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INTRODUCTION 8

Introduction

When skewed distributions such as consumptions and incomes are studied, the

median is considered the more appropriate measure of location .

The literature with regard to the estimation of the median is less extensive

than the studies regarding the mean. Moreover the estimation of the median

usually does not consider the use of axiliary variables.

In the present study the estimation of the median has been taken into consid-

eration using di�erent methods of analysis.

First of all the estimation of the median without auxiliary information is an-

alyzed. Then the method of Kuk and Mak proposed in 1989 is exposed: this way

of estimating the median is based on the knowledge of the population median of

auxiliary variable X. Another method, which considers the median of the auxil-

iary variable is the ratio estimator. Then two methods based on the regression

estimator are analyzed : the �rst one considers the regression based on the median

regression, the second one is based on the minimum square method.

Two experiments have been carried out in order to compare the methods pro-

posed. First of all the methods are compared selecting all possible samples from

nine di�erent small populations.

The second application is based on the selection of couples of random numbers

from a bivariate random variable distributed as a Bivariate Log-Normal distribu-

tion. Also in this situation the methods of estimation of the median are compared

considering the expected values and mean square errors.



CHAPTER 1

Median of a character of a population

The median Me is an index of position and is the central value of the distri-

bution when the data is sorted. Speci�cally:

given a set of N units ordered x(1), x(2), ...x(N) (ordered according to a char-

acter), the median is presented by the central modality, where the central unit

means the collective unity that divides into two equal parts : one part consisting

of the units having a modality lower than or equal to the central unit and one

part formed by units that have a modality greater than or equal to the central

unit.

To calculate the median, it is necessary for the variable to be quantitative or

qualitative in non-decreasing ordered; the method of determination of the median

varies according to the type of character and distribution.

Example1. Calculation of the median of the heights (in meters) of 5 students:

1.75 1.72 1.68 1.74 1.80.

First we order the stature of the boys in ascending order:

1.68 1.72 1.74 1.75 1.80.

For the population of size N=5, the median is given by x(3) = 1.74.

Formally, we proceed as follows: since N is odd, the median is the value that

occupies the central position of the sequence in a non-decreasing order:

Me = x(N+1
2

),

in this example:

Me = x( 5+1
2 ) = x(3) = 1.74.

Example 2. Calculation of the median time of 6 athletes running 200 m. The

times (in seconds) ordered for the 6 athletes are:

24.7 25.2 25.1 25.6 25.7 26.1.

First we order the time of the athletes in non-decreasing order:

9



1. MEDIAN OF A CHARACTER OF A POPULATION 10

24.7 25.1 25.2 25.6 25.7 26.1.

In this example, applying the formula:

Me =

{
x(N2 ) + x(N2 +1)

2

}
,

the median value can be read as the value between 3-rd and 4-th place, there-

fore approximated by:

Me =

{
x(3) + x(4)

2

}
=

{
25.2 + 25.6

2

}
= 25.4.

Then, if N is even, the median is taken as half the sum of the two middle

values.

In frequency distributions for discrete values, the data are usually already

sorted, we must then calculate the absolute cumulative frequencies, which are

obtained by associating with each value the sum of their frequencies with all

those that proceed it, and determine what the value is.

If the data are grouped into classes, the class, in which there is the median,

is determined using the median cumulative absolute frequencies. To obtain the

exact median value, a linear interpolation is applied between the two extremes of

the class in which the median lies, assuming that the frequencies are distributed

in a regular class.

Example 3. Calculation of the median in the case of frequency distributions.

The formula applied is as follows:

M = x(N+1
2

) = l−j +

(
N + 1

2
− Cj−1 −

1

2

)
∗ aj
nj

where

• l−j is the lower end of the median class,

• N+1
2

is the position,

• Cj−1 is the cumulative frequency of the class preceding the median class,

• aj is the size of the median class

• nj is the frequency of the median class.

We report the frequency distribution and cumulative frequencies of 130 students

of a fotball school in Milan, classi�ed according to height.

X nj Cj t
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from to

160-165 10 10 1 10

165-170 25 35 11 35

170-180 45 80 36 80

180-190 35 115 81 115

190-195 13 128 116 128

195-200 2 130 129 130

Total 130

First of all we obtain the position t = N+1
2

= 130+1
2

= 65.5 , this is between 38

and 80, which are positions 170-180 of the third class.

The third class represents the median class. Therefore, applying the formula

we have

M = 170 +

(
130 + 1

2
− 35− 1

2

)
∗ 10

45
= 176.66

this result allows us to state that �half� of the players has a height less than or

equal to 176.66 and the other �half� has a height greater than or equal to 176.66.

Relationship between mean and median. Often the mean and the me-

dian have similar values. This happens especially when the distribution of the

variable is symmetric. However, if the distribution has strong asymmetry, the

two measures may di�er signi�cantly.

Example4. Consideration of the following points scored by three players in 11

matches:

Player a 1 1 1 2 2 2 2 2 3 3 3

Mean 2

Median 2

Player b 1 1 1 2 2 2 2 2 3 3 4

Mean 2.1

Median 2

Player c 1 1 1 2 2 2 2 2 3 3 14

Mean 3

Median 2

We observe that the median does not change between the three sets, while the

mean changes slightly between players a and b and di�ers signi�cantly for the last

player. In this case the mean has been heavily in�uenced by the last recorded



1. MEDIAN OF A CHARACTER OF A POPULATION 12

score. In this example, the median seems to be preferable to the mean if the aim

is to summarize the distribution, as, it is more stable and not a�ected by the

extreme values.

More formally we can say that the median has the property of robustness. This

property is particularly useful when we suspect that some large and / or small

values are very abnormal and the result of error detection or just highly unusual

situations. The mean has the property of robustness because it is sensitive to the

presence of extreme values.

So on the one hand we have that the arithmetic mean, calculated as a value

only for quantitative traits, is more informative than the central value. On the

other hand, we have that, since the arithmetic mean has the characteristic of

being very informative, it has the mean disadvantage of being very sensitive to

the presence of extreme values or outliers.

The median, however, could also be calculated only for ordered qualitative

characteristics and is very insensitive to the presence of outliers.

Remark. The mean and the median calculated from the same data sets, as

we have seen, may be di�erent. This is not surprising because they correspond to

two di�erent de�nitions of the center of a distribution. When the mean and the

median of the same distribution are very di�erent, then it is advisable to bring

them both.

Let us consider the following values of income:

$ 40000 $ 50000 $ 58000 $ 60000 $ 136000.

This is best summed from the median rather than from the arithmetic mean,

because the median is not a�ected by the extreme value $ 136000. In fact Me =

58000$ and µ = 68800$.

Therefore, when you must decide whether it is to your advantage to accept

a job, do not ask the person who is o�ering an average salary in the company.

Before you choose to accept the o�er, ask what the median salary is!

Properties of the median. The median has the following properties.

(1) Internality. The median is always between the minimum mode x(1) and

maximum mode x(N) character.

(2) Monotone (in the weak sense). If we consider the two series 30,30,30

and 30,30,50 we can observe that the median in both the �rst and second

case is 30 even though the second distribution is statistically greater.
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(3) Not necessarily associated. To prove this statement is enough to

show an example where the associative property is not applied. Consider

the unit distribution (2, 2, 2, 3, 3, 4, 4) and its partition into two partial

distributions (2, 2, 2, 4) and (3, 3, 4). Calculate the median of the two

partial distributions: Me1 = 2 and Me2 = 3. We observe that given

the values (2, 2, 2, 2, 3, 3, 3) the median of the distribution is equal to 2,

and is di�erent if we have the following observations from that of initial

distribution, equal to 3.

(4) The median minimizes the sum of the absolute values of di�er-

ences.
N∑
i=1

| xi − A |≥
N∑
i=1

| xi −Me |

The sum of the absolute values of deviations from the median is less than

or equal to the sum of the values of the deviations from any other value.

(5) Robust measure. In other words, the median is little a�ected by the

extreme values of the distribution. For example, we can observe that the

two distributions 1,2,3 and 1,2, 100 have the same median but the mean is

di�erent in the two situations. This property is particularly useful when

we suspect that some large or small modes are very abnormal and the

result of errors of detection or just highly unusual situations.

In terms of the estimators, it is known that the median is a more robust

estimator of location parameter of a distribution than the arithmetic

mean. To better understand the di�erence between the two estimators,

consider a set of N values:

x1, x2, ...xN .

The mean and median, are respectively:

x̄ =
1

N

N∑
i=1

xi

M =


x(N+1

2 ) if N is odd

x
(N2 )

+x
(N2 +1)

2
if N is even
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Let us increase one of the two values of a su�ciently large quantity enough

δ > 0

x∗j = xj + δ.

The mean becomes:

x̄∗ = x̄+
δ

N
therefore it varies considerably if δ is su�ciently high.

With regard to the situations can instead be present can be :

a) the median does not change if:

• the increased value was greater than the median of the original values;

• the increased value was less than the median of the original values and

remained lower even after the increase.

b) if the increased value was less than the initial median and, as a result of the

increase, has become greater than the initial median, the median becomes:

M =


x(N+1

2
+1) if N is odd

x
(N2 +1)

+x
(N2 +2)

2
if N is even

observed that the median is more robust than the arithmetic mean.

1.1. Uses of the median

Whenever we wish to obtain information on the shape of a distribution, we can

use graphical and non-graphical tools, such as comparing the median with �rst

and third quartile or interquartile average, to achieve the concepts of symmetry

or asymmetry and skewed distributions.

1.1.1. Bowley's measures of skewness. Among skewness measures one of

the earliest to be introduced was

b =
(Q3 −median)− (median−Q1)

Q3−Q1

where Q1and Q3 are the �rst and third quartiles of a sample or a distribution

[Groeneveld and Meeden, 1984].

This coe�cient was introduced by A.L. Bowley in 1901, who wrote

Skewness, relating to the shape,..., of a curve is appropriately mea-

sured by an absolute quantity, and we therefore need a ratio of two

concrete measurements.
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The coe�cient b is the ratio of the di�erence of two non negative numbers Q3−m
and m − Q1 divided by their sum, where m represents the sample or population

median. Thus, one has −1 ≤ b ≤ 1, where values of b near 1 indicate strong

right skewness of the sample or distribution ; in the case of a symmetric sample

or distribution, clearly, b = 0 (Encyclopedia of Statistical Sciences update Vol. 2

).

In 1896 Francis Galton, the famous geneticist and scientist, suggested the use

of sample or population deciles to measures skewness (Encyclopedia of Statistical

Sciences update Vol. 2) ; Galton recommended

g =
D8 −median
median−D2

where D2and D8 are respectively the second and eighth deciles of a sample in

this case. If D2 and D8 are replaced by Q1and Q3 respectively in the equation for

g, then

g =
1 + b

1− b
a monotonic increasing function of b satisfyting 0 ≤ g < ∞, with g = 1

corresponding to symmetry.

In general, indicating the cumulative distribution function of a continuous

random variable X with F (x), the natural generalization of Bowley's coe�cient

of skewness is given by

γα(F ) =
[F−1(1− α)−mX ]− [mX − F−1(α)]

F−1 (1− α)− F−1(α)

0 < α < 1
2
,

where mX is the median of X. This is a scale and location-free measure of the

skewness of a distribution. If F is symmetric, γF (α) = 0. This measure, which

replaces Q3and Q1 in the de�nition of b by the upper and lower αth quantiles of

a distribution, was suggested by F.N. David and N. L. Johnson. In analogy with

b,one has

| γα(F ) |≤ 1, 0 < α < 1
2
,

with values of γα near 1 and -1 indicating extreme right and left skewness,

respectively.

Hinckley used

τ (α, F ) =
1 + γα(F )

1− γα(F )
=
F−1(1− α)−mX

mX − F−1(α)
,
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0 < α < 1
2
,

as a �crude outlier-free measure of asymmetry� to investigate which powers of

skewed random variables yield transformed random variables with distributions

close to symmetry [Brentari, 1990].

1.1.2. Skewed distributions. A continuous random variableX is asymmet-

ric if, setting a value x < Me(X), and indicating with P {(x1, x2)}the probability
that the r.v. X takes values in the open interval (x1, x2) , we have that the prob-

abilities of the intervals (x,Me(X))and (Me(X), 2Me(X)− x) , with the same

size, such that

P {(x,Me(X)} 6= P {(Me(X), 2Me(X)− x)}

or
1

2
− φ(x) 6= φ(2Me(X)− x)− 1

2
.

It follows that :

φ(x) + φ(2Me(X)− x) 6= 1

for at least a �nite range on the x axis with a probability measure di�erent

from 0 [Frosini, 1990].

When there is an inverse function of φ in the smallest interval I such that

P {X ∈ I} = 1, a fully equivalent de�nition of asymmetry can be given by con-

sidering the intervals
(
x

′
,Me(X)

)
and (Me(X), x

′′
) such that

P {(x′,Me(X))} = P
{(
Me(X), x

′′
)}

;

setting this probability equal to ν for 0 < ν < 1/2, therefore the equalities

being valid

x
′
= φ−1

(
I
2
− ν
)

; x
′′

= φ−1
(
I
2

+ ν
)

,

we can say that random variable X is asymmetric if the size of the ranges is

not the same that is, if

Me(X)− x′ 6= x
′′ −Me(X)

or

φ−1
(
I

2
− ν
)

+ φ−1
(
I

2
+ ν

)
6= 2Me(X)

for at least a �nite range on the ν axis.
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Definition 1. It de�nes a continuous distribution that is skewed to the left

such that, setting a value x < Me(X), the intervals (x,Me(X)) and (Me(X), 2Me(X)−
x), having the same size, satisfy the following inequality:

1

2
− φ(x) ≥ φ(2Me(X)− x)− 1

2

or

(1.1.1) φ(x) + φ(2Me(X)− x) ≤ 1 −∞ < x <∞

with strict inequality for at least a �nite range on the x axis with a probability

measure di�erent from 0.

The meaning of 1.1.1 is obvious : the formula is valid if, for each interval

symmetric with respect to the median, the left half has a probability measure not

less than that of the right half.

In the case that the random variable has values greater than the median, and

these are all values x such that x0 ≤ x ≤ x1, we have left if the skew 1.1.1 is

satis�ed by setting Me(X) = (x0 + x1)/2.

It de�nes a distribution that is skewed to the right if the inequality is

(1.1.2) φ(x) + φ(2Me(X)− x) ≥ I −∞ < x <∞

with a strict inequality for at least a �nite interval on the x axis with a prob-

ability measure di�erent from 0.

Obviously, if 1.1.1 and 1.1.2 are simultaneously true, distribution is symmet-

rical with respect to the median and we have

(1.1.3) φ(x) + φ(2Me(X)− x) = I −∞ < x <∞ .

The concept of skewness is a subspecies of asymmetry, it is worth remenbering

that according to Boldrini:

asymmetric unimodal distributions are not always ascending or dis-

cending.

He stated his opinion de�ning a skewed distribution: <�< when it resembles the

Normal type, but the ascending branch is steeper or less steep than the descending

branch, so that the maximum ordinate no longer separates two tendentially equal,

but substantially di�erent portions of the surface>�>.

1.1.3. Mean, median, mode and skeweness. The parameters mean, me-

dian and mode are measures of the center of the distribution and so may be
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interpreted as location parameters. In a symmetric distribution, the mean and

median coincide with a mode.

For an asymmetric distribution, comparison of measures of location may be

used as measures of skewness; the �rst of these to be considered was the rela-

tionship between the mean, median and mode. About the turn of the century,

Pearson proposed the following coe�cient :

Sk =
Mean−Mode

S.d.
.

The sign of Sk gives the direction and its magnitude gives the extent of skew-

ness.

If Sk > 0, the distribution is positively skewed, and if Sk < 0 it is negatively

skewed. So far we have seen that Sk is strategically dependent upon mode. If mode

is not de�ned for a distribution we cannot �nd Sk. But empirical relation between

mean, median and mode states that , for a moderately symmetrical distribution,

we have

Mode−Mean ≈ 3(Median−Mean).

Hence Pearson's coe�cient of skewness is de�ned in terms of median as

Sk =
3(Mean−Median)

S.d.

In 1917 with limited success Doodson considered establishing this relationship

for a class of densities with small Pearson skewness , and for the Pearson family.

Haldane (1942) shows that for certain distributions cloe to normal in the sense of

having small cumulants, Pearson's relationship more or less holds.

Although it has been recognized that Pearson's empirical relationship does

not generally hold, it is still often stated that mean, mode and median occur

either in this or in the reverse order. A su�cient condition for this to hold is

that 1− F (Median+ x)− F (Median− x) are of one sign in x > 0, nonnegative,

for example, giving Mean > Median > Mode (for a unimodal distribution). A

stronger condition for this to hold is that f(Median+x)−f(Median−x) change

sign once in x > 0, negative to positive, for example, giving Mean > Median >

Mode [Eisenhauer, 2002].



CHAPTER 2

Estimation of the median

2.1. Estimation of the Population Median

A parameter of practical interest is the median of a �nite population. The

population median is a value Me that divides the population approximately in

half, so that approximately half of the population elements have values smaller

than Me, whereas the other approximately half have values larger than Me.

We obtain the median of the population using data from a probability sample.

Let y1, y2, ..., yN be the values of the population elements for the study variable

Y . For any given number y(−∞ < y <∞), the population distribution function

F (y) is de�ned as the proportion of elements in the population for which yk ≤ y.

More formally, the stepwise increasing function F (y) can be written as

F (y) =
1

N
(#Ay)

where Ay is the set of population elements with yk values not exceeding y, that

is, Ay ={k : k ∈ U}and {yk ≤ y}and #Ay denotes the number of the elements in

the set Ay.

The population median Me is now de�ned as

(2.1.1) Me = F−1(0.5)

where F−1(·) is the inverse function on F (·).
To estimate the population median Me, using data yk for k ∈ s, where s is

a probability sample, Särndal et al. [2003] proposed a general procedure, which

involves two steps:

(1) �rst, obtain an estimated distribution function, indicated by F̂ (y).

(2) then, estimate Me = F−1(0.5) by

(2.1.2) M̂e = F̂−1(0.5)

where the inverse F̂−1(·) is to be understood in the same way as F−1(·)
above.

19
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Remark 1. The technique in (1) and (2) can be summarized as follows: we

�rst produce an estimated distribution function F̂ (y) in the same way as we

would have determined Me from F (·), if F (·) had been known. The technique

can be generalized to estimation of any parameter θ de�ned as a function of the

population distribution function F (y), for example, any quantile of the population.

We now describe in closer detail the mechanics of estimating the median Me,

including a con�dence interval procedure due to Woodru� [1952].

A sample s is selected from the population by a sampling design p(·) with

inclusion probabilities πk, πkl. The estimation of F (y), for any given y, can be

viewed as the already familiar problem of estimating a population mean. To see

this, note that F (y) can be expressed as a population mean,

(2.1.3) F (y) =
1

N

∑
U

zk,y =
tzy
N

= z̄yU

where zk,y is an indicator variable, de�ned for k = 1, ..., N , and for any given real

number y, as

zk,y =


1 if yk ≤ y

0 if yk > y

and ty =
∑

U yk .

Consequently let us estimate F (y) = z̄yU , for a given y, by an expression

corresponding directly to the sample-weighted mean ỹs (it is de�ned as ỹs = t̂yπ

N̂
):

(2.1.4) F̂ (y) = z̃y,s =
t̂zy ,π

N̂
=

∑
s
zk,y
πk∑

s
1
πk

=

∑
s∩Ay

1
πk∑

s
1
πk

where (s ∩ A) is the set of sample elements with values yk≤ y. Now, F̂y, the

estimated distribution function, is a non-decreasing step function climbing from

zero to one like F (y). To divide by N̂ in equation 2.1.3, rather than by N (if N is

known) will often have advantages from a variance point of view; also to have N̂

in the determination of 2.1.4 means that F̂ (y) reaches the ultimate value of unit

as y increases, which is a desiderable property.

The approximate variance of the estimator 2.1.4, as well as an estimator of

this variance, can be obtained from:

V̂ (ỹs) =
1

N̂2

∑∑
s

∆̆kl

(
yk − ỹs
πk

)(
yl − ỹs
πl

)
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where

∆̆kl =
∆kl

πkl
.

∆kl= πkl − πkπl is the covariance of Ik and Il.
Now, F̂ (y) becomes a tool for �nding the desired estimator M̂e of the median

Me. As prescribed by step (2) above, we set

M̂e = F̂−1(0.5)

where F̂−1 is the inverse function of F̂ (y) given by (3). Note that to �nd M̂e

this way, we need not to compute F̂ (y) for the whole range of y−values, but only
the following center part of the population. As with 2.1.1, it may happen that

2.1.5 does not produce a unique value of M̂e.

Remark 2. For computational purposes we can alternatively express the me-

dian estimator as follows. Denote the yk-values of the sampled elements, arranged

in increasing order of size, by

y1:s ≤ y2:s ≤ · · · ≤ yns:s

and the corresponding inclusion probabilities πk by

π1:s, π2:s, . . . , πns:s

.

Set B0 = 0, and de�ne the cumulative sums

B1 =
1

π1:s

B2 =
1

π1:s
+

1

π2:s
and so on; in general, for l = 1, ..., ns,

Bl =
l∑

j=1

1

πj:s

Clearly, Bns = N̂ =
∑n

j=1
1/πj:s =

∑
s
1/πk.

The median estimator can be written

(2.1.5) M̂e =


yl:s if Bl−1 < 0.5N̂ < Bl

1
2
(yl:s + yl+1:s) if Bl = 0.5N̂
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To calculate M̂e , we �rst compute N̂π, and the examine then cumulative sums

Bl until we �nd that for some l,

Bl−1 < 0.5N̂ and Bl > 0.5N̂

in which case M̂e = yl:s, or we �nd that for some l,

Bl = 0.5N̂

in simple random sampling M̂e = 1
2
(yl:s + yl+1:s).

Example. A sample of size �ve is drawn from a of size population N = 7 , the

observed data are

yk

10206

7603

8591

6284

9278

10614

Considering a sampling with replacement, the probability is equal to Pi = 1
N

and the inclusion probability is πk = 1 − (1 − Pi)n; rearrangement in increasing

order of size of yk gives the following:

l yk Pi πk 1/πk

1 6284 0.143 0.487 2

2 7603 0.143 0.487 2

3 8591 0.143 0.487 2

4 9278 0.143 0.487 2

5 10206 0.143 0.487 2

6 10614 0.143 0.487 2

7 11569 0.143 0.487 2∑
14

We calculate �rtst the estimated distribution function F̂ , then M̂e from 2.1.2.

Since N̂ = 14, we have using equation 2.1.4, the following:
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y F̂ (y)

y < 6284 0

6284≤ y < 7603 2/14 = 0.143

7603 ≤ y < 8591 (2+2)/14 = 4/14 = 0.29

8591 ≤ y < 9278 (2+2+2)/14 = 6/14 = 0.43

9278 ≤ y < 10206 (2+2+2+2)/14 = 8/14 = 0.57

10206 ≤ y < 10614 (2+2+2+2+2)/14 = 10/14 = 0.71

10614 ≤ y < 11569 (2+2+2+2+2+2)/14 = 12/14 = 0.85

11569 ≤ y 1

or, in graph form,
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Figure 2.1.1. Cumulative distribution function

From the table, or from the graph, we �nd the estimated median to be

M̂e = F̂−1(0.5) = 9278.

Alternatively, M̂e may be calculated from 2.1.5 as follows:

l yk 1/πk Bl

1 6284 2 2

2 7603 2 2 + 2 = 4

3 8591 2 2 + 2 + 2 = 6
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4 9278 2 2 + 2 + 2 + 2 = 8

5 10206 2 2 + 2 + 2 + 2 + 2 = 10

6 10614 2 2 + 2 + 2 + 2 + 2 + 2 = 12

7 11569 2 2 + 2 + 2 + 2 + 2 + 2 + 2 = 14

Since B3 = 6 < 14/2 = N̂/2, and B4 = 8 > 14/2, we obtain

M̂e = y4 = 9278.

2.1.1. Asymptotic distributions of estimators. Now we give the asymp-

totic distribution of the estimators M̂eY R, M̂eY P and M̂eY S as N →∞, n→∞
and n/N → f , 0 ≤ f < 1. It is assumed that as N → ∞ distribution of the bi-

variate variable (X, Y ) approaches a continuous distribution with marginal densi-

ties fX(x) and fY (y) for X and Y respectively. This assumption holds in partic-

ular under a super population model framework, treating the values of (X, Y ) in

the population as a realization of N independent observations from a continuous

distribution; we assume also that fY (MeY ) and fX(MeX) are positive.

Under these conditions, the sample median M̂eY is consistent and asymptot-

ically normal [Gross, 1980] with expected value MY and variance

(2.1.6) (1− f)(4n)−1 {fY (MeY )}−2 .

It is shown in Appendix A that M̂eY R −MeY is asymptotically normal with

mean zero and variance

(2.1.7) n−1(1− f)[
1

4
{fY (MeY )}−2 +

1

4
(MeY /MeX)2 {fX(MeX)}−2−

+2(MeeY /MeX)
{
fY (MeY )fX(MeX)

}−1
(P11 −

1

4
)

Consequently, M̂eY R is asymptotically more e�cient than M̂eY if

ρc >
1

2

[
{fX(MeX)}−1Me−1X

]
/
[
{fY (MeY )}−1Me−1Y

]
,

where ρc = 4
(
P11 − 1

4

)
goes from -1 to 1 as P11 increases from 0 to 1/2. This

condition is analogous to the condition under which the ratio estimator is superior

to the sample mean. Since P11 is the proportion of units in the population with

X ≤MeX and Y ≤MeY , it can be regarded as a measure of concordance.
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It is also shown in Appendix A that M̂eY P and M̂eY S have the same asymp-

totic distribution which is Normal with mean MeY and variance

(2.1.8) 2 {fY (MeY )}−2 (1− f)P11(1− 2P11)n
−1.

If, for variables X and Y , the condition X ≤MeX if and only if Y ≤MeY holds,

then P11 = 1
2
in which case this variance expression is reduced to zero and both

M̂eY - MeY and M̂eY S − MeY are of order op(n
−1/2). When the ordering of

the YS and that of the XS in the population agree closely with each other, P11

is close to 1
2
and the asymptotic variance is small. Thus the e�ciencies of the

estimators M̂eY P and M̂eY S do not rely on any linearity assumption between X

and Y . Comparing the expression 2.1.8 with expression 2.1.6, we conclude that

both M̂eY P and M̂eY S are asymptotically more e�cient than the sample median,

since
1

4
− 2P11(1− 2P11) =

1

4
(4P11 − 1)2 ≥ 0.

The common asymptotic variance of M̂eY P and M̂eY S involves only fY (MeY )

and P11, the latter being consistently estimated by p11. The value fY (MeY ) can

be estimated by applying standard methods such as the kernel or the nearest

neighbor method of density estimation speci�cally at the sample median M̂eY .

The resulting estimator of fY (MeY ) together with p11 can be used to substitute

for fY (MeY ) and P11 to yield a consistent estimator of the asymptotic variance

of M̂eY P and M̂eY S.

2.2. Median estimation without auxiliary information

Estimate of the median without the use of auxiliary variables is reduced to

calculation of the median of the sample values.

With regard to the distribution of the sample median, Chu [1955] shows that

if the parent population is Normal, then the distribution of the sample median

tends �rapidly� to normality.

Let a continuous population be given with cumulative distribution function

F (x) and median ξ (assumed to exist uniquely ). For a sample of size 2n+ 1, let

x̃ denote the sample median. The distribution of X̃, under certain conditions, is

known to be asymptotically Normal with mean ξ and variance σ2
n = 1

[f(ξ)]2(2n+1)
,

where f(x) = F
′
(x) is the probability density function.

Normal parent population.Suppose that a sample of size 2n + 1 is drawn

from a Normal population with mean ξ and variance σ2. The distribution of X̃ is



2.3. MEDIAN ESTIMATION IN THE PRESENCE OF AUXILIARY INFORMATION 27

then asymptotically Normal with mean ξ and variance πσ2

2(2n+1)
. It has been shown

that if, for x > 0

φ(x)− φ(−x) = a(x)
√

1− exp[−(2/π)x2] (1)

. where a(x) is a function of x > 0.

Williams [1946] proved that a(x) 5 1 and tabulated 1
a(x)−1 for a number of

values of x ranging from 0.1 to 2 .

Pólya [1945] gave several proofs of the same inequality and remarked that if√
1− exp[−(2/π)x2] is used as an approximation to φ(x)−φ(−x) , � then the error

committed is less than one per cent of the quantity approximated.� a(x)>0.9929

for all x > 0.

For arbitrary x > 0 and y > 0, let

xn =
√
π/2x/

√
2n+ 1 , y =

√
π/2y/

√
2n+ 1 .

Applying (1) to the upper and lower bounds, Chu [1955] obtained

H(y)−H(−x) = min {a(xn), a(yn)} ∗Bn

√
1− 1

2n+ 2
∗

∗

[
φ

(
y

√
2n+ 2

2n+ 1

)
− φ

(
−x
√

2n+ 2

2n+ 1

)]
,

H(y)−H(−x) 5 Bn

√
1− 1

2n

[
φ

(
y

√
2n

2n+ 1

)
− φ

(
−x
√

2n

2n+ 1

)]
,

where Bn =
(
1
2

)2n+1
Cn
√

2π/
√

2n+ 1 , φ(x) and a(x) are de�ned by (1) and

φ(t) =

tˆ

0

(1/
√

2π)exp(−1

2
x2)dx.

For more details see the work of Chu [1955].

The application will be presented in Chapter 3.

2.3. Median estimation in the presence of auxiliary information

The estimators proposed by Kuk and Mak [1989], are applicable in situations

where only the population median or a grouped frequency distribution of the

auxiliary variable is known.

Suppose the population studied consists of N units. Each of these N units are

the values of the survey variable Y of interest and an auxiliary variable X. It is
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�rst assumed that only the median MeX of X is known and that MeY is to be

estimated on the basis of a simple random sample Sn of size n.

Let (X1, Y1), ..., (Xn, ..., Yn) be the associated values of the variables X and Y

for the units in Sn. In the absence of the Xi, the sample median ˆMeY is a natural

estimator of MY . When the values of the auxiliary variable Xi are available, a

natural modi�cation of the ratio estimator for estimating population mean is

M̂eY P = M̂eYMeX/M̂eX .

Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n)be the ordered Y values in Sn. Also, let i0 be the

integer such that Y(i0) ≤ MY ≤ Y(i0+1) and p = i0/n be the proportion of the YS

in the sample that are less than or equal to MeY . Thus, MeY is approximately

the sample pth quantile Q̂Y (p). The sample median ˆMeY can be viewed as the

special estimator Q̂Y (p̂) with p̂ = 1
2
.

The estimator de�ned attempts to utilize the Xi to construct a p̂ with smaller

expected squared error E(p̂−p)2 and consequently smaller variance for estimating

MeY . Consider now the cross-classi�cation

X ≤MeX X > MeX

Y ≤MeY P11 P12

Y > MeY P21 P22

where for instance P11 denotes the proportion of units in the population with

X ≤ MeX and Y ≤ MeY. Let nX be the number of units in Sn with X ≤ MeX .

Then, if the Pij are known, we can estimate p by

p̂ = n−1 {nXP11/P.1 + (n− nX)P12/P.2}

' (2/n)

{
nXP11 + (n− nx)(

1

2
− P11)

}
,

where P.j = P1j +P2j ' 1
2
, for j = 1 and j = 2. In practice, the Pij are usually

unknown but can be estimated by p̂ij based on a similar cross-classi�cation of the

sample. Thus p̂11 represent the proportion of units in the sample with X ≤ ˆMeX

and Y ≤ M̂eY . Substituting the p̂ij for the Pijin the expression for p̂0, we have

the estimator of p:

n−1 {nXp11/p.1 + (n− nX)p12/p.2}

' (2/n)

{
nXp11 + (n− nx)(

1

2
− p11)

}
.
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An estimator of MeY is alternatively given by

M̂eY P = Q̂Y (p̂1)

and will be referred to as the 'position estimator' since it is essentially based

on an estimate of the position of MeY in the ordered sample values.

The cross-classi�cation used in constructing M̂eY P motivates yet another way

of estimating MeY .

The idea is essentially to invert an improved estimate of FY based on post-

strati�cation; for any value y, let FY 1(y) be the proportion among those units in

the sample with X ≤ MeX that have Y values less than equal to y. Similarly

F̃Y 2(y) is the proportion among those with X > MeX . Then FY (y) can be

estimated by

F̃Y (y) = N−1NXF̃Y 1(y) +N−1(N −NX)F̃Y 2(y)

' 1

2

{
F̃Y 1(y) + F̃Y 2(y)

}
,

where NX is the number of units in the population with X ≤MeX . Note that

F̃Y (y) is a distribution function which, for each Yi, put probability mass (2nX)−1

at Yi if Xi ≤ MeX and {2(n− nX)}−1 if Xi > MeX . Thus an estimator of MeY

is given by

M̂eY S = inf

{
y : F̃Y (y) ≥ 1

2

}
and will be referred to as the ' strati�cation estimator'.

2.3.1. Ratio estimators.

Estimating a ratio.

We consider a �nite population of size N in which two characters X and Y

assume positive values. Suppose we know the true average. Consider a sample,

with or without replacement, of n elements that gives rise to pairs of values:

(x1, y1), ..., (xi, yi), ..., (xn, yn).

We will be interested in the quantity

(2.3.1) ȳR = YT/XT = Ȳ /X̄

which we will refer to as the population ratio.

There are various possible approaches to estimate ȳR. Two immediately obvi-

ous ones are to use the sample average ratio or the ratio of the sample averages.
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Speci�cally, these are

ȳR1 =
1

n

n∑
i=1

(yi/xi)

and

ȳR2 = ȳ/x̄ = yT/xT ,

respectively. We will examine some of the sampling properties of ȳR1and ȳR2 .

(a) Consider the population of values R = Y/X. This has population mean

R̄ and variance S2
R. Since ȳR1 is a sample mean from a sr sample, it has expected

value R̄ and variance (1− n
N

)S2
R/n.

But typically R̄ is not the same as R, so we have

(2.3.2)

bias(ȳR1) = R̄−R
= 1

N

∑
iRi −YT/XT

= 1
N

∑
i(Yi/Xi) −

∑N
i Yi/

∑N
i Xi

= − 1
XT

∑N
1 Ri(Xi − X̄).

This features the covariance Cov(R,X) =
∑N

1 Ri(Xi − X̄)/(N − 1) between R

and X.

Thus, noting that the mean square error is the sum of the variance and the

square of the bias, we have

MSE(ȳR1) =
(

1− n

N

)
S2
R/n+ (N − 1)2Cov(R,X)/(XT )2.

We have the usual unbiased variance estimator
∑n

1 (ri − r̄)2/(n− 1) available

for S2
R and we can obtain an unbiased estimator of the covariance Cov(R,X) in

the form:
n∑
1

ri(xi − x̄)/(n− 1) = n(ȳ − r̄x̄)/(n− 1).

We can estimate the bias and the MSE of ȳR1 by means of

−(N − 1)n(ȳ − ȳR1x̄)/[(n− 1)XT ]

and (
1− n

N

) n∑
1

(ri − ȳR1)
2/n+ (N − 1)2n2(ȳ − ȳR1x̄)2[(n− 1)2X2

T ]
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respectively, provided XT is know. If XT were known, we could correct ȳR1 for

estimated bias obtaining a modi�ed estimator

(2.3.3) ȳ
′

R1
= ȳR1 + (N − 1)n(ȳ − ȳR1x̄)/[(n− 1)XT ]

this is the Hartley-Ross estimator.

(b) Let us consider ȳR2

This estimator is more widely used. Although still biased in small samples,

the bias and mean square error tend to be lower than the bias of ȳR1 . In large

samples the bias becomes negligible and the distribution of ȳR1 tends to normality,

thus making it possible to draw inferences based on a Normal distribution with

appropriate variance.

Let us start again with the bias. We have

ȳR2 −R = (ȳ −Rx̄)/x̄

and taking a Taylor series expansion about the population mean X̄ gives

ȳR2 −R =
ȳ −Rx̄
X̄

(
1 +

x̄− X̄
X̄

)−1
.

As an approximation to the bias we can take the �rtst two terms to obtain

E(ȳR2)−R = E

(
ȳ −Rx̄
X̄

)
− 1

X2
E
[
(ȳ −Rx̄)(x̄− X̄

]
.

The leading term is zero since E(ȳ −Rx̄) = Ȳ −RX = 0. Furthermore,

E
[
ȳ
(
x̄− X̄

)]
= Cov(ȳ, x̄) =

(
1− n

N

)
Cov(X, Y ) =

(
1− n

N

)
ρXY SY SX/n,

where ρY X is the correlation between Y and X. Thus we �nd, as an approxi-

mation to the bias of ȳR2 ,

E(ȳR2)−R =
(1− n/N)

nX̄2

(
RS2

X − ρY XSY SX
)

which can be small if ρY X is close in value to RSX/SY .

This is equivalent to saying that the regression of Y on X is linear and through

the origin, or that Y and X are roughly proportional to each other.

Suppose we consider large samples, utilizing asymptotic results, we �nd the

following approximate results:

E(ȳR2) = Ȳ /X̄ = YT/XT
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and

V ar(ȳR2) =
1− f
nX̄2

N∑
i=1

(Yi −RXi)
2

N − 1

where f is the sampling fraction n/N.

Ratio estimator of a population total or mean.

Suppose we want to known the estimate of total population.

Suppose Yi denotes expenditure on recreational facilities for authority i, Xi

denotes the number of inhabitants in the authority, and we sample both mesaures

simultaneously and at random from the whole population, to obtain a sr sample

of size n: (y1, x1), ..., (yn, xn). The total number of inhabitants for the whole pop-

ulation XT , is likely to be known fairly accurately. However we could estimated

XT from the sample by means of the estimator

xT = Nx̄,

where x̄ is the sr sample mean. Similarly we could estimate the total expen-

diture YT by

yT = Nȳ.

The estimate xT has not interest in its own right, but it has the important

advantage that by comparing it with the population characteristic XT we can

informally assess the representativeness of the sample. If xT is very much less

than XT , then in view of the rough proportionality of Yi and Xi we could conclude

that yT is likely to understimate YT ; if xT is too large, yT is also likely to be too

large. If the proportionality relationship were exact we would have

(2.3.4) Yi = RXi

where R is the population ratio, YT/XT or Ȳ /X̄.

Thus,

YT = RXT

and we could estimate YT by replacing R with the sample estimate, ȳR2 , to

obtain an estimate of the population total, YT ,in the form

(2.3.5) yTR = ȳR2XT =
XT

xT
yT .

This estimator is called the sample ratio estimator of the population total.



2.3. MEDIAN ESTIMATION IN THE PRESENCE OF AUXILIARY INFORMATION 33

If interest centeres on the population mean Ȳ , rather than the total YT ,then

similar arguments support the use of the ratio estimator of the population mean

(2.3.6) ŷR =
X̄

x̄
ȳ.

Considering 2.3.6 , the approximate variance is

V ar(ŷR) =
1− f
n

N∑
i=1

(Yi −RXi)
2

N − 1
=

1− f
n

(
S2
Y − 2RSXY +R2S2

X

)
.

That is

(2.3.7) V ar(ŷR) =
1− f
n

(
S2
Y − 2RρY XSY SX +R2S2

X

)
where ρY X = SY X/SY SX is the population correlation coe�cient. If the exact

relationship 2.3.4 held, then V ar(ŷR) would be zero; in practice this will not

be so, but V ar(ŷR) is clearly going to become smaller, the larger the positive

correlation between Y and X in the population.

For estimating YT we have an analogous result for yTR. It is asymptotically

unbiased, and has large sample variance

N2(1− f)

n

N∑
i=1

(Yi −RXi)
2

N − 1

or
N2(1− f)

n

(
S2
Y − 2RρY XSY SX +R2S2

X

)
.

Consider the following model

(2.3.8) Yi = RXi + ei,

with
∑

xEi = 0, where
∑

x denotes summation over all subscripts i for which

Xi = x.

In this case Ȳ = RX̄ and in a sample of size n

R̂ =
ȳ

x̄
= R +

ē

x̄

where ē is the sample mean of the E values in the sample.

The conditional expectation

E(ē | x1, ..., xn) = 0

for this model, so E(R̂) = Rand we conclude that R̂ is unbiased for all sample

sizes [Barnett, 1991].
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2.3.2. Median estimation using the ratio's estimator .

Given the population median of the auxiliary variable X , the ratio estimator

is

(2.3.9) ŶR =
M̂e(Y ) ∗Me(X)

M̂e(X)

ie correcting the estimate of the median obtained from the sample with ratio

between the median of X and its estimate.

If M̂e(X) = 0 then ŶR = M̂e(Y ).

MSE of ratio estimators. Let

M̂eY

M̂eX
− MeY
MeX

=
M̂eY − MeY

MeX
M̂eX

M̂eX
.

Note that

1

M̂eX
=

1

MeX + (M̂eX −MeX)
=

1

MeX

1

1 + M̂eX−MeX
MeX

we proceed with the Taylor series expansion, stopping at the �rst order

' 1

MeX

(
1− M̂eX −MeX

MeX

)
then(
M̂eY

M̂eX
− MeY
MeX

)
∼=
(
M̂eY −

MeY
MeX

M̂eX

)
∗ 1

MeX

(
1− M̂eX −MeX

Mex

)
=

=
1

MeX

(
ˆ

MeY −
MeY
MeX

ˆ
XMe

)
− 1

MeX

(
M̂eY −

MeY
MeX

M̂eX

)(
M̂eX −MeX

MeX

)
.

Passing to the squares (
M̂eY

M̂eX
− MeY
MeX

)2

=

=
1

Me2X

[(
M̂eY −MeY

)
−
(
MeY
MeX

M̂eX −MeY

)]2
+

+
2

Me2X

(
M̂eY −

MeY
MeX

M̂eX

)2
(
M̂eX −MeX

MeX

)2
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we de�ne the expected value

E

(
M̂eY

M̂eX
− MeY
MeX

)2

' 1

Me2X
[E(M̂eY −Mey)

2+

+
Me2Y
Me2X

E(M̂eX −MeX)2 − 2
MeY
MeX

E(M̂eY −MeY )(M̂eX −MeX)]+

+
1

Me2X
E
[
(M̂eY −MeY )2(M̂eX −MeX)2

]
.

The mean square error of the ratio estimator for the median is approximately

given by

MSE(M̂e
R

Y ) = MSE

(
MeX

M̂eY

M̂eX

)
= Me2X ∗MSE

(
M̂eY

M̂eX

)
=

= E

[(
M̂eY −MeY

)2]
+
Me2Y
Me2X

E(M̂eX −MeX)2 − 2
MeY
MeX

[Cov(M̂eY , M̂eX)+

+(MeY − E(M̂eY ))(MeX − E(M̂eX)]

ie the mean square error of the ratio estimator of the median can be written

as a function of the mean square of the median of Y , the mean square error for

the ratio of X multiplied by the ratio between the population medians and the

square of Y and X, the covariance between the estimate of the medians of X and

Y and the product of the distortions of X and Y , multiplied by the ratio between

the true median of Y and X.

The above result is valid for n su�ciently large.

2.3.3. Median Regression.

Suppose that there is only one explanatory variable (p = 1), the problem is

reduced to determining the parameteres a and b of the line :

(2.3.10) ŷ = a+ bx

that, given N points (xi,yi), make the minimum sum of the absolute values S

of the residuals ri:

(2.3.11) S =
∑N

i=1 | yi − ŷi |=
∑N

i=1 | yi − a− bxi |.

The problem has been resolved geometrically by Boscovich and subsequently

formalized by Laplace (1786) , in the case it requiring that the straight line passes

throught the point which has coordinates equal to the arithmetic means of X and

Y . In the exposition which follows reference will be made to the work of Otto J.
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Karst (1958), which illustrates the methodology for determining the parameters

of the straight line to the smallest absolute values, distinguishing:

(1) the restricted problem , where the desired line passes throught any des-

ignated point (x∗, y∗), not necessarily one of the given set of points ;

(2) the unrestricted problem , in which there are no limitations to the straight

line.

• The restricted problem

Given a set of points {xi, yi}i = 1, 2, ..., n �nd the equation of the line 2.3.10 ,

through any point (x∗,y∗), not necessarily one of the given set, such that

(2.3.12)

S =
∑N

i=1 | yi − a− bxi |

=
∑N

i=1
| yi − bxi − (y∗ − bx∗) |

∑N
i=1 | (yi − y∗)− b(xi − x∗) | .

We �rst translate the origin to the point (xi, yi) by the transformation

(2.3.13) x
′

i = xi − x∗

y
′

i = yi − y∗

for i = 1, 2, ..., N.

Given a set of points {yi, xi}i = 1, 2, ..., n, �nd the equation of the line

(2.3.14) y
′
= bx

such that

(2.3.15) S =
∑
| yi − y

′

i |

is minimum, where

(2.3.16) ŷ
′ ≡ bx

′

i.

S may be written

(2.3.17) S =
n∑
i=1

| y′

i − ŷ
′

i |=
n∑
i=1

| y′

i − bx
′

i | .
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Hence, the problem becomes �nding b in 2.3.17 such that S will be a minimum

for a known set of points {xi, yi} ,which are related to the given set {Xi, Yi}through
the transformation 2.3.13.

The minimum of S can be determinated by the following procedure.

a) Rank the y
′
i/x′i in ascending algebraic order.

b) To −
∑
| x′

i | add successive values of 2 | x̃i |until change in sign at i = r

signals the minimum point of S, since it indicates a change in slope of the S curve

from negative to positive.

c) This minimum lies directly above the point (y
′
i/x

′
i, 0). Hence, bi = y

′
i/x

′
i is

the value of b for which S is a minimum.

Since S is a minimum for b, the equation of the line of best �t is

(2.3.18) ŷ =

(
y

′
i

x
′
i

)
x

in the transformed coordinates, or

(2.3.19) y
′ − y∗ =

(
y

′
i

x
′
i

)
(x− x∗)

in the original coordinates.

To illustrate the method proposed by Karst [1958] we shall �nd the line of

best �t for data shown in columns (1) and (2) of Table 6. We shall restrict this

line to pass throught the centroid of the data. The various columns of Table 6

summarize the essential calculation necessary to �nd the slope of the desired line.

The detailed steps of the analysis are given below the table.
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(1) (2) (3) (4) (5) (6) (7)

xi yi x
′
i = xi − x̄ y

′
i = yi − ȳ y

′
i

x
′
i

Rank x̃j

65 68 -1.67 0.417 -0.25 2 0.33
63 66 -3.67 -1.583 0.431 6 -1.67
67 68 0.33 0.417 1.264 10 3.33
64 65 -2.67 -2.853 0.967 8 2.33
68 69 1.33 1.417 1.065 9 -4.67
62 66 -4.67 -1.583 0.339 5 -3.67
70 68 3.33 0.417 0.125 3 4.33
66 65 -0.67 -2.583 3.855 12 -2.67
68 71 1.33 3.417 2.57 11 1.33
67 67 0.33 -0.583 -1.767 1 0.33
69 68 2.33 0.417 0.179 4 1.33
71 70 4.33 2.417 0.558 7 0.67
800 811

Table 6. Determinig the slope of the line

STEPS OF ANALYSIS OF TABLE 66. First we calculate the arithmetic

means of X and Y :

x̄ =
800

12
= 66.67

ȳ =
811

12
= 67.583.

(1) Columns (1), (2) are the recordings of raw data.

(2) Columns (3), (4) are the transformation of variables xi, yi to x
′
i, y

′
i using

x
′

i = xi − x̄

y
′

i = yi − ȳ.

(3) Column (5) is the ratio
y
′
i

x
′
i

; these numbers are the b values at the minimum

points of the individual curves of the terms | y′
i − bx

′
i | .

(4) Column (6) ranks the data of column (5) in ascending algebraic order.

(5) By adding the absolute values of column (3), we obtain
∑
| x′

i |= 26.66.

This is the magnitude of the extreme left and right slopes of the function

S =
∑n

i=1 | y
′
i − bx

′
i |.

(6) The �nal step is to add successively to −
∑
| x′

i |, twice the individual

| x̃i |in the sequence of their indicated ranks until a change in sign is

obtained. Thus:
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−
∑
| x′i |: -26.66

2| x̃1 |: 0.66

-26

2 | x̃2 |: 3.34

-22.66

2 | x̃3 |: 6.66

-16

2 | x̃4 |: 4.66

-11.34

2 | x̃5 |: 9.34

-2

2 | x̃6 |: 7.34

5.34

Since the index i=6 e�ects the change in sign, b = y
′
2/x

′
2=0.431 is the

slope of the line of best �t,

ŷ = 0.431x.

The line of the best �t in terms of the original variables is

y − 67.583 = 0.431(x− 66.67)

or

ŷ = 0.431x+ 38.848.

• The unrestricted problem.

Suppose now the case where it is not required that the straight line pass through

a predetermined point (x∗i , y
∗
i ), in addition to the angular coe�cient, it is also

necessary to determine the intercept , that is, we want to determine the values of

parameters that minimize the sum :

(2.3.20) S =
n∑
i=1

| yi − ŷi |=
n∑
i=1

| yi − bxi − a | .

Karst (1958) proposes the iterative procedure which will be shown to lead to

the values of b and a associated with the absolute minimum of S.

(1) Choose any point (x1, y1) of the given data and determine its associated

local minimum line

(2.3.21) ŷ = b1x+ a1.
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(2) This line passes through at least one other point (x2, y2) of the given

data. Using (x2, y2)as a reference point, �nd its local minimum line

(2.3.22) ŷ = b2x+ a2.

It will be shown that the sum of the absolute deviations S2 associated

with 2.3.22 is less than S1 associated with 2.3.21.

(3) Line 2.3.22 passes through another point (x3, y3) which, in turn, is used

as a reference point to determine

(2.3.23) ŷ = b3x+ a3.

with S3 < S2 < S1.

(4) This procedure is repeated until a point (xt, yt) is reached such that the

local minimum line

(2.3.24) ŷ = btx+ at.

does not pass through a new point (xt+1, yt+1) but rather re�ects back

to the previous point (xt−1, yt−1). This line 2.3.24 is then the absolute

minimum line of the data.

We illustrate the procedure with an example, taken from the work of RADAELLI

[2004]

The data are presented in Zenga [1988] (pag.320) and refer to the numeber of

subscribers (Y ) to a journal for the years 1979 to 1985.

Years xi yi

1979 0 6284

1980 1 7603

1981 2 8591

1982 3 9278

1983 4 10206

1984 5 10614

1985 6 11569

Determine the equation of the line :

(2.3.25) ŷ = bx+ a
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that minimizes :

(2.3.26) S =
6∑
i=1

| yi − ŷi |=
6∑
i=1

| yi − bxi − a | .

We choose as starting point the values of 2003 (x1 = 2;y1 = 8591). Applying

the procedure described in paragraph 2.3.3 to the remaining point, we obtain the

equation of the straight line passing through the point (2 ; 8591) that minimizes

the sum of absolute value :

(2.3.27) ŷ = 807.5x+ 6979

in correspondence of which we have S = S1 = 1644, 5. The line 2.3.27 passes

through the point of coordinates (4; 10206)that becomes the new reference point

for determination of the new angular coe�cient. Again applying the procedure

of paragraph 2.3.3 we obtain the line passing through the point (4;10206) that

minimizes S:

(2.3.28) ŷ = 867, 6̄ + 6735, 3̄.

The value of S for 2.3.28 is :

S2 = 1464 < 1644, 5 = S1.

The line 2.3.28 passes through the point of coordinates (1;7603) that does not

coincide with the previous point (2; 8591), therefore, we must �nd the new line

through point (1; 7603),which minimizes S. This line is :

(2.3.29) ŷ = 793, 2x+ 6809, 8

in correspondence of which we have S = S3 = 1194, 4 < 1464 = S2. The line

2.3.29 passes through the point (6; 11569) that is di�erent from the previous point

(4; 10206) and therefore the algorithm continues.

Then we obtain for the line through (x4 = 6; y4 = 11569) that minimizes S :

(2.3.30) ŷ = 793, 2x+ 6809, 8.

The line 2.3.30 coincides with 2.3.29, infact 2.3.30 passes through the point of

the previous reference (1; 7603) and the algorithm terminates.

2.3.30 is the equation of the line that minimizes the sum of the absolute value

of the deviations of the n = 7 points. The minimum value of this sum is :

S = S4 = S3 = 1194, 4.
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For more details see the work of Karst [1958] and Radaelli [2002].

MSE of median regression. The mean square error of median regression

can be written, for a known value of b, as a function of the mean square error

of the median ofY, the mean square error of the median of X multiplied by the

square of b and the covariance of the estimated median of Y and X, in formula

(2.3.31) E
(
M̂eMR −MeY

)2
= E

(
M̂eY + b(MeX − M̂eX)−MeY

)2

= E[(M̂eY −MeY )2 + b2(M̂eX −MeX)2 − 2b(M̂eY −MeY )(M̂eX −MeX)]

= E(M̂eY −MeY )2 + b2E(M̂eX −MeX)2 − 2bCov(M̂eY , M̂eX).

For application, refer to Chapter 3.

2.3.4. Linear regression . Suppose that the principal variable Y may be

expressed as a linear function of the auxiliary variable X, that is

Yi = a+ bxi + ei

where ei is a random variable due to errors of detection and to the dependence

of Yi by other variables not speci�ed.

It is assumed that the Yi are independent from each other and that their

expected value and variance are :

E(Yi) = a+ bxi

and

V ar(Yi) = σ2
y .

Suppose we know the true mean µx of the random variable X. We extract a

sample of size n. Based on sample data, we obtain the pairs (xi, yi), i = 1, ..., n

observing on each unit extracted the character X and the character Y .

Watson, in 1937, used the regression of the weight of leaves on the leaves of

certain plants, to determine the weight and the area given every leaf belongs to

a small sample. The average area of leaves was then adjusted by regressing the

weight of the leaves.

The regression method is justi�ed by the fact that it is very easy to detect

the weight of the leaves while determination of the area requires more time. This
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example suggests that the regression method is useful if it is easy to detect in-

formation about µx, while it is expensive to detect the characteristic Y on the

units.

To proceed with estimate of µyby the regression method , we distinguish two

cases based, or not, on the knowledge of the angular coe�cient [Pollastri, 1997].

• Estimate of the mean by the regression method .

Assume that the connection between X and Y is

E(Yi) = a+ b0xi

where b0 is the value chosen for b.

The estimate with the regression method is given by :

ȳlr = ȳ + b0(µx − x̄).

The estimator Ȳlr is unbiased

E(Ȳlr) = E(Ȳ ) + b0E(µx − X̄) = µy

and has variance

V ar(Ȳlr) =
σ2
y

n
(1− ρ2).

According to the pairs of values obtained from the sample, b and a are esti-

mated by the method of least squares

(2.3.32) b̂ =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

and

â = ȳ − b̂x̄.

2.3.4.1. Estimate of the median using the regression method.

In a similar way to the estimate of the mean, one can estimate the median.

Given the estimate of b 2.3.32 and the population median of the auxiliary

variable X , the estimate of the median of Y using the regression method is :

Me(Ŷlr) = M̂e(Y ) + b(Me(X)− M̂e(X)).

2.3.5. Quantile Regression.
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Quantiles . Any real-valued random variable X may be characterized by its

(right-continuous) distribution function

(2.3.33) F (x) = P (X ≤ x),

whereas for any 0 < τ < 1,

(2.3.34) F−1(τ) = inf {x : F (x) ≥ τ}

is called the τth quantile of X.

The quantiles arise from a simple optimization problem. Consider a simple

decision theoretic problem: a point estimate is required for a random variable

with (posterior) distribution function F (·). If loss is described by the piecewise

linear function

(2.3.35) ρτ (u) = u(τ − I(u < 0))

for some τ∈ (0, 1), �nd x̂ to minimize expected loss. We seek to minimize

(2.3.36) Eρτ (X − x̂) = (τ − 1)

ˆ x̂

−∞
(x− x̂)dF (x) +

ˆ ∞
x̂

(x− x̂)dF (x).

Di�erentiating with respect to x̂, we have

(2.3.37) 0 = (1− τ)

ˆ x̂

−∞
dF (x)− τ

ˆ ∞
x̂

dF (x) = F (x̂)− τ.

Since F (·)is monotone, any element of {x : F (x) = τ}minimizes expected loss.

When the solution is unique, x̂ = F−1(τ); otherwise, we have an � interval of τth

quantiles� from which the smallest element must be chosen - to adhere to the

convention that the empirical quantile function be left-continuous. It is natural

than an optimal point estimator for asymmetric linear loss should lead us to the

quantiles. In the asymmetric case of absolute value loss it is well known to yield

the median. When loss is linear and asymmetric, we prefer a point estimate

more likely to leave us on the �atter of the two branches of marginal loss. Thus,

for example, if an underestimate is marginally three times more costly than an

overestimate, we will choose x̂ so that P (X ≤ x̂)is three times greater than

P (X > x̂) to compensate. That is, we will choose x̂ to be the 75th percentile of

F (·).
When F (·) is replaced by the empirical distribution function

(2.3.38) Fn(x) = n−1
n∑
i=1

I(Xi ≤ x),
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we may still choose x̂ to minimize expected loss:

(2.3.39)

ˆ
ρτ (x− x̂)dFn(x) = n−1

n∑
i=1

ρτ (xi − x̂)

and doing so now yields the τth sample quantile.

The problem of �nding the τth sample quantile, which can be written as

(2.3.40) min
ξ∈R

n∑
i=1

ρτ (yi − ξ),

may be reformulated as a linear program by introducing 2n arti�cial, or �slack�,

variables {ui, vi : 1, . . . , n} to represent the positive and negative parts of the

vector of residuals. This yields the new problem

(2.3.41) min
(ξ,u,v)∈R×R2n

+

{
τ1>nu+ (1− τ)1>n v | 1nξ + u− v = y

}
,

where 1n denotes an n-vector of 1. Clearly, in (2.3.41) we are minimizing

a linear function of a polyhedral constraint of the intersection of the (2n +

1)−dimensional hyperplane determined by linear equality constraints and the set

R× R2n
+ .

2.3.5.1. Introduction to quantile regression.

That the quantiles may be expressed as the solution to a simple optimization

problem leads, naturally, to more general methods of estimating models of condi-

tional quantile functions. Least squares o�ers a template for this development.

Knowing that the sample mean solves the problem

suggests that, if we are willing to express the conditional mean of y given x as

µ(x) = x>β, then β may be estimated by solving

(2.3.42) min
β∈Rp

n∑
i=1

(yi − x>i β)2.

Similarly, since the τth sample quantile, α̂(τ), solves

(2.3.43) min
α∈R

n∑
i=1

ρτ (yi − α),

we are led to specifying the τth conditional quantile function as Q(τ | x) =

x>β(τ), and to consideration of β̂(τ) solving

(2.3.44) min
β∈Rp

n∑
i=1

ρτ (yi − x>i β).
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This is the germ of the idea elaborated by Koenker and Bassett (1978) [Koenker

and Bassett Jr, 1978].

Quantile regression problem 2.3.44 may be reformulated as a linear program

as in 2.3.41 :

(2.3.45) min
(β,u,v)∈Rp×R2n

+

{
τ1>nu+ (1− τ)1>n v | Xβ + u− v = y

}
,

where X now denotes the usual n by p regression design matrix. We have

split the residual vector y − Xβ into its positive and negative parts, and so we

are minimizing a linear function on a polyhedral constraint set, and most of the

important properties of the solutions, β̂(τ), which we call �regression quantiles�.

Koenker and Bassett now deal with regression quantile introducing the central

special case, which is the median regression estimator that minimizes a sum of

absolute errors.

We can say that a student scores at the τth quantile of a standardized exam if

he/she performs better than the proportion τ, of the reference group of students,

and worse than the proportion (1− τ). Thus, half of the students perform better

than the median student, and half perform worse. Similarly, the quartiles divide

the population into four segments with equal proportions of the reference pop-

ulation in each segment. The quantiles, or percentiles refer to the general case.

Quantile regression seeks to extend these ideas to the estimation of conditional

quantile functions, models in which quantiles of the conditional distribution of the

response variable are expressed as functions of observed covariates. To accomplish

this task Koenker and Hallock [2001] needed a new way to de�ne the quantiles.

Quantiles seem inseparably linked to the operations of the ordering and sorting

that are generally used to de�ne them. Koenker and Hollack de�ne quantiles

through a simple alternative as an optimization problem. Just as we can de�ne

the sample mean as the solution to the problem of minimizing a sum of squared

residual, we can de�ne the median as the solution to the problem of minimizing

a sum of absolute residuals. Regarding the other quantiles, if the symmetric

absolute value function yields the median, perhaps we can simply tilt the absolute

value to produce the other quantiles. This logic suggests solving

(2.3.46) min
ξ∈<

∑
ρτ (yi − ξ)

where the function ρτ (·) is illustrated
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Figure 2.3.1. Quantile regression ρ function

To see this problem yields the sample quantiles as its solutions, it is only nec-

essary to compute the directional derivative of the objective function with respect

to ξ, taken from the left and from the right. Having succeeded in de�ning the un-

conditional quantiles as an optimization problem, it is easy to de�ne conditional

quantiles in an analogous fashion. Least squares regression o�ers a model for how

to proceed. If, presented with a random sample {y1, y2, ..., yn} ,we solve

(2.3.47) min
µ∈<

n∑
i=1

(yi − µ)2,

and we proceed as seen previously.

In quantile regression, to obtain an estimate of the conditional median func-

tion, we simply replace the scalar ξ in 2.3.46 with the parametric function ξ(xi, β)

and set τ to 1
2
.

To illustrate the basic ideas they reconsider a classical empirical application,

Ernst Engel's (1875) analysis of the relationship between house food expenditure

and household income. In Figure 2.3.2
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Figure 2.3.2. Engel Curves for Food

They plot the data taken from 235 European working class households. Super-

imposed on the plot are seven estimated quantile regression lines corresponding

to the quantiles τ ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95} . The median τ = 0.5 �t

is indicated by dashed line; the least squares �t is plotted as the dotted line.

The plot reveals the tendency of the dispersion of food expenditure to increase

along with its level as household income increases. The spacing of the quantile

regression lines also reveals thet the conditional distribution of food expenditure

is skewed to the left ; the narrower spacing of the upper quantiles indicating

high density and a short upper tail and the wider spacing of the lower quantiles

indicateing a lower density and longer lower tail. The conditional median and
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mean �ts are quite di�erent in this example, a fact that is partially explained by

the asymmetry of the conditional density and partially by the strong e�ect exerted

on the least squares �t by the two unusual points with high income and low food

expenditure. Note that one consequence of this non robustness is that the least

squares �t provides a rather poor estimate of the conditional mean for the poorest

households in the sample; note that the dashed least squares line passes above all

of the very low income observations.

Example 2. Quantile Regression and Determinants of Infant Birth-

weight

Koenker and Hallock [2001], for this example, reconsider an investigation by

Abreveya (2001) of the impact of various demographic characteristics and ma-

ternal behavior on the birthweight of in fants born in the United States. Low

birthweight is know to be associated with a wide range of subsequent health

problems, and has even been linked to educational attainment and eventual labor

market outcomes; consequently , there has been considerable interest in factors

in�uencing birthweights and public policy initiatives that might prove e�ective in

reducing the incidence of low birthweight infants.

Their analysis is based on the June 1997 Detailed Natality Data published by

the National Center for Health Statistics. Like Abreveya (2001) , they limit the

sample to live, singleton births, with mother recorded as either black or white,

between the age of 18 and 45, residing in the United States. Observations with

missing data for any of the variables described below were dropped from the anal-

ysis. This process yielded a sample of 198.377 babies. Birthweight, the response,

variable, is recorded in grams. Education of the mother is divided into four cat-

egories : less than high school, high school, some college and college graduate.

The omitted category is less than high school so coe�cients may be interpreted

relative to this category. The prenatal medical care of the mother is also divided

into four categories: those with no prenatal visit, those whose �rst prenatal visit

was in the �rst trimester of the pregnancy, those with �rst visit in the second

trimester, and those �rst visit in the last trimester. The omotted category is the

group with a �rst visit in the �rst trimester, they constitute almost 85 percent

of the sample. An indicator of whether the mother smoked during pregnancy is

included in the model, as well as mother's reported average number of cigarettes

smoked per day. The mother's reported weight gain durinf pregnancy (in pounds)

is included ( as a quadratic e�ect ).
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Figure 2.3.3 presents a summary of the quantile regression results for this ex-

ample. They have 15 covariates, plus an intercept. For each of the 16 coe�cients

they plot the 19 distinct quantile regression estimates for τ ranging from 0.05 to

0.95 as the solid curve with �lled dots. For each covariate these point estimates

may be interpreted as the impact of a one unit change of the covariate on birth-

weight holding other covariates �xed. Thus, each of the plots have a horizontal

quantile, or τ,scale and the vertical scale in grams indicates the covariate e�ect.

The dashed line in each �gure shows the ordinary least squares of the conditional

mean e�ect. The two dotted lines represent conventional 90 percent con�dence

interval for the least squares estimate. The shaded grey area depicts a 90 percent

pointwise con�dence band for the quantile regression estimates.

In the �rst panel of the �gure the intercept of the model may be interpreted

as the estimated conditional quantile �nction of the birthweight distribution of a

girl born to an unmarried, white mother with less than a high school education,

who is 27 years old and in the �rst trimester of the pregnancy. The mother's age

and weight gain are chosen to re�ect the means of these variables in the sample.
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Figure 2.3.3. OLS and Quantile Regression Estimates for Birthweight Model



CHAPTER 3

Application

3.1. Introduction

The study of the data and the application of the presented methods is com-

posed of two parts.

In the �rst part, all possible samples were extracted, in order to obtain the

true distribution and thus to have di�erent scenarios as much realistic as possible.

We proceeded by constructing the cases in which the auxiliary variable X is

symmetric, positive asymmetric and negative asymmetric. A similar procedure

was used for the cases of Y. We applied all methods to each sample and we

evaluated the expexted value, the variance and the mean square error, in order to

choose the best estimator.

In the second part, we tested all methods considered on a bivariate model.

After having selected 1000 samples of size n = 100 from a Bivariate Log-Normal

distribution, expected values and variances of the estimators are compared.

3.2. Examples of real distribution of the estimators

In order to extract all the possible samples, known small populations realized

combining the symmetric auxiliary variable X, the positive asymmetric variable

X and the negative asymmetric variable X with the cases of symmetry, positive

and negative asymmetry of the variable Y .

The di�erent values are respectively:

in the �rst case, where the symmetric X has been used, the following six

values are consider simmetric with respect to the median have been taken into

consideration:

X < −(1, 2, 3, 4, 5, 6);

for the asymmetric positive X, the values are:

X < −(2, 2.3, 3.5, 4, 8, 12);

52
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for the asymmetric negative X , the values are :

X < −(1, 1.5, 2.5, 9, 9.19.2).

As for the values of the variable Y are:

for the symmetric case :

Y < −(10, 20, 30, 40, 50, 60);

for the positive asymmetric case:

Y < −(20, 25, 35, 40, 80, 120)

and for the negative asymmetric case:

Y < −(10, 15, 25, 90, 91, 92).

The median populations on three cases is :

Y symmetric Y positive asymmetric Y negative asymmetric

35 37.5 57.5

3.2.1. Median estimation without the auxiliary variable. The estimate

of the median without the use of auxiliary variables is reduced to the calculation

of thr median of the sample values.

Case 1 : X symmetric

Expected values

Y symmetric Y positive asymmetric Y negative asymmetric

35.1157 45.0435 55.8184

Variances and MSE

Y symmetric Y positive asymmetric Y negative asymmetric

Var 140.2824 569.2835 1236.7778

MSE 140.2958 626.1874 1239.606

3.2.2. Kuk and Mak estimator [Kuk and Mak, 1989]. We consider all

possible samples. For every sample we order the values of auxiliary variable X

and variable Y in a non decreasing way.

If the value of X is less than or equal to the median MeX , then add 1
n
to the

function FY1(y),
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if the value of X is greater than the median MeX , then add 1
n
to the function

FY2(y).

Then FY (y) is estimated by

F̃Y (y) ' 1

2

{
F̃Y1(y) + F̃Y2(y)

}
when the value 1

2
is obtained, we'll get the corresponding median of Y .

Case 1 : X symmetric

Y sym Y pos asym Y neg asym

Expected value 44.9923 68.0067 78.0784

Variance 121.862 1034.45 716.860

MSE 221.708 1965.1087 1140.3305

Case 2 : X positive asymmetric

Y sym Y pos asym Y neg asym

Expected value 44.9923 68.0067 78.0784

Variance 121.862 1034.45 716.860

MSE 221.708 1965.1087 1140.3305

Case 3 : X negative asymmetric

Y sym Y pos asym Y neg asym

Expected value 44.9923 68.0067 78.0784

Variance 121.862 1034.45 716.860

MSE 221.708 1965.1087 1140.3305

3.2.3. Ratio estimator. We apply the procedure of paragraph 2.3.2.

Case 1 : X symmetric

Y sym Y pos asym Y neg asym
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Expected value 35 43.588 50.3017

Variance 0 102.0516 506.1431

MSE 0 175.8047 557.9591

Case 2 : X poisitve asymmetric

Y sym Y pos asym Y neg asym

Expected value 31.387 37.5 45.44975

Variance 32.7882 0 649.0173

MSE 45.8419 0 712.2159

Case 3 : X negative asymmetric

Y sym Y pos asym Y neg asym

Expected value 49.2475 62.5704 57.5

Variance 467.9422 814.9926 0

MSE 670.9347 1575.119 0

3.2.4. Median regression. We apply the procedure of paragraph 2.3.3. We

shall restrict this line to pass through the median values of these data.

A1. X symmetric and Y symmetric

First we calculate the median of X and Y :

Me(X) =

{
x(N2 ) + x(N2 +1)

2

}
=

{
x(3) + x(4)

2

}
=

{
3 + 4

2

}
= 3.5

Me(Y ) =

{
x(N2 ) + x(N2 +1)

2

}
=

{
x(3) + x(4)

2

}
=

{
30 + 40

2

}
= 35.
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(1) (2) (3) (4) (5) (6) (7)

xi yi x
′
i y

′
i b =

y
′
i

x′i
Rank x̃j

1 10 -2.5 -25 10 1 -2.5
2 20 -1.5 -15 10 2 -1.5
3 30 -0.5 -5 10 3 -0.5
4 40 0.5 5 10 4 0.5
5 50 1.5 15 10 5 1.5
6 60 2.5 25 10 6 2.5

Table 11. Determining the slope of the line when X and Y are symmetric

(1) Columns (1), (2) are the recordings of raw data.

(2) Columns (3), (4) are the transformation of variables xi, yi to x
′
i, y

′
i using

x
′

i = xi −Me(X)

y
′

i = yi −Me(Y ).

(3) Column (5) is the ratio
y
′
i

x
′
i

; these numbers are the b values at the minimum

points of the indiviadual curves of the terms | y′
i − bx

′
i | .

(4) Column (6) ranks the data of column (5) in ascending algebraic order.

(5) By adding the absolute values of column (3), we obtain
∑
| x′

i |= 9.

(6) The �nal step is to add successively to −
∑
| x′

i |, twice the individual

| x̃i |in the sequence of their indicated ranks until change in sign is

obtained. Thus:

−
∑
| x′i |: -9

2| x̃1 |: 5

-4

2 | x̃2 |: 3

-1

2 | x̃3 |: 1

0

Since the index i=3 e�ects the change in sign, b = y
′
3/x

′
3=10 is the

slope of the line of best �t,

ŷ = 10x.
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A2. X symmetric and Y positive asymmetric

(1) (2) (3) (4) (5) (6)

x
′
i yi y

′
i b =

y
′
i

x
′
i

Rank x̃i

-2.5 20 -17.5 7 3 -0.5
-1.5 25 -12.5 8.33 4 0.5
-0.5 35 -2.5 5 1 -2.5
0.5 40 2.5 5 2 -1.5
1.5 80 42.5 28.33 5 1.5
2.5 120 82.5 33 6 2.5

Table 14. Determining the slope of the line when X is symmetric and

Y positive asymmetric

We calculate the median of X and Y :

Me(X) =

{
x(N2 ) + x(N2 +1)

2

}
=

{
x(3) + x(4)

2

}
=

{
3 + 4

2

}
= 3.5

Me(Y ) =

{
x(N2 ) + x(N2 +1)

2

}
=

{
x(3) + x(4)

2

}
=

{
35 + 40

2

}
= 37.5.

(1) Columns (1), (3) are the transformation of variables xi, yi to x
′
i, y

′
i using

x
′

i = xi −Me(X)

y
′

i = yi −Me(Y ).

(2) Column (4) is the ratio
y
′
i

x
′
i

; these numbers are the b values at the minimum

points of the indiviadual curves of the terms | y′
i − bx

′
i | .

(3) By adding the absolute values of column (1), we obtain
∑
| x′

i |= 9.

(4) The �nal step is to add successively to −
∑
| x′

i |, twice the individ-

ual | x̃i |in the sequence of their indicated ranks until change in sign is

obtained. Thus:

−
∑
| x′i |: -9

2| x̃1 |: 1

-8

2 | x̃2 |: 1

-7

2 | x̃3 |: 5
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-2

2 | x̃4 |: 3

1

Since the index i=4 e�ects the change in sign, b = y
′
2/x

′
2=8.33 is the

slope of the line of best �t,

ŷ = 8.33x.

A3. X symmetric and Y negative asymmetric

First we calculate the median of X and Y :

Me(X) =

{
x(N2 ) + x(N2 +1)

2

}
=

{
x(3) + x(4)

2

}
=

{
3 + 4

2

}
= 3.5

Me(Y ) =

{
x(N2 ) + x(N2 +1)

2

}
=

{
x(3) + x(4)

2

}
=

{
25 + 90

2

}
= 57.5.

(1) (2) (3) (4) (5) (6)

x
′
i yi y

′
i b =

y
′
i

x
′
i

Rank x̃i

-2.5 10 -47.5 19 2 2.5
-1.5 15 -42.5 28.33 4 -2.5
-0.5 25 -32.5 65 5 1.5
0.5 90 32.5 65 6 -1.5
1.5 91 33.5 22.33 3 -0.5
2.5 92 34.5 13.8 1 0.5

Table 17. Determining the slope of the line when X is symmetric and

Y negative asymmetric

(1) Columns (1), (3) are the transformation of variables xi, yi to x
′
i, y

′
i using

x
′

i = xi −Me(X)

y
′

i = yi −Me(Y ).

(2) Column (4) is the ratio
y
′
i

x
′
i

; these numbers correspondent to the b values

at the minimum points of the indiviadual curves of the terms | y′
i− bx

′
i | .

(3) By adding the absolute values of column (1), we obtain
∑
| x′

i |= 9.
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(4) The �nal step is to add successively to −
∑
| x′

i |, twice the individ-

ual | x̃i |in the sequence of their indicated ranks until change in sign is

obtained. Thus:

−
∑
| x′i |: -9

2| x̃1 |: 5

-4

2 | x̃2 |: 5

1

Since the index i=2 e�ects the change in sign, b = y
′
1/x

′
1=19 is the

slope of the line of best �t :

ŷ = 19x.

A4. X negative asymmetric and Y symmetric

(1) (2) (3) (4) (5) (6) (7)

xi yi x
′
i y

′
i b =

y
′
i

x
′
i

Rank x̃i

1 10 -4.75 -25 5.26 5 -3.25
1.5 20 -4.25 -15 3.53 3 3.25
2.5 30 -3.25 -5 1.54 1 -4.25
9 40 3.25 5 1.54 2 3.25
9.1 50 3.35 15 4.48 4 3.35
9.2 60 3.45 25 7.25 6 3.45

Table 20. Determining the slope of the line when X is negative asym-

metic and Y symmetric

First we calculate the median of X and Y :

Me(X) =

{
x(N2 ) + x(N2 +1)

2

}
=

{
x(3) + x(4)

2

}
=

{
2.5 + 9

2

}
= 5.75

Me(Y ) =

{
x(N2 ) + x(N2 +1)

2

}
=

{
x(3) + x(4)

2

}
=

{
30 + 40

2

}
= 35.

(1) Columns (3), (4) are the transformation of variables xi, yi to x
′
i, y

′
i using

x
′

i = xi −Me(X)

y
′

i = yi −Me(Y ).
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(2) Column (5) is the ratio
y
′
i

x
′
i

; these numbers are the b values at the minimum

points of the indiviadual curves of the terms | y′
i − bx

′
i | .

(3) Column (6) ranks the data of column (5) in ascending algebraic order.

(4) By adding the absolute values of column (3), we obtain
∑
| x′

i |= 20.53.

(5) The �nal step is to add successively to −
∑
| x′

i |, twice the individ-

ual | x̃i |in the sequence of their indicated ranks until change in sign is

obtained. Thus:

−
∑
| x′i |: -20.53

2| x̃1 |: 6.5

-14.03

2 | x̃2 |: 6.5

-7.53

2 | x̃3 |: 8.5

1.03

Since the index i=3 e�ects the change in sign, b = y
′
2/x

′
2=3.53 is the

slope of the line of best �t,

ŷ = 3.53x.

A5. X negative asymmetric and Y positive asymmetric

First we calculate the median of X and Y :

Me(X) =

{
x(N2 ) + x(N2 +1)

2

}
=

{
x(3) + x(4)

2

}
=

{
3 + 4

2

}
= 5.75

Me(Y ) =

{
x(N2 ) + x(N2 +1)

2

}
=

{
x(3) + x(4)

2

}
=

{
+40

2

}
= 37.5.
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(1) (2) (3) (4) (5) (6)

x
′
i yi y

′
i b =

y
′
i

x
′
i

Rank x̃i

-4.75 20 -17.5 3.68 4 -3.25
-4.25 25 -12.5 2.94 3 3.25
-3.25 35 -2.5 0.77 1 -4.25
3.25 40 2.5 0.77 2 -4.75
3.35 80 42.5 12.69 5 3.35
3.45 120 82.5 23.91 6 3.45

Table 23. Determining the slope of the line when X is negative asym-

metric and Y positive asymmetric

(1) Columns (1), (3) are the transformation of variables xi, yi to x
′
i, y

′
i using

x
′

i = xi −Me(X)

y
′

i = yi −Me(Y ).

(2) By adding the absolute values of column (1), we obtain
∑
| x′

i |= 20.53.

(3) The �nal step is to add successively to −
∑
| x′

i |, twice the individ-

ual | x̃i |in the sequence of their indicated ranks until change in sign is

obtained. Thus:

−
∑
| x′i |: -20.53

2| x̃1 |: 6.5

-14.03

2 | x̃2 |: 6.5

-7.53

2 | x̃3 |: 12.75

5.22

Since the index i=3 e�ects the change in sign, b = y
′
2/x

′
2=2.94 is the

slope of the line of best �t,

ŷ = 2.94x.

A6. X negative asymmetric and Y negative asymmetric

We calculate the median of X and Y :

Me(X) =

{
x(N2 ) + x(N2 +1)

2

}
=

{
x(3) + x(4)

2

}
=

{
2.5 + 9

2

}
= 5.75
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Me(Y ) =

{
x(N2 ) + x(N2 +1)

2

}
=

{
x(3) + x(4)

2

}
=

{
25 + 90

2

}
= 57.5.

(1) (2) (3) (4)

x
′
i yi y

′
i b =

y
′
i

x
′
i

-4.75 10 -47.5 10
-4.25 15 -42.5 10
-3.35 25 -32.5 10
3.25 90 32.5 10
3.35 91 33.5 10
3.45 92 34.5 10

Table 26. Determining the slope of the line when X is negative asym-

metric and Y negative asymmetric

The slope of the line is b = 10.

A7. X positve asymmetric and Y symmetric

First we calculate the median of X and Y :

Me(X) =

{
x(N2 ) + x(N2 +1)

2

}
=

{
x(3) + x(4)

2

}
=

{
3.5 + 4

2

}
= 3.75

Me(Y ) =

{
x(N2 ) + x(N2 +1)

2

}
=

{
x(3) + x(4)

2

}
=

{
30 + 40

2

}
= 35.

(1) (2) (3) (4) (5) (6) (7)

xi yi x
′
i y

′
i b =

y
′
i

x
′
i

Rank x̃i

2 10 -1.75 -25 14.29 4 8.25
2.3 20 -1.45 -15 10.35 3 4.25
3.5 30 -0.25 -5 20 5 -1.45
4 40 0.25 5 20 6 -1.75
8 50 4.25 15 3.53 2 -0.25
12 60 8.25 25 3.03 1 0.25

Table 28. Determining the slope of the line when X is positive asym-

metric and Y symmetric
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(1) Columns (3), (4) are the transformation of variables xi, yi to x
′
i, y

′
i using

x
′

i = xi −Me(X)

y
′

i = yi −Me(Y ).

(2) Column (5) is the ratio
y
′
i

x
′
i

; these numbers are the b values at the minimum

points of the indiviadual curves of the terms | y′
i − bx

′
i | .

(3) Column (6) ranks the data of column (5) in ascending algebraic order.

(4) By adding the absolute values of column (3), we obtain
∑
| x′

i |= 16.2.

(5) The �nal step is to add successively to −
∑
| x′

i |, twice the individ-

ual | x̃i |in the sequence of their indicated ranks until change in sign is

obtained. Thus:

−
∑
| x′i |: -16.2

2| x̃1 |: 16.5

0.3

Since the index i=1 e�ects the change in sign, b = y
′
6/x

′
6=3.03 is the

slope of the line of best �t,

ŷ = 3.03x.

A8. X positive asymmetric and Y negative asymmetric

First we calculate the median of X and Y :

Me(X) =

{
x(N2 ) + x(N2 +1)

2

}
=

{
x(3) + x(4)

2

}
=

{
3.5 + 4

2

}
= 3.75

Me(Y ) =

{
x(N2 ) + x(N2 +1)

2

}
=

{
x(3) + x(4)

2

}
=

{
25 + 90

2

}
= 57.5.
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(1) (2) (3) (4) (5) (6)

x
′
i y y

′
i b =

y
′
i

x
′
i

Rank x̃i

-1.75 10 -47.5 27.14 3 8.25
-1.45 15 -42.5 29.31 4 4.25
-0.25 25 -32.5 130 5 -1.75
0.25 90 32.5 130 6 -1.45
4.25 91 33.5 7.88 2 -0.25
8.25 92 34.5 4.18 1 0.25

Table 31. Determining the slope of the line when X is positive asym-

metric and Y symmetric

(1) Columns (1), (3) are the transformation of variables xi, yi to x
′
i, y

′
i using

x
′

i = xi −Me(X)

y
′

i = yi −Me(Y ).

(2) By adding the absolute values of column (1), we obtain
∑
| x′

i |= −16.2.

(3) The �nal step is to add successively to −
∑
| x′

i |, twice the individ-

ual | x̃i |in the sequence of their indicated ranks until change in sign is

obtained. Thus:

−
∑
| x′i |: -16.2

2| x̃1 |: 16.5

0.3

Since the index i=1 e�ects the change in sign, b = y
′
6/x

′
6=4.18 is the

slope of the line of best �t,

ŷ = 4.18x.

A9. X positive asymmetric and Y positive asymmetric

Applying the procedure of the paragraph 2.3.3 , the slope of the line is b = 10.
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(1) (2) (3) (4)

x
′
i yi y

′
i b =

y
′
i

x
′
i

-1.75 20 -17.5 10
-1.45 25 -12.5 10
-0.25 35 -2.5 10
0.25 40 2.5 10
4.25 80 42.5 10
8.25 120 82.5 10

Table 34. Determining the slope of the line when X is positive asym-

metric and Y symmetric

The expected values, variances and MSE.

Case 1 : X symmetric

Y symmetric Y positive asymmetric Y negative positive

Expected value 35 44.4004 55.5921

Variance 0 206.7387 349.1249

MSE 0 295.1064 352.7651

Case 2 : X positive asymmetric

Y symmetric Y positive asymmetric Y negative positive

Expected value 32.7967 37.5 52.3161

Variance 39.1736 0 876.0749

MSE 44.0281 0 1095.591

Case 3 : X negative asymmetric

Y symmetric Y positive asymmetric Y negative positive

Expected value 35.8111 45.5466 57.5

Variance 59.2385 308.3228 0

MSE 59.8963 419.5538 0
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MSE of median regression.

We apply 2.3.31 to the data.

Case 1 : X symmetric

(a) (b) (c) (d) (e)
Y sym. 139.2747 1.392747 13.92747 0 0

Y pos. asym 611.9496 1.368313 24.57176 264.6812 264.6812051
Y neg. asym 1242.512 1.351852 36.26826 352.3362 352.336692

Table 38. MSE : X symmetric

where :

E(M̂eY −Me)2 = (a)

E(M̂eX −Me)2 = (b)

Cov(M̂eY , M̂eX) = (c)

E(M̂eMR −MeY )2 = (d)

2.3.31 = (e)

Case 2 : X positive asymmetric

(a) (b) (c) ((d) (e)
Y symmetric 138,9918 6.12234 24,72209 45,38448 45,3845

Y pos. asymmetric 633,3122 6.33122 63.33122 0 0
Y neg asymmetric 1248,581 6.046307 53,30765 908.5728 908,5725404

Table 40. MSE : X positive asymmetric

Case 3 : X negative asymmetric
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(a) (b) (c) (d) (e)
Y symmetric 137,6029 12,44971 36,53646 60,1068 60.107

Y pos. asymmetric 656,7837 12,46848 51,93538 443,3925 443,3924468
Y neg. asymmetric 1252,531 12,52531 125,2531 0 0

Table 42. MSE : X negative asymmetric

3.2.5. Linear regression. We apply the procedure of paragraph 2.3.4.

Case 1 : X symmetric

Y symmetric Y positive asymmetric Y negative positive

Expected value 35 44.7901 55.64535

Variance 0 120.1250 331.1316

MSE 0 173.2708 334.5713

Case 2 : X positive asymmetric

Y symmetric Y positive asymmetric Y negative positive

Expected value 31.7568 37.5 49.44801

Variance 29.1739 0 714.3191

MSE 39.6922 0 779.1537

Case 3 : X negative asymmetric

Y symmetric Y positive asymmetric Y negative positive

Expected value 35.868 46.6717 57.5

Variance 48.6476 416.5605 0

MSE 49.4010 500.6814 0

3.2.6. Quantile regression.

We apply the procedure of paragraph 2.3.5 , when τ = 1
2
.
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Case 1 : X symmetric

Y symmetric Y positive asymmetric Y negative positive

Expected value 35 44.7615 55.2354

Variance 0 123.2197 410.88

MSE 0 218.5056 414.793

Case 2 : X positive asymmetric

Y symmetric Y positive asymmetric Y negative positive

Expected value 32.425 37.5 49.5849

Variance 33.4249 0 718.779

MSE 40.2642 0 781.428

Case 3 : X negative asymmetric

Y symmetric Y positive asymmetric Y negative positive

Expected value 35.8178 46.6555 57.5

Variance 42.1649 411.3568 0

MSE 42.8337 495.1804 0

3.3. Final results

We compare the di�erent estimators for the median.

Case 1: X symmetric

Calculation of the expected values, the variances and the mean square errors.

Expected values Y sym Y pos asym Y neg asym
No auxiliary variable 35,115741 45.0434 55.8184
Median Regression 35 44.91662 55.6547

Ratio 35 43.82974 55.4128
Linear Regression 35 44.79012 55.64535
Kuk and Mak 44.9923 68.0067 78.0784

Table 50. Expected values : X symmetric
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Table 50 shows that

-for Y symmetric: the estimators are unbiased, except for the estimator of

Kuk and Mak, that is biased;

-for Y positive and negative asymmetric : the estimators are biased and

we note the high value for the estimator of Kuk and Mak.

To choose the best estimator, we observe the Tables 52 and 54 :

-for Y symmetric : we note that the estimators using di�erent methods im-

prove on the estimate of the median without the auxiliary variable, but the choice

is indi�erent between median regression, ratio estimator and linear regression;

-for Y positive asymmetric : the best estimator is obtained by the ratio

estimator. The estimator of Kuk and Mak worses the median estimation with

respect to the estimation without the auxiliary variable;

- for Y negative asymmetric : the best estimator is linear regression's

estimator.

Variances Y sym Y pos asym Y neg asym
No auxiliary variable 140.282422 569.2835 1236.7778
Median Regression 0 216.4359 352.5256

Ratio 0 101.3940 509.6775
Linear Regression 0 120.125 331.1316
Kuk and Mak 121.862 1034.45 716.860

Table 52. Variances : X symmetric

MSE Y sym Y pos asym Y neg asym
No auxiliary variable 140.2958 626.1874 1239.606
Median Regression 0 271.4422 355.9308

Ratio 0 141.4597 559.9055
Linear Regression 0 173.2708 334.5713
Kuk and Mak 221.708 1965.078 1140.2705

Table 54. MSE : X symmetric

Case1: X positive asymmetric

Calculation of the expected values, the variances and the mean square errors.
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Expected values Y sym Y pos asym Y neg asym
No auxiliary variable 34.9614 45.0228 55.0653
Median Regression 32.7494 37.5 52.1591

Ratio 31.25634 37.5 49.4480
Linear Regression 31.7568 37.5 45.3866
Kuk and Mak 44.9923 68.0067 78.0784

Table 56. Expected values : X positive asymmetric

Table 56 shows that

- forY symmetric andY negative asymmetric : the estimators are biased,

even if the estimator without the auxiliary variable provides a value closer to that

of the population;

- for Y positive asymmetric : the estimators are unbiased, except for the

estimator of Kuk and Mak.

Variances Y sym Y pos asym Y neg asym
No auxiliary variable 139.5226 567.7029 1245.6588
Median Regression 39.7785 0 881.6117

Ratio 33.6375 0 649.72
Linear Regression 29.174 0 714.3191
Kuk and Mak 121.862 1034.45 716.860

Table 58. Variances : X positive asymmetric

MSE Y sym Y pos asym Y neg asym
No auxiliary variable 139.5241 574.1473 1251.586
Median Regression 44.83862 0 910.024

Ratio 47.6525 0 796.4536
Linear Regression 39.6913 0 779.1537
Kuk and Mak 221.708 1965.078 1140.2705

Table 60. MSE : X positive asymmetric

Table 58 and 60 show that

- for Y symmetric and Y positive asymmetric : the best estimator is the

linear regression's estimator ;
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-for Y positive asymmetric : the choice is indi�erent between median re-

gression, ratio estimator and linear regression.

Case 3 : X negative asymmetric

Calculation of the expected values, variances and mean square errors.

Expected values Y sym Y pos asym Y neg asym
No auxiliary variable 34.9704 44.9955 54.9954
Median Regression 35.7282 45.7777 57.5

Ratio 49.7288 63.2085 57.5
Linear Regression 35.868 46.6717 57.5
Kuk and Mak 44.9923 68.0067 78.0784

Table 62. Expected values : X negative asymmetric

Table 62 shows that

- forY symmetric andY positive asymmetric : the estimators are biased.

It can be seen that for Y positive asymmetric, the ratio estimator is more

biased;

- for Y negative asymmetric : the estimatorr are unbiased, except for

estimators without auxiliary variable and Kuk and Mak.

Variances Y sym Y pos asym Y neg asym
No auxiliary variable 137.5683 533.6495 1248.3118
Median Regression 33.9634 314.4212 0

Ratio 467.4734 803.6303 0
Linear Regression 48.6476 416.5605 0
Kuk and Mak 121.862 1034.45 716.860

Table 64. Variances : X negative asymmetric

MSE Y sym Y pos asym Y neg asym
No auxiliary variable 137.5691 589.832 1254.585
Median Regression 34.4894 382.9416 0

Ratio 684.4112 1464.786 0
Linear Regression 49.401 500.6814 0
Kuk and Mak 221.708 1965.078 1140.2705

Table 66. MSE : X negative asymmetric
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Tables 64 and 66 show that:

- for Y symmetric and Y positive asymmetric : the best estimator is

the median regression' estimator. We observe a high value for ratio estimaotr,

which worses the estimation with respect to the method without auxiliary variable.

Probably the ratio estimato has a high MSE due to the fact that the intercept is

high.

- for Y negative asymmetric : the choice about the best estimator is

indi�erent between median regression, ratio estimator and linear regression.

3.4. Simulation : Bivariate Log-Normal distribution

The second application is related to a simulation involving a Bivariate Log-

Normal distribution.

Here we describe the procedure.

We start by simulating a Bivariate Normal in R

rbinorm < −function(n,mux,muy, sigmax, sigmay, rho)

where n is the sample size,mux is the expected value ofX,muy is the expected

value of Y , sigmax represents the standard deviation of X, sigmay is the standard

deviation of Y and rho is the linear correlation coe�cient;

generate the marginal X from the the Normal distribution

x < −rnorm(n,mux, sigmax),

generate y from a conditional function Y | X = x

y < −rnorm(n.muy+rho∗sigmay∗(x−mux)/sigmax, sigmay∗sqrt(1−rho2)}.

To obtain the Bivariate Log-Normal distribution, we apply the exponential

transformation of each component of a Bivariate Normal pair.

For the present experiment, the values assigned to the parameters are :

- n=1000,

- mux=1,

- muy=2,

- sx= 0.5,

- sy = 0.7

-rho= (0.4 ; 0.7; 0.9).
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Chosen ρ = 0.4 and Me(Y ) = 7.21, the results are

Expected value Variance MSE

No auxiliary variable 7.2189 0.4032 0.4033

Ratio 7.2146 0.4221 0.4221

Median regression 7.209 0.378 0.3787

Linear regression 7.209 0.398 0.398

[Chu, 1955] shows that if the parent population is normal, then the distribution

of the sample median tends �rapidly� to normality.

In fact the value of V ar(M̂e(Y )) = 0.4032 approximates well the variance

proposed by Chu [1955]

σ2
n =

1

4 [f(ξ)]2 (2n+ 1)
= 0.4019.

Similarly for the variable X, in fact V ar(M̂e(X)) = 0.022 approximates well

the variance

σ2
n =

1

4 [f(ξ)]2 (2n+ 1)
' 0.029.

Chosen ρ = 0.7 and Me(Y ) = 7.29, the results obtained through the experi-

ment are

Expected value Variance MSE

No auxiliary variable 7.2923 0.42 0.42

Ratio 7.2277 0.341 0.345

Median regression 7.2233 0.333 0.338

Linear regression 7.22 0.387 0.3919

The variance V ar(M̂eY ) = 0.42 approximates well the variance proposed by

Chu [1955]

σ2
n =

1

4 [f(ξ)]2 (2n+ 1)
= 0.4011.

Similarly for the variable X, in fact V ar(M̂e(X)) = 0.0288 approximates the

variance

σ2
n =

1

4 [f(ξ)]2 (2n+ 1)
' 0.029.
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Chosen ρ = 0.9 and Me(Y ) = 7.69, the results obtained are

Expected value Variance MSE

No auxiliary variable 7.7 0.488 0.489

Ratio 7.715 0.2496 0.25

Median regression 7.72 0.2476 0.248

Linear regression 7.72 0.2486 0.2495

From the above experiment we obtain V ar(M̂e(Y )) = 0.408 . This result

approximates well the variance proposed by Chu (1955)

σ2
n =

1

4 [f(ξ)]2 (2n+ 1)
' 0.38.

It is possible to consider that the variances of all the estimators decrease when

the correlation coe�cient increases and the three estimators cosidered are almost

unbiased.

The median regression estimator in all the three situations is the best.
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Conclusions

Thanks to this research work of thesis we intended to analyze the way in

which the auxiliary information could be pro�tably used in order to improve

the accuracy in the median estimation. We have tried to get the most e�cient

estimator comparing the estimator of the median without auxiliary variable and

some estimators which keep into account the knowledge of an auxiliary variable.

In the case of an auxiliary variable, we analyzed:

- Ratio estimator, that in some cases, is the most e�cient estimator. But

when the intercept value is high, the mean square error is worse than the one of

the other methods.

- The estimator of Kuk and Mak doesn't improve with respect to the esti-

mator of median without auxiliary variable; but if the mean square error of the

present estimator is compared with the estimated mean square error of the other

estimators, it gets worse. May be it depends on the fact tahat this method takes

into consideration only the relative frequency od cases in which X < MeX and

Y < MeY , but it doesn't take into consideration the real value of the median of

the auxiliary variable.

- In a lot of cases the most e�cient estimators are median regression and linear

regression, even if it is quite di�cult to establish an objective order between the

two.

The method of the median regression improves almost in every cases if it is

compared to the ratio method, as it has been observed in the last part of Chapter

3, when the choice of the best method of estimation of the median has been

analyzed.

Comparing the di�erent methods seems, that the choice of one method or

another is not unique, but it depends on the case of study.

We perfectly know that this topic deserves a wider and fuller treatment.
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However, considering the many research ideas, that have been presented in the

course of our study, we believe that this work can be used as a starting point for

this kind of research, that coul reach interesting.
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Part 1

Appendix A



[Kuk and Mak, 1989]Let FY (·) be the cumulative distribution function of the

density fY . Taylor's series expansion yields

FY (M̂eY ) = FY (MeY ) + fY (MeY )(M̂eY −MeY ) + op(n
−1/2),

so that M̂eY −MeY = {fY (MeY )}−1
{
FY (M̂eY )− FY (MeY )

}
+ op(n

−1/2).

Furthermore, it can be shown that

FY (M̂eY )− FY (MeY ) = F̂Y (M̂eY )− F̂Y (MeY ) + op(n
−1/2).

Therefore

(.0.1)

M̂eY −MeY = {fY (MeY )}−1
{
F̂Y (M̂eY )− F̂Y (MeY )

}
+ op(n

−1/2)

= {fY (MeY )}−1
(
1
2
− pY

)
+ op(n

−1/2),

where pY = F̂Y (MeY ). With pX = F̂X(MeX), we also have

(.0.2) M̂eX −MeX = {fX(MeX)}−1
(

1

2
− pX

)
+ op(n

−1/2).

It follows from equation .0.1 and .0.2 that the asymptotic distribution of

(M̂eY −MeY , M̂eX −MeX) is Bivariate Normal with means zero, variances

σ2
Y = (1− f)(4n)−1 {fY (MeY )}−2 ,

σ2
X = (1− f)(4n)−1 {fX(MeX)}−2

and covariance

σXY = (1− f)n−1
(
P11 −

1

4

)
{fX(MeX)fY (MeY )}−1 .

Kuk and Mak [1989] now derive the asymptotic distribution of M̂eY R−MeY =

(MeXM̂eY −MeY M̂eX)/M̂eX .

Since M̂eX/MeX → 1 in probability, M̂eY R −MeY has the same asymptotic

distribution as

(MeXM̂eY −MeY M̂eX)/MeX = (M̂Y −MY )− (MY −MX)(M̂X −MX).

Thus M̂eY Ris asymptotically normal with mean MeY and variance

n−1(1− f)[1
4
{fY (MY )}−2 + 1

4
(MY /MX)2 {fX(MX)}−2 +

−2(MY /MX)
{
fY (MY )fX(MX)

}−1
(P11 − 1

4
)].



81

They next derive the asymptotic distribution of M̂Y P = Q̂Y (p̂1).

Now it is easy to show that

p̂1 − p̂0 = 2(p11 − P11)(2pX − 1).

Consequently (p̂1 − p̂0)
√
n→ 0 in probability since pX → 1

2
in probability and

p11 − P11is of order Op(n
−1/2).

Thus

M̂eY P −MeY = {fY (MeY )}−1 (p̂0 − pY ) + op(n
−1/2).

Hence, to �nd the asymptotic variance of M̂eY P it su�ces to �nd E(p̂0−pY )2.

Some direct algebraic manupulation yields

p̂0 − pY = (4P11 − 1)(pX −
1

2
)− (pY −

1

2
)

so that

E(p̂0 − pY )2 = 2(1− f)P11(1− 2P11)n
−1.

Hence, M̂eY P is asymptotically normal with mean MeY and variance

(.0.3) 2 {fY (MeY )}−2 (1− f)P11(1− 2P11)n
−1

To derive the asymptotic variance of M̂eY S,it is similar noted that:

M̂eY S −MeY = {fY (MeY )}−1
{

1

2
− F̃ (MeY )

}
+ op(n

−1/2).

Now F̃ (MeY ) = 1
2

{
˜FY 1(MeY ) + F̃Y 2(MeY )

}
and hence, conditional on nX ,

E
{
F̃ (MeY )

}
= 1

2
(2P11 + 2P12) and

var
{
F̃ (MeY )

}
=

1

4

{
(1− f1) 2P11(1− 2P11)n

−1
X + (1− f2)2P12(1− 2P12)(n− nX)−1

}
,

where f1 = 2nX/N and f2 = 2(n − nX)/N . Thus for large n unconditional

variance of F̃ (MY ) is

(1− f) {P11(1− 2P11) + P12(1− 2P12)}n−1 =

= 2(1− f)P11(1− 2P11)n
−1.

It follows that expression .0.3 is also the asymptotic variance of M̂eY S.


