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1. Introduction and main results

Regularity properties of solutions to linear elliptic partial differential equa-
tions have been widely studied in the literature, both in the case of singu-
lar coefficients in the elliptic operator and in the case of domains with non
smooth boundary. Asymptotic expansions near the singularity of the coef-
ficients or near a non regular point of the boundary were derived e.g. in
[2, 3, 5, 12, 13, 14, 15, 16], see also the references therein.

The present paper is concerned with the asymptotic behavior near
the singularity of solutions to equations associated to the following class of
Schrödinger operators with singular homogeneous electromagnetic potentials:

LA,a :=

(
−i∇+

A
(
x
|x|
)

|x|

)2

−
a
(
x
|x|
)

|x|2
. (1.1)

We study both linear and nonlinear equations obtained as perturbations of
the operator LA,a in a domain Ω ⊂ RN containing the origin. In [5] as-
ymptotic expansions at the singularity of solutions to linear equations of the
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type

LA,au(x) = h(x)u(x), in Ω, (1.2)

and semilinear equations with at most critical growth of the type

LA,au(x) = f(x, u(x)), in Ω, (1.3)

were derived. By solutions of (1.2) or (1.3) we mean functions which belong to
a suitable Sobolev space depending on the magnetic potential A and solve the
corresponding equations in a distributional sense. In [5], via a monotonicity
approach, we proved a quantitative asymptotic formula under the following
assumption on h, i.e.

h ∈ L∞loc(Ω \ {0},C), |h(x)| = O(|x|−2+ε) as |x| → 0 for some ε > 0. (1.4)

The validity of a Cauchy type formula, allowed to exclude the presence of
logarithmic terms in the leading part of the asymptotic expansion. We em-
phasize that, in general, weaker negligibility type assumptions than (1.4)
could not imply the absence of logarithms in the first expansion term; e.g.
the condition h ∈ LN/2 is not sufficient to that purpose, as the following
example shows.

Example. The equation

−∆u =
2−N
|x|2 log |x|

u in B1/2 = {x ∈ RN : |x| < 1/2},

admits as a weakH1(B1/2)-solution the function u(x) = log |x|, whose leading
expansion term is of course of logarithmic type, although the perturbing
potential h(x) = (2−N)|x|−2(log |x|)−1 belongs to LN/2(B1/2).

In light of these considerations, we wonder about the legitimate question
of what is the actual threshold for the perturbing potential that still gives the
validity of a good asymptotics. A first result in this direction is the remark
that the monotonicity method developed in [5] can be actually adapted to
treat a class of perturbing potentials h satisfying pointwise upper estimates
at the singularity of the type

h ∈ L∞loc(Ω \ {0},C), lim
r→0+

ξ(r) = 0,
ξ(r)

r
∈ L1(0, R),

and
1

r

∫ r

0

ξ(s)

s
ds ∈ L1(0, R)

(1.5)

with BR(0) ⊂ Ω and ξ(r) := 1
r supx∈Br |x|

2|h(x)|, including e.g. potentials
satisfying

|h(x)| ≤ const
1

|x|2 | log |x||α
, α > 2. (1.6)

In the present paper, we show that the same asymptotic expansion as in [5]
can be derived under integrability conditions on the best Hardy type constant
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on balls of h and its gradient, see (1.12–1.16). Such assumptions are alterna-
tive to (1.4) and (1.6) and require nontrivial adaptations of the techniques
developed in [5]. Conditions (1.12–1.16) are also satisfied for example if

h ∈ Ls(BR,C), |x · ∇h| ∈ Ls(BR), for some s > N/2

or

h ∈ K loc
N,δ(BR) and <(x · ∇h(x)) ∈ K loc

N,δ(BR)

for some δ > 0. Here K loc
N,δ(BR) denotes a modified version of the usual Kato

class K loc
N (BR) (see [8] for the definition of K loc

N (BR) and [9] for the definition

of K loc
N,δ(BR)).

In order to relate the results of [5] and of the present paper with the
previous literature on asymptotic analysis at singularities, let us consider
the second order elliptic operator L on a domain Ω 3 0 written in polar
coordinates (r, θ) as

L =
∑

0≤j+|β|≤2

aj,β(r, θ)(r∂r)
j∂βθ (1.7)

where j is an integer, β = (β1, . . . , βN−1) ∈ NN−1 is a multi-index and

|β| =
∑N−1
j=1 βj . By [15, Theorem (7.3)], if u is a distributional solution of

the equation Lu = 0 and r−δu(r, θ) ∈ L2(drdθ), then u admits the following
distributional asymptotic expansion

u ∼
∑

<sj>δ− 1
2

∞∑
`=0

pj∑
p=0

rsj+`(log r)puj,`,p(θ) (1.8)

where {sj : j ∈ Z\{0}} are the indicial roots defined in [15, Definition (2.21)].
Let us concentrate our attention on the first term of the expansion (1.8), i.e.

rsjδ

pjδ∑
p=0

(log r)pujδ,0,p(θ) (1.9)

where jδ is the smallest value of j ∈ Z for which sjδ > δ− 1
2 , see [15, Theorem

(7.3)]. This term could be identically zero if δ is not optimal, whereas a finer
choice of δ allows selecting the first nontrivial term in (1.8). In the case of
operator (1.1), the indicial roots sj can be written explicitly in terms of the
eigenvalues of the operator on the sphere LA,a := (−i∇SN−1 + A)2 − a, i.e.

sj = −N − 2

2
+ sign(j)

√(
N − 2

2

)2
+ µ|j|(A, a) for all j ∈ Z \ {0}

where µ1(A, a) ≤ µ2(A, a) ≤ µ3(A, a) ≤ · · · ≤ µk(A, a) ≤ . . . denote the
eigenvalues of LA,a. For more details on the meaning of the asymptotic ex-
pansion (1.8) see [15, Section 7].

According to (1.7), the elliptic operator LA,a − h can be rewritten as

LA,a,h := −r2∂2
r − (N − 1)r∂r + LA,a − r2h(r, θ),
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which, after the change of variable t = log r, takes the form

LA,a,h = −∂2
t − (N − 2)∂t + LA,a − e2th(et, θ),

which is asymptotically translation-invariant as t→ −∞, since the potential
h(r, θ) is negligible with respect to the inverse square potential r−2 as r → 0+.

As far as the linear equation (1.2) is concerned, the main result of [5]
provides the leading term in the asymptotic expansion near the singularity of
the coefficients. Similar asymptotic expansions were proved by Mazzeo [15],
[16], with a completely different approach, in the setting of elliptic equations
on compact manifolds with boundary (see also [10], [11], and [17]).

The main novelty of our approach in [5] is the use of Almgren’s mono-
tonicity formula [1]. The use of monotonicity methods to study unique con-
tinuation properties of solutions to elliptic partial differential equations dates
back to the pioneering paper by Garofalo and Lin [7], see also [9] for the case
of Schrödinger operators with magnetic potentials.

In the present paper we illustrate the strengths of the monotonicity
formula approach, by completing some of the results in [5]. The main purposes
of this note are essentially the following:

- to deduce from the monotonicity formula more precise informations on
the first term in the asymptotic expansion of [15], [16] under some al-
ternative assumptions on the perturbation h which require some inte-
grability type conditions instead of pointwise decay as in [5],

- to provide a general method with the perspective of unifying the ap-
proach to linear and nonlinear equations with singular coefficients,

- to improve in the nonlinear case the results that in [5] were obtained by
using a-priori pointwise estimates on solutions.

In the remaining part of the introduction we will examine these three goals
with more detail.

Here and in [5], the indicial root of the leading term in the asymptotic
expansion of finite energy solutions (namely H1-weak solutions) to (1.2), is
determined by introducing the following Almgren-type monotonicity function

Nu,h(r) =
r
∫
Br

[∣∣∇u+ iA(x/|x|)
|x| u

∣∣2 − a(x/|x|)
|x|2 |u|

2 − (<h)|u|2
]
dx∫

∂Br
|u|2 dS

, (1.10)

for any r ∈ (0, r), with r ∈ (0, R) sufficiently small. By a blow up argument,
we are able to characterize the indicial root γ corresponding to the leading
term in the asymptotic expansion as

γ = lim
r→0+

Nu,h(r). (1.11)

We point out that the monotonicity argument does not need vanishing of
solutions of (1.2) outside a small neighborhood of r = 0 which is instead
required in the Mellin transform approach used in [15, Section 7]. Moreover,
here and in [5], a characterization of the coefficient of the leading power is
given by means of a Cauchy’s integral type formula for u, see (1.27).
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Let us now describe the integrability type assumptions on the perturba-
tion h which are required by the forthcoming analysis. Let Ω ⊂ RN , N ≥ 3,
be a domain containing the origin. Let R > 0 be such that BR ⊂ Ω and let
h satisfy

h ∈ L∞loc(Ω \ {0},C), ∇h ∈ L1
loc(Ω \ {0},CN ). (1.12)

Define, for any r ∈ (0, R), the two functions

η0(r)= sup
u∈H1(Br)

u6≡0

∫
Br
h|u|2dx∫

Br

[∣∣∇u+ i
A( x
|x| )

|x| u
∣∣2− a( x

|x| )

|x|2 |u|2
]
dx+N−2

2r

∫
∂Br
|u|2dS

(1.13)

η1(r)= sup
u∈H1(Br)

u6≡0

∫
Br
|<(x · ∇h)||u|2dx∫

Br

[∣∣∇u+ i
A( x
|x| )

|x| u
∣∣2− a( x

|x| )

|x|2 |u|2
]
dx+N−2

2r

∫
∂Br
|u|2dS

. (1.14)

We observe that, under the assumption

µ1(A, a) > −
(
N − 2

2

)2
,

the quadratic form appearing at the denominators of the two quotients in
(1.13) and (1.14) is positive for any u ∈ H1(Br) \ {0} and for any r > 0,
and its square root is a norm equivalent to the H1(Br)-norm (see [5, Lemma
3.1]).

Let us assume that

lim
r→0+

η0(r) = 0,
η0(r)

r
∈ L1(0, R),

1

r

∫ r

0

η0(s)

s
ds ∈ L1(0, R) (1.15)

and that
η1(r)

r
∈ L1(0, R),

1

r

∫ r

0

η1(s)

s
ds ∈ L1(0, R). (1.16)

A further aim of the present paper is to point out how the combination of
monotonicity and blow-up techniques provides a powerful tool in the study
of nonlinear problems of the type (1.3), where f is a nonlinearity with at
most critical growth. In [5], the study of (1.3) was carried out as follows:
a-priori upper bounds of solutions to (1.3) were first deduced by a classical
iteration scheme, allowing treating the nonlinear term as a linear one of the
type h(x)u with a potential h depending nonlinearly on u but satisfying
a suitable pointwise estimate. The linear result [5, Theorem 1.3] was thus
invoked to prove its nonlinear version [5, Theorem 1.6]. In particular, in [5]
a nonlinear version of the monotonicity formula was not needed being the
asymptotics for the nonlinear problem deducible from the linear case. On the
other hand, the a-priori pointwise estimate on solutions of (1.3) needed to
reduce the nonlinear problem to a linear one required the further assumption

µ1(0, a) > −
(
N − 2

2

)2
, (1.17)

see the statement of [5, Theorem 1.6] and [5, Theorem 9.4].
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In the present paper, we remove condition (1.17) and prove Theorem
1.1 below under the less restrictive positive definiteness condition (A.4). Such
improved result is obtained through a unified approach which allows treating
simultaneously linear and nonlinear equations. A similar unified approach
was previously introduced in the paper [6] dealing with elliptic equations
with cylindrical and many-particle potentials, for which a-priori pointwise
estimates seem to be quite more difficult to be proved, thus requiring a purely
nonlinear approach based on a nonlinear monotonicity formula.

Let us consider a unified version of (1.2) and (1.3), i.e. an equation of
the form

LA,au = h(x)u+ f(x, u), in Ω, (1.18)

where h satisfies (1.12), (1.15), (1.16), f is of the type

f(x, z) = g(x, |z|2)z, for a.e. x ∈ Ω, for all z ∈ C, (1.19)

g : Ω× R→ R satisfies
g ∈ C0(Ω× [0,+∞)), G ∈ C1(Ω× [0,+∞)),

|g(x, s)s|+ |∇xG(x, s) · x| ≤ Cg(|s|+ |s|
2∗
2 ),

for a.e. x ∈ Ω and all s ∈ R,

(1.20)

G(x, s) = 1
2

∫ s
0
g(x, t) dt, 2∗ = 2N

N−2 is the critical Sobolev exponent, Cg > 0
is a constant independent of x ∈ Ω and s ∈ R, and ∇xG denotes the gradient
of G with respect to the x variable.

The special form (1.19) chosen for the function f is invariant by gauge
transformations and hence very natural in the study of nonlinear Schrödinger
equations with magnetic fields, see for example [4]. We stress that our ap-
proach works for very general nonlinearities and also for perturbations of the
homogeneous magnetic potential.

Let us recall the assumptions (A.1), (A.2), (A.3), (A.4) already intro-
duced in [5]:

A(x) =
A( x
|x| )

|x| , V (x) = −
a( x
|x| )

|x|2 (homogeneity) (A.1){
A ∈ C1(SN−1,RN )

a ∈ L∞(SN−1,R)
(regularity of angular coefficients) (A.2)

A(θ) · θ = 0 for all θ ∈ SN−1. (transversality) (A.3)

µ1(A, a) > −
(
N − 2

2

)2
. (positive definiteness) (A.4)

An equivalent version of (A.4) can be given by introducing the quantity

Λ(A, a) := sup
u∈D1,2(RN ,C)

u6≡0

∫
RN |x|

−2a(x/|x|) |u(x)|2 dx∫
RN
∣∣∇u(x) + iA(x/|x|)

|x| u(x)
∣∣2 dx (1.21)
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and by taking into account that

µ1(A, a) > −
(
N − 2

2

)2
if and only if Λ(A, a) < 1 , (1.22)

see [5, Lemma 1.1] and [6, Lemma 2.3]. It is easy to verity that Λ(A, a) ≥ 0
and it is zero if and only if a ≤ 0 a.e. in SN−1.

The following theorem characterizes the leading term of the asymp-
totic expansion of solutions to (1.18) by means of the limit of the associated
Almgren-type function

Nu,h,f (r) =
r
∫
Br

[∣∣∇u(x) + iA(x/|x|)
|x| u(x)

∣∣2 − a(x/|x|)
|x|2 |u(x)|2

]
dx∫

∂Br
|u(x)|2 dS

−
r
∫
Br

[
(<h(x))|u(x)|2 + g(x, |u(x)|2)|u(x)|2

]
dx∫

∂Br
|u(x)|2 dS

.

(1.23)

Theorem 1.1. Let Ω ⊂ RN , N ≥ 3, be a bounded open set containing 0,
(A.1), (A.2), (A.3), (A.4) hold, and u be a weak H1(Ω,C)-solution to (1.18),
u 6≡ 0, with f satisfying (1.19)–(1.20), and h satisfying either (1.5) or (1.12)–
(1.16). Then, letting Nu,h,f (r) as in (1.23), there exists k0 ∈ N, k0 ≥ 1, such
that

γ := lim
r→0+

Nu,h,f (r) = −N − 2

2
+

√(
N − 2

2

)2
+ µk0(A, a). (1.24)

Furthermore, if m ≥ 1 is the multiplicity of the eigenvalue µk0(A, a), and
{ψi : j0 ≤ i ≤ j0 + m − 1} (j0 ≤ k0 ≤ j0 + m − 1) is an L2(SN−1,C)-
orthonormal basis for the eigenspace of LA,a associated to µk0(A, a), then

λ−γu(λθ)→
j0+m−1∑
i=j0

βiψi(θ) in C1,τ (SN−1,C) as λ→ 0+, (1.25)

and

λ1−γ∇u(λθ)→
j0+m−1∑
i=j0

βi
(
γψi(θ)θ+∇SN−1ψi(θ)

)
in C0,τ (SN−1,CN ), (1.26)

as λ → 0+ for any τ ∈ (0, 1), where (βj0 , βj0+1, . . . , βj0+m−1) 6= (0, 0, . . . , 0)
and

βi =

∫
SN−1

[
u(Rθ)

Rγ
+

+

∫ R

0

(h(s θ)+g(sθ,|u(sθ)|2))u(sθ)
2γ+N−2

(
s1−γ − sγ+N−1

R2γ+N−2

)
ds

]
ψi(θ) dS(θ),

(1.27)

for all R > 0 such that BR = {x ∈ RN : |x| ≤ R} ⊂ Ω.

It is worth pointing out how convergence (1.25) excludes the presence
of logarithmic factors in the leading term of the expansion (1.8).
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Although the proof of Theorem 1.1 follows essentially the scheme of
Theorem 1.3 in [5], the addition of the nonlinear term in the Almgren-type
function (1.23) and the replacement of pointwise assumptions on h with the
integral type ones (1.15–1.16), require some significant adaptations which
are emphasized in Section 2. As a relevant byproduct of Theorem 1.1 we also
obtain the following pointwise estimate on solutions to (1.18).

Corollary 1.2. Let u be a weak H1(Ω,C)-solution to (1.18) and all the as-
sumptions of Theorem 1.1 hold. Then for any Ω′ b Ω, there exists a constant
C = C(Ω′, u) such that

|u(x)| ≤ C|x|γ for a.e. every x ∈ Ω′ (1.28)

where γ is the number defined (1.24).

We point out that Corollary 1.2 is a direct consequence of Theorem 1.1
which is proved by monotonicity and blow-up methods, and hence does not
require any iterative Brezis-Kato scheme; in particular, here we can drop the
strongest positivity condition (1.17), which was instead needed in [5] to start
the iteration procedure.

Acknowledgments. The authors are indebted to Frank Pacard for fruitful
discussions and for drawing to their attention references [11], [15], [16], and
[17].

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1 with h under conditions (1.15–1.16).
The case of h satisfying (1.5) is omitted since in that case the proof can be
performed by following the scheme of [5] to estimate the linear perturbation
involving h and the approach developed in [6] to treat the nonlinear term.

Solutions to (1.18) satisfy the following Pohozaev-type identity.

Proposition 2.1. Let Ω ⊂ RN , N ≥ 3, be a bounded open set such that 0 ∈ Ω.
Let a,A satisfy (A.2), and u be a weak H1(Ω,C)-solution to (1.18) in Ω,
with h satisfying (1.12), (1.15)–(1.16), and f as in (1.19)–(1.20). Then

−N − 2

2

∫
Br

[∣∣∣∣(∇+ i
A
(
x/|x|

)
|x|

)
u

∣∣∣∣2 − a
(
x/|x|

)
|x|2

|u|2
]
dx

+
r

2

∫
∂Br

[∣∣∣∣(∇+ i
A
(
x/|x|

)
|x|

)
u

∣∣∣∣2 − a
(
x/|x|

)
|x|2

|u|2
]
dS

= r

∫
∂Br

∣∣∣∣∂u∂ν
∣∣∣∣2 dS − 1

2

∫
Br

<
(
∇h · x

)
|u|2 dx

− N

2

∫
Br

<(h)|u|2 dx+
r

2

∫
∂Br

<(h)|u|2 dS + r

∫
∂Br

G(x, |u|2) dS

−
∫
Br

(
∇xG(x, |u|2) · x+NG(x, |u|2)

)
dx

(2.1)
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for all r > 0 such that Br = {x ∈ RN : |x| ≤ r} ⊂ Ω, where ν = ν(x) is the
unit outer normal vector ν(x) = x

|x| .

Proof. One can proceed similarly to the proof Theorem 4.1 in [5] by fixing
r ∈ (0, R) and finding a sequence {δn} ⊂ (0, r) such that limn→+∞ δn = 0
and

δn

∫
∂Bδn

[∣∣∣∣(∇+ i
A
(
x/|x|

)
|x|

)
u

∣∣∣∣2
+
|u|2

|x|2
+

∣∣∣∣∂u∂ν
∣∣∣∣2 + <

(
h(x)

)
|u(x)|2 + |G(x, |u(x)|2)|

]
dS → 0

(2.2)

as n → +∞. This is possible by the fact that <
(
h
)
|u|2, G(x, |u|2) ∈ L1(Br)

in view of (1.13), (1.15) and (1.20).

By (A.2) and (1.12) we deduce that u ∈ C1,τ
loc (Ω \ {0},C) for every

τ ∈ (0, 1) and h ∈ W 1,1
loc (Ω \ {0},C) and hence, integrating by parts, we

obtain∫
Br\Bδn

<
(
h(x)u(x)(x · ∇u(x))

)
dx

= −1

2

∫
Br\Bδn

<
(
∇h(x) · x

)
|u(x)|2 dx− N

2

∫
Br\Bδn

<
(
h(x)

)
|u(x)|2 dx

+
r

2

∫
∂Br

<
(
h(x)

)
|u(x)|2 dS − δn

2

∫
∂Bδn

<
(
h(x)

)
|u(x)|2 dS.

Passing to the limit as n→ +∞, by (1.15), (1.16), and (2.2) we obtain

lim
n→+∞

∫
Br\Bδn

<
(
h(x)u(x · ∇u(x))

)
dx

= −1

2

∫
Br

<
(
∇h(x) · x

)
|u(x)|2 dx− N

2

∫
Br

<
(
h(x)

)
|u(x)|2 dx

+
r

2

∫
∂Br

<
(
h(x)

)
|u(x)|2 dS.

The proof of the proposition then follows proceeding as in the proof of The-
orem 4.1 in [5] and Proposition A.1 in [6]. �

Proceeding as in [5], one can show that, under assumptions (A.2), (A.3),
(A.4), and (1.15), there exists r ∈ (0, R) such that H(r) = r1−N ∫

∂Br
|u|2dS

is strictly positive for any r ∈ (0, r) and supr∈(0,r) η0(r) < +∞. In this way,
if D is the function defined by

D(r) =
1

rN−2

∫
Br

[∣∣∣∣∇u(x) + i
A(x/|x|)
|x|

u(x)

∣∣∣∣2 − a(x/|x|)
|x|2

|u(x)|2
]
dx

− 1

rN−2

∫
Br

[
(<h(x))|u(x)|2 + g(x, |u(x)|2)|u(x)|2

]
dx,
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then the quotient

N (r) := Nu,h,f (r) =
D(r)

H(r)
, for a.e. r ∈ (0, r), (2.3)

is well defined. Arguing as in [5, (52)], it is easy to verify that

D(r) =
r

2
H ′(r) for a.e. r ∈ (0, r). (2.4)

Lemma 2.2. Let Ω ⊂ RN , N ≥ 3, be a bounded open set such that 0 ∈ Ω, a,A
satisfy (A.2), (A.3), (A.4), and u 6≡ 0 be a weak H1(Ω,C)-solution to (1.18)
in Ω, with h satisfying (1.12), (1.15)–(1.16), and f satisfying (1.19)–(1.20).

Then, letting N as in (2.3), there holds N ∈W 1,1
loc (0, r) and

N ′(r) = ν1(r) + ν2(r) (2.5)

in a distributional sense and for a.e. r ∈ (0, r), where

ν1(r) =

2r

[(∫
∂Br

∣∣∂u
∂ν

∣∣2 dS) · (∫
∂Br
|u|2dS

)
−
(∫

∂Br
<
(
u∂u∂ν

)
dS
)2]

(∫
∂Br
|u|2dS

)2 (2.6)

and

ν2(r) = −
∫
Br
<(2h+∇h · x)|u|2 dx∫

∂Br
|u|2dS

+
r
∫
∂Br

(
2G(x, |u|2)− g(x, |u|2)|u|2

)
dS∫

∂Br
|u|2 dS

+

∫
Br

(
(N − 2)g(x, |u|2)|u|2−2NG(x, |u|2)−2∇xG(x, |u|2) · x

)
dx∫

∂Br
|u|2 dS

.

(2.7)

Proof. One can proceed exactly as in the proof of Lemma 5.4 in [5] by using
the Pohozaev-type identity (2.1) in place of (32) in [5]. �

The following proposition provides an a-priori super-critical summabil-
ity of solutions to (1.18) which will allow including the critical growth case
in the Almgren type monotonicity formula.

Proposition 2.3. Let Ω ⊂ RN , N ≥ 3 be a bounded open set such that 0 ∈ Ω,
a, A satisfy (A.2), (A.3), (A.4), and u be a H1(Ω,C)-weak solution to

LA,au(x) = h(x)u(x) + V (x)u(x), in Ω, (2.8)

with h satisfying (1.12), (1.15)–(1.16) and V ∈ LN/2(Ω,C). Letting

qlim :=


2∗

2 min
{

4
Λ(A,a) − 2, 2∗

}
, if Λ(A, a) > 0,

(2∗)2

2 , if Λ(A, a) = 0,

then for any 1 ≤ q < qlim there exists rq > 0, depending only on N , A, a, q,
h such that Brq ⊂ Ω and u ∈ Lq(Brq ,C).
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Proof. By (A.4) and (1.22) we have that 2
2∗ qlim > 2. For any 2 < τ < 2

2∗ qlim,

define C(τ) := 4
τ+2 and let `τ > 0 be so large that

( ∫
|V (x)|≥`τ

|V (x)|N2 dx
)2
N

<
S(A)(C(τ)− Λ(A, a))

2
(2.9)

where

S(A) := inf
v∈D1,2(RN ,C)

v 6≡0

∫
RN

∣∣∣∇v(x) + iA(x/|x|)
|x| v(x)

∣∣∣2 dx(∫
RN |v(x)|2∗ dx

) 2
2∗

> 0.

Let r > 0 be such that Br ⊂ Ω. For any w ∈ H1
0 (Br,C), by Hölder and

Sobolev inequalities and (2.9), we have

∫
Br

|V (x)||w(x)|2 dx =

∫
Br∩{|V (x)|≤`τ}

|V (x)||w(x)|2 dx

+

∫
Br∩{|V (x)|≥`τ}

|V (x)||w(x)|2 dx

≤ `τ
∫
Br

|w(x)|2 dx+

( ∫
|V (x)|≥`τ

|V (x)|N2 dx
)2
N
(∫

Br

|w(x)|2
∗
dx

)2
2∗

≤ `τ
∫
Br

|w(x)|2 dx

+
C(τ)− Λ(A, a)

2

∫
Br

∣∣∣∣∇w(x) + i
A(x/|x|)
|x|

w(x)

∣∣∣∣2 dx.

(2.10)

Let ρ ∈ C∞c (Br,R) such that ρ ≡ 1 in Br/2 and define v := ρu ∈ H1
0 (Br,C).

Then v is a H1(Ω,C)-weak solution of the equation

LA,av(x) = h(x)v(x) + V (x)v(x) + g(x) in Ω (2.11)

where g = −u∆ρ− 2∇u · ∇ρ− 2iuA(x/|x|)
|x| · ∇ρ ∈ L2(Br,C). For any n ∈ N,

n ≥ 1, let us define the function vn := min{|v|, n}. Testing (2.11) with
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(vn)τ−2v ∈ H1
0 (Br,C) we obtain

∫
Br

(vn(x))τ−2
∣∣∣∇v(x) + iA(x/|x|)

|x| v(x)
∣∣∣2 dx

+ (τ − 2)

∫
Br

(vn(x))τ−2|∇|v(x)||2χ{|v(x)|<n}(x) dx

−
∫
Br

a( x
|x| )

|x|2
(vn(x))τ−2|v(x)|2 dx

=

∫
Br

<(h(x))(vn(x))τ−2|v(x)|2 dx+

∫
Br

<(g(x)(vn(x))τ−2v(x)) dx

+

∫
Br

<(V (x))(vn(x))τ−2|v(x)|2 dx.

(2.12)

Since

∣∣∣∣∇((vn)
τ
2−1v) + i

A(x/|x|)
|x|

(vn)
τ
2−1v

∣∣∣∣2
= (vn)τ−2

∣∣∣∣∇v + i
A(x/|x|)
|x|

v

∣∣∣∣2 +
(τ − 2)(τ + 2)

4
(vn)τ−2|∇|v||2χ{|v(x)|<n},

then by (2.12), (1.21), (1.13), and (2.10) with w = (vn)
τ
2−1v, we obtain for

any r > 0 small enough such that η0(r) < 1,

C(τ)

∫
Br

∣∣∣∣∇((vn)
τ
2−1v) + i

A(x/|x|)
|x|

(vn)
τ
2−1v

∣∣∣∣2 dx
≤
∫
Br

a(x/|x|)
|x|2

|(vn)
τ
2−1v|2 dx+

∫
Br

<(h)|(vn)
τ
2−1v|2 dx

+

∫
Br

<(V )|(vn)
τ
2−1v|2 dx+

∫
Br

<
(
g(vn)τ−2v

)
dx

≤
[
Λ(A, a)(1− η0(r)) + η0(r) +

C(τ)− Λ(A, a)

2

]
×

×
∫
Br

∣∣∣∣∇((vn)
τ
2−1v) + i

A(x/|x|)
|x|

(vn)
τ
2−1v

∣∣∣∣2 dx
+ `τ

∫
Br

(vn)τ−2|v|2 dx+

∫
Br

|g|(vn)τ−2|v| dx.

(2.13)
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Since g ∈ L2(Br,C), by Hölder inequality the last term in the right hand side
of (2.13) can be estimated as∫

Br

|g(x)|(vn(x))τ−2|v(x)| dx ≤ ‖g‖L2(Ω,C)

(∫
Br

(vn(x))2τ−4|v(x)|2 dx
)1

2

= ‖g‖L2(Ω,C)

(∫
Br

(vn(x))
2(τ−1)(τ−2)

τ (vn(x))
2(τ−2)
τ |v(x)|2 dx

)1
2

≤ ‖g‖L2(Ω,C)

(∫
Br

|(vn(x))
τ
2−1v(x)|

4(τ−1)
τ dx

)1
2

and, since 4(τ−1)
τ < 2∗ for any τ < 2

2∗ qlim, by Hölder inequality, Sobolev
embedding, and Young inequality, we obtain∫

Br

|g|(vn)τ−2|v| dx

≤ ‖g‖L2(Ω,C)

(ωN−1

N

)1
2−

2(τ−1)
2∗τ

r
N
2 −

2N(τ−1)
2∗τ

(∫
Br

|(vn)
τ
2−1v|2

∗
dx

)2(τ−1)
2∗τ

≤ ‖g‖L2(Ω,C)

(ωN−1

N

)1
2−

2(τ−1)
2∗τ

r
N
2 −

(N−2)(τ−1)
τ S(A)−

τ−1
τ × (2.14)

×

(∫
Br

∣∣∣∣∇((vn)
τ
2−1v) + i

A(x/|x|)
|x|

(vn)
τ
2−1v

∣∣∣∣2 dx
)τ−1

τ

≤
τ−1
τ

(ωN−1

N

) τ
2(τ−1)

− 2
2∗r

Nτ
2(τ−1)

−N+2

S(A)

∫
Br

∣∣∇((vn)
τ
2−1v) + i

A( x
|x| )

|x| (vn)
τ
2−1v

∣∣2dx
+

1

τ
‖g‖τL2(Ω,C),

where ωN−1 :=
∫
SN−1 dS(θ) denotes the volume of the unit sphere SN−1.

Inserting (2.14) into (2.13) we obtain[
C(τ)−Λ(A,a)

2 − η0(r)− τ−1
τ

(ωN−1

N

) τ
2(τ−1)

− 2
2∗ r

Nτ
2(τ−1)

−N+2S(A)−1
]
×

×
∫
Br

∣∣∣∣∇((vn)
τ
2−1v) + i

A(x/|x|)
|x|

(vn)
τ
2−1v

∣∣∣∣2 dx
≤ 1

τ
‖g‖τL2(Ω,C) + `τ

∫
Br

(vn(x))τ−2|v(x)|2 dx

and, by Sobolev embedding,

S(A)
[
C(τ)−Λ(A,a)

2 − η0(r)− τ−1
S(A)τ

(ωN−1

N

) τ
2(τ−1)

− 2
2∗ r

Nτ
2(τ−1)

−N+2
]
×

×
(∫

Br

(vn(x))
2∗
2 τ−2∗ |v(x)|2

∗
dx

)2/2∗
≤ 1

τ
‖g‖τL2(Ω,C) + `τ

∫
Br

(vn(x))τ−2|v(x)|2 dx.

(2.15)
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Since τ < 2
2∗ qlim then C(τ) − Λ(A, a) is positive and Nτ

2(τ−1) −N + 2 is also

positive. Moreover by (1.15), limr→0+ η0(r) = 0. Hence we may fix r small
enough in such a way that the left hand side of (2.15) becomes positive.
Since v ∈ Lτ (Br,C), letting n→ +∞, the right hand side of (2.15) remains

bounded and hence, by Fatou Lemma, we infer that v ∈ L 2∗
2 τ (Br,C). Since

ρ ≡ 1 in Br/2, we may conclude that u ∈ L 2∗
2 τ (Br/2,C). This completes the

proof of the lemma. �

According to the previous proposition, we may fix from now on a weak H1-
solution u to (1.18),

2∗ < q < qlim,

and rq in such a way that u ∈ Lq(Brq ). We omit the proof of the following
lemma which can be deduced in a quite standard way by combining Hardy-
Sobolev inequalities with boundary terms (see [5, §3]) with assumptions (1.15)
and (1.20).

Lemma 2.4. Under the same assumptions as in Lemma 2.2, there exist r̃ ∈
(0,min{r, rq}) and a positive constant C = C(N,A, a, h, f, u) > 0 depending
on N , A, a, h, f , u but independent of r such that∫
Br

[∣∣∣∣∇u+ i
A( x
|x| )

|x|
u

∣∣∣∣2 − a(x|x|)
|x|2

|u|2
]
dx−

∫
Br

[
(<h)|u|2 + g(x, |u|2)|u|2

]
dx

≥ −N − 2

2r

∫
∂Br

|u|2dS + C

(∫
Br

|u|2
∗
dx

)2
2∗

(2.16)

+C

(∫
Br

[∣∣∣∣∇u+ i
A( x
|x| )

|x|
u

∣∣∣∣2 − a( x
|x| )

|x|2
|u|2
]
dx+

N − 2

2r

∫
∂Br

|u|2dS
)

and

N (r) > −N − 2

2
(2.17)

for every r ∈ (0, r̃).

The term ν2 introduced in Lemma 2.2 can be estimated as follows.

Lemma 2.5. Under the same assumptions as in Lemma 2.2, let r̃ be as in
Lemma 2.4 and ν2 as in (2.7). Then there exist a positive constant C1 > 0
depending on N, q, Cg, C, r̃, ‖u‖Lq(Br̃,C) and a function ω ∈ L1(0, r̃), ω ≥ 0
a.e. in (0, r̃), such that

|ν2(r)| ≤ C1

[
N (r) +

N

2

] [
r−1(η0(r) + η1(r)) + r−1+

2(q−2∗)
q + ω(r)

]
for a.e. r ∈ (0, r̃) and∫ r

0

ω(s) ds ≤
‖u‖2

∗(1−α)

L2∗ (Ω)

1− α
r
N(q−2∗)

q (α− 2
2∗ )

for all r ∈ (0, r̃) and for some α satisfying 2
2∗ < α < 1.
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Proof. The estimates on the terms in (2.7) involving g and G can be obtained
by using Proposition 2.3, Lemma 2.4 and proceeding as in [6, Lemma 5.6].

Here we only estimate the term in (2.7) which involves the function h
and its gradient. From (1.13), (1.14) and (2.4) we deduce that∣∣∣∣∫

Br

(2h(x) +∇h(x) · x)|u(x)|2 dx
∣∣∣∣

≤ (2η0(r) + η1(r))C
−1
rN−2

[
D(r) +

N − 2

2
H(r)

]
and, therefore,∣∣∣∣∣

∫
Br

(2h(x) +∇h(x) · x)|u(x)|2 dx∫
∂Br
|u|2 dS

∣∣∣∣∣
≤ C−1

r−1(2η0(r) + η1(r))

[
N (r) +

N − 2

2

] (2.18)

for all r ∈ (0, r̃). �

Lemma 2.6. Under the same assumptions as in Lemma 2.2, the limit

γ := lim
r→0+

N (r)

exists and is finite.

Proof. From Schwarz’s inequality, the function ν1 defined in (2.6) is non-
negative. Furthermore, by Lemma 2.5 and assumptions (1.15) and (1.16),

ν2
N+N/2 ∈ L1(0, r̃). Hence, from (2.5) and integration we deduce that N is

bounded in (0, r̃), thus implying, in view of Lemma 2.5, that ν2 ∈ L1(0, r̃).
Therefore N ′ turns out to be an integrable perturbation of a nonnegative
function and hence N (r) admits a finite limit as r → 0+. For more details,
we refer the reader to Lemmas 5.7 and 5.8 in [6]. �

A first consequence of the convergence of N at 0 is the following estimate of
H from above.

Lemma 2.7. Under the same assumptions as in Lemma 2.2, there exists a
constant K1 > 0 such that

H(r) ≤ K1r
2γ for all r ∈ (0, r̄), (2.19)

with γ := limr→0+ N (r) being as in Lemma 2.6.

Proof. From (2.4), (2.5), and Schwarz’s inequality, it follows that

H ′(r)

H(r)
=

2

r
N (r) ≥ 2γ

r
+

2

r

∫ r

0

ν2(s) ds.

By Lemma 2.5, assumptions (1.15–1.16), and boundedness ofN , we have that
r 7→ 1

r

∫ r
0
ν2 ∈ L1(0, r̃). Hence the conclusion follows from integration. �

We omit the proof of the following lemma which follows closely the blow up
scheme developed in [5, Lemma 6.1].
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Lemma 2.8. Under the same assumptions as in Lemma 2.2, the following
holds true:

(i) there exists k0 ∈ N such that γ = −N−2
2 +

√(
N−2

2

)2
+ µk0(A, a);

(ii) for every sequence λn → 0+, there exist a subsequence {λnk}k∈N and
an eigenfunction ψ of the operator LA,a associated to the eigenvalue
µk0(A, a) such that ‖ψ‖L2(SN−1,C) = 1 and

u(λnkx)√
H(λnk)

→ |x|γψ
( x
|x|

)
weakly in H1(B1,C), strongly in H1(Br,C) for every 0 < r < 1, and in

C1,τ
loc (B1 \ {0},C) for any τ ∈ (0, 1).

A first step towards the description of the behavior of H as r → 0+ is the
following lemma, whose proof is similar to [6, Lemma 6.6].

Lemma 2.9. Let the assumptions of Lemma 2.2 hold and γ := limr→0+ N (r)
be as in Lemma 2.6. Then the limit

lim
r→0+

r−2γH(r)

exists and it is finite.

Under the integral type assumptions (1.15–1.16), the proof that

lim
r→0+

r−2γH(r) > 0

is more delicate than it was under the pointwise conditions required in [5]
and a new argument is needed to prove it.

Lemma 2.10. Suppose that all the assumptions of Lemma 2.2 hold true. Let
k0 be as in Lemma 2.8 and let j0,m ∈ N, j0,m ≥ 1 such that m is the
multiplicity of µk0(A, a), j0 ≤ k0 ≤ j0 +m− 1 and

µj0(A, a) = µj0+1(A, a) = · · · = µj0+m−1(A, a) = µk0(A, a).

Let {ψi : j0 ≤ i ≤ j0 + m − 1} be an L2(SN−1,C)-orthonormal basis for
the eigenspace of the operator LA,a associated to µk0(A, a). Then for any
sequence λn → 0+ there exists i ∈ {j0, . . . , j0 +m− 1} such that

lim inf
n→+∞

∣∣∣∫SN−1 u(λnθ)ψi(θ) dS(θ)
∣∣∣√

H(λn)
> 0.

Proof. Suppose by contradiction that there exists a sequence λn → 0+ such
that

lim inf
n→+∞

∣∣∣∫SN−1 u(λnθ)ψi(θ) dS(θ)
∣∣∣√

H(λn)
= 0
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for all i ∈ {j0, . . . , j0 + m− 1}. By Lemma 2.8 we deduce that there exist a
subsequence {λnk} and an eigenfunction ψ of the operator LA,a correspond-
ing to the eigenvalue µk0(A, a) with ‖ψ‖L2(SN−1,C) = 1, such that

u(λnkθ)√
H(λnk)

→ ψ(θ)

strongly in L2(SN−1) and

lim
k→+∞

∫
SN−1

u(λnkθ)√
H(λnk)

ψi(θ) dS(θ) = 0.

Therefore∫
SN−1

ψ(θ)ψi(θ) dS(θ) = lim
k→+∞

∫
SN−1

u(λnkθ)√
H(λnk)

ψi(θ) dS(θ) = 0 (2.20)

for any i ∈ {j0, . . . , j0 + m − 1}. Hence ψ ≡ 0, thus giving rise to a contra-
diction. �

Lemma 2.11. Let the assumptions of Lemma 2.2 hold and γ := limr→0+ N (r)
be as in Lemma 2.6. Then there holds

lim
r→0+

r−2γH(r) > 0.

Proof. For the sake of completeness, we report here part of the proof of
Lemma 6.5 in [5]. Let 0 < R < r̃

2 , r̃ as in Lemma 2.4, and, for any k ∈ N\{0},
let ψk be a L2-normalized eigenfunction of the operator LA,a on the sphere
associated to the k-th eigenvalue µk(A, a), i.e. satisfying{

LA,aψk(θ) = µk(A, a)ψk(θ), in SN−1,∫
SN−1 |ψk(θ)|2 dS(θ) = 1.

(2.21)

We can choose the functions ψk in such a way that they form an orthonormal
basis of L2(SN−1,C), hence u and hu+ g(x, |u|2)u can be expanded as

u(x) = u(λ θ) =

∞∑
k=1

ϕk(λ)ψk(θ), (2.22)

h(x)u(x) + g(x, |u(x)|2)u(x) = h(λ θ)u(λ θ) + g(λ θ, |u(λ θ)|2)u(λ θ)

=

∞∑
k=1

ζk(λ)ψk(θ),

where λ = |x| ∈ (0, R], θ = x/|x| ∈ SN−1, and

ϕk(λ) =

∫
SN−1

u(λ θ)ψk(θ) dS(θ),

ζk(λ) =

∫
SN−1

(
h(λ θ) + g(λ θ, |u(λ θ)|2)

)
u(λ θ)ψk(θ) dS(θ).

(2.23)

Equations (1.18) and (2.21) imply that, for every k,

−ϕ′′k(λ)− N − 1

λ
ϕ′k(λ) +

µk(A, a)

λ2
ϕk(λ) = ζk(λ), in (0, r̃).
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A direct calculation shows that, for some ck1(R), ck2(R) ∈ R,

ϕk(λ) =λσ
+
k

(
ck1(R) +

∫ R

λ

s−σ
+
k +1

σ+
k − σ

−
k

ζk(s) ds

)
+ λσ

−
k

(
ck2(R) +

∫ R

λ

s−σ
−
k +1

σ−k − σ
+
k

ζk(s) ds

)
,

(2.24)

where

σ+
k = −N − 2

2
+

√(
N − 2

2

)2
+ µk(A, a),

σ−k = −N − 2

2
−

√(
N − 2

2

)2
+ µk(A, a).

(2.25)

In view of Lemma 2.8, there exist j0,m ∈ N, j0,m ≥ 1 such that m is the
multiplicity of the eigenvalue µj0(A, a) = µj0+1(A, a) = · · · = µj0+m−1(A, a)
and

γ = lim
r→0+

N (r) = σ+
i , i = j0, . . . , j0 +m− 1. (2.26)

The Parseval identity yields

H(λ) =

∫
SN−1

|u(λ θ)|2 dS(θ) =

∞∑
k=1

|ϕk(λ)|2, for all 0 < λ ≤ R. (2.27)

Let us assume by contradiction that limλ→0+ λ−2γH(λ) = 0. Then, (2.26)
and (2.27) imply that

lim
λ→0+

λ−σ
+
i ϕi(λ) = 0 for any i ∈ {j0, . . . , j0 +m− 1} . (2.28)

We claim that the functions

s 7→ s−σ
+
i +1

σ+
i − σ

−
i

ζi(s), s 7→ s−σ
−
i +1

σ−i − σ
+
i

ζi(s), (2.29)

belong to L1(0, R) for any i ∈ {j0, . . . , j0 +m−1}. To this purpose, we define

Zi(s) =

∫
Bs

|h(x) + g(x, |u(x)|2)||u(x)||ψi(x/|x|)| dx

for any s ∈ (0, r̃) and for any i ∈ {j0, . . . , j0 +m− 1}. We observe that Zi is
an absolutely continuous function whose derivative, defined for almost every
s ∈ (0, r̃), is given by

Z ′i(s) = sN−1

∫
SN−1

|h(sθ) + g(s θ, |u(s, θ)|2)||u(sθ)||ψi(θ)| dS(θ)
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for a.e. s ∈ (0, r̃). Integrating by parts, we obtain∫ R

λ

s−σ
+
i +1

σ+
i − σ

−
i

|ζi(s)| ds ≤
∫ R

λ

s−σ
+
i +2−N

σ+
i − σ

−
i

Z ′i(s) ds

=

[
s−σ

+
i +2−N

σ+
i − σ

−
i

Zi(s)

]R
λ

−
∫ R

λ

2−N − σ+
i

σ+
i − σ

−
i

s−σ
+
i +1−NZi(s) ds.

(2.30)

From (2.4) and (1.20)

|Zi(s)|

≤
(∫

Bs

|h+ g(x, |u|2)||u|2dx
)1

2
(∫

Bs

|h+ g(x, |u|2)|
∣∣ψi( x|x|)∣∣2dx)1

2

≤

η0(s)+Cg

(ωN−1

N

) 2
N s2+Cg‖u‖2

∗−2

L2∗ (Bs)

C
sN−2

(
D(s) + N−2

2 H(s)
) 1

2

×

× s
N−2

2

[
η0(s)
N−2

∫
SN−1

(
|(∇SN−1 + iA)ψi(θ)|2 − a(θ)|ψi(θ)|2

)
dS(θ)

+ N−2
2 η0(s)

∫
SN−1

|ψi(θ)|2dS(θ)

+
Cg

N2/2∗
‖ψi‖2L2∗ (SN−1)

((ωN−1

N

) 2
N s2 + ‖u‖2

∗−2
L2∗ (Bs)

)]12
≤ C̃1(i)

√
N (s) + N−2

2

(
η0(s) + s2 + s

2(q−2∗)
q

)
sN−2

√
H(s)

≤ C̃1(i)

(
sup

(0,r̃/2)

√
N + N−2

2

)
sN−2η̃(s)

√
H(s)

(2.31)

for all s ∈ (0, r̃/2) for some constant C̃1(i) > 0 depending on C, Cg, N , u, q,
and ψi, where

η̃(s) := η0(s) + s2 + s
2(q−2∗)

q .

We notice that, by assumption (1.15),

η̃(s)

s
∈ L1(0, r̃)

and, by Lemma 2.6,

sup
(0,r̃/2)

√
N +

N − 2

2
< +∞.

Inserting (2.31) into (2.30) we obtain∫ R

λ

s−σ
+
i +1

σ+
i − σ

−
i

|ζi(s)| ds ≤ C̃2(i)

√
H(R)

Rσ
+
i

η̃(R)

+ C̃2(i)

√
H(λ)

λσ
+
i

η̃(λ) + C̃3(i)

∫ R

λ

√
H(s)

sσ
+
i

η̃(s)

s
ds (2.32)
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and using (1.15), (2.19), the integrability of the first function in (2.29) follows.
The integrability of the second function also follows since σ−i < σ+

i . Hence

λσ
+
i

(
ci1(R) +

∫ R

λ

s−σ
+
i +1

σ+
i − σ

−
i

ζi(s) ds

)
= o(λσ

−
i ) as λ→ 0+,

and then, since u
|x| ∈ L2(BR,C) and |x|σ

−
i

|x| 6∈ L2(BR,C), we conclude that

there must be

ci2(R) = −
∫ R

0

s−σ
−
i +1

σ−i − σ
+
i

ζi(s) ds. (2.33)

Using (2.31) and (2.19), we then deduce that∣∣∣∣λσ−i (ci2(R) +

∫ R

λ

s−σ
−
i +1

σ−i − σ
+
i

ζi(s) ds

)∣∣∣∣
=

∣∣∣∣∣λσ−i
(∫ λ

0

s−σ
−
i +1

σ+
i − σ

−
i

ζi(s) ds

)∣∣∣∣∣
≤ λσ

−
i

∫ λ

0

s−σ
−
i +2−N

σ+
i − σ

−
i

Z ′i(s) ds

=
λ2−N

σ+
i − σ

−
i

Zi(λ)− λσ
−
i

∫ λ

0

2−N − σ−i
σ+
i − σ

−
i

s−σ
−
i +1−NZi(s) ds

= O

(
λσ

+
i

[
η̃(λ) +

∫ λ

0

η̃(s)

s
ds
])

= o(λσ
+
i )

(2.34)

as λ→ 0+. From (2.24), (2.28), and (2.34), we obtain that

ci1(R) +

∫ R

0

s−σ
+
i +1

σ+
i − σ

−
i

ζi(s) ds = 0 for all R ∈ (0, r̃/2). (2.35)

Since H ∈ C1(0, r̃) and since we are assuming by contradiction that

lim
λ→0+

λ−2γH(λ) = 0,

we may select a sequence {Rn}n∈N ⊂ (0, r̃/2) decreasing to zero such that√
H(Rn)

Rγn
= max
s∈[0,Rn]

√
H(s)

sγ
.

Applying Lemma 2.10 with λn = Rn, we find i0 ∈ {j0, . . . , j0 +m− 1} such
that, up to a subsequence,

lim
n→+∞

ϕi0(Rn)√
H(Rn)

6= 0. (2.36)

We are now going to reach a contradiction with (2.35) by choosing i = i0,
R = Rn and n ∈ N sufficiently large. By (2.35), (2.32), (2.36) and (2.19), we
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have

|ci01 (Rn)| =

∣∣∣∣∣
∫ Rn

0

s−σ
+
i0

+1

σ+
i0
− σ−i0

ζi0(s) ds

∣∣∣∣∣
≤ C̃2(i0)

√
H(Rn)

Rγn
η̃(Rn) + C̃3(i0)

∫ Rn

0

√
H(s)

sγ
η̃(s)

s
ds

≤ C̃2(i0)

∣∣∣∣∣
√
H(Rn)

ϕi0(Rn)

∣∣∣∣∣
∣∣∣∣ϕi0(Rn)

Rγn

∣∣∣∣ η̃(Rn)

+ C̃3(i0)

∣∣∣∣∣
√
H(Rn)

ϕi0(Rn)

∣∣∣∣∣
∣∣∣∣ϕi0(Rn)

Rγn

∣∣∣∣ ∫ Rn

0

η̃(s)

s
ds

= o

(
ϕi0(Rn)

Rγn

)

(2.37)

as n→ +∞. By (2.24) with k = i0, R = Rn and λ = Rn, we obtain

ϕi0(Rn)

R
σ+
i0
n

= ci01 (Rn) + ci02 (Rn)R
σ−i0
−σ+

i0
n . (2.38)

By (2.33), (2.31) and (2.36) we have that

|ci02 (Rn)R
σ−i0
−σ+

i0
n | = R

σ−i0
−σ+

i0
n

∣∣∣∣∣
∫ Rn

0

s−σ
−
i0

+1

σ−i0 − σ
+
i0

ζi0(s) ds

∣∣∣∣∣
≤ C̃2(i0)

√
H(Rn)

Rγn
η̃(Rn) + C̃4(i0)R

σ−i0
−σ+

i0
n

∫ Rn

0

√
H(s)

sσ
−
i0

η̃(s)

s
ds

= C̃2(i0)

∣∣∣∣∣
√
H(Rn)

ϕi0(Rn)

∣∣∣∣∣
∣∣∣∣ϕi0(Rn)

Rγn

∣∣∣∣ η̃(Rn)

+ C̃4(i0)R
σ−i0
−σ+

i0
n

∫ Rn

0

√
H(s)

sσ
+
i0

sσ
+
i0
−σ−i0

η̃(s)

s
ds

≤ C̃2(i0)

∣∣∣∣∣
√
H(Rn)

ϕi0(Rn)

∣∣∣∣∣
∣∣∣∣ϕi0(Rn)

Rγn

∣∣∣∣ η̃(Rn)

+ C̃4(i0)

∣∣∣∣∣
√
H(Rn)

ϕi0(Rn)

∣∣∣∣∣
∣∣∣∣ϕi0(Rn)

Rγn

∣∣∣∣ ∫ Rn

0

η̃(s)

s
ds

= o

(
ϕi0(Rn)

Rγn

)
.

(2.39)

Inserting (2.39) into (2.38) we obtain

ci01 (Rn) =
ϕi0(Rn)

Rγn
+ o

(
ϕi0(Rn)

Rγn

)
as n→ +∞, thus contradicting (2.37). �
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The proof of Theorem 1.1 can be now obtained by proceeding similarly
to [5, Theorem 1.3] with small changes but for completeness we report it
below.

Proof of Theorem 1.1. Identity (1.24) follows from part (i) of Lemma 2.8,
thus there exists k0 ∈ N, k0 ≥ 1, such that

γ := lim
r→0+

Nu,h,f (r) = −N − 2

2
+

√(N − 2

2

)2
+ µk0(A, a).

Let m be the multiplicity of µk0(A, a), so that, for some j0 ∈ N such that
j0 ≥ 1, j0 ≤ k0 ≤ j0 +m− 1, µj0(A, a) = µj0+1(A, a) = · · · = µj0+m−1(A, a)
and let {ψi : j0 ≤ i ≤ j0 + m − 1} be an L2(SN−1,C)-orthonormal ba-
sis for the eigenspace of LA,a associated to µk0(A, a). Let λn > 0, n ∈ N
such that limn→+∞ λn = 0. Then, from part (ii) of Lemma 2.8 and Lem-
mas 2.9 and 2.11, there exist a subsequence {λnk}k∈N and m real numbers
βj0 , . . . , βj0+m−1 ∈ R such that (βj0 , βj0+1, . . . , βj0+m−1) 6= (0, 0, . . . , 0) and

λ−γnk u(λnkθ)→
j0+m−1∑
i=j0

βiψi(θ) in C1,τ (SN−1,C) as k → +∞ (2.40)

and

λ1−γ
nk
∇u(λnkθ)→

j0+m−1∑
i=j0

βi(γψi(θ)θ+∇SN−1ψi(θ)) in C0,τ (SN−1,CN ) (2.41)

as k → +∞ for any τ ∈ (0, 1). We now show that the βi’s depend neither on
the sequence {λn}n∈N nor on its subsequence {λnk}k∈N.

Let R > 0 be such that BR ⊂ Ω and let ϕi and ζi as in (2.23). Then by
(2.22) and (2.40) it follows that, for any i = j0, . . . , j0 +m− 1,

λ−γnk ϕi(λnk) =

∫
SN−1

u(λnkθ)

λγnk
ψi(θ) dS(θ)

→
j0+m−1∑
j=j0

βj

∫
SN−1

ψj(θ)ψi(θ) dS(θ) = βi

(2.42)

as k → +∞. As showed in the proof of Lemma 2.11, for any λ ∈ (0, R] and
i = j0, . . . , j0 +m− 1 we have

ϕi(λ) = λσ
+
i

(
ci1(R) +

∫ R

λ

s−σ
+
i +1

σ+
i − σ

−
i

ζi(s) ds

)
+ λσ

−
i

(∫ λ

0

s−σ
−
i +1

σ+
i − σ

−
i

ζi(s) ds

)
= λσ

+
i

(
ci1(R) +

∫ R

λ

s−σ
+
i +1

σ+
i − σ

−
i

ζi(s) ds

)
+ o(λσ

+
i ) as λ→ 0+,

(2.43)
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for some ci1(R) ∈ R, where σ±i are as in (2.25) and σ+
i = γ. Choosing λ = R

in the first line of (2.43), we obtain

ci1(R) = R−σ
+
i ϕi(R)−Rσ

−
i −σ

+
i

∫ R

0

s−σ
−
i +1

σ+
i − σ

−
i

ζi(s) ds.

Using the last identity and letting λ→ 0+ in (2.43) it follows that

λ−γϕi(λ)→ R−σ
+
i ϕi(R)−Rσ

−
i −σ

+
i

∫ R

0

s−σ
−
i +1

σ+
i − σ

−
i

ζi(s) ds

+

∫ R

0

s−σ
+
i +1

σ+
i − σ

−
i

ζi(s) ds as λ→ 0+,

and hence by (2.42)

βi = R−γ
∫
SN−1

u(Rθ)ψi(θ) dS(θ)

−R−2γ−N+2

∫ R

0

sγ+N−1

2γ +N − 2
×

×
(∫

SN−1

(
h(s θ) + g(sθ, |u(sθ)|2)

)
u(s θ)ψi(θ) dS(θ)

)
ds

+

∫ R

0

s1−γ

2γ +N − 2

(∫
SN−1

(
h(s θ) + g(sθ, |u(sθ)|2)

)
u(s θ)ψi(θ) dS(θ)

)
ds .

We just proved that the βi’s depend neither on the sequence {λn}n∈N nor on
its subsequence {λnk}k∈N. This proves that the convergences in (2.40) and
(2.41) actually hold as λ→ 0+ thus completing the proof of the theorem. �
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