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Abstract. The role of opposition in rough set theory is laid bare. There
are two sources which generate oppositions in rough sets: approximations
and relations. In the former case, we outline a hexagon and a cube of
oppositions. In the second case, we define a classical square of oppositions
and also a tetrahedron when considering the standpoint of two agents.

1 Introduction

Starting from the Greek philosophy, in particular Aristotle, oppositions have
been organized in a so-called square of opposition where each vertex represents a
different statement involving two entities X and Y: “Every X is Y” (A); “Some X
is not Y” (O); “Every X is not Y” (E) and “Some X is Y” (I). Clearly, (A) and (I)
are in opposition to (O) and (E) (and vice-versa), (A) implies (I) and (E) implies
(O). (A) and (E) can be false together but not true, and for (I) and (O) it is the
converse. This organization of oppositions have been discussed by several authors
until the Middle Ages, then it progressively lost its importance in logic. Only
since the 1950s, we can observe a renewed interest on this topic. In particular,
in the last years, several authors tried to generalize the notion of square to
describe more complex situations and to apply the square and other geometrical
organizations of oppositions to several fields [2, 3]. We just mention the link
with Belnap and paraconsistent logic, fixed-point calculus, possibility theory,
formal concept analysis [1]. Here, we lay bare the links between several forms
of opposition and rough sets: cube and hexagon of opposition naturally arise by
lower and upper approximations and square and tetrahedron of oppositions are
generated by relations. The aim is to give a new theoretical approach to rough
sets with possible new links (and differences) to other paradigms such as formal
concept analysis and possibility theory. New ideas about approximations with
two relations/agents are also proposed.

2 Preliminary Notions

We now give the introductory notions about the geometrical organization of
oppositions and rough set theory.
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2.1 Oppositions and Geometrical Organization

The Aristotelian square of opposition described in the introduction can be gen-
eralized in two directions: either by negation of X and Y, or by considering (U),
the disjunction of (A) and (E), and (Y) the conjunction of (I) and (O).

In the first case we obtain a cube of oppositions, where, besides the typical
square statements we have: “Every (not X) is (not Y)” (a); “Some (not X) is Y”
(o); “Every (not X) is Y” (e) and “Some (not X) is (not Y)” (i).

i: some X is Y

I: some X is Y O: some X is Y

o: some X is Y

a: every X is Y

A: every X is Y E: every X is Y

e: every X is Y

A

A ∪B

B

B ∪ C

C = (A ∪ C) ∩ (B ∪ C)

A ∪ C

Fig. 1. Cube and hexagon of opposition

So, in the cube we have two squares of opposition: one in the front and
the other in the back facet. In figure 1(left), the thick segment relates the con-
traries, the double thin undirected segments the sub-contraries, the diagonal
non-directed segments the contradictories, and the vertical uni-directed segments
point to subalterns (and express entailments if the set of X’s and the set of X’s
are not empty).

Example 2.1. Let X=apple and Y =red. Then, we have A: every apple is red;
E: every apple is not red; I: some apple is red; O: some apple is not red; a:
anything that is not an apple is not red; e: anything that is not an apple is red;
i: something that is not an apple is not red; o: something that is not an apple is
red.

In the second case, we obtain the hexagon of opposition proposed by Blanché
as the starting point in his analysis of oppositions [4]. Hexagons naturally arise
in different context, for instance in comparative relations in mathematics: (A):
= “ > ”, (E): = “ < ”, (U): = “ 6= ”, (I): = “ ≥ ”, (O): = “ ≤ ”, and (Y):
= “ = ” or with tastes: (A) = “I like it”, (E): = “I dislike it”, (U): = “I am not
indifferent”, (I): = “I do not dislike it”, (O): = “ I do not like it”, and (Y): = “I
am indifferent”. Basically, we encounter an hexagon when we have a partition
in three mutually exclusive situations [9]. Indeed, once considered a 3-partition
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of a universe of objects Obj = A ∪ B ∪ C, we obtain the hexagon of figure
1(right). In this figure, thick segments link contraries and the double segments
link sub-contraries.

As a further step, we can consider a 4-partition, i.e. a partition of a universe
in four mutually exclusive subsets. In this case we obtain a tetrahedron of oppo-
sitions. An important example of tetrahedron is obtained by all the combinations
of two Boolean statements p, q. Figure 2 gives a rich view of the relations among
the binary connectives. We notice indeed that:

– any connective that appears between two others on the same segment (which
may be an edge of the tetrahedron, or a segment linking a vertex to the
middle of an opposite edge) is implied by each of the two connectives at the
extremities;

– contradiction and tautology can both be associated with the center of the
tetrahedron. Indeed, a segment linking the middle of two opposite edges, or
a segment linking a vertex to the center of the opposite facet, is associated
with a pair of connectives (at its extremities) whose conjunction yields the
contradiction, and their disjunction yields the tautology.

– the position of a connective on a segment reflects the number of bits to
switch for moving from it to the connectives that are at its extremities.

p ∧ q

p ≡ q

¬p ∧ ¬q

¬p

¬p ∧ q

q

p∆q

p ∧ ¬q

p

¬q
p→ q

p→ ¬q

p ∨ q
q → p

Fig. 2. The tetrahedron of the 16 binary connectives
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2.2 Rough Sets

In rough set theory, knowledge about objects is represented in terms of observ-
ables (attributes) collected in an Information Table (or System) [13, 14].

Definition 2.1. An Information Table is a structure 〈Obj, A, val, F 〉 where:

– the universe Obj is a non empty set of objects;
– A is a non empty set of condition attributes;
– val, the set of all possible values that can be observed for all attributes;
– F (the information map) is a mapping F : Obj ×A→ val which associates

to any pair object–attribute, the value F (x, a) assumed by a for the object x.

In standard rough set theory we define an indiscernibility relation with re-
spect to a set of attributes B ⊆ A as xIBy iff ∀a ∈ B, F (x, a) = F (y, a). This
is an equivalence relation, which partitions X into equivalence classes [x]B , our
granules of information. Due to a lack of knowledge we are not able to distinguish
objects inside the granules, thus, not all subsets of Obj can be precisely charac-
terized in terms of the available attributes B. However, any set X ⊆ Obj can be
approximated by a lower and an upper approximation, respectively defined as:

LB(X) = {x : [x]B ⊆ X} UB(X) = {x : [x]B ∩X 6= ∅} (1)

By set complementation of Obj we can also define the exterior region EB(X) =
(UB(X))c, that is the objects surely not belonging to X. Finally, the difference
between upper and lower approximations is named boundary and denoted as
Bnd(X) = U(X)\L(X). An important (with respect to the present work) prop-
erty of approximations is the duality between lower and upper approximations:
L(Xc) = U c(X) which permits to define the lower approximation given the
upper one and vice versa.

Several generalizations of this approach are known in literature, which can
concern the indiscernibility relation (hence, we have for instance similarity rough
sets [16, 17]), the subsethood relation (see the Variable Precision Rough Sets [10])
or the data under investigation which can be described by fuzzy sets instead of
classical sets [8]. We will give more details in the following sections when needed.

3 Opposition from Approximations

The first obvious way to define oppositions in the rough set framework is to
consider approximations. Indeed, we have that the lower approximation and the
exterior region are disjoint sets (also, orthopairs [7]). So, given a subset of objects
X ⊆ Obj, we have a tri-partition of the universe Obj = L(X)∪Bnd(X)∪E(X)
and consequently a hexagon of oppositions.

We note that in the upper part of the hegaxon we have the sets representing
certain knowledge on the universe, namely L(X), E(X) and their union. On
the other hand on the other half of the hegaxon we have uncertain knowledge:
U(X), U(Xc) and at the bottom the boundary region.
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L(X)

L(X) ∪ E(X)

E(X)

Lc(X)

Bnd(X)

U(X)

Fig. 3. Hexagon induced by Pawlak approximations

In more generalized models of rough sets, we do not have the duality be-
tween lower and upper approximations [6]. This happens, for instance, in Prob-
abilistic Rough Sets [18] or Fuzzy Rough sets [8, 15]. When considering oppo-
sition in this generalized framework we have a splitting in two parts of the
hexagon. In figure 4 the cube of opposition resulting from this splitting is rep-
resented, where the upper and lower part are omitted. We also note that the
square on the diagonals, i.e., those with vertices (L(X), L(Xc), Lc(X), Lc(Xc))
and (U(X), U(Xc), U c(X), U c(Xc)) are examples of Piaget group3[9].

U(Xc)

U(X) Lc(X)

Lc(Xc)

L(Xc)

L(X) Uc(X)

Uc(Xc)

Fig. 4. Cube of opposition induced by generalized approximations

3 Given a logical formula φ = f(p, q, r, . . .), the Piaget group is the set of four
transformations: identity I(φ) = φ; negation N(φ) = ¬φ; reciprocation R(φ) =
f(¬p,¬q,¬r, . . .) and correlation C(φ) = ¬f(¬p,¬q,¬r, . . .).



6 Davide Ciucci, Didier Dubois, and Henri Prade

4 Opposition from Relations

Looking at the definition of the indiscernibility relation xREy iff ∀a ∈ B ⊆
A, F (x, a) = F (y, a), it can be easily seen that there other kinds of relations
that can be generated, changing ∀ with ∃ and = with 6=. Thus, given a subset
of attributes B ⊆ A, we can define four relations:

xREy iff ∀a ∈ B ⊆ A, F (x, a) = F (y, a) Indiscernibility
xRSy iff ∃a ∈ B ⊆ A, F (x, a) = F (y, a) Partial Identity
xRDy iff ∃a ∈ B ⊆ A, F (x, a) 6= F (y, a) Discernibility
xRP y iff ∀a ∈ B ⊆ A, F (x, a) 6= F (y, a) Complete Difference

The discernibility relation and complete difference are the negation, respectively,
of the equivalence relation and partial identity. So, it can be easily seen that these
four relations form a classical square of oppositions (figure 5, left) of the AEIO
kind. Moreover, this situation can be generalized considering any similarity (i.e.,
reflexive and symmetric) relation [16, 17] instead of partial identity.

Examples of a similarity relation are: two objects are similar if they have
a fixed percentage of equal attributes or two objects are similar if the distance
between their value of some numerical attribute is less than a fixed threshold.
Then, instead of the complete difference we consider the negation of the simi-
larity: xRP y iff not xRSy, which is a preclusivity relation, i.e., a relation which
is anti-reflexive and symmetric. If we characterize each relation by its required
properties, we obtain the square of opposition on the right in figure 5, where
r=reflexivity, s=symmetry, t=transitivity and i=irreflexivity.

RE RP

RDRS

r,s,t i,s

i,s,tr,s

Fig. 5. Square induced by the 4 relations

Example 4.1. Let us consider a medical information table where patients are
classified according to five attributes: Temperature, Pressure, Headache, Cold
and Muscle-Pain. Then, two objects are equivalent if they have all the attributes
equal; they are discernible if they differ for at least one attribute and we can
define similarity as having three (out of five) attributes equal and consequently
preclusivity is having at least three attributes different.
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As far as approximations are concerned, we notice that based on a similarity
relation, lower and upper approximations can be defined as in equations 1 (other
possibilites have been investigated in literature, see for instance [12, 19]). On the
other hand, given a preclusivity relation Rp, and a set of objects X, we can
build the set of objects which are different from all the objects in X: X# =
{y ∈ Obj, ∀x ∈ X (xRpy)}. Then, we define the upper approximation of a set
as U(X) = X## and the lower approximation is defined by duality as L(X) =
(U(Xc))c [5]. Discernibility relation is a special case of preclusivity, so we can
proceed in the same manner. So, also with these approximations, we obtain the
hexagon of Figure 3.

It is worth noticing that the approximations obtained by the discernibility re-
lation are equal to the approximations obtained by the equivalence relations com-
puted on the same set of attributes. That is, given a set of attributes B and a set
of objects X we get LB

RE
(X) = LB

RD
(X) and the same for the upper approxima-

tion. So, with respect to approximations, it is the same to ask for equivalence or
discernibility of objects. On the other hand, in the case of similarity and preclu-
sivity, given one relation we can define the other by negation but the approxima-
tions differ. In general, it holds LB

RS
(X) ⊆ LB

RP
(X) ⊆ X ⊆ UB

RP
(X) ⊆ UB

RS
(X).

4.1 Tetrahedron from Two Relations

Let us consider two relations R1 and R2 of any of the four types outlined above:
equivalence, similarity, discernibility and preclusivity. If we want to aggregate
them, we have 14 different combinations (including R1, R2 and their negations)
using the classical logic connectives. So, for instance (R1 AND R2) requires that
two objects are simultaneously related according to R1 and to R2. Clearly, these
combinations form a tetrahedron of oppositions as described in section 2.1. Con-
tradiction and tautology, which can be found in the middle of the tetrahedron,
can here be interpreted as the fact that no objects are in the aggregated relation
or that all objects are related.

Let us consider the rough set standpoint and address the problem of com-
puting the lower and upper approximations generated by the aggregation of the
two relations R1�R2. First of all, let us note that the effect of not is to turn a
similarity relation into a preclusivity one (resp., equivalence into discernibility)
and vice versa. Then, generally speaking, it is not possible to use directly the
relation R1�R2 to compute approximations since it can be of none of the above
four kinds.

Example 4.2. Let us consider the information table of example 4.1. Then, we de-
fine R1= equivalence relation on the attributes {Temperature, Cold} and R2=
preclusivity relation consisting in having at least two (out of five) different at-
tributes. Clearly, we are able to compute the approximations with respect to R1

and R2 but not with respect to the relation R1 AND R2 = having equal values
for Temperature, Cold AND at least two different attributes.

So, the corresponding lower and upper approximations can only be obtained
by computing separately the approximations obtained by the two relations and
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then aggregating them by the set operation corresponding to �. That is, we can
give the following definitions

LR1ANDR2(X) := LR1(X) ∩ LR2(X) UR1ANDR2(X) := UR1(X) ∩ UR2(X)
LR1ORR2(X) := LR1(X) ∪ LR2(X) UR1ORR2(X) := UR1(X) ∪ UR2(X)

and similarly, xor is turned into union minus intersection, ≡ in intersection plus
the complement of the union.

Example 4.3. Let us consider the two relations of example 4.2 and the following
information table.

Table 1. Medical information table.

Patient Temperature Pressure Headache Cold Muscle Pain

p1 high normal yes yes yes
p2 high high no yes yes
p3 normal low yes no no
p4 very high normal yes yes no

Let us define the set of patients X = {p2, p3}. Then, we have LR1(X) = {p3},
UR1(X) = {p1, p2, p3}, LR2(X) = UR2(X) = {p2, p3}. So, LR1ANDR2(X) =
{p3}, UR1ANDR2(X) = {p2, p3}, LR1ORR2(X) = {p2, p3} and UR1ORR2(X) =
{p1, p2, p3}.

In this way we obtain a new tetrahedron where instead of the aggregation of
relation we have the aggregation of approximations. Contradiction and tautology
correspond to the emptyset and the whole universe, respectively.
Finally, we can give two interpretations to R1, R2 and their aggregation:

1. the relations represent the standpoint of two different agents with their own
knowledge about the same phenomenon. Then, by aggregation of the two
relations, we obtain an aggregation of their points of view. Thus, we are
in a situation similar to [11] with the difference that our relations are not
necessarily equivalence ones. In analogy to the work by Khan and Banerjee,
the approximations obtained by and of the two relations can be named
strong approximations and the one obtain by the or as weak approximations.

2. R1 and R2 correspond to a single agent having different requirements on dif-
ferent attributes. For instance, consider again the medical information table.
In this framework, an agent can ask for instance that two patients are in rela-
tion if they have same value for the attributes B1= {Headache, Muscle-Pain,
Cold} and similar values for B2={Temperature, Pressure}. This corresponds
to search for the pair xRB1

E y and xRB2
S y, RS needing to be properly defined.
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5 Conclusions

We have analyzed rough set theory in the light of the theory of oppositions.
Several kinds of opposition and their geometrical organizations can be laid bare.

New scenarios are also highlighted on the aggregation of two relations and on
the possibility that a single agent expresses different requirements on the same
data. One can also suppose to further generalize this approach to n relations. In
this case the number of possible connectives is 22n

(including contradiction and
tautology). The interpretation in rough sets is a clear extension of what is said
above: n agents or n different requirements from a single agent. On the contrary,
the geometrical organization of oppositions in this setting becomes problematic,
since the number of connectives would become intractable even for small values
of n.

Finally, we note that the hexagon and the cube of Figure 3 and 4 have
hexagon and cube counterparts in FCA (and possibility theory) in [9]. But as
explained in [9] they are not regular hexagon and cube (indeed, some links have
a different meaning) while in the rough set case the hexagon and the cube are
regular ones (in the sense of Blanché). This reveals that the structure of oppo-
sition in rough sets and FCA are different, which offers a new departure point
for comparing the two theories.
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