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We propose an extension of the resolution rule as the core of a logic programming language based
on similarity. Starting from a fuzzy unification algorithm described in Ref. 2 and then extended in
Ref. 10, we introduce a fuzzy resolution rule, based on an extended most general unifier supplied
by the extended unification algorithm. In our approach, unification fades into a unification degree
because of a similarity introduced in a first-order language. Intuitively, the unification degree of a
set of first-order terms is the cost one has to pay to consider these terms as equal. For this reason, our
extension of the resolution is more structured than its classic counterpart; that is, when the empty
clause is reached, in addition to a computed answer, a set of conditions is also determined. We
give both the operational and fixed-point semantics of our extended logic programming language,
and we prove their equivalence. © 2002 Wiley Periodicals, Inc.

1. INTRODUCTION

In the field of databases and information retrieval systems there is an ever-
increasing demand for systems able to deal with flexible queries and answers. De-
ductive databases, in particular, should cope with approximate inferences and more
flexible information retrieval methods. In this article, we extend the classic resolu-
tion, and consequently, the classic refutation, into a more structured process. This
extension is particularly significant when, in the classic case, a failure occurs. Such
a technique can be usefully exploited for query evaluation in deductive databases. In
our extended resolution, the classic unifier is replaced with a substitution obtained
by a similarity-based extension of a unification algorithm, in which a unifier is asso-
ciated with a set of conditions called clouds. Intuitively, a cloud is a set of elements
that can be considered similar to a certain degree.

We derive an extension of the resolution rule as a process that, starting with a
goal formula, as usual, collects a set of clouds stemming fromeach step of unification,
and determines the degree to which this set is transformed into a set of singletons.
This number is the degree of derivation of the goal formula. Through extended
unification and resolution, we developed an extended logic programming language
called Likelog.3 The extended resolution is used to provide the operational semantics
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of Likelog, and the extension principle described in Ref. 11 is used to define an
extension of the least fixed-point operator to give the fixed-point semantics. The
proof of the equivalence of the two semantics is also provided in this article.

This article is organized into the following sections. In Section 2, we define
the basic concepts, that is, similarity, clouds, and closure operators. In Section 3,
we describe our similarity-based unification algorithm. In Section 4, we introduce
an extension of the classic resolution rule and prove how it can be used to provide
the operational semantics. In Section 5, we provide a fixed-point semantics through
a similarity-based extension of the least Herbrand model. Finally, we outline how
it is possible to extend the question-and-answer process to a deductive database by
introducing similarity.

1.1. Related Works

Several fuzzy extensions of the resolution rule of Ref. 17 used in classic logic
programming have been proposed in the fuzzy context. The first work on fuzzy
resolution for a set of ground clauses was provided by Lee13; other extensions
of resolution in fuzzy logic can be found in subsequent works, as for example
Ref. 4, in which resolution has been generalized to clauses involving universally
quantified variables, and the problem of searching for the most informative proof
has been pointed out. In Refs. 16 and 18, a fuzzy resolution principle is defined
at first for propositional logic and then for first-order logic, with the proof of its
completeness, and the description of a fuzzy Prolog system based on it. An extension
of the resolution principle to possibilistic logic, in which clauses are weighted with
a degree that represents a possibilistic measure is described in Ref. 8. Resolution in
the context of possibilistic logic with fuzzy constants is discussed in Ref. 9, and in
Refs. 5 and 6, fuzzy resolution has been defined in the context of evidential logic.
In Ref. 20, a λ-resolution method is proposed and its completeness proven in the
context of operator fuzzy logic. Virtanen in Ref. 19 shows how SLD resolution used
in logic programming can be modified and used for linguistic logic programming,
in which variables can take fuzzy terms. This kind of resolution is based on the
notion of fuzzy equality. In Ref. 21, a refutation method based on tree resolution is
proposed in which truth values are assigned to the program clauses on the basis of
Lukasiewicz implication.

In most cases, the fuzzy extension of the resolution rule does not stem from a
fuzzy extension of the unification algorithm, and classic unification is used. In some
cases, it is necessary to use fuzzy unification methods, such as the one we describe
here.

2. SIMILARITY, CLOUDS, AND CLOSURE OPERATORS

The theoretical foundations of the fuzzy resolution that we propose are based
on the notion of similarity. Similarity is amany-valued extension of the classic notion
of equivalence, and it is strictly connected to the notion of a fuzzy subset: given a set
S, a fuzzy subset of S is a map s : S → [0, 1]. We denote the class of fuzzy subsets
of S as F(S).
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Let S be a non-empty set; we denote its power set by P(S). Given a fuzzy
subset s and λ ∈ [0, 1], we call the set C(s, λ) = {x ∈ S | s(x) ≥ λ} the closed cut of
level λ. A family of subsets, (Cλ)λ∈[0,1], of S is called a chain if for any µ, λ ∈ [0, 1],
the following properties are satisfied:

(1) C0 = S
(2) λ ≤ µ ⇒ Cλ ⊇ Cµ

A chain of sets is called continuous if:
(3)

⋂
λ≤µ

Cλ = Cµ

DEFINITION 1. A similarity on a set S is a fuzzy subset R of S× S such that, for
any x, y, z ∈ S, the following properties hold:

(1) R(x, x) = 1 (reflexivity)
(2) R(x, y) = R(y, x) (symmetry)
(3) R(x, z) ≥ R(x, y)∧R(y, z) (transitivity)

The symbols ∧ and ∨ correspond to the least upper bound (lub) and the great-
est lower bound (glb) operators, respectively. Definition 1 can be generalized by
replacing the minimum with any t-norm. Note that, in the case of the minimum, we
must pay attention to the context in which we apply similarity. To show this, suppose
that S is the set of integers, and R is a similarity such that R(x, x +1) ≥ 0.7, for
any x ∈ S. Then R(x, y) ≥ 0.7 for any x, y in S, and this could not be satisfactory.
Therefore, the use of the minimum is strictly dependent on the context, and other
kinds of t-norms must be considered if we want to avoid this fact.

Given a similarityR, we can associate to every non-empty set X of S a number
µ(X) expressing the extent to which all the elements in X are similar:

µ(X) =



∧
x,x ′∈X

R(x, x ′) if X �= ∅
1 otherwise

The number µ(X) is called the co-diameter of X . We call clouds the finite
subsets of S, and therefore we say that µ(X) is the co-diameter of the cloud X .
Intuitively, a cloud is a set of elements that can be considered as similar to one another.
For example, consider the set S = {rectangle, square, rhombus}, in which rectangle,
square, and rhombus indicate the corresponding well-known figures in the Euclidean
plane. We set R(rectangle, square) = 0.7, and R(square, rhombus) =R(rhombus,
rectangle) = 0.4. Therefore, the cloud {rectangle, square} indicates a set of plane
figures that are considered similar one another.

Another interesting way to consider clouds is in the framework of games.
Consider a two-player game in which a player P1 has a set of possible questions
{q1, q2, q3} and a player P2 has a set of possible answers {a1, a2, a3, a4}. Suppose
that the two sets are made up of elements of the same nature, and that a similarity,R,
is defined on them. Then, for any snapshot of the game, a cloud {ai , q j } is determined,
and it can be considered as the conditions of the agreement of the two players, and
the co-diameters of the cloud express such a degree.
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A system of clouds is a finite set of clouds. Given a system of clouds Z =
{X1, . . . , Xn}, we call the co-diameter of Z the number:

ξ(Z) =
n∧

i=1

µ(Xi )

We use the term co-diameter because the function R′(x, y) = 1−R(x, y) is
a distance for which the related diameter is given by 1−µ(X) = ∨x,y∈XR′(x, y).
The following properties of µ are given:

PROPOSITION 1. Let {Xi }i=1...n be a finite sequence of clouds such that, for any
i = 1 . . . n−1, Xi ∩ Xi+1 �= ∅:

µ

(
n⋃

i=1

Xi

)
=

n∧
i=1

µ(Xi )

Moreover, assume that X �= ∅ and c ∈ X. Then:

µ(X) =
∧
x∈X

R(x, c)

Proof. Clearly,
∧

x∈X R(x, c) ≥ µ(X). Moreover, for any x, y ∈ X :

R(x, y) ≥ R(x, c)∧R(c, y) ≥
∧
x∈X

R(x, c)

Therefore:

µ(X) ≥
∧
x∈X

R(x, c)

Given two clouds M and M ′, we say that M and M ′ overlap if M ∩M ′ �= ∅.

DEFINITION 2. We say that a fuzzy subset s is extensional with respect to a similarity
R provided that, for any x, y ∈ S:

s(x)∧R(x, y) ≤ s(y)

Definition 2 is a many-valued version of the claim “if x satisfies the property P
and x is equal to y, then y satisfies property P, too.”

2.1. An Operator over Systems of Clouds

We now introduce a generalization of an operator described in the unification
algorithm of Ref. 15. We say that a system of clouds Z is compact if its elements
are pairwise disjoint, that is, they do not overlap. We define an operator to obtain a
compact system of clouds.
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DEFINITION 3. Let Z = {M1, . . . , Mn} be a system of clouds. The following is an
operator on the clouds of Z :

TZ (M) =
⋃

M ′∩M �=∅,M ′∈Z
M ′

The extension of TZ to a system of clouds is as follows:

T (Z) = {TZ (M) | M ∈ Z}
The operator T does not change the co-diameter of a system of clouds and can

be iterated in the usual manner, by setting T 0(Z) = Z and T n+1(Z) = T (T n(Z)) for
any integer n ≥ 1.

DEFINITION 4. Let Z be a system of clouds. We define the degree, ϕ(Z), of the
system Z as follows:

ϕ(Z) = min
n

{T n(Z) = T n+1(Z)}
Since Z is a system of finite clouds, the degree of Z is a finite non-negative

integer. Obviously, if Z is a compact system of clouds, ϕ(Z) = 0 and Z is a fixed-
point of T .

DEFINITION 5. Let Z be a system of clouds. The operator Compact is defined as
follows:

Compact(Z) = T ϕ(Z)(Z)

By the definition of ϕ(Z), the operator Compact transforms a system of clouds
into a compact system. With respect to its classic counterpart, our Compact operator
acts on systems of clouds and involves constants, too.

The following proposition describes some important properties of Compact.

PROPOSITION 2. Let Z be a system of clouds. Then:

(1) ξ(Compact(Z)) = ξ(Z)
(2) Compact(Compact(Z)) = Compact(Z)

Proof. Property (1) is immediate by the definition of the co-diameter and Propo-
sition 1.

Property (2) is immediate, because Compact(Z) is compact.

Properties above will be used in the definition of extended resolution.

2.2. An Extension Principle for Fuzzy Closure Operators

As with the classic case, we use fuzzy closure operators to provide a fixed-point
semantics for our extended logic programming language.
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A closure operator on S is any map F :P(S) → P(S) such that, for any X, Y ∈
P(S), F(X) ⊇ X; X ⊇ Y ⇒ F(X) ⊇ F(Y ); F(F(X)) = F(X).

A family (Jλ)λ∈[0,1] of closure operators on S is called a chain (or a continuous
chain), if for every X ⊆ S, (Jλ(X))λ∈[0,1] is a chain (or a continuous chain) of subsets.

A fuzzy extension of the notion of closure operator is defined accordingly.

DEFINITION 6. A fuzzy operator on S is any map J :F(S) → F(S). A fuzzy closure
operator on S is a fuzzy operator on S such that, for any s, s ′ ∈ F(S):

(1) J (s) ⊇ s (inclusion)
(2) J (s ′) ⊆ J (s) if s ′ ⊆ s (monotony)
(3) J (J (s)) = J (s) (idempotence)

There is a close connection between classic closure operators and their fuzzy
counterparts. In particular, the following theorem proven in Ref. 11 exploits an
extension principle that allows the straightforward extension of any classic operator.

THEOREM 1. Let (Jλ)λ∈[0,1] be a chain of closure operators on S and let J be the
fuzzy operator on S defined by setting, for any s ∈ F(S) and y ∈ S:

J (s)(y) = sup{λ ∈ [0, 1] | y ∈ Jλ(C(s, λ))}
Then J is a fuzzy closure operator.

A fuzzy closure operator that is obtained by applying the extension principle
to a chain of classic closure operators is called stratified.

If (Rλ)λ∈[0,1] is a family of equivalence relations on S such that R0 = S and
Rλ ⊆ Rλ′ if λ′ ≤ λ, then for any λ ∈ [0, 1], the operator Hλ(X) = {y ∈ S | y Rλ x
for some x ∈ X} is a closure operator on S, and for every X ⊆ S, (Hλ(X))λ∈[0,1] is a
chain of subsets. Therefore, Hλ is a chain of closure operators on S and the following
fuzzy operator H on F(S) defined by setting, for any s ∈ F(S), is a stratified fuzzy
closure operator on S:

H(s)(y) = sup{λ ∈ [0, 1] | y ∈ Hλ(C(s, λ))}

3. A SIMILARITY-BASED UNIFICATION ALGORITHM

Our investigation follows two paths: we first define an extended unification
theory that is based on the fuzzification of the meta-logical notions of its classic
analog, then we extend the unification algorithm of Ref. 15 and show that this
algorithm is correct, that is, it produces an extended most general unifier as output.

We use a similarity to extend the first-order unification and resolution. To do
that, let L be a classic first-order language; we also denote:

• V as the set of variables
• C as the set of constants
• P as the set of predicate symbols
• TV,C as the set of terms, that is, the set V ∪C
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We expand the language L into the language L′, for which the set of constants
is the set C ′ = P(C)−{∅}, which is called the set of extended constants.

We denote the set of extended terms, or e-terms, by TV,C′ , that is, the set V ∪C ′.
An extended substitution (for short, an e-substitution) is a map θ : V → TV,C′, and
we denote the set of e-substitutions by 
. An atomic extended formula, or atomic
e-formula, is an expression of the type p(t1, . . . , tn), where p ∈ P and ti ∈ TV,C′ for
any i = 1, . . . , n. Finally, an extended equation, or e-equation, is an expression of
the type A = B, where A and B are atomic e-formulae with the same arity.

We identify any constant c in C with the singleton {c} in C ′. Given two simi-
larities over P and C, denoted respectively as RP and RC , we define a similarity R
on P ∪C∪V in the following way:

R = RP ∪RC ∪RV

where RV is a similarity on V defined as follows:

RV(x, y) =
{

1 if x = y

0 otherwise

Given a system of e-equations, S, and an e-substitution, θ , we define the unifi-
cation degree of S with respect to θ by the expression:

ν(S, θ) =
∧

e=e′∈S
r(θ(e) = θ(e′))

where, if e = p(t1, . . . , tn) and e′ = q(t ′1, . . . , t
′
n),

r(θ(p(t1, . . . , tn)) = θ(q(t ′1, . . . , t
′
n))) =

∧
i=1,...,n

R(p, q)∧R(θ(ti ), θ(t ′i ))

DEFINITION 7. Given a system of e-equations, S, we define the unification degree
of S by the following expression:

U (S) =
∨
θ∈


ν(S, θ)

Given a system of clouds, Z , in TV,C of the kind {M1, . . . , Mn}, we write
a generic cloud M in Z in the form X �D, where X = M ∩V and D = M ∩C.
Analogously, given an e-substitution, θ, by θ(M) we denote the cloud

⋃
x∈X θ(X)�

D, identifying a variable y with its singleton {y} where necessary.
An extendedunifier (e-unifier) of a systemof e-equations, S, is an e-substitution,

γ , such that ν(S, γ ) =U (S).
To any compact system of clouds, Z , in TV,C , we associate an e-substitution,

θZ , defined as follows:

θZ (x) = x if x /∈ M1 ∪· · ·∪Mn

θZ (x) = Mi ∩ C, provided that x ∈ Mi and Mi ∩ C �= ∅
θZ (x) = x j (i), provided that x ∈ Mi , Mi ∩ C = ∅ and x j (i) is a variable in Mi
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As an example, we can assume that x j (i) is the first variable in the sequence
x1, x2, . . . , belonging to Mi , provided that an order relation exists on V .

To define our unification algorithm, we introduce some other operators and
functions.

Given a cloud X �D, we set Ground(X �D) = D, and given a set of clouds
Z , we set:

Ground(Z) = {Ground(M) | M ∈ Z}
Let t and t ′ be two clouds; then t �̇ t ′ is a cloud defined as follows:

t �̇ t ′ =



t ∪ t ′ if t and t ′ ∈ C ′

{t}∪ t ′ if t ∈ V, t ′ ∈ C ′

{t ′}∪ t if t ∈ C ′, t ′ ∈ V
{t, t ′} if t, t ′ ∈ V

Now we consider two functions Trans t and Trans p transforming a system of
e-equations into systems of clouds in C∪V and P , respectively.

We use the following functions:

Split t (p(t1, . . . , tm) = q(t ′1, . . . , t
′
m)) = {t1 �̇ t ′1, . . . , tm �̇ t ′m}

Split p(p(t1, . . . , tm) = q(t ′1, . . . , t
′
m)) = {p, q}

If S = ⋃n
i=1{ei = e′

i }, we set:

Trans t (S) =
⋃

i=1...n

Split t (ei = e′
i )

Trans p(S) =
⋃

i=1...n

Split p(ei = e′
i )

We associate an e-substitution to any compact system Z by setting
Assoc sub(Z) = θZ .

For a given system of e-equations S, let:

θS = Assoc sub(Compact(Trans t (S)))

We now give a set of definitions and results used to prove the fundamental
theorem from which our extended unification algorithm has been derived.

DEFINITION 8. Given a system of clouds, Z , the unification degree of Z with respect
to an e-substitution, θ, is defined by ν(Z , θ) = ξ(θ(Z)). We define the unification
degree of Z by the following expression:

U (Z) =
∨
θ∈


ν(Z , θ)

If U (Z) �= 0, an e-unifier of Z is an e-substitution, θ, such that ν(Z , θ) =U (Z).

The proof of the following proposition is immediate.
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PROPOSITION 3. Let Z be a compact system of clouds such that U (Z) �= 0. Then
Assoc sub(Z) is an e-unifier of Z , and we have:

U (Z) = ξ(Ground(Z))

Proof. For any e-substitution, θ :

ξ(θ(Z)) =
∧

X�D∈Z
µ(θ(X �D)) ≤

∧
X�D∈Z

µ(D) = ξ(Ground(Z))

Since ξ(Assoc sub(Z)(Z)) = ξ(Ground(Z)), the thesis follows.

PROPOSITION 4. Let Z be a system of clouds. Then, for any e-substitution, θ, we
have:

ξ(θ(Compact(Z))) = ξ(θ(Z))

Proof. We first prove that

ξ(θ(T (Z))) = ξ(θ(Z)) (1)

We begin by proving that, for i = 1, . . . , n,

µ(θ(TZ (Mi ))) ≥ ξ(θ(Z)) (2)

Indeed, because from Mi ∩ Mj �= ∅ we have that θ(Mi ) ∩ θ(Mj ) �= ∅, by
Proposition 2:

µ(θ(TZ (Mi ))) = µ


θ


 ⋃

Mj∩Mi �=∅
Mj







= µ


 ⋃

Mj∩Mi �=∅
θ(Mj )


 =

∧
Mj∩Mi �=∅

µ(θ(Mj ))

≥
n∧

i=1

µ(θ(Mi )) = ξ(θ(Z))

That proves the inequality in Equation 2.
From Equation 2, it follows that:

ξ(θ(T (Z))) =
n∧

i=1

µ(θ(TZ (Mi ))) ≥ ξ(θ(Z))

On the other hand, because for any i = 1, . . . , n, Mi ⊆ TZ (Mi ),

ξ(θ(Z)) =
n∧

i=1

µ(θ(Mi )) ≥
n∧

i=1

µ(θ(TZ (Mi )) = ξ(θ(T (Z)))

This completes the proof of Equation 1.
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We proceed by induction on the T -degree �(Z) of Z .

• If �(Z) = 0, then Z is compact and therefore the thesis follows.
• If �(Z) = n, then �(T (Z)) = n−1.

Therefore, by induction hypothesis:

ξ(θ(Compact(T (Z)))) = ξ(θ(T (Z)))

Since Z has T -degree n,

Compact(Z) = T n(Z)

= T n−1(T (Z)) = Compact(T (Z))

Then, by Equation 1, ξ(θ(Compact(Z))) = ξ(θ(Z)).

Now we are ready to prove that the unification degree of a system of clouds or
e-equations is an invariant with respect to the transformations Compact Trans t and
Trans p, as stated by the following theorem.

THEOREM 2. Let S be a system of e-equations. Then, for any extended substitution,
θ, we have:

(1) ν(S, θ) = ν(Trans t (S), θ)∧ ξ(Trans p(S))

and therefore:

(2) ν(S, θ) = ν(Compact(Trans t (S)), θ)∧ ξ(Compact(Trans p(S))).

Proof. (1) Observe that, if e = p(t1, . . . , tn) and e′ = q(t ′1, . . . , t
′
n) then, since

Split t (θ(ei ) = θ(e′
i )) = θ(Split t (ei = e′

i )), for any i = 1, . . . , n, we have:

eq(θ(e), θ(e′)) =
(

n∧
i=1

µ(θ(ti ) �̇ θ(t ′i ))

)
∧ eq(p, q)

=
(

n∧
i=1

µ(θ(ti �̇ t ′i ))

)
∧ eq(p, q)

= ξ(θ(Split t (e = e′)))∧ ξ(Split p(e = e′))

Therefore:

ν(S, θ) =
∧

e=e′∈S
eq(θ(e), θ(e′))

=
∧

e=e′∈S
ξ(θ(Split t (e = e′)))∧

∧
e=e′∈S

ξ(Split p(e = e′))

= ξ

(
θ

( ⋃
e=e′

Split t (e = e′)

))
∧ ξ

( ⋃
e=e′

Split p(e = e′)

)

= ξ(θ(Trans t (S)))∧ ξ(Trans p(S))

(2) Follows immediately from (1) and Proposition 4.
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We can now state our main result, used to derived the similarity-based unifica-
tion algorithm.

THEOREM 3. Let S be a system of e-equations such that U (S) > 0. Then:

(1) U (S) = ξ(Ground(Compact(Trans t (S))))∧ ξ(Trans p(S))
(2) θS is an e-unifier for S

Proof. An immediate consequence of Theorem 2 and Proposition 3.

Indeed, the above theorem assures that an extended unifier can be computed
by our extended unification algorithm. In fact, by property (1), given a system S
such that U (S) > 0, we can obtain an e-unifier of S by computing the value of the
function Assoc sub(Compact(Trans t (S))).

In order to provide an extension of the most general unifier, we proceed as
follows. Let M and M ′ be two clouds; we write M ∼=λ M ′ if µ(M ∪M ′) ≥ λ. Given
two e-substitutions θ and θ ′, we write θ ∼=λ θ ′, provided that θ(x) ∼=λ θ ′(x) for any
x ∈ V . We have the following definition.

DEFINITION 9. An e-substitution γ is called an extended most general unifier
(e-mgu) for a system of e-equations, S, if γ is an e-unifier of S and for any
e-unifier, θ, of S, θ ∼=U (S) τγ for some e-substitution τ .

Note that ∼=U (S) is an equivalence relation among e-unifiers of S.
It is proven that, if U (S) > 0, then θS is an e-mgu for S.10 As a consequence,

an e-mgu can be computed by the extended unification algorithm described above.

4. A SIMILARITY-BASED RESOLUTION RULE

Our definition of extended resolution starts from a straightforward extension of
the classic SLD resolution for definite Horn clauses, as in Ref. 1. A definite (logic)
program P is a finite set of definiteHorn clauses. An extended resolvent (e-resolvent)
is an e-formula of the kind A1 ∧· · ·∧ Ak , (for short, A1, . . . , Ak) in which each Ai

is an atomic e-formula. If k = 0, we say that the e-resolvent is empty. Given an
e-substitution, θ , we indicate the formula θ(A1)∧· · ·∧ θ(Ak) by θ(A1 ∧· · ·∧ Ak).

As usual, a variant of a clause C in a definite program P is a renaming of the
free variables occurring inC . In the following definition we introduce our similarity-
based resolution rule.

DEFINITION 10. Let P be a definite program, N = A1 ∧· · ·∧ Ak an e-resolvent,
and C = A ← B1, . . . , Bn a variant of a clause in P. The e-resolvent N ′ = θ(A1 ∧
· · ·∧ Ai−1 ∧ B1 ∧· · · Bn ∧ Ai+1 ∧· · ·∧ Ak) is called an e-resolvent of N and C with
e-mgu θ and a set of conditions Cond, provided that, for some i ∈ {1, . . . , n}, the
e-formula Ai unifies with the atomic e-formula in the head of C according to the
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similarity-based unification (described in Section 3), yielding an e-mgu θ and a set
of conditions Cond expressed as:

Cond = Ground(Compact(Trans t (S))∪Compact(Trans p(S))

where S = {A = Head(C)}.

We are now ready to give the following definition of the extended SLD
derivation.

DEFINITION 11. Let P be a definite program and let N be an e-resolvent. An
extended SLD derivation of P ∪{N }, or for short, e-SLD derivation, is a maximal
sequence Ni of e-resolvents, a sequence Ci of variants of clauses, a sequence θi
of e-substitutions, a sequence Si of systems of e-equations, and a sequence Ci of
systems of clouds, such that, for any i :

• N0 = N .
• Ni+1 is an e-resolvent of Ni and Ci , with θi as e-mgu, and Ci is a set of conditions.• Si = {Ai = head(Ci )}, where Ai is an atomic e-formula in Ni and head(Ci ) is the atomic
formula in the head of the clause Ci .• Ci = Ground(Compact(Trans t (Si ))∪Compact(Trans p(Si )).• θi is an e-mgu of the system of Si obtained by setting θi = θSi .• Ci has no variable in common with N0,C0, . . . ,Ci−1.

The clauses Ci are called input clauses, as usual.
If, for some integer n̄, Nn̄ is empty, then the e-SLD derivation ends and is called

an e-SLD refutation. In this case, the set
⋃

i=1,...,n̄ Ci is called the conditions set of
the e-SLD refutation. The restriction of the e-substitution θn̄ ◦ θn̄−1 ◦ . . . θ1 to the
variables in N is called the e-computed answer substitution for P ∪{N }.

If an e-SLD derivation is finite and is not an e-refutation, it is called a failed
derivation.

DEFINITION 12. Given an e-refutation rP,N of P ∪{N } ending after n̄+1 resolution
steps, we define the degree of the e-refutation of P ∪{N } as h(rP,N ), and denote it
as follows:

h(rP,N ) = ξ

(
Compact

( ⋃
i=0,...,n̄

Ci
))

In the following, we give an example of an e-SLD refutation.

Example 1. Let P be the following program:

p(x) ← q(x), r(x)

q ′(a)
r ′(b)
k(a)
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Let N0 = {p(x)}; then we have the following e-SLD derivation of P ∪{N }:

N0 = p(x)

C0 = p(x1) ← q(x1), r(x1)

θ0 = {x → x1}
S0 = {p(x) = p(x1)}
C0 = {{p}}
N1 = q(x1), r(a)

C1 = q ′(a)
θ1 = {x1 → a}
S1 = {q(x1) = q ′(a)}
C1 = {{q, q ′}}
N2 = r(a)

C2 = r ′(b)
θ2 = {}
S2 = {r(a) = r ′(b)}
C2 = {{r, r ′}, {a, b}}
N3 = []

In this case, the e-SLD resolution chain is an e-refutation, and the e-computed
answer substitution of the e-refutation is:

θ = {x → {a, b}}

The degree of the e-refutation is:

ξ

(
Compact

( ⋃
i=0,...,4

Ci
))

= ξ({{q, q ′}, {r, r ′}, {a, b}})

This means that the cost to turn the clouds {a, b}, {q, q ′}, and {r, r ′} into a set
of singletons, transforming the e-refutation into a classic refutation, is given by
ξ({{q, q ′}, {r, r ′}, {a, b}}).

Note that an e-resolvent, N , can have several distinct e-refutations with respect
to the same definite program, P.

DEFINITION 13. Let �(P, N ) be the set of e-refutations of P ∪{N }. We say that
an e-resolvent, N , is derivable from P with degree λ if:

λ =
∨

r∈�(P,N )

h(r)
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Recalling that a ground formula is a formula with no variables, we can define a
fuzzy subset,DP , of atomic ground formulae by setting, for any atomic e-formula A:

DP(A) =
∨

r∈�(P,A)

h(r)

DP can be seen as the fuzzy subset of the logical consequences of a definite
logic program P . It can be viewed as the extension of the operational semantics of
our logic programming system based on similarity. An e-refutation is called ground
if all its resolvents are ground.

The following theorem is an immediate generalization of the classic case.

THEOREM 4. Let G be a ground atomic formula. For any e-refutation r in�(P,G)

there exists a ground e-refutation r ′ in �(P,G) such that h(r) = h(r ′).

Proof. Let r = (Ni , θi , Si , Ci ) be an e-refutation of G, let θ be the e-computed
answer of r, and let τ be an e-substitution defined as follows:

τ(x) =
{

θ(x) if θ(x) is an extended constant

a /∈ C ′ otherwise

We set r ′ in the following way:
N ′
i = τθ(Ni )

S′
i = τθ(Si )

C ′
i = Ground(Comp(Trans t (S′

i )))∪Ground(Comp(Trans p(S′
i )))

θi = ε

It is easy to see that r ′ is an e-refutation of G with respect to P such that
h(r ′) = h(r).

We extend the similarity R to the set of atomic e-formulae by setting, for any
α, β:

R(α, β) =




n∧
i=1

R(ti , t
′
i )∧R(p, p′) if α = p(t1, . . . , tn)

β = p′(t ′1, . . . , t
′
n)

0 otherwise

On account of the theorem above, we can prove the following lemma.

LEMMA 1. Let G and G ′ be two ground atomic formulae; for any r ∈ �(P,G)

there exists an e-refutation r ′ in �(P,G ′) such that:

h(r ′) ≥ R(G,G ′)∧h(r)

Proof. Let r be an e-refutation of G. On account of Theorem 4, we can consider r
as ground. Let h(r) = R(G,C)∧ ξ(C), whereC is the head of a ground instantiation
of clause in P and C is a suitable set of conditions. By replacing the first resolvent
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N0 in r with G ′, we get a ground e-refutation r ′ such that:

h(r ′) = R(G ′,C)∧ ξ(C) ≥ R(G,G ′)∧R(G ′,C)∧ ξ(C)

= R(G ′,G)∧h(r)

Hence,

h(r ′) ≥ R(G,G ′)∧h(r)

Now we can prove the following property.

PROPOSITION 5. DP is extensional with respect to the similarityR; that is, for any
pair of atomic ground formulae α and β:

DP(α) ≥ R(α, β)∧DP(β)

Proof. Let α and β be two atomic ground formulae. Let r ∈ �(P, α). On account
of Lemma 1, there is an e-refutation r ′ of β such that:

DP(β) ≥ h(r ′) ≥ h(r)∧R(α, β)

Therefore, considering the supremum of h(r) over �(P, α) we have:

DP(β) ≥ DP(α)∧R(α, β)

The proposition above is the many-valued interpretation of the fact that, if a
formula β is derivable from the program P and α = β, then β is derivable from
α, too.

5. SIMILARITY-BASED HERBRAND MODELS

Extended SLD resolution can be used as the operational semantics of a
similarity-based logic programming language, and the fixed-point semantics is given
by the extension of the least Herbrand model of a program. We prove that the exten-
sion of the least Herbrand model of a program P , obtained through the application
of the extension principle given in Section 2, coincides with the fuzzy set of ground
facts that are derived by extended refutations.

Recall that the Herbrand universe and the Herbrand base of a program, P ,
denoted by UP and BP , are the set of ground terms and the set of ground atomic
formulae of P , respectively. We denote the set of ground atomic formulae of P as
Fact(P). We call any fuzzy subset s of BP the fuzzy Herbrand model of P .

Using the operator Hλ defined in Section 2.2, we define the following family
of operators (TP,λ)λ∈[0,1] on BP :

TP,λ(X) = Hλ(X)∪Fact(P)∪{β|
β ← B1, . . . , Bn ∈ |P|, B1, . . . , Bn ∈ X}

Where |P| is the set of ground instantiations of the clauses in P . The operator
T n
P,λ is defined as usual: T 0

P,λ = i , and for any integer i , T n
P,λ = TP,λ(T

n−1
P,λ ).
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For example:

T 1
P,λ(∅) = Fact(P)

T 2
P,λ(∅) = Hλ(Fact(P))∪{β|

β ← B1, . . . , Bn ∈ |P|, B1, . . . , Bn ∈ Fact(P)}
T 3
P,λ(∅) = Hλ

(
T 2
P,λ(∅)

)∪{
β | β ← B1, . . . , Bn ∈ |P|, B1, . . . , Bn ∈ T 2

P,λ(∅)
})

Obviously, for any λ ∈ [0, 1], TP,λ is a continuous operator.

DEFINITION 14. Let P be a definite program. Let λ ∈ [0, 1]. The family of operators
JP,λ : P(BP) → P(BP) is defined by setting, for any X ∈ P(BP):

JP,λ(X) =
⋃
n∈N

T n
P,λ(X)

On account of Theorem 1, the following fuzzy operator on F(BP) defined by
setting, for any s ∈ F(BP) and for any y ∈ s, is a stratified fuzzy closure operator:

JP(s)(y) = ∨{λ ∈ [0, 1] | y ∈ JP,λ(C(s, λ))}

DEFINITION 15. Let P be a definite program.We define the extended least Herbrand
model of P as, the fuzzy subset JP(∅) and denote it MP.

Wenowprove that for a definite program, P , the extended least Herbrandmodel
is equal to the fuzzy subset DP of the e-refutations.

THEOREM 5. Let P be a definite program. Then:

MP = DP

Proof. We prove that, for any λ ∈ [0, 1],

C(DP , λ) = JP,λ(∅)

Namely, C(DP , λ) ⊇ JP,λ(∅) and C(DP , λ) ⊆ JP,λ(∅).

⊇ Suppose that a formula α is in JP,λ(∅). Then a minimum integer nα exists
such that α ∈ T nα

P,λ(∅). We proceed by induction on nα:

• Suppose that nα = 1. Then, if α ∈ TP,λ(∅) = Fact(P), there exists a classic refutation of
α. Therefore, α ∈ C(DP , λ) for any λ ∈ [0, 1].

• Suppose the thesis to be true for nα ≤ m−1. We prove that, if α ∈ Tm
P,λ(∅), then α ∈

C(DP , λ). Since Tm
P,λ(∅) = Hλ(T

m−1
P,λ (∅))∪{β | β ← B1,...,Bn ∈ |P|, B1,...,Bn ∈ Tm−1

P,λ (∅)},
then two cases are possible:
(1) α ∈ Hλ(T

m−1
P,λ (∅)), or

(2) α ∈ {β ← B1,...,Bn ∈ P, B1,...,Bn ∈ Tm−1
P,λ (∅)}.

In case (1), there exists a formulaβ ∈ BP such thatβ ∈ Tm−1
P,λ (∅) andR(α, β) ≥

λ. By induction hypothesis, β ∈ C(DP , λ). Therefore,DP(β) ≥ λ. By the extension-
ality of DP ,DP(α) ≥ R(α, β)∧DP(β) ≥ λ. Therefore, α ∈ C(DP , λ).
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In case (2), there exists a ground instantiation α ← B1,...,Bn of a clause in P
such that B1,...,Bn ∈ Tm−1

P,λ (∅). By induction hypothesis, B1,...,Bn ∈ C(DP , λ). Conse-
quently, for any i = 1, . . . , n, there exists an e-refutation ri of the e-formula Bi such
that h(ri ) ≥ λ. Therefore, the sequence (ri )i=1,...,n ∪α ← B1,...,Bn is an e-refutation,
γ , of α such that h(γ ) = ∧

i=1,...,n h(ri )∧1 ≥ λ. The thesis follows immediately.
⊆ For any λ ∈ [0, 1], we set two equivalence relations, Rλ,C and Rλ,P , on C

and P , respectively, as follows: for any c, c′ ∈ C and p, p′ ∈ P:

cRλ,C c′ if RC(c, c′) ≥ λ

pRλ,P p′ if RP(p, p′) ≥ λ

Let Cλ = C/λ and Pλ = P/λ, and let Lλ be the related first-order language; then, for
any formula α in L, we denote αλ in the following way:

αλ = p̄(t̄1, . . . , t̄n) if α = p(t1, . . . , tn) ∈ L, p̄ ∈ Pλ, t̄i ∈ Cλ for any i

Therefore, we can establish a natural correspondence between L and Lλ. As
a consequence, to any definite program P in L, there corresponds a program Pλ in
Lλ such that, denoting by DPλ

and JPλ
(∅) the success set and the least-fixed point

of Pλ, respectively, we have:

α ∈ C(DP , λ) ⇒ αλ ∈ DPλ

αλ ∈ JPλ
(∅) ⇒ α ∈ JP,λ(∅)

Hence, by a result proven in Ref. 12, we have:

α ∈ C(DP , λ) ⇒ αλ ∈ DPλ
⇔ αλ ∈ JPλ

(∅) ⇒ α ∈ JP,λ(∅)

Through Theorem 5, we give the completeness result, which proves the coincidence
of the operational and fixed-point semantics of our extended logic programming
language.

6. INTRODUCING SIMILARITY IN A DATABASE

Deductive databases can be viewed as information retrieval systems in which
knowledge is stored both explicitly, through facts, and implicitly, through a set of
rules. Data are extracted through a query evaluation method. Our main goal in the
study of similarity-based unification is the quest to develop systemmodels capable of
giving a flexible answer to a query. This is the premise of fuzzy logic programming.

As an example, consider the following program P that would reference a
database of books that would be classified on two features. The books would be
classified by genre and cost. Sample classifications might be:

adventurous(isle of treasure)
adventurous(murder on orient express)
war(operation overlord)
not expensive(isle of treasure)
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best seller(operation overlord)
adventurous(james bond)
cost(isle of treasure,6)
cost(the fly,9)
good(X) :- interesting(X),cheap(X)
cheap(X) :- cost(X,L), L <= 10

The goal “good”(X) has no classic solution in an ordinary program, because no
element in the database unifies with the conclusion “interesting”(X). Nevertheless, it
seems reasonable to consider the constants “interesting” and “adventurous” as “sim-
ilar” to a certain degree. Similarly, one would generally consider “not expensive”
and “cheap” as similar.

To address this shortcoming,we could provide P with the following evaluations
based on the degree to which they relate:

R(adventurous,interesting)=0.9
R(adventurous,horror)=0.7
R(war,interesting)=0.7
R(good,best seller}=0.8
R(cheap,not expensive)=1

The query “good(X)” can be evaluated with a similarity-based derivation, giv-
ing as a result the answer X→ James Bond, provided that “adventurous” is similar
to “interesting.”

Under the same constraints, the following answers are acceptable:

X → isle of treasure
X → murder on orient express

The answer X → isle of treasure could be acceptable provided that “cheap” is
considered to be synonymous with “not expensive” as well.

The answer X → operation overlord could be obtained in two ways: one
can consider “interesting” and “war” as similar, or one can consider “good” and
“best seller” as similar. In this case, the degree of the answer is the maximum of the
degree of similarity among the two pairs of terms, that is, 0.9.

We must observe that the predicate “good” does not stand for an absolute or
objective judgment on the quality of a book. Ultimately, the subjective nature of the
program cannot be avoided, as it is up to the holder of the library, or to the user
of the database, to formulate the similarity. Thus, the predicate “good” might mean
“good for me”, or “good for the user,” accordingly, and depending on the manner
in which evaluations are assigned to the parameters that might be used to identify
the books or other identified elements of the database.

The same result can be achieved computing the value assumed by the fuzzy
subset JP(∅) on the corresponding atomic formula. Indeed, for any λ ≤ 0.9, we have
that: good(isle of treasure)∈ Hλ(Fact(P)).

Since cost(isle of treasure,6)∈ Hλ(Fact(P)), it follows that:

good(isle of treasure) ∈ JP,λ(∅) for any λ ≤ 0.9
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As a consequence:

JP(∅)(good(isle of treasure) = DP(good(isle of treasure)) = 0.9

Hence, as asserted in Theorem 5, we have that the degree of refutation of
the formula good(isle of treasure) is equal to the degree of membership of
good(isle of treasure) to the fuzzy least Herbrand model of P .

The example above could be more structured by introducing a similarity not
only on predicates, but also on constants. For example, one can define the predicate
costs(book,N) and set a similarity over the integer numbers.

6.1. The Choice of a Suitable t-Norm

It must be observed that, as mentioned earlier in Section 2, the t-norm of the
minimum is not always the best choice for modeling users’ preferences.

For example, let us consider the case in which a user thinks that “thriller”
and “horror” are two completely different literary genres. In this case, the user will
reasonably assume that R(thriller, horror) = 0. According to the minimum, this will
imply that R(thriller, adventurous) =R(horror, adventurous) = 0, which does not
seem plausible.

The reason for this problem is due to the use of the t-norm of the minimum.
If we adopt the Lukasiewicz t-norm, then we could set R(thriller, horror) = 0 and
nevertheless defineR(thriller, adventurous) =R(horror, adventurous) = 0.3. This is
more reasonable, because a user that chooses the Lukasiewicz t-norm might be seen
as someone that doesn’t see things “similar” beyond a certain threshold, but similar
only in a certain context.

7. CONCLUSIONS

In this article, we have described a new kind of fuzzy resolution based on
similarity. We introduced a similarity in a first-order language, and then, starting
from the extension of unification theory, proposed an extended resolution rule. This
constitutes the kernel of a fuzzy logic programming language, called Likelog, and
we provided the operational and declarative semantics of this language.

We are planning to use other t-norms for the similarity, such as the natural
product in [0, 1] and the Lukasiewicz sum. We have not considered the class of
fuzzy Herbrand models as a fuzzy semantics. To go in this direction, it should be
necessary to extend a fuzzyHerbrandmodel to thewhole set of formulae in a program
P . We showed an example in which we exploit similarity for flexible data retrieval
in deductive databases; our system can be used in several other fields as well, such as
in information filtering and evaluation, distributed data mining, and digital libraries.
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