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Abstract. The asymptotic behavior of solutions to Schrödinger equations with singular ho-
mogeneous potentials is investigated. Through an Almgren type monotonicity formula and

separation of variables, we describe the exact asymptotics near the singularity of solutions to

at most critical semilinear elliptic equations with cylindrical and quantum multi-body singular
potentials. Furthermore, by an iterative Brezis-Kato procedure, pointwise upper estimate are

derived.

1. Introduction

The purpose of the present paper is to describe the behavior of solutions to a class of Schrödinger
equations with singular homogeneous potentials including cylindrical and quantum multi-body
ones.

The interaction between M particles of coordinates y1, . . . , yM in Rk is described in classical
mechanics by potentials of the form

V (y1, . . . , yM ) =

M∑
j,m=1
j<m

Vj,m(yj − ym)

where Vj,m(y)→ 0 as |y| → +∞, see [28]. From the mathematical point of view, a particular inter-

est arises in the case of inverse square potentials Vj,m(y) =
λjλm
|y|2 , since they have the same order

of homogeneity as the laplacian thus making the corresponding Schrödinger operator invariant by
scaling. Schrödinger equations with the resulting M -body potential

(1) V (y1, . . . , yM ) =

M∑
j,m=1
j<m

λjλm
|yj − ym|2

, λj , λm ∈ R,

have been studied by several authors; we mention in particular [27] where many-particle Hardy
inequalities are proved and [12] where the existence of ground state solutions for semilinear
Schrödinger equations with potentials of type (1) is investigated. It is worth pointing out that
hamiltonians with singular potentials having the same homogeneity as the operator arise in rela-
tivistic quantum mechanics, see [31].

There is a natural relation between 2-particle potentials (1) and cylindrical potentials, whose
singular set is some k-codimensional subspace of the configuration space. Indeed, in the special
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case M = 2, after the change of variables in R2k

(2) z1 =
1√
2

(y1 − y2), z2 =
1√
2

(y1 + y2),

the potential V (y1, y2) = λ1λ2

|y1−y2|2 takes the form

(3)
λ1λ2

2|z1|2
.

Elliptic equations with cylindrical inverse square potentials arise in several fields of applications,
e.g. in the search for solitary waves with no vanishing angular momentum of nonlinear evolution
equations of Schrödinger and Klein-Gordon type, see [3]. In the recent literature, many papers have
been devoted to the study of semilinear elliptic equations with cylindrical potentials; we mention
among others [3, 4, 5, 32, 36]. We point out that cylindrical type (and a fortiori many-particle)
potentials give rise to substantially major difficulties with respect to the case of an isolated sin-
gularity, because in the cylindrical/many-particle case separation of variables (radial and angular)
does not actually “eliminate” the singularity, being the angular part of the operator also singular.

We consider both linear and semilinear Schrödinger equations with singular homogeneous po-
tentials belonging to a class including as particular cases both (1) and (3). For every 3 6 k 6 N ,
let us define the sets

Ak :=
{
J ⊆ {1, 2, . . . , N} such that #J = k

}
and

Bk := {(J1, J2) ∈ Ak ×Ak such that J1 ∩ J2 = ∅ and J1 < J2}
where #J stands for the cardinality of J and J1 < J2 stands for the “alphabetic ordering” for
multi-indices (see the list of notations at the end of this section).

In the sequel, for every x = (x1, x2, . . . , xN ) ∈ RN and J ∈ Ak, we denote as xJ the k-uple
(xi)i∈J so that |xJ |2 =

∑
i∈J x

2
i . In a similar way, for any x ∈ RN \ {0} and J ∈ Ak we write

θJ = xJ
|x| . Moreover we denote

Σ :={(θ1, . . . , θN ) ∈ SN−1 : θJ = 0 for some J ∈ Ak}(4)

∪ {(θ1, . . . , θN ) ∈ SN−1 : θJ1 = θJ2 for some (J1, J2) ∈ Bk}

and

(5) Σ̃ = {x ∈ RN \ {0} : x/|x| ∈ Σ} ∪ {0}.

The potentials we are going to consider are of the type

(6) V (x) =
∑
J∈Ak

αJ
|xJ |2

+
∑

(J1,J2)∈Bk

αJ1J2
|xJ1 − xJ2 |2

, for all x ∈ RN \ Σ̃,

where αJ , αJ1J2 ∈ R. We notice that Bk is empty whenever k > N
2 ; in such a case we consider

potentials V with only the cylindrical part, i.e. with only the first summation at right hand side
of (6).

Letting, for all θ ∈ SN−1 \ Σ,

(7) a(θ) =
∑
J∈Ak

αJ
|θJ |2

+
∑

(J1,J2)∈Bk

αJ1 J2
|θJ1 − θJ2 |2

6≡ 0,
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we can write the potential V in (6) as

V (x) =
a( x
|x| )

|x|2

and the associated hamiltonian as

La = −∆−
a
(
x
|x|
)

|x|2
.

As a natural setting to study the properties of operators La, we introduce the functional space
D1,2(RN ) defined as the completion of C∞c (RN ) with respect to the Dirichlet norm

‖u‖D1,2(RN ) :=

(∫
RN
|∇u(x)|2 dx

)1/2
.

The potential V in (6) satisfies a Hardy type inequality. Indeed, it was proved in [33] (see also [5]
and [39]) that the following Hardy’s inequality for cylindrically singular potentials holds:

(8)

(
k − 2

2

)2 ∫
RN

|u(x)|2

|xJ |2
dx 6

∫
RN
|∇u(x)|2 dx

for all u ∈ D1,2(RN ) and J ∈ Ak, being the constant
(
k−2

2

)2
optimal. Using a change of variables

of type (2), from (8) it follows the “two-particle Hardy inequality”:

(9)
(k − 2)2

2

∫
RN

|u(x)|2

|xJ1 − xJ2 |2
dx 6

∫
RN
|∇u(x)|2 dx

for all u ∈ D1,2(RN ) and (J1, J2) ∈ Bk, being the constant (k−2)2

2 optimal. From (8) and (9) we
deduce that the potential V in (6) satisfies the following “many-particle Hardy inequality”:

(10)

(
k − 2

2

)2 ∫
RN

V (x)|u(x)|2 dx 6
( ∑
J∈Ak

α+
J +

∑
(J1,J2)∈Bk

α+
J1J2

)∫
RN
|∇u(x)|2 dx

for all u ∈ D1,2(RN ), where α+
J = max{αJ , 0} and α+

J1J2
= max{αJ1J2 , 0}. We refer to [27] for a

deep analysis of many-particle Hardy inequalities and related best constants.
In order to discuss the positivity properties of the Schrödinger operator La in D1,2(RN ), we

consider the best constant in the Hardy-type inequality (10), i.e.

(11) Λ(a) := sup
u∈D1,2(RN )\{0}

∫
RN
|x|−2a(x/|x|)u2(x) dx∫

RN
|∇u(x)|2 dx

.

By (10), Λ(a) 6 4
(k−2)2 (

∑
J∈Ak α

+
J +

∑
(J1,J2)∈Bk α

+
J1J2

). It is easy to verify that the quadratic

form associated to La is positive definite in D1,2(RN ) if and only if

(12) Λ(a) < 1.

The relation between the value Λ(a) and the first eigenvalue of the angular component of the
operator on the unit (N − 1)-dimensional sphere SN−1 is discussed in Lemma 2.3. More precisely,
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Lemma 2.3 ensures that the quadratic form associated to La is positive definite if and only if

µ1(a) > −
(
N − 2

2

)2
,

where µ1(a) is the first eigenvalue of the operator La := −∆SN−1 − a on the sphere SN−1. The
spectrum of the angular operator La is discrete and consists in a nondecreasing sequence of eigen-
values

µ1(a) 6 µ2(a) 6 · · · 6 µk(a) 6 · · ·
diverging to +∞, see Lemma 2.2.

We study nonlinear equations obtained as perturbations of the operator La in a bounded domain
Ω ⊂ RN containing the origin. More precisely, we deal with semilinear equations of the type

(13) Lau = h(x)u+ f(x, u), in Ω .

We assume that the linear perturbing potential h is negligible with respect to the potential V near

the collision singular set Σ̃ defined in (5), in the sense that there exist Ch > 0 and ε > 0 such that,

for a.e. x ∈ Ω \ Σ̃,

(H) h ∈W 1,∞
loc

(
Ω\ Σ̃

)
and |h(x)|+ |∇h(x) ·x| 6 Ch

( ∑
J∈Ak

|xJ |−2+ε+
∑

(J1,J2)∈Bk

|xJ1 −xJ2 |−2+ε

)
.

We notice that it is not restrictive to assume ε ∈ (0, 1) in (H).
As far as the nonlinear perturbation is concerned, we assume that f satisfies

(F)

{
f ∈ C0(Ω× R), F ∈ C1(Ω× R), s 7→ f(x, s) ∈ C1(R) for a.e. x ∈ Ω,

|f(x, s)s|+ |f ′s(x, s)s2|+ |∇xF (x, s) · x| 6 Cf (|s|2 + |s|2∗) for a.e. x ∈ Ω and all s ∈ R,

where F (x, s) =
∫ s

0
f(x, t) dt, 2∗ = 2N

N−2 is the critical Sobolev exponent, Cf > 0 is a constant
independent of x ∈ Ω and s ∈ R, ∇xF denotes the gradient of F with respect to the x variable,
and f ′s(x, s) = ∂f

∂s (x, s).

We say that a function u ∈ H1(Ω) is a H1(Ω)-weak solution to (13) if, for all w ∈ H1
0 (Ω),

QΩ
a (u,w) =

∫
Ω

h(x)u(x)w(x) dx+

∫
Ω

f(x, u(x))w(x) dx,

where QΩ
a : H1(Ω)×H1(Ω)→ R is defined by

QΩ
a (u,w) :=

∫
Ω

∇u(x) · ∇w(x) dx−
∫

Ω

a(x/|x|)
|x|2

u(x)w(x) dx.

Schrödinger equations with inverse square homogeneous singular potentials can be regarded
as critical from the mathematical point of view, as they do not belong to the Kato class. A
rich literature deals with such critical equations, both in the case of one isolated pole, see e.g.
[16, 24, 25, 29, 40, 42], and in that of multiple singularities, see [7, 14, 15, 19, 23]. The analysis
of fundamental spectral properties such as essential self-adjointness and positivity carried out in
[19, 21] for Schrödinger operators with isolated inverse square singularities, highlighted how the
asymptotic behavior of solutions to associated elliptic equations near the singularity plays a crucial
role. A precise evaluation of the asymptotics of solutions turned out to be an important tool also
to establish existence of ground states for nonlinear Schrödinger equations with multi-singular
Hardy potentials (see [23]) and of solutions to nonlinear systems of Schrödinger equations with
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Hardy potentials [1]. A first result about the study of the asymptotic behavior of solutions near
isolated singularities is contained in [22], where Hölder continuity of solutions to degenerate elliptic
equations with singular weights has been established thus allowing the evaluation of the exact
asymptotic behavior of solutions to Schrödinger equations with Hardy potentials near the pole. An
extension to the case of Schrödinger equations with dipole-type potentials (namely purely angular
multiples of inverse square potentials) has been obtained in [20] by separation of variables and
comparison principles, and later generalized to Schrödinger equations with singular homogeneous
electromagnetic potentials of Aharonov-Bohm type [17] by the Almgren monotonicity formula.
Comparison and maximum principles play a crucial role also in [37], where the existence of the
limit at the singularity of any quotient of two positive solutions to Fuchsian type elliptic equations
is proved. We mention that related asymptotic expansions near singularities were obtained in
[34, 35] for elliptic equations on manifolds with conical singularities by Mellin transform methods
(see also [30]); we refer to [18] for a comparison between such results and asymptotics via Almgren
monotonicity methods. It is also worth citing [9], where some asymptotic formulas are heuristically
obtained for the three-body one-dimensional problem.

Due to the presence of multiple collisions, one should expect that solutions to equations (13)
behave singularly at the origin: our purpose is to describe the rate and the shape of the singularity
of solutions, by relating them to the eigenvalues and the eigenfunctions of the angular operator La
on the sphere SN−1.

The following theorem provides a classification of the behavior of any solution u to (13) near
the singularity based on the limit as r → 0+ of the Almgren’s frequency function (see [2, 26])

(14) Nu,h,f (r) =
r
∫
Br

(
|∇u(x)|2 − a(x/|x|)

|x|2 u2(x)− h(x)u2(x)− f(x, u(x))
)
dx∫

∂Br
|u(x)|2 dS

,

where, for any r > 0, Br denotes the ball {x ∈ RN : |x| < r}.

Theorem 1.1. Let u 6≡ 0 be a nontrivial weak H1(Ω)-solution to (13) in a bounded open set
Ω ⊂ RN containing 0, N > k > 3, with a satisfying (7) and (12), h satisfying (H), and f
satisfying (F). Then, letting Nu,h,f (r) as in (14), there exists k0 ∈ N, k0 > 1, such that

(15) lim
r→0+

Nu,h,f (r) = −N − 2

2
+

√(
N − 2

2

)2
+ µk0(a).

Furthermore, if γ denotes the limit in (15), m > 1 is the multiplicity of the eigenvalue µk0(a) and
{ψi : j0 6 i 6 j0 + m − 1} (j0 6 k0 6 j0 + m − 1) is an L2(SN−1)-orthonormal basis for the
eigenspace associated to µk0(a), then

(16) λ−γu(λx)→ |x|γ
j0+m−1∑
i=j0

βiψi

(
x

|x|

)
in H1(B1) as λ→ 0+

where

βi =

∫
SN−1

[
R−γu(Rθ) +

∫ R

0

h(sθ)u(sθ) + f
(
sθ, u(sθ)

)
2γ +N − 2

(
s1−γ − sγ+N−1

R2γ+N−2

)
ds

]
ψi(θ) dS(θ),(17)

for all R > 0 such that BR = {x ∈ RN : |x| 6 R} ⊂ Ω and (βj0 , βj0+1, . . . , βj0+m−1) 6= (0, 0, . . . , 0).
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Due to the homogeneity of the potentials, Schrödinger operators La are invariant by the Kelvin
transform,

ũ(x) = |x|−(N−2)u

(
x

|x|2

)
,

which is an isomorphism of D1,2(RN ). Indeed, if u ∈ H1(Ω) weakly solves (13) in a bounded open
set Ω containing 0, then its Kelvin’s transform ũ weakly solves (13) with h replaced by |x|−4h( x

|x|2 )

and f(x, ·) replaced by |x|−N−2f
(
x
|x|2 , |x|

N−2 ·
)

in the external domain Ω̃ =
{
x ∈ RN : x/|x|2 ∈ Ω

}
.

Therefore, under suitable decay conditions on h at ∞ and proper subcriticality assumptions on f ,
the asymptotic behavior at infinity of solutions to (13) in external domains can be easily deduced
from Theorem 1.1 and the Kelvin transform (see [17, Theorems 1.4 and 1.6]).

A major breakthrough in the description of the singularity of solutions at zero can be done by
evaluating the behavior of eigenfunctions ψi; indeed such eigenfunctions solve an elliptic equation
on SN−1 exhibiting itself a potential which is singular on Σ. After a stereographic projection of
SN−1 onto RN−1, the equation satisfied by each ψi takes a form which is similar to (13) in a lowered
dimension with a potential whose singular set is (N−1−k)−dimensional and to which we can apply
the above theorem to deduce a precise asymptotics in terms of eigenvalues and eigenfunctions of an
operator on SN−2; the procedure can be iterated (N−k)−times until we come to an equation with
a potential with isolated singularities whose corresponding angular operator is no more singular.
A detailed analysis of the asymptotic behavior of eigenfunctions is performed in section 7.

A pointwise upper estimate on the behavior of solutions can be derived by a Brezis-Kato type
iteration argument, see [8]. More precisely, we can estimate the solutions by terms of the first
eigenvalue and eigenfunction of the angular potential â obtained by summing up only the positive
contributions of a, i.e.

(18) â(θ) =
∑
J∈Ak

α+
J

|θJ |2
+

∑
(J1,J2)∈Bk

α+
J1 J2

|θJ1 − θJ2 |2
.

Under the assumption

(19) Λ(â) = sup
u∈D1,2(RN )\{0}

∫
RN |x|

−2â(x/|x|)u2(x) dx∫
RN |∇u(x)|2 dx

< 1,

by Lemma 2.3 the number

(20) σ̂ = −N − 2

2
+

√(
N − 2

2

)2
+ µ1(â)

is well defined. We denote as ψ̂1 ∈ H1(SN−1), ‖ψ̂1‖L2(SN−1) = 1, the first positive L2−normalized

eigenfuntion of the eigenvalue problem Laψ = µ1(â)ψ in SN−1.

Theorem 1.2. Let u be a weak H1(Ω)-solution to (13) in a bounded open set Ω ⊂ RN containing
0, N > k > 3, with a satisfying (7) and â as in (18) satisfying (19). If h satisfies (H) and f
satisfies (F), then for any Ω′ b Ω there exists C > 0 such that

|u(x)| 6 C|x|σ̂ψ̂1

( x
|x|

)
for a.e. x ∈ Ω′.
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In particular, if all αJ , αJ1J2 are positive, then â ≡ a and the above theorem ensures that all

solutions are pointwise bounded by |x|σψ1(x/|x|) where σ = −N−2
2 +

[
(N−2

2 )2 + µ1(a)
]1/2

. On
the other hand, if all αJ , αJ1J2 are negative, then â ≡ 0 and the above theorem implies that all
solutions are bounded.

The paper is organized as follows. In section 2 we prove some Hardy-type inequalities with
singular potentials of type (6) and discuss the relation between the positivity of the quadratic form
associated to La and the first eigenvalue of the angular operator on the sphere SN−1. In section 3 we
derive a Pohozaev-type identity for solutions to (13) through a suitable approximating procedure
which allows getting rid of the singularity of the angular potential. In Section 4 we deduce a Brezis-
Kato estimate to prove an a-priori super-critical summability of solutions to (13) which allows us
to include the critical growth case in the Almgren type monotonicity formula which is obtained in
Section 5 and which is used in section 6 together with a blow-up method to prove Theorem 1.1.
Section 7 is devoted to the study of the asymptotic behavior of the eigenfunctions of the angular
operator. Section 8 contains some Brezis-Kato estimates in weighted Sobolev spaces which allow
proving Theorem 1.2. A final appendix contains a Pohozaev-type identity for semilinear elliptic
equations with an anisotropic inverse-square potential with a bounded angular coefficient.

Notation. We list below some notation used throughout the paper.

- For all r > 0, Br denotes the ball {x ∈ RN : |x| < r} in RN with center at 0 and radius r.
- For all r > 0, Br = {x ∈ RN : |x| 6 r} denotes the closure of Br.
- dS denotes the volume element on the spheres ∂Br, r > 0.
- If J1 = {j1,1, . . . , j1,k} and J2 = {j2,1, . . . , j2,k} are two multi-indices of k elements, by
J1 < J2 we mean that there exists n ∈ {1, . . . , k} such that j1,i = j2,i for any 1 6 i 6 n−1
and j1,n < j2,n.

- For all t ∈ R, t+ = t+ := max{t, 0} (respectively t− = t− := max{−t, 0}) denotes the
positive (respectively negative) part of t.

- S = infv∈D1,2(RN )\{0} ‖∇v‖2L2‖v‖−2
L2∗ denotes the best constant in the classical Sobolev’s

embedding.

2. Hardy type inequalities

The following Hardy’s inequality on the unit sphere holds.

Lemma 2.1. Let a as in (7). For every ψ ∈ H1(SN−1) there holds

(
k − 2

2

)2∫
SN−1

a(θ)|ψ(θ)|2 dS

6

( ∑
J∈Ak

α+
J +

∑
(J1,J2)∈Bk

α+
J1 J2

)[∫
SN−1

|∇SN−1ψ(θ)|2 dS +

(
N − 2

2

)2∫
SN−1

|ψ(θ)|2 dS
]
.
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Proof. Let ψ ∈ H1(SN−1) and φ ∈ C∞c (0,+∞). Rewriting inequality (10) for u(x) = φ(r)ψ(θ),
r = |x|, θ = x

|x| , we obtain that(
k − 2

2

)2(∫ +∞

0

rN−1

r2
φ2(r) dr

)(∫
SN−1

a(θ)|ψ(θ)|2 dS
)

6

( ∑
J∈Ak

α+
J +

∑
(J1,J2)∈Bk

α+
J1 J2

)(∫ +∞

0

rN−1|φ′(r)|2 dr
)(∫

SN−1

|ψ(θ)|2 dS
)

+

( ∑
J∈Ak

α+
J +

∑
(J1,J2)∈Bk

α+
J1 J2

)(∫ +∞

0

rN−1

r2
φ2(r) dr

)(∫
SN−1

|∇SN−1ψ(θ)|2 dS
)
,

and hence, by optimality of the classical Hardy constant,(
k − 2

2

)2(∫
SN−1

a(θ)|ψ(θ)|2 dS
)

6

( ∑
J∈Ak

α+
J +

∑
(J1,J2)∈Bk

α+
J1 J2

)[(∫
SN−1

|ψ(θ)|2 dS
)

inf
φ∈C∞c (0,+∞)

∫ +∞
0

rN−1|φ′(r)|2 dr∫ +∞
0

rN−3 φ2(r) dr

+

∫
SN−1

|∇SN−1ψ(θ)|2 dS
]

=

( ∑
J∈Ak

α+
J +

∑
(J1,J2)∈Bk

α+
J1 J2

)[(
N − 2

2

)2 ∫
SN−1

|ψ(θ)|2 dS +

∫
SN−1

|∇SN−1ψ(θ)|2 dS
]
.

The proof is thereby complete. �

Let us consider the following class of angular potentials

(21) F :=

{
f ∈ L∞loc(SN−1 \ Σ) :

|f(θ)|∑
J∈Ak |θJ |

−2 +
∑

(J1,J2)∈Bk |θJ1 − θJ2 |
−2
∈ L∞(SN−1)

}
.

From Lemma 2.1 we have that, for every f ∈ F , the supremum

(22) Λ(f) := sup
ψ∈H1(SN−1)\{0}

∫
SN−1 f(θ)ψ2(θ) dS(θ)∫

SN−1 |∇SN−1ψ(θ)|2 dS(θ) +
(
N−2

2

)2 ∫
SN−1 ψ2(θ) dS(θ)

is finite. On the other hand, arguing as in the proof of [42, Lemma 1.1], we can easily verify that

(23) Λ(f) = sup
u∈D1,2(RN )\{0}

∫
RN
|x|−2f(x/|x|)u2(x) dx∫

RN
|∇u(x)|2 dx

.

Furthermore, it is easy to verify that

Λ(f) > 0

and

Λ(f) = 0 if and only if f 6 0 a.e. in SN−1.

For every f ∈ F satisfying Λ(f) < 1, we can perform a complete spectral analysis of the angular
Schrödinger operator −∆SN−1 − f on the sphere.
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Lemma 2.2. Let f ∈ F satisfying Λ(f) < 1. Then the spectrum of the operator

Lf := −∆SN−1 − f
on SN−1 consists in a diverging sequence µ1(f) 6 µ2(f) 6 · · · 6 µk(f) 6 · · · of real eigenvalues
with finite multiplicity the first of which admits the variational characterization

(24) µ1(f) = min
ψ∈H1(SN−1)\{0}

∫
SN−1

[∣∣∇SN−1ψ(θ)
∣∣2 − f(θ)|ψ(θ)|2

]
dS(θ)∫

SN−1 |ψ(θ)|2 dS(θ)
.

Moreover µ1(f) is simple and its associated eigenfunctions do not change sign in SN−1.

Proof. By Lemma 2.1 and assumption Λ(f) < 1, the operator T : L2(SN−1) → L2(SN−1)
defined as

Th = u if and only if −∆SN−1u− fu+
(
N−2

2

)2
u = h

is well-defined, symmetric, and compact. The conclusion follows from classical spectral theory. In
particular, we point out that the simplicity of the first eigenvalue follows from the fact that, since
k > 1, the singular set Σ does not disconnect the sphere. �

For all f ∈ F , let us consider the quadratic form associated to the Schrödinger operator Lf , i.e.

Qf (u) :=

∫
RN
|∇u(x)|2dx−

∫
RN

f(x/|x|)u2(x)

|x|2
dx.

The problem of positivity of Qf is solved in the following lemma.

Lemma 2.3. Let f ∈ F . The following conditions are equivalent:

i) Qf is positive definite, i.e. inf
u∈D1,2(RN )\{0}

Qf (u)∫
RN |∇u(x)|2 dx

> 0;

ii) Λ(f) < 1;

iii) µ1(f) > −
(
N−2

2

)2
where µ1(f) is defined in (24).

Proof. The equivalence between i) and ii) follows from the definition of Λ(f), see (23). On the
other hand, arguing as in [42, Proposition 1.3 and Lemma 1.1] (see also [17, Lemmas 1.1 and 2.1])
one can obtain equivalence between i) and iii). �

Henceforward, we shall assume that (12) holds, so that the quadratic form associated to the
operator La is positive definite.

Example 2.4. Let us consider cylindrical potentials, i.e. the particular case in which

(25) αJ =

{
α, if J = J̄ = {1, 2, . . . , k},
0, if J 6= {1, 2, . . . , k},

for some α ∈ R

and

(26) αJ1 J2 = 0 for any (J1, J2) ∈ Bk,

so that a(θ) = α/|θJ̄ |2. Then, from the optimality of the constant
(
k−2

2

)2
in (8), it follows that

Λ(a) = α+
(

2
k−2

)2
and (12) reads as α <

(
k−2

2

)2
. Moreover there holds

(27) µ1(a) = − (k − 2)(N − k)

2
− α+ (N − k)

√(
k − 2

2

)2
− α.
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In order to verify (27), let us set

(28) γ′ = −k − 2

2
+

√(
k − 2

2

)2
− α

and consider the function u(x) = |xJ̄ |γ
′

=
(∑k

i=1 x
2
i

)γ′/2 ∈ H1
loc(RN ). Then u solves the equation

(29) −∆u(x)− α

|xJ̄ |2
u(x) = 0 in {x ∈ RN : xJ̄ 6= 0}.

The function u may be rewritten as u(x) = |x|γ′ψ
(
x
|x|
)

once we define ψ(θ) = |θJ̄ |γ
′

for any

θ ∈ SN−1 \ Σ. Since u solves (29), we obtain

−γ′(γ′ +N − 2)rγ
′−2ψ(θ)− rγ

′−2∆SN−1ψ(θ) = rγ
′−2a(θ)ψ(θ), for any r > 0 and θ ∈ SN−1 \ Σ.

This yields

−∆SN−1ψ(θ)− a(θ)ψ(θ) = γ′(γ′ +N − 2)ψ(θ), in SN−1.

This shows that ψ is a positive eigenfunction of the operator La and hence by Lemma 2.2 the
corresponding eigenvalue must coincide with µ1(a), i.e. γ′(γ′ + N − 2) = µ1(a). (27) follows
by (28).

Example 2.5. Let us also consider two-body potentials, i.e. the case in which N > 2k,

αJ = 0 for any J ∈ Ak
and

αJ1 J2 =

{
α, if J1 = J̄1 = {1, 2, . . . , k} and J2 = J̄2 = {k + 1, k + 2, . . . , 2k},
0, if (J1, J2) 6= (J̄1, J̄2),

so that a(θ) = α/|θJ̄1 − θJ̄2 |
2. The optimality of the constant (k−2)2

2 in inequality (9) implies that

Λ(a) = α+ 2
(k−2)2 and condition (12) reads as α < (k−2)2

2 . Moreover we have

(30) µ1(a) = − (k − 2)(N − k)

2
− α

2
+ (N − k)

√(
k − 2

2

)2
− α

2
.

In order to prove (30) we put

(31) γ′′ = −k − 2

2
+

√(
k − 2

2

)2
− α

2

and we define u(x) = |xJ̄1 − xJ̄2 |
γ′′ ∈ H1

loc(RN ). Then u solves the equation

(32) −∆u(x)− α

|xJ̄1 − xJ̄2 |2
u(x) = 0 in {x ∈ RN : xJ̄1 6= xJ̄2}.

Proceeding as in Example 2.4, by (31) and (32) we conclude that ψ(θ) = |θJ̄1 − θJ̄2 |
γ′′ is an

eigenfunction of µ1(a) and that µ1(a) is given by (30).

We extend to singular potentials of the form (6) the Hardy type inequality with boundary terms
proved by Wang and Zhu in [43].
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Lemma 2.6. Let a be as in (7) and assume that (12) holds. Then

(33)

∫
Br

(
|∇u(x)|2 −

a( x
|x| )

|x|2
|u(x)|2

)
dx+

N − 2

2r

∫
∂Br

|u(x)|2 dS

>

(
µ1(a) +

(
N − 2

2

)2)∫
Br

|u(x)|2

|x|2
dx

for all r > 0 and u ∈ H1(Br).

Proof. By scaling, it is enough to prove the inequality for r = 1. Let u ∈ C∞(B1) ∩ H1(B1)
with 0 6∈ suppu. Passing to polar coordinates, we have that∫

B1

(
|∇u(x)|2−

a( x
|x| )

|x|2
|u(x)|2

)
dx+

N − 2

2

∫
∂B1

|u(x)|2 dS(34)

=

∫
SN−1

(∫ 1

0

rN−1|∂ru(r, θ)|2 dr
)
dS(θ) +

N − 2

2

∫
SN−1

|u(1, θ)|2 dS(θ)

+

∫ 1

0

rN−1

r2

(∫
SN−1

[
|∇SN−1u(r, θ)|2 − a(θ)|u(r, θ)|2

]
dS(θ)

)
dr.

For all θ ∈ SN−1, let ϕθ ∈ C∞(0, 1) be defined by ϕθ(r) = u(r, θ), and ϕ̃θ ∈ C∞(B1) be the
radially symmetric function given by ϕ̃θ(x) = ϕθ(|x|). We notice that 0 6∈ supp ϕ̃θ. The Hardy
inequality with boundary term proved in [43] yields∫

SN−1

(∫ 1

0

rN−1|∂ru(r, θ)|2 dr +
N − 2

2
|u(1, θ)|2

)
dS(θ)(35)

=

∫
SN−1

(∫ 1

0

rN−1|ϕ′θ(r)|2 dr +
N − 2

2
|ϕθ(1)|2

)
dS(θ)

=
1

ωN−1

∫
SN−1

(∫
B1

|∇ϕ̃θ(x)|2 dx+
N − 2

2

∫
∂B1

|ϕ̃θ(x)|2 dS
)
dS(θ)

>
1

ωN−1

(
N − 2

2

)2 ∫
SN−1

(∫
B1

|ϕ̃θ(x)|2

|x|2
dx

)
dS(θ)

=

(
N − 2

2

)2 ∫
SN−1

(∫ 1

0

rN−1

r2
|u(r, θ)|2 dr

)
dS(θ) =

(
N − 2

2

)2 ∫
B1

|u(x)|2

|x|2
dx.

where ωN−1 denotes the volume of the unit sphere SN−1, i.e. ωN−1 =
∫
SN−1 dS(θ). On the other

hand, from the definition of µ1(a) it follows that, for every r ∈ (0, 1),

(36)

∫
SN−1

[
|∇SN−1u(r, θ)|2 − a(θ)|u(r, θ)|2

]
dS(θ) > µ1(a)

∫
SN−1

|u(r, θ)|2dS(θ).

From (34), (35), and (36), we deduce that∫
B1

(
|∇u(x)|2 −

a( x
|x| )

|x|2
|u(x)|2

)
dx+

N − 2

2

∫
∂B1

|u(x)|2 dS >

[(
N − 2

2

)2
+ µ1(a)

]∫
B1

|u(x)|2

|x|2
dx

for all u ∈ C∞(B1) ∩H1(B1) with 0 6∈ suppu, which, by density, yields the stated inequality for
all H1(Br)-functions for r = 1. �
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Corollary 2.7. For all r > 0 and u ∈ H1(Br), there holds∫
Br

|∇u(x)|2 dx+
N − 2

2r

∫
∂Br

|u(x)|2 dS >
(
k − 2

2

)2 ∫
Br

|u(x)|2

|xJ |2
dx(37)

for any J ∈ Ak and∫
Br

|∇u(x)|2 dx+
N − 2

2r

∫
∂Br

|u(x)|2 dS > (k − 2)2

2

∫
Br

|u(x)|2

|xJ1 − xJ2 |2
dx(38)

for any (J1, J2) ∈ Bk.

Proof. Let r > 0 and u ∈ H1(Br). Choosing a as in the Example 2.4 with α <
(
k−2

2

)2
, from

Lemma 2.6, it follows that∫
Br

(
|∇u(x)|2 − α

|xJ |2
|u(x)|2

)
dx+

N − 2

2r

∫
∂Br

|u(x)|2 dS > 0

hence

α

∫
Br

|u(x)|2

|xJ |2
dx 6

∫
Br

|∇u(x)|2 dx+
N − 2

2r

∫
∂Br

|u(x)|2 dS.

Letting α→
(
k−2

2

)2
, (37) follows. To prove (38), we may choose a as in Example 2.5 and proceed

as in the proof of (37). �

Corollary 2.8. Let a be as in (7) and assume that (12) holds. Then, for all r > 0, u ∈ H1(Br),
J ∈ Ak and (J1, J2) ∈ Bk, there holds

(39)

∫
Br

|∇u(x)|2 dx−
∫
Br

a( x
|x| )

|x|2
|u(x)|2 dx+ Λ(a)

N − 2

2r

∫
∂Br

|u(x)|2 dS

> (1− Λ(a))

∫
Br

|∇u(x)|2 dx ,

∫
Br

|∇u(x)|2 dx−
∫
Br

a( x
|x| )

|x|2
|u(x)|2 dx+

N − 2

2r

∫
∂Br

|u(x)|2 dS(40)

> (1− Λ(a))

(
k − 2

2

)2 ∫
Br

|u(x)|2

|xJ |2
dx,

and ∫
Br

|∇u(x)|2 dx−
∫
Br

a( x
|x| )

|x|2
|u(x)|2 dx+

N − 2

2r

∫
∂Br

|u(x)|2 dS(41)

> (1− Λ(a))
(k − 2)2

2

∫
Br

|u(x)|2

|xJ1 − xJ2 |2
dx

with Λ(a) as in (23).
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Proof. By scaling, it is enough to prove the inequalities for r = 1. Let u ∈ C∞(B1) ∩H1(B1)
with 0 /∈ suppu. Passing in polar coordinates we obtain∫

B1

(
|∇u(x)|2−

a( x
|x| )

|x|2
|u(x)|2

)
dx+ Λ(a)

N − 2

2

∫
∂B1

|u(x)|2 dS(42)

=

∫
SN−1

(∫ 1

0

rN−1|∂ru(r, θ)|2 dr
)
dS(θ) + Λ(a)

N − 2

2

∫
SN−1

|u(1, θ)|2 dS(θ)

+

∫ 1

0

rN−1

r2

(∫
SN−1

[
|∇SN−1u(r, θ)|2 − a(θ)|u(r, θ)|2

]
dS(θ)

)
dr.

By (22) and (12) we have∫
SN−1

[∣∣∇SN−1u(r, θ)
∣∣2 − a(θ)|u(r, θ)|2

]
dS(θ)

> (1− Λ(a))

∫
SN−1

∣∣∇SN−1u(r, θ)
∣∣2 dS(θ)− Λ(a)

(
N − 2

2

)2 ∫
SN−1

|u(r, θ)|2 dS(θ)

which inserted into (42) gives∫
B1

(
|∇u(x)|2 −

a( x
|x| )

|x|2
|u(x)|2

)
dx+ Λ(a)

N − 2

2

∫
∂B1

|u(x)|2 dS > (1− Λ(a))

∫
B1

|∇u(x)|2 dx

+ Λ(a)

[∫
SN−1

(∫ 1

0

rN−1|∂ru(r, θ)|2 dr +
N − 2

2
|u(1, θ)|2

)
dS(θ)−

(
N − 2

2

)2 ∫
B1

|u(x)|2

|x|2
dx

]
.

Now, inequality (39) follows immediately from (35).
From (39) and (37) we obtain∫
B1

(
|∇u(x)|2 −

a( x
|x| )

|x|2
|u(x)|2

)
dx+

N − 2

2

∫
∂B1

|u(x)|2 dS

> (1− Λ(a))

(∫
B1

|∇u(x)|2 dx+
N − 2

2

∫
∂B1

|u(x)|2 dS
)
> (1− Λ(a))

(
k − 2

2

)2 ∫
B1

|u(x)|2

|xJ |2
dx

for all J ∈ Ak and for all u ∈ C∞(B1) ∩H1(B1) with 0 /∈ suppu.
On the other hand by (39) and (38) we obtain∫

B1

(
|∇u(x)|2 −

a( x
|x| )

|x|2
|u(x)|2

)
dx+

N − 2

2

∫
∂B1

|u(x)|2 dS

> (1− Λ(a))

(∫
B1

|∇u(x)|2 dx+
N − 2

2

∫
∂B1

|u(x)|2 dS
)

> (1− Λ(a))
(k − 2)2

2

∫
B1

|u(x)|2

|xJ1 − xJ2 |2
dx

for all (J1, J2) ∈ Bk and for all u ∈ C∞(B1) ∩H1(B1) with 0 /∈ suppu.
By density the stated inequalities follow for any u ∈ H1(B1). �

From (33) and (39), we can derive a Hardy-Sobolev type inequality which takes into account
the boundary terms; to this aim, the following lemma is needed.
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Lemma 2.9. Let S̃N > 0 be the best constant of the Sobolev embedding H1(B1) ⊂ L2∗(B1), i.e.

(43) S̃N := inf
v∈H1(B1)\{0}

∫
B1

(
|∇u(x)|2 + |u(x)|2

)
dx( ∫

B1
|u(x)|2∗dx

)2/2∗ .

Then, for every r > 0 and u ∈ H1(Br), there holds∫
Br

(
|∇u(x)|2 +

|u(x)|2

|x|2

)
dx > S̃N

(∫
Br

|u(x)|2
∗
dx

)2/2∗
.(44)

Proof. Inequality (44) follows simply by scaling from the definition of S̃N . �

The following boundary Hardy-Sobolev inequality holds true.

Corollary 2.10. Let a be as in (7) and assume that (12) holds. Then, for all r > 0 and u ∈
H1(Br), there holds

(45)

∫
Br

|∇u(x)|2 dx−
∫
Br

a( x
|x| )

|x|2
|u(x)|2 dx+

1 + Λ(a)

2

N − 2

2r

∫
∂Br

|u(x)|2 dS

>
S̃N
2

min

{
1− Λ(a), µ1(a) +

(
N − 2

2

)2}(∫
Br

|u(x)|2
∗
dx

)2/2∗
,

where S̃N is defined in (43).

Proof. Inequality (45) follows simply by summing up (33) and (39) and using Lemma 2.9. �

3. A Pohozaev-type identity

In order to approximate La := −∆SN−1 − a with operators with bounded coefficients, for all
λ ∈ R, we define

(46) aλ(θ) :=


∑
J∈Ak

αJ
|θJ |2 + λ

+
∑

(J1,J2)∈Bk

αJ1 J2
|θJ1 − θJ2 |2 + λ

if λ > 0

a(θ) if λ 6 0

in such a way that aλ ∈ L∞(SN−1) for any λ > 0. We notice that aλ ∈ F for any λ ∈ R.
Since we are interested in the asymptotics of solutions at 0, we focus our attention on a ball

Br0 which is sufficiently small to ensure positivity of the quadratic forms associated to equation
(13) and to some proper approximations of (13) in Br0 . Let u be a solution of (13), with the
perturbation potential h satisfying (H) and the nonlinear term f satisfying (F). If condition (12)
holds, there exists r0 > 0 such that

(47) Br0 ⊆ Ω and Λ(a) + Chr
ε
0

(
N

k

)(
2

k − 2

)2(
1 +

(
N − k
k

))
+ CfS

−1
[
(ωN−1/N)

2
N r2

0 + ‖u‖2
∗−2
L2∗ (Br0 )

]
< 1,

with a as (7), Λ(a) as in (22) and
(
N−k
k

)
= 0 whenever N < 2k.
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Lemma 3.1. Let Ω ⊂ RN , N > 3, be a bounded open set such that 0 ∈ Ω, and let a satisfy (7)
and (12). Suppose that h satisfies (H), f satisfies (F), u is a H1(Ω)-weak solution to (13) in Ω,
and r0 > 0 is as in (47). Then there exists λ̄ > 0 such that, for every λ ∈ (0, λ̄), the Dirichlet
boundary value problem

(48)


−∆v(x)−

aλ
(
x
|x|
)

|x|2
v(x) = hλ(x)v(x) + f(x, v(x)), in Br0 ,

v
∣∣
∂Br0

= u
∣∣
∂Br0

, on ∂Br0 ,

with

hλ(x) =

{
min{1/λ,max{−1/λ, h(x)}}, if λ > 0,

h(x), if λ 6 0,

admits a weak solution uλ ∈ H1(Br0) such that

uλ → u in H1(Br0) as λ→ 0+.

Proof. Let ṽ be the unique H1(Br0)-weak solution to the problem

(49)


−∆ṽ −

a
(
x
|x|
)

|x|2
ṽ(x) = h(x)ṽ, in Br0 ,

ṽ = u
∣∣
∂Br0

, on ∂Br0 .

The existence and uniqueness of such a ṽ can be proven by introducing the continuous bilinear
form Q : H1

0 (Br0)×H1
0 (Br0)→ R

Q(w1, w2) :=

∫
Br0

[
∇w1(x) · ∇w2(x)−

(
a( x
|x| )

|x|2
+ h(x)

)
w1(x)w2(x)

]
dx,

and the continuous functional Ψ ∈ H−1(Br0)

H−1(Br0 )

〈
Ψ, w

〉
H1

0 (Br0 )
= −

∫
Br0

∇u(x)·∇w(x)dx+

∫
Br0

a( x
|x| )

|x|2
u(x)w(x)dx+

∫
Br0

h(x)u(x)w(x)dx .

By (H), (8), (9), and (11), we have

(50) Q(w,w) =

∫
Br0

(
|∇w(x)|2 −

a( x
|x| )

|x|2
w2(x)− h(x)w2(x)

)
dx

>
∫
Br0

(
|∇w(x)|2 −

a( x
|x| )

|x|2
w2(x)− Ch

( ∑
J∈Ak

|xJ |−2+ε +
∑

(J1,J2)∈Bk

|xJ1 − xJ2 |−2+ε

)
w2(x)

)
dx

>

[
1− Λ(a)− Chrε0

(
N

k

)(
2

k − 2

)2(
1 +

(
N − k
k

))]∫
Br0

|∇w(x)|2 dx

for all w ∈ H1
0 (Br0). By (50), (12) and (47) it follows that the bilinear form Q is coercive. The

Lax-Milgram lemma yields existence and uniqueness of a solution v ∈ H1
0 (Br0) of the variational

problem

Q(v, w) =
H−1(Br0 )

〈
Ψ, w

〉
H1

0 (Br0 )
for any w ∈ H1

0 (Br0).
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Then the function ṽ := v + u is the unique solution of (49).
Let us now define the map Φ : R×H1

0 (Br0)→ H−1(Br0) as

Φ(λ,w) = −∆w −
aλ
(
x
|x|
)

|x|2
w − hλ(x)w − f(x, ṽ + w) +

(
a
(
x
|x|
)

|x|2
+ h(x)−

aλ
(
x
|x|
)

|x|2
− hλ(x)

)
ṽ.

By (7), (8), (9), (H) and (F), the function Φ is continuous and its first variation with respect to
the w variable

Φ′w : R×H1
0 (Br0)→ L(H1

0 (Br0), H−1(Br0))

is also continuous. We claim that

Φ(0, u− ṽ) = 0 in H−1(Br0) and Φ′w(0, u− ṽ) ∈ L
(
H1

0 (Br0), H−1(Br0)
)

is an isomorphism.

The first claim is an immediate consequence of the definition of u and ṽ. Let us prove the second
one. By (F), (11), and Hölder and Sobolev inequalities, for every w ∈ H1

0 (Br0) we obtain

H−1(Br0 )

〈
Φ′w(0, u− ṽ)w,w

〉
H1

0 (Br0 )

=

∫
Br0

|∇w(x)|2 dx−
∫
Br0

a
(
x
|x|
)

|x|2
w2(x) dx−

∫
Br0

h(x)w2(x) dx−
∫
Br0

f ′s(x, u(x))w2(x) dx

>
∫
Br0

|∇w(x)|2 dx−
∫
Br0

a
(
x
|x|
)

|x|2
w2(x) dx−

∫
Br0

h(x)w2(x) dx

− Cf
∫
Br0

(
1 + |u(x)|2

∗−2
)
w2(x) dx

> (1− Λ(a))

∫
Br0

|∇w(x)|2 dx

− Chrε0
(
N

k

)(
2

k − 2

)2(
1 +

(
N − k
k

))∫
Br0

|∇w(x)|2 dx

− CfS−1
[
(ωN−1/N)

2
N r2

0 + ‖u‖2
∗−2
L2∗ (Br0 )

] ∫
Br0

|∇w(x)|2 dx .

The above estimate, together with (47), shows that the quadratic form w 7→ 〈Φ′w(0, u − ṽ)w,w〉
is positive definite over H1

0 (Br0). Then the Lax-Milgram lemma applied to the continuous and
coercive bilinear form (w1, w2) 7→ H−1(Br0 )

〈
Φ′w(0, u − ṽ)w1, w2

〉
H1

0 (Br0 )
ensures that the operator

Φ′w(0, u− ṽ) ∈ L(H1
0 (Br0), H−1(Br0)) is an isomorphism and hence our second claim is proved.

We are now in position to apply the Implicit Function Theorem to the map Φ, thus showing
the existence of λ̄ > 0, ρ > 0, and of a continuous function

g : (−λ̄, λ̄)→ B(u− ṽ, ρ)

with B(u − ṽ, ρ) = {w ∈ H1
0 (Br0) : ‖w − u + ṽ‖H1

0 (Br0 ) < ρ}, such that Φ(λ, g(λ)) = 0 for all

λ ∈ (−λ̄, λ̄) and, if (λ,w) ∈ (−λ̄, λ̄) × B(u − ṽ, ρ) and Φ(λ,w) = 0, then w = g(λ). The function
uλ := g(λ) + ṽ solves (48) for any λ ∈ (0, λ̄). Moreover, by the continuity of g over the interval
(−λ̄, λ̄) and the fact that g(0) = u − ṽ, uλ − u = g(λ) − u + ṽ → 0 in H1

0 (Br0) as λ → 0+. This
proves that uλ → u in H1(Br0) as λ→ 0+. �



SCHRÖDINGER EQUATIONS WITH MANY-PARTICLE AND CYLINDRICAL POTENTIALS 17

Remark 3.2. We notice that, if f ∈ L1(Ω) for some Ω ⊂ RN bounded open set such that 0 ∈ Ω,
then, for every r > 0 such that Br ⊆ Ω,

∫
Br

|f(x)| dx =

∫ r

0

(∫
∂Bs

|f | dS
)
ds < +∞,

and hence the function s 7→
∫
∂Bs
|f | dS belongs to L1(0, r) and is the weak derivative of the

W 1,1(0, r)-function s →
∫
Bs
|f(x)| dx. In particular, for every u ∈ H1(Ω) and every J ∈ Ak,

(J1, J2) ∈ Bk, the L1(0, r)-function

s 7→
∫
∂Bs

|∇u(x)|2 dS, respectively s 7→
∫
∂Bs

u2(x)

|xJ |2
dS, s 7→

∫
∂Bs

u2(x)

|xJ1 − xJ2 |2
dS,

is the weak derivative of the W 1,1(0, r)-function

s→
∫
Bs

|∇u(x)|2 dx, respectively s 7→
∫
Bs

u2(x)

|xJ |2
dx, s 7→

∫
Bs

u2(x)

|xJ1 − xJ2 |2
dx.

Solutions to (13) satisfy the following Pohozaev-type identity.

Theorem 3.3. Let Ω ⊂ RN , N > 3, be a bounded open set such that 0 ∈ Ω. Let a satisfy (7),
(12), and u be a H1(Ω)-weak solution to (13) in Ω with h satisfying (H) and f satisfying (F).
Then

(51) − N − 2

2

∫
Br

[
|∇u(x)|2 −

a( x
|x| )

|x|2
u2(x)

]
dx+

r

2

∫
∂Br

[
|∇u(x)|2 −

a( x
|x| )

|x|2
u2(x)

]
dS

= r

∫
∂Br

∣∣∣∣∂u∂ν
∣∣∣∣2 dS − 1

2

∫
Br

(∇h(x) · x)u2(x) dx− N

2

∫
Br

h(x)u2(x) dx+
r

2

∫
∂Br

h(x)u2(x) dS

+ r

∫
∂Br

F (x, u(x)) dS −
∫
Br

[∇xF (x, u(x)) · x+NF (x, u(x))] dx

and

(52)

∫
Br

(
|∇u(x)|2 −

a( x
|x| )

|x|2
u2(x)

)
dx

=

∫
∂Br

u
∂u

∂ν
dS +

∫
Br

h(x)u2(x) dx+

∫
Br

f(x, u(x))u(x) dx,

for a.e. r ∈ (0, r0), where r0 > 0 satisfies (47) and ν = ν(x) is the unit outer normal vector
ν(x) = x

|x| .
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Proof. Let aλ as in (46), r0 as in (47), and uλ, hλ as in Lemma 3.1. Since aλ and hλ are
bounded for every λ > 0 the following Pohozaev identity

(53) − N − 2

2

∫
Br

[
|∇uλ(x)|2 −

aλ( x
|x| )

|x|2
u2
λ(x)

]
dx+

r

2

∫
∂Br

[
|∇uλ(x)|2 −

aλ( x
|x| )

|x|2
u2
λ(x)

]
dS

= r

∫
∂Br

∣∣∣∣∂uλ∂ν
∣∣∣∣2 dS +

∫
Br

hλ(x)uλ(x) (x · ∇uλ(x))
)
dx

+ r

∫
∂Br

F (x, uλ(x)) dx−
∫
Br

[∇xF (x, uλ(x)) · x+NF (x, uλ(x))] dx

holds for all r ∈ (0, r0), see Proposition A.1. Furthermore, testing (48) with uλ, integrating by
parts, and using the regularity of uλ outside the origin, we obtain that

(54)

∫
Br

(
|∇uλ(x)|2 −

aλ( x
|x| )

|x|2
u2
λ(x)

)
dx

=

∫
∂Br

uλ
∂uλ
∂ν

dS +

∫
Br

hλ(x)u2
λ(x) dx+

∫
Br

f(x, uλ(x))uλ(x) dx

for all r ∈ (0, r0).
From the convergence of uλ to u in H1(Br0) as λ → 0+ proved in Lemma 3.1, inequalities

(37–38), and the Dominated Convergence Theorem, it follows that

aλ( x
|x| )

|x|2
u2
λ −

a( x
|x| )

|x|2
u2 =

aλ( x
|x| )

|x|2
(uλ + u)(uλ − u) +

aλ( x
|x| )− a( x

|x| )

|x|2
u2 → 0

in L1(Br0) as λ→ 0+, i.e.

(55) lim
λ→0+

∫
Br0

∣∣∣∣aλ( x
|x| )

|x|2
u2
λ(x)−

a( x
|x| )

|x|2
u2(x)

∣∣∣∣dx
= lim
λ→0+

∫ r0

0

[ ∫
∂Bs

∣∣∣∣aλ( x
|x| )

|x|2
u2
λ(x)−

a( x
|x| )

|x|2
u2(x)

∣∣∣∣dS]ds = 0.

From (55) we deduce that∫
Br

aλ( x
|x| )

|x|2
u2
λ(x) dx→

∫
Br

a( x
|x| )

|x|2
u2(x) dx as λ→ 0+ for all r ∈ (0, r0).

and, along a sequence λn → 0+,

(56)

∫
∂Br

aλn( x
|x| )

|x|2
u2
λn dS →

∫
∂Br

a( x
|x| )

|x|2
u2 dS as n→ +∞ for a.e. r ∈ (0, r0).

On the other hand, from

lim
λ→0+

∫
Br0

|∇(uλ − u)(x)|2 dx = lim
λ→0+

∫ r0

0

[ ∫
∂Bs

|∇(uλ − u)|2 dS
]
ds = 0,

we deduce that, along a sequence converging monotonically to zero still denoted by λn,

(57)

∫
∂Br

|∇uλn |2dS →
∫
∂Br

|∇u|2dS as n→ +∞ for a.e. r ∈ (0, r0)
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and

(58)

∫
∂Br

∣∣∣∣∂uλn∂ν

∣∣∣∣2dS → ∫
∂Br

∣∣∣∣∂u∂ν
∣∣∣∣2dS as n→ +∞ for a.e. r ∈ (0, r0).

Let us fix λ > 0 and r ∈ (0, r0). Since∫ r

0

[ ∫
∂Bs

hλ(x)|uλ(x)|2 dS
]
ds =

∫
Br

hλ(x)|uλ(x)|2 dx < +∞,

there exists a sequence {δk}k∈N ⊂ (0, r) such that limk→+∞ δk = 0 and

(59) δk

∫
∂Bδk

hλ(x)|uλ(x)|2 dS −→ 0 as k → +∞.

Recalling that uλ ∈ C1,τ
loc (Br0 \ {0}) for some τ ∈ (0, 1), integration by parts yields∫

Br\Bδk
hλ(x)uλ(x) (x · ∇uλ(x)) dx = −1

2

∫
Br\Bδk

(∇hλ(x) · x)u2
λ(x) dx

− N

2

∫
Br\Bδk

hλ(x)u2
λ(x) dx+

r

2

∫
∂Br

hλ(x)u2
λ(x) dS − δk

2

∫
∂Bδk

hλ(x)u2
λ(x) dS.

Letting k → +∞, by (59) and (H), we obtain∫
Br

hλ(x)uλ(x) (x · ∇uλ(x)) dx = −1

2

∫
Br

(∇hλ(x) · x)u2
λ(x) dx

− N

2

∫
Br

hλ(x)u2
λ(x) dx+

r

2

∫
∂Br

hλ(x)u2
λ(x) dS.

Arguing as above, using (H) we can prove that

lim
λ→0+

∫
Br

(∇hλ(x) · x)u2
λ(x) dx =

∫
Br

(∇h(x) · x)u2(x) dx for all r ∈ (0, r0),

lim
λ→0+

∫
Br

hλ(x)u2
λ(x) dx =

∫
Br

h(x)u2(x) dx for all r ∈ (0, r0),

and, along a sequence λn → 0+,

(60) lim
n→+∞

∫
∂Br

hλn(x)u2
λn(x) dS =

∫
∂Br

h(x)u2(x) dS for a.e. r ∈ (0, r0).

It remains to study the convergence of the terms in (53) and (54) related to the nonlinearity f . By
(F), convergence of uλ to u in H1(Br0), and the Dominated Convergence Theorem, we have that

lim
λ→0+

∫
Br

[∇xF (x, uλ(x)) · x+NF (x, uλ(x))] dx =

∫
Br

[∇xF (x, u(x)) · x+NF (x, u(x))] dx ,

lim
λ→0+

∫
Br

f(x, uλ(x))uλ(x) dx =

∫
Br

f(x, u(x))u(x) dx,

for all r ∈ (0, r0), and along a sequence λn → 0+,

(61) r

∫
∂Br

F (x, uλn(x)) dx→ r

∫
∂Br

F (x, u(x)) dx as n→ +∞

for a.e. r ∈ (0, r0).
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Therefore, we can pass to the limit in (53) and in (54) along a sequence λn → 0+ such that
(56), (57), (58), (60), and (61) hold true, thus obtaining (51) and (52). �

4. A Brezis-Kato type estimate

Throughout this section, we let Ω ⊂ RN , N > 3, be a bounded open set such that 0 ∈ Ω, a
satisfy (7), (12), h satisfy (H), and V ∈ L1

loc(Ω) satisfy the form-bounded condition

sup
v∈H1(Ω)\{0}

∫
Ω
|V (x)|v2(x) dx

‖v‖2H1(Ω)

< +∞,

see [33]. The above condition (which is in particular satisfied by LN/2 and LN/2,∞ functions,
potentials of the form (6), etc.) in particular implies that for every u ∈ H1(Ω), V u ∈ H−1(Ω). We
assume that u ∈ H1(Ω) is a weak solution to

(62) −∆u(x)−
a( x
|x| )

|x|2
u(x) = h(x)u(x) + V (x)u(x), in Ω.

In the spirit of [40, Theorem 2.3], we prove the following Brezis-Kato type result.

Proposition 4.1. If V+ ∈ LN/2(Ω), letting

qlim :=

{
2∗

2 min
{

4
Λ(a) − 2, 2∗

}
, if Λ(a) > 0,

(2∗)2

2 , if Λ(a) = 0,

then for every 1 6 q < qlim there exists rq > 0 depending on q,N, k, a, h such that Brq ⊂ Ω and
u ∈ Lq(Brq ).

Proof. For any 2 < τ < 2
2∗ qlim define C(τ) := 4

τ+2 and let `τ > 0 be large enough so that

(63)

( ∫
V+(x)>`τ

V
N
2

+ (x) dx

)2
N

<
S(C(τ)− Λ(a))

2
.

Let r > 0 be such that Br ⊂ Ω. For any w ∈ H1
0 (Br), by Hölder and Sobolev inequalities and

(63), we have∫
Ω

V (x)|w(x)|2 dx 6
∫

Br∩{V+(x)6`τ}

V+(x)|w(x)|2 dx+

∫
Br∩{V+(x)>`τ}

V+(x)|w(x)|2 dx(64)

6 `τ

∫
Br

|w(x)|2 dx+

( ∫
V+(x)>`τ

V
N
2

+ (x) dx

)2
N
(∫

Br

|w(x)|2
∗
dx

)2
2∗

6 `τ

∫
Br

|w(x)|2 dx+
C(τ)− Λ(a)

2

∫
Br

|∇w(x)|2 dx.

Let η ∈ C∞c (Br) be such that η ≡ 1 in Br/2 and define v(x) := η(x)u(x) ∈ H1
0 (Br). Then v is a

H1(Ω)-weak solution of the equation

(65) −∆v(x)−
a( x
|x| )

|x|2
v(x) = h(x)v(x) + V (x)v(x) + g(x), in Ω,
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where g(x) = −u(x)∆η(x) − 2∇u(x) · ∇η(x) ∈ L2(Br). For any n ∈ N, n > 1, let us define the
function vn := min{|v|, n}. Testing (65) with (vn)τ−2v ∈ H1

0 (Br) we obtain

(66)

∫
Br

(vn(x))τ−2|∇v(x)|2 dx+ (τ − 2)

∫
Br

(vn(x))τ−3|v(x)||∇v(x)|2χ{|v(x)|<n}(x) dx

−
∫
Br

a( x
|x| )

|x|2
(vn(x))τ−2v2(x) dx

=

∫
Br

h(x)(vn(x))τ−2v2(x) dx+

∫
Br

V (x)(vn(x))τ−2v2(x) dx+

∫
Br

g(x)(vn(x))τ−2v(x) dx .

Since

|∇((vn)
τ
2−1v)|2 = (vn)τ−2|∇v|2 +

(τ − 2)(τ + 2)

4
(vn)τ−3|v||∇v|2χ{|v(x)|<n} ,

then by (66), (11), (H), and (64) with w = (vn)
τ
2−1v we obtain

C(τ)

∫
Br

|∇((vn(x))
τ
2−1v(x))|2 dx(67)

6
∫
Br

a( x
|x| )

|x|2
((vn(x))

τ
2−1v(x))2 dx+

∫
Br

h(x)((vn(x))
τ
2−1v(x))2 dx

+

∫
Br

V (x)((vn(x))
τ
2−1v(x))2 dx+

∫
Br

g(x)(vn(x))τ−2v(x) dx

6

[
Λ(a) + Chr

ε

(
N

k

)(
2

k − 2

)2(
1 +

(
N − k
k

))
+
C(τ)− Λ(a)

2

] ∫
Br

|∇((vn(x))
τ
2−1v(x))|2 dx

+`τ

∫
Br

(vn(x))τ−2(v(x))2 dx+

∫
Br

|g(x)|(vn(x))τ−2|v(x)| dx .

Let us consider the last term in the right hand side of (67). Since g ∈ L2(Br), then by Hölder
inequality

∫
Br

|g(x)|(vn(x))τ−2|v(x)| dx 6 ‖g‖L2(Ω)

(∫
Br

(vn(x))2τ−4|v(x)|2 dx
)1

2

= ‖g‖L2(Ω)

(∫
Br

(vn(x))
2(τ−1)(τ−2)

τ (vn(x))
2(τ−2)
τ |v(x)|2 dx

)1
2

6 ‖g‖L2(Ω)

(∫
Br

|(vn(x))
τ
2−1v(x)|

4(τ−1)
τ dx

)1
2
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and, since 4(τ−1)
τ < 2∗ for any τ < 2

2∗ qlim, by Hölder inequality, Sobolev embedding, and Young
inequality, we obtain∫

Br

|g(x)|(vn(x))τ−2|v(x)| dx(68)

6 ‖g‖L2(Ω)

(
ωN−1

N

) 1
2−

2(τ−1)
2∗τ

r
N
2 −

2N(τ−1)
2∗τ

(∫
Br

|(vn(x))
τ
2−1v(x)|2

∗
dx

) 2(τ−1)
2∗τ

6 ‖g‖L2(Ω)

(
ωN−1

N

) 1
2−

2(τ−1)
2∗τ

r
N
2 −

(N−2)(τ−1)
τ S−

τ−1
τ

(∫
Br

|∇((vn(x))
τ
2−1v(x))|2 dx

) τ−1
τ

6
1

τ
‖g‖τL2(Ω) +

τ − 1

τ

(
ωN−1

N

) τ
2(τ−1)

− 2
2∗

r
Nτ

2(τ−1)
−N+2S−1

∫
Br

|∇((vn(x))
τ
2−1v(x))|2 dx.

Inserting (68) into (67) we obtain[
C(τ)− Λ(a)

2
− Chrε

(
N

k

)(
2

k − 2

)2(
1 +

(
N − k
k

))
− τ − 1

τ

(
ωN−1

N

) τ
2(τ−1)

− 2
2∗

r
Nτ

2(τ−1)
−N+2S−1

] ∫
Br

|∇((vn(x))
τ
2−1v(x))|2 dx

6
1

τ
‖g‖τL2(Ω) + `τ

∫
Br

(vn(x))τ−2(v(x))2 dx

and by Sobolev embedding we also have

S

[
C(τ)− Λ(a)

2
− Chrε

(
N

k

)(
2

k − 2

)2(
1 +

(
N − k
k

))
(69)

− τ − 1

τ

(
ωN−1

N

) τ
2(τ−1)

− 2
2∗

r
Nτ

2(τ−1)
−N+2S−1

](∫
Br

(vn(x))
2∗
2 τ−2∗ |v(x)|2

∗
dx

)2
2∗

6
1

τ
‖g‖τL2(Ω) + `τ

∫
Br

(vn(x))τ−2(v(x))2 dx .

Since τ < 2
2∗ qlim then C(τ)−Λ(a) is positive and Nτ

2(τ−1) −N +2 is also positive. Hence we may fix

r small enough in such a way that the left hand side of (69) becomes positive. Since v ∈ Lτ (Br),
letting n→ +∞, the right hand side of (69) remains bounded and hence by Fatou Lemma we infer

that v ∈ L 2∗
2 τ (Br). Since η ≡ 1 in Br/2 we may conclude that u ∈ L 2∗

2 τ (Br/2). This completes
the proof of the lemma. �

5. The Almgren type frequency function

Let u be a weak H1(Ω)-solution to equation (13) in a bounded domain Ω ⊂ RN containing the
origin with a satisfying (7) and (12), h satisfying (H) and f satisfying (F).

By (F) and Sobolev embedding, we infer that the function

V (x) :=

{
f(x,u(x))
u(x) , if u(x) 6= 0,

0, if u(x) = 0,



SCHRÖDINGER EQUATIONS WITH MANY-PARTICLE AND CYLINDRICAL POTENTIALS 23

belongs to LN/2(Ω) and hence we may apply Proposition 4.1 to the function u. Therefore, through-
out this section, we may fix

(70) 2∗ < q < qlim

and rq as in Proposition 4.1 in such a way that u ∈ Lq(Brq ).
By Remark 3.2, the function

(71) H(r) =
1

rN−1

∫
∂Br

|u|2 dS

belongs to L1
loc(0, R) for every R > 0 such that BR ⊆ Ω. It is also easy to verify that

(72) H(r) =

∫
SN−1

|u(rθ)|2 dS(θ) for a.e. r ∈ (0, R).

Further regularity of H is established in the following lemma.

Lemma 5.1. Let Ω ⊂ RN , N > 3, be a bounded open set such that 0 ∈ Ω and let u be a
weak H1(Ω)-solution to equation (13) in Ω with a satisfying (7) and (12), h satisfying (H), and
f satisfying (F). If H is the function defined in (71) and R > 0 is such that BR ⊆ Ω, then

H ∈W 1,1
loc (0, R) and

(73) H ′(r) =
2

rN−1

∫
∂Br

u
∂u

∂ν
dS

in a distributional sense and for a.e. r ∈ (0, R).

Proof. Since u, ∂u∂ν ∈ L
2(BR), by Remark 3.2, we have that

r 7→ 2

rN−1

∫
∂Br

u
∂u

∂ν
dS ∈ L1

loc(0, R).

If 0 < s < r < R, by Fubini’s Theorem we obtain∫ r

s

2

tN−1

(∫
∂Bt

u
∂u

∂ν
dS

)
dt =

∫ r

s

(∫
SN−1

2u(tθ)
∂u

∂ν
(tθ) dS(θ)

)
dt

=

∫
SN−1

(∫ r

s

2u(tθ)
∂u

∂ν
(tθ) dt

)
dS(θ).

From classical Brezis-Kato [8] estimates, standard bootstrap, and elliptic regularity theory, it

follows that u ∈ C1,τ
loc (Ω \ Σ̃) for some τ ∈ (0, 1). Hence, for every θ ∈ SN−1 \ Σ, and consequently

for a.e. θ ∈ SN−1, ∂u∂ν (tθ) = d
dtu(tθ) for every t ∈ (s, r). Therefore, in view of (72), we deduce that∫ r

s

2

tN−1

(∫
∂Bt

u
∂u

∂ν
dS

)
dt =

∫
SN−1

(∫ r

s

d

dt
|u(tθ)|2 dt

)
dS(θ)

=

∫
SN−1

(
|u(rθ)|2 − |u(sθ)|2

)
dS(θ) = H(r)−H(s)

thus proving that H ∈W 1,1
loc (0, R) and that its weak derivative is given by (73). �

Now we show that, if u 6≡ 0, H(r) does not vanish for every r ∈ (0, r0).
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Lemma 5.2. Let Ω ⊂ RN , N > 3, be a bounded open set such that 0 ∈ Ω, a satisfy (7) and (12),
and u 6≡ 0 be a weak H1(Ω)-solution to (13) in Ω, with h verifying (H) and f as in (F). Then
H(r) > 0 for any r ∈ (0, r0), where H = H(r) is defined by (71) and r0 > 0 satisfies (47).

Proof. Suppose by contradiction that there exists R ∈ (0, r0) such that H(R) = 0. Then u = 0
a.e. on ∂BR and thus u ∈ H1

0 (BR). Multiplying both sides of (13) by u and integrating by parts
over BR we obtain∫

BR

|∇u(x)|2dx−
∫
BR

a( x
|x| )

|x|2
|u(x)|2 dx =

∫
BR

h(x) |u(x)|2 dx+

∫
BR

f(x, u(x))u(x) dx.

Proceeding as in (50) and using (F), Hölder and Sobolev inequalities, we obtain

0 =

∫
BR

(
|∇u(x)|2 −

a( x
|x| )

|x|2
u2(x)− h(x)u2(x)− f(x, u(x))u(x)

)
dx

>

[
1− Λ(a)− Chrε0

(
N

k

)(
2

k − 2

)2(
1 +

(
N − k
k

))]∫
BR

|∇u(x)|2 dx

− CfS−1
[
(ωN−1/N)

2
N r2

0 + ‖u‖2
∗−2
L2∗ (Br0 )

] ∫
BR

|∇u(x)|2 dx,

which, together with (47), implies u ≡ 0 in BR. Since u ≡ 0 in a neighborhood of the origin, we

may apply, away from the singular set Σ̃ (which has zero measure), classical unique continuation
principles for second order elliptic equations with locally bounded coefficients (see e.g. [44]) to
conclude that u = 0 a.e. in Ω, a contradiction. �

We also consider the function D : (0, r0)→ R defined as

(74) D(r) =
1

rN−2

∫
Br

(
|∇u(x)|2 −

a
(
x
|x|
)

|x|2
|u(x)|2 − h(x) |u(x)|2 − f(x, u(x))u(x)

)
dx,

where r0 is defined in (47). The regularity of the function D is established in the following lemma.

Lemma 5.3. Let Ω ⊂ RN , N > 3, be a bounded open set such that 0 ∈ Ω. Let a satisfy (7) and
(12), and u be a weak H1(Ω)-solution to (13), with h satisfying (H) and f satisfying (F). Then

the function D defined in (74) belongs to W 1,1
loc(0, r0) and

D′(r) =
2

rN−1

[
r

∫
∂Br

∣∣∣∣∂u∂ν
∣∣∣∣2 dS − 1

2

∫
Br

(∇h(x) · x)|u(x)|2 dx−
∫
Br

h(x)|u(x)|2 dx
]

(75)

+ r1−N
∫
Br

(
(N − 2)f(x, u(x))u(x)− 2NF (x, u(x))− 2∇xF (x, u(x)) · x

)
dx

+ r2−N
∫
∂Br

(
2F (x, u(x))− f(x, u(x))u(x)

)
dS

in a distributional sense and for a.e. r ∈ (0, r0).

Proof. For any r ∈ (0, r0) let

I(r) =

∫
Br

(
|∇u(x)|2 −

a
(
x
|x|
)

|x|2
|u(x)|2 − h(x) |u(x)|2 − f(x, u(x))u(x)

)
dx.(76)
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From Remark 3.2, we deduce that I ∈W 1,1(0, r0) and

(77) I ′(r) =

∫
∂Br

(
|∇u(x)|2 −

a( x
|x| )

|x|2
|u(x)|2 − h(x)|u(x)|2 − f(x, u(x))u(x)

)
dS

for a.e. r ∈ (0, r0) and in the distributional sense. Therefore D ∈ W 1,1
loc (0, r0) and, plugging (51),

(76), and (77) into

D′(r) = r1−N [−(N − 2)I(r) + rI ′(r)],

we obtain (75) for a.e. r ∈ (0, r0) and in the distributional sense. �

By virtue of Lemma 5.2, if u is a weak H1(Ω)-solution to (13), u 6≡ 0, the Almgren type frequency
function

(78) N (r) = Nu,h,f (r) =
D(r)

H(r)

is well defined in (0, r0). Collecting Lemmas 5.1 and 5.3, we compute the derivative of N .

Lemma 5.4. Let Ω ⊂ RN , N > 3, be a bounded open set such that 0 ∈ Ω, a satisfy (7) and (12),
and u 6≡ 0 be a weak H1(Ω)-solution to (13), with h satisfying (H) and f satisfying (F). Then the

function N defined in (78) belongs to W 1,1
loc (0, r0) and

N ′(r) = ν1(r) + ν2(r)(79)

in a distributional sense and for a.e. r ∈ (0, r0), where

ν1(r) =
2r
[ (∫

∂Br

∣∣∂u
∂ν

∣∣2 dS) · (∫
∂Br
|u|2dS

)
−
(∫

∂Br
u∂u∂ν dS

)2 ]
(∫

∂Br
|u|2dS

)2(80)

and

ν2(r) =−
∫
Br

(2h(x) +∇h(x) · x)|u(x)|2 dx∫
∂Br
|u|2 dS

+
r
∫
∂Br

(
2F (x, u(x))− f(x, u(x))u(x)

)
dS∫

∂Br
|u|2 dS

(81)

+

∫
Br

(
(N − 2)f(x, u(x))u(x)− 2NF (x, u(x))− 2∇xF (x, u(x)) · x

)
dx∫

∂Br
|u|2 dS

.

Proof. From Lemmas 5.1, 5.2, and 5.3, it follows that N ∈ W 1,1
loc (0, r0). From (52), (74), and

(73) we infer

(82) D(r) =
1

2
rH ′(r)

for a.e. r ∈ (0, r0). From (82) we have that

N ′(r) =
D′(r)H(r)−D(r)H ′(r)

(H(r))2
=
D′(r)H(r)− 1

2r(H
′(r))2

(H(r))2

and the proof of the lemma easily follows from (73) and (75). �

We now prove that N (r) admits a finite limit as r → 0+. To this aim, the following estimate plays
a crucial role.
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Lemma 5.5. Under the same assumptions as in Lemma 5.4, there exist r̃ ∈ (0,min{r0, rq}) and

a positive constant C = C(N, k, a, h, f, u) > 0 depending on N , k, a, h, f , u but independent of r
such that∫

Br

(
|∇u(x)|2 −

a
(
x
|x|
)

|x|2
|u(x)|2 − h(x) |u(x)|2 − f(x, u(x))u(x)

)
dx(83)

>− N − 2

2r

∫
∂Br

|u(x)|2dS

+ C

( ∑
J∈Ak

∫
Br

|u(x)|2

|xJ |2
dx+

∑
(J1,J2)∈Bk

∫
Br

|u(x)|2

|xJ1 − xJ2 |2
+

(∫
Br

|u(x)|2
∗
dx

)2
2∗
)

and

(84) N (r) > −N − 2

2

for every r ∈ (0, r̃).

Proof. By (40), (41), and (45), we have that∫
Br

(
|∇u(x)|2 −

a
(
x
|x|
)

|x|2
|u(x)|2 − h(x) |u(x)|2 − f(x, u(x))u(x)

)
dx

>− N − 2

2r

(
N
k

)(
1 +

(
N−k
k

))
+ 1+Λ(a)

2(
N
k

)(
1 +

(
N−k
k

))
+ 1

∫
∂Br

|u(x)|2dS

+

(
k−2

2

)2(
N
k

)(
1 +

(
N−k
k

))
+ 1

[
1− Λ(a)− Chrε

(
N
k

)(
1 +

(
N−k
k

))
+ 1

(k−2
2 )2

]
×

×
( ∑
J∈Ak

∫
Br

|u(x)|2

|xJ |2
dx+

∑
(J1,J2)∈Bk

∫
Br

|u(x)|2

|xJ1 − xJ2 |2

)

+

[
1

2
S̃N

min
{

1− Λ(a), µ1(a) +
(
N−2

2

)2}(
N
k

)(
1 +

(
N−k
k

))
+ 1

− Cf
((ωN−1

N

) 2
N

r2 + ‖u‖2
∗−2
L2∗ (Br)

)](∫
Br

|u(x)|2
∗
dx

)2/2∗
for every r ∈ (0, r0). Since Λ(a) < 1, from the above estimate it follows that we can choose
r̃ ∈ (0, r0) sufficiently small such that estimate (83) holds for r ∈ (0, r̃) for some positive constant
C = C(N, k, a, h, f, u) > 0. Estimate (83), together with (71) and (74), yields (84). �

Lemma 5.6. Under the same assumptions as in Lemma 5.4, let r̃ be as in Lemma 5.5 and ν2 as
in (81). Then there exist a positive constant C1 > 0 depending on N, q, Cf , Ch, C, r̃, ‖u‖Lq(Br̃) and
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a function g ∈ L1(0, r̃), g > 0 a.e. in (0, r̃), such that

|ν2(r)| 6 C1

[
N (r) +

N

2

](
r−1+ε + r−1+

2(q−2∗)
q + g(r)

)
for a.e. r ∈ (0, r̃) and ∫ r

0

g(s) ds 6
‖u‖2

∗(1−α)

L2∗ (Ω)

1− α
r
N(q−2∗)

q (α− 2
2∗ )

for all r ∈ (0, r̃) and for some α satisfying 2
2∗ < α < 1.

Proof. From (H) and (83) we deduce that∣∣∣∣∫
Br

(2h(x) +∇h(x) · x)|u(x)|2 dx
∣∣∣∣ 6 2Chr

ε

( ∑
J∈Ak

∫
Br

|u(x)|2

|xJ |2
dx+

∑
(J1,J2)∈Bk

∫
Br

|u(x)|2

|xJ1 − xJ2 |2

)
6 2ChC

−1
rε+N−2

[
D(r) + N−2

2 H(r)
]
,

and, therefore, for any r ∈ (0, r̃), we have that∣∣∣∣∣
∫
Br

(2h(x) +∇h(x) · x)|u(x)|2 dx∫
∂Br
|u|2 dS

∣∣∣∣∣ 6 2ChC
−1
r−1+εD(r) + N−2

2 H(r)

H(r)
(85)

= 2ChC
−1
r−1+ε

[
N (r) +

N − 2

2

]
.

By (F), Hölder’s inequality, and (83), for some constant const = const (N,Cf ) > 0 depending on
N,Cf , and for all r ∈ (0, r̃), there holds∣∣∣∣ ∫

Br

(
(N − 2)f(x, u(x))u(x)− 2NF (x, u(x))− 2∇xF (x, u(x)) · x

)
dx

∣∣∣∣
6 const

∫
Br

(
|u(x)|2 + |u(x)|2

∗)
dx

6 const

((ωN−1

N

) 2
N

r2 + ‖u‖2
∗−2
L2∗ (Br)

)(∫
Br

|u(x)|2
∗
dx

)2/2∗

6 const

((ωN−1

N

) 2
N

r2 +
(ωN−1

N

)2(q−2∗)
Nq

r
2(q−2∗)

q ‖u‖2
∗−2
Lq(Br̃)

)
× C−1

rN−2
[
D(r) + N−2

2 H(r)
]

and hence

(86)

∣∣∣∣∣
∫
Br

(
(N − 2)f(x, u(x))u(x)− 2NF (x, u(x))− 2∇xF (x, u(x)) · x

)
dx∫

∂Br
|u|2 dS

∣∣∣∣∣
6 constC

−1

((ωN−1

N

) 2
N

r̃
22∗
q +

(ωN−1

N

) 2(q−2∗)
Nq ‖u‖2

∗−2
Lq(Br̃)

)
× r−1+

2(q−2∗)
q

[
N (r) + N−2

2

]
.
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Let us fix 2
2∗ < α < 1. Then, by Hölder’s inequality and (83),(∫
Br

|u(x)|2
∗
dx

)α
=

(∫
Br

|u(x)|2
∗
dx

)α− 2
2∗
(∫

Br

|u(x)|2
∗
dx

)2
2∗

(87)

6
(ωN−1

N

) q−2∗
q (α− 2

2∗ )

r
N(q−2∗)

q (α− 2
2∗ )‖u‖2

∗(α− 2
2∗ )

Lq(Br̃) C
−1
rN−2

[
D(r) +

N − 2

2
H(r)

]
= C

−1
(ωN−1

N

)β
N

r−1+β‖u‖2
∗(α− 2

2∗ )

Lq(Br̃)

[
N (r) +

N − 2

2

](∫
∂Br

|u|2 dS
)

for all r ∈ (0, r̃), where β = N(q−2∗)
q (α − 2

2∗ ) > 0. From (F), (87), and (84), there exists some

const = const (N, q, Cf ) > 0 depending on N, q, Cf such that, for all r ∈ (0, r̃),

(88)

∣∣∣∣∣r
∫
∂Br

(
2F (x, u(x))− f(x, u(x))u(x)

)
dx∫

∂Br
|u|2 dS

∣∣∣∣∣ 6 const r

(
1 +

∫
∂Br
|u|2∗ dS∫

∂Br
|u|2 dS

)

6 const r

[
N (r) +

N

2

]
+

const

C

(ωN−1

N

)β
N ‖u‖2

∗(α− 2
2∗ )

Lq(Br̃)

[
N (r) +

N − 2

2

]
rβ
∫
∂Br
|u|2∗ dS( ∫

Br
|u(x)|2∗ dx

)α .
By a direct calculation, we have that

(89)
rβ
∫
∂Br
|u|2∗dS( ∫

Br
|u(x)|2∗dx

)α =
1

1− α

[
d

dr

(
rβ
(∫

Br

|u(x)|2
∗
dx

)1−α)
−β r−1+β

(∫
Br

|u(x)|2
∗
dx

)1−α]
in the distributional sense and for a.e. r ∈ (0, r̃). Since

lim
r→0+

rβ
(∫

Br

|u(x)|2
∗
dx

)1−α
= 0

we deduce that the function

r 7→ d

dr

(
rβ
(∫

Br

|u(x)|2
∗
dx

)1−α)
is integrable over (0, r̃). Being

r−1+β

(∫
Br

|u(x)|2
∗
dx

)1−α
= o(r−1+β)

as r → 0+, we have that also the function

r 7→ r−1+β

(∫
Br

|u(x)|2
∗
dx

)1−α
is integrable over (0, r̃). Therefore, by (89), we deduce that

(90) g(r) :=
rβ
∫
∂Br
|u|2∗dS( ∫

Br
|u(x)|2∗dx

)α ∈ L1(0, r̃)
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and

(91) 0 6
∫ r

0

g(s) ds 6
‖u‖2

∗(1−α)

L2∗ (Ω)

1− α
rβ

for all r ∈ (0, r̃). Collecting (85), (86), (88), (90), and (91), we obtain the stated estimate. �

Lemma 5.7. Under the same assumptions as in Lemma 5.4, let r̃ be as in Lemma 5.5 and N as
in (78). Then there exist a positive constant C2 > 0 depending on N , q, Cf , Ch, C, r̃, ‖u‖Lq(Br̃),
N (r̃), ε such that

(92) N (r) 6 C2

for all r ∈ (0, r̃).

Proof. By Lemma 5.4, Schwarz’s inequality, and Lemma 5.6, we obtain

(93)

(
N +

N

2

)′
(r) > ν2(r) > −C1

[
N (r) +

N

2

](
r−1+ε + r−1+

2(q−2∗)
q + g(r)

)
for a.e. r ∈ (0, r̃). After integration over (r, r̃) it follows that

N (r) 6 −N
2

+

(
N (r̃) +

N

2

)
exp

(
C1

(
r̃ε

ε
+

q

2(q − 2∗)
r̃

2(q−2∗)
q +

∫ r̃

0

g(s) ds

))
for any r ∈ (0, r̃), thus proving estimate (92). �

Lemma 5.8. Under the same assumptions as in Lemma 5.4, the limit

γ := lim
r→0+

N (r)

exists and is finite.

Proof. By Lemmas 5.6 and 5.7, the function ν2 defined in (81) belongs to L1(0, r̃). Hence, by
Lemma 5.4 and Schwarz’s inequality, N ′ is the sum of a nonnegative function and of a L1-function
on (0, r̃). Therefore

N (r) = N (r̃)−
∫ r̃

r

N ′(s) ds

admits a limit as r → 0+ which is necessarily finite in view of (84) and (92). �

A first consequence of the above analysis on the Almgren’s frequency function is the following
estimate of H(r).

Lemma 5.9. Under the same assumptions as in Lemma 5.4, let γ := limr→0+ N (r) be as in
Lemma 5.8 and r̃ as in Lemma 5.5. Then there exists a constant K1 > 0 such that

(94) H(r) 6 K1r
2γ for all r ∈ (0, r̃).

On the other hand for any σ > 0 there exists a constant K2(σ) > 0 depending on σ such that

(95) H(r) > K2(σ) r2γ+σ for all r ∈ (0, r̃).
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Proof. By Lemma 5.8, N ′ ∈ L1(0, r̃) and, by Lemma 5.7, N is bounded, then from (93) and
(91) it follows that

(96) N (r)− γ =

∫ r

0

N ′(s) ds > −C3r
δ

for some constant C3 > 0 and all r ∈ (0, r̃), where

(97) δ = min

{
ε,
N(q − 2∗)

q

(
α− 2

2∗

)
,

2(q − 2∗)

q

}
with α as in Lemma 5.6.

Therefore by (82) and (96) we deduce that, for r ∈ (0, r̃),

H ′(r)

H(r)
=

2N (r)

r
>

2γ

r
− 2C3r

−1+δ,

which, after integration over the interval (r, r̃), yields (94).
Let us prove (95). Since γ = limr→0+ N (r), for any σ > 0 there exists rσ > 0 such that

N (r) < γ + σ/2 for any r ∈ (0, rσ) and hence

H ′(r)

H(r)
=

2N (r)

r
<

2γ + σ

r
for all r ∈ (0, rσ).

Integrating over the interval (r, rσ) and by continuity of H outside 0, we obtain (95) for some
constant K2(σ) depending on σ. �

6. The blow-up argument

Throughout this section we let u be a weak H1(Ω)-solution to equation (13) in a bounded
domain Ω ⊂ RN containing the origin with a satisfying (7), (12), h satisfying (H), and f satisfying
(F). Let H and D be the functions defined in (71) and (74) and r̃ be as in Lemma 5.5.

Lemma 6.1. For λ ∈ (0, r̃), let

(98) wλ(x) =
u(λx)√
H(λ)

.

Then there exists r̄ ∈ (0, r̃) depending on N , k, a, h, f , ε, and ‖u‖Lq(Br̃) such that the set

{wλ}λ∈(0,r̄) is bounded in H1(B1).

Proof. From (72) it follows that
∫
∂B1
|wλ|2dS = 1. Moreover, by scaling and (92),

(99)

∫
B1

|∇wλ(x)|2dx−
∫
B1

a( x
|x| )

|x|2
|wλ(x)|2 dx− λ2

∫
B1

h(λx)|wλ(x)|2 dx

− λ2√
H(λ)

∫
B1

f(λx,
√
H(λ)wλ(x))wλ(x) dx = N (λ) 6 C2
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for every λ ∈ (0, r̃). By (39) applied to wλ we have that

(100)

∫
B1

|∇wλ(x)|2 dx−
∫
B1

a( x
|x| )

|x|2
|wλ(x)|2 dx+ Λ(a)

N − 2

2

∫
∂B1

|wλ|2 dS

> (1− Λ(a))

∫
B1

|∇wλ(x)|2 dx.

Moreover by Corollary 2.7 we have∣∣∣∣λ2

∫
B1

h(λx)|wλ(x)|2 dx
∣∣∣∣ 6 Chλε( ∑

J∈Ak

∫
B1

|wλ(x)|2

|xJ |2
dx+

∑
(J1,J2)∈Bk

∫
B1

|wλ(x)|2

|xJ1 − xJ2 |2
dx

)
(101)

6 Chλ
ε

(
N

k

)(
1 +

(
N − k
k

))[(
2

k − 2

)2 ∫
B1

|∇wλ(x)|2 dx+
2(N − 2)

(k − 2)2

∫
∂B1

|wλ|2 dS

]
.

From (F), Hölder’s inequality, Lemma 2.9, and Lemma 2.6,

λ2√
H(λ)

∣∣∣∣ ∫
B1

f(λx,
√
H(λ)wλ(x))wλ(x) dx

∣∣∣∣(102)

6 Cfλ
2

∫
B1

|wλ(x)|2 dx+ Cfλ
2(H(λ))

2∗
2 −1

∫
B1

|wλ(x)|2
∗
dx

6 Cf

((ωN−1

N

) 2
N λ2 + λ2(H(λ))

2∗
2 −1

(∫
B1

|wλ(x)|2
∗
dx

)2/N)(∫
B1

|wλ(x)|2
∗
dx

)2/2∗
6 Cf S̃

−1
N

((ωN−1

N

) 2
N λ2 +

(∫
Bλ

|u(x)|2
∗
dx

)2/N)(∫
B1

(
|∇wλ(x)|2 +

|wλ(x)|2

|x|2

)
dx

)
6
Cf

S̃N

((ωN−1

N

) 2
N λ2 + ‖u‖2

∗−2
Lq(Br̃)

(ωN−1

N

) 2(q−2∗)
qN λ

2(q−2∗)
q

)(∫
B1

(
|∇wλ(x)|2 +

|wλ(x)|2

|x|2

)
dx

)
6
Cf ((N − 2)2 + 4)

S̃N (N − 2)2

((ωN−1

N

) 2
N λ2 + ‖u‖2

∗−2
Lq(Br̃)

(ωN−1

N

) 2(q−2∗)
qN λ

2(q−2∗)
q

)(∫
B1

|∇wλ(x)|2 dx
)

+
2Cf

S̃N (N − 2)

((ωN−1

N

) 2
N λ2 + ‖u‖2

∗−2
Lq(Br̃)

(ωN−1

N

) 2(q−2∗)
qN λ

2(q−2∗)
q

)
.

From (99–102), we deduce that[
1− Λ(a)− Chλε

(
N

k

)(
1 +

(
N − k
k

))(
2

k − 2

)2

− Cf ((N − 2)2 + 4)

S̃N (N − 2)2

((ωN−1

N

) 2
N λ2 + ‖u‖2

∗−2
Lq(Br̃)

(ωN−1

N

) 2(q−2∗)
qN λ

2(q−2∗)
q

)]∫
B1

|∇wλ(x)|2 dx

6 C2 + Λ(a)
N − 2

2
+ Chλ

ε

(
N

k

)(
1 +

(
N − k
k

))
2(N − 2)

(k − 2)2

+
2Cf

S̃N (N − 2)

((ωN−1

N

) 2
N λ2 + ‖u‖2

∗−2
Lq(Br̃)

(ωN−1

N

) 2(q−2∗)
qN λ

2(q−2∗)
q

)
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for every λ ∈ (0, r̃), which implies that {wλ}λ∈(0,r̄) is bounded in H1(B1) if r̄ is chosen sufficiently
small. �

In the next lemma we prove a doubling type result.

Lemma 6.2. There exists C4 > 0 such that

(103)
1

C4
H(λ) 6 H(Rλ) 6 C4H(λ) for any λ ∈ (0, r̃/2) and R ∈ [1, 2] ,

(104)

∫
BR

|∇wλ(x)|2dx 6 2N−2C4

∫
B1

|∇wRλ(x)|2dx for any λ ∈ (0, r̃/2) and R ∈ [1, 2] ,

and

(105)

∫
BR

|wλ(x)|2dx 6 2NC4

∫
B1

|wRλ(x)|2dx for any λ ∈ (0, r̃/2) and R ∈ [1, 2] ,

where wλ is defined in (98).

Proof. By (84), (92), and (82), it follows that

−N − 2

r
6
H ′(r)

H(r)
=

2N (r)

r
6

2C2

r
for any r ∈ (0, r̃).

Let R ∈ (1, 2]. For any λ < r̃/R, integration over (λ,Rλ) and the fact that R 6 2 yield

22−NH(λ) 6 H(Rλ) 6 4C2H(λ) for any λ ∈ (0, r̃/R).

Since the above chain of inequalities trivially holds also for R = 1, the proof of (103) is complete
with C4 = max{4C2 , 2N−2}. By scaling and (103), we obtain that, for any λ ∈ (0, r̃/2) and
R ∈ [1, 2],∫

BR

|∇wλ(x)|2dx =
λ2−N

H(λ)

∫
BRλ

|∇u(x)|2dx

= RN−2H(Rλ)

H(λ)

∫
B1

|∇wRλ(x)|2dx 6 RN−2C4

∫
B1

|∇wRλ(x)|2dx,

thus providing (104). In a similar way, (105) follows from (103) by scaling. �

Lemma 6.3. For every λ ∈ (0, r̃), let wλ as in (98). Then there exist M > 0 and λ0 > 0 such
that for any λ ∈ (0, λ0) there exists Rλ ∈ [1, 2] such that∫

∂BRλ

|∇wλ|2dS 6M
∫
BRλ

|∇wλ(x)|2dx.

Proof. We recall that, by Lemma 6.1, the set {wλ}λ∈(0,r̄) is bounded in H1(B1). Moreover by

Lemma 6.2, we have that the set {wλ}λ∈(0,r̄/2) is bounded in H1(B2) and hence

(106) lim sup
λ→0+

∫
B2

|∇wλ(x)|2dx < +∞.

Let us denote, for every λ ∈ (0, r̄/2),

fλ(r) =

∫
Br

|∇wλ(x)|2 dx.
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The function fλ is absolutely continuous in [0, 2] and its distributional derivative is given by

f ′λ(r) =

∫
∂Br

|∇wλ|2dS for a.e. r ∈ (0, 2).

Suppose by contradiction that for any M > 0 there exists a sequence λn → 0+ such that

(107)

∫
∂Br

|∇wλn |2dS > M

∫
Br

|∇wλn(x)|2dx for all r ∈ [1, 2] ,

which may be rewritten as

(108) f ′λn(r) > Mfλn(r) for a.e. r ∈ [1, 2] and for any n ∈ N.

Integrating (108) over [1, 2] we obtain

fλn(2) > eMfλn(1) for any n ∈ N.

Letting n→ +∞ we obtain

lim sup
n→+∞

fλn(1) 6 e−M · lim sup
n→+∞

fλn(2).

This implies

lim inf
λ→0+

fλ(1) 6 e−M · lim sup
λ→0+

fλ(2) for any M > 0.

Using (106) and letting M → +∞ we infer

lim inf
λ→0+

∫
B1

|∇wλ(x)|2dx = lim inf
λ→0+

fλ(1) = 0.

Therefore, there exists a sequence λ̃n → 0 such that

(109) lim
n→+∞

∫
B1

|∇wλ̃n(x)|2dx = 0

and, up to a subsequence still denoted by λ̃n, we may suppose that wλ̃n ⇀ w in H1(B1) for some
w ∈ H1(B1). Notice that, for any λ ∈ (0, r̃),

∫
∂B1
|wλ|2dS = 1 and hence by compactness of the

trace map from H1(B1) into L2(∂B1), it follows that
∫
∂B1
|w|2dS = 1. Moreover, by weak lower

semicontinuity and (109), we also have∫
B1

|∇w(x)|2dx 6 lim
n→+∞

∫
B1

|∇wλ̃n(x)|2dx = 0

from which it follows that w ≡ const in B1. On the other hand, for every λ ∈ (0, r̃),

(110) −∆wλ(x)−
a( x
|x| )

|x|2
wλ(x) = λ2h(λx)wλ(x) +

λ2√
H(λ)

f(λx,
√
H(λ)wλ(x)) in Br̃/λ.
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For every φ ∈ H1
0 (B1), by (F) and Hölder’s inequality,

(111)
λ2√
H(λ)

∣∣∣∣∫
B1

f(λx,
√
H(λ)wλ(x))φ(x) dx

∣∣∣∣
6 Cfλ

2

∫
B1

|wλ(x)||φ(x)| dx+ Cfλ
2

∫
B1

|u(λx)|2
∗−2|wλ(x)||φ(x)| dx

6 Cfλ
2‖wλ‖H1(B1)‖φ‖H1(B1) + Cf

(ωN−1

N

) 2(q−2∗)
qN λ

2(q−2∗)
q ‖wλ‖L2∗ (B1)‖φ‖L2∗ (B1)‖u‖2

∗−2
Lq(Bλ)

= o(1) as λ→ 0+

and, by (H) and Corollary 2.7,

(112) λ2

∣∣∣∣∫
B1

h(λx)wλ(x)φ(x) dx

∣∣∣∣
6 Chλ

ε

(
N

k

)(
1 +

(
N − k
k

))(
2

k − 2

)2(∫
B1

|∇wλ(x)|2 dx+
N − 2

2

)1/2(∫
B1

|∇φ(x)|2 dx
)1/2

= o(1) as λ→ 0+.

From (111), (112), and weak convergence wλ̃n ⇀ w in H1(B1), we can pass to the limit in (110)

along the sequence λ̃n and obtain that w is a H1(B1)-weak solution to the equation

−∆w(x)−
a( x
|x| )

|x|2
w(x) = 0 in B1.

Since w is constant in B1, this implies w ≡ 0 in B1 which contradicts
∫
∂B1
|w|2dS = 1. �

Lemma 6.4. Let wλ and Rλ be as in the statement of Lemma 6.3. Then there exists M > 0 such
that ∫

∂B1

|∇wλRλ |2dS 6M for any 0 < λ < min
{
λ0,

r̄

2

}
.

Proof. We have∫
∂B1

|∇wλRλ |2dS =
(λRλ)2

H(λRλ)

∫
∂B1

|∇u(λRλx)|2dS(x) =
λ2R3−N

λ

H(λRλ)

∫
∂BRλ

|∇u(λx)|2dS(x)

=
R3−N
λ H(λ)

H(λRλ)

λ2

H(λ)

∫
∂BRλ

|∇u(λx)|2dS(x) =
R3−N
λ H(λ)

H(λRλ)

∫
∂BRλ

|∇wλ|2dS

and, by (103–104), Lemma 6.3, Lemma 6.1, and the fact that 1 6 Rλ 6 2, we finally obtain∫
∂B1

|∇wλRλ |2dS 6 C4M

∫
BRλ

|∇wλ(x)|2dx 6 2N−2C2
4M

∫
B1

|∇wλRλ(x)|2dx 6M < +∞

for any 0 < λ < min
{
λ0,

r̄
2

}
, thus completing the proof. �
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Lemma 6.5. Let u be a weak H1(Ω)-solution to (13), u 6≡ 0, in a bounded open set Ω ⊂ RN ,
N > 3, with a satisfying (7) and (12), h satisfying (H), and f satisfying (F). Let γ be as in
Lemma 5.8. Then

(i) there exists k0 ∈ N such that γ = −N−2
2 +

√(
N−2

2

)2
+ µk0(a);

(ii) for every sequence λn → 0+, there exist a subsequence {λnk}k∈N and an eigenfunction ψ of
the operator −∆SN−1 − a(θ) associated to the eigenvalue µk0(a) such that ‖ψ‖L2(SN−1) = 1
and

u(λnkx)√
H(λnk)

→ |x|γψ
( x
|x|

)
strongly in H1(B1).

Proof. Let λn → 0+ and consider the sequence wλnRλn as in (98) and Rλ as in Lemma 6.3. By
Lemmas 6.1 and 6.2, we have that the set {wλRλ}λ∈(0,r̄/4) is bounded in H1(B2). Then there exists

a subsequence wλnkRλnk such that wλnkRλnk ⇀ w in H1(B2) for some function w ∈ H1(B2). Due
to compactness of the trace map from H1(B1) into L2(∂B1), we obtain that

∫
∂B1
|w|2dS = 1. In

particular w 6≡ 0. Furthermore, weak convergence and (111–112) allow passing to the weak limit
in the equation

(113) −∆wλnkRλnk (x)−
a( x
|x| )

|x|2
wλnkRλnk (x) = λ2

nk
R2
λnk

h(λnkRλnkx)wλnkRλnk (x)

+
λ2
nk
R2
λnk√

H(λnkRλnk )
f
(
λnkRλnkx,

√
H(λnkRλnk )wλnkRλnk (x)

)
which holds in a weak sense in Br̃/(λnkRλnk ) ⊃ B2 thus yielding

(114) −∆w(x)−
a( x
|x| )

|x|2
w(x) = 0 in B2.

From Lemma 6.4 and density in H1(B1) of C∞(B1)-functions whose support is compactly included

in B1 \ Σ̃ with Σ̃ defined in (5), it follows that, for all φ ∈ H1(B1),∫
B1

(
∇wλnkRλnk (x) · ∇φ(x)−

a( x
|x| )

|x|2
wλnkRλnk (x)φ(x)

)
dx(115)

= λ2
nk
R2
λnk

∫
B1

h(λnkRλnkx)wλnkRλnk (x)φ(x) dx+

∫
∂B1

∂wλnkRλnk

∂ν
φ dS

+
λ2
nk
R2
λnk√

H(λnkRλnk )

∫
B1

f
(
λnkRλnkx,

√
H(λnkRλnk )wλnkRλnk (x)

)
φ(x) dx.

We notice that from (84) it follows that γ > −N−2
2 . Then, by (F) and (94),

λ2√
H(λ)

∣∣∣∣∣f
(
λx,

√
H(λ)wλ(x)

)
wλ(x)

∣∣∣∣∣ 6 Cf λ2√
H(λ)

(√
H(λ) + (H(λ))

2∗−1
2 |wλ(x)|2

∗−2
)
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for all λ ∈ (0, r̃). Hence, if s = q
2∗−2 > N/2 with q as in (70), from (98) and Proposition 4.1, we

obtain that∥∥∥∥∥ λ2√
H(λ)

f
(
λx,

√
H(λ)wλ(x)

)
wλ(x)

∥∥∥∥∥
Ls(B2)

6 const

(
1 + λ2(H(λ))

2∗−2
2

(∫
B2

|wλ(x)|(2
∗−2)sdx

)1/s)

= const

(
1 + λ2−Ns

(∫
B2λ

|u(x)|qdx
)1/s)

= O(1)

as λ → 0+. Therefore from classical Brezis-Kato [8] estimates (see also Theorem 8.6 part i)),
classical bootstrap and elliptic regularity theory, there holds

wλnkRλnk → w in C1,τ
loc (B2 \ Σ̃),

for any τ ∈ (0, 1), which in particular yields

(116)
∂wλnkRλnk

∂ν
→ ∂w

∂ν
in C0,τ

loc (∂B1 \ Σ) and a.e. in ∂B1.

From (116) and Lemma 6.4, it follows that

(117)
∂wλnkRλnk

∂ν
⇀

∂w

∂ν
weakly in L2(∂B1).

Passing to limit in (115) and using (117) and (111–112), we obtain that∫
B1

(
∇w(x) · ∇φ(x)−

a( x
|x| )

|x|2
w(x)φ(x)

)
dx =

∫
∂B1

∂w

∂ν
φ dS.(118)

Subtracting (118) from (115), choosing φ = wλnkRλnk − w, and arguing as in (111–112) and
Corollary 2.8, we obtain that

wλnkRλnk → w in H1(B1).(119)

For every k ∈ N and r ∈ (0, 1), let us define

Dk(r)

=
1

rN−2

∫
Br

[ ∣∣∣∇wλnkRλnk (x)
∣∣∣2 − a( x

|x| )

|x|2
|wλnkRλnk (x)|2 − λ2

nk
R2
λnk

h(λnkRλnkx)|wλnkRλnk (x)|2

−
λ2
nk
R2
λnk√

H(λnkRλnk )
f
(
λnkRλnkx,

√
H(λnkRλnk )wλnkRλnk (x)

)
wλnkRλnk (x)

]
dx

and

Hk(r) =
1

rN−1

∫
∂Br

|wλnkRλnk |2 dS.

We also define

(120) Dw(r) =
1

rN−2

∫
Br

[
|∇w(x)|2 −

a( x
|x| )

|x|2
|w(x)|2

]
dx for all r ∈ (0, 1)
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and

(121) Hw(r) =
1

rN−1

∫
∂Br

|w|2 dS for all r ∈ (0, 1).

Using a change of variables, one sees that

(122) Nk(r) :=
Dk(r)

Hk(r)
=
D(λnkRλnk r)

H(λnkRλnk r)
= N (λnkRλnk r) for all r ∈ (0, 1).

From (101), (102), and (119), it follows that, for any fixed r ∈ (0, 1),

(123) Dk(r)→ Dw(r).

On the other hand, by compactness of the trace embedding H1(Br) ↪→ L2(∂Br), we also have, for
any fixed r ∈ (0, 1),

(124) Hk(r)→ Hw(r).

From Lemma 2.6 and classical unique continuation principle for second order elliptic equations

with locally bounded coefficients (see e.g. [44]) applied away from the singular set Σ̃, it follows
that Dw(r) > −N−2

2 Hw(r) for all r ∈ (0, 1). Therefore, if for some r ∈ (0, 1), Hw(r) = 0 then
Dw(r) > 0; passing to the limit in (122) and using (123)-(124) this should give a contradiction
with Lemma 5.8. Hence Hw(r) > 0 for all r ∈ (0, 1). Thus the function

Nw(r) :=
Dw(r)

Hw(r)

is well defined for r ∈ (0, 1). This, together with (122), (123), (124), and Lemma 5.8, shows that

(125) Nw(r) = lim
k→∞

N (λnkRλnk r) = γ

for all r ∈ (0, 1). Therefore Nw is constant in (0, 1) and hence N ′w(r) = 0 for any r ∈ (0, 1). Hence,
by (114) and Lemma 5.4 with h ≡ 0, f ≡ 0, we obtain(∫

∂Br

∣∣∣∣∂w∂ν
∣∣∣∣2 dS

)
·
(∫

∂Br

|w|2dS
)
−
(∫

∂Br

w
∂w

∂ν
dS

)2
= 0 for a.e. r ∈ (0, 1).

This shows that w and ∂w
∂ν have the same direction as vectors in L2(∂Br) and hence there exists

η = η(r) such that

(126)
∂w

∂ν
(r, θ) = η(r)w(r, θ) for a.e. r ∈ (0, 1), θ ∈ SN−1.

Testing the above identity with w(r, θ), we have that necessarily η(r) =
H′w(r)
2Hw(r) implying that

η ∈ L1
loc(0, 1). Moreover, since w ∈ C1

loc(B2 \ Σ̃), identity (126) also holds, for all θ ∈ SN−1 \Σ, in
the sense of absolutely continuous functions with respect to r and, after integration, we obtain

(127) w(r, θ) = e
∫ r
1
η(s)dsw(1, θ) = ϕ(r)ψ(θ) for all r ∈ (0, 1), θ ∈ SN−1 \ Σ,

where ϕ(r) = e
∫ r
1
η(s)ds and ψ(θ) = w(1, θ). Since

−∆w −
a( x
|x| )

|x|2
w = −∂

2w

∂r2
− N − 1

r

∂w

∂r
+

1

r2
Law,
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then (127) yields (
−ϕ′′(r)− N − 1

r
ϕ′(r)

)
ψ(θ) +

ϕ(r)

r2
Laψ(θ) = 0.

Taking r fixed we deduce that ψ is an eigenfunction of the operator La. If µk0(a) is the corre-
sponding eigenvalue then ϕ(r) solves the equation

−ϕ′′(r)− N − 1

r
ϕ(r) +

µk0(a)

r2
ϕ(r) = 0

and hence ϕ(r) is of the form

ϕ(r) = c1r
σ+
k0 + c2r

σ−k0

for some c1, c2 ∈ R, where

σ+
k0

= −N − 2

2
+

√(
N − 2

2

)2
+ µk0(a) and σ−k0 = −N − 2

2
−

√(
N − 2

2

)2
+ µk0(a).

Since the function 1
|xJ |
(
|x|σ

−
k0ψ( x

|x| )
)
/∈ L2(B1) for any J ∈ Ak and hence |x|σ

−
k0ψ( x

|x| ) /∈ H
1(B1),

then c2 = 0 and ϕ(r) = c1r
σ+
k0 . Since ϕ(1) = 1, we obtain that c1 = 1 and then

(128) w(r, θ) = rσ
+
k0ψ(θ), for all r ∈ (0, 1) and θ ∈ SN−1 \ Σ.

Consider now the sequence wλnk . Up to a further subsequence still denoted by wλnk , we may
suppose that wλnk ⇀ w for some w ∈ H1(B1) and that Rλnk → R for some R ∈ [1, 2].

Strong convergence of wλnkRλnk in H1(B1) implies that, up to a subsequence, both wλnkRλnk

and |∇wλnkRλnk | are dominated by a L2(B1)-function uniformly with respect to k. Moreover by
(103), up to a subsequence we may assume that the limit

l := lim
k→+∞

H(λnkRλnk )

H(λnk)

exists and is finite. Then, by the Dominated Convergence Theorem, we have

lim
k→+∞

∫
B1

wλnk (x)v(x) dx = lim
k→+∞

RNλnk

∫
B1/Rλnk

wλnk (Rλnkx)v(Rλnkx) dx

= lim
k→+∞

RNλnk

√
H(λnkRλnk )

H(λnk)

∫
B1

χB1/Rλnk

(x)wλnkRλnk (x)v(Rλnkx) dx

= R
N√

l

∫
B1

χB1/R
(x)w(x)v(Rx) dx = R

N√
l

∫
B1/R

w(x)v(Rx) dx =
√
l

∫
B1

w(x/R)v(x) dx

for any v ∈ C∞(RN ) with supp v ⊂ B1. By a density argument, it follows that the previous

convergence also holds for all v ∈ L2(B1). This proves that wλnk ⇀
√
l w(·/R) in L2(B1) (actually
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weakly in H1(B1)) and in particular w =
√
l w(·/R). Moreover

lim
k→+∞

∫
B1

|∇wλnk (x)|2 dx = lim
k→+∞

RNλnk

∫
B1/Rλnk

|∇wλnk (Rλnkx)|2dx

= lim
k→+∞

RN−2
λnk

H(λnkRλnk )

H(λnk)

∫
B1

χB1/Rλnk

|∇wλnkRλnk (x)|2 dx

= R
N−2

l

∫
B1

χB1/R
(x)|∇w(x)|2 dx = R

N−2
l

∫
B1/R

|∇w(x)|2 dx =

∫
B1

|
√
l∇(w(x/R))|2 dx.

This shows that wλnk → w =
√
l w(·/R) strongly in H1(B1). Furthermore, by (128) and the fact

that
∫
∂B1
|w|2dS =

∫
∂B1
|w|2dS = 1, we deduce that w = w.

It remains to prove part (i). By (128) and
∫
SN−1 |ψ(θ)|2dS = 1 we have that∫

Br

(
|∇w(x)|2 −

a( x
|x| )

|x|2
|w(x)|2

)
dx = (σ+

k0
)2

∫ r

0

sN−1+2(σ+
k0
−1) ds

+

(∫ r

0

sN−1+2(σ+
k0
−1) ds

)(∫
SN−1

(
|∇SN−1ψ(θ)|2 − a(θ)|ψ(θ)|2

)
dS

)
=

(σ+
k0

)2 + µk0(a)

N + 2(σ+
k0
− 1)

rN+2(σ+
k0
−1) = σ+

k0
rN+2(σ+

k0
−1)

and∫
∂Br

|w(x)|2dS = rN−1

∫
SN−1

|w(rθ)|2dS = rN−1+2σ+
k0

∫
SN−1

|ψ(θ)|2dS = rN−1+2σ+
k0 .

Therefore, by (120), (121), and (125), it follows

γ = Nw(r) =
Dw(r)

Hw(r)
=
r
∫
Br

(
|∇w(x)|2 − a(x/|x|)

|x|2 |w(x)|2
)
dx∫

∂Br
|w|2dS

= σ+
k0
.

This completes the proof of the lemma. �

Let us now describe the behavior of H(r) as r → 0+.

Lemma 6.6. Under the same assumptions as in Lemma 5.4 and letting γ := limr→0+ N (r) ∈ R
as in Lemma 5.8, the limit

lim
r→0+

r−2γH(r)

exists and it is finite.

Proof. In view of (94) it is sufficient to prove that the limit exists. By (71), (82), and Lemma 5.8
we have

d

dr

H(r)

r2γ
= −2γr−2γ−1H(r) + r−2γH ′(r) = 2r−2γ−1(D(r)− γH(r)) = 2r−2γ−1H(r)

∫ r

0

N ′(s)ds.

Let ν1 and ν2 be as in (80) and (81). After integration over (r, r̃),

(129)
H(r̃)

r̃2γ
− H(r)

r2γ
=

∫ r̃

r

2s−2γ−1H(s)

(∫ s

0

ν1(t)dt

)
ds+

∫ r̃

r

2s−2γ−1H(s)

(∫ s

0

ν2(t)dt

)
ds.
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By Schwarz’s inequality we have that ν1(t) > 0 and hence

lim
r→0+

∫ r̃

r

2s−2γ−1H(s)

(∫ s

0

ν1(t)dt

)
ds

exists. On the other hand, by (94), Lemma 5.6, and (92), we deduce that∣∣∣∣s−2γ−1H(s)

(∫ s

0

ν2(t)dt

)∣∣∣∣ 6 K1C1

(
C2 +

N

2

)
s−1

∫ s

0

(
t−1+ε + t−1+

2(q−2∗)
q + g(t)

)
dt

6 K1C1

(
C2 +

N

2

)
s−1

(
sε

ε
+

q

2(q − 2∗)
s

2(q−2∗)
q +

‖u‖2
∗(1−α)

L2∗ (Ω)

1− α
s
N(q−2∗)

q (α− 2
2∗ )

)
for all s ∈ (0, r̃), which proves that s−2γ−1H(s)

(∫ s
0
ν2(t)dt

)
∈ L1(0, r̃). We may conclude that

both terms in the right hand side of (129) admit a limit as r → 0+ thus completing the proof of
the lemma. �

The next step of our asymptotic analysis relies on the proof that limr→0+ r−2γH(r) is indeed
strictly positive. In the sequel we denote by ψi a L2-normalized eigenfunction of the operator
La = −∆SN−1 − a associated to the i-th eigenvalue µi(a), i.e.

(130)

{
Laψi(θ) = µi(a)ψi(θ), in SN−1,∫
SN−1 |ψi(θ)|2 dS(θ) = 1.

Moreover, we choose the ψi’s in such a way that the set {ψi}i∈N forms an orthonormal basis of
L2(SN−1).

Let u be a nontrivial weak H1(Ω)-solution to (13). From Lemma 6.5, we deduce that, under
assumptions (7), (12), and (H–F), there exist j0,m ∈ N, j0,m > 1 such that m is the multiplicity
of the eigenvalue µj0(a) = µj0+1(a) = · · · = µj0+m−1(a) and

(131) γ = lim
r→0+

N (r) = −N − 2

2
+

√(
N − 2

2

)2
+ µi(a), i = j0, . . . , j0 +m− 1.

Let E0 be the eigenspace of the operator La associated to the eigenvalue µj0(a), so that the set
{ψi}i=j0,...,j0+m−1 is an orthonormal basis of E0.

Lemma 6.7. Let Ω ⊂ RN , N > 3, be a bounded open set such that 0 ∈ Ω, a such that (7) and
(12) hold, and h, f as in (H–F). If u is a weak H1(Ω)-solution to (13), then

sup
i=j0,...,j0+m−1, J∈Ak,

(J1,J2)∈Bk, λ∈(0,r̄)

∫
Bλ

(
|u(x)|
|xJ |2−ε

+
|u(x)|

|xJ1 − xJ2 |2−ε
+ |f(x, u(x))|

)∣∣ψi( x
|x| )
∣∣ dx

λN−2+δ+γ
< +∞,

where r̄ is as in Lemma 6.1 and δ > 0 is defined in (97).

Proof. From Lemma 6.1 and Corollary 2.7, it follows that, for some positive constant C5

independent of λ, J , (J1, J2), and i,∫
B1

(
|xJ |−2+ε + |xJ1 − xJ2 |−2+ε

)
|wλ(x)|

∣∣ψi( x|x|)∣∣ dx 6 C5
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for all i = j0, . . . , j0 + m − 1, J ∈ Ak, (J1, J2) ∈ Bk, and λ ∈ (0, r̄), where wλ is defined in (98).
Moreover, arguing as in (111), by (97), we have as λ→ 0+

λ2√
H(λ)

∫
B1

|f(λx, u(λx))|
∣∣ψi( x|x|)∣∣ dx 6 C6λ

2(q−2∗)
q = O(λδ)

where C6 > 0 is a positive constant. The conclusion follows from (94) and a change of variable. �

Lemma 6.8. Let Ω ⊂ RN , N > 3, be a bounded open set such that 0 ∈ Ω, a satisfy (7) and (12),
and u 6≡ 0 be a weak H1(Ω)-solution to (13), with h, f satisfying (H–F). Let γ := limr→0+ N (r)
be as in Lemma 5.8 and j0,m ∈ N as in (131), i.e. m is the multiplicity of the eigenvalue
µj0(a) = µj0+1(a) = · · · = µj0+m−1(a) and (131) holds for all i = j0, . . . , j0 + m − 1. Then the
function ϕi defined as

(132) ϕi(λ) :=

∫
SN−1

u(λ θ)ψi(θ) dS(θ), with ψi as in (130),

satisfies, as λ→ 0+ ,

(133) ϕi(λ) = λγ
(
R−γϕi(R) +

2−N − γ
2−N − 2γ

∫ R

λ

s−N+1−γΥi(s)ds

− γR−N+2−2γ

2−N − 2γ

∫ R

0

sγ−1Υi(s) ds

)
+O(λγ+δ)

for every i ∈ {j0, . . . , j0 +m− 1} and R > 0 such that BR ⊂ Ω, where δ is defined in (97) and

(134) Υi(λ) :=

∫
Bλ

(
h(x)u(x) + f(x, u(x))

)
ψi

(
x

|x|

)
dx.

Proof. Let R > 0 be such that BR ⊂ Ω. For any λ ∈ (0, R), we expand θ 7→ u(λθ) ∈ L2(SN−1)
in Fourier series with respect to the orthonormal basis {ψi} of L2(SN−1) defined in (130), i.e.

(135) u(λ θ) =

∞∑
i=1

ϕi(λ)ψi(θ) in L2(SN−1),

with ϕi is defined in (132). On the other hand,
∫
BR

(|xJ |−2+ε+ |xJ1 −xJ2 |−2+ε)u2(x) dx < +∞ for

all J ∈ Ak and (J1, J2) ∈ Bk by Corollary 2.7, hence
∫
SN−1(|θJ |−2+ε + |θJ1 − θJ2 |−2+ε)u2(λθ)dS(θ)

is finite for all J ∈ Ak, (J1, J2) ∈ Bk, and a.e. λ ∈ (0, R), which, together with Lemma 2.1, implies
that θ 7→ h(λθ)u(λθ) ∈ H−1(SN−1) for a.e. λ ∈ (0, R). Moreover, by (F), it is also easy to verify
that θ 7→ f(λθ, u(λθ)) ∈ H−1(SN−1) for a.e. λ ∈ (0, R). Therefore, we may write

(136) h(λ θ)u(λ θ) + f(λ θ, u(λ θ)) =

∞∑
i=1

ζi(λ)ψi(θ) in H−1(SN−1) for a.e. λ ∈ (0, R)

where

ζi(λ) = H−1(SN−1)

〈
h(λ·)u(λ·) + f(λ·, u(λ·)), ψi

〉
H1(SN−1)

(137)

=

∫
SN−1

(
h(λ θ)u(λ θ) + f(λ θ, u(λ θ))

)
ψi(θ) dS(θ).
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We notice that, in view of Remark 3.2, ζi ∈ L1
loc(0, R) and

(138) λN−1ζi(λ) = Υ′i(λ) a.e. in (0, R),

where Υi is defined in (134). Since u solves (13), by (130) we obtain that, for any i ∈ N, ϕi solves

−ϕ′′i (λ)− N − 1

λ
ϕ′i(λ) +

µi(a)

λ2
ϕi(λ) = ζi(λ) in the sense of distributions in (0, R),

which can be also written as

−
(
λN−1+2σi

(
λ−σiϕi(λ)

)′)′
= λN−1+σiζi(λ) in the sense of distributions in (0, R),

where

σi = −N − 2

2
+

√(
N − 2

2

)2
+ µi(a).

Integrating by parts the right hand side and taking into account (138), we obtain that there exists
ci ∈ R such that(

λ−σiϕi(λ)
)′

= −λ−N+1−σiΥi(λ)− σiλ−N+1−2σi

(
ci +

∫ R

λ

sσi−1Υi(s)ds

)
in the sense of distributions in (0, R), thus implying that ϕi ∈ W 2,1

loc (0, R). A further integration
yields

ϕi(λ) = λσi
(
R−σiϕi(R) +

∫ R

λ

s−N+1−σiΥi(s)ds

)
(139)

+ σiλ
σi

∫ R

λ

s−N+1−2σi

(
ci +

∫ R

s

tσi−1Υi(t)dt

)
ds

= λσi
(
R−σiϕi(R) +

∫ R

λ

s−N+1−σiΥi(s)ds+
σiciR

−N+2−2σi

2−N − 2σi

)
− σiciλ

−N+2−σi

2−N − 2σi

+
σiλ

σi

2−N − 2σi

∫ R

λ

t−N+1−σiΥi(t) dt−
σiλ
−N+2−σi

2−N − 2σi

∫ R

λ

tσi−1Υi(t) dt

= λσi
(
R−σiϕi(R) +

2−N − σi
2−N − 2σi

∫ R

λ

s−N+1−σiΥi(s)ds+
σiciR

−N+2−2σi

2−N − 2σi

)

+
σiλ
−N+2−σi

N − 2 + 2σi

(
ci +

∫ R

λ

tσi−1Υi(t) dt

)
.

Let j0,m ∈ N be as in (131), i.e. m is the multiplicity of the eigenvalue

µj0(a) = µj0+1(a) = · · · = µj0+m−1(a)

and

(140) γ = lim
r→0+

N (r) = σi, i = j0, . . . , j0 +m− 1,
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see Lemma 6.5. The Parseval identity yields

(141) H(λ) =

∫
SN−1

|u(λ θ)|2 dS(θ) =

∞∑
i=1

|ϕi(λ)|2, for all 0 < λ 6 R.

From Lemma 6.7, it follows that

(142) Υi(λ) = O(λN−2+δ+σi) for every i ∈ {j0, . . . , j0 +m− 1} as λ→ 0+.

From (142), it follows that

(143) s 7→ s−N+1−σiΥi(s) ∈ L1(0, R) for every i ∈ {j0, . . . , j0 +m− 1}

which yields

(144) λσi
(
R−σiϕi(R) +

2−N − σi
2−N − 2σi

∫ R

λ

s−N+1−σiΥi(s)ds+
σiciR

−N+2−2σi

2−N − 2σi

)
= O(λσi) = o(λ−N+2−σi)

for all i ∈ {j0, . . . , j0 +m− 1} as λ→ 0+. From (142), it also follows that

t 7→ tσi−1Υi(t) ∈ L1(0, R) for every i ∈ {j0, . . . , j0 +m− 1}.

From u
|x| ∈ L

2(BR), we deduce that ∫ R

0

rN−3ϕ2
i (r) dr < +∞.

Then, since
∫ R

0
rN−3(r−N+2−σi)2 dr = +∞, from (139) and (144) it follows that

ci +

∫ R

0

tσi−1Υi(t) dt = 0

and hence

ϕi(λ) = λσi
(
R−σiϕi(R) +

2−N − σi
2−N − 2σi

∫ R

λ

s−N+1−σiΥi(s)ds−
σiR

−N+2−2σi

2−N − 2σi

∫ R

0

tσi−1Υi(t) dt

)

− σiλ
−N+2−σi

N − 2 + 2σi

∫ λ

0

tσi−1Υi(t) dt.

On the other hand, from (142) it follows that

λ−N+2−σi
∫ λ

0

tσi−1Υi(t) dt = O(λσi+δ) as λ→ 0+

for all i ∈ {j0, . . . , j0 +m− 1}, thus completing the proof. �

Lemma 6.9. Let Ω ⊂ RN , N > 3, be a bounded open set such that 0 ∈ Ω, a satisfy (7) and (12),
and u 6≡ 0 be a weak H1(Ω)-solution to (13), with h, f satisfying (H–F). Then

lim
r→0+

r−2γH(r) > 0.
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Proof. Let R > 0 be such that BR ⊂ Ω and j0,m ∈ N as in (131). We argue by contradiction
and assume that limλ→0+ λ−2γH(λ) = 0. Then, letting ϕi as in (132), (141) implies that

(145) lim
λ→0+

λ−γϕi(λ) = 0 for all i ∈ {j0, . . . , j0 +m− 1}.

From Lemma 6.8, (143), and (145), we deduce that

R−γϕi(R)− γR−N+2−2γ

2−N − 2γ

∫ R

0

sγ−1Υi(s) ds = − 2−N − γ
2−N − 2γ

∫ R

0

s−N+1−γΥi(s)ds

for all i ∈ {j0, . . . , j0 +m− 1}. Hence (133) can be rewritten as

ϕi(λ) = − 2−N − γ
2−N − 2γ

λγ
∫ λ

0

s−N+1−γΥi(s)ds+O(λγ+δ) as λ→ 0+(146)

for all i ∈ {j0, . . . , j0 +m− 1}. From (146), (140), and (142), we infer the estimate

ϕi(λ) = O(λγ+δ) as λ→ 0+, for every i ∈ {j0, . . . , j0 +m− 1},
namely, setting uλ(θ) = u(λθ),

(uλ, ψi)L2(SN−1) = O(λγ+δ) as λ→ 0+, for every i ∈ {j0, . . . , j0 +m− 1},
and hence

(uλ, ψ)L2(SN−1) = O(λγ+δ) as λ→ 0+,

for every ψ ∈ E0, being E0 the eigenspace of the operator La associated to the eigenvalue µj0(a).

Let wλ(θ) = (H(λ))−1/2u(λθ). From (95), there exists C(δ) > 0 such that
√
H(λ) > C(δ)λγ+ δ

2

for λ small, and therefore

(147) (wλ, ψ)L2(SN−1) = O(λδ/2) = o(1), as λ→ 0+

for every ψ ∈ E0. From Lemma 6.5, for every sequence λn → 0+, there exist a subsequence

{λnj}j∈N and an eigenfunction ψ̃ ∈ E0 such that

(148)

∫
SN−1

|ψ̃(θ)|2dS = 1 and wλnj → ψ̃ in L2(SN−1).

From (147) and (148), we infer that

0 = lim
j→+∞

(wλnj , ψ̃)L2(SN−1) = ‖ψ̃‖2L2(SN−1) = 1,

thus reaching a contradiction. �

Combining Lemma 6.5 with Lemma 6.9, we can now prove Theorem 1.1.

Proof of Theorem 1.1. Identity (15) follows immediately from Lemma 6.5. As in the statement
of the theorem, let m be the multiplicity of the eigenvalue µk0(a) found in Lemma 6.5, j0 ∈ N\{0},
such that j0 6 k0 6 j0 +m− 1, µj0(a) = µj0+1(a) = · · · = µj0+m−1(a), and γ = limr→0+ N (r).

In order to prove (16), let {λn}n∈N ⊂ (0,∞) be a sequence such that λn → 0+ as n → +∞.
Then by Lemmas 6.5, 6.6, and 6.9, there exist a subsequence λnj and βj0 , . . . , βj0+m−1 ∈ R such
that

(149) λ−γnj u(λnjx)→ |x|γ
j0+m−1∑
i=j0

βiψi

(
x

|x|

)
in H1(B1) as j → +∞
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and (βj0 , βj0+1, . . . , βj0+m−1) 6= (0, 0, . . . , 0), which implies

(150) λ−γnj u(λnjθ)→
j0+m−1∑
i=j0

βiψi(θ) in L2(SN−1) as j → +∞.

We now prove that the βi’s depend neither on the sequence {λn}n∈N nor on its subsequence
{λnj}j∈N. Let us fix R > 0 such that BR ⊂ Ω. Defining ϕi as in (132), from (150) it follows that,
for any i = j0, . . . , j0 +m− 1,

(151) λ−γnj ϕi(λnj ) =

∫
SN−1

u(λnjθ)

λγnj
ψi(θ) dS(θ)→

j0+m−1∑
`=j0

β`

∫
SN−1

ψ`(θ)ψi(θ) dS(θ) = βi

as j → +∞. On the other hand, from Lemma 6.8, it follows that, for any i = j0, . . . , j0 +m− 1,

λ−γϕi(λ) → R−γϕi(R) +
2−N − γ
2−N − 2γ

∫ R

0

s−N+1−γΥi(s) ds−
γR−N+2−2γ

2−N − 2γ

∫ R

0

sγ−1Υi(s) ds

as λ→ 0+, with Υi as in (134), and therefore from (151) we deduce that

βi = R−γϕi(R) +
2−N − γ
2−N − 2γ

∫ R

0

s−N+1−γΥi(s) ds−
γR−N+2−2γ

2−N − 2γ

∫ R

0

sγ−1Υi(s) ds,

for any i = j0, . . . , j0 + m − 1. Integration by parts and (138) allow rewriting the above formula
as in (17). In particular the βi’s depend neither on the sequence {λn}n∈N nor on its subsequence
{λnk}k∈N, thus implying that the convergence in (149) actually holds as λ→ 0+ and proving the
theorem. �

7. Asymptotic behavior of eigenfunctions

We describe the asymptotic behavior of eigenfunctions of the operator La = −∆SN−1 − a near
the singular set of the function a. Actually, for simplicity we study the asymptotic behavior of
eigenfunctions near the south pole as an application of Theorem 1.1 after a stereographic projection
of SN−1 onto RN−1 with respect to the “north pole”.

Throughout this section we assume that 3 6 k 6 N − 1 and that a satisfies (7) and (12). Note
that if k = N then a is constant and hence the eigenfunctions of La are smooth.

By Lemma 2.2 the spectrum of La consists of a diverging sequence of eigenvalues µ1(a) <
µ2(a) 6 . . . 6 µn(a) 6 . . . each of them having finite multiplicity.

Let µi(a) be an eigenvalue of La and let ψ ∈ H1(SN−1) be a corresponding eigenfunction, i.e.

(152) −∆SN−1ψ(θ)− a(θ)ψ(θ) = µi(a)ψ(θ) in SN−1.

Let Π : SN−1 \ {eN} → RN−1 be the standard stereographic projection with respect to the “north
pole”. Here by eN , we denote the vector (0, 0, . . . , 0, 1) ∈ RN .

Let φ : RN−1 → R be the function given by

(153) φ(y) =
4(

|y|2 + 1
)2 for all y ∈ RN−1.

If θ ∈ SN−1 \ {eN} and x, z ∈ TθSN−1 (by TθSN−1 we mean the tangent space to SN−1 at θ), then

(x, z)TθSN−1 = φ(Π(θ)) (dΠ(θ)[x], dΠ(θ)[z])RN−1
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where the vector space TΠ(θ)RN−1 is identified with RN−1. In the following lemma the equation
satisfied by the projection of ψ is deduced.

Lemma 7.1. Let 3 6 k 6 N − 1, a satisfy (7) and (12), and let Π and φ be respectively the
stereographic projection with respect to the north pole and the function defined in (153). Let µi(a)
be an eigenvalue of the operator La and let ψ ∈ H1(SN−1) be a corresponding eigenfunction. Then
the function

(154) ψ̃(y) := (φ(y))
N−3

4 ψ(Π−1(y))

belongs to D1,2(RN−1) and weakly solves

(155) −∆ψ̃(y)−
b( y
|y| )

|y|2
ψ̃(y) = h̃(y)ψ̃(y)

where b and h̃ are defined by

(156) b(ω) =
∑

J∈Ak,N /∈J

αJ
|ωJ |2

+
∑

(J1,J2)∈Bk,N /∈J1∪J2

αJ1J2
|ωJ1 − ωJ2 |2

, for any ω ∈ SN−2 \ Σ1,

where

Σ1 :={(ω1, . . . , ωN−1) ∈ SN−2 : ωJ = 0 for some J ∈ AN−1
k }

∪ {(ω1, . . . , ωN−1) ∈ SN−2 : ωJ1 = ωJ2 for some (J1, J2) ∈ BN−1
k },

AN−1
k =

{
J ⊆ {1, 2, . . . , N − 1} : #J = k

}
,

BN−1
k = {(J1, J2) ∈ AN−1

k ×AN−1
k : J1 ∩ J2 = ∅, J1 < J2},

and

(157) h̃(y) = φ(y)

(
(N − 3)(N − 1)

4
+ µi(a)

)
+

∑
J∈Ak,N∈J

4αJ
4|yJ′ |2 + (|y|2 − 1)2

+
∑

(J1,J2)∈Bk,N∈J1\J2

4αJ1J2
4|yJ′1 − yJ′2 |2 + (|y|2 − 1− 2ymk)2

+
∑

(J1,J2)∈Bk,N∈J2\J1

4αJ1J2
4|yJ′1 − yJ′2 |2 + (|y|2 − 1− 2ynk)2

.

for a.e. y ∈ RN−1, where for any (J1, J2) ∈ Bk, nk = max J1, mk = max J2, and for any
J = {n1, . . . , nk} ∈ Ak, n1 < n2 < · · · < nk, we denote J ′ = J \ {nk} ∈ Ak−1.

Proof. The conformal laplacian on SN−1 is given by

−∆SN−1 +
(N − 3)(N − 1)

4
,

while, since RN−1 has zero scalar curvature, the conformal laplacian in RN−1 coincides with the
usual Laplace operator. Then for any function η ∈ C2(SN−1 \ {eN}) we have

(158) −∆SN−1η(θ) +
(N − 3)(N − 1)

4
η(θ) = −φ−

N+1
4 ∆(φ

N−3
4 · (η ◦Π−1))

∣∣∣∣
Π(θ)
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for every θ ∈ SN−1 \ {eN}. For the definition of the conformal Laplacian and for a proof of (158)
see [13, §3] or [6, (1.2.27)].

We claim that the function ψ̃ defined in (154) belongs to D1,2(RN−1) and weakly solves

(159) −∆ψ̃(y)− φ(y)a(Π−1(y))ψ̃(y) =

(
(N − 3)(N − 1)

4
+ µi(a)

)
φ(y)ψ̃(y) in RN−1,

i.e.∫
RN−1

∇ψ̃(y) · ∇v(y) dy −
∫
RN−1

φ(y)a(Π−1(y))ψ̃(y)v(y) dy

=

(
(N − 3)(N − 1)

4
+ µi(a)

)∫
RN−1

φ(y)ψ̃(y)v(y) dy for all v ∈ D1,2(RN−1).

Indeed by (158), integration by parts, and the change of variables y := Π(θ) ∈ RN−1, for any
v1, v2 ∈ C∞c (RN−1) we have

(160)

∫
RN−1

∇v1(y)·∇v2(y) dy =

∫
SN−1

(
∇SN−1w1(θ)·∇SN−1w2(θ)+ (N−3)(N−1)

4 w1(θ)w2(θ)
)
dS(θ)

with wj(θ) = φ(Π(θ))−
N−3

4 vj(Π(θ)), j = 1, 2. Moreover

(161)

∫
RN−1

v1(y)v2(y)φ(y) dy =

∫
SN−1

w1(θ)w2(θ) dS(θ)

and

(162)

∫
RN−1

a(Π−1(y))v1(y)v2(y)φ(y) dy =

∫
SN−1

a(θ)w1(θ)w2(θ) dS(θ)

with w1, w2 as above. By density, (160–162) actually hold for any v1, v2 ∈ D1,2(RN−1) and hence
the claim follows.

We now write the function a(Π−1(y)) in a more explicit way. We recall that the function
Π−1 : RN−1 → SN−1 is given by

Π−1(y) =
2

|y|2 + 1
y +
|y|2 − 1

|y|2 + 1
eN

where we identified RN−1 with the subspace of RN of all x = (x1, . . . , xN ) ∈ RN such that xN = 0.
Therefore for any θ ∈ SN−1 \ {eN}, if y = (y1, . . . , yN−1) = Π(θ), we have

θJ =


2

|y|2+1 yJ =
(

2
|y|2+1 yJ′ ,

2
|y|2+1 ynk

)
, if N /∈ J,(

2
|y|2+1 yJ′ ,

|y|2−1
|y|2+1

)
, if N ∈ J .

Hence, for every J ∈ Ak,

|θJ |2 =


4

(|y|2+1)2 |yJ |
2, if N /∈ J,

4|yJ′ |
2+(|y|2−1)2

(|y|2+1)2 , if N ∈ J,
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and, for every (J1, J2) ∈ Bk, with J1 = {n1, . . . , nk} and J2 = {m1, . . . ,mk},

(163) |θJ1 − θJ2 |2 =



4
(|y|2+1)2 |yJ1 − yJ2 |

2, if N /∈ J1 ∪ J2,

4|yJ′1−yJ′2 |
2+(|y|2−1−2ymk )2

(|y|2+1)2 , if N ∈ J1 \ J2,

4|yJ′1−yJ′2 |
2+(|y|2−1−2ynk )2

(|y|2+1)2 , if N ∈ J2 \ J1 .

By (163) we obtain

(164) φ(y)a(Π−1(y)) =
∑

J∈Ak,N /∈J

αJ
|yJ |2

+
∑

(J1,J2)∈Bk,N /∈J1∪J2

αJ1J2
|yJ1 − yJ2 |2

+
∑

J∈Ak,N∈J

4αJ
4|yJ′ |2 + (|y|2 − 1)2

+
∑

(J1,J2)∈Bk,N∈J1\J2

4αJ1J2
4|yJ′1 − yJ′2 |2 + (|y|2 − 1− 2ymk)2

+
∑

(J1,J2)∈Bk,N∈J2\J1

4αJ1J2
4|yJ′1 − yJ′2 |2 + (|y|2 − 1− 2ynk)2

.

The conclusion follows from (163) and (164). �

According with (11) we introduce the number

(165) Λ(b) := sup
v∈D1,2(RN−1)\{0}

∫
RN−1

|y|−2b(y/|y|) v2(y) dy∫
RN−1

|∇v(y)|2 dy
.

Lemma 7.2. Let 3 6 k 6 N − 1, a satisfy (7) and (12), and let b be the corresponding function
defined in (156). Then Λ(b) < 1 with Λ(b) as in (165).

Proof. Let v ∈ C∞c (RN−1) and let w(θ) = φ(Π(θ))−
N−3

4 v(Π(θ)). Then by (160-162) and (22)
we have∫

RN−1

|∇v(y)|2dy − (N − 3)(N − 1)

4

∫
RN−1

φ(y)|v(y)|2dy −
∫
RN−1

φ(y)a(Π−1(y))|v(y)|2dy

=

∫
SN−1

|∇SN−1w(θ)|2dS(θ)−
∫
SN−1

a(θ)|w(θ)|2dS(θ)

> (1− Λ(a))

∫
SN−1

|∇SN−1w(θ)|2dS(θ)− Λ(a)

(
N − 2

2

)2 ∫
SN−1

|w(θ)|2dS(θ)

= (1− Λ(a))

(∫
RN−1

|∇v(y)|2dy − (N − 3)(N − 1)

4

∫
RN−1

φ(y)|v(y)|2dy
)

− Λ(a)

(
N − 2

2

)2 ∫
RN−1

φ(y)|v(y)|2dy
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and, in turn,

Λ(a)

∫
RN−1

|∇v(y)|2dy + Λ(a)

[(
N − 2

2

)2

− (N − 3)(N − 1)

4

]∫
RN−1

φ(y)|v(y)|2dy(166)

>
∫
RN−1

φ(y)a(Π−1(y))|v(y)|2dy =

∫
RN−1

b(y/|y|)
|y|2

|v(y)|2dy +

∫
RN−1

R(y)|v(y)|2dy

where R(y) = φ(y)a(Π−1(y)) − b(y/|y|)
|y|2 is bounded in a sufficiently small neighborhood of 0 by

(164). On the other hand if we define, for any δ > 0, Bδ ⊂ RN−1 to be the open ball of radius δ
centered at the origin and

(167) C(δ) := sup
v∈C∞(RN−1)\{0}

supp v⊂Bδ

∫
RN−1

[(
Λ(a)

(
N−2

2

)2 − (N−3)(N−1)
4

)
φ(y)−R(y)

]
|v(y)|2dy∫

RN−1 |∇v(y)|2dy
,

then C(δ)→ 0 as δ → 0+. Therefore, by (166), (167), and (12), we deduce that there exists δ1 > 0
such that for any δ ∈ (0, δ1)

sup
v∈C∞c (RN−1)\{0}

∫
RN−1

b( y
|y| )

|y|2 |v(y)|2dy∫
RN−1 |∇v(y)|2dy

= sup
v∈C∞(RN−1)\{0}

supp v⊂Bδ

∫
RN−1

b( y
|y| )

|y|2 |v(y)|2dy∫
RN−1 |∇v(y)|2dy

6 Λ(a) + C(δ) < 1.

The conclusion follows by density. �

By Lemmas 7.2 and 2.2, we deduce that the spectrum of the operator Lb := −∆SN−2 − b on
SN−2 consists of real eigenvalues with finite multiplicity µ1(b) < µ2(b) 6 . . . 6 µk(b) 6 . . . .

Let h̃ be the function defined in (157) and, according with (14), for any nontrivial D1,2(RN−1)-
solution v of the equation

−∆v(y)−
b( y
|y| )

|y|2
v(y) = h̃(y)v(y),

we define the corresponding Almgren’s frequency function by

(168) Nv,h̃,0(r) =
r
∫
Br

(
|∇v(y)|2 − b(y/|y|)

|y|2 v2(y)− h̃(y)v2(y)
)
dy∫

∂Br
|v(y)|2 dS

.

We are ready to prove the following asymptotic description of eigenfunctions.

Proposition 7.3. Let 3 6 k 6 N−1, let a satisfy (7), (12), and let b and h̃ be respectively defined
in (156) and (157). Let µi(a) be an eigenvalue of the operator La and let ψ ∈ H1(SN−1) \ {0} be

an associated eigenfunction. Let ψ̃ ∈ D1,2(RN−1) be the corresponding function defined in (154).

Then there exists k̃0 ∈ N, k̃0 > 1, such that

(169) lim
r→0+

Nψ̃,h̃,0(r) = −N − 3

2
+

√(
N − 3

2

)2
+ µk̃0(b).

Furthermore, if γ̃ denotes the limit in (169), m̃ > 1 is the multiplicity of the eigenvalue µk̃0(b)

and {ηj : ˜̀0 6 j 6 ˜̀0 + m̃− 1} (˜̀0 6 k̃0 6 ˜̀0 + m̃− 1) is an L2(SN−2)-orthonormal basis for the
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eigenspace associated to µk̃0(b), then

λ−γ̃ψ(Π−1(λΠ(θ)))→ 4−
N−3

4 |Π(θ)|γ̃
˜̀
0+m̃−1∑
j=˜̀

0

β̃jηj

(
Π(θ)

|Π(θ)|

)
in H1

loc(SN−1 \ {eN}) as λ→ 0+,

where

β̃j =

∫
SN−2

[
R−γ̃ψ̃(Rω) +

∫ R

0

h̃(sω)ψ̃(sω)

2γ̃ +N − 3

(
s1−γ̃ − sγ̃+N−2

R2γ̃+N−3

)
ds

]
ηj(ω) dS(ω),

for all R ∈ (0, R) for some R > 0, and (β̃˜̀
0
, β̃˜̀

0+1, . . . , β̃˜̀0+m̃−1) 6= (0, 0, . . . , 0).

Proof. Since ψ is a solution of (152), then, by Lemma 7.1, ψ̃ solves (155). By Lemma 7.2,
Λ(b) < 1 i.e. the function b satisfies the positivity condition required in Theorem 1.1. Moreover by

(157), the function h̃ ∈ C1(Bδ) for some δ > 0 small enough. Hence we may apply Theorem 1.1

to the function ψ̃ to conclude. �

8. Pointwise estimates

Let σ̂ as in (20) and ψ̂1 ∈ H1(SN−1), ‖ψ̂1‖L2(SN−1) = 1, be the first positive eigenfuntion of the

eigenvalue problem Laψ = µ1(â)ψ in SN−1. The following lemma holds true.

Lemma 8.1. If â satisfies (18) and (19) , then

µ1(â) 6 0, σ̂ 6 0, and inf
SN−1

ψ̂1 > 0.

Proof. The fact that µ1(â) 6 0 follows easily by taking a constant function in the Rayleigh
quotient minimized by µ1(â) (see (24)). Moreover, there exists δ > 0 such that, letting

Σδ :=

( ⋃
J∈Ak
αJ>0

{(θ1, . . . , θN ) ∈ SN−1 : |θJ | < δ}
)
∪
( ⋃

(J1,J2)∈Bk
αJ1J2>0

{(θ1, . . . , θN ) ∈ SN−1 : |θJ1−θJ2 | < δ}
)

there holds â(θ) + µ1(â) > 0 in Σδ. By classical elliptic regularity theory and maximum principles

applied to the equation satisfied by ψ̂1 in SN−1 \ Σδ/2, we have that minSN−1\Σδ/2 ψ̂1 > 0 and

min∂Σδ ψ̂1 > 0. Moreover, testing{
−∆SN−1(ψ̂1 −min∂Σδ ψ̂1) = (µ1(â) + â(θ))ψ̂1 > 0, in Σδ,

ψ̂1 −min∂Σδ ψ̂1 > 0 on ∂Σδ,

with −(ψ̂1 −min∂Σδ ψ̂1)− we obtain that ψ̂1 > min∂Σδ ψ̂1 in Σδ. �

Let us introduce the weight function

(170) ρ(x) = |x|σ̂ψ̂1

(
x

|x|

)
for all x ∈ RN \ Σ̃.

From Lemma 8.1, under assumptions (18) and (19), there holds

(171) d = d(diam Ω, N, â) := sup
Ω\Σ̃

ρ2−2∗ ∈ (0,+∞).
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We notice that ρ ∈ H1
loc(RN ) and introduce the weighted space D1,2

ρ (RN ) as the completion of

C∞c (RN ) with respect to the norm

(172) ‖v‖D1,2
ρ (RN ) :=

(∫
RN

ρ2(x)
∣∣∇v(x)

∣∣2dx)1/2
and, similarly, D1,2

ρ (Ω) as the completion of C∞c (Ω) with respect to (172).

Lemma 8.2. C∞c (RN \ Σ̃) is dense in D1,2(RN ).

Proof. By density of C∞c (RN ) in D1,2(RN ), it is enough to prove, for every J ∈ Ak and
(J1, J2) ∈ Bk, the density of C∞c (RN \ {xJ = 0}) and of C∞c (RN \ {xJ1 = xJ2}) in C∞c (RN ) with
respect to the norm ‖·‖D1,2(RN ). Let φ ∈ C∞(0,∞) such that φ(t) = 0 for all t ∈ (0, 1) and φ(t) = 1

for all t ∈ (2,∞). If J ∈ Ak and u ∈ C∞c (RN ), let un(x) = φ(n|xJ |)u(x) ∈ C∞c (RN \ {xJ = 0}).
Since

∇un(x)−∇u(x) = ∇u(x)
(
φ(n|xJ |)− 1

)
+ nu(x)φ′(n|xJ |)

xJ
|xJ |

,

lim
n→+∞

∫
RN
|∇u(x)|2

(
φ(n|xJ |)− 1

)2
dx = 0

by the Dominated Convergence Theorem, and

n2

∫
RN

u2(x)(φ′(n|xJ |))2dx = n2−k
∫
RN

u2
(
y1, . . . ,

yJ
n
, . . . , yN

)
(φ′(|yJ |))2dy = O(n2−k)

as n→ +∞, we conclude that un → u in D1,2(RN ), thus proving the density of C∞c (RN \{xJ = 0})
in C∞c (RN ) and hence in D1,2(RN ). The density of C∞c (RN \ {xJ1 = xJ2}) can be proven in a
similar way. �

Lemma 8.3. If â satisfy (18) and (19), then

(i) C∞c (RN \ Σ̃) is dense in D1,2
ρ (RN );

(ii) v ∈ D1,2
ρ (RN ) if and only if ρv ∈ D1,2(RN );

(iii) for all v ∈ D1,2
ρ (RN )

(173)

∫
RN

ρ2(x)|∇v(x)|2dx =

∫
RN

(
|∇(ρv)(x)|2dx−

â( x
|x| )

|x|2
(ρv)2(x)

)
dx

Proof. We first prove that (173) holds for all v ∈ C∞c (RN \ Σ̃). Indeed, by direct computation
ρ solves

(174) −∆ρ(x)−
â( x
|x| )

|x|2
ρ(x) = 0 in RN \ Σ̃.

Let v ∈ C∞c (RN \ Σ̃) and put u = ρv so that u ∈ C∞c (RN ) ⊂ D1,2(RN ). Then, testing (174) with
ρv2 we obtain

(175)

∫
RN
∇ρ(x)∇(ρ(x)v2(x)) dx−

∫
RN

â( x
|x| )

|x|2
ρ2(x)v2(x) dx = 0.

Moreover

(176) ∇ρ∇(ρv2) = v2|∇ρ|2 + 2ρv∇ρ∇v
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and

(177) |∇u|2 = v2|∇ρ|2 + 2vρ∇ρ∇v + ρ2|∇v|2.
By (175)-(177) we then have

Qâ(ρv) =

∫
RN
|∇u(x)|2dx−

∫
RN

â( x
|x| )

|x|2
u2(x) dx(178)

=

∫
RN

ρ2(x)|∇v(x)|2dx+

∫
RN
∇ρ(x)∇(ρ(x)v2(x)) dx−

∫
RN

â( x
|x| )

|x|2
ρ2(x)v2(x) dx

=

∫
RN

ρ2(x)|∇v(x)|2dx, for all v ∈ C∞c (RN \ Σ̃).

To prove (i), by density of C∞c (RN ) in D1,2
ρ (RN ), it is enough to prove the density of C∞c (RN \ Σ̃)

in C∞c (RN ) with respect to the norm ‖ · ‖D1,2
ρ (RN ). Let v ∈ C∞c (RN ). It is easy to verify that

u = ρv ∈ D1,2(RN ), hence, by Lemma 8.2, there exists a sequence {un}n ⊂ C∞c (RN \ Σ̃) such that

un → u in D1,2(RN ). Letting vn = un
ρ , we have that vn ∈ C∞c (RN \ Σ̃) and, by (178),∫

RN
ρ2(x)|∇vn(x)−∇vm(x)|2dx = Qâ(un − um).

Therefore, since un is a Cauchy sequence in D1,2(RN ) and, by (19) and Lemma 2.3, (Qâ(u))1/2 is
an equivalent norm in D1,2(RN ), we conclude that vn is a Cauchy sequence in D1,2

ρ (RN ) and hence

converges to some ṽ ∈ D1,2
ρ (RN ). Since vn → v a.e. in RN , we deduce that ṽ = v and then vn → v

in D1,2
ρ (RN ). The proof of (i) is thereby complete.

To prove (ii-iii), let v ∈ D1,2
ρ (RN ). By (i), there exists a sequence {vn}n ⊂ C∞c (RN \ Σ̃) such

that vn → v in D1,2
ρ (RN ). Letting un = vnρ ∈ C∞c (RN \ Σ̃), by (178) we have that

(179)

∫
RN

ρ2(x)|∇vn(x)|2dx =

∫
RN
|∇un(x)|2dx−

∫
RN

â( x
|x| )

|x|2
u2
n(x) dx

and ‖vn− vm‖2D1,2
ρ (RN )

= Qâ(un− um). Therefore, since vn is a Cauchy sequence in D1,2
ρ (RN ) and

(Qâ(u))1/2 is an equivalent norm in D1,2(RN ), we infer that un is a Cauchy sequence in D1,2(RN )
and hence converges to some u in D1,2(RN ). Since un = ρvn → ρv a.e. in RN , we deduce that
ρv = u ∈ D1,2(RN ). Moreover, we can pass to the limit in (179), thus obtaining (173) and proving
(iii). In a similar way, one can prove that if u ∈ D1,2(RN ) then u

ρ ∈ D
1,2
ρ (RN ), thus completing

the proof of (ii). �

Thanks to Lemma 2.3, (19), and the standard Sobolev inequality, the number

S(â) = inf
u∈D1,2(RN )\{0}

Qâ(u)(∫
RN |u(x)|2∗ dx

)2/2∗
is strictly positive and provides the best constant in the following weighted Sobolev inequality.

Lemma 8.4. Let N > k > 3 and let â satisfy (18) and (19). Then

(180)

∫
RN

ρ2(x)|∇v(x)|2 dx > S(â)

(∫
RN

ρ2∗(x)|v(x)|2
∗
dx

)2/2∗
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for all v ∈ D1,2
ρ (RN ).

Proof. It follows from Lemma 8.3 and the change u = ρv. �

We also define the weighted Sobolev space H1
ρ(Ω) as the completion of Vρ(Ω) with respect to

the norm

‖v‖H1
ρ(Ω) :=

(∫
Ω

ρ2(x)|∇v(x)|2 dx+

∫
Ω

ρ2(x)v2(x) dx

)1/2
where Vρ(Ω) denotes the space of all functions v ∈ C∞(Ω) ∩H1(Ω) such that

{x ∈ Ω : v(x) 6= 0}
Ω
⊂ Ω \ Σ̃.

For any q > 1, we also denote as Lq(ρ2∗ ,Ω) the weighted Lq-space endowed with the norm

‖u‖Lq(ρ2∗ ,Ω) :=

(∫
Ω

ρ2∗(x)|u(x)|q dx
)1/q

.

Lemma 8.5. Let N > k > 3, Ω ⊂ RN be a bounded open set such that 0 ∈ Ω, â satisfy (18) and

(19), and h satisfy (H). Let V ∈ L1
loc(Ω \ Σ̃) such that

(181) sup
v∈H1

ρ(Ω)\{0}

∫
Ω
ρ2∗(x)|V (x)|v2(x) dx

‖v‖2H1
ρ(Ω)

< +∞,

and v ∈ H1
ρ(Ω) ∩ Lq(ρ2∗ ,Ω), q > 2, be a weak solution to

(182) −div(ρ2(x)∇v(x)) =
(
ρ2(x)h(x) + ρ2∗(x)V (x)

)
v(x).

If

(183) V+ ∈ Ls(ρ2∗ ,Ω) for some s > N/2,

then for any Ω′ b Ω such that 0 ∈ Ω′, v ∈ L
2∗q
2 (ρ2∗ ,Ω′) and

(184) ‖v‖
L

2∗q
2 (ρ2∗ ,Ω′)

6 S(â)−
1
q ‖v‖Lq(ρ2∗ ,Ω)

(
20

C(q)

d

(dist(Ω′, ∂Ω))2
+

4(q − 2)d

(dist(Ω′, ∂Ω))2
+

4`q
C(q)

)1
q

,

where C(q) := min
{

1
4 ,

4
q+4

}
, d is as in (171), and

(185) `q = max

{(
max{16, q + 4}

S(â)
‖V+‖2s/NLs(ρ2∗ ,Ω)

) N
2s−N

,

dC
2/ε
h

(
2

k−2

) 2(2−ε)
ε
(
N
k

)2/ε(
1 +

(
N−k
k

))2/ε
(1− Λ(â))

2−ε
ε

(max{16, q + 4})
2−ε
ε

}
.
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Proof. Let w ∈ D1,2
ρ (Ω). Then by Lemma 8.4 we have

∫
Ω

ρ2∗(x)V+(x)|w(x)|2 dx(186)

6 `q

∫
V+(x)6`q

ρ2∗(x)|w(x)|2 dx+

∫
V+(x)>`q

ρ2∗−2(x)V+(x)ρ2(x)|w(x)|2 dx

6 `q

∫
Ω

ρ2∗(x)|w(x)|2 dx+

(∫
Ω

ρ2∗(x)|w(x)|2
∗
dx

)2
2∗
( ∫
V+(x)>`q

ρ2∗(x)V
N
2

+ (x) dx

)2
N

6 `q

∫
Ω

ρ2∗(x)|w(x)|2 dx+
1

S(â)

(∫
Ω

ρ2(x)
∣∣∇w(x)

∣∣2 dx)( ∫
V+(x)>`q

ρ2∗(x)V
N
2

+ (x) dx

)2
N

.

Next, Hölder inequality and the definition of `q yield

∫
V+(x)>`q

ρ2∗(x)V
N
2

+ (x) dx 6

(∫
Ω

ρ2∗(x)V s+(x) dx

)N
2s
( ∫
V+(x)>`q

ρ2∗(x) dx

)2s−N
2s

(187)

6

(∫
Ω

ρ2∗(x)V s+(x) dx

)N
2s
( ∫
V+(x)>`q

(
V+(x)

`q

)s
ρ2∗(x) dx

)2s−N
2s

6 ‖V+‖sLs(ρ2∗ ,Ω) `
−s+N

2
q 6

(
min

{
S(â)

16
,
S(â)

q + 4

})N
2

,

Inserting (187) into (186) we obtain for any w ∈ D1,2
ρ (Ω)

∫
Ω

ρ2∗(x)V+(x)|w(x)|2 dx(188)

6 `q

∫
Ω

ρ2∗(x)|w(x)|2 dx+
1

2
min

{
1

8
,

2

q + 4

}∫
Ω

ρ2(x)|∇w(x)|2dx.
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On the other hand, letting δq =
(
Chd

(
N
k

)(
1 +

(
N−k
k

)))1/(2−ε)
`
−1/(2−ε)
q , from (H), (8), (9), (23),

(173), and (171), for every w ∈ D1,2
ρ (Ω) we can estimate∫

Ω

ρ2(x)|h(x)||w(x)|2 dx(189)

6 Ch

[
δεq

( ∑
J∈Ak

∫
|xJ |6δq

ρ2(x)w2(x)

|xJ |2
dx+

∑
(J1,J2)∈Bk

∫
|xJ1−xJ2 |6δq

ρ2(x)w2(x)

|xJ1 − xJ2 |2
dx

)

+ δ−2+ε
q d

( ∑
J∈Ak

∫
|xJ |>δq

ρ2∗(x)w2(x) dx+
∑

(J1,J2)∈Bk

∫
|xJ1−xJ2 |>δq

ρ2∗(x)w2(x) dx

)]

6 Ch
(
N
k

)(
1 +

(
N−k
k

))(
δεq

(
2

k−2

)2
(1− Λ(â))−1

∫
Ω

ρ2(x)|∇w(x)|2dx

+ δ−2+ε
q d

∫
Ω

ρ2∗(x)w2(x) dx

)
6 `q

∫
Ω

ρ2∗(x)|w(x)|2 dx+
1

2
min

{
1

8
,

2

q + 4

}∫
Ω

ρ2(x)|∇w(x)|2dx.

Summing up (188) and (189), we obtain

(190)

∫
Ω

(
ρ2∗(x)V+(x) + |h(x)|ρ2(x)

)
|w(x)|2 dx

6 2`q

∫
Ω

ρ2∗(x)|w(x)|2 dx+ min

{
1

8
,

2

q + 4

}∫
Ω

ρ2(x)|∇w(x)|2dx

for all w ∈ D1,2
ρ (Ω). As in [17, 20] we define vn := min{n, |v|} ∈ H1

ρ(Ω) and we introduce a cut-off
function η ∈ C∞c (Ω) satisfying

η ≡ 1 in Ω′ and |∇η| 6 2

dist(Ω′, ∂Ω)
.

Testing (182) with η2(vn)q−2v ∈ D1,2
ρ (Ω) we obtain

(q − 2)

∫
Ω

ρ2(x)η2(x)(vn(x))q−2χ{y∈Ω:|v(y)|<n}(x)|∇|v|(x)|2 dx

+

∫
Ω

ρ2(x)η2(x)(vn(x))q−2|∇v(x)|2 dx

=

∫
Ω

(ρ2∗(x)V (x) + ρ2(x)h(x))η2(x)|v(x)|2(vn(x))q−2 dx

− 2

∫
Ω

ρ2(x)η(x)(vn(x))q−2v(x)∇v(x) · ∇η(x) dx

6
∫

Ω

(ρ2∗(x)V+(x) + ρ2(x)|h(x)|)η2(x)|v(x)|2(vn(x))q−2 dx

+ 2

∫
Ω

ρ2(x)|∇η(x)|2(vn(x))q−2|v(x)|2 dx+
1

2

∫
Ω

ρ2(x)η2(x)(vn(x))q−2|∇v(x)|2 dx
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and hence

(q − 2)

∫
Ω

ρ2(x)η2(x)(vn(x))q−2|∇vn(x)|2 dx+
1

2

∫
Ω

ρ2(x)η2(x)(vn(x))q−2|∇v(x)|2 dx(191)

6
∫

Ω

(
ρ2∗(x)V+(x) + ρ2(x)|h(x)|

)
η2(x)|v(x)|2(vn(x))q−2 dx

+ 2

∫
Ω

ρ2(x)|∇η(x)|2(vn(x))q−2|v(x)|2 dx.

By direct computation we also have∣∣∣∇((vn)
q−2
2 ηv

)∣∣∣2 6 (q + 4)(q − 2)

4
(vn)q−2η2|∇vn|2

+ 2η2(vn)q−2|∇v|2 + 2|∇η|2(vn)q−2|v|2 +
q − 2

2
(vn)q|∇η|2

and hence by (191) we obtain

(192) C(q)

∫
Ω

ρ2(x)
∣∣∣∇((vn)

q−2
2 ηv

)∣∣∣2 dx
6
∫

Ω

(
ρ2∗(x)V+(x) + ρ2(x)|h(x)|

)
η2(x)|v(x)|2(vn(x))q−2 dx

+ 2(C(q) + 1)

∫
Ω

ρ2(x)(vn(x))q−2|v(x)|2|∇η(x)|2 dx+ C(q)
q − 2

2

∫
Ω

ρ2(x)(vn(x))q|∇η(x)|2 dx.

Applying estimate (190) to the function w = η(vn)
q−2
2 v, by (192) we have

C(q)

2

∫
Ω

ρ2(x)
∣∣∣∇((vn)

q−2
2 ηv

)∣∣∣2 dx 6 2`q

∫
Ω

ρ2∗(x)η2(x)(vn(x))q−2|v(x)|2 dx

+ 2(C(q) + 1)

∫
Ω

ρ2(x)(vn(x))q−2|v(x)|2|∇η(x)|2 dx+ C(q)
q − 2

2

∫
Ω

ρ2(x)(vn(x))q|∇η(x)|2 dx.

and this with Lemma 8.4 and (171) implies(∫
Ω

ρ2∗(x)|vn(x)|2
∗ q−2

2 |v(x)|2
∗
η2∗(x) dx

) 2
2∗

6
4`q

C(q)S(â)

∫
Ω

ρ2∗(x)η2(x)(vn(x))q−2|v(x)|2 dx

+
4(C(q) + 1)d

C(q)S(â)

∫
Ω

ρ2∗(x)(vn(x))q−2|v(x)|2|∇η(x)|2 dx+
(q − 2)d

S(â)

∫
Ω

ρ2∗(x)(vn(x))q|∇η(x)|2 dx.

The proof of the lemma then follows letting n→ +∞. �

Theorem 8.6. Let N > k > 3, Ω ⊂ RN be a bounded open set such that 0 ∈ Ω, â satisfy (18) and

(19), h as in (H), and V ∈ L1
loc(Ω \ Σ̃) verify (181).

i) If V+ ∈ Ls(ρ2∗ ,Ω) for some s > N/2, then for any Ω′ b Ω there exists a positive constant

C∞ = C∞(N, k, â, h, ‖V+‖Ls(ρ2∗ ,Ω),dist(Ω′, ∂Ω),diam(Ω))

depending only on N, k, â, h, ‖V+‖Ls(ρ2∗ ,Ω),dist(Ω′, ∂Ω) and diam(Ω), such that for every

solution u ∈ H1(Ω) of

(193) −∆u(x)−
â( x
|x| )

|x|2
u(x) =

(
h(x) + ρ2∗−2(x)V (x)

)
u(x) in Ω,
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there holds ρ−1u ∈ L∞(Ω′) and

‖ρ−1u‖L∞(Ω′) 6 C∞‖u‖L2∗ (Ω).

ii) If V+ ∈ LN/2(ρ2∗ ,Ω), then for any Ω′ b Ω and for any s > 1 there exists a positive constant

Cs = Cs(N, k, â, h, V, s, dist(Ω′, ∂Ω),diam(Ω))

depending only on N, k, â, h, V, s, dist(Ω′, ∂Ω), diam(Ω), such that every solution u ∈ H1(Ω)
to (193) satisfies ρ−1u ∈ Ls(ρ2∗ ,Ω′) and

‖ρ−1u‖Ls(ρ2∗ ,Ω′) 6 Cs‖u‖L2∗ (Ω).

Proof. Let u ∈ H1(Ω) be a weak solution of (193), Ω′ b Ω, and R > 0 such that

Ω′ b Ω′ +B(0, 2R) b Ω.

We claim that the function v(x) := ρ−1(x)u(x) belongs to H1
ρ(Ω′ + B(0, 2R)). Indeed, arguing

as in Lemma 8.2, we can prove that Vρ(Ω) is dense in H1(Ω), hence there exists a sequence
{un}n∈N ⊂ Vρ(Ω) such that un → u in H1(Ω). If η ∈ C∞c (Ω) is a cut-off function such that η ≡ 1
in Ω′ +B(0, 2R), from (173) it follows that∫

Ω

|∇(η(x)(un(x)− um(x)))|2dx−
∫

Ω

â( x
|x| )

|x|2
η2(x)(un(x)− um(x))2 dx

=

∫
Ω

ρ2(x)|∇(η(x)ρ−1(x)(un(x)− um(x)))|2dx.

This shows that {ρ−1un} is a Cauchy sequence in H1
ρ(Ω′ + B(0, 2R)) which then converges to

v(x) = ρ−1(x)u(x). In particular v ∈ H1
ρ(Ω′ +B(0, 2R)).

By direct computation one also sees that v is a weak solution of (182). By Lemma 8.5, proceeding
exactly as in the proofs of [17, Theorem 9.3] and [20, Theorem 1.2], we arrive to the conclusion.

�

Remark 8.7. The statement of Theorem 9.4 in our previous paper [17] should be corrected as in
the statement of Theorem 1.2. The missing point in Theorem 9.4. as it was stated in [17] relies

in the fact that the constant C̃∞ such that ‖|x|−σu‖L∞(Ω′) 6 C̃∞‖u‖L2∗ (Ω) depends on u, more

precisely on the distribution function of f(x, u)/u.
In a similar way, the statements of Theorems 9.3 and 10.4 should be corrected as in Theorem

8.6 above, i.e. the constant Cs (respectively Cs,2) appearing in the statement (ii) of Theorem 9.3
(respectively 10.4) depends on (<(V ))+ (more precisely on its distribution function) and not only
on its LN/2(ρ2∗ ,Ω)-norm (respectively Ls(ρp,Ω)-norm) as incorrectly stated in [17].

Anyway, the proofs of Theorems 9.3 and 9.4 contained in [17] are correct and lead to analogous
conclusion as those stated in Theorems 1.2 and 8.6 of the present paper. Moreover all the proofs
and statements in the rest of the paper [17] are not affected by these corrections.

Proof of Theorem 1.2. Let us define

V (x) :=

 ρ2−2∗(x)
(
f(x,u(x))
u(x) −

∑
J∈Ak

α−J
|θJ |2 −

∑
(J1,J2)∈Bk

α−J1 J2
|θJ1−θJ2 |2

)
, if u(x) 6= 0,

ρ2−2∗(x)
(
−
∑
J∈Ak

α−J
|θJ |2 −

∑
(J1,J2)∈Bk

α−J1 J2
|θJ1−θJ2 |2

)
, if u(x) = 0,
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where α−J = max{−αJ , 0} and α−J1J2 = max{−αJ1J2 , 0}. By (F) and the Sobolev embedding

H1(Ω) ⊂ L2∗(Ω), we have that V + ∈ LN/2(ρ2∗ ,Ω) and u weakly solves

−∆u(x)−
â( x
|x| )

|x|2
u(x) =

(
h(x) + ρ2∗−2(x)V (x)

)
u(x) in Ω.

From part ii) of Theorem 8.6, it follows that ρ−1u ∈ Ls(ρ2∗ ,Ω′) for any Ω′ b Ω and for any s > 1.
By (F) we deduce that V + ∈ Ls(ρ2∗ ,Ω′) for all s > N−2

4 and in particular for some s > N/2. The
proof of the theorem follows now by part i) of Theorem 8.6. �

Appendix

To prove Theorem 3.3 we used, for the approximating problems, a Pohozaev-type identity (see
(53)), whose proof is quite classical (see e.g. [38, 41]) and requires just few adaptations due to the
presence of a singularity. For the sake of completeness we give below a proof.

Proposition A.1. Let Ω ⊂ RN , N > 3, be a bounded open set such that 0 ∈ Ω. Let b ∈ L∞(SN−1),
h ∈ L∞(Ω), and let f satisfy (F). Denote by ν = ν(x) the unit outer normal vector ν(x) = x

|x| . If

u is a H1(Ω)-weak solution to Lbu = h(x)u + f(x, u) in Ω and r0 > is such that Br0 ⊆ Ω, then
for a.e. r ∈ (0, r0)

(194) − N − 2

2

∫
Br

[
|∇u(x)|2 −

b( x
|x| )

|x|2
u2(x)

]
dx+

r

2

∫
∂Br

[
|∇u(x)|2 −

b( x
|x| )

|x|2
u2(x)

]
dS

= r

∫
∂Br

∣∣∣∣∂u∂ν
∣∣∣∣2 dS +

∫
Br

h(x)u(x) (x · ∇u(x))
)
dx

+ r

∫
∂Br

F (x, u(x)) dS −
∫
Br

[∇xF (x, u(x)) · x+NF (x, u(x))] dx .

Proof. By classical Brezis-Kato [8] estimates, bootstrap, and elliptic regularity theory, (F) and

the boundedness of the coefficients b, h imply that u ∈ H2
loc(Ω \ {0}) ∩ C1,α

loc (Ω \ {0}) for any
α ∈ (0, 1). Therefore by (F) and Hardy inequality, we have

∫ r

0

[∫
∂Bs

(
|∇u(x)|2 +

u2(x)

|x|2
+

∣∣∣∣∂u∂ν (x)

∣∣∣∣2 + |F (x, u(x))|

)
dS

]
ds

=

∫
Br

(
|∇u(x)|2 +

u2(x)

|x|2
+

∣∣∣∣∂u∂ν (x)

∣∣∣∣2 + |F (x, u(x))|

)
dx < +∞

and hence there exists a decreasing sequence {δn} ⊂ (0, r) such that limn→+∞ δn = 0 and

(195) δn

∫
∂Bδn

(
|∇u(x)|2 +

u2(x)

|x|2
+

∣∣∣∣∂u∂ν (x)

∣∣∣∣2 + |F (x, u(x))|

)
dS −→ 0 as n→ +∞ .
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Multiplying equation Lbu = h(x)u+ f(x, u) by x · ∇u(x) and integrating over Br \Bδn , it follows
that ∫

Br\Bδn
∇u(x) · ∇(x · ∇u(x)) dx−

∫
Br\Bδn

b( x
|x| )

|x|2
u(x)(x · ∇u(x)) dx(196)

= r

∫
∂Br

∣∣∣∣∂u∂ν
∣∣∣∣2 dS − δn ∫

∂Bδn

∣∣∣∣∂u∂ν
∣∣∣∣2 dS +

∫
Br\Bδn

h(x)u(x)(x · ∇u(x)) dx

+

∫
Br\Bδn

f(x, u(x))(x · ∇u(x)) dx .

Standard integration by parts shows that

(197)

∫
Br\Bδn

∇u(x) · ∇(x · ∇u(x)) dx

= −N − 2

2

∫
Br\Bδn

|∇u(x)|2 dx+
r

2

∫
∂Br

|∇u(x)|2 dS − δn
2

∫
∂δn

|∇u(x)|2 dS .

Passing in radial coordinates r = |x|, θ = x
|x| and observing that ∂ru(r, θ) = ∇u(rθ) · θ, we obtain∫

Br\Bδn

b( x
|x| )

|x|2
u(x)(x · ∇u(x)) dx =

∫
SN−1

b(θ)

(∫ r

δn

sN−2u(sθ)∂su(sθ) ds

)
dS(θ)

=

∫
SN−1

b(θ)

(
rN−2u2(rθ)− δN−2

n u2(δnθ)

− (N − 2)

∫ r

δn

sN−3u2(sθ) ds−
∫ r

δn

sN−2u(sθ)∂su(sθ) ds

)
dS(θ)

= r

∫
∂Br

b( x
|x| )

|x|2
u2(x) dS − δn

∫
∂Bδn

b( x
|x| )

|x|2
u2(x) dS

− (N − 2)

∫
Br\Bδn

b( x
|x| )

|x|2
u2(x) dx−

∫
Br\Bδn

b( x
|x| )

|x|2
u(x) (x · ∇u(x)) dx ,

which yields

(198)

∫
Br\Bδn

b( x
|x| )

|x|2
u(x) (x · ∇u(x)) dx

= −N − 2

2

∫
Br\Bδn

b( x
|x| )

|x|2
u2(x) dx+

r

2

∫
∂Br

b( x
|x| )

|x|2
u2(x) dS − δn

2

∫
∂Bδn

b( x
|x| )

|x|2
u2(x) dS .

By (F) and the fact that u ∈ C1,α
loc (Ω \ {0}) we obtain

r

∫
∂Br

F (x, u(x)) dS − δn
∫
∂Bδn

F (x, u(x)) dS =

∫
Br\Bδn

div
(
F (x, u(x))x

)
dx(199)

=

∫
Br\Bδn

[∇xF (x, u(x)) · x+NF (x, u(x))] dx+

∫
Br\Bδn

f(x, u(x))(∇u(x) · x) dx

Letting n→ +∞, (194) follows by (195–199). �
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Università di Milano Bicocca,
Dipartimento di Matematica e Applicazioni,

Via Cozzi 53, 20125 Milano, Italy.

E-mail addresses: veronica.felli@unimib.it, alberto.ferrero@unimib.it, susanna.terracini@unimib.it.


