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Abstract

In this paper, we discuss the estimation of the di�usion coe�cient of an Itô process from

high-frequency data using a nonparametric approach by Nadayara-Watson estimator. The

principal purpose is to estimate the di�usion coe�cient using selective estimators of spot

volatility proposed by several authors, which are based on the observed trajectories. In general,

statistical and econometrical criteria are used for comparing spot volatility estimators used

in nonparametric estimators. We want to resort to merely �nancial metrics to achieve the

same task. More precisely, the accuracy of di�erent spot volatility estimates is measured in

terms of how accurately they can reproduce market option prices. The model is implemented

using S&P 500 data, and successively, we used it to estimate european call option prices

written on the S&P 500 index. The estimation results are compared to well-known parametric

alternative available in the literature. Empirical results not only provide strong evidence that

most traditional pricing model are mispeci�ed, but also con�rm that the nonparametric model

generates signi�cantly di�erent prices of common derivatives.

1 Introduction

We are concerned with the problem of confronting several spot volatilities and we analyse their ca-
pability as nonparametric estimator of di�usion coe�cient. Since the early nineties, many authors
have been questioned about the best way of estimating di�usion coe�cient, namely volatility. The
main motivation is the fact that it is the substratum in practically every �nancial application.

In large part of the continuous-time �nance literature, the model speci�ed as the underlying
process of the state of log-asset prices, exchange rates, or spot interest rates is a time-homogeneous
Itô di�usion process represented by the following stochastic di�erential equation (SDE):

dXt = �(Xt)dt+ �(Xt)dWt (1.1)

with initial condition X0 = x0, where Wt is a standard real Brownian motion and the real
function �(x) and �(x) are such that a single solution Xt of the stochastic di�erential equation
(1.1) exists. Our speci�c problem is to estimate the di�usion term �(x) when we observe a discrete
realization of the process Xt, viz n+ 1 observations X̂0,...,X̂n at times t0=0 < t1< ...< tn = T in
the interval [0; T ].

The theory is constructed on Nadaraya-Watson estimators type which are given by the following
formula :
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�̂2(x) =

Pn�1
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�
x�X̂i

h

�
~�2iPn�1

i=1 K
�
x�X̂i

h

� (1.2)

where ~�i is a consistent estimate of the volatility at time ti and h is a smoothing parameter
(Silverman, 1986). The procedure studied is two-step. In the �rst step, we estimate the times
series ~�i, which is implement in the second step using equation (1.2).

In many studies, the authors are concerned with estimating the parameters of equation (1.1),
especially the di�usion coe�cient. Returns and Volatilities are directly related to asset allocation,
risk management and option pricing, proprietary trading. To achieve these objectives, the stochas-
tic dynamics of the underlying state variables have to be speci�ed correctly. For instance, option
pricing theory allows us to value stock, index options or any value of a general asset and hedge
against the risk of option writers once the model for the dynamic of underlying state variables is
available. See the books of mathematical �nance by Bjork (2010), Willmott (1998) among others.
Althouh many of the stochastic models in use are simple and convenient ones to facilitate math-
ematical derivations and statitical inference, they are not derived from any economics theory and
hence cannot be expected to �t time series �nancial data. Thus while the pricing theory gives
relativately beautiful formulas when the underlying dynamics is correctly speci�ed, it o�ers no or
little guidance in choosing or validating the model. There is always the risk that misspeci�cation
due to parametric approach leads to erroneous valuation and hedging strategies. Furthermore
there do not always exist the closed form solutions for the state variable and the derivative pricing

speci�ed by the function �(r) = �(r;
�!
� ) with

�!
� being a vector of real parameters. Hence, there

are genuine needs for �exible stochastic modeling. Nonparametric approaches o�er a complete and
aesthetic treatement for tackling the above problems.

This paper studies the e�ciency of some estimators of the spot volatilities which has been
proposed in the recent literature and that use high frequency data. It is well known that �nancial
high-frequency data evidence microstructure e�ects which render the classical estimator of the
volatility inappropriate, namely the �realized volatility�. Therefore, it is necessary to use volatility
estimates which are robust in the presence of those e�ects. The article examines some of those
estimators comparing their performance with pure �nancial criteria, namely in term of their ability
to working out the price of options written on the S&P 500. Precisely, the use of the studied
estimators of the spot volatilty permits, by means of a Nadayara and Watson regression type,
to estimate the functional form of the di�usion coe�cient in a local volatility model and we
successively use it for pricing of the derivatives by Dupire's equation. This approach is based
on the estimation of the volatility of the underlying asset, which is di�erent from the classical
techniques of derivatives pricing based exclusively on the partial di�erential equations (PDE) for
the contingent claim. Furthermore, this allows to take into account large information contained
in the high-frequency times series of the underlying asset which are generally neglected and can
be of high interest when pricing �out of the money � options or when less information is available
for options similar to those we want to evaluate. The two principal contributions of this article
are: �rstly, the comparison of di�erent estimators of the spot volatility in term of option pricing.
Secondly, we compare the result of this approach with those of classical (parametric) approach
based on PDE, and successively, with the prices estimated using only daily data (low frequency).

Assuming that the underlying asset price follows a di�usion process, by imposing suitable
conditions on the kernel, we can obtain the nonparametric volatility function of the underlying
asset-return process. The constructed volatility will be the continuous-state analog to the im-
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plied binomial tree proposed by Rubinstein (1994) and Derman and Kani (1994), and the implied
volatility functions in Dupire (1994), and Dumas, Fleming and Whaley (1995). The prices ob-
tained with the nonparametric approach are consistent with options pricing theory. Furthermore,
the estimated volatility prevailing in our models evidences the main features of the true implied
volatility and is in line generally with those in the literature for the di�erent classes of options in
which our sample is divided.

In this paper, we compare the competing nonparametric volatility estimators in term of pricing
of the European call option written on the S&P 500. To our knowledge, this is the �rst investiga-
tion in this direction. Although many important contributions have been done on the stochastic
volatility models, authors have focused on parametric estimations of volatility and then used it for
the options pricing, see Hull and White (1987) and Heston (1993) among others. Stanton (1997),
Jiang and Knight (1997), and Renò (2008) proposed nonparametric paradigm in estimating the
di�usion coe�cient, but they use it to evaluate the dynamic of the spot rate of interest rate. Jiang
(1998) used nonparametric estimation of the drift, volatility and market price of risk for pricing
the options written on interest rates. Ait-sahalia and Lo used the nonparametric estimate of the
state price density to investigate the issue of pricing options written on stock indices. We present
a di�erent approach which is based on PDE's and use di�erent nonparametric estimate of the
volatility.

We have structured this paper as follows. In Section 2, we show how to estimate volatility from
discrete observation in a close interval [0; T ] and we also present the whole spot volatility estimators
inherent to this issue. In Section 3, we present a synthetic exposition of Dupire's formula and the
connection with our models. Furthermore, we discuss the implementation technique for computing
option price using nonparametric approach. In section 4, we recall some well-known models used
to confront our proposed model, while in Section 5 we present empical results and compare our
results with other models available in the literature. Finally, we summarise our �ndings in section
6.

2 Volatility Estimation

Let's consider the following SDE:(
dXt = �(Xt)dt+ �(Xt)dWt

X0 = x0
(2.1)

de�ned over the interval [0; T ], in the �ltered probability space (
; (Ft)0�t�T ; P ) satisfying the
usual conditions.

The nonparametric estimator for the di�usion function �2(:) of a general di�usion process is
based on observingXt at ft1; t2; :::; tng in the time interval [0; T ]. For simplicity, we will discuss only
the equispaced data case. Subsequently, we let fX4n ; X24n ; :::; Xn4ng be n equispaced observations
at discrete points ft1 = 4n; t2 = 24n; :::; tn = n4ng, where 4n = T

n
. The following assumption is

in force.
Assumption 1: Given the SDE (2.1), we have that,

1. X0 2 L2(
) is independent of Wt; t 2 [0; T ] and measurable with respect to F0

2. �(x) and �(x) are de�ned on a compact interval I. �(x) is once continuously di�erentiable,
while �(x) is twice continuously di�erentiable.
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3. A constant K exists such that 0 < �(x) � K and j�(x)j � K.

4. (Feller condition for non-explosion). Given:

S(�) =

� �

0

e
� y
0 �

2�(x)
�(x)

dxdy (2.2)

V (�) =

� �

0

S 0(�)

� y

0

2

S 0(x)�2(x)
dx (2.3)

then V (�) diverges at the boundaries of I.
Assumption 1 guarantees the existence and the uniqueness of a strong solution. Requiring

the Feller condition allows us to deal with the models that do not satisfy global Lipschitz and
growth conditions (e.g., square process, see Ait-Sahalia,1996). Moreover, the Feller condition is
both necessary and su�cient for recurrence in I; more details can be found in Bandi and Philips
(2003): this will be the only condition required of our process in order to construct our model. On
the other hand, one can demand global Lipschitz and growth conditions for � and � (Karatzas and
Shreve, 1998). It is well known that index price stock are nonstationary, this particular feature of
stock options renders the nonparametric estimation very challenging.

We assume furtherK(:) 2 L2(R) to be a bounded kernel, that is,
�1
�1

K(x)dx = 1, continuously
di�erentiable and with bounded and positive �rst derivative, with limx!1K(x) = limx!�1K(x) =
0. We opt to use the gaussian kernel, and therefore we set

K(s) =
1p
2�

e�
s2

2 (2.4)

We also de�ne a sequence of bandwiths hn such that: as n ! 1, we have hn ! 0 and
nhn !1:

A very common value for hn used in applications (Scott, 1992), (Silverman, 1986) is the fol-
lowing

hn = hs�̂n
� 1

5 (2.5)

where hs is a real constant to be tuned, and �̂ is the standard deviation of analysed sample,
�̂2 = V ar[X̂i]. We construct our nonparametric estimator as

Sn(x) =

nP
i=1

K(
x�Xi4n

h
)~�2i

nP
i=1

K(
x�Xi4n

h
)

(2.6)

where ~�i is a consistent estimate of the spot volatility, and the �rst factor at the numerator
and the denominator can be used to have a discrete approximation of the kernel function.

Several ways to estimate the spot volatilities can be found in the literature. In this article, we
study six known methods, the �rst �ve are of realized volatility type while the last one is based
on Fourier estimator. The realized volatility is based on the original idea of Merton (1980), who
observed that the variance over a �xed interval could be estimated arbitrarily, although accurately,
as the sum of squared realizations, provided the data are available at a su�ciently high sampling
frequency. The Fourier type estimator was introduced by Malliavin and Mancino (2002) and it is
based on Fourier analysis.

4



Florens-Zmirou (F-Z) [1993]

~�2Fz(t
0
k) =

(X(t0k)�X(t0k�1))
2

40

Comte and Renault (C-R) [1998]

~�2R(t
0
k) =

1
m

mP
j=1

(X(t0
k�m=2+j

)�X(t0
k�m=2+j�1

))2

40

Ogawa and Sanfelici (O-S) [2010]

~�2(t0k) =
G(�)�1

L

LP
i=1

(40k+l
�X)2

40
:

Foster and Nelson (F-N) [1996]
~�2E(t

0
k) = (1� �)

Pi

j=1 !i[X(t0k�j+1)�X(t0k�j)]
2:

Andreou and Ghysels (A-G) [2002]
~�2W (t0k) =

PnL
j=1 !j[X(t0k�j+1)�X(t0k�j)]

2:

Malliavin and Mancino (M-M) [2000]

~�Fr(t) = lim
M!1

MP
k=0

[ak(�
2)cos(kt) + bk(�

2)sin(kt)] :

Table 1: Speci�cation of the Spot Volatilities

Di�erent realized volatility type models can be obtained using di�erent speci�cations for ~�2i .
There have been quite a few number of models discussed in the literature. Ogawa and Sanfelici
(2010) listed almost all type of spot volatility estimators presented in the literature to confront
them to their real time scheme estimator. Therefore, we borrow sometime from them to construct
our kernel based volatility estimate. All the spot volatilities used in this paper are listed in Table
1, including the Fourier estimator.

Andersen and Bollerslev (1998) showed that it is possible to estimate daily volatility using
intraday transactions, and that this estimates are by far more accurate than just using the daily
squared return. Using high frequency data for this purpose renders the variance estimate more
precise. Nevertheless, using the naive realized volatility estimator to implement our nonpara-
metric estimator can be misleading, because intraday data exhibit pronounced seasonalities and
microstructure contaminations that could severely distort the estimate. The analyzed spot volatil-
ities used in this paper can mitigate this problem as they have been proposed for dealing with
microstructure e�ects. Ait-Sahalia et al., (2005), Bandi and Russell (2006) proposed techniques
for computing realized volatility when data are contaminated, see Ogawa and Sanfelici (2010) for
the same topic with the Fourier estimator.

3 From Asset Dynamics to Options Pricing

The nonparametric estimates (2.6) of the di�usion coe�cient can be seen as a local volatility since
the estimated volatilities are constructed on the local trajectories of the underlying process. These
nonparametric coe�cient can be used to derive the corresponding price of European call options,
based on Dupire's approach which can been resumed as follow.

Suppose that the dynamics of an underlying asset follow the equation,

dSt
St

= �(t; St)dt+ �(t; St)dW

where the local volatility function is parametrized as : � : [0; T ]�]0;1[! R+: Then the no-
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arbitrage price of the European call option, satis�es the generalized Dupire partial di�erential
equation (

@C
@T

= 1
2
�2(K;T )K2 @2C

@K2 + (r �D)(C �K @C
@K

) 8(T;K) 2]0; T [�R+

C(0; K) = (S �K)+ 8K 2 R+

(3.1)

where T is the time to expiry, K is the strike and D is the dividend rate. The initial condition
is the pay o� function. Theoretically, we can use this equation to �nd out the local volatility �(:; :)
from a collection of option prices (T;K)! C(T;K) observed for a continuum of values of (T;K)
by means of the Dupire's formula

�(T;K) =

s
2(CT + rKCK)

K2CKK

and this volatility is unique as Dupire assumes that there is a bijection between the call price
C(Ti; Ki) and the local volatility �(Ti; Ki).

When expressing the option price as a funtion of futures price FT = S0expf
� T

0
(r(t)�D(t))dtg;

we would get the same expression except for the drift. That is

@C

@T
=

�2(K;T )

2

K2@C

@K2
(3.2)

where C now represents C(FT ; K; T ): Inverting this gives

�2(K;T; S0) =
@C
@T

1
2
K2 @2C

@K2

(3.3)

The right hand side of equation (3.3) can be computed from known European option prices.
Despite the fact that the theory ensures that there exists a unique local volatility, it is non-

trivial problem to recover it from real option data. This drawback derives from the assumption of a
well de�ned European option prices space, which is not the case on real markets. In practice, only
a �nite number of options [C(Ti; Kj)]i;j is available for di�erent maturities Ti and strike Kj. This
renders the problem strongly underdeterminate. For being close to the theory, practitioners resort
to smoothness procedures or interpolation techniques of the implied volatility surface in order to
obtain a continuous and smooth collection Ĉ(T;K) to which the Dupire's formula will be applied.

The set of prices Ĉ(T;K) on which the estimation of the volatility is based may not be a
perfect observation of the market price, but a reconstruction (non uniqueness). Therefore, even in
the theoretical case where the observed option prices come from a di�usion model, the reconsti-
tuted collection Ĉ(T;K) can di�er from the theoretical price C(T;K) obtained from the di�usion
model. The di�erence between the reconstructed collection price Ĉ(T;K) using smoothness or
interpolation can have a complex dependence in (T;K). We will not focus on that aspect here.

To avoid mispeci�cation, related to the use of interpolation techniques, we back out the local
volatility function �(:) from high frequency time series of the underlying through the kernel esti-
mator (2.6) and then solve (3.2) to compute the option prices. An alternative way to determine the
local volatility can be reached by following Derman and Kani, 1994 (DK) approach. The method
presented in this section allows estimation of rather much smoother local volatility functions. From
a numerical standpoint, these two approaches (DK and Dupire) are further di�erent from our non-
parametric in the sense that we are not imposing the recombination of a computational tree, nor
constrained to evaluate numerically the di�erential of the prices of the option CK;T (t; S):
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We use the simpli�ed Dupire equation (3.2) where we suppose that the dividend yield D(T )
and the risk-free rate r(T ) are zero, namely we consider future prices. The same consideration
can be used in the original Black & Scholes equation, but for computational convenience, we have
chosen the Dupire equation. Given the above restriction, the Dupire equation can be written as(

@C
@T

= �2(K)
2

@2C
@K2

C(K; 0) = (F �K)+
: (3.4)

where C(F; t;K; �) denotes the premium at time t for a given futures price F of an European
call of strike K and time to expiry � . This problem is a parabolic equation with initial condition
C(K; 0) which can be interpreted as the price today of a call with strikeK and immediate maturity.
Both derivatives should be positive to avoid arbitrage. We will use equation (3.4) to determine the
option prices using our nonparametric estimates for �̂2(K) obtained by means of kernel regression.
The lack of term structure for our local volatility estimates will produce a poor estimation of options
with longer maturties. One advantage of this forward equation-type is that all cross-section option
series with the same maturity can be valued contemporaneously. A di�erent approach is to solve
the Black & Scholes PDE as many time as options of di�erent exercise prices are; for the two
approaches we obtain the same results. But the second approach will be much time consuming.

The new equation can be interpreted in another way. If �2(K;T ) is known, it establishes a
relationship between the price as of today of call options of varying maturities and strikes.

Equation (3.4) can be seen as the opposed of the classical Black & Scholes partial di�erential
equation which involves, for a �xed option (K and T �xed), derivatives with respect to the current
time and value of the spot price. This happens if we set the interest rate equal to zero in the Black
& Scholes equation, therefore we retrieve the following:

��2(F; t)

2

@2C

@F 2
=

@C

@t
: (3.5)

Equation (3.4) and (3.5) can be thought as operating in the same space of functionals. However,
the relationship is not always true, as (3.5) applies to any contingent claim, though (3.4) holds
because the intrinsic value of a call happens to be the second integral of a Dirac function.

In order to discretize the Dupire equation (3.4), we should work on a bounded open set O =
(Kmin; Kmax) chosen carefully in order to reduce the approximation error of the algoritm. We
also need to specify the boundary conditions(Tavella and Randall, 2000). In our case, we shall
impose the linearity conditions. These conditions are suitable for instance when a �nite di�erence
solution is required (e.g., when there are discrete dividends, when we want to use local volatility
surface �(F; t) in our model, or when the strike price resets periodically), and simple, yet consistent
boundary conditions are hard to de�ne. It is found to be that, in a large number of option structures
far from the strike price, or other such 'interesting' regions, the option value is nearly linear with
respect to the spot. This observation is true for many exotic and path-dependent options, and
plain vanilla options. This allows us to use rather small computational intervals (Kmin; Kmax).

Once the problem has been localized, we restrict K to belong to the interval [Kmin;Kmax] and
� varying in the interval [0;T ], and obtain the problem8>>>><

>>>>:

@C
@�
� �2(K)K2

2
@2C
@K2 = 0; in ]Kmin;Kmax[�[0;T ];

@2C
@K2 (Kmin; �) = 0; if � 2 [0;T ];
@2C
@K2 (Kmax; �) = 0; if � 2 [0;T ];

C(K; 0) = f(K) = (S0 �K)+ for K 2]Kmin;Kmax[:

(3.6)
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We discretize the problem (3.6) by �nite di�erence method. Using the ��schemes, the time
discretization of this equation can be de�ned. Suppose that � 2 [0; 1]; and let k be the time-step
such that T = Nk. We approximate the solution C at time nk by the cnh, with cnh 2 Rd and the
sequence (cnh)n=0;:::;N are the solution of the recursive equation(

c0h = f
cn+1
h �cnh

k
+ (1� �) ~Ancnh + � ~An+1cn+1h = 0 if 0 � n � N � 1

(3.7)

where ~An = ~Ah(nk) is de�ned by the relation ~Ahch =
�̂2(Ki)K

2
i

2

cn�1h;i�1�2c
n
h;i+c

n�1
h;i+1

h2
.

The previous system is solved by forward induction.
We can obtain two di�erent schemes type according to the value of �.

� if � = 0, the scheme is explicit,

� if 0 < � � 1, the scheme is implicit.

Therefore, we have to resolve a linear system of the form

Mn+1cn+1 = qn (3.8)

where
Mn = I � �k ~An

qn = (I + (1� �) ~kAh

n
)Cn

h

with Mn an (d; d) tridiagonal matrix for any n. To solve this system, we can triangularize it
at every time-step using the pivoting method.

4 Competitive methods

In order to assess the performance of our model in option pricing we will compare it with popular
models: the original Black-Scholes model (B&S) ( 1973), Merton's jump di�usion model (M) (1976)
and the Heston's stochastic volatility model (H) (1993).

In the B&S model, the underlying stock price is assumed to have the dynamic of the geometric
Brownian motion di�usion process of the form

dSt = �Stdt+ �StdWt

where � and � are the (constant) volatility and drift of the underlying asset.
In the Merton model the stock price underlying is assumed to follow a jump di�usion process

dSt = (�� �jkj)Stdt+ �StdWt + (Jt � 1)Stdq

where q is a Poisson process uncorrelated with W and �j the intensity, which is the rate at
which jumps occur, Jt is proportional increase in the stock price at time t and kj = E(Jt � 1)
stands for the average jump size. The closed-form solution for the price of European call exists in
the special case that the logarithmic of Jt is Normally distributed, with standard deviation �j,

CM =
1X
n=0

e��
0�(�0�)n

n!
CBS(S; � ;�n; rn) (4.1)
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where �0 = �j(1 + kj); �
2
n = �2j + n�2j=� and rn = r � �jkj + nlog(1 + kj)=�

Finally, the Heston model assumes that the spot price at time t follows the di�usion

dSt = �Stdt+
p
VtStdW

1
t

where W 1 is a Wiener process. The volatility Vt follows an Ornstein-Uhlenbeck process

d
p
Vt = ��(t)dt+ �(t)dW 2

t

and W 2 is another Wiener process such that W 1 and W 2 are correlated with correlation �: Let
x =

p
Vt and apply the Ito's formula in f(x) = x2. The result is

dVt = [�2 � 2Vt]dt+ 2�
p
VtdW

2
t

Then if we let, k = 2; � = �2

2
, and � = 2� we end up with the Heston model where

dSt = �Stdt+
p
VtStdW

1
t (4.2)

dVt = k[� � Vt]dt+ �
p
VtdW

2
t (4.3)

corr(dW 1; dW 2) = �dt: (4.4)

V is the implied spot variance of the returns, k is the mean-reversion speed, � is the long-run
variance and � is the volatility parameter of the di�usion volatility Vt. A closed form solution for
this model is available in Heston (1993) and can be implemented by numerical integration of the
characteristic function.

5 Empirical �ndings

In this section, we concentrate on the comparative analysis of all the nonparametric volatility
estimators listed in the Table 1 and successively, we make the comparison of our kernel method
with the classical calibration of popular models such as the Black & Scholes, the Jump-Di�usion
model and the Heston model. All our empirical results will be based on the S&P 500 data set
obtained from Chicago Mercantile Exchange (CME) for the sample period spans from January 2,
1990 to December 30, 1994.

5.1 Data description and model implementation

We focus on the options of the S&P 500 index, which are the most actively traded European-
styled contracts. Therefore, S&P 500 options and options on S&P 500 futures have been analysed
by Bates (1998), Dumas et al, Rubinstein (1994), Sanfelici (2007). These considerations provide
us a motivation to apply on it our nonparametric estimators of the di�usion coe�cient which is
successively used to price S&P 500 call options obtained from the CBOE (Chicago Board Option
Exchange). The analysed sample spans the period from January 4, 1993 to Decemder 31, 1993
(253 days).

Table 2 describes some statistics of our data set. During the one year considered period the
variation exhibited by short-term interest rates is small in size: they range from 2.85 from 3.21%.
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Variable Mean Std.dev Min Max
Call price, C($) 18.29 17.32 0.0249 68.60

Implied volatility (%) 11.01 2.98 5.07 36.83
�(days) 79.96 66.56 1 350

K (index points) 445.52 27.48 375 550
F (index points) 454.87 10.21 429.18 474.21

r(%) 3.06 0.08 2.85 3.21

Table 2: Summary statistics for the sample of trade CBOE daily call option prices on the S&P 500
index in the period January 4,1993 to December 31,1993 (13 078).� denotes the times to maturity,
r the riskless rate, K the strike price and F the S&P 500 futures value implied from the call and
put prices. ' Std.dev.' denotes the sample standard deviation of the variable. During this period,
the average daily value of the variable of the S&P 500 index was 451.66

The options in our sample vary considerably in price and terms; for instance, the time-to-maturity
varies from 1 to 350 days, with a median of 66 days.

The average total daily volume during the considered period was 65476 contracts. Following
the CBOE practice, the expiration months are the three near term months followed by three
additional months from the March quaterly cycle (March, June, September, December). The
options are European, they expire on the third Friday of the month and the underlying asset is an
index, the most likely case for which a lognormal assumption (with continuous dividend stream)
can be justi�ed. By the simple e�ect of diversi�cation, jumps are less likely to occur in the index
than in the individual equities. This feature allows us to think that the market is as close as the
theoretical assumptions underlying the Black & Scholes model.

The beginning sample contains 16963 call options, we take the average of bid and ask price
as our raw data. We consider observations with the time-to-maturity longer or equal to one day.
Options having implied volatility greater than 70% and price less than 0.02 or greater than 70.00
were cancelled out. After that, we remain with a �nal sample of 13078 observations.

When applying our nonparametric approach to the raw data, we have to face two important
problems. Firstly, in-the-money options are very infrequently traded with respect to at-the-money
and out-the-money options, and hence they are notoriously unreliable. There is an unbalance
daily volume for out-of-the-money contracts and the volume of in-the-money contract of the same
magnitude.

Secondly, the index typically pays dividend and the future rate of dividend payment is di�cult,
if not impossible, to determine. The daily dividend provided by Standard and Poor's on the S&P
500 is by nature forward-looking, and there is no reason to assume that the actual dividends
recorded ex post correctly re�ect the expected future dividend at the time the options is priced.

We can tackle this uncomfortable drawback following Ait-sahalia and Lo (1998) and Sanfelici
(2007). Based on the fact that all options are recorded at the same time on each day, we require
only the temporally matched index price per day. To get around the unobservability of the dividend
rate �t;� , we deduce the futures price Ft;� and St for each maturity � . By the spot-futures parity,
Ft;� are linked through the relationship

Ft;� = Ste
(rt;���t;� ): (5.1)

To derive the implied futures, we resort to the put-call parity relation, which must be satis�ed if
arbitrage opportunity are to be eliminated, independently of any parametric option-pricing model.

C(St; K; �; rt;� ; �t;� ) +Ke�rt;� = P (St; K; �; rt;� ; �t;� ) + Ft;�e
�rt;� (5.2)
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where C and P denote respectively the call and the put price of actively traded options with
the same strike K and the time-to-expiration � . From this expression, we require reliable call and
put prices at the same strike price K and time-to-expiration � . For this purpose, we must use calls
and puts that are closest to at-the-money. It is well known that in-the money options are illiquid
relative to the out-of -the-money counterparts, hence any matched pair that is not at-the-money
would have one potentially unreliable price.

We divide our data set into several categories as in Bakshi et al. (1997) and Sanfelici (2007). Fol-
lowing these authors the division criteria is according to moneyness St=K or the time-to-expiration
� . We say that a call option is at-the-money (ATM) if 0:98 < St=K � 1:02; out-of-the money
(OTM) if St=K � 0:98 and in-the-money (ITM) if St=K > 1:02: A �ner repartition resulted in six
moneyness categories. When classifying our data by term of expiration, we say an option contract
has a short term maturity if � < 60 days, medium term maturity if 60 � � � 180 days and
long term maturity if � > 180 days. From empirical data, the proposed moneyness and maturity
classi�cation produce 18 categories which are reported in the Table 3 . ITM and ATM options
account for respectively 50% and 24% of the total sample, while the short-term and the medium
term take up respectively around 47% and 43%. The average price varies from $0:19 for short-term
deep OTM options to $47; 29 for long-term deep ITM calls. For empirical study, each class can be
used since the options are partitioned quite uniformely in the di�erent moneyness categories and
included nearly 1500 observations each and every.

We use the formula (2.6) to derive our nonparametric local volatility function from S&P 500
futures prices. Successively we evaluate the di�erent approach by substituting each estimate in
the equation (3.4) for pricing European calls.

We want to check if our nonparametric estimators of volatility verify the empirical facts ex-
hibited by implied volatility when applied in the stock data. The Table 4 summarizes the main
features of the implied volatility, which is obtained by inverting the Black & Scholes formula
from each option price in our sample and successively producing an average 'implied' volatility
for each moneyness-maturity category. The results show that the average B-S implied volatility
tend to decrease monotically as the call options move from deep ITM to ATM and then this
variation is stronger for the short-term options, which evidences a slight smile; this suggests that
the short-term options are proned to severe mispricing. From the smile evidence, we can observe
a negatively skewed implicit return distributions with excess kurtosis. Therefore, any acceptable
model intended to price options written on S&P 500 have to be consistent with these features.

Many approaches have been proposed to extract local volatility function: Derman and Kani
(1994), and Rubinstein (1994) proposed the non arbitrage binomial o trinomial tree model where
the volatility function is obtained at the end of each node inverting the corresponding call price.
In the continous time approach proposed by Dupire, B (1994), it is retrieved by means of the
equation (3.4), where it is assumed to know the prices of options of all strikes and maturities via
the implied volatility surface. Loosely speaking, we know the quantities CK;T (0; S) as a function
of K and T , and therefore it is quite immediate to evaluate (numerically) the derivatives of the
observed option prices with respect to the maturity and the strike price.

Our approach is completely di�erent, in the sense that the volatility is estimated from the
underlying index dynamics and does not rely on option prices, we construct our nonparametric
estimator directly on the S&P 500 data using the Nadayara -Watson formula which has been
explained in the previous section, we derive the nonparametric estimator by substituting in the
latter the corresponding spot volatility estimators reported in the Table 1. Therefore we need
to choose cleverly the parameter used to construct our local volatility function by means of our
nonparametric estimator. We can assume that what we observe in the �nite interval [0; T ] is

11



 

 

 

 

 

 

 

Moneyness 
S/K   <60 60-180 >180 Subtotal 

OTM <0,96 0.19 0.81 2.35 1.01 
    478 979 436 1893 
  0.96-0.98 0.78 2.90 10.43 2.42 
    738 640 114 1492 
ATM 0,98-1,00 2.66 6.52 13.50 4.66 
    861 647 58 1566 
  1.00-1.02 7.56 11.78 17.75 9.66 
    874 656 56 1586 
ITM 1.02-1,04 14.64 18.09 25.21 16.99 
    788 611 143 1542 
  >1.04 33.46 39.01 47.29 36.97 
    2416 2192 391 4999 
Subtotal   16.56 19.42 21.78 18.29 
    6155 5725 1198 13078 

 

Table 3: The reported numbers are, respectively, the average quoted bid-ask mid point price and
the total of observations for each moneyness-maturity category. S denotes the spot S&P 500 index
level and K is the exercise price.

a part of stationary process. Furthermore, if the kernel function is locally Lipschitz, it can be
applied to the nonstationary data. Moreover, the other correction is to choose the bandwidth,
we �nd that the smoothness parameters which provide acceptable results are contained in the
interval 17 � h � 25, out of this band we obtain unsastifying results. An higher value of h will
lead to a smoother estimate of the density in the tails of the distribution where fewer data are
available. We �nally maintain h = 20 because it is the value of the bandwidth which give appealing
outcomes when applying on every our six classes. We have used tick-by-tick data of S&P 500 from
which we have extracted all price with observation frequency one minute in order to mitigate the
e�ect of microstructure noise. Futhermore, the theory assumes that when the distance between
two observations is close to zero, an arbitrary precision in the estimate of the spot volatility can
be reached. Broadly speaking, these facts contribute to the improvement of our local volatility
function. The estimator ~�(K; �) evidences a strong volatility smile in general. We will turn on
this aspect later.

We describe the procedure used to estimate the other structural parameters of the alternative
models. A well consolidated practice (Bakshi et al. 1997, Sanfelici 2007) is to compute option-
implied parameters by implementing each model in the two steps as explained below.

1. Collect m option prices taken from the same point in time t (or same day) for any m
greater than or equal to one plus the number of parameters to be estimated. For each
j = 1; :::;m; let �j and Kj be respectively the time to expiration and the strike price of the

jth option; let Cj(t; �j; Kj) be its observed price and Ĉj(t; �j; Kj) its price worked out by

the model with St and rt;� taken from the market. The di�erence Cj � Ĉj is a function of
the values taken by � = f�g in the B-S model, by � = f�j; �j; �j; kjg in the J-D model and
� = fpV ; �� ; kj; �� ; �g in the Heston model. For each j, we de�ne

�j(�) = Cj(t; �j; Kj)� Ĉj(t; �j; Kj):
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Moneyness Time to maturity
S/K < 60 60-180 > 180 Total
OTM <0.96 8.51 8.00 8.53 8.25

0.96-0.98 7.98 8.53 9.91 8.36
ATM 0.98-1.00 8.57 9.21 10.03 8.89

1.00-1.02 9.80 9.98 10.45 9.90
ITM 1.02-1.04 11.43 10.80 11.04 11.15

>1.04 11.78 13.02 12.49 13.83
Total 11.47 10.64 10.41 11.01

Table 4: Average B-S implied volatilities for di�erent moneyness maturity categories. S denotes
the spot S&P 500 index level and K is the exercise price.

2. Find the parameter vector � to solve the nonlinear least-squares problem at time t

SSE(t) = min
�

mX
j=1

[�j(�)]
2 (5.3)

Go back to Step 1 until the two steps have been repeated for each day in the sample.

The objective function (5.3) is de�ned as the sum of squared pricing error and may force the
estimation to assign more weight to relative expensive options (e.g., ITM and long-term options).

In the calibration procedure, when the
Ft;�j
Kj

does not belong to the grid G, the value Cj is

approximated by the quadratic interpolation of the nearest grid points.

5.2 Model Comparison Results

Turning back to the behaviour exhibited by our nonparametric approach, the noteworthy fact is
that for all the spot volatilities used in our model, the relative local volatility function presents
a monotonically decreasing trend from deep in the money to the deep out-of-the-money. This is
consistent with the empirical fact underlying the options written on stock index and it is in line
with other methods existing in the literature. If we focus our analisys on all options available, the
trend of any estimator is almost the same, albeit the Fourier estimator tends to generate the highest
skew with respect to the striking price when confronting with other estimators. We can notice in
particular that our estimate smile is exaggeratedly asymmetric, pointing to the empirical fact that
the European call options written on the stock index lost their U-shape after the 1987 crash. This
particular characteristic inherent to our models is consistent with empirical �ndings and contrasts
stochastic volatility models which typically produce symmetric smiles. This is another example
among others that nonparametric approach can suggest an information for constructing parametric
models, if not to valid them. Much evidence can be found in Figures 6.1-6.6

Table 5 reports the average absolute error (APE), the percentage pricing error (PPE) and the
daily averaged mispricing index (MISP)

APE =
1

N

NX
i=1

���Ci � Ĉi

��� (5.4)

PPE =
1

N

NX
i=1

���Ci � Ĉi

���
Ci

(5.5)
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MISP =

NP
i=1

(Ci � Ĉi)=Ci

NP
i=1

���(Ci � Ĉi)=Ci

��� (5.6)

where Ci is the observed call price available on the market, Ĉi is the call price worked out
using nonparametric techniques, and N is the sample dimension. The mispricing index ranges
from -1 and 1 and indicates on average, the overpricing (when it is negative) and the underpricing
(when it is positive) induced by the model. In general, our model tends to overprice the options
irrespectively on the class where it is applied. When the model underprices options, the bias is
higher in magnitude. The APE index tends to be high when applied to all data available. The
ATM and OTM classes have the lowest APE, but when moves to ITM class this index increases
considerably, this is probably due to the fact that ITM options are illiquid, viz di�cult to price.
The PPE index presents a very alternated behaviour. When we confront our result using MISP
index, we notice that, our estimators tend to overprice call price in general in all the analysed
classes. But things change when we analyse the ITM class which exhibit very high value. In
this case the MISP is positive for all the estimators, suggesting that this loss function underprices
in-the-money options.

To gain a better insight into the di�erent nonparametric models performance, we apply our
model each time using one of the six alternative sets from the whole sample: ITM, ATM, OTM,
short-term, meduim-term, long-term categories. The error tends to be small in the whole sample
with respect to the other categories in terms of MISP, while the ITM class presents the lowest PPE
index. When ATM options are priced, the resulting estimates do not signi�cantly di�er from their
counterparts for the whole data set. OTM call options are associated with relative low pricing
error, while ITM options correspond to higher mispricing error, indicating that, for the illiquid
ITM calls to be priced properly, the volatility of the underlying needs to be higher than for all
options of any maturity to be priced.

When analysing with respect to time to expiration, short-term option seem to be more chal-
lenging, they are associated with the highest pricing error. However, the structure of mispricing
by term to expiration is very similar; this can be due to the fact that our model does not vary
according to the time parameter. This can limit our nonparametric approach to be a true pricing
engin.

In this last part we compare the results obtained with the nonparametric approach with those
computed with some popular methods used by academicians and practitioners. That is the Black
& Scholes, the Jump di�usion and the Heston model. In this comparison we have considered only
the Fourier estimator. We do not compare them to the other estimators studied in this paper,
because numerical results obtained from them have the same features. Therefore, the comments
relative to Fourier estimator are also relevant for the remainder estimators

The analysed loss functions (5.4)-(5.6) suggest that for all the three alternative models, there
is a positive mispricing index for all categories except for the ATM and the ITM classes in general.
However, when using the MISP the price worked out using nonparametric approach tends to
overestimate the option price for almost all categories apart from All options and ITM classes, as
shown in table 6. The result however shows that the alternative models systematically underprice
call price in general, except for the ITM calls for B-S and the ATM calls for J-D and the H model.
Nevertheless as one can immagine, both the J-D and the H model are more accurate. To sum
up, the nonparametric model represents a real improvement with respect to B-S in term of pricing
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All options ITM ATM OTM SHORT MEDIUM LONG
Florens-Zmirou

APE 0.89 1.34 1.12 0.54 0.44 0.68 0.83
PPE 0.15 0.05 0.19 0.48 0.44 0.43 0.24
MISP 0.13 0.99 0.59 0.19 -0.90 -0.88 -0.39

Comte and Renault All options ITM ATM OTM SHORT MEDIUM LONG
APE 0.90 1.56 1.11 0.59 0.44 0.69 0.83
PPE 0.15 0.05 0.15 0.48 0.44 0.43 0.24
MISP 0.12 0.99 0.59 0.18 -0.90 -0.88 -0.39

Foster and Nelson All options ITM ATM OTM SHORT MEDIUM LONG
APE 1.36 1.54 1.76 0.80 0.38 0.84 1.33
PPE 0.21 0.06 0.25 0.58 0.14 0.16 0.27
MISP 0.96 0.99 0.98 0.41 -0.32 0.01 0.02

Andreou and Ghysels All options ITM ATM OTM SHORT MEDIUM LONG
APE 0.97 1.59 1.22 0.55 0.41 0.66 0.90
PPE 0.14 0.06 0.16 0.92 0.37 0.35 0.24
MISP 0.39 0.91 0.74 -0.45 -0.85 -0.80 -0.24

Ogawa and Sanfelici All options ITM ATM OTM SHORT MEDIUM LONG
APE 0.99 1.77 0.91 0.54 0.27 0.63 0.47
PPE 0.34 0.04 0.18 0.95 0.32 0.89 0.19
MISP 0.63 0.59 0.98 -0.55 -0.95 -0.56 -0.25

Malliavin and Mancino All options ITM ATM OTM SHORT MEDIUM LONG
APE 0.69 0.18 0.89 0.53 0.39 0.64 0.96
PPE 0.15 0.05 0.16 0.80 0.32 0.30 0.21
MISP -0.64 0.92 -0.21 -0.36 -0.82 -0.71 -0.04

Table 5: Average absolute error (APE) Mispricing index (MISP), and percentage (PPE) pricing
errors between the market price and the kernel based-price.

All options ITM ATM OTM SHORT MEDIUM LONG
APE M-M 0.69 0.18 0.89 0.53 0.39 0.64 0.96

B-S 0.53 0.32 0.41 0.26 0.33 0.69 1.15
J-D 0.20 0.14 0.20 0.11 0.12 0.17 0.19
H 0.14 0.01 0.20 0.11 0.13 0.15 0.18

PPE M-M 0.29 0.05 0.16 0.80 0.32 0.30 0.21
B-S 0.40 0.01 0.12 0.53 0.27 0.54 0.90
J-D 0.10 0.006 0.05 0.20 0.08 0.07 0.10
H 0.08 0.006 0.05 0.19 0.10 0.07 0.08

MISP M-M 0.59 0.92 -0.21 -0.36 -0.82 -0.71 -0.04
B-S 0.90 -0.09 0.59 0.74 0.84 0.88 0.82
J-D 0.40 0.32 -0.003 0.13 0.19 0.39 0.43
H 0.17 0.03 -0.03 0.02 0.39 0.45 0.29

Table 6: Average absolute error (APE) Mispricing index (MISP), and percentage (PPE) pricing
errors between the market price and the kernel based-price for the Fourier using intraday data and
B-S; J-D; H model.
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All options ITM ATM OTM SHORT MEDIUM LONG
APE Foster and Nelson 28.66 4.79 5.42 6.24 26.24 23.42 19.05

B-S 0.53 0.32 0.41 0.26 0.33 0.69 1.15
J-D 0.20 0.14 0.20 0.11 0.12 0.17 0.19
H 0.14 0.01 0.20 0.11 0.13 0.15 0.18

PPE Foster and Nelson 31.12 0.21 2.46 19.53 35.27 19.06 9.14
B-S 0.40 0.01 0.12 0.53 0.27 0.54 0.90
J-D 0.10 0.006 0.05 0.20 0.08 0.07 0.10
H 0.08 0.006 0.05 0.19 0.10 0.07 0.08

MISP Foster and Nelson -0.99 -0.26 -0.94 -0.70 -0.99 -0.99 -0.98
B-S 0.90 -0.09 0.59 0.74 0.84 0.88 0.82
J-D 0.40 0.32 -0.003 0.13 0.19 0.39 0.43
H 0.17 0.03 -0.03 0.02 0.39 0.45 0.29

Table 7: Average absolute error (APE) Mispricing index (MISP), and percentage (PPE) pricing
errors between the market price and the kernel based-price for the Rolling estimator using daily
data and B-S; J-D; H model.

All options
CPUtime

F-Z 20.24
C-R 28.48
F-N 27.20
A-G 26.20
O-S 30.26
M-M 43.34
B-S 18.29
J-D 1.657e+03
H 3.834e+03

Table 8: CPU time in seconds for the computed European Call price on S&P 500 for di�erent
nonparametric methods and the alternative counterparts

properties. However, the performance is worse than the J-D and H, this can be justi�ed by the fact
that, these two models use many parameters which can produce an over�tting and in the other
hand, our kernel estimator is not time dependent.

The Table 7 reports the results computed using daily data for the estimator proposed by Foster
and Nelson. This estimator has been choosen because it has been originally constructed for low
frequency data (daily, weekly and monthly). From the results, we notice that the pricing error
increase exaggeratedly showing that when daily data are used for computing option prices much
information contained in high frequency data are neglected.

Another important issue in the model calibration is the computational cost. The computational
cost of the nonparametric is much lower than using the closed-form solution for the J-D model
and the latter is cheaper than the H model. Therefore, The J-D model represents a good trade-
o� between performance and computational cost. The Black and Scholes model is the cheapest
and the Fourier estimator evidences the highest computational time among our nonparametric
estimates, as shown in Table 8.

16



In the end, our empirical evidence indicates that taking stochastic volatility into account gives
the best improvement over the B-S formula. However, we can conclude that the nonparametric
model contribute to explaining from theoretical and quantitative standpoint the strong pricing
biases inducted in the B-S model.

6 Conclusion

Since the seminal work of Black & Scholes on options pricing, many researchers proposed sophisti-
cated works in order better to evidence the empirical facts exhibited by the market. Following the
local volatility approach pioneered by Derman and Kani (1994), Dupire (1994), and Rubinstein
(1994) who supposed that the volatility is a deterministic function of asset price and time, we have
studied a new approach and used it for evaluating European call option prices.

In this paper, we have studied a new technique for camparing the nonparametric estimation
using a Nadayara-Watson kernel regression, which is based essentially on �nance methods. We
have used almost all types of spot volatility existing in the literature for computing the option
price of European call options. We have shown that our method can be classi�ed in the class of
local volatility function which has the particularity of being complete. Relatively to other local
volatility function proposed earlier, our method is easy to manage and the computation cost is
very low.

The volatility curve obtained with our approach is consitent with the actual market. The
Fourier estimator shows to exhibit better the market features compared with other competing
volatility estimators analysed.

We compare the nonparametric model to well known popular models, such as Black & Scholes
models itself, the Jump-Di�usion model and the Heston's model with stochastic volatility. The
price worked out by nonparametric model is obtained using the Dupire's equation which the
volatility is construted directly on the S&P 500 index future price spanning from January 4, 1993
to December 31, 1993. To sum up, the nonparametric model represents a real improvement with
respect to B-S in term of pricing properties. However, the performance is worse than the J-D and
H.

Second, the computational cost of the nonparametric is less than using the closed-form solution
for the J-D model and which is cheaper than the H model. Therefore, The J-D model represents
a good trade-o� between performance and computational cost. The Fourier estimator is the most
time consuming among all the studied nonparametric estimators.

In the end, our empirical evidence indicates that taking stochastic volatility into account gives
the best improvement over the B-S formula. However, we can conclude that the nonparametric
model contribute to explaining from theoretical and quantitative standpoint the strong pricing
biases inducted in the B-S model.

A serious limitation to this approach is that it is not varying with respect to the time parameter,
including the time variations in the Nadayara-Watson estimator, may be crucial to obtain correct
speci�cation. This will permit our model to be a real pricing engin, further investigations in that
sense will be the object of future researches.
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Figure 6.1: Local volatility Curves for Nonparametric Estimator with Mancino and Maliavin spot
volatilty.The curve relative to all classes are reported
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Figure 6.2: Local volatility Curves for Nonparametric Estimator with Comte and Renault spot
volatilty.The curve relative to all classes are reported
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Figure 6.3: Local volatility Curves for Nonparametric Estimator with Mancino and Maliavian spot
volatilty.The curve relative to all classes are reported
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Figure 6.4: Local volatility Curves for Nonparametric Estimator with Andreou and Ghysels spot
volatilty.The curve relative to all classes are reported
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Figure 6.5: Local volatility Curves for Nonparametric Estimator with Florens-Zmirou spot
volatilty.The curve relative to all classes are reported
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Figure 6.6: Local volatility Curves for Nonparametric Estimator with Ogawa and Sanfelici spot
volatilty.The curve relative to all classes are reported
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