ 1
2 )]

For the atoms, we see that T (v(a⊕b) = 1) = �a∨�b∨(♦a∧♦b) and T (v(α�β) =
1) = �a∧�b. Note that while the truth of Kleene disjunction at b corresponds
to the requirement that one of a and b be certain, a ⊕ b is closer to the usual
meaning of the disjunction, whereby T (v(a ⊕ b) = 1) can be true with none of
a or b being certain. Besides, asserting the truth of a conjunction in  L3 leads
to the same translation for the two conjunctions. Note that in  L3 the top and
bottom element are translated respectively into, ((�a)′ ∨�a)∧ ((♦a)′ ∨♦a) and
�a∧(♦a)′ which are indeed tautologies and contradictions in MEL, respectively.
More generally:

Proposition 4. If α is an axiom in  L3, then T (v(α) = 1) is a tautology in
MEL.

The syntactic fragment of MEL capable of expressing  L3 is: �a|�a′|φ′|φ ∧
ψ|φ ∨ ψ, that is the MEL fragment L`

� where modalities are just in front of
literals. It is clear that LK

� is a fragment of L`
�. From L`

� to  L3, we can also
prove:

Proposition 5. For any formula in φ ∈ L`
�, there exists a formula α in  L3

such that φ is logically equivalent to T (v(α) = 1) in MEL. In particular, if φ is
a MEL axiom in L`

�, then the corresponding formula α is a tautology in  L3.

Proof. Sketch. We just show that there exists a translation θ from L`
� to

 Lukasiewicz logic, recursively defined as: θ(�a) = a, θ(�a′) = ¬a, θ(♦a′) =
a→L ¬a, θ(♦a) = ¬a→L a, θ(α ∧ β) = θ(α) u θ(β), θ(α ∨ β) = θ(α) t θ(β).

At the semantic level, Proposition 3 extends to  L3. Moreover, since the sublan-
guage L`

� is exactly the  Lukasiewicz fragment of MEL, we can apply Proposition
2 and obtain the completeness of this fragment of MEL with respect to the mod-
els of the form Ev in the sense that, given a knowledge base BLin  L3 (a conjunc-
tion of  L3 formulas) T (BL) ` T (v(α) = 1) in MEL if and only if ∀v,Ev � T (BL)
implies Ev � T (v(α) = 1). Finally, we can prove that MEL restricted to L`

� is
the proper target language for reasoning in  L3, adopting an epistemic stance for
truth-values. Indeed, from the above results we get the following.

Proposition 6. Let α be a formula in  Lukasiewicz logic  L3 and BL a knowledge
base in this logic. Then, BL ` α in  L3 iff T (BL) ` T (v(α) = 1) in MEL .

Proof. Sketch: both MEL and  Lukasiewicz logic are sound and complete. So, it
is enough to show that BL � L α iff T (BL) �MEL T (v(α) = 1). One direction
is the extension of Proposition 3 to the present case and the other follows by
induction.

We note that all the results about  Lukasiewicz logic also apply to the three-
valued Nelson logic [23] N3 = (V,u,t,→N ,¬,−) due to the equivalence of the
two logics. Indeed, Nelson implication is defined by  Lukasiewicz implication as
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a →N b := a →L (a →L b) and  Lukasiewicz implication can be defined as
a →L b := (a →N b) u (¬b →N ¬a). So, Nelson implication, once translated
in the fragment L`

� of MEL is defined (on the atoms) as T (v(a →N b) = 1) =
(�a)′ ∨ �b, which says that if α is certain then β is certain. This implication
may look more natural in MEL than residuated ones or Kleene’s.

7 Encoding three-valued intuitionistic logic into MEL

The three-valued Gödel logic [12] is based on the language built from the 4-tuple
(V,→G,u,∼), and the axioms are

(I1) α→G (β →G α)
(I2) (α→G (β →G γ))→G ((α→G β)→G (α→G γ)
(I3) (α u β)→G α
(I4) (α u β)→G β
(I5) α→G (β →G (α u β))
(I6) α→G (α t β)
(I7) β →G (α t β)
(I8) (α→G β)→G ((γ →G β)→G (α t γ →G β))
(I9) (α→ β)→ ((α→ ∼β)→ (∼α))

(I10) ∼α→ (α→ β)
(I11) α t (∼ β t (α→G β))

where →G is the residuum of Kleene conjunction u, ∼ is the intuitionistic nega-
tion, and the Kleene disjunction t is retrieved as α t β := [(α →G β) →G

β] u [(β →G α) →G α]. The truth tables of the implication and negation are
given by Table 2. Axiom (I10), due to Hosoi [14], ensures three-valuedness. The

→G 0 1
2

1

0 1 1 1
1
2

0 1 1

1 0 1
2

1

∼ 0

0 1
1
2

0

1 0

Table 2. Truth table of Gödel implication and negation.

translation T (v(∼ α) = 1) in MEL of Gödel negation is the same as the trans-
lation of Kleene negation. The translation T (v(α→G β) = 1) is the same as for
 Lukasiewicz implication. However,

T (v(∼ α) = 0) = T (v(α) ≥ 1
2 )

T (v(α→G β) ≥ 1
2 ) = T (v(α) ≥ 1

2 )→ T (v(β) ≥ 1
2 )

In the case of atoms, T (v(a→G b) ≥ 1
2 ) = (♦a)′ ∨ ♦b = �a′ ∨ ♦b.
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We note that the top element > = α →G α and the bottom element ⊥ =
¬(α →G α) in Gödel logic translate into a tautology and to a contradiction in
MEL. Their translation is the same as for  Lukasiewicz logic  L3. More generally,
we can justify the axioms of intuitionistic logic in MEL.

Proposition 7. If α is an axiom of the three-valued Gödel logic, then T (v(α) =
1) is a tautology in MEL.

Finding the syntactic fragment of MEL (or of KD) that exactly captures this
three-valued logic is an open problem. It is contained in L`

� and includes the
formulas {�a,�a′,♦a, a ∈ V}. However, Proposition 3 is still valid.

8 Conclusion

This work suggests that the multiplicity of three-valued logics is only apparent.
If the third value means unknown, the elementary modal logic MEL, and more
specifically its fragment where modalities appear only in front of literals, is a
natural choice to encode all of these three-valued logics. In the framework of a
given application, some connectives make sense, others do not and we can choose
the proper fragment. The interest in our translation, which is both modular and
faithful, is double:

1. Once translated into modal logic, the meaning of a formula becomes clear
since its epistemic dimension is encoded in the syntax, even if in the worst
case, the size of a translated formula may grow exponentially in the number
of occurrences of the input variables.

2. We can better measure the expressive power of each three-valued system. In
particular it shows that the truth-functionality of three-valued logic is paid
by a severe restriction to expressing knowledge about literals only, and a
very restrictive view of disjunction.

This work can be extended to more than 3 “epistemic” truth values. However,
the target language is then a more expressive modal logic with more or less strong
modalities, such as generalized possibilistic logic [9] (where the epistemic states
are possibility distributions). For instance, the 5-valued so-called equilibrium
logic [18] (which can encode “answer-set” programming) has been translated
into generalized possibilistic logic with weak and strong necessity operators, the
epistemic states being pairs of sets of nested models [8].

The idea of expressing a many-valued logic in a two-level Boolean language
(one encapsulating the other) put here at work can be adapted to other inter-
pretations of the third truth value (such as contradictory, irrelevant, etc.) by
changing the target language. We can conjecture that only the case where this
truth value has an ontic nature (that is half-true, admitting that truth is a mat-
ter of degree) enables to give a clear meaning to propositional languages using
the syntax of Gödel,  Lukasiewicz, etc. logics and to explain their violation of the
Boolean axioms, as in the case of fuzzy logics.
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