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1 Introduction

Social and economic networks are the subject of a fast growing literature, ranging
from the analysis of learning processes, consensus formation (e.g. Golub and
Jackson 2010) and risk–sharing (e.g. Bramoullé and Kranton 2007), to the analysis
of industrial clusters (e.g. Morrison 2008) and R&D collaborations among firms
(e.g. Goyal and Moraga-Gonzalez 2001).1

In the economics of innovation, network analysis has been fruitfully applied to
study the processes of knowledge creation and diffusion (Cowan and Jonard 2003,
2004), and the patterns of innovation adoption (e.g. Morris 2000; Delre et al. 2007a;
López-Pintado 2008). As for the latter, along with a number of works that models
innovation diffusion as a stochastic process of “percolation” in a grid (Frenken et al.
2008; Hohnisch et al. 2008; Delre et al. 2010), thus assuming regular networks,
economists have also started analyzing the effects of the different network structures
(Abrahamson and Rosenkopf 1997; Arenas et al. 2002; Lee et al. 2006; Choi et al.
2010).

Our contribution follows this last stream. We study a model of innovation
diffusion with many incompatible products competing for adopters, mainly focusing
on demand–side dynamics. In particular, we extend the model analyzed in Lee et al.
(2006) by considering more than two product innovations and distinguishing the case
of perfect information from that of imperfect information. In the former, all potential
adopters are perfectly informed about the existence of the different innovations.
Each agent has got an idiosyncratic willingness to adopt and she is influenced by
her neighbors’ choices, because of the existence of local network externalities. On
the contrary, with imperfect information agents are not always informed about the
existence of all the products. This information diffuses through the network via a
demonstration effect (direct contact with adopters) and broadcasting (advertising
or marketing) (e.g. Bass 1969; Bemmaor and Lee 2002).

To start with, we analyze how the network structure affects the speed of
diffusion of a single product innovation in a population of agents characterized by
idiosyncratic individual adoption thresholds under the two information regimes
(perfect vs. imperfect information). We show that, with perfect information, the
innovation diffuses faster when the network is completely random. On the contrary,
with imperfect information, the fastest pace is reached in small–world networks.

Then, we extend the analysis to incorporate the process of competition among
alternative innovations. We study how the interplay between network structure and
information regime affects the probability of coexistence of the different innovations.
Results show that, with imperfect information, winner–take–all solutions (i.e. one
innovation cornering the market and displacing completely the others) are more
frequent than expected, even in markets characterized by strong social cohesion.
Moreover, such outcomes become significantly more frequent when the average
distance in the network is low, despite a possible high clustering, as in the case of
small–world networks.

We also generalize Choi et al.’s (2010) results about the relation between
network structure and penetration rates to the many–products case by showing
that a weak cliquishness increases the probability of falling into a trap of under–

1 Thorough and concise surveys are Newman (2003) and Uzzi et al. (2007). Introductory
textbooks are Goyal (2007), Vega-Redondo (2007) and Jackson (2008).



An agent–based model of innovation diffusion 3

adoption also with more than one product. Moreover, we find that such probability
can be significantly lower in case of imperfect information. The reason is that
imperfect information leads on average to higher market concentration, and this in
turn reduces the frictions due to product coexistence (which leads to a lower level
of positive network externalities) and increases the penetration rate.

Our model has straightforward application in fashionable markets, e.g. fashion,
electronic devices, software programs and Social Networking Sites (SNS). In such
markets, three main characteristics of the competing products easily fit our as-
sumptions: i) they are mainly substitutes; ii) they arrive roughly at the same time;
iii) they are characterized by strong network externalities. Some notable real-world
examples include the successful marketing campaign “calling circle” launched by
MCI, which allowed the company to increase its market share against AT&T
(Lee et al. 2006); the case of Vorwerk in the market for household appliances; the
competition between Microsoft, IBM and Sun Microsystems/Oracle in the market
for office software suites (Krishnamurthy 2003); the fierce competition that recently
characterized social network sites (Boyd and Ellison 2008).

The paper is organized as follows. Section 2 briefly reviews the literature on the
role of local network effects in innovation diffusion. Section 3 presents the model.
Section 4 discusses the main results. Section 5 concludes with some final remarks.

2 Theoretical background

Although the literature on innovation diffusion is vast and heterogeneous, the
role played by network topologies in the process has been only recently studied
(comprehensive surveys are Karshenas and Stoneman 1995; Geroski 2000; Rogers
2003; Valente 2005). This has allowed to cope with issues related with the effects that
neighbors’ choices have on adoption decisions. Indeed, it is now widely acknowledged
that consumers base their own choices on the information derived from previous
adopters, so generating a social bandwagon pressure to conform. When uncertainty
is very high, agents tend to ground their decisions on social cues (Abrahamson and
Rosenkopf 1997).

Within this stream of research, Delre et al. (2007a) have joined the literature on
innovation diffusion—epidemic and threshold models—with the marketing literature
on the diffusion of products in fashionable markets (Bass 1969, 2004; Chatterjee
and Eliashberg 1990). They consider both agents’ preferences and network effects
arising from word–of–mouth communication and show that: i) diffusion is faster in
small–world networks; ii) agents’ heterogeneity increases the speed of diffusion.2

Finally, the interplay between network structure, agents’ heterogeneity and
product penetration rates in markets characterized by local network externalities
is analyzed by Choi et al. (2010), who show that the probability of falling into

2 The latter result is analytically proved by Young (2009), who however use a mean–field
approximation and deliberately neglect the effects of the network topology. Young (2009) groups
diffusion models into three broad classes: i) contagion, where agents adopt when they come
in contact with other adopters; ii) social influence, where people adopt when enough other
people in the group have adopted; iii) social learning, where people adopt once they see enough
empirical evidence to convince them that the innovation is worth adopting.
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under–adoption traps is higher in random networks, because of the low clustering,
that could reinforce local positive externalities.3

Albeit important in showing the role played by network structure on diffusion
patterns, these contributions does not analyze the process of diffusion of many
incompatible innovations, competing for the same user base; and, in particular, the
effect of the structure of social relations among consumers on the probability of
outcomes with standardization (winner–take–all solutions) vs. coexistence of the
different products in the market.

This issue is addressed by Lee et al. (2006), who investigate the role of the
structure of social networks when two incompatible innovations compete for the
same population of adopters. The authors find that, in networks characterized by
strong social cohesion (high clustering), the usual outcome is one of coexistence,
even when there are significant differences in the installed bases; and conclude that
emphasizing the role played by global network effects, while ignoring local ones,
necessarily produces a bias towards winner–take–all outcomes.4

In what follows, we extend Lee et al.’s (2006) analysis by considering more than
two innovations and two alternative information regimes—perfect vs. imperfect
information.

3 The model

Let N = {1, 2, . . . , N} be the set of agents. Each agent is a node in an undirected
binary network Γ = (N ,G), where G is the set of links. Let Ni be the set of
neighbors of agent i:

Ni = {j ∈ N \ {i} : (i, j) ∈ G}

X = {1, 2, . . . , X} is the set of available product innovations and a(t) ∈ ({0} ∪ X )N

the vector of agents’ actions, whose generic element ai(t) is the adoption choice of
agent i at time t and ai(t) = 0 if the agent decides not to adopt any innovation.

Adoption dynamics are driven by the myopic maximization of individual con-
sumer surplus. The surplus of agent i is:

πi(t) =

{
0 if ai(t) = 0

ri + α
|{j∈Ni:aj(t−1)=ai(t)}|

|Ni| otherwise
(1)

where ri = pmi − p is the difference between the basic willingness–to–pay of agent i
for any innovation and the price charged for it, and α is an exogenous parameter
supposed to measure the strength of network effects.

In words, the surplus generated by the adoption of a certain innovation for an
agent is a function of: i) her idiosyncratic willingness–to–pay for any innovation

3 According to their definition, the system falls into a trap of under–adoption when the
adoption process stops before it reaches 16% of the population, i.e., the proportion of innovators
and early adopters according to Rogers’s (2003) categorization.

4 Uchida and Shirayama (2008) show that coexistence can result also in networks characterized
by positive assortativity, i.e., positive correlation between node degrees; and coexistence is also
the normal outcome in models with local interaction where agents can jointly adopt two or
more products (see, for instance Goyal and Janssen 1997; Mahdian et al. 2007).
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(pmi ); ii) the price charged for it (p); iii) the fraction of her neighbors who have
adopted the same innovation in the previous period.5,6

We assume that an agent can adopt only one innovation per period. Moreover,
in each period, each agent must reacquire the innovation, thus having the possibility
to revise her choice by choosing an alternative innovation without incurring any
additional cost. When for a certain agent in a certain period two or more actions
give the same surplus, the agent chooses among them uniformly at random.

In order to better focus on the role of local network externalities, we assume a
constant and equal price and the same intrinsic quality for all the innovations, so
abstracting from the effects of supply–side factors, like economies of scale—static
(increasing returns to scale) and dynamic (learning–by–doing).7 Moreover, we also
abstract from the effects of habits and other inertial factors in adoption decisions
(e.g. learning–by–using).8

Like in Katz and Shapiro (1985) and Lee et al. (2006), among the others, we
assume ri is heterogeneous across customers and drawn from a normal distribution
with negative mean, thus assuming that the basic willingness–to–pay is on average
lower than the price, i.e. agents are on average reluctant to be the first to adopt
an innovation. The maximization of πi(t) according to Eq. (1) therefore implies
the existence of a threshold for the adoption.

In order to analyze the case of imperfect information, we restrict the set of
actions available to each agent in each period. Formally, we assume:

a(t) ∈ ×i∈N ({0} ∪ Ii(t))

where Ii(t) ⊆ X is the information set of agent i, i.e., the set of available innovations
known by i at time t.

We assume further that agents possess infinite memory (if x ∈ Ii(t) then
x ∈ Ii(t′), for all t′ ≥ t) and no prior information (Ii(0) = ∅ for all i ∈ N ).

5 The assumption of an additive function is quite standard in the literature to model both
global (e.g. Katz and Shapiro 1985; Arthur 1989) and local network effects (e.g. Janssen and
Jager 2003; Lee et al. 2006; Delre et al. 2007a; Banerji and Dutta 2009; Choi et al. 2010) in the
diffusion of products, innovations and technologies. Swann (2002) shows that the utility of the
representative user is linearly related to the total network of users if all users have on average
the same number of links.

6 Our formulation in terms of consumer surplus differs slightly from Lee et al. (2006), who
instead refer generically to payoff and utility gains. Ours is fully consistent with Katz and
Shapiro’s (1985) original formulation and it seems more in line with the partial equilibrium
perspective of the model. The reference to the actions of neighbors in the previous periods is
needed to avoid deadlock errors in the simulations.

7 Assuming economies (diseconomies) of scale in the model necessarily leads to a decrease
(increase) in the relative price of the innovation which ends up with the largest installed base,
and this in turn increases (decreases) ceteris paribus the probability of winner–take–all solutions,
no matter the network structure.

8 By introducing frictions in the form of switching costs, all these factors necessarily increase
the probability of coexistence, no matter the actual structure of the network. A simple way to
introduce them in our model is by adding the agent i to her own neighbors in Eq. (1) in the
calculus of the total network effect. One could envisage more complex formulations (e.g. the
introduction of a positive term to the function which traces the total periods of use of each
innovation and their temporal structure, so to apply some kind of depreciation). No matter
the formulation, the effect will always be ceteris paribus an increase in the probability of
coexistence. Needless to say, in spite of the fact that we abstract from them in our model, the
role of habits and learning–by–using in consumption is probably one of the main reasons why
winner–take–all solutions are rarely observed in reality.
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Information on innovation availability diffuses through the network via broad-
casting and demonstration effect by previous adopters. In particular, we assume
that in each period there is a probability p that x is added to Ii(t), where p depends
on the intensity of the diffusion from the central source.9 In addition, x ∈ Ii(t)
whenever there is at least one adopter of x among the neighbors of agent i, i.e.,
formally ∃ j ∈ Ni : aj(t− 1) = x.

To analyze the interaction between network structure and diffusion dynamics, we
resort to Watts and Strogatz’s (1998) model, which starts from a one–dimensional
ring lattice of n nodes with degree k, thus assuming that each of n customers
maintains k relationships with the others. In this regular network, agents are highly
clustered and the average distance among nodes is high. To build other kinds of
networks starting from this, one can then rewire each of the links by making random
connections between nodes with a certain probability β. When β is rather small
(ranging from 0.01 to 0.1), the high clustering is preserved while the few shortcuts
significantly decrease the average distance (so–called small–world networks). Finally,
for β = 1 the network becomes completely random and therefore it exhibits small
clustering coefficient and small average distance.

4 Results

We implement the model as an agent–based model and present the main results
of simulations.10 In particular, we analyze in Section 4.1 the diffusion patterns
of one single innovation; in Section 4.2 the case of five competing innovations,
studying how the probability of coexistence of the different innovations in the
market changes by changing the structure of the network and the hypothesis on
the information regime.

All the simulations are made starting from a regular network of 1000 agents
with degree 10 each (k = 10) and analyzing 21 different configurations with β

ranging from 0.0001 to 1, equally spaced on a logarithmic scale. Moreover, we
assume that ri is normally distributed with mean µ = −100 and standard deviation
σ = 50, while the strength of network effects (α) is 500. Finally, as for the case
of imperfect information, the broadcasting probability p is kept low and constant,
and set equal to 0.001.11 Each set of simulations is averaged across 1000 runs.

Finally, in Section 4.3 we analyze the results for alternative combinations
of the parameters of the model, namely the distribution of the idiosyncratic
adoption threshold (ri) and the strength of network effects (α), to study the
relation between information regimes, network structures, agent heterogeneity and
market penetration rates of products.

9 One can in principle assume that p is different for each innovation, depending on the
marketing efforts of the firm. For an analysis of the effects of the interaction between network
structure and different marketing strategies on diffusion in the one innovation case, see Delre
et al. (2007b).
10 The model has been implemented in the Laboratory for Simulation Development (LSD)—
http://www.labsimdev.org. Code available at request.
11 The higher p, the more similar the results are to the case of perfect information.

http://www.labsimdev.org
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Fig. 1 Average speed of diffusion with perfect (20 steps) and imperfect (200 steps) information

4.1 Diffusion of a single innovation

The first result is showed in Figure 1, where the parameter β is plotted against
the speed of diffusion for a single innovation in the two information regimes. With
perfect (imperfect) information, complete adoption is reached on average after 20
(200) time steps. As in Delre et al. (2007a), we calculate the speed of diffusion as:

ρ =
1

T

∑T
t=0 F (t)∑T
t=0 f(t)

(2)

where T is the number of time steps, F (t) the cumulative number of adopters at
time t and f(t) the number of adopters at t.

Apart from the higher speed of diffusion in the case of perfect information, it
is worth noting the different effect an increase in β produces in the two regimes.
With perfect information, the speed increases monotonically from a regular network
to a random one, and it starts increasing from β = 0.01. This happens because
the clustering coefficient starts decreasing and this reduces the redundancy of
some links, thus increasing the extent of the influence of each adoption decision on
non adopters. On the contrary, with imperfect information, the speed of diffusion
starts increasing earlier, at values of β around 0.001, when the average distance
starts falling. This happens because information diffusion mainly relies on the
demonstration effect from previous adopters. The decrease in distance makes the few
early adopters spread their influence faster in the network.12 Moreover, the peak is
reached around β = 0.2 and at greater values the speed decreases. This result (which
is not an artifact and does not disappear by increasing the number of simulations) is
consistent with the one obtained by Delre et al. (2007a), who analyzes the adoption
patterns in a similar model. It is due to the fact that, by increasing β further,
although the average distance keeps on somewhat declining, the simultaneous steep

12 While, with perfect information, after one step the average number of early adopters is about
23 (N(1−Φ(−µ/σ))), with imperfect information the demonstration effect is at first on average
triggered by one adopter only. Indeed, in the latter case the expected number of early adopters
informed via broadcasting after t steps is rather low and given by N(1−Φ(−µ/σ))(1− (1−p)t).
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(a) Perfect information

(b) Imperfect information

Fig. 2 Average cumulative frequency of adopters

decrease of clustering strongly reduces the possible reinforcement mechanisms in
the initial steps of propagations. These mechanisms can be quite important in the
early stages to make some agent adopt. Indeed, at the beginning, with imperfect
information, propagation is triggered by very few adopters and the diffusion of
information via demonstration effect, which requires previous adoption, is much
stronger than the diffusion via broadcasting.13 Therefore, the increase of speed
due to the slightly lower distance obtained by increasing further β is not enough to
compensate the decrease of speed produced by the lower clustering.

These results are confirmed in Figure 2, which shows the cumulative frequencies
of adopters for different values of β in the two regimes. In both cases, the four
distributions—corresponding to four different values of β—can be ordered in terms
of first order stochastic dominance. However, with perfect information (Figure 2(a))
the random network (β = 1) is stochastically dominated by the others—i.e., it is
unambiguously the most effective in diffusing promptly the innovation—, whereas
with imperfect information (Figure 2(b)) the small–world network (β = 0.1) is the
dominated one.

13 In the simulation experiment, the information diffusion via demonstration effect is ten times
more effective than via broadcasting: each new adopter can spread on average the information
to 10 agents, whereas only 1 agent is on average informed via broadcasting at the same time.
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Fig. 3 Average probability of winner–take–all solution with perfect and imperfect information

Summing up, with perfect information, where all the agents are informed about
the existence of the innovations and they only differ in their basic willingness–to–
pay, it is important to reach quickly as many potential adopters as possible. In
this case, with a rough tree–like structure, the random network better serves the
purpose. On the contrary, with imperfect information, the small–world network is
the most effective in the propagation process, since it provides the best interplay
between the shortest way to communicate with the other people (low average
distance) and the presence of reinforcing mechanisms in social influence (high
clustering coefficient).

4.2 Coexistence probability of competing innovations

In what follows, we assume many incompatible product innovations competing in
the market to analyze how the interplay between network structure and information
regime can affect the probability of coexistence of alternative innovations. In so
doing, we extend the results of the literature (e.g. Arthur 1989; Goyal and Janssen
1997; Dalle 1997; Cowan and Miller 1998; Lee et al. 2006) and gain new insights
into the dynamics of competition when both network structure and information
are taken into account.

In particular, we analyze the results of simulations for the case of five incom-
patible innovations, with perfect and imperfect information.

Figure 3 plots the probability of winner–take–all outcomes, defined as the
share of simulation runs in which one innovation tips the market, against the
usual parameter referring to the network structure.14 Data show that, with perfect
information, when the clustering coefficient is high, there is always a solution
with coexistence: because of the importance of social influence, cohesive groups of
adopting agents shield against the alternative innovations. This result replicates and
extends the one by Lee et al. (2006), who consider only two competing products.

14 The system is observed after 500 steps. The market shares stabilize after 30 and 200 steps
in the perfect and imperfect information case respectively.
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(a) Perfect information (b) Imperfect information

Fig. 4 Average total number of adopters

(a) Perfect information (b) Imperfect information

Fig. 5 Average normalized Herfindahl-Hirschman Index

However, Figure 3 also shows that such an outcome actually depends on the
assumption of perfect information. Indeed, with imperfect information the effect of
network configurations with a high clustering is significantly reduced. This occurs
in particular when, despite the high clustering, the average distance is low, since
this increases the speed of information diffusion via demonstration effect, and this
in turn reduces the probability of formation of cohesive subgroups of adopters for
the other innovations.15

Figures 4 and 5 clarify the underlying dynamics. Figure 4 shows the evolution
of the average number of total adopters (of any innovation) with perfect and
imperfect information. Figure 5 reports the dynamics of the average normalized
Herfindahl–Hirschman Index (HHI), a measure of market concentration.16

15 The market shares are on average the same for all the innovations and equal to 20%,
because, apart from the external influence, each agent is assumed to be indifferent among
them. Moreover, we find similar results for winner–take–all probabilities and market shares
distributions by letting the idiosyncratic component of the consumer surplus (ri) vary for each
individual with respect to each innovation (rix) with values drawn from the same distribution.
16 The normalized HHI is equal to:

HHI =

∑I
i=1m

2
i − 1/I

1 − 1/I

where mi is the market share of product i and I the total number of products in the market.
The index ranges from 0 to 1 and increases when the market concentration gets higher.
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The evolution of the average number of total adopters in the multi–product case
are quite similar to that of the one–product case (Figure 2). However, the interesting
aspect is the difference in the evolution of the average market concentration in
the two regimes. With perfect information the initial concentration is close to
zero and it then raises—and in random networks one product finally gets the
whole market (Figure 5(a)). On the contrary, with imperfect information, at the
beginning the average concentration in the market is high and it then decreases,
when the other competing innovations start being adopted. Differences among the
alternative network structures appear only after the 10th time step: in (quasi)
regular networks HHI keeps on decreasing and then stabilizes, while in random
networks, and somehow in small–world networks, it eventually increases (Figure
5(b)).

The initial significantly higher market concentration can explain why winner–
take–all solutions are on average higher in case of imperfect information across all the
network configurations. However, it cannot account for the different results obtained
for the different network structures in the same regime, which instead depend on
the interplay between the information diffusion process and the characteristics of
the network in terms of clustering and distance. This is confirmed by looking at
the effects of different initial market shares on the probability of winner–tale–all
solutions in case of perfect information. Indeed, confirming the findings of Lee
et al. (2006, Section 4.2, p.1844), we find that with perfect information an initial
high market concentration significantly increases the probability of winner–tale–all
solutions only when the clustering coefficient starts falling (β > 0.1), contrary to
what happens in case of imperfect information, where the probability starts getting
bigger when the network becomes a small–world (β > 0.01).

Summing up, Lee et al.’s (2006) result on the low probability of winner–take–all
in networks characterized by high clustering strongly depends on the assumption of
perfect information.17 By relaxing this assumption, the winner–take–all probability
is always positive and significantly higher. What is more, such probability sharply
increases in networks characterized by low average distance, despite the possible
high clustering.

Finally, it is worth noting that the assumption of imperfect information can be
easily interpreted as one of lead–lag time in the introduction of the innovations in
the market. Indeed, by assuming that not all agents are aware of the existence of
all the innovations, we implicitly assume that one of them, i.e., the one adopted
by the very first agent, is actually the first innovation introduced in the market
and possesses therefore a lead–time advantage. All the other innovations face a
disadvantage due to the experienced lag time.

4.3 Sensitivity analysis: agents’ heterogeneity, strength of network externalities
and penetration rate of innovations

For the sensitivity analysis of the model with one innovation and perfect information,
we refer to Choi et al. (2010), who use the same model of Lee et al. (2006) with

17 Although Lee et al. (2006) are aware that “customer’s information can sometimes be biased”
(p.1843), the local bias they introduce cannot be properly considered an information bias,
being related to other aspects of the social interaction/influence between the customer and her
neighbors, namely emulation, fashion, seek for exchange standards, etc.
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only one product and carry out an extensive analysis. In particular, they show
that lowering the portion of early adopters—by decreasing the expected value of
ri (µ) or its standard deviation (σ)—increases the probability of under–adoption,
with the product not being adopted by more than 84% of the population. The
highest increase occurs in random networks, that therefore are the least effective
in diffusing innovation when the initial mass of adopters is small. The same effect
is produced by weaker local network effects (lower α).

The results we obtain for the case of imperfect information in the one–innovation
case are similar: lowering the portion of potential early adopters (e.g. by decreasing
µ): i) lowers the speed of adoption; ii) increases the probability of falling into a trap
of under–adoption. The latter effect is the highest when the network is random
(0.1 < β ≤ 1).

The results of the sensitivity analysis in the multi–innovation case are sum-
marized in Table 1. We consider six alternative scenarios for each of the two
information regimes: A) higher average basic willingness–to–adopt: (µ, σ) = (0, 50);
B) strictly positive willingness–to–adopt: r > 0; C) higher heterogeneity: (µ, σ) =
(−100, 200); D) higher heterogeneity and lower average willingness–to–adopt:
(µ, σ) = (−200, 100); E) weaker local network effects: α = 250; F) weaker lo-
cal network effects and higher heterogeneity: α = 250 and (µ, σ) = (−100, 200). For
each scenario we compute the total number of adopters and the normalized HHI
after 500 time steps averaged across 1000 simulations.18

In scenario A, the results are similar to the ones of the baseline scenario
discussed in Section 4.2. All the agents end up adopting an innovation. With
perfect information (p = 1), increasing β leads to a significant raise in the expected
concentration of the market only when the clustering collapses (β > 0.1); on the
contrary, with imperfect information (p = 0.001), the average concentration in the
market gets bigger for β ≥ 0.01.

The same results hold in scenario B, where a positive (and constant) basic
willingness–to–adopt is assumed.19 In order to better grasp the relations between
the different settings, it is worth stressing that, with this assumption and perfect
information, each agent adopts immediately one innovation by choosing among
them uniformly at random. She then revises her choice following a simple local
majority rule. In this case, the analysis of the conditions for a winner–take–all
solution to emerge resembles closely the analysis of the conditions for a local
majority process to lead toward a consensus on the initial majority state. But,
when a consensus is reached following a local majority rule, it is always on the
initial majority state. So, the only issue in these analysis is when such rule actually
leads to consensus. This is why, in the case of only two products and agents in
a one–dimensional ring lattice, our analysis becomes formally equivalent to the
density classification in one–dimensional binary–state cellular automata (Mitchell
et al. 1994; Crutchfield and Mitchell 1995). In this setting, it has been proved that
a local majority rule hardly leads to a consensus in the lattice, but the probability

18 Table 1 reports also for each scenario the expected fraction of early adopters—Pr(r ≥ 0)—
and the expected fraction of agents who will never adopt in any case—Pr(r ≤ −α).
19 The fact that r is constant does not really matter. As far as r is positive, its actual value

does not affect the results, since it is equal for each agent across the alternative innovations.
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Table 1 Sensitivity analysis

Parameter values Tot adopters HHI

µ σ α p β Pr(r ≥ 0) Pr(r ≤ −α) Avg StDev Avg StDev
A1 0 50 500 1.000 0.001 0.500 0.000 1000 0.03 0.02 0.01

0 50 500 1.000 0.010 0.500 0.000 1000 0.03 0.02 0.01
0 50 500 1.000 0.100 0.500 0.000 1000 0.06 0.03 0.03
0 50 500 1.000 1.000 0.500 0.000 1000 0.00 1.00 0.05

A2 0 50 500 0.001 0.001 0.500 0.000 1000 0.03 0.09 0.06
0 50 500 0.001 0.010 0.500 0.000 1000 0.00 0.15 0.10
0 50 500 0.001 0.100 0.500 0.000 1000 0.04 0.43 0.27
0 50 500 0.001 1.000 0.500 0.000 1000 0.00 1.00 0.00

B1 1 0 500 1.000 0.001 1.000 0.000 1000 0.00 0.02 0.01
1 0 500 1.000 0.010 1.000 0.000 1000 0.00 0.02 0.01
1 0 500 1.000 0.100 1.000 0.000 1000 0.00 0.03 0.02
1 0 500 1.000 1.000 1.000 0.000 1000 0.00 0.99 0.07

B2 1 0 500 0.001 0.001 1.000 0.000 1000 0.00 0.06 0.05
1 0 500 0.001 0.010 1.000 0.000 1000 0.00 0.10 0.07
1 0 500 0.001 0.100 1.000 0.000 1000 0.00 0.26 0.20
1 0 500 0.001 1.000 1.000 0.000 1000 0.00 1.00 0.00

C1 -100 200 500 1.000 0.001 0.309 0.023 865 18.22 0.02 0.02
-100 200 500 1.000 0.010 0.309 0.023 861 19.63 0.03 0.02
-100 200 500 1.000 0.100 0.309 0.023 835 21.52 0.04 0.03
-100 200 500 1.000 1.000 0.309 0.023 947 18.51 1.00 0.04

C2 -100 200 500 0.001 0.001 0.309 0.023 907 19.79 0.08 0.05
-100 200 500 0.001 0.010 0.309 0.023 900 20.03 0.13 0.09
-100 200 500 0.001 0.100 0.309 0.023 885 31.24 0.38 0.23
-100 200 500 0.001 1.000 0.309 0.023 948 12.08 1.00 0.02

D1 -200 100 500 1.000 0.001 0.023 0.001 73 37.55 0.21 0.14
-200 100 500 1.000 0.010 0.023 0.001 72 35.78 0.20 0.14
-200 100 500 1.000 0.100 0.023 0.001 60 29.58 0.18 0.15
-200 100 500 1.000 1.000 0.023 0.001 41 11.05 0.07 0.06

D2 -200 100 500 0.001 0.001 0.023 0.001 865 18.17 0.02 0.02
-200 100 500 0.001 0.010 0.023 0.001 861 19.64 0.03 0.02
-200 100 500 0.001 0.100 0.023 0.001 835 21.49 0.04 0.03
-200 100 500 0.001 1.000 0.023 0.001 947 18.47 1.00 0.04

E1 -100 50 250 1.000 0.001 0.023 0.001 73 37.26 0.20 0.14
-100 50 250 1.000 0.010 0.023 0.001 71 35.51 0.20 0.14
-100 50 250 1.000 0.100 0.023 0.001 60 29.21 0.18 0.14
-100 50 250 1.000 1.000 0.023 0.001 41 11.01 0.07 0.06

E2 -100 50 250 0.001 0.001 0.023 0.001 84 43.92 0.28 0.17
-100 50 250 0.001 0.010 0.023 0.001 80 42.98 0.28 0.17
-100 50 250 0.001 0.100 0.023 0.001 58 31.68 0.27 0.17
-100 50 250 0.001 1.000 0.023 0.001 29 10.13 0.16 0.12

F1 -100 200 250 1.000 0.001 0.309 0.227 522 25.97 0.02 0.02
-100 200 250 1.000 0.010 0.309 0.227 518 26.45 0.03 0.02
-100 200 250 1.000 0.100 0.309 0.227 501 25.54 0.04 0.03
-100 200 250 1.000 1.000 0.309 0.227 556 58.04 0.89 0.25

F2 -100 200 250 0.001 0.001 0.309 0.227 537 27.54 0.05 0.04
-100 200 250 0.001 0.010 0.309 0.227 532 26.81 0.08 0.06
-100 200 250 0.001 0.100 0.309 0.227 519 28.60 0.30 0.19
-100 200 250 0.001 1.000 0.309 0.227 578 29.57 1.00 0.04

Total adopters and normalized Herfindahl-Hirschman Index (HHI) calculated after 500 time steps.

increases by increasing the number of shortcuts in the network and becomes very
high when the network is nearly random (see, for instance, Watts 2003, Ch.7).20

In scenario C, a mean–preserving spread of the original distribution is assumed.
Still, the main result on the relation between information regime, network structure
and market concentration gets confirmed. Moreover, the increased variance with
a constant mean also increases (decreases) the basic willingness–to–adopt for the

20 An analysis of a more general case with many different possible states is in Mustafa and
Pekec̆ (2001), who show that, for any truly local network of agents, there are always instances
in which the network is not capable of reaching the consensus following a local majority rule.
On the more general decentralized consensus problem in multi–agent coordination, see also Ren
et al. (2005) and Tahbaz-Salehi and Jadbabaie (2008).
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highest (lowest) percentiles of the population. Therefore, it is now simpler for
an innovation to be adopted at the early stages of diffusion, but it is harder to
eventually saturate the market. This explains, on the one side, the lower average
number of total adopters with respect to the baseline scenario; on the other side, the
higher number of total adopters in the case of imperfect information. Indeed, the
coexistence among the alternative innovations necessarily decreases the consumer
surplus and this in turn reduces the penetration. Because imperfect information
implies an always higher average market concentration, this reduces the frictions
due to the coexistence, increases the benefits of local network effects, hence the
value of the innovation for the agents and this in turn increases the penetration
rate.21

These insights get confirmed in scenario D, where we assume a higher het-
erogeneity and a lower average willingness–to–adopt with respect to the baseline
scenario.22 The effects we have just described are here amplified and a striking differ-
ence emerges between the average total number of adopters in the two information
regimes.

Under–adoption characterizes the outcomes of scenario E, where we assume
weaker local network effects, the only driver of diffusion when the basic willingness–
to–adopt is negative (less than 8% of the population eventually adopt an innovation
on average). Also in this case the coexistence of alternative innovations can hurt
diffusion and a strong cliquishness is needed to sustain it and to avoid falling into
a trap of under–adoption. Like in Choi et al. (2010), such probability is maximal
for a random network.

Finally, in scenario F we increase the heterogeneity in the population, still
assuming weak network effects. This is enough to significantly increase adoption and
escaping the trap of under–adoption (more than 50% of the population adopt an
innovation). The familiar relation between information regime, network structure
and market concentration reappears.

Summing up, we confirm and generalize Choi et al.’s (2010) results on the
relation between network structure and penetration rates for the case of more than
one product: a weak cliquishness increases the probability of falling into a trap of
under–adoption. More important, we find that such probability is significantly lower
in case of imperfect information, cause this regime is associated with a higher initial
market concentration, which increases the level of positive network externalities
associated with the adoption, thus enhancing the penetration of the product.

5 Concluding remarks

The paper analyzes the role that the structure of interaction networks has on
diffusion patterns and markets shares of different innovations with local network
effects under different information regimes.

21 Let us note in passing that in our model, consumer surplus is maximized in the case of a
winner–take–all outcome, and that therefore coexistence is always not optimal from a social
point of view. This result clearly depends on the fact that we are neglecting the supply–side
effects of competition.
22 The values are such that the coefficient of variation of r is the same of the original

distribution.
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We put forward a theoretical model where the diffusion of different innovations
in the market is modeled as the result of two (only partly) interrelated dynamics:
i) the interaction between idiosyncratic adoption thresholds and local network
effects; ii) the diffusion of information on the innovation. As for the latter, we
differentiate between a situation of: a) perfect information, where customers are
perfectly informed about the existence of the different innovations and can freely
choose among them; b) imperfect information, where not all potential customers
are informed about innovations’ availability at each moment in time and this
information diffuses through the network via broadcasting and demonstration effect
from previous adopters.

We implement the model as an agent–based model and discuss the results of the
simulations for the one–innovation and many–innovations case. As for the former,
with perfect information, the random network with its quasi tree–like structure is
the one that allows to saturate the market first, whereas instead, with imperfect
information, the small–world network is the most efficient in glutting the market,
because of its high clustering coupled with a low average distance.

In the case of many innovations competing for the same market, we analyze
the probability of one of them displacing completely the others and cornering the
market. We are thus able to show that, in a situation of perfect information, what
really matters is just the level of clustering: as far as it is above a certain level, there
is always an outcome with coexistence and no standardization. On the contrary,
under imperfect information, the importance of network configurations with a high
clustering is significantly reduced, yielding an increased winner–take–all probability.
And such probability increases steadily with the decrease of the average distance
in the network.

Our results actually show that, in case of networks characterized by high
clustering and low average distance, as the social ones, with imperfect information
and low marketing efforts to launch the different innovations, the probability of an
outcome with coexistence is rather low. Moreover, such an outcome is much less
probable when there are even small time lags in the introduction of the different
innovations. And this can partly explain why marketing efforts of firms are usually
quite high: to dump the reinforcement mechanisms behind adoption of innovation
and information diffusion processes for the competitors when the information is
not perfect.

Moreover, we confirm and generalize Choi et al.’s (2010) results on the relation
between network structure and penetration rates for the case of more than one
product: a weak cliquishness increases the probability of falling into a trap of
under–adoption. Moreover, we find that such probability is significantly lower in
case of imperfect information, cause this regime is associated with a higher initial
market concentration, which increases the level of positive network externalities
associated with the adoption, thus significantly enhancing the penetration of the
product in the first stages.

Our findings seem interesting in three respects. First of all, the model developed
in the paper puts together different streams of literature dealing with innovation
diffusion. In particular, it combines the two main classes of models: threshold
(or probit) models and epidemic ones. The former class properly accounts for
the factors affecting adoption decisions, but it makes a restrictive assumption of
perfect information. The latter properly models imperfect information, but it also
assumes that, when agents get in touch with the innovation, they eventually end
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up adopting. Ours is instead a mixed model of diffusion (Geroski 2000), that puts
together the epidemic character of information diffusion with the threshold and
idiosyncratic nature of the adoption decision, which is nonetheless affected by local
network effects.

Second, we extend and generalize the results about the diffusion of innovation
of a single innovation in markets characterized by fads and fashions by stressing
the inner dynamics of the phenomenon. In particular, we show that by relaxing
the assumption of perfect information, the efficiency ranking of network structures
in terms of diffusion changes.

Third, we extend the results of the literature about the competition among
multiple innovations by taking into account more than two innovations and allowing
the presence of lead–lag time. In so doing, we are able to show how the results of
the previous literature strongly depend on the assumption of perfect information
(that can be also interpreted as a hypothesis of absence of lead–lag times in the
introduction of innovations in the market).

The model has straightforward application in fashionable markets, where social
processes such as imitation, status seeking, peer and demonstration effects are
essential; but also in markets where the relational aspects constitute a strong part
of the value attached to the product. Noteworthy examples are the markets for
technological standards, electronic devices, software and Social Networking Sites
(SNS).

SNSs are a particularly interesting example. They are popular communication
interfaces for hundreds of millions of users. In the last years, social networks have
attracted a large share of the population. Facebook, with its over 600 million
members worldwide, is the most well–known case and has recently surpassed
Google as the most visited website in the US. Although it was not the first social
network entering the market—i.e., other social networking sites such as Friendster,
MySpace and CyWorld were well before Facebook—, it has been able to become
in a few years the absolute leader (Boyd and Ellison 2008). Unlike previous SNSs,
Facebook went through a number of steps before opening to everyone. At the
beginning, it was designed to support distinct college networks only, after some
time it expanded to include high school students, professionals inside corporate
networks, and, eventually, everyone. Furthermore, unlike other SNSs, Facebook
users are unable to make their full profiles public to all users. Another feature that
differentiates Facebook is the ability for outside developers to build “applications”
which allow users to personalize their profiles and perform other tasks (e.g. compare
movie preferences and chart travel histories). All these features helped Facebook to
build its own installed base and, by exploiting local network effects and information
diffusion, to mostly corner the market in a setting characterized by hardly perfect
information and a high clustering but still very low distance in the structure of
social interactions (β roughly 0.1).

Another real world example is provided by the Voice over Internet Protocol
(VoIP) technology. The use of Internet for voice communications has been an
important innovation for the telecommunication and the Internet industry. These
sectors have been characterized by fierce competition in recent years. Although
extensive data on market shares of companies operating in the VoIP market segment
are lacking, a recent survey of VoIP end users by Cecere and Corrocher (2011)
provides some figures for the UK market. As it was largely expected, Skype is the
most popular provider with 67% of the market share, MSN is the most popular
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operator (18% of users) and BT/Yahoo! is the third (16%). It is evident from these
numbers that Skype is the leader in the market and that, with the recent acquisition
by Microsoft, it will reach the 85% of the user base. VoIP innovation is thus a case
where the exploitation of first–mover advantage and strong local network effects
present in the market allowed one company to almost tip the market.

These examples give us also the opportunity to point out some factors that
might play a major role in reality and we have instead deliberately neglected in
our model. First, the role of economies of scale on the production side, which tend
to increase the probability of winner–take–all outcomes. Second, the possibility
of joint adoption of alternative innovations and the presence of switching costs
(stemming from processes of learning–by–using and sunk costs connected with the
adoption), which instead raise the likelihood of outcomes with coexistence.

Moreover, we have deliberately abstracted from the supply–side effects of
competition. In fact, firms may compete on process innovation and the diffusion
observed in many goods may be the result of changes in price, rather than imitation
and/or network externalities. This could also open up a discussion on conspicuous
consumption, income and social relations, which can be considered for future
research.23

Finally, an important factor to consider is the high heterogeneity in the number
of links of each agent in social networks. Indeed, in some social networks (friend-
ship networks in SNSs are a notable example), node degree follows a power–law
distribution that becomes truncated or exponential only at very high values (New-
man 2003).24 If the resulting network were the scale–free network of Albert and
Barabási (2002), the probability of coexistence would be strongly reduced (Uchida
and Shirayama 2008). However, one should consider other countervailing forces,
such as a possible high clustering and/or assortativity (degree correlation).25 As a
matter of fact, this is a topic not yet completely explored and that deserves more
research.
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