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da parte dei medici, dei tecnici e delle segretarie ha notevolmente semplificato il
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Durante questi anni la mia strada si è incrociata con quella di tanti miei

colleghi, ciascuno dei quali mi ha regalato un sorriso, un insegnamento, una

nuova amicizia. Vorrei quindi ringraziare, dal profondo del cuore ed in rigoroso

ordine alfabetico: Alberto, Alessandro, Annalisa, Christian, Cristina, Daniele,

Eleonora, Francesca, Gabriele, Ignazio, Luca, Miriam, Pietro, Richard, Salvatore.

Soprattutto verso alcuni (che sanno di essere i destinatari di queste frasi) sono



profondamente grato per i bellissimi momenti trascorsi assieme — dentro e fuori le

mura lavorative — e per il supporto personale e professionale che hanno saputo

darmi in tante, tante occasioni. Auguro a tutti voi di percorrere una strada
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Summary

Positron Emission Tomography and, more recently, hybrid PET/CT systems have

become increasingly important in the clinical practice thanks to their capabil-

ity of providing complementary, spatially coregistered anatomical and functional

information. However, PET imaging is still characterized by a “poor” spatial

resolution due to the multiple physical effects linked with the 511 keV photon-

matter interaction and with the detection apparatus. Low spatial resolution leads

to a spread in the activity distribution, resulting in a degradation of the image

quality (e.g. reduction of the contrast), in an underestimation of the tracer up-

take (activity concentration) and in an overestimation of the lesion volume. In

principle, each effect could be estimated by experimental measurements or by

simulation studies and then included in the reconstruction scheme to be compen-

sated. Unfortunately, some of these effects are very difficult or nearly impossible

to be measured. Consequently, another approach may consist in accounting for

all these effects by a “global” Point Spread Function (PSF), which describes how

a point source is rendered by the system itself. The knowledge of the PSF, in

principle, allows the correction of the resolution degradation and the recovery of

the correct quantitative information; on the other hand, this approach requires

the knowledge of the PSF in each point of the PET Field Of View (FOV) since

the response of the system is not uniform across the FOV of the scanner.

In this thesis it has been proposed a spatially variant PSF implementation

in the image space of a 3D Ordered Subsets Expectation Maximization (OSEM)

algorithm. Two different scanners from General Electric Medical Systems were

considered, without (DSTE) and with (D690) Time Of Flight (TOF) capability.

The PSF was chosen to be a 3D Gaussian function, which — thanks to the cylin-

drical symmetry of the scanners under study — was factorized into a transaxial

two-dimensional Gaussian function and an axial one-dimensional Gaussian func-

tion. In particular, along the radial direction the Gaussian function has been

chosen asymmetrical, with the larger tail directed towards the center of the scan-

ner. Consequently, in each point of the FOV the knowledge of the PSF coincides
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with the knowledge of four spread parameters, the internal radial, the external

radial, the tangential and the axial ones.

Experimental measurements, therefore, were performed to determine the de-

pendences of the PSF spread parameters on the position inside the scanner FOV.

The way of measuring the response of the PET system is, in fact, an important

point. Even in the simplest case, i.e. using a small point source in different posi-

tions of the scanner FOV, several factors have to be taken into account to obtain

a well representative description of the system response, such as the dimensions

of the source, the type of isotope used, the surrounding media (air, water, warm

radioactive background), the number and the position of the measurements.

In the case here presented the cylindrical symmetry of the scanners suggested

considering dependences on the radial and axial distances from the scanner centre.

To measure the PSF of the system a small radioactive 22Na point source (a

cylinder with diameter and height of 1 mm encapsulated in Lucite) in air was

used. Approximately 400 measurements uniformly distributed within the scanner

FOV were performed per scanner. Finally, since the PSF should act at the image

level of a 3D OSEM algorithm, it was considered important to determine the trend

of the PSF parameters in the same conditions, to match, as much as possible,

the PSF evaluations and the algorithm: therefore, the same algorithm was used

to reconstruct the point source raw data.

From each reconstructed image three orthogonal two-dimensional planes, pass-

ing through the voxel with the maximum intensity, were extracted along three di-

rections (originating the radial-tangential, radial-axial and tangential-axial planes):

each of them was then fitted by a two-dimensional function to determine the cor-

responding spread parameters.

The fitting function took into account the post-filter applied on the images

(to reduce the noise content), the actual position of the point source (in order to

correct the unavoidable imprecisions in the source positioning), the source dimen-

sions (to avoid an overestimation of the spread parameters due to the approxi-

mation of point source) and the intrinsic discretization along the axial direction

due to the finite dimensions of the slices.

The entire set of spread results obtained with the 22Na source were then fitted

by a two-dimensional function of the radial and axial distances from the scanner

center, to determine the required analytical dependences on the position inside

the scanner FOV.

The proposed method of measurement was also validated and demonstrated

its good accuracy in building the PSF model, justifying its use.

The implementation of the PSF consisted in a redefinition of the projector

and backprojector of the 3D OSEM algorithm. The practical implementation has

been performed by a factorization of the 3D PSF into a transaxial 2D PSF and an

axial 1D PSF. Both the transaxial and the axial PSFs were stored into a three-



vii

dimensional matrix to take their spatial dependence into account; the continuous

model of the PSF has been discretized by calculating its integral for each voxel,

allowing for a better adaptive implementation for each specific reconstruction

FOV and pixel size (the much more common strategy of filling each voxel with

the value of PSF in the middle point yields different shapes of the kernel, leading

to possible inaccuracies). The dimension of the stored kernel was chosen to be

about 4 times the spatial resolution of the scanners: this choice is conservative

with respect to the possibility of generating artefacts due to the truncation of the

PSF kernel. In this thesis the explicit expression for the transposed PSF operator

was also derived, showing that — in the spatially variant case — this does not

coincide with the transpose of the PSF kernel.

The PSF was tested on some phantom and clinical data. The results showed

improved quantitative accuracy, spatial resolution and image quality. Further-

more, the combined use of TOF and PSF appeared to allow them to take advan-

tage of each other, leading to the best results.

Unfortunately, a common effect of iterative reconstruction techniques is the

increase of noise as iterations proceed, due to the ill-posed nature of the re-

construction problem. Usually in clinical practice the quality of the images is

privileged over their quantitative accuracy by stopping the iterative algorithm

after few iterations and, consequently, far from convergence. This is true all the

more if PSF is included in the algorithm, since the speed of convergence results

lower than in non–PSF algorithms. Another important effect observed in PSF-

based reconstructions (and easily recognizable throughout the literature) is the

enhancement of regions with sharp intensity transitions. In this thesis it was

demonstrated, by means of 1D and 2D simulations, to be strongly related to the

implementation of the spatial resolution recovery and, even in presence of a per-

fectly matched kernel, unavoidable unless an unpractical number of iterations is

used.

Regularization techniques have been demonstrated to be useful for taking

noise under control during the reconstruction and improving the benefits from

the use of the PSF information by increasing the number of iterations used.

In particular, in this thesis a Bayesian variational regularization strategy has

been tested and employed. Two good candidates for the use in PET practice

are the Huber (or Gauss-Total Variation) and the generalized p-Gaussian priors.

The former provides good preservation of spatial resolution thanks to the Total

Variation component for high gradients, but the Gaussian component for low

gradients might be insufficient in controlling very noisy environments (as often

encountered in PET, in particular when the number of iterations is increased

to exploit the PSF action) unless the regularization strength is set to a very

high value, obtaining an unnatural reconstructed image. The p-Gaussian prior

provides a very strong smoothing on background regions, resulting in good noise



viii

control, while it smoothes much less in signal regions.

In this thesis a modification of the p-Gaussian prior was proposed to main-

tain the smoothing effect for low gradients (i.e. in background regions) and to

reduce the spatial resolution loss, while retaining “natural” transitions and ap-

pearance in the image. A 3D OSEM algorithm has been modified to include the

proposed prior using a Maximum A Posteriori One Step Late multiplicative ap-

proach. The value for the parameter p was chosen by qualitatively evaluating the

results obtained with different values and choosing the one yielding the best com-

promise between noise suppression, preservation of spatial resolution and natural

appearance of the image.

The considered priors depend on some regularization parameters. In this the-

sis a figure of merit, taking into account both the qualitative and the quantitative

content, was proposed to evaluate the global “detectability” of a lesion. The vali-

dation of this detectability index showed a very good correlation with the human

response and, thus, justified its use to set the regularization parameters.

The regularization parameters were then determined by maximizing the de-

tectability index for each prior. This optimization was performed for a sphere

with diameter 10 mm and 10 OSEM iterations.

The validation of the proposed modifications was quantitative on data ac-

quired with a NEMA IEC Body Phantom and qualitative on data relative to

two oncological patients and consisted of a comparison between the standard re-

construction algorithms, the proposed algorithm, the results obtained with the

p-Gaussian prior and with Gauss-Total Variation. This comparison showed an

effective control of noise (but with natural appearance of the image) by the pro-

posed prior with a contemporary good preservation of spatial resolution, con-

trast and definition of the activity distribution. Moreover, the proposed prior

was shown to be able also to take the edge artefact under control, drastically

reducing the overshoots originating at large transitions in the image. Positive

results were obtained also when the regularization strategy was used in conjunc-

tion with the TOF information, suggesting a possible future employment in the

PET reconstruction framework.



Riassunto

La Tomografia ad Emissione di Positrone (PET) e, più recentemente, i sistemi

ibridi PET/TC sono diventati sempre più importanti nella pratica clinica grazie

alla loro capacità di fornire informazioni anatomiche e funzionali complementari e

spazialmente coregistrate. Tuttavia, l’imaging PET è caratterizzato da una scarsa

risoluzione spaziale dovuta a molteplici effetti fisici collegati con l’interazione tra i

fotoni a 511 keV e la materia e con l’apparato di rivelazione. La bassa risoluzione

spaziale porta ad uno sparpagliamento della distribuzione di attività, che orig-

ina una degradazione della qualità dell’immagine (es. riduzione del contrasto),

una sottostima dell’accumulo di tracciante (concentrazione di attività) ed una

sovrastima del volume delle lesioni. In teoria, ogni effetto potrebbe essere valu-

tato da misure sperimentali o da studi di simulazione e poi incluso nel processo

di ricostruzione per essere compensato. Sfortunatamente, alcuni di questi effetti

sono molto difficili o quasi impossibili da misurare. Di conseguenza, un altro

approccio potrebbe consistere nel tenere conto di tutti questi effetti tramite una

Point Spread Function (PSF) “globale”, che descriva come una sorgente pun-

tiforme viene rappresentata dal sistema. La conoscenza della PSF, in principio,

consente di correggere la degradazione di risoluzione e di recuperare le corrette

informazioni quantitative; d’altra parte, quest’approccio richiede la conoscenza

della PSF in ogni punto del Campo di Vista (FOV) PET, poiché la risposta del

sistema non è uniforme all’interno del FOV dello scanner.

In questa tesi è stata proposta l’implementazione di una PSF spazialmente

variante nello spazio immagine di un algoritmo Ordered Subsets Expectation

Maximization (OSEM) 3D. Due diversi scanner General Electric Medical Systems

sono stati considerati, senza (DSTE) e con (D690) la tecnologia Time Of Flight

(TOF). La PSF è stata descritta come una funzione Gaussiana, che — grazie

alla simmetria cilindrica degli scanner in studio — è stata fattorizzata in una

funzione bidimensionale transassiale ed una funzione assiale monodimensionale.

In particolare, lungo la direzione radiale la Gaussiana è stata scelta asimmetrica,

con una larghezza maggiore verso il centro dello scanner. Di conseguenza, in ogni

punto del FOV la conoscenza della PSF coincide con la conoscenza di quattro
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parametri di perdita di risoluzione (spread), quello radiale interno, quello radiale

esterno, quello tangenziale e quello assiale.

Sono state quindi eseguite misure sperimentali per determinare le dipendenze

dei parametri di spread della PSF dalla posizione nel FOV dello scanner. Il modo

di misurare la risposta del sistema della PET è, infatti, un punto importante.

Anche nel caso più semplice, cioè usando una piccola sorgente puntiforme in

diverse posizioni del FOV dello scanner, molteplici fattori devono essere tenuti

in conto per ottenere una descrizione rappresentativa della risposta del sistema,

come le dimensioni della sorgente, il tipo di isotopo usato, i mezzi circostanti

(aria, acqua, fondo radioattivo), il numero e la posizione delle misure.

Nel caso qui presentato la simmetria cilindrica degli scanner ha suggerito di

considerare dipendenze dalle distanze radiale ed assiale dal centro dello scanner.

Per misurare la PSF del sistema è stata usata una piccola sorgente di 22Na (un

cilindro con diametro ed altezza di 1 mm incapsulato in Lucite) in aria. Sono state

effettuate circa 400 misure per ogni scanner, uniformemente distribuite dentro il

FOV. Infine, poiché la PSF deve agire nello spazio immagine di un algoritmo 3D

OSEM, è stato considerato importante determinare gli andamenti dei parametri

della PSF nelle medesime condizioni, per far corrispondere il più possibile le stime

della PSF con l’algoritmo: quindi, lo stesso algoritmo 3D OSEM è stato usato

per ricostruire i dati grezzi acquisiti con la sorgente puntiforme.

Da ciascuna immagine ricostruita tre piani ortogonali bidimensionali, passanti

attraverso il voxel con l’intensità massima, sono stati estratti lungo tre direzioni

(originando i piani radiale-tangenziale, radiale-assiale e tangenziale-assiale): cias-

cuno di essi è stato poi fittato con una funzione bidimensionale per determinare

i parametri di spread corrispondenti.

La funzione di fit ha tenuto conto del post-filtro applicato alle immagini (per

ridurre il contenuto di rumore), della posizione reale della sorgente puntiforme

(per correggere le inevitabili imprecisioni nel posizionamento della sorgente), delle

dimensioni della sorgente (per evitare una sovrastima dei parametri di spread

dovuta all’approssimazione di sorgente puntiforme) e della discretizzazione in-

trinseca lungo la direzione assiale a causa dello spessore finito delle fette.

Per ogni parametro di spread, i risultati ottenuti con la sorgente di 22Na

sono stati fittati con una funzione bidimensionale delle distanze radiale ed assiale

dal centro dello scanner, per determinare le dipendenze analitiche richieste dalla

posizione all’interno del FOV.

Il metodo di misura proposto è stato anche validato e ha mostrato la sua

buona accuratezza nel costruire il modello di PSF, giustificando il suo uso.

L’implementazione della PSF è consistita in una ridefinizione del proiettore

e del retroproiettore dell’algoritmo 3D OSEM. La realizzazione pratica è stata

compiuta fattorizzando la PSF 3D in una PSF 2D transassiale ed una PSF 1D

assiale. Ciascuna di esse è stata immagazzinata in una matrice tridimensionale,
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per tenere in conto la dipendenza dalla posizione nello scanner; il modello con-

tinuo della PSF è stato discretizzato calcolando il suo integrale per ogni voxel,

permettendo una rappresentazione più adattativa per ogni specifico FOV di ri-

costruzione e dimensione di pixel (la strategia molto più comune di riempire ogni

voxel con il valore della PSF nel punto medio produce delle deformazioni della

funzione contenuta nel kernel, portando a possiibli inesattezze). La dimensione

del kernel memorizzato è stata scelta pari a circa 4 volte la risoluzione spaziale

degli scanner: questa scelta è conservativa in riferimento alla possibilità di gener-

are artefatti dovuti al troncamento del kernel della PSF. Inoltre, in questa tesi

è stata derivata anche l’espressione esplicita per l’operatore trasposto della PSF,

mostrando che — nel caso spazialmente variante — questo non coincide con il

trasposto del kernel PSF.

La PSF è stata testata su dati da fantocci e clinici. I risultati hanno mostrato

migliori accuratezza quantitativa, risoluzione spaziale e qualità di immagine. In-

oltre, l’uso combinato di TOF e PSF sembra consentire una mutua interazione

positiva, conducendo ai migliori risultati.

Sfortunatamente, un effetto comune delle tecniche di ricostruzione iterative

è l’aumento di rumore al crescere del numero di iterazioni, dovuto al fatto che

il problema della ricostruzione è intrinsecamente mal posto. Solitamente nella

pratica clinica la qualità delle immagini è privilegiata rispetto alla loro accu-

ratezza quantitativa, fermando l’algoritmo iterativo dopo poche iterazioni e di

conseguenza lontano dalla convergenza. Questo è vero a maggior ragione se la

PSF viene inclusa nell’algoritmo, dal momento che la velocità di convergenza

risulta minore rispetto ad algoritmi senza PSF. Un’altra caratteristica impor-

tante osservata nelle ricostruzioni con PSF (e frequentemente riconoscibile in

letteratura) è l’esaltazione di regioni con ripide transizioni di intensità. In questa

tesi è stato dimostrato, per mezzo di simulazioni mono e bidimensionali, che

tale effetto è fortemente collegato all’implementazione del recupero di risoluzione

spaziale e, anche in presenza di un modello perfetto, inevitabile a meno che un

numero di iterazioni elevatissimo (e quindi impratico) venga usato.

È stato dimostrato che le tecniche di regolarizzazione dell’immagine possono

essere utili per mantenere il rumore sotto controllo durante la ricostruzione e

migliorare i benefici ottenuti tramite l’uso dell’informazione PSF aumentando il

numero di iterazioni usate. In particolare, in questa tesi una strategia di re-

golarizzazione variazionale Bayesiana è stata testata ed impiegata. Due buoni

candidati per l’uso in PET sono gli a-priori Huber (o Gauss-Total Variation) e p-

Gaussiano generalizzato. Il primo fornisce una buona preservazione di risoluzione

spaziale grazie alla componente Total Variation per alti gradienti, ma la compo-

nente Gaussiana per i bassi gradienti potrebbe essere insufficiente a controllare

zone molto rumorose (come spesso incontrato in PET, in particolare quando il

numero di iterazioni viene aumentato per sfruttare l’azione della PSF) a meno che
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l’intensità di regolarizzazione venga regolata ad un valore molto alto, ottenendo

un’immagine ricostruita innaturale. L’a-priori p-Gaussiano fornisce un’azione di

filtraggio molto forte nelle regioni di fondo, originando un buon controllo del

rumore, mentre filtra molto meno nelle regioni di segnale.

In questa tesi una modifica dell’a-priori p-Gaussiano è stata proposta per

mantenere l’effetto di filtraggio per bassi gradienti (cioè nelle regioni di fondo)

e ridurre la perdita di risoluzione spaziale, ma mantenendo transizioni ed ap-

parenza qualitativa “naturali”. Un algoritmo 3D OSEM è stato modificato per

includere l’a-priori proposto usando un approccio moltiplicativo Maximum A

Posteriori One Step Late. Il valore per il parametro p è stato scelto valutando

qualitativamente i risultati ottenuti con valori diversi e scegliendo quello che ha

prodotto il migliore compromesso tra la soppressione di rumore, la preservazione

di risoluzione spaziale ed un naturale aspetto dell’immagine.

Gli a-priori considerati dipendono da alcuni parametri di regolarizzazione. In

questa tesi è stata proposta una cifra di merito — che tenesse conto del con-

tenuto sia qualitativo sia quantitativo — per valutare la “rivelabilità” globale

di una lesione. La validazione di questo indice di rivelabilità ha mostrato una

correlazione molto buona con la risposta umana e ha quindi giustificato il suo uso

per assegnare i parametri di regolarizzazione.

I parametri di regolarizzazione sono dunque stati determinati massimizzando

l’indice di rivelabilità per ciascun a-priori. Quest’ottimizzazione è stata eseguita

per una sfera di diametro 10 mm e 10 iterazioni OSEM.

La validazione delle modifiche proposte è stata quantitativa (su dati acquisiti

con un fantoccio NEMA IEC Body Phantom) e qualitativa (su dati relativi a due

pazienti oncologici) ed è consistita in un confronto tra gli algoritmi di ricostruzione

standard, l’algoritmo proposto, i risultati ottenuti con l’a-priori p-Gaussiano e con

la Gauss-Total Variation. Questo confronto ha mostrato un efficace controllo del

rumore (ma mantenendo un aspetto naturale dell’immagine) da parte dell’a-priori

proposto, con una contemporanea buona preservazione di risoluzione spaziale,

contrasto e definizione della distribuzione di attività. Inoltre, l’a-priori proposto

si è mostrato anche in grado di mantenere l’artefatto di bordo sotto controllo,

riducendo drasticamente le esaltazioni delle transizioni intense nell’immagine.

Risultati positivi sono stati anche ottenuti quando la strategia di regolarizzazione

è stata usata in unione con le informazioni TOF, suggerendo quindi un possibile

futuro utilizzo nell’ambito PET.
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Chapter 1

Scope of the work

1.1 The dawn of medical physics

Many among the most important physicians of all times — such as Hippocrat,

Leonardo Da Vinci, Andrè van Wesele — used to study human anatomy on

corpses, breaking the ethical barrier of death. For many centuries the study of

body parts was reserved — as a sort of mystical secret — to medicine students

around an autoptic table: anatomy was strictly linked with death. It is com-

prehensible, then, why in 1896 Wilhelm Röntgen’s discovery of X-rays originated

deep astonishment: for the first time it was possible for many people to see (figure

1.1) a bone inside an alive human being. It was born what nowadays is called “di-

agnostic imaging”. Only few months, though, were necessary for Henri Becquerel

to put another brick in the fundaments of modern medical physics: the discovery

of radioactivity of uranium (and, two years later, of radium by Marie and Pierre

Curie) paved the way to the analysis not only of the anatomical aspects, but also

of the functional mechanisms of alive creatures.

1.2 Digital 3D anatomy

Although deep improvements were achieved during the first part of the twentieth

century in X-ray imaging field (such as intensifying screens, rotating anodes,

contrast agents), the “most significant single event in medical imaging since the

discovery of X-rays” (as stated in [41]) was the introduction, in the early 1970s, of

X-ray Computerized Tomography (CT) by G. Hounsfield and A. Cormack. Figure

1.2 shows the first clinical image acquired by Hounsfield at Atkinson Morley’s

Hospital on 1st October 1971.

This innovation completely filled the gaps between the postmortem exami-

nation anatomy and the “new” diagnostic imaging: indeed, until then all the

3
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Figure 1.1: The first X-ray image [41]

Figure 1.2: The first CT image [12]: note that for the first time in a X–ray exam
of the head the skull is not the only visible part

examinations gave a single projection of the body on a definite plane, integrating

the contribution of all the tissues between the source and the detector. For the

first time, the idea of reconstructing a volume after acquiring many projections

was introduced in medicine: the body could now be treated as a three-dimensional

object, just like it was done in the ancient time on the corpse under study. But

X-ray CT brought a revolution in the digitalisation of the signal, too: the new
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informative content consists of some numbers, and the same set of numbers can

yield different images depending on how it is represented (e.g. the choice regard-

ing the color scale used to convert the numbers into an image, the so–called lookup

table or LUT); furthermore, the digitalised images could be stored, sent, received

in a much simpler way than before, for example via the Picture Archiving and

Communication System (PACS) created in the 1980s.

1.3 The other half of the sky: functional imaging

The radiographic images obtained with X rays, as stated above, gave the physi-

cian a dramatically improved knowledge on anatomy. A complete diagnosis,

however, needs also a complementary information concerning the functionality of

the body under study. The origins of physiology could be dated back to the stud-

ies of William Harvey on blood circulation (1616), but in centuries of medicine

the physiologic information could never be collected as an image.

The discovery of artifical radioactivity hinted a possible, revolutionary, appli-

cation: if a molecule of biological interest is bonded to a proper radioisotope and

administered to the patient, the distribution of the molecule could be inferred

from the distribution of radioactivity in the patient. The production of radionu-

clides at Oak Ridge National Laboratory in 1946 was the first, fundamental step

to concretize this epochal idea. The pioneering works by Benedict Cassen and

Hal Oscar Anger (figure 1.3, to cite only the most important scientists) in the

second half of 1950 completed the foundations of what nowadays is called nuclear

medicine. The functional imaging was officially born. Since then, γ-emitting

radioisotopes have been used in scintigraphy for many different applications and

districts (some examples are provided in figure 1.4) thanks to its capability of

providing a planar projection of the activity distribution.

The combination of different projections and a subsequent reconstruction

step are the basis of the extension of scintigraphy to three-dimensional imaging,

the Single Photon Emission Computerized Tomography (SPECT), developed by

David E. Kuhl and Roy Edwards in the beginning of 1960s. For the first time it

was possible to obtain a three-dimensional representation of in-vivo functionality

in a human being: an astonishing result.

About ten years later, another milestone in nuclear medicine was to be set.

In the 1970s, Tatsuo Ido at the Brookhaven National Laboratory was the first to

describe the synthesis of 18F -2-fluoro-2-deoxyglucose (FDG). The new compound

— which had the peculiarity of β+ decay, originating a couple of photons in

coincidence and changing the characteristics of the radiation emitted — was first

administered to two normal human volunteers by Abass Alavi in August 1976 at

the University of Pennsylvania. Brain images obtained with an ordinary nuclear

scanner demonstrated the concentration of FDG in that organ. This set the
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Figure 1.3: Hal Anger and Benedict Cassen at the International Conference on
Peaceful Uses of Atomic Energy in Geneva, Switzerland, in 1955 [93]

Figure 1.4: Some applications of scintigraphy: imaging of the lungs (top left), of
the thyroid (top right) and of the bones (bottom)
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groundwork for more in-depth research into using PET to diagnose and evaluate

the effect of treatment on human disease.

The first primarily used commercial PET scanner was introduced in 1975 [94]

(figure 1.5), even if for the entire 1980s PET was mainly used for research. During

the early 1990s, PET expanded into hospitals, diagnostic clinics, mobile systems

and physician practices as more and more of the medical community began to

realize the utility of PET.

Figure 1.5: The PETT II prototype

For brain imaging — which received a strong improvement from X-ray CT,

but which was revolutioned by PET — another important innovation was the

introduction of Magnetic Resonance Imaging (MRI) in the early 1980s. More-

over, the implementation of new digital methods produced a terrific increase in

sensitivity and quality of all exams.

The availability of different modalities on the same district enriched the qual-

ity of the clinical information. In particular, the advantages of complementary

anatomical and functional images have long been appreciated, in particular if

they are fused to represent, on the same image, both of them. Nevertheless,

while generally successful for the brain, software approaches often encountered

significant practical difficulties with the rest of the body, since the alignment

procedures of the different images are generally labour intensive and uncertain

of success. Consequently, it is understandable how the proposal of integrating

an anatomical (CT) with a functional tomograph (PET or SPECT) into a single

scanner, which could be able to produce natively coregistered images, was wel-

comed with great excitement. The proposal came to reality thanks to the work

by Bruce Hasegawa from University of California San Francisco (UCSF) on the

fusion imaging with SPECT and CT and the first PET-CT prototype by D. W.

Townsend and R. Nutt from University of Pittsburgh in 1998 [14, 54, 100].
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The relevance of these innovations can be understood by considering that

Time Magazine nominated the PET-CT integrated scanner Invention of the Year

2000 [47]:

Even apart, PET and CT scanners are triumphs of technology, de-

vices that have saved countless lives, prolonged others, and often made

many exploratory operations unnecessary. Yet each has limitations

that can lead to uncertainties in diagnosis. By successfully combining

the two technologies, Ronald Nutt and David Townsend have elimi-

nated those uncertainties and provided medicine with a powerful new

diagnostic tool.

Moreover, thanks to the revolutionary impact of their invention, Ronald Nutt

and David Townsend were awarded the 2010 IEEE Medal for Innovations in

Healthcare Technology. PET-CT imaging (see figure 1.6 for an example) is now

an integral part of oncology for diagnosis, staging and treatment monitoring.

Figure 1.6: Example of PET-CT exam



1.4. PROBLEMS AND POTENTIALITIES OF IMAGE RECONSTRUCTION 9

1.4 Problems and potentialities of image reconstruction

There ain’t no such thing as a free lunch, though. Apart from the increased

radiation dose (which constitutes an important topic to be assessed when dealing

with tomographic images), recostructing an image from its projections is not an

easy task. Firstly, an exhaustive knowledge of projection processes is necessary

to correctly correlate projections and object. This includes also the necessity

to introduce corrections to various physical effects (e.g. scatter, randoms, dead

time etc.) Secondly, a robust algorithm is required to avoid image degeneration

because of noise: the reconstruction task is nearly always an ill–posed problem, i.e.

a little fluctuation in the starting data may produce a deeply different image from

the real one. Furthermore, the algorithm should not create spurious frequency

contents with respect to the frequency spectrum of the collected data.

Since — passing to computerized reconstruction — there is not a unique final

result, another key point is to be able to optimize the recostruction algorithm.

It is not simple to define what optimize means, since this implies the definition

of performance of the algorithm. Basically, mathematical estimators not always

correlate with physicians’ criteria of image interpretation.

Anyway, even if reconstructive approach originates the above mentioned prob-

lems, also its potentialities extend with respect to non-reconstructive approach.

The most important and innovative characteristic is the flexibility of reconstruc-

tion, i.e. it is possible to define also an image formation model incorporating the

physical effects linked with the detection of the information.

From this brief introduction it is apparent how the new approach to medi-

cal exams needs an interdisciplinary cooperation between different professional

figures (physicians, medical physicists, technicians, engineers...) because of the

increasing complexity of the hardware and software systems used.

1.5 Structure of the work

This work proposes some improvements to the quality and quantitative accuracy

of PET images. In particular, these improvements are the effects of the imple-

mentation of the Point Spread Function (PSF) of the tomograph into an iterative

reconstruction algorithm (to improve the spatial resolution of the resulting im-

ages) and the introduction of a regularization acting on the images (to control the

noise increase as the number of iterations increase and to obtain more uniform

images). Even if the basic concepts here exposed apply and could be adapted to

a general iterative algorithm, in this work the implementations were performed

inside a fully 3D PET iterative reconstruction algorithm by General Electric Med-

ical System (GEMSTM). Because of this, chapter 2 explains the main features

of Positron Emission Tomography, including the origin of the system response

function and of PSF.
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Chapter 3 addresses the data acquisition and reconstruction processes. In

particular, the difference between analytical and statistical approaches is under-

lined.

Chapter 4 describes the modelization of PSF, proposes a method to perform

the physical measurements to analytically determine the PSF of a scanner across

the transaxial and axial field of view and assesses the accuracy of this method.

Chapter 5 presents the computational implementation of the PSF in the re-

construction algorithm and addresses an important effect linked with this imple-

mentation, i.e. an enhancement of the sharp transitions in the image.

Chapter 6 introduces the theoretical background of the regularized reconstruc-

tion, with particular attention to the variational approach. It also proposes a new

variational regularization prior depending on two parameters and a strategy to

optimize them.

Chapter 7 reports the results of the proposed modifications obtained with a

GE non Time-of-Flight scanner.

Chapter 8 reports the results of the proposed modifications obtained with a

GE Time-of-Flight scanner.

Finally, chapter 9 discusses the results obtained and draws the conclusions of

the work, while chapter 10 proposes some possible future developments.

In the appendix on page 183, some additional mathematical details are pro-

vided.



Chapter 2

Positron Emission Tomography

PET is a nuclear medicine exam relying on the annihilation of anti-electrons

(positrons) with electrons and the consequent simultaneous emission of two 511

keV back-to-back photons

e+ + e− → 2γ(511 keV)

If it is possible to coincidentally∗ detect the two photons, this measure defines

a line of response (LOR) along which the 2γ-emission event originated. Many

LORs contribute to define, then, some projections of the object under study.

2.1 Physical principles

Neutron-deficient radionuclides are the possible candidates for PET use. Such

isotopes, actually, have two decay possibilities:

Positron decay p→ n+ β+ + νe
Electron capture p+ e− → n+ νe

The kinematic condition for the positron decay to happen is[
M
(

A
Z+1Y

)
−M

(
A
ZX
)]
c2 ≥ 2mec

2

otherwise the radionuclide will decay by electron capture. The more the free

energy, the higher probability of the positron decay channel will occur.

The radioactive decay obeys to the decreasing exponential law

N(t) = N0e
− t
τ = N0e

− t ln 2
t1/2 (2.1)

∗Within a time interval so short to be approximated by a delta function.

11
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where τ is called mean lifetime, while t1/2 is the half-life of the emitter. From

the decay law it is evident that not all the beta–emitters are apt to be used in

PET exams: the radionuclide should decay neither too fast (to have enough time

to accumulate in the required tissues and to be recorded by the scanner) nor too

slow (to record enough counts within a moderate duration of the exam). If the

radionuclide is not synthesized in the same facility of the PET exam, another

constraint on the lifetime is represented by the required transportation time,

forcing to choose longer lifetimes. For these reasons, the most used positron-

emitting isotopes in PET imaging are listed in table 2.1.

15O 13N 11C 18F

Half-life 2 min 11 min 20 min 110 min
Availability On-site On-site On-site Cyclotron,

cyclotron cyclotron cyclotron regional distribution

82Rb 68Ga 62Cu

Half-life 75 s 68 min 9.7 min
Availability Generator Generator Generator

82Sr/82Rb 68Ge/68Ga 62Zn/62Cu

Table 2.1: Abbreviated list of β+-emitting isotopes of potential interest in PET
imaging [66]

Among these, 18F is definitely the most used because of its “long” lifetime

that allows also the transport to medical structures unable to produce it on their

own.

All β+-emitters are included in some pharmaceuticals, administered then —

generally via intravenous injection — to the patient. The radiopharmaceutical,

accumulating in the organ of interest inside the patient’s body, creates a distri-

bution of activity related to some characteristics of the biological process under

study. As far as 18F is concerned, it is inserted in a glucose analog, named 2-

[18F]fluoro-2-deoxy-D-glucose (FDG), whose structure is represented in figure

2.1.

The first step of the FDG methabolism in the cell is the same as the one

with standard glucose. The second step, instead, requires the presence of two

OH groups in position 1 and 2, while in FDG the position 2 is occupied by 18F :

this prevents — temporarily, see below — FDG from being metabolized (figure

2.2b) and, consequently, it accumulates in the cells proportionally to the cellular

activity (Warburg effect [104]). When 18F decays, it transforms into 18O: the

resulting compound is glucose-6-phosphate, a product of the first part of normal

glycolysis (figure 2.2a). The metabolism of former FDG, then, can proceed as
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Figure 2.1: Chemical structure of FDG (C6H11FO5)
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Figure 2.2: Different metabolism between glucose and FDG

usual in the body.

As an example, in table 2.2 other important radiopharmaceuticals are re-

ported.

H2
15O Functional brain studies (rCBF)

C15O2 Functional brain studies (rCBF)
CO Cerebral blood volume studies
11C-tyrosine Amino acid for brain studies and oncology
13NH3 Ammonia for blood flow studies in the heart
11C-raclopride Dopamine receptor system, Parkinson’s Disease
18F -DOPA Dopamine receptor system, Parkinson’s Disease
11C-acetate Cardiological studies

Table 2.2: Some of the non-FDG radiopharmaceuticals used in PET imaging

A positron is emitted from the place of the radiopharmaceutical decay. This

positron, travelling across the tissues, loses its kinetic energy in the electromag-

netic collisions with the atomic electrons and, nearly at rest, either annihilates

with an electron of the medium (approximately in 0.2 − 0.4 ns [71]) or creates

a bounded state e+e−, called positronium. In dependence on the antiparallel

or parallel spin orientation, two possible atomic states are possible, respectively
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called parapositronium and orthopositronium. While there is no energetic strong

preference for one of the two configurations, the parapositronium — according

to QED selection rules — annihilates into two photons with an intrinsic (i.e.

in vacuum) mean lifetime τ = 125 ps, while the orthopositronium can only an-

nihilate into three photons with a lifetime τ = 140 ns. This large difference

in lifetimes creates a high probability for a positron in an ortho-state to fast

para-annihilate with another electron of the medium, producing two γ rays and

shortening the “effective” mean lifetime of the orthopositronium to 0.5 − 5 ns

in matter. Consequently, 3γ emission is negligible and all the detectable radi-

ation can be attributed to the 2 annihilation γ quanta, which — according to

the momentum and energy conservation laws — are emitted back-to-back (i.e. at

180◦ in opposite direction), each one carrying an energy of 511 keV (equal to the

positron and electron rest masses).

The γ pairs are isotropically emitted in the full solid angle of 4π and can

be detected by couples of opposite detectors operated in coincidence giving the

LORs of the system. To reveal 511 keV photons, a material with high density

and high atomic number is preferable. Moreover, since the detection must be

performed in coincidence, also timing properties of the detector are important.

For these reasons, the scintillating crystals are nowadays the most interesting

devices. In table 2.3 the principal crystals used in PET are reported.

Crystal I λp [nm] τ [ns] Z ρ [g/cm3] εE [%] 1/µ [mm]

NaI(T l) 100 410 230 51 3.7 10 29.4
BGO 15 480 300 75 7.1 10 11.2
GSO 30 430 65 59 6.7 8.5 15.0
LSO 75 420 40 66 7.4 10 12.3
LY SO 80 420 41 60 7.1 11 12.6
LaBr3 146 358 21 47 5.1 3 21.3

Table 2.3: Principal crystals used in PET: I is the relative intensity (on PMTs)
of light emission, λp is the peak wavelength of the emitted light, τ is the time
constant of the light emission process, Z is the effective atomic number, ρ is the
crystal density, εE is the energy resolution at 511 keV and 1/µ is the attenuation
length at 511 keV [28, 48, 52, 63, 99, 107]

NaI(T l) was the scintillating material used in the first PET prototypes,

thanks to its well-known and diffused production techniques and its high light

yield. Having suboptimal effective atomic number and density and being highly

hygroscopic, however, it was substituted by a new scintillator, the bismuth ger-

manate Bi4Ge3O12 (BGO), with a density nearly double than NaI(T l) and a

strongly higher effective atomic number. Even if the light emission time is slightly

longer than NaI(T l) and — more importantly — the light yield is sensibly lower,
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its overall characteristics appear to fit better to PET: therefore, BGO has become

the crystal used in the new generation PET scanners and has remained the tradi-

tional choice for years. An alternative to BGO is represented by the cerium–doped

gadolinium orthosilicate Gd2SiO5 : Ce (GSO). This scintillator presents a light

yield nearly double with respect to BGO, it is five times faster and has a better

energy resolution; on the other hand, its higher attenuation length provides, for

equal dimensions of the crystals, lower sensitivity.

Few years ago, a new scintillator — the cerium–doped lutetium orthosilicate

Lu2SiO5 :Ce (LSO) — has been introduced: high density and effective atomic

number comparable to BGO ones, light yield intermediate between NaI(T l) and

BGO and a time constant less than a fifth of NaI(T l) one represent an im-

portant improvement in the detection. Unfortunately, it possesses a quite high

level of intrinsic radioactivity (since it derives from a rare earth) which increases

the random coincidence counts (see later). For production and commercial rea-

sons a modified version of LSO, the cerium–doped lutetium–yttrium orthosilicate

Lu2(1−x)Y2xSiO5 :Ce (LYSO), has been developed, substituting some atoms of

lutetium with another rare earth, the yttrium. The resulting crystal mantains

all the positive features of LSO, with only a slightly longer decay time: as a con-

sequence, its employment in PET scanners is nearly interchangeable with LSO.

The percentage of yttrium contained, however, influences its characteristics (in

particular, its effective Z and density), originating different types of this scin-

tillator. Both these new scintillators have been substituting the historical BGO

and GSO, thanks to their faster response and, consequently, better capability of

dealing with high count rates in the field of view (FOV). Moreover, they have

renewed an old idea of PET, named Time of Flight (TOF) which is based on the

measurements of the difference in the arrival time between the two γ involved

in the annihilation process. Finally, other solutions have been proposed very

recently and their characteristics are under study [56, 58].

In the current generation of PET scanners, the crystals have dimensions of

about 4 mm in transversal direction and 4 − 8 mm in the axial direction, while

their thickness is about 20− 30 mm. Crystals are generally grouped into blocks,

e.g. 6 × 6 or 8 × 8, and each block is read by a group (composed of two or four

units) of photomultipliers tubes (PMT). Figure 2.3 presents a schematic repre-

sentation of a crystal block and its relative PMTs. As a similar strategy, the set

of individual crystals may be substituted by a single block of scintillator with spe-

cific designed cuts. A new perspective in the detector design is to replace PMTs

with avalanche photodiodes (APDs) which are compact solid state semiconductor

devices. The advantages of APDs over PMTs rely on their small size, lower cost

of production and insensitivity to magnetic fields which is very important for the

potential development of integrated PET/MRI systems. A disadvantage of the

APDs is the limited electronic gain, lower (1000 to 10000 times) than PMTs, thus
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requiring additional dedicated integrated preamplifier. To overcome this prob-

lem, silicon PMTs have been proposed. Silicon PMTs are types of APD running

in Geiger mode allowing gains of the order of 106 (as for PMTs) to be obtained.

Another solution under deep study consist in the use of resistive plate chambers

(RPC), based on gas detectors with high temporal resolutions (≈ 300 ps), large

dimensions and reduced costs. Their low sensitivity may be compensated by

stacking them up, in order to obtain a columnar structure providing high spatial

resolution [27].

PMT

PMT

scintillating crystals

Figure 2.3: Scheme of a crystal block read by PMTs

The scintillator blocks are then disposed in complete rings with a diameter of

about 70 − 80 cm; the number of rings is nearly always 3 or 4 and this number

determines the axial FOV — usually about 15 cm — and the total number of

planes along z axis. In the axial gaps between two adjacent crystals it is possible

to locate some absorbing septa (usually in tungsten) to axially define the image

planes (used when performing 2D acquistion): these septa are automatically

retracted if 3D acquisition is used (see figure 2.4 for comparison). The circular

disposition of crystals leads to an increase in the efficiency in comparison with

single-photon acquisition devices: each crystal records LORs with a relatively

high number of other crystals, leading to a “fan beam” response. If 3D acquisition

mode is used, this is true also for the axial response (changing the response to a

“cone beam” one).

Another choice for the organization of the crystals and the readout has been

used in some cases: the so–called pixelated detector (or pixelar) design. In this

scheme the crystals are arranged (in a pseudo–continuous matrix) into slightly

curved panels, which are optically connected via a continuous lightguide; the

relatively big PMTs are cylindrical and disposed into an exagonal pattern (see

figure 2.5). A similar organization allows using 5 or 7 PMTs to localize (with an

improvement in the positioning of the event), to reduce the light collection dropoff

only at the edges of the FOV (with the block scheme, the collection dropoff can

happen at each block edge) and to limit the light collection variability across the
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Figure 2.4: Difference between 2D (top) and 3D (bottom) acquisitions due to
septa usage

FOV.

1
2

3
4

7
6

5

Figure 2.5: Scheme of pixelated detector design

Since in PET the acquisition of multiple peaks is not necessary, broadly† only

one energy window is used in the readout electronics: typically, the low level is

set at 375−425 keV, while the high level is 650 keV. As far as temporal aperture

is concerned, a good compromise to detect enough signal from the PMTs and to

have a reasonable low contribution from randoms is to accept coincidence in a

time window of 4.5−9.7 ns‡. If the temporal response of the system is fast enough,

it is possible to improve the data acquisition using also a temporal information

on the photon detection. In fact, considering a LOR coincident with a diameter

†Two windows can be used to better analyse diffuse radiation, but their use is not widely
spread.

‡For more details, see section 2.2.4.
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of a crystal ring and assuming that the photon emission happens at a distance

x from the center of the detector, the time difference between the arrival of the

two photons on the crystals is

∆t =
1

c
[(d+ x)− (d− x)] =

2x

c

Using a scintillator with high timing resolution (such as LSO or LYSO) and

adequate readout electronics, it is possible to estimate x from the measure of

∆t. This new approach, called time of flight PET (TOF–PET), adds a further

weight on each event: if in conventional PET every point of the detected LOR

has the same probability of being the annihilation source, in TOF–PET it is

possible to introduce a probability distribution along the LOR itself and restrict

the uncertainty on the positioning of the event (see figure 2.6). This helps in

reducing both scatter and, in particular, random contributions (see section 2.2),

improving the image quality and the quantitative information [17, 23, 24, 60]. A

figure of merit often used is the signal-to-noise ratio (SNR)

SNR = k
1√
n

[
T 2

T + S +R

]1/2

where k is a constant, n is the number of volume elements influencing the noise,

T , R and S are, respectively, the total true, random and scattered coincidences

in the image. The main difference between conventional and TOF PET is in the

factor n.

In conventional PET§, since each detected event is evenly back-projected in

all image elements along the LOR, all voxels contribute to the noise in each image

element. Considering, for the sake of simplicity, a cylinder of diameter D and

image elements of dimension d, it is possible to estimate nconv = D/d.

In TOF, instead, each event is back-projected only in the position associated

to such TOF information and into few volume elements adjacent to it, with a

weight given by a TOF kernel or probability function of width ∆x, representing

the spatial uncertainty related to the time resolution ∆t of the scanner by ∆x =

c∆t/2. In this case, a possible estimation of the number of voxel contributing

to the noise may be nTOF = ∆x/d. Consequently, the SNR gain introduced by

TOF may be estimated as

SNRTOF =

√
D

∆x
SNRconv

It is important to note, however, that TOF–PET generates an about tenfold

larger data set if compared with conventional PET, requiring efforts in optimizing

the reconstruction task and reducing the computational load (for more details,

see section 3.6).

§For more information, see chapter 3.
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Figure 2.6: Comparison between the positioning of annihilation events in con-
ventional (bottom left) and TOF (bottom right) PET, based on the times tA and
tB of the detection events

Finally, table 2.4 presents a summary of the most recent PET systems avail-

able, with their main characteristics.

2.2 Effects superimposed to the signal due to emission

2.2.1 Poisson statistics

The object under PET study is divided into pixels (picture elements) — if 2D

imaging is used — or voxels (volume elements) — if 3D imaging is used. Each

element¶ i is expected to emit µi events, which constitute the required unknown

information. Because of Poisson statistics of the decay process, however, what is

actually emitted is ni events, with a probability

P (ni) =
e−µiµnii
ni!

(2.2)

This introduces an uncertainty source, in particular if quantitative informa-

tion are needed.

2.2.2 Source decay

If quantitative information on radiopharmaceutical concentration is important,

source decay itself is a source of uncertainty. Since the activity A depends expo-

nentially on the time

A(t) = A0e
− t
τ = A0e

− t ln 2
t1/2 (2.3)

¶In the whole text, when referring to voxels, a single index will be used instead of three
different ones. This implicitly assumes the introduction of some ordering criteria.
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Table 2.4: Summary of the most recent PET systems available with their main
characteristics
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if the initial activity A0 (or concentration of activity) in a region of interest (ROI)

— or in a volume of interest (VOI) if three-dimensional information is used —

should be found from the total counts inside it, equation 2.3 must necessarily be

taken into account to obtain the correct result.

2.2.3 Positron energy and range

Positron energy is another factor of resolution worsening. Firstly, the positron is

emitted with a non–zero initial energy. This implies that it will lose its energy in

many collisions with the electrons of the traversed medium. Since the annihilation

happens nearly at rest, the effective‖ distance from the radioisotope decay — the

positron range — introduces a shift between the real and the recorded origin

of radiopharmaceutical decay, which is the one deduced from the annihilation

place. The positron range obviously depends on the particle initial energy: since

the positron energy spectrum is not a delta function — the β+ emission is a three–

body decay — also the positron range will follow a distribution generally peaked

at low distances. Table 2.5 lists the principal PET radioisotopes, their end–point

energies and the corresponding contributions of positron ranges in water to total

resolution.

Isotope Maximum positron Modal positron Positron range
energy [MeV] energy [MeV] in water (FWHM) [mm]

11C 0.96 0.386 1.11
13N 1.19 0.492 1.4
15O 1.72 0.735 1.5
18F 0.64 0.250 1.0

68Ga 1.89 0.836 1.7
82Rb 3.36 1.524 1.7

Table 2.5: End–point energy, modal energy and positron ranges for commonly
used PET radioisotopes [63, 72]

Moreover, the γ−γ emission can happen not completely at rest, either because

the positron annihilates with an electron before losing its entire kinetic energy

or because the positronium center of mass is not at rest: in both cases, the

conservation of energy and momentum forces a non perfect collinearity between

the two photons (their separation angle is widely reported as 180◦ ± 0.5◦). This

leads to a wrong reconstruction of the LOR and, consequently, to an incorrect

positioning of the β+ decay.

‖Since positrons have the same mass of electrons, their path in the matter is tortuous:
consequently, the “integrated” covered distance (the mean free path) does not correspond to the
straight distance from the emission point to the rest point.
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2.2.4 Random coincidences

If two photons, emitted by different nuclei, reach contemporarily (i.e. inside the

considered temporal window ∆t, usually of the order of some nanoseconds) two

detectors, a fake LOR is created: these counts are consequently superimposed

to the real count rate, originating more events than the real ones. Random

coincidences are considered to be uniform in space and their rate is [52]

Rrand = 2∆tR1R2 (2.4)

while R1 and R2 are the singles count rate in the two detectors: as evident, then,

the random rate has a quadratic dependence on the source activity. This relation

is true if the singles rate is much larger than the rate of coincidence events and

if dead–time (see section 2.4.2) can be ignored.

2.2.5 Scattered coincidences

Compton scatter is the predominant effect for 511 keV photons in water and light

tissues. When a photon (with energy E = hν) impinges on an atomic electron,

it is scattered at an angle θ (see figure 2.7) from its original flight direction. To

fulfil energy and momentum conservation, the new energy of the photon is [22]

E′ =
E

1 + E
mec2

(1− cos θ)
(2.5)

where me is the electron mass me = 511 keV/c2. This dependence is plotted

in figure 2.8. If a photon is scattered inside the patient’s body, the two γ–rays

will be obviously no more back–to–back. The scattered one, anyway, possesses

an energy different from 511 keV: if its energy is correctly measured, this photon

will be recognized as scattered and, consequently, the coincidence will not take

place. Unfortunately, due to crystal energy resolution, some of these “wrong”

photons may not be distinguished from the response to a 511 keV photon: in

such a case, a rotated LOR will be generated. Scatter contributes, then, to loss

of resolution and distortion of the images, particularly in case of 3D acquisition

since the tungsten septa are not present.

2.2.6 Attenuation of photons in the matter

Photons interact with the matter via three processes: photoelectric effect, Comp-

ton scatter and pair production (absent for energies below 2mec
2 = 1022 keV).

Because of these interactions, an exponential attenuation of photon number takes

place:

N(x) = N0e
−
∫ x
0 µ(t)dt (2.6)

where µ is called linear attenuation coefficient. Consequently, not all the emitted

photons are detected, because of the interactions along the whole path from the
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Figure 2.7: Compton effect: the incoming photon (with wavelength λ) is scattered
by an electron at rest (circle): as a result, the photon changes its wavelength (λ′)
and direction and the electron gains kinetic energy (black arrow)
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Figure 2.8: Energy (in keV) of a scattered photon (for an incident photon with
energy 511 keV) as a function of the scattering angle — the angle between two
adjacent angular divisions is 5◦
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decay place to the crystals. Moreover, since these effects are linear in the medium

density, it is usually defined a massive attenuation coefficient µ′ = µ/ρ dependent

only on the tissue characteristics (mainly effective atomic number). With this

definition, the attenuation law changes into

N(x) = N0e
−
∫ x
0 µ′(t)ρ(t)dt

showing that higher medium densities correspond to stronger attenuations.

2.3 Corrections to emission effects

Some of the effects related to emission are usually corrected directly during the

acquisition phase or during the reconstruction phase.

2.3.1 Randoms

If the acquisition system is capable of registering the singles count rate on each

detector, the effect of randoms can be corrected directly using equation 2.4. Oth-

erwise (and more frequently) a second coincidence window is used: this temporal

window, delayed — about 100 ns — in order to exclude the detection of real

coincidences, allows the direct measurement of random events, which can be sub-

tracted from the total registered counts.

These procedures, however, can lead to negative values in the image or, more

importantly, can invalidate the description of the emission process in terms of

Poisson statistics (since the difference of two Poisson distributions is no more

a Poissonian). In some reconstruction algorithms, instead, the randoms are

used summed, eliminating the negative value problems and bypassing the Poisson

statistics spoiling (for more details, see section M.1). It is important, however,

that the delayed window measurement has the lowest noise level possible, to

minimize the noise contribution of random coincidences to the data: this can be

achieved, for example, using a randoms variance reduction method [9].

2.3.2 Scatter

Scatter correction is definitely the most critical compensation, because Compton

scatter in a clinical exam can reach 50 − 60% of total data. In 2D mode the

sensitivity to scattered coincidence is lower than in 3D mode and initially many

workers ignored it completely. When quantitative information started to be re-

quired and, more importantly, when 3D–mode capable scanners were introduced,

accurate scatter correction methods became fundamental. Many schemes have

been proposed.

Convolution–subtraction techniques assume that the scatter can be modelled

as the (generally two-dimensional) convolution of the unscattered (pure) compo-

nent of data with an empirically derived scatter kernel function. Examples of
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such a function are a spatially–invariant decreasing exponential e−a|x−x0| [11] or

its spatially–variant version e−a(x0)|x−x0| [13, 61]. Usually, the function param-

eters are measured on the sinogram (see section 3.2) only in the direct planes

(i.e. coincidences generating a LOR with the extremes belonging to the same

crystal ring) and the correction is subsequently applied to the whole data set,

subtracting the scatter sinogram to the recorded one.

Montecarlo modelling techniques [57] utilize a 3D reconstructed image volume

as the source intensity distribution for a photon–tracking Montecarlo simulation;

each voxel content is assumed to represent the isotope concentration at that loca-

tion of patient’s body. The program, then, follows the history of each photon and

its interactions in the scatter medium, allowing also to trace escaping photons to

the detector gantry in a simulated 3D PET acquisition, provided that a model

for the used scanner (dimensions, crystal disposition and characteristics etc.) has

already been implemented. The interaction coefficient µint
∗∗ is either assumed

constant across the whole volume under study or, more recently, from the atten-

uation information on the volume (e.g. with a CT) a segmented image is derived

and previously known values of interaction coefficients are used dependingly on

the tissue characteristics (but this latter is a more computationally expensive

approach).

Direct measurements have also been proposed [19]. Performing a short (2D)

acquisition with septa in place prior to the normal 3D acquisition, correcting

the 2D acquisition for the difference in efficiency with respect to 3D mode and

subtracting this corrected measure from the complete acquisition, it is possible to

estimate the scatter contribution. Since scatter varies slowly with space and quite

independently from activity distribution, the approximation of extending the

information from the direct planes also to the indirect planes is quite acceptable.

Even if this approach allows taking into account also scatter from outside the axial

FOV, this does not apply when multi–bed acquisitions are performed; more, it is

crucial to have the attenuation and efficiency measured very precisely, otherwise

spurious structures can lead to bad estimation of scatter.

Double energy window [39] approach consists in using an additional energetic

window (the “Compton” window) at lower energies with respect to coincidental

one. The counts inside the Compton window, corrected for the different efficien-

cies, are a measure of the scatter coincidences occuring in the measure. This

method relies on the assumption that the spatial distribution of scattered coin-

cidence is independent of energy. The correction is generally performed using a

Montecarlo simulation, which allows “calibrating” the method and applying it

on the patient’s study. Also multiple Compton windows have been proposed [86]

to better estimate the source distribution and object size dependences.

∗∗As for attenuation, an equation identical to 2.6 describes the probability of the photon
interaction: the only difference is that µ is substituted by the greater coefficient µint.
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Although these and other methods have generally shown a good assessment

of Compton effect, the most used methods nowadays are the Gaussian fit and,

more frequently, the model–based scatter correction algorithms.

The Gaussian fit approach [90] assumes that the scatter distribution can be

fitted with a Gaussian function. In each projection planes, the tails of the reg-

istered spatial distribution of counts are used to extrapolate a Gaussian distri-

bution, which is then subtracted from the total counts (or used in a subsequent

reconstruction step). This method works efficacely if the object is present in a

small portion of the FOV (e.g. in brain studies), but fails if there is not enough

statistics to robustly fit the tails. Additionally, it assumes a perfect and previous

subtraction of randoms, which is not always assured (e.g. it is not compulsory

to subtract randoms prior to reconstruct the image, but they can be considered

during the reconstruction itself).

The model–based scatter correction algorithm [46, 69] uses the attenuation

map (obtained from a PET transmission scan or from CT) and the emission

data to calculate the percentage of photons falling on each detector, applying the

indipendently known scanner geometric and acquisition model. This calculation

is performed with the Klein–Nishina formula

dσ

dΩ
=
r0

2

2

(
E′

E

)2(E′
E

+
E

E′
− sin2 θ

)
(2.7)

(where E′ is defined in equation 2.5), multiplied by the atomic number of the

medium Z to account for the Z electrons per atom. A polar plot of the Klein–

Nishina distribution is presented in figure 2.9.

The original data contain scatter, so this correction has to be applied itera-

tively. The calculation gives directly the number of single Compton scatterings,

while multiple Compton events are modeled as a linear transform of the single

scatter distribution. This method is highly accurate if the whole activity is in the

FOV, but fails if scatter events enter the FOV from outside. Moreover, for a long

time only planar scattering was considered due to computational costs and model

complexity. Only in the last years, 3D (multi–planar) scattering corrections have

started to be proposed and implemented.

2.3.3 Attenuation

It is possible to detect a pair of photons only if both of them are not absorbed

along their paths from the emission point to the detectors. The probability

for a photon not to be absorbed is described by P (x) = e−
∫ x
a µ(t)dt: if a is

the distance of the emission point from the scanner center and considering a

circular (with radius r) attenuating medium, the probability that both photons

will reach detectors is the product of the single probabilities (since the two events
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Figure 2.9: Polar plot of the Klein–Nishina distribution for an incident photon
with energy 511 keV — the angle between two adjacent angular divisions is 5◦

are independent):

Pa = e−
∫ r
a µ(t)dte−

∫ r
−a µ(t)dt = e−

∫ r
−r µ(t)dt

where µ(−t) = −µ(t) has been used††. As evident from this relation, the probabil-

ity that the photons reach the detectors is not dependent on the emission point,

but only on the thickness of the traversed medium. This interesting property

is the basis of the attenuation correction: if the (integrated) attenuation coeffi-

cient of the medium is measured along each possible LOR, it is then possible to

introduce a correction for the entire set of recorded data.

In a first time, the attenuation coefficients were calculated via a transmissive

scan with a β+ source (usually 68Ge) rotating in the FOV around the scanner

axis and about half–way between the patient and the crystal blocks. This scan

was composed of two sub–measurements: a blank scan (without the patient) and

a pure transmissive scan with the patient already in position for the PET exam.

The first measure provided I0, while from the second measure the attenuted in-

tensity I was obtained: their ratio I/I0 = e−
∫
µ(t)dt (calculated for each LOR)

was the desired integrated coefficient. In 2D this method allowed an efficaciuos

rejection of scatter and randoms by accepting coincidence only if the two detec-

††Here (−t) represents the path inverse with respect to the attenuation direction: conse-
quently, µ(−t) should produce an exponential increase in the number of photons.
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tion points on the crystals and the position of the source itself were collinear.

However, since these measurements were initially performed before injecting the

radiopharmaceutical, the method implied a substantial increase in the duration

and complexity of the exam (e.g. the patient had to be accurately repositioned

after the injection and to remain steady for the whole duration of the attenua-

tion scans and PET exam). Significative improvements were obtained when the

attenuation scans could be taken after the injection (post–injection transmission

scan) of the tracer.

In 3D the method of the trasmission measurements is not generally applica-

ble, since the count rate is much higher and introduces an important amount of

dead time. Then, 68Ge was substituted with a collimated source of 137Cs: this

radioisotope emits single 662 keV photons‡‡, making it possible to discriminate

them against the annihilation radiation. The attenuation scan can be executed

just before, during (alternating the two measures) or immediately after the PET

exam, without the need of patient repositioning. Being in 3D acquisition mode,

however, the detected scatter is significantly high: the best method to overcome

this effect is to use a segmentation technique∗ to the images (not corrected for

the scatter) and choose for the attenuation previously known values of µ factors

depending on the different tissues.

Another approach is to use a X–ray tube and an adequate detector: this

technique allows having, in a shorter time, more defined attenuation images. If

these attenuation information are derived from CT, some empirical conversion

functions (depending on CT energy) are used to translate Hounsfield numbers

into µ coefficients at 511 keV: an example is presented in figure 2.10. With the

introduction of the combined PET–CT systems, the anatomical and functional

information are contemporarily available and automatically coregistered (i.e. for

each point in one image it is possible to individuate the corresponding point in

the other): therefore, the mismatch due to different positioning of the patient

during CT and PET is avoided, with a consequent increase in the precision of

the attenuation correction.

2.3.4 Source decay

After the image reconstruction, each voxel contains the number of decays orig-

inating from the corresponding point in the patient’s body. If the source did

not decay, from this information it would be possible to directly calculate the

corresponding activity. Actually, for quantitative measurements it is necessary

‡‡This means that the attenuation coefficients have to be rescaled to the 511 keV energy.
∗To segment means to categorize each part of the body under study in one of the tissue

classes previously chosen and for which quantities of interest are known independently from the
exam.
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Figure 2.10: Example of convertion from Hounsfield units (HU) into attenuation
coefficients at 511 keV energy (µ(Eγ))

to correct for the source decay to obtain the activity at a reference time, usually

chosen as the time of the exam start.

The total number of decay events in voxel b (which — in the approximation

of complete correction of all other effects — are also the reconstructed events in

voxel b) is

N
(b)
tot =

∫ tf

t0

A(b)(t)dt = A
(b)
t0

∫ tf

t0

e−λ(t−t0)dt

where λ = ln 2/t1/2 is the time constant typical of the used radioisotope, A
(b)
t0

is

the activity in voxel b at the exam start time t0, while tf is the end time of the

acquisition. By integration, it is then possible to express A
(b)
t0

as a function of the

reconstructed events N
(b)
tot :

A
(b)
t0

=
λ

1− e−λ(tf−t0)
N

(b)
tot (2.8)

Quite often, however, the object of the study has a length higher than the

axial FOV: in these cases, the acquisition is performed with more than one bed,

i.e. dividing the object into consecutive parts as long as the axial FOV and

partially superimposed one another. The complete image will consequently be

the merging of the frames. If multi–bed acquisition is used, it is necessary to

correct each bed dependingly on its own acquisition start moment. If t0 is the

exam start time and ti (tf ) is the start (stop) time of the acquisition on the bed
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to be corrected, the total number of events in voxel b is

N
(b)
tot =

∫ tf

ti

A(b)(t)dt = A
(b)
t0

∫ tf

ti

e−λ(t−t0)dt

and consequently equation 2.8 changes into

A
(b)
t0

=
λeλ(ti−t0)

1− e−λ(tf−ti)
N

(b)
tot (2.9)

Knowing ti, tf , t0 (which are usually referred to the production time t = 0)

and λ (which depends on the used radiopharmaceutical), it is therefore possible

to correct the data as they were originated by a temporally uniform activity equal

to the one at the start of the PET scan.

Similar considerations are performed for dynamic acquisitions, in which the

same object is acquired at different times to study the temporal evolution of

the activity distribution. This modality originates different frames, each corre-

sponding to a different time interval. To obtain coherent information, each frame

should be corrected for the source decay properly.

2.4 Effects superimposed to the signal due to acquisition

2.4.1 Energy resolution

Photons, being neutral particles, need to transfer their energy to charged parti-

cles (electrons) in order to be detected. At 511 keV two processes are allowed:

photoelectric effect and Compton scatter. While in the first case the photon

completely releases its energy to the electron†, in the second case the electron

receives only part of the incident photon energy E:

Ee− = E − E′

where E′, defined by equation 2.5, is the energy of the emerging photon. If the

detector were very large, also this “missing” energy would be absorbed and the

original energy would be correctly estimated: all the 511 keV photons would ac-

cumulate in the so called full energy peak, well distinguishable from the Compton

shoulder. Unfortunately, both for logistic constraints and to obtain an adequate

spatial resolution, single crystals are small enough to permit some photons to

escape. Therefore, adding that the incident radiation is not monoenergetic due

to the scatter events in the patient [112], a typical energy spectrum is shown in

figure 2.11. The energy resolution of the system is defined as the ratio of the full

width at half maximum (FWHM) of the full energy peak and the energy value

at the full energy peak maximum.

†The binding energy of the electron remains in the atom and it is subsequently emitted
via an Auger electron or de–excitation radiation, but in both cases this energy is likely to be
completely collected.
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Figure 2.11: Example of a photon energy spectrum acquired in a PET scanner:
the spectrum due to primary and scattered photons (solid line) is separated into
different contributions (total scattering or different orders of photon scattering)
shown by dashed lines

2.4.2 Dead–time

The light signal collected and transformed into an electrical signal by the pho-

tomultipliers (PMTs) is passed to a constant fraction discriminator (to extract

temporal information to be used in the coincidence circuitry) and a differential

discriminator (to sort the pulses according to their peak height). All these anal-

ysis steps introduce finite time of processing, during which the system is not able

to distinguish an additional event: in fact, quite all digital parts have a busy

logic able to skip any input during the processing time of an event. This lets

the detector behave as non–paralyzable. Unfortunately, crystals cannot have a

similar protection system. If two light pulses reach the PMT within its resolu-

tion time, they will be treated as a unique signal (the so-called pile–up effect)

whose amplitude is the sum of the two original ones. Since the differential dis-

criminator possesses an acceptance window, this sum event is likely to excess the

window high level and, consequently, it will not be considered; unfortunately,

each new scintillation event inside the PMT resolution time delays the recovery

of full detection functionality. This behaviour is defined paralyzable.

At high count rates, then, the system can count much less events than the real

ones. In practice, dead–time losses are dominated by pile–up within scintillators

— electronics require definitely less time for the analysis than the response time

of scintillators: this means that a higher number of crystals corresponds to the

possibility of accepting higher rates.

Another effect related to processing time and count rate is the possibility of
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Figure 2.12: Possible wrong evaluation of pulse emission due to multicrystal
reading: × are the crystals scintillating within resolution time of the PMTs, +
is the estimated crystal

assigning the recorded light pulse to a wrong crystal due to the block structure.

In the case of high count rates, two photons can interact with two crystals inside

the resolving time of the detector. Due to the estimation of the position as the

centroid of the recorded pulse (Anger logic, [5]), the resulting crystal will be

approximately equidistant to all the crystals giving response (figure 2.12): this

introduces an enlargement of the real LOR.

2.4.3 Crystal efficiency

The scintillation efficiency of the crystals affects the measurement, since the num-

ber of emitted photons is proportional to the energy released (Birks’ formula,

[52]). If crystals were all identical, the number of emitted photons would be an

exact evaluation of the energy deposition; unfortunately, each crystal (of a same

scintillator material) has its own particular characteristics and produces light

differently from other crystals. Additionally, ambience variations (such as tem-

perature, humidity etc.) often make the crystal response vary. Also the PMTs

affect the efficiency of the crystal block — e.g. if their windows drift — intro-

ducing an additional source of uncertainty, since the intrinsic response of crystals

and PMTs is required to be as much uniform across the scanner as possible.

2.4.4 Radial geometry

The scanner registers the projections of the object on planes at different angles.

However, because of circular disposition of crystals — assuming a perfect de-

tection of photons — the projection bins have different amplitudes, leading to

a wrong evaluation of counts towards the scanner transaxial edges, as evident

from the figure 2.13. This introduces radial deformations, affecting both the

qualitative and quantitative content.



2.4. EFFECTS SUPERIMPOSED TO THE SIGNAL DUE TO ACQUISITION 33

Figure 2.13: Effects on bin amplitude due to radial geometry

2.4.5 Finite dimensions of crystals and depth of interaction

Since the crystals have finite dimensions, what is actually measured is not a line

of response, but a tube of response. As photons can arrive on the crystals follow-

ing different directions, the attenuation thickness offered by the scintillator will

vary consequently [59] — see figure 2.14. This leads to a conversion efficiency

dependent on the detector width. Considering detectors in coincidence at a dis-

tance much greater than the dimensions of the crystals and a point source at the

center of the detection system, the response can be described (in a monodimen-

sional projection) by a triangular function with the vertex at the center of the

crystal and null at the crystal edges (figure 2.15): its FWHM is consequently

equal to half the crystal width. Moreover, a shorter path inside a crystal makes

more probable the release of photon energy in other neighbouring crystals. This

effect is related to the so–called depth of interaction (DOI) and is more important

nearer the detector edges, since the angle between photons and crystals can be

quite large (see figure 2.16). In addition, this effect enlarges the objects towards

the center of the scanner, since the LOR connecting the interested neighbouring

crystals (dashed line in figure 2.16) is always nearer to the scanner diameter than

the original LOR (black arrow in figure 2.16).
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Figure 2.14: Different path lengths inside the scintillator crystals depending on
incidence angle of the photon
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Figure 2.15: Relative response of a scintillator crystal to a point source located
on the crystal axis
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Figure 2.16: Depth–of–interaction effect: note that the spurious LOR (dashed
line) falls always nearer the scanner center than the original LOR (black arrow)
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2.4.6 Inter–crystal scatter

Although less frequent (because in high–Z materials the photoelectric effect is

predominant), scatter events can happen also inside the crystal. If the emerging

photon is not completely contained in the scintillator, it can release energy also in

one or more neighbouring crystals (figure 2.17), leading to a mispositioning of the

LOR and a broadening of the resolution. Nevertheless, the resulting distribution

is narrow because scatter at 90◦ is disfavoured (see figure 2.9) and because the

attenuation lengths of the most common scintillators are below 3 cm.

real LOR

detected LOR

Figure 2.17: Scatter inside scintillator crystals

2.5 Corrections to acquisition effects

2.5.1 Radial repositioning

Each projection should represent the object under study without introducing

deformations: consequently, the dependence of the bin width on radial position

should be corrected before (or while) reconstructing the image. Basically, this

is often performed by a redistribution of counts, filling each bin proportionally

to the overlapping parts in the recorded and requested histograms (see figure

2.18). Each manufacturer, however, implements this correction in a different

way, dependingly on the scanner geometry.

2.5.2 Dead–time

Dead time losses are usually parametrised as a combination of paralyzable and

non–paralyzable contributions. The parameters necessary for the model are ob-

tained by means of experiments involving repeated measurements of a decay

source (e.g. see [18]). As far as the mispositioning due to high count rate and

multicrystal reading is concerned, some schemes have been proposed (e.g. [8]) but

they are generally implemented directly in the parametrization exposed above.
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Figure 2.18: General radial repositioning scheme: the upper histogram is the
recorded one due to the radial dependence of bin amplitude, the lower one has
the bin amplitude corrected by redistribution of the original counts

2.5.3 Detector normalization

The reconstruction algorithms implicitly assume the same sensitivity for all LORs.

Because of the motivations exposed in section 2.4, this supposition is not valid: a

correction to normalize acquired data is then necessary. This correction consists

in multiplying each LOR by a normalization coefficient (NC).

The most simple way to calculate the set of NCs is to perform a scan where

every LOR is illuminated by the same coincidence source: NCs are then inversely

proportional to the recorded counts. This direct normalisation is subject to some

disadvantages. Firstly, scattered coincidences require a different normalisation

with respect to true ones, but direct measurements do not allow this distinction.

Secondly, 3D mode needs low count rates to reduce dead–time effects: conse-

quently, to accumulate enough statistics a long measure time (tens of hours) is

mandatory, introducing a significant practical problem since normalization should

be frequently measured to ensure proper reconstruction.

A variance reduction method united to a factorized modelling of NCs [43] al-

lows overcoming both previously highlighted problems. Each normalization factor

is modelled as the product of intrinsic crystal efficiencies and some geometric fac-

tors accounting for various contributions, e.g. the photon incidence angle or the

different gain and response of PMTs. The NCs, then, are no more related to

the LORs, but to the crystals: considering that the number of LORs is generally

more than a hundredfold the number of crystals, the factorization method allows

a large reduction of measurement complexity, even if this can imply an increase

of systematic errors since the NCs are not all independent.

Each of the above factors require calibration measurements (e.g. geometric

correction, photomultiplier gain, photomultiplier linearity etc.), which are usually

scheduled. If a detector part is substituted, however, it is wise to partially or

totally recalibrate the system.

Even if component–based normalization accounts for most of the effects, some
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artifacts and deformations are still present in the reconstructed images also after

the normalization.

2.6 The Point Spread Function

Due to finite resolution, a point source is detected as if it were larger and with

a lower intensity. The blurring of the edges and the reduced intensity of the

activity distribution are usually referred to as partial volume effect (PVE). A

generic region is considered to be subject to two quantitative effects:

spill–out i.e. a reduction in the activity distribution due to counts belonging to

the region, but assigned (for resolution effects) to the surroundings;

spill–in i.e. an increase in the activity distribution due to counts belonging to

the surroundings, but assigned (for resolution effects) to the region.

The balance of these two effects depends on the lesion-to-background ratio (LBR)

— i.e. the ratio between the activity concentrations in the region and in the

surroundings — and affects the final result for the activity concentration.

In a general optical system, the Point Spread Function (PSF) is a function

describing how a point source is rendered, i.e. it is equal to the impulse response

of the optical system. This PSF is generally representable — thanks to the

Central Limit Theorem (CLT) — as a two-dimensional (or three-dimensional, if

the optical system is able to record 3D data) Gaussian with sigmas related to the

detector characteristics.

In a PET system, all the (partially or totally) not corrected effects — see sec-

tion 2.4 — contribute to the PSF, even if essentially four factors are predominant

[63]:

• finite dimensions of crystals, contributing with FWHMD ≈ 4 mm

• non collinearity of photons, contributing with FWHMN ≈ 2 mm

• positron range, contributing with FWHMP ≈ 0.5 mm

• block effects (including both the “packing” effects and the contribution of

the single crystals) contributing with FWHMB ≈ 2 mm

Additionally, the reconstruction algorithms introduce a multiplicative factor kR ≈
1.25 for the resolution leakage [65]. Consequently, a general formula for the

resolution in a PET system is

FWHMtot = kR

√
FWHMD

2 + FWHMN
2 + FWHMP

2 + FWHMB
2

If the reported values are used, the PET system PSF can be described as a

Gaussian Function (GF) with FWHMtot ≈ 5 − 6 mm. Figure 2.19 shows the
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trend of the main contributions to PET resolution as a function of the spatial

coordinate for a typical configuration of the detector.

Figure 2.19: Principal components of PET resolution for a system with diameter
80 cm, crystal dimension of 4 mm and using 18F as the radionuclide

The resolution is not uniform across the field of view: nearer the detectors the

degradation effects are more likely and stronger and, consequently, the deteriora-

tion of resolution is more pronounced. Additionally, if a more accurate analysis is

performed, along the radial direction the PSF appears to be progressively asym-

metric getting closer to the detector edges, with the larger tail directed towards

the scanner center: this deformation is mainly caused by circular geometry. The

source radially divides the scanner into two portions (see figure 2.20), whose di-

mensions depend on the source position: if the source is farther from the center,

more crystals will contribute to the internal part of the PSF, increasing the asym-

metry. The tangential profile of the PSF, instead, is a symmetric — the source

always divides the scanner into two halves — Gaussian with distance dependent

width; also the axial contribution is well modelled as a symmetric Gaussian, es-

pecially if 3D acquisition mode is used. As an example, figure 2.21a shows the

reconstructed image of a source located 20 cm from the transaxial FOV center,

while an asymmetric two-dimensional Gaussian is presented in figure 2.21b for

comparison.

Signal analysis teaches that the resulting image I will consequently be the

convolution‡ of the PSF with the real activity distribution A:

I(~x) = A(~x) ? PSF (~x) =

∫
V
A(~x)PSF

(
~t− ~x

)
d~t

‡Strictly speaking, the term convolution may be used only in case of spatially-invariant PSF.
For spatially-variant PSF, some modifications should be taken into account — e.g. see sections
5.1 and M.3.
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If it were possible to deconvolve the point spread function from the resulting

image, the correct information would be completely recovered. Unfortunately,

this is not feasible in a classical way (e.g. via Fourier transforms), in particular if

3D mode is adopted, mainly due to the computational requirements of a similar

process.

Figure 2.20: Increasing radial asymmetry with higher distance from FOV center:
the blue parts contribute to the radial internal part of PSF, the red parts to the
radial external one

(a) Source located 20 cm off detector center (b) Two-dimensional asymmetric Gaussian

Figure 2.21: Comparison of a source located off-center and a radially asymmetric
two-dimensional Gaussian function





Chapter 3

Image reconstruction

3.1 Object representation

The unknown space–dependent∗ radiotracer distribution can be described by a

continuous function f(r) specifying the radiotracer concentration in the point of

space described by the vector r = [x y z]T . This continuous function, though, is

completely impractical since it would require an infinite sampling: it is necessary

to choose a resolution–limited representation using a set of j = 1 . . . J spatial

basis functions αj(r):

f(r) ≈
J∑
j=1

cjαj(r)

where c = {cj} is a J–dimensional vector containing the coefficients relative

to the spatial basis functions. The most common choice for αj(r) is the pixel

(picture element, if two-dimensional information is available) or the voxel (volume

element, if three-dimensional information is acquired), for which the vector c —

simply holding the pixel or voxel values — can be directly interpreted as a two-

dimensional or three-dimensional image. Generally speaking, if {αj(r)} is an

orthogonal basis, cj can be expressed as

cj =

∫
f(r)αj(r)dr

Instead, if non–orthogonal functions are used, even for an a–priori known function

f(r), finding c is a tough task. In any case, however, the image reconstruction

process has the scope of determining the unknown vector c from the acquired

data.

∗The eventual additional dependence on time is omitted for simplicity.

41
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3.2 Data representation

As stated in section 2.1, a coincidental (i.e. inside the temporal resolution of the

system) detection of photons defines a LOR. The entire set of LORs constitutes

the acquired data.

Assume a pair of photons being detected at positions r1 and r2
†. The line

connecting these two points forms an angle φ with respect to a previously fixed

reference direction; moreover, this line has a distance s from the origin of the

system, conventionally chosen as the scanner center — see figure 3.1. The point

(s, φ) uniquely defines an event in the ring plane: the entire set of data will be

represented by a cloud of points in a cartesian plane with s as the abscissa and

φ as the ordinate: this cartesian plane is called sinogram, from the sine–function

appearance of a point source. The events are consequently binned dependingly

on the flight direction and distance from center.

C
C
C
C
C
CO

C
C
CW

s���
�

r2

r1

φs

Figure 3.1: Definition of the variables used in the data representation

To retain the complete information available, another format of data repre-

sentation is the so–called list–mode. Each event in this case is stored by recording

r1, r2 and additional information such as t1, t2 (the arrival time on the detectors

with respect to a reference time, usually chosen coincident with the start time

of the exam), E1, E2 (the detected energies) and so on. Obviously, the increase

of details reduces the information loss but causes a significant increment of the

required disk space. In general, list–mode data are used to archive an exam if

further data processing is expected.

A third mode (less used) is to backproject the sinogram, translating each

point to a line in a 2D or 3D image. This mode allows a great reduction in the

storage space required, although it is not suited for further elaboration of data:

in this case, in fact, it would be necessary to firstly reproject the image to the

sinogram, with increasing computational time and potential errors introduced by

the projection–backprojection steps.

†For the sake of simplicity, consider a unique crystal ring, defining a plane orthogonal to the
scanner axis in the three-dimensional space.
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Figure 3.2 presents an example of the three representation methods applied to

a point source. Generally, the most used starting point for image reconstruction

is the sinogram storage.
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Figure 3.2: Three methods to store data — an example of a point source [80]

The majority of the reconstruction algorithms works on the recorded sino-

grams (which contain the so–called raw data). The sinogram storage is different

between two-dimensional and three-dimensional acquisition.

If 2D acquisition is performed (i.e. the scanner uses the septa), the 3D volume

in the FOV is divided into 2NR + 1 axial slices (where NR is the number of

crystal rings in the scanner). The complete sinogram is then a set of 2NR + 1

uncorrelated two-dimensional histograms (s, φ) as described above. In the case

of 3D acquisition, instead, the storage is generally based on the projection planes:

the complete information is organized into sinograms taken on many planes, not

only perpendicular to the axial direction, but oblique, too. In both cases, however,

the mean counts in the sinogram bin (s, φ) is expressable as〈
m(s,φ)

〉
= A(s,φ)N(s,φ)

∫
LOR(s,φ)

f(r)dr + b(s,φ)

where A(s,φ) takes into account the attenuation of the photons on LOR(s, φ)

due to scatter and absorption, N(s,φ) describes the losses due to detection im-

perfections and the additive term b(s,φ) represents the contribution of random

coincidences and scattered photons external to LOR(s, φ). Consequently, the

relation between the image I and the sinogram S can be resumed as

S = PI +B (3.1)
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where B is a sinogram of background events and the operator P — the projector

— translates a datum in the image space to an information in the sinogram space.

This relation is theoretically invertible, giving

I = P−1 (S −B) = B (S −B) (3.2)

where P−1 = B is the backprojector.

3.3 Projector and backprojector

The core of image reconstruction is the modelization of the projector and back-

projector. Firstly, it is important to note that these operators act on discretized

data: consequently, the backprojector is not exactly the inverse operator of the

projector (due to computer finite algebra), so two different operators are usually

implemented. Generally, the three–dimensional projectors and backprojectors

rely on linear monodimensional interpolation and they are the generalization of

the two-dimensional ones, here summarised for the sake of simplicity. The most

diffuse discrete two-dimensional implementations are presented in figure 3.3.

Pixel–driven or voxel–driven projector (figure 3.3a), fixed a focal point, draws

a line connecting the focal point with the center of the examined pixel (voxel) and

finds the intersection between this line and the detector. The two bins adjacent to

this intersection are filled using a linear interpolation based on overlapping parts

of the pixel and the bins. The corresponding backprojector works in a similar

way.

Ray–driven projector (figure 3.3b) is similar to the pixel–driven one, but the

line connects the focal point and the center of the sinogram bin. Apart from

this different choice, the interpolation works in the same way as pixel–driven

projector/backprojector.

Distance–driven projector (figure 3.3c), fixed a focal point, maps the bound-

aries of each pixel and detector cell onto a common axis. The length of overlap

on this axis is used as a weight to project or back–project.

This latter method is generally the most used, being fast and because the

pixel– and ray–driven projectors often result in high–frequency artifacts. Its

three-dimensional version maps the two-dimensional boundaries of the image vox-

els and detectors onto a common plane: the required weight is then represented

by the area of overlap on this plane.

3.4 Analytic methods

The most straightforward way of reconstructing an image from its projections is

to exploit the real detection process and try to revert it. Many analytic algorithms

have been proposed (e.g. [80, 81]). If 3D acquisition mode is employed — even if
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(a) Pixel–driven (b) Ray–driven

x

yn yn+1

xm xm+2xm+1

(c) Distance–driven

Figure 3.3: Some of the projectors used in tomography [30]

native three-dimensional analytical algorithms exist (e.g. [51]) — the information

is usually reorganized as it were acquired in 2D, translating the projections on the

oblique planes into projections on the planes orthogonal to the scanner axis — this

method is called Fourier rebinning (FORE) (e.g. [31]), since this reorganization

is performed in the frequency space. For this motivation and for the sake of

simplicity, only 2D inversion is here described.

In the two-dimensional case, the tomographic data acquisition is usually mod-

eled as a Radon transform R‡

m(t, θ) = R{f} =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ (x cos θ + y sin θ − t) dx dy (3.3)

So starting from the measured 2D projections (corrected for all the superimposed

physical effects), the image reconstruction coincides with the inversion of the

Radon transform. The fundamental Fourier slice theorem creates a connection

between the monodimensional Fourier transform of a projection F1{m(t, θ)} and

the two-dimensional transform of the original object F2(ω, k):

F1{m(t, θ)} =

∫ +∞

−∞
m(t, θ)e−i2πωt dt =

=

[∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−i2πωt dx dy

]
t=x cos θ+y sin θ

=

=

∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−i2πω(x cos θ+y sin θ) dx dy =

= F (ω cos θ, ω sin θ) = F2{f(x, y)}|(ω cos θ,ω sin θ) (3.4)

‡In the following mathematical steps, the discrete sinogram variables s and φ are substituted
with the continuous variables t and θ, respectively, to underline the difference between the
mathematical theory and the practical implementation.



46 CHAPTER 3. IMAGE RECONSTRUCTION

So, the theorem states that the monodimensional Fourier transform of the pro-

jection at angle θ is equal to the two-dimensional Fourier transform of the image

evaluated along a line forming an angle θ with respect to the horizontal axis in

the 2D frequency space (see figure 3.4). Consequently, if the projections allowed

filling the entire two-dimensional Fourier space (i.e. if all the angles θ ∈ [0, π] were

analysed), the inverse two-dimensional Fourier transform would give the original

object. Unfortunately, the discreteness of the projections forces interpolations in

the two-dimensional Fourier space, especially at high frequencies, generating ar-

tifacts. Direct Fourier methods are consequently not popular to invert the Radon

transform.

s

t

x

other projections1D FT

2D FT

1D FT of

u

y v

projection

object

θ

Figure 3.4: Radon transform and Fourier slice theorem [1]

3.4.1 Filtered back–projection

Inverting the Fourier slice theorem (equation 3.4) with the frequency variables

expressed in the polar form u = ω cos θ, v = ω sin θ and using relation 3.3

f(x, y) =

∫ +∞

−∞

∫ +∞

−∞
F (u, v)ei2π(ux+vy)dudv =

=

∫ 2π

0

∫ +∞

0
F (ω cos θ, ω sin θ)ei2πω(x cos θ+y sin θ)

∣∣∣∣∣
∂u
∂ω

∂v
∂ω

∂u
∂θ

∂v
∂θ

∣∣∣∣∣ dωdθ =

=

∫ π

0

[∫ +∞

−∞
F (ω cos θ, ω sin θ)|ω|ei2πω(x cos θ+y sin θ)dω

]
dθ =

=

∫ π

0
m̂(x cos θ + y sin θ, θ)dθ = B {m̂(t, θ)} (3.5)
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it is then possible to obtain the original image as the backprojection B of the

modified projection m̂(t, θ):

m̂(t, θ) =

∫ +∞

−∞

[∫ +∞

−∞
m(t, θ)e−i2πωtdt

]
|ω|ei2πωtdω

The process of backprojection can then be synthesised as follows:

f(x, y)
Scan−−−→ m(t, θ)

FT−−→ M(ω, θ)
×H(ω)−−−−→ M̂(ω, θ)

FT−1

−−−−→ m̂(t, θ)
B−→ f(x, y)

where FT (FT−1) indicates the direct (inverse) monodimensional Fourier trans-

form and H(ω) = |ω|.
If discrete image and projections are considered, the integrals are substituted

by summations and Fast Fourier Transforms (FFT) algorithms can be applied.

In this case, however, H(ω) becomes

H(ω) =

{
|ω| |ω| < ωc
0 otherwise

(3.6)

which is called the ramp filter (represented in figure 3.5): its cut–off frequency ωc
is half the maximum spatial frequency representable in an image with pixel size

a:

ωc =
1

2a

This algorithm is called filtered backprojection (FBP) due to the multiplication

by the filter H(ω) before the appliance of the discrete backprojection operator B.
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ωc−ωc

Figure 3.5: Ramp filter

Because the acquisition process is not an ideal one, also noise will be present.

Since noise is typically characterized by high frequencies — emphasized by H(ω)

— it is wise to additionally introduce a low–pass filter, multiplying its transfer

function G(ω) before inverting the monodimensional FT:

f(x, y)
Scan−−−→ m(t, θ)

FT−−→ M(ω, θ)
×H(ω)G(ω)−−−−−−−→

×H(ω)G(ω)−−−−−−−→ M̂F (ω, θ)
FT−1

−−−−→ m̂F (t, θ)
B−→ fF (x, y) (3.7)
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Some filter examples are the Hamming filter, the Butterworth filter and the

Wiener filter [33, 37]: for these and others filters, H(ω)G(ω) versus aωc is repre-

sented in figure 3.6.

Figure 3.6: Common filters used in FBP [1]

FBP is a very fast and simple algorithm because of the exploitation of FFT

computational capabilities. Unfortunately, two main drawbacks should be em-

phasized. Firstly, FBP requires a precorrection of all the factors superimposed to

the real data (see equation 3.2): this means that, before applying the algorithm,

it is necessary to perform a subtraction on the sinogram. A similar process very

often yields negative values in the final image, which do not represent physical

values and thus cause errors in the quantitative evaluations of the results§. Sec-

ondly, since FBP is based on plain backprojection of counts, local noise effects

are spread over a large area, generating typical “star” artifacts (see figure 3.7).

These artifacts are reduced with a lower cut–off frequency, but since noise and

signal spectra overlap, this results in a contemporary reduction of the signal. A

trade–off between artifacts and image sharpness is then required. Finally, the

simpleness and speed of FBP implies also a rigidity of the algorithm: the back-

projection of what is considered to be entirely and solely signal data is the only

performed task. There is neither the possibility to recover wrong or incoherent

data contribution to the final image (e.g. not completely exact precorrections

introduce unavoidable errors in the results) nor the potentiality of refining the

final image by introducing additional information or methods (e.g. to use some

§It is useful to underline that an image with negative values can be, from a mathematical
point of view, acceptable, since it can still generate non-negative projections — the unique
data obtained from the scanner. The negativity of the values in the image becomes obviously
unacceptable since these values are linked with the activity concentration in the different voxels.
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pre–known characteristics expected to occur in the reconstructed image).

Figure 3.7: Example of FBP artifacts using ramp filter (left) and Hann filter
(right) [1]: the pixels with negative values are not shown

3.5 Iterative methods

While analytic algorithms are generally based on the geometric aspects of the ac-

quisition phase, another approach to image reconstruction relies on the statistical

characteristics of the image formation, assuming that the real image — repre-

sented by a certain set of parameters to be estimated — is the one maximizing

a certain objective function: the solution is reached via an iterative approach,

during which the present approximation of the solution is compared with the

acquired data and proper corrections are consequently introduced. The stop

condition can be represented by the difference between two consecutive approx-

imations being under a predefined threshold; otherwise, another method is to

compare the acquired data with the projections of the present approximation

and to stop the algorithm when this difference is below a fixed value. Iterative

methods allow using a modelization of the emission and detection processes more

accurate than analytic approaches, since physical corrections are generally used

during the reconstruction and not before — and this prevents also the generation

of negative values in the final image — and statistical models of emission and

detection reflect more correctly the real acquisition mechanism.

The central elements of iterative methods are the projector and backprojector

(generally, as stated in section 3.3, they are not one the inverse operator of the

other) and the so–called system matrix, a matrix which translates the information

contained in the image space to the projection space as described in equation 3.1.

It is important to note, however, that the system matrix hardly coincides with

the pure geometric projection matrix, of which instead is usually a refinement

with the addition of some physical corrections. An important peculiarity of a

similar implementation is the possibility to factorize this matrix (e.g. see [81]),

allowing the separation of the different contributions to better experimentally

determine them or to improve the computational implementation.

Some of the main characteristics required to an iterative algorithm are:
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convergence i.e. to reach a result corresponding to the posed conditions and

improving with the increase of iterations — in the case of inconsistent data,

the algorithm should enter a limit cycle and the final image should remain

confined inside it

independence from start condition i.e. to converge both if the starting im-

age is chosen uniform and if a different initial condition is applied — for

example, if the result of a (fast but inaccurate) FBP reconstruction is used

to start the (long but accurate) iterative reconstruction (IR) it is possible

that the inaccuracies of FBP are amplified instead of being corrected

speed i.e. to involve few calculations per iteration and to require a low number

of iterations to converge

simplicity i.e. to be easily implementable — also on different computing devices

— and user–friendly — simply understandable and requiring few tuning

interventions

Obviously no algorithm possesses all these requisites; in addition, their impor-

tance varies dependingly on the application under study. For example, higher

spatial frequencies require more iterations to be correctly reconstructed: in these

cases, an algorithm with a faster convergence can be very useful. Consequently,

also taking into account the object under study is important in the choice of an

iterative algorithm.

Presently, the most used iterative algorithms are the maximum likelihood with

expectation maximization (MLEM) [64, 87] and the ordered subsets expectation

maximization (OSEM) [45]. They represent a good compromise between the

quality of the results and the simplicity of implementation and, for these reasons,

are among the best candidates for medical applications.

3.5.1 Maximum Likelihood with Expectation Maximization

The general problem of data acquisition can be statistically described by intro-

ducing the sample space of observations Y , in which the vector of performed

observations y ∈ Rm is contained. Calling χ the space of all possible data, let

x ∈ Rn be an element of χ (with m < n) called the complete data. The vec-

tor x is not observed directly, but only by means of y = y(x), where y(x) is a

many–to–one mapping. An observation y consequently determines a subset χ(y)

of χ.

The probability density function (pdf) of the complete data is fx (x|θ) =

f (x|θ), where θ ∈ Rr is a set of parameters to be estimated assuming that

the maximum likelihood estimate of θ lies in the region Θ (θ ∈ Θ ⊂ Rr). The pdf

f is assumed to be a continuous function of θ and appropriately differentiable.
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Since y(x) is a many–to–one map, the pdf of the incomplete data y is

g(y|θ) =

∫
χ(y)

f(x|θ)dx = ly(θ)

where the likelihood function ly has been introduced. For convenience, another

function is actually used in the derivation of the algorithm, the log–likelihood

function Ly(θ) = log ly(θ).

The MLEM algorithm is supposed to find θ maximizing log f(x|θ), but unfor-

tunately x is not available. Therefore, what is actually performed is maximizing

the expectation of log f(x|θ) given the measured data y and the present estimate

of θ. The algorithm is consequently composed of two steps:

• the E (expectation) step, consisting in calculating

Q
(
θ
∣∣∣ θ[k]

)
= E

[
log f(x|θ)

∣∣∣y, θ[k]
]

where θ[k] is the estimation at step k of θ, which is then assumed to be known

at every step of the iterative algorithm and represents the conditioner of

the complete data likelihood;

• the M (maximization) step, consisting in calculating the new estimation

θ[k+1]

θ[k+1] = arg max
θ

Q
(
θ
∣∣∣ θ[k]

)
where it is important to note that the maximization is with respect to θ,

i.e. the conditioner of the complete data likelihood.

Starting from the initial guess θ[0], the MLEM can be diagrammed as follows:

θ[0] E→ Q[1] M→ θ[1] E→ Q[2] M→ θ[2] E→ . . .
M→ θ[i] = θ̃

where θ̃ satisfies the chosen stop condition.

When the complete data has a pdf belonging to the exponential family¶, i.e.

of the form

f(x|θ) =
b(x)

a(θ)
e[c(θ)]T t(x)

the EM algorithm may be simplified. The function t(x) is called the sufficient

statistic of the family, since it provides all of the information necessary to esti-

mate the parameters of the distribution from the data. Consequently, for the

exponential family the expectation step can be written as

Q
(
θ
∣∣∣ θ[k]

)
= E

[
log b(x)

∣∣∣y, θ[k]
]

+ [c(θ)]T E
[

t(x)
∣∣∣y, θ[k]

]
− log a(θ)

¶Members of the exponential family are for example Gaussian, binomial, uniform, and Pois-
son distributions.



52 CHAPTER 3. IMAGE RECONSTRUCTION

Since this quantity should be then maximized with respect to θ, the first term in

the expression can be omitted. Therefore, Q
(
θ
∣∣ θ[k]

)
contains only one expecta-

tion estimation: the E and M steps can be redefined as

E step t[k+1] = E
[
t(x)

∣∣y, θ[k]
]

M step θ[k+1] = arg max
θ

[
[c(θ)]T t[k+1] − log a(θ)

] (3.8)

In emission tomography, the body is divided into B boxes and each of them

generates n(b) events, b = 1, 2, . . . , B. The set of D detectors‖ gives the vector of

observations

y = {y(d)} = [y(1), y(2), . . . , y(D)]

The generation of events from box b can be described as a Poisson process with

mean λ(b)

f(n|λ(b)) = P (n(b) = n|λ(b)) = e−λ(b) [λ(b)]n

n!

The vector of unknown parameters λ = [λ(1), λ(2), . . . , λ(B)] is the goal of image

reconstruction and corresponds to the vector θ of the above theoretical introduc-

tion. An event from box b has a probability p(b, d) — here assumed known — of

being observed in detector d and, as an initial simplification, it may be assumed

that all events are detected:

D∑
d=1

p(b, d) = 1 ∀b = 1 . . . B (3.9)

Since y(d) =
∑B

b=1 n(b)p(b, d), the detector variable y(d) is Poisson distributed

(see proof in section M.1)

f(y|λ(d)) = P (y(d) = y|λ(d)) = e−λ(d) [λ(d)]y

y!

with

λ(d) = E [y(d)] =
B∑
b=1

λ(b)p(b, d)

Calling x(b, d) = n(b)p(b, d) the number of events from box b detected in detector

d, the vector

x = {x(b, d), b = 1 . . . B, d = 1 . . . D}

represents the complete data, since there is a many–to–one mapping from x(b, d)

to y(d) =
∑B

b=1 x(b, d). Since each variable x(b, d) is Poissonian with mean

λ(b, d) = λ(b)p(b, d), assuming that each box generates events independently of

‖In PET, the detectors are actually replaced by the LORs, but for the sake of generality
they will be referred as detectors, anyway.
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every other box and that the detectors operate independently, too, it is possible

to express the log–likelihood as

L(x, λ) = log l(x, λ) = log
∏

b=1...B
d=1...D

e−λ(b,d) [λ(b, d)]x(b,d)

x(b, d)!
=

=
∑

b=1...B
d=1...D

[
−λ(b)p(b, d) + x(b, d) log λ(b) + x(b, d) log p(b, d)− log x(b, d)!

]
(3.10)

Remembering that the Poisson distribution belongs to the exponential family

and noting that the sufficient statistic for this distribution is represented by the

data themselves (t(x) = x), it is possible to use the simplified EM algorithm

(expression 3.8). The E step is then represented by

x[k+1](b, d) = E
[
x(b, d)

∣∣∣y, λ[k]
]

= E
[
x(b, d)

∣∣∣y(d), λ[k]
]

where in the last equality only the detector d is considered in the maximiza-

tion since each detector is independent of the others. Since x(b, d) is Pois-

sonian with mean λ[k](b, d) and y(d) =
∑B

b=1 x(b, d) is Poissonian with mean

λ[k](d) =
∑B

b=1 λ
[k](b, d), this expectation value can be computed as (see section

M.1)

x[k+1](b, d) =
y(d)λ[k](b, d)
B∑
b′=1

λ[k](b′, d)

=
y(d)λ[k](b)p(b, d)
B∑
b′=1

λ[k](b′)p(b′, d)

(3.11)

The M step, instead, is performed by maximizing the log–likelihood (equation

3.10) with respect to λ(b):

0 =
∂L(λ)

∂λ(b)
=

∂

∂λ(b)

∑
b=1...B
d=1...D

[
−λ(b)p(b, d) + x(b, d) log λ(b)+

+ x(b, d) log p(b, d)− log x(b, d)!
]

(3.12)

To maximize this relation, the new estimation λ[k+1](b) should then satisfy

D∑
d=1

[
−p(b, d) +

x[k+1](b, d)

λ[k+1](b)

]
= 0

Introducing condition 3.9 and substituting the expression derived in E step (equa-

tion 3.11), it is possible to express the updating rule

λ[k+1](b) = λ[k](b)
D∑
d=1

y(d)p(b, d)
B∑
b′=1

λ[k](b′)p(b′, d)
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Finally, if condition 3.9 is relaxed, the EM updating rule becomes

λ
[k+1]
b =

λ
[k]
b

D∑
d=1

pbd

D∑
d=1

ydpbd
B∑
b′=1

λ
[k]
b′ pb′d

(3.13)

where, as often chosen for typographical simplicity, the arguments have been

transformed into subscripts. This will be the convention used in this thesis.

The key point of the EM algorithm resides in the two summations over b =

1 . . . B and over d = 1 . . . D:

•
∑B

b′=1 [(·)pb′d] is usually called the projector P(·), since it translates the

image λ into the projections z = P(λ)

•
∑D

d=1 [(·)pbd] is usually called the backprojector B(·), since it translates the

projections z′ into the image λ′ = B(z′)

These summations contain the weight factors pbd, which are fundamental since

they represent the system model and allow introducing known information about

geometry, distance–dependent resolution and — in some cases — also attenua-

tion and scatter∗∗. From a computational point of view, the nested summations

are the toughest part of the implementation, due to high request of resources.

Therefore, it is wise to reduce the operations inside the summations at the highest

degree, to lighten the calculus load: e.g., it is possible to calculate all the weights

before starting the iterations or to extract as many elements as possible from the

summations. In an efficiently designed algorithm the computational efficiency is

[63]

noperations/iteration ∝ (npixels)
2∼3

where npixels is the dimension of the reconstructed image: hence, halving the

pixel size at least quadruples the elaboration time.

Often the EM algorithms are explained saying

the image is corrected by multiplying it for the backprojection of the

ratio of the real counts and the expected counts from the present ap-

proximation†† and — if condition 3.9 is not assumed — by dividing

for the backprojection of the unitary matrix.

Sometimes in this thesis similar terminology will be used.

It is apparent that the main drawback of iterative algorithms — and the rea-

son that their use in image reconstruction started only less than twenty years

∗∗Other way of implementing the physical effects are described in the next section, since they
are common both to MLEM and OSEM.
††The expected counts from the present approximations results from the projection of the

image approximation, eventually corrected for the superimposed physical effects — see later.
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ago, when the power of computing devices became high enough — is the compu-

tational time required to reach an adequate level of convergence. Every scheme

to reduce the convergence time is therefore very useful.

3.5.2 Ordered Subsets Expectation Maximization

A generally used strategy to reduce the computational load is to divide the task

to be performed into more simple groups of operations: this scheme is usually re-

ferred to as divide et impera (divide and conquer), from the Romans’ behaviour in

the control of their empire. Two typical examples are a class of sorting algorithms

and the FFT.

Also in iterative algorithms this method has been succesfully implemented

in the so–called ordered subsets (maximum likelihood) expectation maximization

(OSEM). It is a MLEM algorithm in which the entire set Ω = P (i), i = 1 . . . nP
of projections originating from detectors d = 1 . . . D is divided into equipotent

(and usually disjoint) subsets Sm, m = 1 . . .M

Ω =
M⋃
m=1

Sm

where M is a divisor of the number of angular projections nP . Many different

criteria for filling these subsets are present (e.g. see [45]), but the most used is

to choose equispaced projections

Sm =
{
P (m+ jM) , j = 0 . . .

nP
M
− 1
}

Each MLEM iteration k on the entire set Ω is then divided into M sub–iterations

(k,m) in which the approximation λ[k,m] — computed using only the data in

subset Sm — is updated using the data in subset Sm+1. The resulting rule is

consequently

λ
[k′+1]
b =

λ
[k′]
b∑

d∈Sm
pbd

∑
d∈Sm

ydpbd
B∑
b′=1

λ
[k′]
b′ pb′d

(3.14)

where the sub–iteration index k′ = kM +m− 1 has been introduced for analogy

with the MLEM rule. It is important to note that a complete iteration k → k+ 1

in the OSEM algorithm corresponds to M effective iterations (k′ → k′ + M),

while the time required for a sub–iteration is approximately 1/M the time for

a MLEM iteration due to the reduced terms in the summations. Consequently,

the OSEM algorithm presents an about M–fold faster convergence with respect

to MLEM (for OSEM convergence proof, see for example [45]). It is necessary to

underline, however, that a trade–off between speed and dimension of the subsets

is necessary: if each subset has too few projections, the method generally looses
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robustness since the image is compared with insufficient data. As a rule of thumb,

a balanced choice is to have about 10 ∼ 20 projection angles per subset.

What has been presented until now is valid if no physical processes super-

imposed to the signal are considered. The corrections‡‡ presented in sections

2.3 and 2.5 can be incorporated — as anticipated in the previous section — in-

side the weights pbd using a factorization scheme as presented for example in

[67, 78, 82, 85]. On the one hand, this method allows simplifying the algorithm,

but it requires quite large memory to store the complete matrix. Two other

methods are to precorrect the recorded data or to introduce the corrections in-

side the algorithm itself (the so–called in–loop corrections). Precorrecting allows

using the rule described in equation 3.14 as it is, but it has got the disadvantage

of possible negative values in the final image (as stated for FBP in section 3.4.1).

Using in–loop corrections, on the contrary, requires more calculations — and,

consequently, higher reconstruction time — but yields more accurate results and

avoids negative values. Generally, the trade–off is represented by precorrecting

all the multiplicative effects (e.g. detector normalization, dead time etc.) and to

correct in the loop all the additive effects (e.g. randoms, scatter etc.), since only

these latter can originate negative values. To introduce in–loop corrections, it

is important to note that physical processes influence the recorded data y and,

consequently, the projection of the image present approximation should be cor-

rected adequately before calculating the ratio to be backprojected. For example,

a possible implementation is

λ
[k′+1]
b =

λ
[k′]
b∑

d∈Sm
pbd

∑
d∈Sm

ydpbd
B∑
b′=1

λ
[k′]
b′ pb′d +Rd + Sd

(3.15)

where Rd and Sd are the contributions of the random and scatter coincidences

(respectively) to the data recorded by detector d. If attenuation effects are

precorrected, yd already contains attenuation information. Anyway, in recent

algorithms — thanks to higher computational resources — also attenuation is

included in the loop. In this case, the updating rule becomes

λ
[k′+1]
b =

λ
[k′]
b∑

d∈Sm
Adpbd

∑
d∈Sm

Adydpbd

Ad
B∑
b′=1

λ
[k′]
b′ pb′d +Rd + Sd

(3.16)

where Ad is a coefficient — called attenuation correction factor (ACF) — describ-

ing the attenuation along LOR d. For the sake of clarity, it may be convenient

to introduce the definitions of projector and backprojector presented above: in

‡‡These corrections are nearly always computed in the sinogram space, i.e. the superimposed
effects are calculated for each detector d = 1 . . . D.



3.6. TIME-OF-FLIGHT RECONSTRUCTION 57

this case, the updating rule becomes

λ
[k′+1]
b =

λ
[k′]
b

B (Ad)
B

 Adyd

Ad P
(
λ

[k′]
b′

)
+Rd + Sd

 (3.17)

It is important to note that all the physically–corrected equations, here ex-

plained from a physical point of view, can be mathematically derived following

the same strategy presented in section 3.5.1 and remembering that Rd and Sd
are the expectation values of random processes described by Poisson distribution

and the sum of Poisson distributions is a Poisson distribution, too, as stated in

section M.1.

If attenuation is taken into account (with the same notations used in deriving

the MLEM updating rule), the variables x(b, d) follow a Poisson distribution with

mean λ(b)p(b, d)Ad, since the expected mean λ(b)p(b, d) should be lessened to take

into account the attenuation Ad. Random and scatter coincidences change the

expression for the recorded events in LOR d:

y(d) =

B∑
b=1

x(b, d) + R̂d + Ŝd =

B∑
b=1

Ad n(b)p(b, d) + R̂d + Ŝd

where R̂d and Ŝd are the random and scattered coincidences, respectively, actually

recorded in LOR d, both following a Poisson distribution of mean Rd and Sd,

respectively. Consequently, equation 3.11 should be changed into

x[k+1](b, d) =
Ady(d)λ[k](b)p(b, d)

B∑
b′=1

Ad λ[k](b′)p(b′, d) +Rd + Sd

and, by using the same strategy as in equation 3.12 and the division of the LORs

in the different subsets, the updating rule presented in equation 3.16 is obtained.

3.6 Time-of-flight reconstruction

As described in chapter 2, in TOF modality also the difference in the arrival

time of each couple of photons on the detectors is recorded for each event. This

results in a more detailed information about the body under study, but it leads

to an increase in the complexity of the reconstruction process. The most impor-

tant challenge is to make reconstruction time clinically viable, since TOF brings

a non-negligible additional computation burden. The choice of data organiza-

tion (sinogram or listmode) and the choice of algorithm (analytical or iterative)

are only parts of this equation, together with other elements, such as computer

architecture or software optimization. A second issue is the correctness of the
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reconstruction in terms of validating the individual components that must now

properly include the TOF information; for example, the scatter correction.

While in conventional PET the forward and back projection is done along the

LORs and all points along the LOR have equal probability, with TOF forward

and back projection is still done along the lines but all points along the line have a

different probability. The maximum probability is given to the point determined

by the measured TOF difference. The width of the probability distribution is

determined by the expected accuracy of the time difference measurement (mostly

Gaussian distributions are assumed). All the different reconstruction strategies

share this common element.

As stated above, data organization is one of the most important topics in TOF

modality. Even if the most natural scheme is the list-mode representation (since

each event is individually stored, independent of the others), it leads to very large

datasets and is difficult to be used with analytical algorithms. For these reasons,

in the following only sinogram-based reconstructions will be presented, with just

a brief reference to list-mode only for iterative algorithms.

The sinogram-based approach consists in dividing the maximum allowed time

difference between the arrival of the photons into nTOF intervals (usually chosen

with equal amplitude) and in generating, from the entire recorded dataset, nTOF
sinograms, each corresponding to a specific time interval (see figure 3.8)∗. Each

sinogram is then used in the reconstruction by introducing a proper weight to

take the temporal information into account.

3.6.1 Analytical algorithms

Following the same approach of equation 3.5, the two-dimensional image may be

written as

f(x, y) =

∫ π

0
dθ

nTOF∑
e=1

FT−1 [M(ω, θ, e)L(ω)] (s)h(t− te)

∣∣∣∣∣t=x cos θ+y sin θ
s=−x sin θ+y cos θ

where s is the projection coordinate and t is the coordinate (relative to time

information) perpendicular to s, ω is the frequency space coordinate associated

to s, FT−1 indicates the inverse one-dimensional Fourier transform operator, e

is the index of TOF bin and te is the position of the spatial center of the bin e

along the direction t. M(ω, θ, e) is the one-dimensional Fourier transform of the

projection m(s, θ, e) (i.e. for angle θ and TOF bin e) and h(t− te) = e−
(t−te)2

2σ2 is

the TOF resolution function, where

σ =
FWHMx

2
√

2 ln 2
=

c∆t

4
√

2 ln 2
∗In practice, this approach adds a 4th dimension to the 3D conventional sinogram represen-

tation.
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nTOF

t

d

Figure 3.8: Time-binned sinograms for TOF reconstruction: the entire dataset is
divided into sinograms obtained from different temporal bins (corresponding to
different positions of the maximum of the probability distribution)

is the localization uncertainty due to the finite time resolution ∆t of the system.

Finally, L(ω) is the filter in the frequency space (see also H(ω)G(ω) in expression

3.7): different proposals have been presented (e.g. see [62, 88, 98]), but a common

choice (proposed in [25]) is to obtain it as the convolution (in the frequency space)

between the ramp filter (H(ω), expression 3.6) and the square of the Fourier

transform of the Gaussian TOF response kernel (directed along the projection

direction s):

L(ω) = |ω| ⊗ F
[
e−

s2

2σ2

]2

∝ |ω| ⊗ e−4π2σ2ω2

It is also possible to generalize what exposed above to the three-dimensional

case, by introducing also proper coordinates along the axial direction and writing

again the recorded projections as a line integral weighted by the TOF kernel h

[21]†:

p3D(s, φ, z, δ; t) =
√

1 + δ2

∫ ∞
−∞

f(s cosφ− l sinφ, s sinφ+ l cosφ, z + lδ)

h(t− l
√

1 + δ2) dl (3.18)

where f represents the 3D object, s and φ are the radial and angular coordinates,

respectively, z is the axial midpoint of each LOR, δ is the tangent of the oblique

†A change in notation with respect to the above one has been preferred to be consistent
with literature references.
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angle θ and t is the TOF variable. Figure 3.9 helps with the definition of these

variables.

x

y

θ
φ

t

δ = tan θ

z

LOR

s

R TOF kernel

h

Figure 3.9: Definition of the variables for the presented 3D TOF analytical re-
construction: transaxial (left) and axial (right) views of a cylindrical scanner

3.6.2 Iterative algorithms

Using the OSEM approach as a reference for iterative algorithms, the extension

to the TOF case needs the introduction of the time-of-flight sinograms (as de-

scribed above) ydt (with yd =
∑

t ydt) and of the time spread function (TSF) cbdt
along LOR d, representing the probability of detecting, in LOR d, an event with

TOF=t originated in voxel b. As before, the TSF is assumed to be Gaussian with

FWHM equal to the time resolution of the system. The most straightforward im-

plementation is represented by a direct generalization of equation 3.14:

λ
[k′+1]
b =

λ
[k′]
b∑

d∈Sm,t
cbdt

∑
d∈Sm

∑
t

ydtcbdt
B∑
b′=1

λ
[k′]
b′ cb′dt

(3.19)

The inclusion of the corrections for the physical effects must take into account

the different statistical properties of TOF reconstruction (e.g. due to the space-

dependent probability along the LOR). For this reason, different methods (in

particular for attenuation and scatter corrections) have been proposed (e.g. [20,

23–25, 105]).

Finally, as far as list-mode data are concerned, they may be reconstructed

with iterative algorithms by following similar strategies (see e.g. [74, 101]), all

based on the introduction of an additional (usually Gaussian) TOF function.
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Chapter 4

PSF measurements

Since the PSF describes how a point source is rendered by the scanner, the method

used to characterize the response of the PET system consisted in acquiring (in

3D mode) a β+ source located in different positions within the entire FOV, in

order to map the spatial variance of the response (section 4.1). For each position,

the acquired data were then reconstructed (with the same algorithm — OSEM

— in which the PSF would be implemented) and the resulting images were used

to build the required PSF model by estimating the specific parameters described

in section 4.2.

4.1 PSF measurements

The PSF of the PET system was experimentally measured using an encapsulated,

non-collimated radioactive point source, composed of an active 22Na core (a small

cylinder with diameter of 1.65 mm and height of 1 mm) surrounded by a disk

of lucite (for more details, see [53]) — as proposed in [2] — with an activity of

100 µCi at the time of the measurements.

Using the same source for all the measurements allows having difference of

statistics due only to sensitivity effects and not to variable emission count rate,

since the source activity can be considered constant in time — the half–life of
22Na is τ22Na ≈ 951 days — when the measurements are performed in few hours.

Moreover, by using the same point source for all the measurements in the FOV,

a possible source of errors in building the PSF model is removed. Unfortunately,
22Na possesses different physical characteristics with respect to FDG, but the

equivalence between FDG in water and 22Na in lucite has been demonstrated in

[2].

The β+ source was acquired at discrete positions along a diameter of the

transaxial circular FOV and along the axial direction of the scanner: to simplify

63
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the task, the chosen diameter was the horizontal one and the axis of the cylindrical

source was oriented along the vertical direction. Since the count rate varies over

the FOV due to transaxial and axial sensitivity effects, for each sampled point in

the 3D FOV the acquisition time was chosen accordingly to the detected event

count rate in order to obtain high enough statistics (approximately 1.5 × 108

counts) to guarantee robust estimation of the parameters.

4.2 The PSF model

The PSF kernel should be constructed such that the measurement model used

in the reconstruction approximates the system response as close as possible. For

a particular point source measurement, this amounts to creating the PSF kernel

such that its forward projection matches the measured data. As noted in [97]

for the sinogram PSF approach, the corresponding Maximum Likelihood (ML)

estimate can be obtained by using MLEM. If the point source is small (compared

to the Point Spread Function), the ML estimate for the image-based PSF of

the corresponding voxel is therefore identical to the image reconstructed using

MLEM (with the same projectors as will be used in the reconstruction of the

clinical data).

However, this approach has the following problems:

• it is difficult to interpolate the PSF for locations where the point source

was not measured;

• different voxel sizes should be taken into account to change the description

of the PSF accordingly;

• for small voxel sizes, the ML estimate of the kernel is noisy.

Therefore, a different approach was followed.

The point source raw data were precorrected for detector efficiencies, dead-

time and geometric effects and then reconstructed using a 3D OSEM algorithm on

a FOV of 128 mm centred on the source position. The reconstruction parameters

were 10 iterations, image matrix 256 pixels × 256 pixels, pixel size 0.5 mm. The

number of subsets was set to 28 (for DSTE measurements, see chapter 7) or 18

(for D690 measurements, see chapter 8). The OSEM implementation used the

distance-driven projectors proposed in [30].

As stated above, when reconstructing in this way, the resulting image ap-

peared very noisy and difficult to analyse. This effect was overcome by filtering

the reconstructed images with a transaxial Gaussian post–filter with FWHMPF =

4 mm, while along the axial direction no filter was applied. An example of images

without and with transaxial postfilter is provided in figure 4.1. In principle, the
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addition of a post-filter artificially enlarges the PSF and might lead to overesti-

mation of the required parameters. The method, however, took into account also

the postfilter in the PSF estimation as detailed below.

Figure 4.1: Example of OSEM reconstruction (FOV=128 mm on 256 pixels ×
256 pixels) of a point source located 20 cm from the scanner center in absence
(left) and in presence (right) of Gaussian post–filter

The PSF was modelled as a three-dimensional (3D) Gaussian function with

space-dependent widths. Moreover, the PSF was factorized into a symmetric

one-dimensional Gaussian function along the scanner axis (called z) and a two-

dimensional (2D) Gaussian function in the transaxial plane. The transaxial 2D

Gaussian function was then modelled by a symmetric function along the tangen-

tial axis and by an asymmetric function along the radial direction, with the wider

half of the asymmetric function towards the centre of the scanner.

In each point of the scanner FOV, the 3D PSF was therefore characterized

by four spread parameters (the internal radial σi, the external radial σe, the

tangential σt and the axial σa ones), which – exploiting the cylindrical symmetry

of the scanners – were assumed to depend only on the radial and axial distances

from the scanner FOV centre. The PSF (normalized to unitary volume) in the

generic point P can be then expressed as

PSF(P )(x, y, z) =
2

(2π)3/2 σtσa (σi + σe)

[
θ(−x)e

− x2

2σ2
i + θ(x)e

− x2

2σ2e

]
e
− y2

2σ2t e
− z2

2σ2a

(4.1)

where θ(x) is the Heaviside step-function and the coordinates of the Cartesian

system (x, y, z) (whose origin is P ) correspond, respectively, to the radial, tan-

gential and axial directions, as stated before. In the equation above, all the σ

parameters are intended as σ = σ
(
~P
)

, where ~P indicates the position of the

point P with respect to the scanner centre.
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Each three-dimensional image (corresponding to a definite position of the
22Na source inside the scanner FOV) was considered as a matrix, whose indexes

were referred to as row number, column number and slice number ; after rotating

the transaxial images to have the radial direction coincident with the positive x

axis (along the row direction) and selecting the voxel with the maximum intensity,

three two-dimensional planes passing through this voxel were extracted; each of

them was characterized by fixing one out of row number, column number and

slice number (see figure 4.2), as follows:

1. fixing the slice number, the radial-tangential plane was obtained;

2. fixing the row number, the radial-axial plane was obtained;

3. fixing the column number, the tangential-axial plane was obtained.

Figure 4.2: Extraction of the three planes passing through the voxel of maximum
intensity to measure the PSF: the radial–tangential plane (top left, fixed slice
number), radial–axial plane (top right, fixed row number), tangential–axial plane
(bottom, fixed column number)
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Each plane originated a 2D image, which was then fitted∗ with the proper

function to obtain an estimation of the corresponding spread parameters.

Since the point source was a cylinder of radius r and height h with axis parallel

to the tangential direction, after introducing the parameter

γ =
Transaxial pixel size

Axial pixel size
(4.2)

the fit functions† used were

1. for the radial-tangential plane,

frt(x, y) =
A1

C1 +D1

[
erf

(
y − F + h/2
√

2
√
E2

1 + σ2
c

)
− erf

(
y − F − h/2
√

2
√
E2

1 + σ2
c

)]
·

·
r∫
−r

 C1√
C2

1 + σ2
c

e
− (x−B−t)2

2(C2
1+σ2c) erfc

[
1√
2

C1 (x−B − t)
σc
√
C2

1 + σ2
c

]
+

+
D1√
D2

1 + σ2
c

e
− (x−B−t)2

2(D2
1+σ

2
c) erfc

[
− 1√

2

D1 (x−B − t)
σc
√
D2

1 + σ2
c

] dt (4.3)

2. for the radial-axial plane,

fra(x, z) =
A2

C2 +D2
·

·
r∫
−r

 C2√
C2

2 + σ2
c

e
− (x−B−t)2

2(C2
2+σ2c) erfc

[
1√
2

C2 (x−B − t)
σc
√
C2

2 + σ2
c

]
+

+
D2√
D2

2 + σ2
c

e
− (x−B−t)2

2(D2
2+σ

2
c) erfc

[
− 1√

2

D2 (x−B − t)
σc
√
D2

2 + σ2
c

] ·
· [ψt (〈z〉 −H + 1)− ψt (〈z〉 −H − 1)] dt (4.4)

ψt (s) =
(
s+ γ

√
r2 − t2

)
erf

(
s+ γ

√
r2 − t2√

2G1

)
−

−
(
s− γ

√
r2 − t2

)
erf

(
s− γ

√
r2 − t2√

2G1

)
+

+

√
2

π
G1

e−(s+γ
√
r2−t2)

2

2G2
1 − e

−(s−γ
√
r2−t2)

2

2G2
1

 (4.5)

∗All the fits presented in this work have been performed using the software ROOT (http:
//root.cern.ch) developed at European Organization for Nuclear Research (CERN).

†In the equations, all the variables — but the ones regarding axial direction — plus r and h
are intended in “transaxial pixels”, while the variables for axial direction are intended in “axial
pixels”.

http://root.cern.ch
http://root.cern.ch
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3. for the tangential-axial plane,

fta(y, z) = A3

[
erf

(
1√
2

y − F + h√
E2

2 + σ2
c

)
− erf

(
1√
2

y − F − h√
E2

2 + σ2
c

)]
·

· [ω (〈z〉 −H + 1)− ω (〈z〉 −H − 1)] (4.6)

ω (s) = (s+ γr) erf

(
s+ γr√

2G2

)
− (s− γr) erf

(
s− γr√

2G2

)
+

+

√
2

π
G2

[
e
− (s+γr)2

2G2
2 − e

− (s−γr)2

2G2
2

]
(4.7)

In the expressions above, the rounding operator

〈z〉 = arg min
n

|z − n|

was introduced.

The fit functions took into account different elements.

1. The applied post–filterPost–filter

fPF =
1

2π
exp

(
−x

2 + y2

2σ2
c

)
σc =

FWHMPF√
8 ln 2

is included in the analytic expression of the fit function. This is important

since the post–filter both enlarges the Gaussian spread and changes the

shape of a non–point source (for details, see section M.2).

2. Furthermore, also the coordinates of the source position were obtained fromPositioning

the fit (respectively, the x coordinate from parameter B, the y coordinate

from parameter F and the z coordinate from parameter H) and they were

used to estimate the true radial and axial distances from the scanner FOV

centre. This should help compensate for the imprecision in the source

positioning.

3. Since the fitted images have a transaxial pixel size of 0.5 mm and the activeSource

dimensions volume of 22Na is a cylinder with radius of 0.825 mm and height of 1 mm,

the condition of “point source” is not rigorously fulfilled. Therefore, also its

physical dimensions (i.e. the radius r and the height h) should be taken into

account to avoid an overestimation of the spread parameters. The physical

dimensions in the fitting functions were fixed to the known values for r and

h.
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4. Since a PET scanner typically produces images with slicewidths of 2–4Discretization

along the

scanner axis

and effective

radius

mm, the PSF kernel along the axial direction should take into account

this coarseness. For this reason, expressions 4.4 and 4.6 were derived from

the functions M.19 and M.20 by integrating along the axial direction, by

recalling that∫
erf(ax+ b) dx =

1

a

[
(ax+ b) erf(ax+ b) +

e−(ax+b)2

√
π

]
+ c

Moreover, given the orientation of the cylindrical radioactive source, in

fta the radius is substituted with an “effective” radius reff (to partially

compensate the effect‡ of the circular shape on the final result) defined as

reff =
Acs
2 ps

where Acs is the area of the circular segment comprised in the slice and ps

is the transaxial pixel size. This corresponds to considering the comprised

area as a rectangle of sides ps and 2reff . In figure 4.3 a scheme of this

procedure is presented. Finally, as detailed in section 5.2, the discretization

along the scanner axis is taken into account by using, in the reconstruction

algorithm, the integral of the PSF along the axial direction.

Figure 4.3: Introduction of the equivalent radius in the fitting procedure: when
the tangential-axial plane is selected, due to the spatial extent ps of the pixel
along the radial direction (comparable to the source dimensions), the circular
shape is not negligible; here the real area Acs (grey) is assumed to be equivalent
to a rectangular area (yellow) of sides ps and 2requiv.

Each spread parameter was then estimated twice:

‡The “recorded” PSF in the tangential-axial plane is the superposition of elementary con-
tributions in which the PSF blurs different rectangular cross sections of the cylinder, with equal
height — i.e. equal vertical side — and different radii — i.e. different horizontal side.
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• internal radial spread parameter was represented by parameters C1 and C2;

• external radial spread parameter was represented by parameters D1 and

D2;

• tangential spread parameter was represented by parameters E1 and E2;

• axial spread parameter was represented by parameters G1 and G2.

The final estimation of each spread parameter was then computed as the mean

of the corresponding two values. The parameter A1, A2 and A3 represented

normalization factors and were not used in the following steps.

All the obtained values for each spread parameter were then graphed as a

function of both radial and axial distances from the scanner FOV centre: it was

then possible to fit each set of data with a polynomial quadratic in both distances,

symmetric with respect to the centre of axial FOV:

f(r, z) =
(
R0 +R1r +R2r

2
) (
A0 +A2z

2
)

(4.8)

where r indicates the radial distance and z the axial distance from the scanner

center.

By knowing the coefficients R0, R1, R2, A0 and A2 it was then possible to

calculate the four spread parameters for each point inside the whole scanner FOV.

4.3 Accuracy of the method

To check whether the fitting procedure is consistent and unbiased, a simulated

set of PSF measurements were generated. Each PSF measurement consisted in

considering a three-dimensional image, selecting a position inside the scanner

(identified by its radial and axial distances from the center) and generating a

cylinder of known radius (0.825 mm) and height (1 mm), with axis parallel to the

vertical direction in the transaxial images (corresponding to tangential direction

in the scanner). The dimensions of the images were 256×256×47 with simulated

voxel size of 0.5×0.5×3.27 mm3. The image was centred on the ideal position set

before. The center of the cylinder, instead, was positioned by introducing random

fluctuations (with respect to the position selected at the beginning) along both the

radial (x axis) and axial (z axis) directions — to simulate random mispositioning

of the source — while it was centred along the tangential direction. Each voxel

of the image was filled with the area of the cylinder internal to the voxel itself.

The resulting image was then convolved with the spatially–variant PSF de-

fined as in equation 4.1 with

σi = Air
2 +Bir + Ci

σe = Aer
2 +Ber + Ce

σt = Atr
2 +Btr + Ct

σa = (Aar
2 +Bar + Ca)(Da

2 + E)
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where r and a are, respectively, the radial and axial distances from the scanner

centre of each voxel in the image, and the coefficients A . . . E were set by choosing

the values indicated in table 4.1. This simulation did not take into account any

superimposed noise (since the noise model in the resulting image was unknown):

even if this could appear to consitute a limitation and a more favourable condi-

tion than the real one, it should be remarked that the additional post-filter —

introduced to remove the noisy patterns — generates a very smooth image, which

appears very similar to a non-noisy image. Consequently, this limitation is not

considered to reduce the reliability of the validation results.

r = 0 cm r = 10 cm r = 20 cm
a = 0 cm a = 8 cm a = 0 cm a = 8 cm a = 0 cm a = 8 cm

σi 1.40 2.00 3.30
σe 1.40 1.50 1.80
σt 1.40 1.50 1.62
σa 1.52 1.63 1.55 1.66 1.65 1.77

Table 4.1: Choice of sigma parameters (in mm) for the simulation of PSF fitting

The transaxial spread parameters σi, σe and σt were assumed to depend only

on the radial distance from the scanner centre, since the axial dependence was

expected to be weak (and later confirmed in real data, as shown in chapters 7

and 8). Finally, a two–dimensional Gaussian post–filter with FWHM = 4 mm

was applied to the image, while along the axial direction no filter was applied.

The images were then fitted as in the clinical practice and by fixing both the

radius and the height parameters to the known values.

In figure 4.4 a synthetic image of the cylinder and the corresponding PSF

image are shown, while in figure 4.5 the fit results for two planes (radial–tangential

and tangential–axial) on the above example are presented. As can be seen from

the figures, the fitted images appear to resemble well the original images (e.g.

compare the statistics relative to the histograms in the top-right part of each

figure).

By graphing all the evaluated spread parameters as a function of both radial

and axial distances from the scanner FOV centre and fitting the data with a

polynomial quadratic in both distances, symmetric with respect to the centre

of axial FOV, as in equation 4.8, the spatial dependences of the parameters

were evaluated (figure 4.6) and can then be compared to the known ones. For

the transaxial parameters a direct comparison could be performed, since these

parameters depend only on the radial distance. For the axial spread parameter,

since it depends on both radial and axial distances, the comparison was performed

only along the axial direction, by fixing the radial distance at 5 cm§.

§This distance is arbitrary, but it was considered a reference point, common also to some
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Figure 4.4: Example of simulated PSF acquisition: cylinder without PSF and
post–filter contributions (top) and final simulated image (bottom); transaxial
(left), coronal (center) and sagittal (right) views.

Radial

150 155
160 165 170 175 180

Tangential

115
120

125
130

135
140
0

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

Radial-Tangential Radial-Tangential
Entries  65536
Mean x     166
Mean y   128.5
RMS x   6.344
RMS y   4.669

Radial-Tangential
Entries  65536
Mean x     166
Mean y   128.5
RMS x   6.344
RMS y   4.669

Radial-Tangential

Tangential

115
120

125
130

135
140

Axial

5
6

7
8

9
10

11
12

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

Tangential-Axial Tangential-Axial
Entries  12032
Mean x   128.5
Mean y   8.995
RMS x    4.67
RMS y  0.6021

Tangential-Axial
Entries  12032
Mean x   128.5
Mean y   8.995
RMS x    4.67
RMS y  0.6021

Tangential-Axial

Radial

150 155
160 165 170

175 180

Tangential

115
120

125
130

135
140
0

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

Fit Rad-Tang Fit Rad-Tang
Entries  65536
Mean x     166
Mean y   128.5
RMS x   6.344
RMS y   4.669

Fit Rad-Tang

Tangential

115
120

125
130

135
140

Axial

5
6

7
8

9
10

11
12

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

Fit Tang-Ax Fit Tang-Ax
Entries  12032
Mean x   128.5
Mean y   8.995
RMS x   4.669
RMS y  0.6019

Fit Tang-Ax

Figure 4.5: Example of fits on simulated PSF acquisition. Top: radial–tangential
and tangential–axial images; bottom: corresponding fits
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In figure 4.7 this comparison is presented. The parameters appear to be

evaluated with global good accuracy. In the axial direction a slight overestimation

can be noticed. Anyway, this overestimation is always lower than 5%: if the

difficulties in applying this method to a very coarse grid (as in the axial spacing

case) are taken into account, the level of accuracy is considered to be satisfying.

For the transaxial parameters the accuracy appears to be very good. For all these

considerations, the fitting procedure is believed to be accurate enough to support

the building of the PSF models described in sections 7.2 and 8.2.
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Figure 4.6: Fitting of spread parameters in simulated PSF: σi (top left), σe (top
right), σt (bottom left) and σa (bottom right)

validation results presented in chapters 7 and 8 (e.g. the NEMA IEC Body Phantom).
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Figure 4.7: Comparison of evaluated (black) and known (red) spatial depen-
dences of the spread parameters in simulated PSF: σi (top left), σe (top right),
σt (bottom left) and σa (bottom right)



Chapter 5

Implementation

5.1 OSEM algorithm and PSF implementation

To reconstruct the data, the GE scanners used in this thesis employ an OSEM

algorithm [45, 87] as described by the equation:

λ
[k+1]
b =

λ
[k]
b

BbAd
Bb

Adyd

AdPdλ
[k]
b′ +Rd + Sd

(5.1)

where λ
[k]
b indicates the counts in the voxel b of the image λ at iteration k, Ad

is the attenuation correction factor relative to the LOR d, yd are the counts

recorded along LOR d (pre-corrected for normalization, decay, dead time and

geometric effects), while Rd and Sd are the estimations of random and scattered

coincidences relative to LOR d, respectively; finally, the projector P and the

backprojector B are defined as

Pd(·)b =
∑
b

(·)b pbd

Bb(·)d =
∑
d∈Km

(·)d pbd
(5.2)

where pbd is the weight factor linking voxel b and LOR d (i.e. the probability of

detecting, in LOR d, an event coming from voxel b) and Km indicates the mth

subset of projection angles.

The algorithm was implemented in MATLAB c©∗.

Starting from it, the measured PSF has been implemented as a “convolution”

with the image during the reconstruction process: this approach assumes that the

degradation of the spatial resolution due to the PSF is accounted for in the image

∗MATLAB c© is a product of The MathWorksTM, http://www.mathworks.com.

75

http://www.mathworks.com
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space and not in the raw data or sinogram space†. This latter approach has often

been used by other groups (e.g. [3, 70, 78]), while image–based implementation

is less frequently found in literature (some examples are [16, 82, 83]). Both

methods can only approximate the actual resolution model, which is complex

due to the superposition of several different effects. Moreover, some of these

effects are characteristic of the sinogram level (e.g. the detector blurring), while

others are more relative to the image level (e.g. the positron range). On the

other hand, from a theoretical point of view the two strategies should convey the

same information about the response of the tomograph, especially in cases where

the system response varies slowly across the FOV. As far as the estimation of the

PSF is concerned, the sinogram approach is usually more involved than the image

one, due to the complex organization of 3D-planogram data, whereas the image

approach requires an additional reconstruction step (as described in section 4.1).

In this work the PSF was introduced by redefining the projector and back-

projector as follows:

Pd(·)b =
∑
b

[(·) ∗ PSF ]b pbd

Bb(·)d =

PSF T ∗
 ∑
d∈Km

(·)d pbd


b

(5.3)

where ∗ indicates a redefinition of the convolution operator (see section M.3) and

PSFT indicates the transposed PSF. For a spatially-variant kernel this is not

simply the transposed of the PSF kernel (as in the spatially-invariant case): for

each voxel, instead, it contains contributions from neighbouring voxels, too (see

section M.4).

5.2 Organization of the PSF kernel

The PSF was stored into two matrices: one for the transaxial two-dimensional

Gaussian function, the other for the axial one-dimensional Gaussian function.

The transaxial PSF component was stored in a three-dimensional matrix com-

posed of N×N×M2, where N is the number of pixels of the reconstructed single

slice and M is an odd number representing the kernel size of the spread. It is

important to note that M is not a measure of the spread — it should not be con-

fused with σi, σe and σt — since it represents the side (in pixels) of the square

†Please note that, in principle, a PSF determined on the sinogram could be used in the image
space and a PSF determined on the image could be used in the sinogram space: however, this
would obviously require some additional processing after the measurement procedure, which
requires more time and, more importantly, introduces new sources of uncertainty. For this
reason, when referring to either image or sinogram space for the implementation, it will be
implicitly assumed that the PSF has also been determined in the corresponding space.
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kernel containing the spatially variant two-dimensional transaxial PSF. M can

be adjusted depending on the transaxial FOV width, to let about 4 FWHM (in

each direction) be contained in the kernel in order to obtain a complete sampling

in the tails of the PSF itself, avoiding a leakage in the PSF representation.

For each pixel P in the two-dimensional matrix sized N × N , the position

of the pixel centre inside the scanner FOV was determined (by knowing the

chosen coordinates for the image centre): then, the distance from the centre of

the transaxial FOV was calculated and consequently σi(P ), σe(P ) and σt(P )

were known from the fits (equation 4.8). Moreover, also the angle between the

horizontal direction and the radial direction in P was obtained, in order to have

the analytic expression for the properly rotated PSF (see section M.3). Finally,

after filling the square kernel, this was reorganized (with leading row direction)

into a (M2 × 1) vector to gain higher computational performance. In figure 5.1

an example of a square kernel and the corresponding one-dimensional vector is

provided.

Figure 5.1: Organization of the transaxial PSF storage for a particular transaxial
position: square kernel (top) and its organization into a one-dimensional vector
(bottom)

The axial PSF was stored in a three-dimensional matrix N × N × (MA ×
NSLICES), where N is the above-mentioned number of pixels of the reconstructed

transaxial images, MA is the length of the one-dimensional kernel vector along

the axial direction of the scanner and NSLICES is the number of slices in the

reconstructed image. Since the axial PSF depends on both the transaxial and

axial distances from the scanner centre, for each couple of row and column indexes
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(identifying a point P in the transaxial FOV) a series ofNSLICES vectors of length

MA had to be stored, each containing the axial PSF vector relative to one slice.

This strategy was not necessary for transaxial PSF, since σi, σe and σt were

assumed (and experimentally verified, see chapters 7 and 8) to be independent

of the axial position in the scanner. In figure 5.2 an example of the axial PSF

organization is provided. Also for the axial case, the information relative to a

fixed transaxial point was reorganised into a single one-dimensional vector, to

improve the computational performance.

Figure 5.2: Organization of the axial PSF storage for a particular transaxial
position: each slice is coded into a single column and the one-dimensional axial
kernel relative to a particular slice is stored in the corresponding column

To obtain the PSF for a particular voxel size, the value of each kernel coef-Integral vs.

mean ficient was calculated as the integral of the PSF over the corresponding voxel,

instead of the value of the PSF in the middle point of the voxel, strategy that

should provide a description of the PSF more representative of the real one,

due to the continuous behaviour of the resolution degradation. This can be un-

derstood by recalling that each voxel in the image contains the sum of counts

assumed to have been originated from it: consequently, the resolution degrada-

tion effect is “integrated” over the voxel. This may be neglected for small pixels,

where the “integration” is over a small region; instead, when the pixel size in-

creases, the incidence of this behaviour enlarges. As an example, in figure 5.3 a

one-dimensional comparison between the two different methods of calculation is

performed for small pixel size (0.5 mm) and large pixel size (2.73 mm, the largest

— and most used — pixel size available on the systems used for the validation

in chapters 7 and 8). As expected, in the former case the approximation of cal-

culating the PSF in the middle points of the voxels is good, while for large pixel

sizes the approximated method changes both the height and, more importantly,

the shape of the PSF.
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Figure 5.3: Comparison between PSF kernels calculated in the middle point of
each voxel (red) or as the integral over the voxel (black) for small pixel size (0.5
mm, left) and large pixel size (2.73 mm, right).

5.3 The edge effect

As will be shown in the following chapters, the incorporation of PSF modelling in

the PET reconstruction algorithm provides improved spatial resolution and image

quality. However, an important effect observed in PSF-based reconstructions is

the enhancement of regions with sharp intensity transitions, with the edges of

the objects being strongly (and innaturally) emphasized if PSF recovery is used.

An example of this edge effect or edge artefact is provided in figure 5.4, which

represents three spheres (whose diameters are 30 mm, 23 mm and 15 mm) filled

with a homogeneous FDG solution reconstructed in absence and in presence of

PSF recovery.

This effect is recognizable throughout the literature — for some examples,

see [4, 32, 67, 70, 78, 83, 89, 91] — and it is usually justified with a kernel not

matched (in particular, overestimated) with the actual spread.

(a) Original reconstruction (b) Reconstruction with PSF

Figure 5.4: Edge effect in a reconstruction of three uniform spheres

To investigate this effect more deeply, two simple simulations of one-dimensional

and two-dimensional data iterative reconstruction were set-up.
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One-dimensional simulation

A box of given amplitude superimposed to a fixed background (blue line in figures

5.5 and 5.6) was used as the test image to be reconstructed. The box was con-

volved with a symmetric GF having σ = σr and the resulting array simulated the

recorded data y read on the detectors (green line in figure 5.6). The PSF model in

the reconstruction algorithm was a symmetric GF with σ = σu. In the examples

here provided, the box had a width of 3 cm and an amplitude of 25, while the

chosen‡ background was equal to 5; the simulated signal-to-background (SBR)

ratio was then 5:1. The entire FOV of 70 cm was reconstructed on N = 256

pixels and the spread GF had σr = 3 mm. The number of iterations used was —

where not differently specified — 280, corresponding to 10 full iterations at 28

subsets.

No attenuation and noise effects were introduced and the projector and back-

projector operators were the identity operators (pbd = δbd). The updating rule in

the simulated model was then

λ
[k+1]
b =

λ
[k]
b

(PSF T ? 1)b

{
PSF T ?

y(
λ[k] ? PSF

)
+ B

}
b

(5.4)

where λb represents the profile to be reconstructed, 1 is a N–dimensional array

of ones, B is an array containing the estimation of background for each pixel and

the division between arrays is intended element–by–element.

If no PSF recovery is applied, the reconstructed image coincides with the

recorded data (figure 5.5). If PSF recovery is used, instead, the artifacts appear

regardless of the recovery PSF used. Some examples are provided for a GF with

σu = 3 mm (corresponding to the correct PSF model, figure 5.6a), a GF with

σu = 3.2 mm (corresponding to a slightly overestimated PSF model, figure 5.6c)

and a GF with σu = 2.8 mm (corresponding to a slightly underestimated PSF

model, figure 5.6e). It is apparent that an underestimation of the PSF mitigates

the effect, but obviously at the expense of the recovery of the spatial resolution

(the “most underestimated” PSF corresponds to the absence of PSF recovery

— figure 5.5 — which shows no edge artifacts). It is interesting to note that

at a very high number of iterations (here 28000) the similar behaviours shared

by correct and uncorrect PSF models differentiate: the edge artifact disappears

from the image obtained with the exact PSF (figure 5.6b), while in the case of

the overestimated PSF model the edge effect is amplified (figure 5.6d). As stated

above, if the PSF is underestimated, the effect is still nearly absent, but the

algorithm converges to an image with worse spatial resolution (figure 5.6f).

‡In the simulation, the background estimation used in the reconstruction can be different
from the real one: however, as it will be seen, the major problem is not represented by this dif-
ference. Consequently, for the sake of simplicity, the correct background is used in the presented
examples.
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Figure 5.5: One-dimensional simulation without PSF recovery: the blue line
represents the real box profile, the green line represents the recorded profile and
the red line represents the reconstructed profile (coincident with the recorded one
if no PSF recovery is applied)

Using the correct image as the start condition makes the reconstruction use-

less, so edge artifacts do not appear avoidable by choosing an adequate starting

image and in feasible reconstruction conditions (e.g. the number of iterations).

The edge amplification seems to be a manifestation of aliasing effects due to trun-

cation of the PSF kernel (as suggested in [89]) and so no methods of prevention

appear efficacious.

Two-dimensional simulation

A two-dimensional simulation was performed similarly to the one-dimensional

case to compare the simulated results to the images presented in figure 5.4 more

directly.

A circle of given diameter superimposed to a fixed background (figure 5.7a)

was used as the test image to be reconstructed. The circle was convolved with

a symmetric GF having σ = σr and the resulting image simulated the recorded

data y to be “deconvolved” (figure 5.7b). The PSF model was a symmetric GF

with σ = σu. In the examples here provided, the circle had a diameter of 3 cm

and a simulated activity concentration of 5 kBq/cc, while the background activity

concentration was 1 kBq/cc. The image simulated a FOV of 70 cm on 256× 256

pixels (with a corresponding pixel size of 2.73 × 2.73 × 3.27 mm3 — where the

slice width of 3.27 mm was chosen equal to the one of the considered scanners

in chapters 7 and 8, even if its value is irrelevant for the simulation) and the

spread GF had σr = 3 mm. Each pixel in the image was filled with the expected

counts contained (neglecting attenuation and noise fluctuations). The number of

iterations used was — where not differently specified — 280, corresponding to 10

full iterations at 28 subsets. The updating rule of the algorithm was identical to
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(b) Correct PSF — large iterations
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(c) Overestimated PSF
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(d) Overestimated PSF — large iterations
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(e) Underestimated PSF
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(f) Underestimated PSF — large iterations

Figure 5.6: Main results of data reconstruction one-dimensional simulation with
PSF recovery (the blue line represents the real box profile, the green line repre-
sents the recorded profile and the red line represents the reconstructed profile):
PSF with σu = 3 mm (top), PSF with σu = 3.2 mm (middle), PSF with σu = 2.8
mm (bottom); 280 iterations (left) and 28000 iterations (right)
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the one-dimensional case (equation 5.4).

If no PSF recovery is employed, the image remains identical to the recorded

data y (figure 5.7c). If the correct PSF is used, the edge artefact appears (figure

5.8a) very similar to the reality (compare it with figure 5.4). If the PSF is either

overestimated (σu = 3.2 mm) or underestimated (σu = 2.8 mm), the artefact is

respectively strengthened (figure 5.8c) or lessened (figure 5.8e). This confirms

the suggestion found in literature (e.g. see [83]) of underestimating the PSF in

order to reduce the edge enhancement. However, as visible in figure 5.8e, in such

a case the recovery of spatial resolution is suboptimal, leading to worse definition

of the signal (e.g. the smeared edge of the circle). If the number of iterations

is strongly increased (28000 iterations), the effect should disappear if the cor-

rect PSF were used. In two dimensions the effect appears to be removed more

slowly than in one dimension (compare figures 5.8b and 5.6b) and, consequently,

even more iterations would be needed to remove it to a sufficient extent for the

clinical practice. A comparison between the results with correct PSF after 280,

28000 and 2800000 iterations is presented in figure 5.9. After 28000 iterations

with an overestimated PSF (figure 5.8d) the effect amplifies, generating an image

very different to the real one; if the PSF is underestimated, instead, (figure 5.8f),

the lower edge artefact leads to a reduced spatial resolution recovery, which be-

comes apparent when compared to the original image (figure 5.7a) and the image

obtained with the correct PSF at the same number of iterations (figure 5.8b).

(a) Original image (b) Recorded data (c) No PSF recovery

Figure 5.7: Data used for two-dimensional simulation of edge effect (left, center)
and image resulting from no PSF recovery (right)

Both simulations show that the edge effect is avoidable since the beginning

only if no iterative updates are necessary, i.e. if the correct image is used as

the starting condition of the algorithm. This obviously makes the reconstruction

process useless and is a non-feasible approach in the real world. If, instead, a

different image is used as the starting condition of the algorithm (in these ex-

amples, a uniform one), the effect is present since the first iterations and tends

to disappear only if the PSF used for the recovery is correct. Apart from the
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(a) 3 mm, 280 iterations (b) 3 mm, 28000 iterations

(c) 3.2 mm, 280 iterations (d) 3.2 mm, 28000 iterations

(e) 2.8 mm, 280 iterations (f) 2.8 mm, 28000 iterations

Figure 5.8: Main results of data reconstruction two-dimensional simulation with
PSF recovery: PSF with σu = 3 mm (top), PSF with σu = 3.2 mm (middle), PSF
with σu = 2.8 mm (bottom); 280 iterations (left) and 28000 iterations (right)

Figure 5.9: Removal of edge artefact with increasing iterations using the correct
PSF (σu=3 mm): 2.8×102 iterations (left), 2.8×104 iterations (middle), 2.8×106

iterations (right)
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impossibility of using a perfectly matched PSF kernel, also the number of itera-

tions required for the removal of the artifact is completely impractical for the real

reconstructions. Moreover, the simulations show also that the necessary number

of iterations is dramatically dependent on the complexity of the reconstruction:

e.g. the change from one-dimensional to two-dimensional simulation makes the

required number of iterations increase by about two orders of magnitude. This

strengthens the impossibility of using such a method for real reconstructions,

which are two-dimensional or, much more often, three-dimensional.

Consequently, no methods of prevention appear available and only strategies

to reduce this effect are usable, one of which is presented in chapter 6.





Chapter 6

Regularization

6.1 Theoretical background

As stated in section 3.5.1, the ML algorithms seek an image making the measured

data most likely to occur, i.e. the reconstructed image is the one maximizing the

conditional probability

P (Data|Img) (6.1)

of obtaining the projection data Data from the image Img. Being an example

of an inverse problem [103], this process generally converges to a quantitatively

unbiased but noisy image: consequently, the final result may appear visually

unpleasant and thus difficult to be interpreted. To contrast this, a limited num-

ber of iterations is usually chosen, reducing the quantitative accuracy due to an

incomplete convergence. The incomplete convergence also introduce a strong de-

pendence of the results on the reconstruction parameters (and, specifically, on the

number of iterations), causing difficulties in comparing quantitative information

from different clinical protocols.

Another approach is to introduce the concept of evaluation of the results,

allowing to give privileges to a class of images defined in advance, while penalising

images not contained in this class. This scheme is based on the Bayes’ theorem

P (Img|Data) =
P (Data|Img)P (Img)

P (Data)
(6.2)

While the MLEM methods are based on the maximization of expression 6.1, the

Bayesian methods maximize expression 6.2, where P (Img|Data) is the proba-

bility of obtaining image Img having recorded the projections Data, P (Data)

is the total probability of obtaining the recorded data Data (but, since it does

not involve the image Img, its contribution to the image estimation is null) and

P (Img) is the a–priori probability of obtaining the image Img (i.e. certain kinds

87
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of images are assumed to be most probable and/or to be favoured), thus condi-

tioning the usual MLEM reconstruction.

The expectation step in expression 3.8 is not affected, while the maximization

step changes from{
λ

[k+1]
b

}
MLEM

= arg max
λ

[logP (Data|Img)] = arg max
λ

[L(λ)]

to {
λ

[k+1]
b

}
Bayes

= arg max
λ

[logP (Data|Img) + logP (Img)] =

= arg max
λ

[L(λ) + P (λ)]

The resulting algorithm is usually referred to as maximum a posteriori (MAP),

since the reconstruction follows an a-priori constraint. This assumption, con-

tained in P (Img), is crucial for the final result: since the scope of emission

tomography reconstruction is to reveal the unknown activity concentration, too

strict conditions can mask possible deviations from the normal uptake of the

tracer. Consequently, the prior should be ideally capable of leaving the correct

image unpenalised, while removing noise and all other spurious effects associated

with the reconstruction.

The Bayesian prior is generally formulated according to the Gibbs distribu-

tion, whose general form is [36, 40]

P (Img) = Ce−βU(λ)

where C is a normalization constant and U(λ) is a non–negative energy function

having its minimum — corresponding to the maximum of P (Img) — when the

image λ meets the prior assumption. The parameter β expresses the relative

weight of the prior. If β is close to 0, P (Img) is close to its maximum over a

wide range of different λ images and, consequently, the strength of penalisation

is modest; with a large β, instead, the prior is more peaked and some images are

significantly more favoured than others.

Since the image is discrete, the function U(λ) is usually calculated as the sum

of the values U(λ, b) assumed by U() in each voxel b:

U(λ) =
∑
b

U(λ, b) (6.3)

A common choice for U is an energy function computed using a potential function

v() of the differences between pixels in the neighbourhood Nb of pixel b

U(λ, b) =
∑
i∈Nb

wbi v (λb − λi) (6.4)
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where wbi is the weight of pixel i contained inside Nb. Typically, the wbi coeffi-

cients are chosen depending on the distance from the central voxel b, following a

spatial organization scheme like

e d c d e

d b a b d

c a ? a c

d b a b d

e d c d e

where ? indicates the central voxel and is usually set to zero to avoid any regular-

ization effect of each voxel on itself. Different potential functions v() have been

proposed in literature [1, 15, 55, 75–77].

As stated before, the M step including the regularization prior becomes

∂L(λ)

∂λb
+
∂P (λ)

∂λb
= 0

The same mathematical steps presented in section 3.5.1 and the Gibbs formula-

tion of the prior lead to

D∑
d=1

[
−pbd +

x
[k+1]
bd

λ
[k+1]
b

]
− β∂U(λ)

∂λb
= 0

The one step late (OSL) algorithm uses the image at the iteration k to calculate

the derivative of the energy function U() and penalise the image at iteration k+1

[38]. This allows decoupling λ
[k+1]
b from the prior term: therefore, the updating

rule of OSL-MLEM accounting for attenuation, random and scatter coincidences

and with the use of Gibbs regularization is

λ
[k+1]
b =

λ
[k]
b

D∑
d=1

Adpbd + β ∂U(λ)
∂λb

∣∣∣
λ=λ[k]

D∑
d=1

Adydpbd

Ad
B∑
b′=1

λ
[k]
b′ pb′d +Rd + Sd

(6.5)

6.1.1 Variational regularization

One of the most relevant features in an image is represented by the gradients

contained. The gradients are directly involved in the recognition of particular

patterns and structures and in the discrimination of signal and background.

The previously described approach is not directly linked with the gradient

analysis, since it takes into account the difference between neighbouring voxels

(see equation 6.4) regardless of the orientation of this variation. As an example,

the two images

0 1 0

0 2 1

0 0 0

0 0 0

1 2 1

0 0 0
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would give the same value for U(λ) and, consequently, the same penalization

term, while they clearly exhibit different patterns of gradients. Moreover, the

weight coefficients in equation 6.4 are, in principle, arbitrary and not directly

linked with the potential functions v() used: consequently, different choices of

wbi for the same regularization function may lead to different results.

By changing the definition of the energy function (equations 6.3 and 6.4), the

gradient information can be directly used, while avoiding the arbitrariness of the

weight coefficients: this is possible, for example, by using a variational approach∗

[7, 50, 84]:

U(λ) =

∫
Ω
φ(|∇λ (ω)|) dω (6.6)

where φ(·) ≥ 0 is the prior function (or, in the following, simply the prior) and

ω spans the image domain Ω. The symbol ∇ indicates the gradient operator

expressed using the `2 norm.

With the energy function chosen as in equation 6.6, the updating rule of

OSL-MLEM (equation 6.5) becomes

λ
[k+1]
b =

λ
[k]
b

D∑
d=1

Adpbd − βDb

(
λ[k]
)

D∑
d=1

Adydpbd

Ad
B∑
b′=1

λ
[k]
b′ pb′d +Rd + Sd

(6.7)

where the regularization term

D (λ) = −∂U(λ)

∂λ
= ∇ ·

[
φ′ (|∇λ|) ∇λ

|∇λ|

]
= ∇ · [g (|∇λ|)∇λ] (6.8)

(with g(t) = φ′(t)/t) results from the variational maximization of equation 6.2,

using the energy function specified in equation 6.6 (see section M.5 for the explicit

derivation).

The discrete form† for the regularization term ∇ · (g (|∇λ|)∇λ) is

[∇ · (g (|∇λ|)∇λ)]i,j,k =
1

hx
∆x
−

[
g
(
|∇λ|i+ 1

2
,j,k

)
∆x

+λi,j,k

]
+

+
1

hy
∆y
−

[
g
(
|∇λ|i,j+ 1

2
,k

)
∆y

+λi,j,k

]
+

+
1

hz
∆z
−

[
g
(
|∇λ|i,j,k+ 1

2

)
∆z

+λi,j,k

] (6.9)

∗In order to avoid the introduction of new and redundant symbols, λ will indicate either
a continuous functions describing the activity distribution or its discretization λ = {λb}. The
meaning of the symbol in each specific case, however, will be clear from the context.

†The indexes used (i, j and k) refer respectively to the x, y and z directions and their
domains of definition are

i = 1 . . . Nx j = 1 . . . Ny k = 1 . . . Nz
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in which the discrete derivatives are

∆x
+si,j,k = 1

hx
(si+1,j,k − si,j,k) ∆x

−si,j,k = 1
hx

(si,j,k − si−1,j,k)

∆y
+si,j,k = 1

hy
(si,j+1,k − si,j,k) ∆y

−si,j,k = 1
hy

(si,j,k − si,j−1,k)

∆z
+si,j,k = 1

hz
(si,j,k+1 − si,j,k) ∆z

−si,j,k = 1
hz

(si,j,k − si,j,k−1)

(6.10)

and the magnitudes of the (discrete) gradients are given by

|∇λ|i+ 1
2
,j,k =

√(
∆x

+λ
)2

+
[
m
(
∆y

+λ,∆
y
−λ
)]2

+
[
m
(
∆z

+λ,∆
z
−λ
)]2

|∇λ|i,j+ 1
2
,k =

√(
∆y

+λ
)2

+
[
m
(
∆x

+λ,∆
x
−λ
)]2

+
[
m
(
∆z

+λ,∆
z
−λ
)]2

(6.11)

|∇λ|i,j,k+ 1
2

=

√(
∆z

+λ
)2

+
[
m
(
∆x

+λ,∆
x
−λ
)]2

+
[
m
(
∆y

+λ,∆
y
−λ
)]2

where λ is a short form for λi,j,k and

m(a, b) =
sign a+ sign b

2
min (|a|, |b|)

with the signum function defined as

signx =


|x|
x

x 6= 0

0 x = 0
=


1 x > 0

0 x = 0

−1 x < 0

The Neumann boundary conditions (see above and section M.5) are dis-

cretized by extending the domain of definition of the indexes i, j, k and assuming

λ0,j,k = λ1,j,k λi,0,k = λi,1,k λi,j,0 = λi,j,1
λNx,j,k = λNx+1,j,k λi,Ny ,k = λi,Ny+1,k λi,j,Nz = λi,j,Nz+1

The effects of a variational regularization strategy on the final image depend

on the mathematical characteristics of the prior φ (x). In particular, convex

functions (φ′′ (x) > 0) smooth the image (with increasing effect for larger values

of φ′′ (x)), lowering the noise level but reducing the sharpness of the edges in the

image, while concave functions (φ′′ (x) < 0) enhance the edges (with increasing

effect for larger values of |φ′′ (x)|), even if leading to possible amplification of

noisy textures and creation of “patchy” artefacts. Both these behaviours are,

in principle, contemporarily needed for PET, since a reconstruction algorithm

for PET should be able to smooth uniform areas (in order to take noise under

control, all the more – if the algorithm is iterative – while iterations proceed)

and, contemporarily, to preserve the spatial resolution, to obtain high definition

of the activity distribution.

For this reason, the case with φ′′ (x) = 0 has been subject of interest, since

it corresponds to the so-called “total variation” (TV) function, which neither

smooths nor enhances edges: this specific penalization provides an excellent edge
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preservation and smoothing of flat regions. Unfortunately, in regions with gradual

variations (as often encountered in PET) it may lead to unnatural staircasing

effects.

Many different penalty functions have been proposed [50]. The most used

Bayesian regularization strategy is based on the Gaussian prior [36], which cor-

responds to the variational penalty function φG (x) = x2/2. Since φ′′G (x) = 1

and considering that the function is used with argument x = |∇λ|, the prior

smooths all the gradient intensities with equal relative strength, resulting in a

strong smoothing effect.

A modification of the Gaussian prior is the Huber prior [44] or, equivalently

in the variational framework, the Gauss-Total Variation (GTV) prior [50]:

φGTV (x) =

{
x2/2 x < δ

δx− δ2/2 x ≥ δ
=

{
φG(x) x < δ

φTV (x) x ≥ δ

where the parameter δ is a threshold to discriminate between different regular-

ization behaviours to be applied respectively to background regions – Gaussian

(GR) component φ′′G (x) = 1 for low x – for noise suppression and signal regions –

Total Variation (TV) component φ′′TV (x) = 0 for high x – for edge preservation.

Another promising strategy is represented by the generalized Gaussian or p-

Gaussian prior (PR), as proposed in [15]: the corresponding variational penalty

function is

φP (x, p) =
xp

p

with 1 < p < 2. Since its second derivative is φ′′P (x, p) = (p− 1)xp−2, this

regularization scheme has the capability of strongly penalizing small gradients,

while reducing the smoothing effect on larger gradients.

6.2 Proposal of a new variational regularization prior

In this thesis a new prior is proposed as a generalization of φP (x, 4/3):

φ (x) =

{
3x4/3/4 x < δ

x− d (d+ δ) ln |x+ d|+ c x ≥ δ

with

c = d [(d+ δ) ln |d+ δ| − δ]− δ4/3

4

d =
(

1− 3
√
δ
)

to have φ (x) and φ′ (x) continuous in x = δ. Consequently,

φ′ (x) =


3
√
x x < δ

x+ d (1− d− δ)
x+ d

x ≥ δ
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and

φ′′ (x) =


1

3
√

27x2
x < δ

d (d+ δ)

(x+ d)2 x ≥ δ

The value p = 4/3 was chosen by considering a cylindrical phantom divided into

six sectors, each with a different activity concentration (expressed in kBq/cm3,

3.5, 11.0, 13.4, 16.7, 17.4, 22.0), immersed into an elliptical cylindrical tank

(dimensions: 28×22×16.8 cm3) filled with a uniform activity concentration of

1.9 kBq/cm3. The activity concentrations were chosen to contemporarily simulate

gradual (e.g. between the coldest sector and the background or between the

intermediate sectors) and steep (e.g. between all sectors but the coldest one and

the background) transitions, to test the different characteristics introduced by

the p-Gaussian prior (i.e. the starting point of the proposed modification) in

presence of small and large transitions, in particular the possible sawtoothing of

edges as indicated in the literature (e.g. [6]). The phantom was acquired for 5

min, recording 50.9×106 counts, and then reconstructed with an algorithm with

PSF recovery and variational regularization (see section 6.4) with p-Gauss prior,

using different values of p (corresponding to different φ functions):

p 1.01 = 101/100 1.2 = 6/5 1.3̄ = 4/3 1.5 = 3/2 1.8 = 9/5

φ(x) 100
101

100
√
x101 5

6
5
√
x6 3

4
3
√
x4 2

3

√
x3 5

9
5
√
x9

In this phase, the value of β is non influential, since it is common to all the

examined values of p. Consequently, to select the best p the empirical value of

β = 0.002, capable of providing a good smoothing while retaining a globally

natural appearance of the image with the different values of p, was chosen.

The left part of figure 6.1 presents the images of the phantom with the dif-

ferent choices of p, while on the center part of the figure a zoomed region of the

phantom is shown. Taking the zoomed image with p = 4/3 as the reference im-

age, the right column in figure 6.1 is obtained by subtracting the reference image

to the center column: this operation should help showing the differences between

the different values of p. As easily recognizable, the lowest value (p = 1.01) pre-

serves high spatial resolution, but produces saw-toothed edges and innaturally

flat regions, very similarly to the Total Variation behaviour [50]. The largest

value considered (p = 1.80), instead, does not introduce any saw-tooth effect,

but produces insufficient noise control and large spatial resolution loss. The in-

termediate values (p = 1.2, p = 1.3̄ and p = 1.5) generate very similar images

one another, with slightly higher spatial resolution and noise control, but also

saw-tooth appearance, for smaller p values. For this reason, the central value

p = 4/3 = 1.3̄ appears to represent a good compromise.
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The p value has been also heuristically studied by clinical evaluation of whole

body PET images reconstructed with an algorithm using PSF and the general-

ized Gaussian prior, in which different values of the parameter p, spanning the

range 1 < p < 2, were used; once again, the value p = 4/3 gave the best com-

promise between preservation of spatial resolution, noise suppression and natural

appearance of the clinical image.

This value, which is also in agreement with indications from other studies

(e.g. [6, 109]), was thus chosen as a reference point for the modified prior.

The parameter δ, as described above, represents a threshold to discriminate

between different regularization behaviours.

Below the threshold (x < δ), since φ′′ (x) > 0 the proposed prior smoothes

with a strength independent of the threshold but depending only on x. Moreover,

in the interval 0 < x < α = 1/
(
3
√

3
)
, this smoothing effect is greater than the

GR one and, all the more, than the TV one (since φ′′ (x) > φ′′G (x) > φ′′TV (x)),

while in the interval α < x < δ the smoothing effect is intermediate between GR

and TV (φ′′TV (x) < φ′′ (x) < φ′′G (x)).

Above the threshold (x > δ), instead, the behaviour depends on the value of

δ.

If δ < 1, the prior smooths the image (φ′′ (x) > 0), but much more lightly than

the GR prior and with decreasing strength for larger x. Consequently, the result

is a preservation of most edges, while globally maintaining “natural” transitions

thanks to the very small smoothing effect.

If δ > 1, the prior emphasises the edges (φ′′ (x) < 0), contributing to a gain

in spatial resolution. Consequently, the result is an enhancement of the contrast

between regions of large x and regions with low x. In this case, however, it is

important to note that the prior is not convex anymore.

Both for δ < 1 and δ > 1, for x → +∞, φ′′ (x) → 0, with a consequent

asymptotic TV behaviour.

In regions above the threshold, for every choice of δ, the proposed prior

smoothes less than the corresponding p-Gaussian prior φP (x, 4/3), while below

the threshold the behaviour is identical.

Since the penalty function is used with argument x = |∇λ|, the strong smooth-

ing is applied in background regions (in which |∇λ| is small), while the “natural”

edge preservation (or edge enhancement) is used in signal regions (i.e. regions

with high |∇λ|).
A summary of the prior characteristics is provided in table 6.1, while in figure

6.2 a graphical comparison of φ (x) and φ′′ (x) for the Gauss-Total Variation, the

p-Gaussian and the proposed priors is presented.

Both the GTV and the proposed regularization schemes are thus based on

two parameters: β (i.e. the contribution of the regularization to the resulting

image) and δ (i.e. the threshold to discriminate between background and signal
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p = 101/100 = 1.01

p = 6/5 = 1.2

p = 4/3 = 1.3̄

p = 3/2=1.5

p = 9/5=1.8

Figure 6.1: Effects of different p values in the p-Gaussian prior: left, sectorial
phantom; center, zoom on a portion of the phantom; right: difference between
the central column and the zoomed reference image (p = 4/3)
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Figure 6.2: φ(x) (left) and φ′′(x) (right) with different values of the parameter δ
for the Gauss-Total Variation, the p-Gaussian and the proposed priors



6.3. OPTIMIZATION OF THE REGULARIZATION PARAMETERS 97

1 1 1
0

Smoothing stronger than GR and TV, equal to PR
),min(

Smoothing lighter than GR, stronger than TV, equal to PR
),max(

Edges nearly preserved, with small smoothing 
effect lower than GR and PR Edge preservation 

(TV)
Edge enhancement

Table 6.1: Characteristics of the proposed prior compared to Gauss-Total Varia-
tion and p-Gaussian priors (α = 1/

(
3
√

3
)
≈ 0.1925)

regions). These two parameters have to be set properly to obtain the desired

effects on the final image.

6.3 Optimization of the regularization parameters

In this thesis the tuning of the regularization parameters has been obtained by

proposing an index of image quality (which could take into account both qual-

itative and quantitative information), analysing the images obtained by using

different sets of parameters and choosing the couple of parameters which maxi-

mized this index.

The index proposed, the detectability D, was chosen as the product between

two factors, Cqnt and Cqlt, respectively a quantitative and qualitative figure of

merit:

D = CqntCqlt

The quantitative factor was chosen as the hot contrast recovery coefficient (CR)

Cqnt = CR = 100
µS/µB − 1

R− 1

where R is the real signal-to-background ratio and µS (µB) is the mean content

of the voxels inside a spherical VOI drawn in the signal (background) region. The

qualitative factor, instead, models the discrimination between signal and back-

ground regions (with mean values of activity concentration respectively of µS and

µB) characterised by standard deviations of counts (chosen as a representation

of “noise” perceived by the human operator) σS and σB, respectively. It assumes

a logarithmic response of the human eye [35, 106]:

Cqlt = ln
µS − µB
σS + σB

The complete expression for the detectability is therefore

D = 100
µS/µB − 1

R− 1
ln
µS − µB
σS + σB
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Larger values of D should correspond to better definition and visibility of the

lesions and, thus, higher probability of detection by a human operator.

A simulation, using synthetic images, has been employed to test the proposed

index and evaluate its capability to predict the outcome of image analysis by

human operators.

Each synthetic image was initially created by choosing a uniform activity con-

centration in the background (13 kBq/cm3) and a simulated acquisition time (2

min). The image was represented by a matrix 256 pixels × 256 pixels × 47 slices

on a FOV of 600 mm (transaxial) and 154 mm (axial), corresponding to a voxel

size of 2.34 mm × 2.34 mm × 3.27 mm. Then, a random number (uniformly

distributed between 0 and 15) of spheres (simulating oncological lesions) was in-

serted in the image, at random locations (with the only constraint of reciprocal

non-superposition) and each characterised by a random signal-to-background ra-

tio (SBR), uniformly distributed between 2 and 10. All the radii were chosen

equal to 5 mm, since this is the dimension of the real sphere used in the following

optimization of the parameters (see sections 7.4.1 and 8.4.1).

For each voxel, then, the product of proper (background or signal) activity

concentration, acquisition time and voxel volume was calculated, obtaining the

total number of counts in the voxel, respectively Mb and Ms.

A pseudo-Poisson noise was also added to the entire image. To do so, the

standard deviation of counts (for background and signal regions) in a real image of

a NEMA IEC Body Phantom‡ (acquired statistics: 52.4 Mcounts) was analysed,

in order to evaluate the deviation from a standard Poisson noise. For each voxel,

containing Nc counts, inside a background region (with activity concentration of

13 kBq/cm3) the standard deviation of counts STDc was calculated. The Poisson

coefficient

P =
STDc√
Nc

was then calculated for each voxel and, finally, the obtained values were averaged

to obtain the mean Poisson coefficient P̄ . This procedure was repeated also for

the voxels of a sphere of diameter 10 mm contained in the NEMA Phantom (with

SBR equal to 4.4). In figure 6.3 the mean Poisson coefficient for the background

and the signal regions is plotted versus the number of iterations.

Choosing 10 iterations as a representative number of iterations for a PET

reconstruction with PSF, the P̄ coefficient in signal (i.e. a VOI of diameter 10 mm

corresponding to the smallest sphere in the NEMA phantom) and background

regions was found to be about 175 and 100, respectively. In order to test the

detectability index also considering possible additional effects which could worsen

the quality of the image, it was decided to introduce a “margin of security” and

‡For additional details on this phantom, see section 7.3.1.
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Figure 6.3: Deviation from pure Poisson noise in background regions and inside
a sphere with diameter 10 mm as a function of the iteration number

set the standard deviation Ss (Sb) of counts in signal (background) regions to

twice the value reported above:

Ss = 350
√
Ms Sb = 200

√
Mb

The signal and background regions were filled with respectively (Ms/Ss)
2 and

(Mb/Sb)
2. A pseudo-Poisson random noise was subsequently applied by numer-

ically solving the inverse transform sampling method applied to the cumulative

distribution function

cdfPseudoP =
Γ (x− 0.5, µ)

Γ (x− 0.5)

which is a generalization of the Poisson cumulative distribution function

cdfPoiss =
Γ (bk + 1c , µ)

Γ (bk + 1c)

where µ is the mean of the pseudo-Poisson distribution, b·c is the floor function

and

Γ (s) =

+∞∫
0

ys−1e−ydy Γ (s, t) =

+∞∫
t

ys−1e−ydy

are respectively the Gamma function and the incomplete Gamma function. The

resulting image, after setting to zero the voxel with negative values, was rescaled

by multiplying signal and background regions with factors respectively S2
s/Ms and

S2
b /Mb: this procedure results in a good approximation of an image characterised

by mean counts in a signal (background) region equal to Ms (Mb) and standard

deviation Ss (Sb). Each slice of the three-dimensional image was then filtered with

a two-dimensional Gaussian of FWHM=5 mm and a 3-point mean was applied
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between the different slices: this filtering process was introduced to obtain a final

result which could simulate well the images used by the clinicians to report. In

figure 6.4 an example of a simulated image is provided, while in figure 6.5 the

comparison between the voxel contents in a real image and in a simulated image

is performed: both figures show that the proposed method generates a good

approximation of the real reconstructed images.

Figure 6.4: Example of simulated PET image

The D value for each sphere in the image was automatically calculated; par-

allely, a human operator analysed the image without knowing anything about

the spheres contained and stated how many lesions, in his/her own opinion, were

present. The entire process was repeated for all the 250 images generated.

The images were then divided into two groups: a training set and a test set.

The former set was used to obtain an optimal threshold for D to discriminate

between detectable and undetectable lesions, while the latter one was used to

evaluate the correlation between the number of lesions detected by the human

operator and the number of lesions recognised by using the thresholded D.

Training phase

For each image I in the training set Φtrain the spheres s
(I)
i are sorted in order of

decreasing D value. For a given threshold t, n
(I)
d spheres have a D value greater

than or equal to t and thus they are considered to be detectable: these spheres
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Figure 6.5: Comparison of the voxel content in simulated and real PET image

constitute the set

S
(I)
t =

{
s

(I)
i

∣∣∣D (s(I)
i

)
> t
}

∣∣∣S(I)
t

∣∣∣ = nd

Calling no the number of spheres recognised in the image by the human operator

during the image analysis, a second set S
(I)
o is populated with the first no (if

available) spheres in decreasing order of D value:

S(I)
o =

{
s

(I)
k

∣∣∣D (s(I)
k

)
> D

(
s

(I)
k+1

)
, k = 1 . . .min (no, nd)

}
The optimal threshold t̂ is then chosen as

t̂ = arg min
t

∑
I∈Φtrain

∑
s
(I)
j ∈Ψ

[
D
(
s

(I)
j

)
− t
]2

Ψ = S(I)
o ∆S

(I)
t

where ∆ indicates the symmetric difference between sets (i.e. Ψ contains the

|nd − no| remaining spheres from the larger set between S
(I)
t and S

(I)
o ). From the

computational point of view, the search for t̂ is performed by changing discretely

t (in steps of 0.1) and selecting the value minimizing the sum presented above.
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Test phase

Each image I in the test set Φtest is used to evaluate the correlation between

the number of lesions detected by the human operator (n
(I)
o ) and the number of

lesions detected with the thresholded detectability index (n
(I)
d ), i.e. the number

of lesions with D > t̂.

By introducing the vectors

X =
{
n

(I)
o | I ∈ Φtest

}
Y =

{
n

(I)
d | I ∈ Φtest

}
the correlation index between X and Y is calculated as

ρ =
cov (X,Y )√

var (X)
√

var (Y )

where cov and var indicate covariance and variance, respectively.

Whether each image should belong to Φtrain or Φtest is an arbitrary decision.

To avoid this arbitrariness, 200000 different assignments were performed; for

each assignment, 100 images (out of the entire set of 250 images) were randomly

selected for Φtrain, while the remaining 150 images populated Φtest.

The results of the whole test, presented in figure 6.6a, show that — in con-

ditions worse than the clinical ones — the correlation coefficient between the

human and the automatic detection is

ρ = (97.6± 0.3) %

As an additional validation test, the same procedure described above was per-

formed also by assigning to each image a random number (uniformly distributed

between 0 and 15) of spheres detected by the operator and:

• by using, for the detectability of each sphere, the expression presented

above;

• by randomly generating, for each sphere, a real number from a uniform

distribution between 0 and 60 and using it as the detectability of the sphere.

The results of these additional tests are presented in figures 6.6b and 6.6c.

In particular, the correlation coefficients between the human and the automatic

detection are, respectively,

ρ = (8.8± 4.5) %

and

ρ = (12.6± 0.5) %

Consequently, the proposed index D can mimic quite well the response of

the human operator and it may thus be used to optimize the parameters β and
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δ. As described in sections 7.4.1 and 8.4.1, the optimization is performed by

reconstructing the same phantom using different sets of regularization parameters

(β, δ), among which the one maximizing the detectability index D is considered

to be optimal.
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(b) Detectability index D, random number of lesions detected by the human observer
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(c) Random detectability, random number of lesions detected by the human observer

Figure 6.6: Validation procedure for the detectability index: left, histograms of
the optimal thresholds (left part of the plot) and of the correlation coefficients
(right part of the plot) for the different assignments; right, comparison between
the number of lesions recognized by the detectability index and by the human
operator (larger boxes represent higher frequencies)
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6.4 Implementation of the variational regularization

To implement the variational regularization inside the OSEM algorithm account-

ing for the PSF, the starting point is equation 6.7:

λ
[k+1]
b =

λ
[k]
b

BbAd − βDb

(
λ[k]
)Bb

Adyd

AdPdλ
[k]
b′ +Rd + Sd

In principle, it is possible to implement the PSF in the above equation by redefin-

ing the projector and backprojector as described in equation 5.3. In this case,

however, the β parameter does not directly control the strength of the prior,

since the regularization term βDb is compared to the (modified) backprojection

of the attenuation sinogram, which obviously depends on the specific data to be

reconstructed. Consequently, it would be very difficult to set a global reference

scale for β.

For this reason, a different approach has been followed: the (modified) back-

projection of the attenuation was “factorised” by implementing the regularization

using the multiplicative approach described in [68]:

λ
[k+1]
b =

λ
[k]
b

(BbAd) ·
[
1− βD

(
λ[k] · BAd

)]
b

Bb
Adyd

AdPdλ
[k]
b′ +Rd + Sd

(6.12)

With this strategy the β parameter has a natural reference scale — since the

regularization term is always compared with the unitary vector 1, regardless

of the attenuation factor —, which justifies a generalization of the optimized

parameters to the patient studies and a comparison of the results obtained with

phantom and clinical data.



Part III

Results

105





Chapter 7

Results — Non TOF imaging

7.1 Description of the GE Discovery STE scanner

The Discovery STE (DSTE) is an integrated system which combines a multi–slice

CT scanner and a BGO PET tomograph [95].

The CT system is the “LightSpeed” model with technology at 16 multi–slices.

The detector matrix is characterized by 24 parallel rows of small solid state

detectors (16 rows with thickness of 0.625 mm each and 8 rows with thickness

of 0.25 mm each) for a total of 21888 elements. The “LightSpeed” detector

configuration allows full 360 degree rotational scans with a variable period from

0.5 s to 1.0 s, with steps of 0.1 s (allowing a maximum of 16 slices per rotation

and 32 images per second) with the possibility of retrospectively reconstructing

the acquired data with different slice thickness.

The PET scanner is a multi–ring design system. The detector system consists

of 13440 BGO detectors with dimensions of 4.7× 6.3× 30 mm3. The basic PET

detection unit is a block of 48 (8 × 6) individual BGO crystals read–out by a

single squared photomultiplier tube (PMT) with 4 anodes for each block. The

connection of the PMTs to the crystal detectors is optical and directed. The

DSTE uses a new electronic system that bidirectionally communicates with the

PMTs, correcting single temporal events for each crystal rather than for the whole

block. Considering the axial direction, four blocks of six crystals are used: the 24

crystal ring detectors originate 47 slices, which correspond — on the axial FOV

of 15.7 cm — to an axial sampling of 3.27 mm. Each ring (diameter is 88.6 cm) is

composed of 70 blocks; the transaxial FOV diameter is 70 cm. The DSTE has the

capability of both 2D (using tungsten septa with length of 5.4 cm and thickness

of 0.8 mm) and 3D (without septa) configuration. In 2D, the axial combination

is 5 and 6 planes for direct and cross planes respectively, while in 3D the axial

combination for coincidence acceptance is up to ±23 planes. Moreover, in the

107



108 CHAPTER 7. RESULTS — NON TOF IMAGING

2D configuration the DSTE uses a coincidence time window of 11.7 ns and a low

energy threshold of 375 keV, while in the 3D configuration the coincidence time

window is reduced to 9.7 ns and the low energy threshold is raised to 425 keV.

Finally, the PET system has a 68Ge rod source with activity of 55.5 MBq, used

for the system calibration and daily quality controls.

7.2 PSF measurements

The PSF of the DSTE was experimentally determined as described in chapter

4. The transaxial FOV was sampled at distances (from the FOV centre) ranging

from 2.5 cm to 25 cm in steps of about 2.5 cm, both to the right and to the left of

the centre. For each radial distance, the entire axial FOV was sampled in steps

of about 1.5 cm.

An example of a fit on an acquired image is reported in figure 7.1.
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Figure 7.1: Example of PSF fits on DSTE. Top: radial–tangential and tangential–
axial images; bottom: corresponding fits

All the obtained values for each spread parameter were then graphed as a

function of both radial and axial distances from the scanner FOV centre (figure

7.2): it was then possible to fit each set of data with a polynomial quadratic in

both distances, symmetric with respect to the centre of axial FOV, as defined in

equation 4.8.
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Figure 7.2: Determination of the spread parameters dependences on the radial
and axial distances in Discovery STE: internal radial (top left), external radial
(top right), tangential (bottom left) and axial (bottom right)

The relative weight of the square term in the axial dependence of the transax-

ial spread parameters was found to be about one order of magnitude lower than

the square term in the axial dependence of the axial spread parameter: there-

fore, the axial dependence of the transaxial spread parameters was assumed to

be negligible, in order to reduce the complexity of the model.

The dependences used in the work were then

σi = 1.443 + 0.05572 r + 2.437× 10−3 r2

σe = 1.473 + 0.01114 r + 1.318× 10−4 r2

σt = 1.499− 1.233× 10−3 r + 2.908× 10−4 r2

σa =
(
1.521− 0.03099 r + 2.011× 10−3 r2

) (
1 + 0.01664 a2

) (7.1)

where the radial (r) and axial (a) distances are measured in centimeters and the

spread parameters are measured in millimeters.

In figure 7.3 the radial, tangential and axial profiles drawn on an image are

compared with the corresponding ones drawn on the resulting fit function and on

the final kernel function∗ used in the reconstruction algorithm. The figure reveals

∗To compare the three profiles, the values of σfX (the spread parameters evaluated from the
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the very good resemblance between the different profiles and, consequently, the

reliability of the fitting results.
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Figure 7.3: Comparison between the radial (top left), tangential (top right) and
axial (bottom) profiles drawn on an image, on the resulting fit and on the corre-
sponding kernel used in the reconstruction

7.3 Improvements thanks to PSF

The new algorithm accounting for the PSF of the DSTE scanner was validated

on phantom and clinical studies. For both types of data, two sets of recon-

structions were performed using the 3D OSEM algorithm without (RnoPSF) and

with the PSF (RwPSF). A further reconstruction was performed without the

use of the PSF but with a post-filter applied on the final reconstructed images

(RnoPSF-Filt). The validation consisted in comparing the images obtained with

the different algorithms. All the validations were qualitative; with phantom data,

also quantitative comparison were performed.

fit on the specific image) and σkX (the spread parameters evaluated from the global fit on the
entire set of data) were substituted in equations 4.3, 4.4 and 4.6 and the resulting functions
(respectively, the fitted functions on the specific image and the fitting functions corresponding
to the final model) were used to extract the required profiles.
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Moreover, to evaluate the efficacy of the variant PSF model, a second imple-

mentation of the reconstruction algorithm was obtained by using a transaxially-

invariant PSF. Two single invariant PSFs were considered to be representative of

the response of the PET system, evaluated at 0 cm (PSF0) and 15 cm (PSF15)

from the transaxial FOV centre, in the center of the axial FOV. The correspond-

ing algorithms will be referred to as RwPSF0 and RwPSF15, respectively.

7.3.1 Quantitative validation

22Na sources

Six coplanar 22Na non–collimated point sources (whose activity at the time of

acquisition was 5.22 µCi) were positioned, on a polystyrene support, at differ-

ent radial distances (ranging from 3 cm to 18 cm) from the centre of the scanner

transaxial FOV to test the spatial resolution recovery introduced by PSF compen-

sation. A CT scan was performed to be used for attenuation correction followed

by a 3D emission scan recording 339.6 Mcounts.

The reconstruction parameters common to all the algorithms were: image

matrix 256 pixels × 256 pixels, 28 subsets, 5 iterations, reconstruction FOV 25.6

cm, pixel size 1 mm, reconstruction x offset 10 cm. The post filter applied in

RnoPSF-Filt was a symmetric two-dimensional Gaussian filter with FWHM=2

mm in the transaxial planes.

A one-dimensional profile of the activity distribution was generated from the

reconstructed images by averaging along the tangential direction.

In figure 7.4 the RnoPSF, RnoPSF-Filt and RwPSF images at 5 iterations are

compared, while in figue 7.5 the profiles obtained from these images are shown.

The RnoPSF images show asymmetric profiles, in particular when the distance

from the scanner centre increases, with a consequent decrease of the peak heights

and very irregular peaks for the different point sources. The application of a

2 mm FHWM Gaussian filter (RnoPSF-Filt) mitigates this noisy pattern. The

PSF in the reconstruction clearly contributes to recovering the symmetry of the

profiles, to obtaining a more uniform resolution across the reconstruction FOV

and to recovering similar peak heights across the FOV. To support this latter

statement, the coefficient of variation (defined as the ratio between the standard

deviation and the mean value) of the peak heights was calculated. The obtained

values for this figure of merit were 0.180, 0.133 and 0.061 for RnoPSF, RnoPSF-

Filt and RwPSF, respectively. It is important to note that, even if with a higher

number of iterations the results here presented remained stable, 5 iterations were

considered a limit for acceptability of noise in RnoPSF and thus chosen for this

validation.

In figure 7.6 the results obtained by using the invariant PSFs are shown and

compared with those obtained by using RwPSF. When the invariant PSF (e.g.
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PSF0) underestimates the real PSF in a specific point of the scanner FOV (e.g.

in the sources farthest from the centre), the recovery of the corresponding point

sources is incomplete both in terms of shape and peak heights, while if the invari-

ant PSF overestimates the real PSF (e.g. PSF15 used at 3-6 cm from the scanner

centre), also the recovery of spatial resolution is overstressed, leading to spatially

variant peak heights, decreasing with increasing distance from the scanner cen-

tre. It is also important to note that the profiles obtained with the invariant and

the variant kernels are very similar near locations where the invariant PSF was

derived (respectively, 0 cm for PSF0 and 15 cm for PSF15), as expected.

Figure 7.4: 22Na sources at 5 iterations: RnoPSF (top), RnoPSF filtered with
a FWHM=2 mm Gaussian (middle), RwPSF (bottom) [the images are shown
using the same display parameters]

NEMA IEC Body Phantom

The NEMA IEC Body Phantom SetTM[26] consists of a body phantom (180 mm

long), a cylindrical insert (whose outside diameter is 51 mm) simulating lung and

an insert with six fillable spheres (whose inner diameters are 10 mm, 13 mm, 17

mm, 22 mm, 28 mm and 37 mm). The spheres have their centres coplanar and all

at a distance of 5 cm from the phantom centre. Figure 7.7 presents a photograph

of this phantom.

This phantom was used to simulate an oncologic whole body 18F -FDG study.

Both the body and the spheres were filled with a 18F -FDG solution in order to

have a LBR equal to 4.4. After centring the phantom in the scanner FOV, a

CT scan was performed to be used for attenuation correction followed by a 3D

emission scan of 2 min recording 52.4 Mcounts.

The reconstruction parameters common to all the algorithms were: image

matrix 256×256, 28 subsets, up to 50 iterations, reconstruction FOV 60 cm,

pixel size 2.34 mm. The post filter applied in RnoPSF-Filt was a symmetric
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Figure 7.7: Photograph of the NEMA IEC Body Phantom SetTM[26]

two-dimensional Gaussian filter with FWHM=5 mm in the transaxial planes and

a weighted 3-point mean along the axial direction.

The quantitative analysis was performed by using two parameters.

Background coefficient of variation

A uniform region in the object under study should be reconstructed as uni-

form: the MLEM algorithm is able to overcome the statistical fluctuations, since

the Poissonian nature of emission is incorporated inside the algorithm itself. In

the real case, though, a uniform region contains more than pure Poissonian events

(e.g. an imperfect correction of physical effects or round–off errors in the com-

putational representation) and, as a consequence, some residual noise will be

present. Unfortunately, iterative algorithms amplify this noise iteration by iter-

ation. This amplification is measurable for example with the standard deviation

of noise: if ni is the content of voxel i inside the region R (composed of N voxels)

and µ is the mean value of contents in region R, the standard deviation is defined

by

STD =

√√√√√ 1

N − 1

N∑
i=1
i∈R

(ni − µ)2 (7.2)

where the Bessel’s correction has been applied to the ideal definition. The coef-
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ficient of variation (COV ) is then defined as

COV =
STD

µ
=

1

µ

√√√√√ 1

N − 1

N∑
i=1
i∈R

(ni − µ)2 (7.3)

Hot contrast recovery

If the reconstruction of a PET scan were quantitatively correct, the ratio of the

activities in a signal region and in a background region — the contrast of the signal

with respect to the background — calculated on the reconstructed image would

resemble the real one. Due to PVE and PSF, instead, the measured contrast is

always lower. The hot contrast recovery coefficient CRhot is the percentage of

contrast, with respect to the original contrast, measured on the reconstructed

image:

CRhot = 100
µS/µB − 1

R− 1
(7.4)

where R is the real signal-to-background ratio and µS (µB) is the mean content

of the voxels inside a spherical VOI drawn in the signal (background) region.

Ten spherical VOIs were drawn, four in background regions and six for the

signal (i.e. the six spheres). The signal spheres were centred on CT and the radii

were chosen according to the specifications from the manufacturer of the spheres.

The background mean value µB and the standard deviation STD were cal-

culated over all voxels in the first set of VOIs, while the second set of VOIs was

used to calculate the contrast recovery coefficients for the spheres.

As shown in figure 7.8, the PSF contributes to an increase of the CRhot —

after 50 complete iterations — ranging from 8.4% (for the largest sphere, diam-

eter 37 mm) to 59.7% (for the smallest sphere, diameter 10 mm). At a more

“clinical” number of iterations (e.g. 5-10 iterations), the CRhot coefficients be-

come respectively 4.8%–6.0% (largest sphere) and 15.1%–35.3% (smallest sphere)

higher than the corresponding ones from RnoPSF. Furthermore, the presence of

PSF in the reconstruction algorithm reduces the background COV by 53.2% at

5 iterations, 50.9% at 10 iterations and 12.5% at 50 iterations. In figure 7.9 the

reconstructed images of the NEMA IEC Body Phantom at 5 iterations are shown.

The images visually confirm the quantitative results for higher spatial resolution,

higher contrast and lower noise in RwPSF compared to RnoPSF.

If RnoPSF-Filt is compared with RwPSF the spatial resolution and contrast

in the images are higher for the latter, while the background COV s in RnoPSF-

Filt become increasingly lower (-39.9% at 5 iterations, -53.4% at 10 iterations

and -80.6% at 50 iterations) with respect to the corresponding results obtained

using PSF; thus, RwPSF showed increased spatial resolution with respect to

RnoPSF images while maintaining an acceptable level of background variations

if compared with the poor resolution images obtained with RnoPSF-Filt.
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Also for the NEMA IEC Body Phantom a comparison between the results

obtained with invariant and variant kernels was performed. To this purpose, up

to 200 iterations were used to further investigate the asymptotic behaviour of the

considered algorithms. The results obtained are presented in figure 7.10. The

use of an invariant PSF confirms the results obtained with the point sources.

In fact, since the centres of the spheres in the NEMA IEC phantom are at a

radial distance of 5 cm from the centre of the phantom (which was coincident

with the centre of the PET FOV), the RwPSF0 underestimated the recovery over

all the spheres in the phantom when compared with the results obtained with

the RwPSF, leading to lower values of the CRhot. Instead, the RwPSF15 (which

overestimates the response of the system in the region of the spheres) provided

the highest contrast recovery, but also generated unphysical results: as can be

seen in figure 7.10, the CR coefficient curve for the largest sphere crosses 100

after about 200 iterations, suggesting that the images have been overcorrected.
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Figure 7.8: NEMA IEC phantom: comparison between the contrast recovery
coefficients (CRhot) for the 37-mm diameter sphere (left) and for the 10-mm
diameter sphere (right) versus the background coefficient of variation [each point
represents one iteration] for RnoPSF, RnoPSF-Filt and RwPSF

Figure 7.9: NEMA IEC phantom at 5 iterations: RnoPSF (top left), RnoPSF
filtered with a FWHM=5 mm Gaussian (top right), RwPSF (bottom) [the images
are shown using the same display parameters]
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Figure 7.10: NEMA IEC phantom: comparison between the contrast recovery
coefficients (CRhot) for the 37-mm diameter sphere (left) and for the 10-mm
diameter sphere (right) versus the background coefficient of variation [each point
represents one iteration] for RwPSF, RwPSF0 and RwPSF15

Cylindrical phantom

A cylindrical phantom (with diameter and height 20 cm) containing a sphere

(inner diameter: 8 mm) was used to assess the dependence of the convergence rate

and the recovery of spatial resolution on the lesion-to-background ratio (LBR).

For these reasons, neither RnoPSF-Filt nor the invariant kernels were considered

for this phantom.

Both the cylinder and the sphere were filled with a 18F -FDG solution in water

to obtain a known ratio between the activity concentrations in the sphere and

in the background: the considered ratios were 3.8 and 20, to simulate lesions

respectively in the liver and in the lungs.

After positioning the phantom in the scanner FOV to have the sphere axially

centred at a radial distance of 15 cm, a CT scan was performed to be used

for attenuation correction followed by a 3D emission scan of 15 min recording

respectively 348.7 and 457.6 Mcounts.

The reconstruction parameters common to all the algorithms were: image

matrix 256×256, 28 subsets, up to 100 iterations, reconstruction FOV 30 cm,

pixel size 1.17 mm, reconstruction offset along the vertical (y) direction: 10 cm.

As shown in figure 7.11, the PSF increases the CRhot coefficients for both

the considered LBRs, confirming the results presented in figure 7.8. Moreover,

the asymptotic distance between the two curves is reduced by the use of PSF (at

100 iterations, 5.1% for RnoPSF and 2.27% for RwPSF), showing the increase in

quantitative accuracy and the reduction of its dependence on the LBR. On the

other hand, the higher LBR (representative of the lung district) leads to a faster

convergence, while for the lower LBR (representative of the liver district) more
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iterations with PSF are required to obtain the same recovery. It is important to

underline, though, that the sphere was located about 15 cm far from the scanner

centre and, consequently, the real convergence speed in the clinical practice may

be higher, since most lesions are located within about 10 cm from the scanner

centre (e.g. brain and lung).

In figure 7.12 the reconstructed images (with RnoPSF and RwPSF) of the

cylindrical phantom at 10 iterations are shown. The images visually confirm the

quantitative results in terms of higher contrast and lower noise in the RwPSF

compared to the RnoPSF.
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Figure 7.11: Cylindrical phantom: comparison between the contrast recovery
coefficients (CRhot) obtained with RnoPSF and RwPSF as a function of the
number of iterations

Figure 7.12: Cylindrical phantom: comparison between the RnoPSF (left) and
RwPSF (right) images at 10 iterations for the 3.8:1 LBR [the images are shown
using the same display parameters]
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7.3.2 Qualitative validation

Oncological patient

An oncological patient received an injection of 18F -FDG (370 MBq); the tracer

uptake time was 60 min. The acquisition protocol consisted in a whole body

CT scan to be used for anatomical localization and attenuation correction and a

3D whole body emission scan (2.5 min per bed position, 6 bed positions, 7-slice

overlap between bed positions) recording 289.3 Mcounts.

The reconstruction parameters common to all the algorithms were: image

matrix 256×256, 28 subsets, up to 5 iterations, reconstruction FOV 60 cm, pixel

size 2.34 mm. The applied post–filter was characterized by the same parameters

as in the clinical practice, i.e. symmetric two-dimensional Gaussian filter with

FWHM=5 mm in the transaxial planes and a weighted 3-point mean along the

axial direction.

To assess the improvements introduced by PSF, a qualitative comparison of

the three different sets of images (RnoPSF, RnoPSF-Filt and RwPSF) was per-

formed by an expert oncologist on the images obtained after 2, 3 and 5 iterations.

In figure 7.13 the resulting coronal images are conveyed as a Maximum Inten-

sity Projection (MIP) representation, while in figure 7.14 an example of transaxial

images is provided. The “pure” RnoPSF images show an unacceptable level of

noise for clinical practice, even after few iterations; consequently, the post–filter

is mandatory to allow a clinical evaluation. The RwPSF images, compared to

both the RnoPSF and RnoPSF-Filt images, are characterized by higher contrast

of the lesions. As far as resolution is concerned, at 2 iterations the RnoPSF and

RwPSF images appear similar, probably with a slightly lower resolution for Rw-

PSF. After 3 iterations the RwPSF starts to show higher spatial resolution with

respect to both the RnoPSF reconstructions: this is a confirmation of the results

obtained from the NEMA IEC phantom (e.g. see figures 7.8 and 7.9), in which

3 iterations appeared to be a “crossing point” for resolution recovery, particu-

larly in the smallest spheres (e.g. for the 10-mm sphere, the CRhot from RwPSF

becomes higher than the one from RnoPSF starting from the third iteration).

The “visual” noise appears progressively lowest in the RnoPSF-Filt, even if this

affects the contrast and the definition of the lesions.

The dark bands visible in the whole-body MIP RnoPSF images originate in

the spatial regions of overlap between adjacent bed positions when more than

one PET axial FOV is acquired (like in whole-body scans). In fact, as the profile

of the axial sensitivity of a scanner operating in 3D mode is triangularly-shaped

and peaked in the middle point of the axial FOV, at its axial borders the effi-

ciency of the scanner is lower than in the centre: consequently, the corresponding

images are noisier and hence the MIP — since it substitutes each pixel with the

maximum value along the projection line — tends to emphasise these noisier re-
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gions. Usually 9- or 11-slice overlap is used for whole body applications; in the

case presented in figure 7.13 only a 7-slice overlap was used. The bands are less

visible in the RnoPSF-Filt and in the RwPSF images, thanks particularly to the

effects along z given by the weighted mean and the PSF, respectively.

Figure 7.13: Coronal MIP images of the oncology patient reconstructed using
2 (top), 3 (middle) and 5 (bottom) iterations: RnoPSF (left), RnoPSF filtered
with a FWHM=5 mm Gaussian (centre), RwPSF (right) [the images are shown
using the same display parameters]
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Figure 7.14: Transaxial images of the oncology patient reconstructed using 2
(top), 3 (middle) and 5 (bottom) iterations: RnoPSF (left), RnoPSF filtered
with a FWHM=5 mm Gaussian (centre), RwPSF (right) [the images are shown
using the same display parameters]

Neurological patient

A neurological patient received an injection of 18F -FDG (193 MBq); the tracer

uptake time was 60 min. The acquisition protocol consisted in a CT scan to be

used for anatomical localization and attenuation correction and a 3D emission

scan of 15 min (single PET FOV) recording 311.6 Mcounts.

The reconstruction parameters common to all the algorithms were: image

matrix 256×256, 28 subsets, up to 5 iterations, reconstruction FOV 50 cm, pixel

size: 1.95 mm. The applied post–filter was characterized by the same parameters

as in the clinical practice, i.e. symmetric two-dimensional Gaussian filter with

FWHM=3 mm in the transaxial planes and a weighted 3-point mean along the

axial direction.

To assess the improvements introduced by PSF, a qualitative comparison

of the three different sets of images (RnoPSF, RnoPSF-Filt and RwPSF) was

performed by an expert neurologist on the images obtained after 2, 3 and 5

iterations.

In figures 7.15 and 7.16 some representative transaxial and sagittal images

of the neurological patient are shown. As stated for the oncology patient, the

RnoPSF reconstruction is characterized by a high level of noise and needs the

clinical filtering. The introduction of a filter, even if very light (FWHM=3 mm),

drastically reduces the visual noise but also the spatial resolution in the image.
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RwPSF maintains an acceptable level of visual noise, while enhancing the differ-

ent structures and their “functional” morphology, thanks to the recovery of the

spatial resolution and the increase of the contrast: this improvement in image

quality is particularly noticeable in the sagittal images.

Figure 7.15: Transaxial images of the neurological patient reconstructed using
2 (top), 3 (middle) and 5 iterations (bottom): RnoPSF (left), RnoPSF filtered
with a FWHM=3 mm Gaussian (centre), RwPSF (right) [the images are shown
using the same display parameters]
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Figure 7.16: Sagittal images of the neurological patient reconstructed using 2
(top), 3 (middle) and 5 iterations (bottom): RnoPSF (left), RnoPSF filtered
with a FWHM=3 mm Gaussian (centre), RwPSF (right) [the images are shown
using the same display parameters]

7.4 Effects of the regularization

7.4.1 Optimization of the regularization parameters

The optimization was performed by reconstructing an acquisition of a NEMA

IEC Body Phantom (acquired statistics: 52.4 Mcounts, see section 7.3.1 for fur-

ther details) using different sets of parameters (β, δ) and choosing the set which

maximized the detectability index D (see section 6.3) relative to the smallest

sphere (diameter 10 mm), i.e. a representative sphere of many oncological le-

sions. Larger lesions would suffer from less spatial resolution loss due to the

regularization process, with consequent better results in terms of definition and

contrast of the activity distribution.

The optimization was performed using 10 iterations, considered as a com-

promise between clinical requirements of time and recovery of spatial resolution

thanks to the presence of PSF in the reconstruction algorithm.

In figure 7.17a the detectability for the smallest sphere is plotted as a function

of the parameters β and δ for the proposed prior. The maximum detectability is
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obtained for

β = 0.002, δ = 0.3 (7.5)

With a similar strategy, it is possible to obtain the optimal parameters for

the GTV prior. In figure 7.17b the detectability for the smallest sphere using the

GTV prior is plotted as a function of the parameters β and δ: the maximization

is obtained for

β = 0.015, δ = 0.2 (7.6)

The plots in figure 7.17 also reveal a basic difference between the GTV prior

and the proposed one.

Both priors need two regularization parameters: the regularization strength β

(which controls the effect of the regularization strategy on the final image) and the

signal-background threshold δ (which distinguishes the different behaviours to be

applied in the different regions of the image). Among them, the latter parameter

is, in principle, more intricate and delicate to set, since different regions in the

same study might require different thresholds to maximize the general spatial

resolution preservation.

As stated above, the maximization results hint a different behaviour of the

two priors: the GTV prior shows a very narrow peak along the direction of

the δ parameter, suggesting very different behaviours for small changes of this

parameter and, consequently, indicating that setting this parameter could be a

delicate process. For the proposed prior, small changes of the δ parameter around

the maximum lead to very little differences in its behaviour, guaranteeing higher

stability and “margins of security”.

7.4.2 The edge effect

As demonstrated in section 5.3, the use of PSF introduces an unavoidable en-

hancement of sharp transitions, originating artefacts and spurious structures. As

partially shown in figure 5.4, an example of this effect may be shown by filling

three spheres (in the case here presented, with diameters 30 mm, 23 mm and 15

mm) with a homogeneous FDG solution (activity concentration of 90 kBq/ml),

acquiring them in air (in the case here presented, for 90 s, recording 11.1 Mcounts)

and reconstructing them in absence and in presence of PSF recovery. In this sec-

tion the previous example will be expanded, in particular to test the capability of

the different regularization priors considered to reduce the strength of the edge

effect.

In figure 7.18 a comparison of the different reconstruction algorithms consid-

ered is presented.

The chosen reconstruction parameters were: image matrix 256× 256, 28 sub-

sets, reconstruction FOV 60 cm, pixel size 2.34 mm. The clinical post-filter used

in RnoPSF was coincident with the one used in the clinical practice, i.e. it was
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Figure 7.17: Optimization of the regularization parameters for the proposed (top)
and the Gauss-Total Variation (bottom) priors by maximizing the D index
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composed of a symmetric two-dimensional Gaussian filter with FWHM=5 mm

in the transaxial planes and a three-point mean along the axial direction. The

post-filter used in RwPSF-Filt was composed of a symmetric two-dimensional

Gaussian filter with FWHM=4.28 mm in the transaxial planes and a three-point

mean along the axial direction. In the case of RwPSF-GTVR and RwPSF-R,

the regularization parameters were set equal to the optimal values found in sec-

tion 7.4.1, i.e. respectively (0.015, 0.2) and (0.002, 0.3). For RwPSF-PR, the

parameter β was set equal to the RwPSF-R one, i.e. β = 0.002.

The convergence for spheres in air is expected to be faster than in the other

phantom studies and so the number of iterations was set to 5, to limit the noise

content in RnoPSF (and, to a lesser extent, in RwPSF) to an acceptable level (in

particular for the drawn activity profiles). For higher number of iterations the

regularized images did not change appreciably, confirming the faster convergence

and the stability of the algorithm.

The edge effect is absent from RnoPSF (figure 7.18a) and RnoPSF-Filt (figure

7.18b) images, with the only difference being the expected poorer spatial reso-

lution and lower noise of the latter ones. As anticipated and demonstrated in

section 5.3, the reconstructed images obtained with RwPSF (figure 7.18c) show

very pronounced edges in each sphere. Furthermore, inside the sphere the activ-

ity distribution oscillates along each radial direction similarly to a typical Gibbs

effect [42, 108]. These effects are partially mitigated (but still easily recogniz-

able) in RwPSF-Filt images (figure 7.18d), but with an evident loss of spatial

resolution.

The three regularization priors — RwPSF-GTVR (figure 7.18e), RwPSF-PR

(figure 7.18f) and RwPSF-R (figure 7.18g) — appear to control the edge over-

enhancement and the ringing effects with limited loss of spatial resolution (with

slightly better results for RwPSF-R and RwPSF-GTVR); moreover, no unnatural

image flattening or “sawtoothing” effects (e.g. in the outer contour of the spheres)

are visible, as produced instead by some regularization strategies [50].

These qualitative evaluations are confirmed also by drawing two line pro-

files (along the radial and tangential directions) passing through the centre of

the largest sphere, in order to analyze the oscillations in the two directions.

The profiles obtained for RwPSF, RwPSF-Filt, RwPSF-GTVR, RwPSF-PR and

RwPSF-R are presented in figure 7.19. The three regularization priors are compa-

rable in terms of reduction in the edge over-enhancement — with slightly higher

uniformity for RwPSF-PR — and loss of spatial resolution — with slightly better

results for RwPSF-R and RwPSF-GTVR — confirming the qualitative results.

7.4.3 Quantitative accuracy

The quantitative validation was performed by using the NEMA IEC Body Phan-

tom presented in section 7.3.1, with identical acquisition protocols. The chosen
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(a) RnoPSF (b) RnoPSF-Filt

(c) RwPSF (d) RwPSF-Filt

(e) RwPSF-GTVR (f) RwPSF-PR

(g) RwPSF-R

Figure 7.18: Comparison of the different reconstruction algorithms concerning
the edge effect

reconstruction parameters were: image matrix 256× 256, 28 subsets, reconstruc-

tion FOV 60 cm, pixel size 2.34 mm, up to 50 iterations. The clinical post-filter

used in RnoPSF was coincident with the one used in the clinical practice, i.e. it

was composed of a symmetric two-dimensional Gaussian filter with FWHM=5

mm in the transaxial planes and a three-point mean along the axial direction.

The post-filter used in RwPSF-Filt was composed of a symmetric two-dimensional

Gaussian filter with FWHM=4.28 mm in the transaxial planes and a three-point

mean along the axial direction. In the case of RwPSF-GTVR and RwPSF-R,

the regularization parameters were set equal to the optimal values found in sec-

tion 7.4.1, i.e. respectively (0.015, 0.2) and (0.002, 0.3). For RwPSF-PR, the

parameter β was set equal to the RwPSF-R one, i.e. β = 0.002.

In table 7.1 the percent differences (with respect to RnoPSF reconstructions)

of CRhot coefficients, obtained with the different algorithms, for the largest sphere

(37-mm diameter) and the smallest sphere (10-mm diameter) and of the COV

at 5, 10 and 50 iterations are reported. Similarly, in table 7.2 the percent dif-

ferences, with respect to the clinical RwPSF-Filt reconstructions, obtained from

the different regularized algorithms and from RwPSF are reported. In figure

7.21 the CRhot coefficients for the largest and smallest spheres are plotted versus

the background coefficient of variation, while in figure 7.20 an example of the

reconstructed images using the different algorithms is presented.
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Figure 7.19: Activity line profiles in the uniform spheres obtained with the dif-
ferent regularization priors: top, profile drawn along the scanner radial direction;
bottom, profile drawn along the scanner tangential direction
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As it can be seen from tables 7.1 and 7.2 and figure 7.21, RwPSF-R results in

the most accurate quantification among the other regularization priors (RwPSF-

PR and RwPSF-GTVR). It also provides better quantification than RnoPSF-Filt

and — for the smallest sphere in the first iterations (up to about 15 iterations,

i.e. also farther than the optimization point of the regularization parameters)

— than RwPSF-Filt. For the largest sphere, instead, RwPSF-R gives always

better results than RwPSF-Filt. The contrast recovery coefficients obtained with

RwPSF-R are lower, as expected, than in the RwPSF case.

Moreover, RwPSF-R also contributes to noise reduction, with background

uniformity higher than RnoPSF-Filt, RwPSF and RwPSF-Filt and slightly lower,

but comparable, to RwPSF-PR. RwPSF-GTVR provides the lowest background

COV , but at the expense of a moderate reduction in the quantification accuracy.

From the graphs in figure 7.21 the regularized reconstruction algorithms show

also their higher capability to get closer to the convergence of the algorithm with

respect to RnoPSF, RnoPSF-Filt, RwPSF and RwPSF-Filt. In fact, each of

RwPSF-GTVR, RwPSF-PR and RwPSF-R graphs converges towards a specific

point
(
CRhot, COV

)
, meaning that the image remains nearly equal to itself and,

consequently, gives stable quantitative results. This stability is reached after

about 25 iterations, with lower number of iterations for larger dimensions of the

sphere.

The images† of the phantom (figure 7.20) confirm the numerical results.

RwPSF-GTVR drastically reduces the noise content, but with an important loss

of spatial resolution and an unnatural flattening of background (as confirmed in

literature, e.g. [50]). RwPSF-PR and RwPSF-R provide high background unifor-

mity (with natural appearance), while retaining good definition of the spheres,

with slightly better spatial resolution for RwPSF-R.

†All the images presented hereafter are compared at 5 iterations, to propose a direct com-
parison with the clinical practice.
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Recon algorithm
∆CRhot for the largest sphere
5 it. 10 it. 50 it.

RnoPSF-Filt -6.6% -7.0% -7.6%
RwPSF +4.9% +6.2% +7.8%
RwPSF-Filt -0.6% -0.1% 0.0%
RwPSF-GTVR -1.9% -1.7% -2.4%
RwPSF-PR +2.4% +2.6% +2.1%
RwPSF-R +3.4% +4.0% +3.7%

Recon algorithm
∆CRhot for the smallest sphere

5 it. 10 it. 50 it.

RnoPSF-Filt -29.4% -29.0% -30.1%
RwPSF +12.3% +31.6% +43.6%
RwPSF-Filt -15.9% -2.9% +6.1%
RwPSF-GTVR -37.0% -25.6% -23.5%
RwPSF-PR -17.7% -10.3% -9.0%
RwPSF-R -11.7% +0.6% +3.8%

Recon algorithm
∆COV

5 it. 10 it. 50 it.

RnoPSF-Filt -71.9% -77.1% -83.0%
RwPSF -53.2% -50.9% -12.5%
RwPSF-Filt -73.3% -75.0% -70.3%
RwPSF-GTVR -87.6% -92.1% -95.1%
RwPSF-PR -79.6% -85.6% -90.6%
RwPSF-R -79.3% -85.2% -90.2%

Table 7.1: Percent differences of CRhot coefficients for the largest sphere (37-
mm diameter) and the smallest sphere (10-mm diameter) and of the background
coefficient of variation COV with respect to RnoPSF reconstructions
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Figure 7.20: NEMA IEC phantom at 5 iterations: RnoPSF (top left), RnoPSF
filtered with a FWHM=5 mm Gaussian (top center), RwPSF (top right), Rw-
PSF filtered with a FWHM=4 mm Gaussian (middle left), RwPSF-GTVR (mid-
dle center), RwPSF-PR (middle right) and RwPSF-R (bottom) [the images are
shown using the same display parameters]
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Figure 7.21: NEMA IEC phantom: comparison between the contrast recovery
coefficients (CRhot) for the 37-mm diameter sphere (left) and for the 10-mm
diameter sphere (right) versus the background coefficient of variation for the
reconstruction algorithms considered (top) and RwPSF-Filt and the different
regularization priors used (bottom) [each point represents one iteration]
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Recon algorithm
∆CRhot for the largest sphere
5 it. 10 it. 50 it.

RwPSF +5.5% +6.3% +7.8%
RwPSF-GTVR -1.3% -1.6% -2.4%
RwPSF-PR +3.0% +2.7% +2.1%
RwPSF-R +4.0% +4.1% +3.7%

Recon algorithm
∆CRhot for the smallest sphere

5 it. 10 it. 50 it.

RwPSF +33.6% +35.4% +35.4%
RwPSF-GTVR -25.1% -23.4% -27.9%
RwPSF-PR -2.1% -7.7% -14.2%
RwPSF-R +5.1% +3.6% -2.1%

Recon algorithm
∆COV

5 it. 10 it. 50 it.

RwPSF +75.1% +96.3% +194.8%
RwPSF-GTVR -53.6% -68.6% -83.4%
RwPSF-PR -23.7% -42.3% -68.4%
RwPSF-R -22.7% -40.7% -67.0%

Table 7.2: Percent differences of CRhot coefficients for the largest sphere (37-
mm diameter) and the smallest sphere (10-mm diameter) and of the background
coefficient of variation COV with respect to RwPSF-Filt reconstructions
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7.4.4 Qualitative improvements

Two oncological patients A and B (56 kg and 53 kg, respectively) received an

injection of 18F -FDG (296 MBq and 277.5 MBq, respectively); the tracer uptake

time was 60 min. The acquisition protocol consisted in a whole body CT scan to

be used for anatomical localization and attenuation correction and a 3D whole

body emission scan (2.5 min per bed position, 6 bed positions, 7-slice overlap

between bed positions) recording 390.7 and 267.5 Mcounts, respectively.

The reconstruction parameters common to all the algorithms were: image

matrix 256×256, 28 subsets, 5 iterations, reconstruction FOV 60 cm, pixel size

2.34 mm. The post–filter applied in RnoPSF-Filt was characterized by the same

parameters as in the clinical practice, i.e. symmetric two-dimensional Gaussian

filter with FWHM=5 mm in the transaxial planes and a weighted 3-point mean

along the axial direction. The post-filter used in RwPSF-Filt was composed

of a symmetric two-dimensional Gaussian filter with FWHM=4.28 mm in the

transaxial planes and a three-point mean along the axial direction. In the case

of RwPSF-GTVR and RwPSF-R, the regularization parameters were set equal

to the optimal values found in section 7.4.1, i.e. respectively (0.015, 0.2) and

(0.002, 0.3). For RwPSF-PR, the parameter β was set equal to the RwPSF-R

one, i.e. β = 0.002.

In figures 7.22 and 7.23 some representative examples of the images obtained

from clinical studies at 5 iterations are provided. The figures qualitatively confirm

the (qualitative and quantitative) results obtained with the NEMA IEC phan-

tom. RnoPSF yields very high level of noise, which is drastically reduced by the

postfilter in RnoPSF-Filt, but at the expense of an additional spatial resolution

loss. RwPSF improves the level of details recognizable in the images, but needs

some post treatment to be used for clinical report due to the excessive level of

noise. The use of a postfilter (RwPSF-Filt) dramatically spoils the gain in spatial

resolution thanks to PSF modelling. RwPSF-GTVR shows very smooth regions,

confirming (and, in these cases, also enhancing) the unnatural appearance no-

ticed with NEMA IEC Body Phantom. RwPSF-PR provides a good control of

the noise with some loss of spatial resolution, while RwPSF-R appears to yield

very positive results in terms of uniformity of regions (e.g. the liver) and def-

inition of the activity distribution (e.g. ribs and vertebrae in the first patient,

hepatic lesions in the second one).
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(a) RnoPSF (b) RnoPSF-Filt (c) RwPSF

(d) RwPSF-Filt (e) RwPSF-GTVR (f) RwPSF-PR

(g) RwPSF-R

Figure 7.22: Oncological patient A: comparison of the different reconstruction
algorithms [the images are shown using the same display parameters]
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(a) RnoPSF (b) RnoPSF-Filt (c) RwPSF

(d) RwPSF-Filt (e) RwPSF-GTVR (f) RwPSF-PR

(g) RwPSF-R

Figure 7.23: Oncological patient B: comparison of the different reconstruction
algorithms [the images are shown using the same display parameters]





Chapter 8

Results — TOF imaging

8.1 Description of the GE Discovery 690 scanner

The Discovery 690 (D690) is an integrated system which combines a LYSO block

detector PET tomograph with a 64-slice CT scanner.

The PET scanner has a multi-ring system design. The PET tomograph con-

sists of 13824 LYSO crystals with dimensions of 4.2 × 6.3 × 25 mm3. The PET

detection unit is a block of 54 (9 × 6) individual LYSO crystals coupled to a

single squared photomultiplier tube with 4 anodes. The D690 uses a low energy

threshold of 425 keV and a coincidence time window of 4.9 ns. The D690 consists

of 24 rings of detectors for an axial FOV of 157 mm. The transaxial FOV is 70

cm.

The D690 operates only in three-dimensional mode with an axial coincidence

acceptance of ±23 planes. A radioactive pin source of 68Ge (18 MBq) is used for

system calibration and daily quality control. The D690 is equipped with a pow-

erful modular array of cell processors (IBM Blade Centre) specifically designed

to speed up image reconstruction and data processing. The D690 system uses,

as the standard PET reconstruction, a fully 3D OSEM algorithm with all correc-

tions (scatter, random, dead time, attenuation, and normalization) incorporated

into the iterative reconstruction scheme (official name: VUE-point HD). Further-

more, new reconstruction algorithms are available on the D690, which add to the

standard VUE-point HD configuration the time of flight information (VUE-point

FX) and/or a 3D model of the D690 PET point spread function (Sharp-IR). The

PSF model implemented in the D690 system is based on experimental measure-

ments of a point source acquired in different positions within the 3D-PET FOV.

The resulting spatially variant PSF was modelled and then coded in a system

matrix, in the projection space, to be used in the reconstruction scheme of a

3D-OSEM algorithm, as described in [4].

139



140 CHAPTER 8. RESULTS — TOF IMAGING

The CT system is the LightSpeed VCT with 64 slices. The detector matrix is

characterized by 912 channels × 64 rows for a total of 58368 solid state detector

elements. The LightSpeed VCT allows full 360-degree rotational scans with a

variable rotational time ranging from 0.35 to 2 seconds and slice thickness of

64×0.625 mm, 32×1.25 mm, 16×2.5 mm, 8×5 mm and 4×10 mm.

8.2 PSF measurements

The PSF of the D690 was experimentally determined as described in chapter 4.

The transaxial FOV was sampled at distances (from the FOV centre) ranging

from 3 cm to 25 cm in steps of about 3 cm, both to the right and to the left of

the centre. For each radial distance, the entire axial FOV was sampled in steps

of about 1.5 cm.

An example of a fit on an acquired image is reported in figure 8.1.
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Figure 8.1: Example of PSF fits on D690. Top: radial–tangential and tangential–
axial images; bottom: corresponding fits

All the obtained values for each spread parameter were then graphed as a

function of both radial and axial distances from the scanner FOV centre (figure

8.2): it was then possible to fit each set of data with a polynomial quadratic in

both distances, symmetric with respect to the centre of axial FOV, as defined in

equation 4.8.

The relative weight of the square term in the axial dependence of the transax-

ial spread parameters was found to be more than two orders of magnitude lower
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Figure 8.2: Determination of the spread parameters dependences on the radial
and axial distances in Discovery 690: internal radial (top left), external radial
(top right), tangential (bottom left) and axial (bottom right)

than the square term in the axial dependence of the axial spread parameter:

therefore, the axial dependence of the transaxial spread parameters was assumed

to be negligible, in order to reduce the complexity of the model.

The dependences used in the work were then

σi = 1.340 + 0.05816 r + 2.297× 10−3 r2

σe = 1.373 + 0.01105 r + 5.539× 10−4 r2

σt = 1.427 + 3.461× 10−4 r + 2.582× 10−4 r2

σa =
(
1.511 + 9.8× 10−10 r + 3.640× 10−4 r2

) (
1 + 1.110× 10−3 a2

)
(8.1)

where the radial (r) and axial (a) distances are measured in centimeters and the

spread parameters are measured in millimeters.

In figure 8.3 the radial, tangential and axial profiles drawn on an image are

compared with the corresponding ones drawn on the resulting fit function and

on the final kernel function used in the reconstruction algorithm. The figure

reveals the good resemblance between the different profiles and, consequently,

the reliability of the fitting results.
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Figure 8.3: Comparison between the radial (top left), tangential (top right) and
axial (bottom) profiles drawn on an image, on the resulting fit and on the corre-
sponding kernel used in the reconstruction

8.3 Improvements thanks to PSF

The new algorithm accounting for the PSF of the D690 scanner was validated

on phantom and clinical studies. All datasets were reconstructed using the 3D

OSEM algorithm without (RnoPSF) and with the PSF (RwPSF). Further re-

constructions were performed by applying a post-filter on the final reconstructed

images (respectively, RnoPSF-Filt and RwPSF-Filt). The four reconstruction

algorithms were replicated by adding also the TOF information (and obtaining

as a consequence the TOF RnoPSF, TOF RnoPSF-Filt, TOF RwPSF and TOF

RwPSF-Filt algorithms). The validation consisted in comparing the images ob-

tained with the different algorithms. All the validations were qualitative; with

phantom data, also quantitative comparison were performed.

8.3.1 Quantitative validation

NEMA IEC Body Phantom

The NEMA IEC Body Phantom (as described in section 7.3.1 and pictured in

figure 7.7) was used to simulate an oncologic whole body 18F -FDG study. Both
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the body and the spheres (except the two biggest ones) were filled with a 18F -

FDG solution in order to have a LBR equal to 4.4. The two largest spheres (with

diameters 28 mm and 37 mm) were filled with pure water, in order to simulate

cold regions. After centring the phantom in the scanner FOV, a CT scan was

performed to be used for attenuation correction followed by a 3D emission scan

of 4 min recording 50.2 Mcounts.

The reconstruction parameters common to all the algorithms were: image

matrix 256×256, 18 subsets, up to 50 iterations, reconstruction FOV 50 cm,

pixel size 1.95 mm. The post filter applied in RnoPSF-Filt was a symmetric

two-dimensional Gaussian filter with FWHM=5 mm in the transaxial planes and

a weighted 3-point mean along the axial direction. The post filter applied in

RwPSF-Filt was a symmetric two-dimensional Gaussian filter with FWHM=4

mm in the transaxial planes and a weighted 3-point mean along the axial direc-

tion.

The images were analysed by using the same figures of merit described in

section 7.3.1:

• the background coefficient of variation COV was used to assess the noise

content in the images;

• the hot contrast recovery CRhot was used to measure the quantitative accu-

racy of the different reconstruction algorithms when dealing with hot lesions

on a warm background.

Moreover, a new figure of merit was introduced, to assess also how the recon-

struction algorithm represents cold regions. The cold contrast recovery

CRcold = 100

(
1− µC

µB

)
(where µC and µB are the mean content of the voxels inside a spherical VOI

drawn in cold and background regions, respectively) would ideally be equal to

100 in a cold region (µC = 0) if the scanner had infinite spatial resolution. Due

to PSF (spill-in) effects, instead, the mean activity concentration in a cold region

is always non-zero and, consequently, the CRcold is always lower than 100.

Ten spherical VOIs were drawn, four in background regions and six for the

signal (i.e. the six spheres). The signal spheres were centred on CT and the radii

were chosen according to the specifications from the manufacturer of the spheres.

The background mean value µB and the standard deviation STD were calcu-

lated over all voxels in the first set of VOIs, while the second set of VOIs was used

to calculate the contrast recovery coefficients for the spheres: µS was measured

on each of the four smallest spheres, while µC on the two largest ones.

In figure 8.5 the contrast recovery coefficients for the largest (CRcold) and

smallest (CRhot) spheres obtained with the different reconstruction algorithms



144 CHAPTER 8. RESULTS — TOF IMAGING

are plotted as a function of the background coefficient of variation COV , while

in figure 8.6 they are plotted as a function of the number of iterations. In table

8.1 the CRcold on the largest sphere, the CRhot on the smallest sphere and the

background COV are compared between the different reconstruction algorithms

by calculating their percent variations (with respect to RnoPSF) at 5, 10 and 50

iterations. In table 8.2, instead, the reference reconstruction algorithm is TOF

RnoPSF.

As expected, the effects of the post filter on the largest, cold sphere are much

less pronounced than on the smallest, hot one. Also the effect of PSF in non TOF

reconstruction appears to be much more important on the small hot sphere: this is

probably due to the increased importance of resolution effects on small structures

and, parallely, to the reduced effect of PSF on spill-in with respect to spill-out.

TOF information contributes to a significant improvement in the quantitative

accuracy both on cold and hot coefficients; moreover, the reduction of the percent

difference with respect to the noPSF reconstruction as iterations proceed hints

an increased rate of convergence thanks to TOF (as apparent also by focusing

on the convergence point of RnoPSF and TOF RnoPSF graphs in figures 8.5

and 8.6). For the hot smallest sphere, approximately 15 iterations are needed

to obtain with PSF the same CRhot as with TOF; for the cold largest sphere,

the CRcold from TOF is always higher than the one from PSF: this confirms the

strong contribution given by TOF in presence of cold regions (TOF is outper-

formed only by the combination of TOF and PSF, see below) and, at the same

time, the reduced effect introduced by PSF on regions affected by spill-in. The

synergy of TOF and PSF leads to huge improvements in the contrast recoveries

(at 10 iterations, +45.4% for the hot smallest sphere, +17.9% for the cold largest

sphere). It is also important to note how the post-filters — identical to the one

used in standard clinical practice — dramatically reduce the contrast recovery

coefficients, in particular for the hot smallest sphere.

As far as noise is concerned, the introduction of TOF increases the COV

for the first (approximately 15) iterations with respect to RnoPSF, while for

a higher number of iterations the COV from TOF RnoPSF results lower than

in RnoPSF. Moreover, as particularly apparent in figure 8.6, the convergence

point of the algorithm has a lower COV than in the RnoPSF plot, all the more

given the lower convergence speed of the latter algorithm. The introduction of

PSF reduces the COV , demonstrating once again how the PSF introduces also

a filtering effect in the background regions. For every reconstruction algorithm

(RnoPSF, RwPSF, TOF RnoPSF and TOF RwPSF) the introduction of a post-

filter dramatically reduces the noise content with respect to the corresponding

non-filtered algorithm, at the expense of the quantitative accuracy.

The results here presented appear in agreement with those of other authors

[28, 49, 92, 110].
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In figure 8.4 a comparison of the images obtained after 10 iterations with

the different algorithms is provided. The number of iterations was chosen by

searching a compromise between the readability of the resulting images, the im-

provement in convergence and quantitative content and the clinical requests in

terms of reconstruction time, also considering the improved computational power

available on the new scanners. The images visually confirm the numerical results.

The use of the TOF information (right-hand side of the figure) increases the def-

inition of the smallest spheres and, in particular, dramatically improves the con-

tent of the cold regions, which appear with clearly lower activity concentration

and much more uniform. A post-filter strongly reduces, in every case, both the

noise content and the definition of the signal regions. The PSF alone improves

the spatial resolution and the intensity of the signal and has a positive — but

moderate — effect on the cold regions, while if used in conjunction with TOF it

provides the best definition of details and coldness of the largest spheres.
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Recon algorithm
∆CRcold for the largest sphere
5 it. 10 it. 50 it.

RnoPSF-Filt -3.9% -4.3% -4.3%
RwPSF +0.9% +3.0% +9.3%
RwPSF-Filt -2.9% -1.3% +3.6%
TOF RnoPSF +18.3% +13.7% +12.5%
TOF RnoPSF-Filt +13.6% +8.9% +7.7%
TOF RwPSF +20.2% +17.9% +20.8%
TOF RwPSF-Filt +15.7% +13.0% +15.0%

Recon algorithm
∆CRhot for the smallest sphere

5 it. 10 it. 50 it.

RnoPSF-Filt -32.5% -35.2% -38.4%
RwPSF +1.0% +15.2% +28.8%
RwPSF-Filt -29.0% -22.4% -18.7%
TOF RnoPSF +30.9% +22.6% +15.4%
TOF RnoPSF-Filt -17.6% -25.9% -31.1%
TOF RwPSF +44.3% +45.4% +57.4%
TOF RwPSF-Filt -3.3% -6.1% -7.2%

Recon algorithm
∆COV

5 it. 10 it. 50 it.

RnoPSF-Filt -70.1% -76.6% -85.2%
RwPSF -54.3% -54.8% -31.4%
RwPSF-Filt -74.3% -77.6% -78.5%
TOF RnoPSF +17.9% +8.1% -10.6%
TOF RnoPSF-Filt -71.2% -79.9% -88.7%
TOF RwPSF -47.3% -50.0% -29.6%
TOF RwPSF-Filt -73.1% -78.2% -81.6%

Table 8.1: Percent differences of CRcold coefficient for the largest sphere (37-
mm diameter), of CRhot for the smallest sphere (10-mm diameter) and of the
background coefficient of variation COV with respect to RnoPSF reconstructions
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Recon algorithm
∆CRcold for the largest sphere
5 it. 10 it. 50 it.

RnoPSF -15.5% -13.7% -11.1%
RnoPSF-Filt -18.8% -15.9% -15.0%
RwPSF -14.7% -9.4% -2.9%
RwPSF-Filt -17.9% -13.2% -7.9%
TOF RnoPSF-Filt -3.9% -4.2% -4.3%
TOF RwPSF +1.6% +3.7% +7.3%
TOF RwPSF-Filt -2.2% -0.7% +2.2%

Recon algorithm
∆CRhot for the smallest sphere

5 it. 10 it. 50 it.

RnoPSF -23.6% -22.6% -13.4%
RnoPSF-Filt -48.4% -47.1% -46.6%
RwPSF -22.9% -6.0% +11.6%
RwPSF-Filt -45.8% -36.7% -29.6%
TOF RnoPSF-Filt -37.1% -39.6% -40.3%
TOF RwPSF +10.2% +18.7% +36.4%
TOF RwPSF-Filt -26.2% -23.4% -19.6%

Recon algorithm
∆COV

5 it. 10 it. 50 it.

RnoPSF -15.2% -8.1% +11.8%
RnoPSF-Filt -74.6% -78.3% -83.5%
RwPSF -61.2% -58.2% -23.3%
RwPSF-Filt -78.2% -79.2% -76.0%
TOF RnoPSF-Filt -75.6% -81.4% -87.3%
TOF RwPSF -55.3% -53.8% -21.3%
TOF RwPSF-Filt -77.2% -79.9% -79.5%

Table 8.2: Percent differences of CRcold coefficient for the largest sphere (37-
mm diameter), of CRhot for the smallest sphere (10-mm diameter) and of the
background coefficient of variation COV with respect to TOF RnoPSF recon-
structions
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Figure 8.4: NEMA IEC Body Phantom at 10 iterations: comparison of RnoPSF,
RnoPSF-Filt, RwPSF and RwPSF-Filt (from top to bottom) without (left) and
with (right) TOF information [the images are shown using the same display
parameters]
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Figure 8.6: CRcold coefficient for the largest sphere (left), CRhot coefficient for
the smallest sphere (center) and background coefficient of variation COV (right)
versus the number of iterations for non TOF and TOF reconstruction algorithms
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8.3.2 Qualitative validation

Clinical data

The acquisitions of two oncological patients (C and D) were used to assess the

contribution of TOF and/or PSF on the final results.

Patient C (height 175 cm, weight 53 kg) received an injection of 18F -FDG

(351.5 MBq); the tracer uptake time was 60 min. The acquisition protocol con-

sisted of a whole body CT scan to be used for anatomical localization and at-

tenuation correction and a 3D whole body emission scan (4 min for each bed

containing the liver, 2 min per bed position otherwise, 8 bed positions, 9-slice

overlap between adjacent beds) recording 511.6 Mcounts.

Patient D (height 175 cm, weight 75 kg) received an injection of 18F -FDG

(370 MBq); the tracer uptake time was 60 min. The acquisition protocol consisted

of a whole body CT scan to be used for anatomical localization and attenuation

correction and a 3D whole body emission scan (4 min for each bed containing the

liver, 2 min per bed position otherwise, 7 bed positions, 9-slice overlap between

adjacent beds) recording 341.7 Mcounts.

The chosen reconstruction parameters were: image matrix 256×256, 18 sub-

sets, reconstruction FOV 60 cm, pixel size 2.34 mm, 10 iterations. The clini-

cal post filter used in RnoPSF-Filt was composed of symmetric two-dimensional

Gaussian filter with FWHM=5 mm in the transaxial planes and a three-point

weighted mean along the axial direction. The clinical post filter used in RwPSF-

Filt was composed of symmetric two-dimensional Gaussian filter with FWHM=4

mm in the transaxial planes and three-point weighted mean along the axial di-

rection.

As far as patient C is concerned, in figures 8.7 and 8.8 the comparison between

the different reconstruction algorithms is performed on some coronal images,

while one set of transaxial images is provided in figure 8.9. Patient C is slim and,

consequently, the spatial extension of the activity distribution is expected to be

small, with consequent reduced effect of the TOF: in effect, this is confirmed

by the images, in which — except for few small lesions — the contribution of

TOF appears to be moderate, even if some improvements in the contrast of the

lesions are present (e.g. see figure 8.9). The introduction of PSF, both in non

TOF and TOF images, allows increasing the definition and the contrast of the

different structures (e.g. the pulmonary nodules, the lesions in the liver and the

thighbone). The combination of both TOF and PSF yields the best results in

terms of spatial resolution, definition of the activity distribution and contrast of

the different regions.

For what concerns patient D, in figures 8.10 and 8.11 the comparison be-

tween the different reconstruction algorithms is performed on a set of coronal

images, while some transaxial images are provided in figure 8.12. Patient D is
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(a) RnoPSF (b) RnoPSF-Filt (c) RwPSF (d) RwPSF-Filt

(e) TOF RnoPSF (f) TOF RnoPSF-Filt (g) TOF RwPSF (h) TOF RwPSF-Filt

Figure 8.7: Coronal images of oncological patient C, comparison of the different
reconstruction algorithms without (top) and with (bottom) TOF information:
from left to right, RnoPSF, RnoPSF-Filt, RwPSF, RwPSF-Filt [the images are
shown using the same display parameters]
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(a) RnoPSF (b) RnoPSF-Filt (c) RwPSF (d) RwPSF-Filt

(e) TOF RnoPSF (f) TOF RnoPSF-Filt (g) TOF RwPSF (h) TOF RwPSF-Filt

Figure 8.8: Coronal images of oncological patient C, comparison of the different
reconstruction algorithms without (top) and with (bottom) TOF information:
from left to right, RnoPSF, RnoPSF-Filt, RwPSF, RwPSF-Filt [the images are
shown using the same display parameters]
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(a) RnoPSF (b) TOF RnoPSF

(c) RnoPSF-Filt (d) TOF RnoPSF-Filt

(e) RwPSF (f) TOF RwPSF

(g) RwPSF-Filt (h) TOF RwPSF-Filt

Figure 8.9: Transaxial images of oncological patient C, comparison of the different
reconstruction algorithms without (left) and with (right) TOF information: from
top to bottom, RnoPSF, RnoPSF-Filt, RwPSF, RwPSF-Filt [the images are
shown using the same display parameters]
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fatter than patient C: consequently, the activity distribution is expected to have

larger dimensions, increasing the effect of TOF. The figures confirm a slight im-

provement in the definition and contrast of the hot regions thanks to the TOF

information, in particular for the lesions and structures farthest from the scanner

center. The introduction of PSF dramatically increases the spatial resolution and

contrast of the lesions, especially the smallest ones. Finally, as already noted,

the synergy between TOF and PSF appears to yield the best results, allowing

to better discriminate — when compared to RwPSF — the lesions from the sur-

rounding background. Moreover, their combined use reduces the activity in the

cold regions, leading to more contrasted images.
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(a) RnoPSF (b) RnoPSF-Filt (c) RwPSF (d) RwPSF-Filt

(e) TOF RnoPSF (f) TOF RnoPSF-Filt (g) TOF RwPSF (h) TOF RwPSF-Filt

Figure 8.10: Coronal images of oncological patient D, comparison of the different
reconstruction algorithms without (top) and with (bottom) TOF information:
from left to right, RnoPSF, RnoPSF-Filt, RwPSF, RwPSF-Filt [the images are
shown using the same display parameters]
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(a) RnoPSF (b) RnoPSF-Filt (c) RwPSF (d) RwPSF-Filt

(e) TOF RnoPSF (f) TOF RnoPSF-Filt (g) TOF RwPSF (h) TOF RwPSF-Filt

Figure 8.11: Coronal images of oncological patient D, comparison of the different
reconstruction algorithms without (top) and with (bottom) TOF information:
from left to right, RnoPSF, RnoPSF-Filt, RwPSF, RwPSF-Filt [the images are
shown using the same display parameters]
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(a) RnoPSF (b) TOF RnoPSF

(c) RnoPSF-Filt (d) TOF RnoPSF-Filt

(e) RwPSF (f) TOF RwPSF

(g) RwPSF-Filt (h) TOF RwPSF-Filt

Figure 8.12: Transaxial images of oncological patient D, comparison of the differ-
ent reconstruction algorithms without (left) and with (right) TOF information:
from top to bottom, RnoPSF, RnoPSF-Filt, RwPSF, RwPSF-Filt [the images
are shown using the same display parameters]
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8.4 Effects of the regularization

8.4.1 Optimization of the regularization parameters

The optimization was performed by reconstructing (including TOF information)

an acquisition of a NEMA IEC Body Phantom (acquired statistics: 50.2 Mcounts,

see section 8.3.1 for further details) using different sets of parameters (β, δ) and

choosing the set which maximized the detectability index D (see section 6.3)

relative to the smallest sphere (diameter 10 mm), i.e. a representative sphere of

many oncological lesions. Larger lesions would suffer from less spatial resolution

loss due to the regularization process, with consequent better results in terms of

definition and contrast of the activity distribution.

The optimization was performed using 10 iterations, considered as a com-

promise between clinical requirements of time and recovery of spatial resolution

thanks to the presence of TOF and PSF in the reconstruction algorithm.

In figure 8.13 the detectability for the smallest sphere is plotted as a function

of the parameters β and δ for the proposed prior. The maximum detectability is

obtained for

β = 0.003, δ = 0.4 (8.2)
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Figure 8.13: Optimization of the regularization parameters for the proposed prior
with TOF by maximizing the D index
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8.4.2 Quantitative accuracy

The quantitative validation was performed by using the NEMA IEC Body Phan-

tom presented in section 8.3.1, with identical acquisition protocols. The chosen

reconstruction parameters were: image matrix 256×256, 18 subsets, reconstruc-

tion FOV 50 cm, pixel size 1.95 mm, up to 50 iterations. The clinical post-filter

used in TOF RnoPSF was coincident with the one used in the clinical prac-

tice, i.e. it was composed of a symmetric two-dimensional Gaussian filter with

FWHM=5 mm in the transaxial planes and a three-point mean along the axial

direction. The post-filter used in TOF RwPSF-Filt was composed of a symmetric

two-dimensional Gaussian filter with FWHM=4 mm in the transaxial planes and

a three-point mean along the axial direction. The regularization parameters for

RwPSF-R were set equal to the optimal values (0.003, 0.4) found in section 8.4.1.

For TOF RwPSF-PR, the parameter β was set equal to the TOF RwPSF-R one,

i.e. β = 0.003.

In table 8.3 the percent differences (with respect to TOF RnoPSF recon-

structions) of the CRcold and CRhot coefficients, obtained with the different algo-

rithms, for the largest sphere (37-mm diameter) and the smallest sphere (10-mm

diameter) respectively and of the COV at 5, 10 and 50 iterations are reported.

Similarly, in table 8.4 the percent differences of the contrast recovery coefficients

and of the background variability, with respect to the clinical RwPSF-Filt recon-

structions, obtained from the different regularized algorithms and from RwPSF

are reported. In figure 8.15 the CRcold coefficients for the largest sphere and the

CRhot coefficient for the smallest sphere are plotted versus the background coef-

ficient of variation, while in figure 8.14 an example of the reconstructed images

using the different algorithms is presented.

From tables 8.3 and 8.4 TOF RwPSF-R confirms — also in presence of the

TOF information — that the proposed prior results in better quantification (at 10

iterations, +26.4% for the CRhot on the smallest sphere and +3.2% for the CRcold
on the largest sphere) and smoother background (at 10 iterations, −27.6% for

the COV ) with respect to the clinical (TOF RwPSF-Filt) reconstruction. Even

if for the smallest sphere the CRhot results slightly lower than in TOF RnoPSF

case, for the largest sphere TOF RwPSF-R converges to a CRcold value very near

to the TOF RwPSF one (−0.4%). For what concerns the background noise, the

proposed prior reduces the COV with respect to all the reconstruction algorithms,

in particular TOF RnoPSF and TOF RwPSF-Filt.

When compared to TOF RwPSF-PR, the proposed modification reveals very

little differences in the cold regions; the cold contrast for the largest sphere is char-

acterised by a very modest improvement introduced by TOF RwPSF-R (+0.1%

at 5 iterations, +0.1% at 10 iterations and +0.5% at 50 iterations). The hot

regions (e.g. the smallest sphere) benefit much more from the proposed modifi-

cation, with an improvement in the quantification of 11.2% (5 iterations), 16.3%
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(10 iterations) and 17.8% (50 iterations). Consequently, the drawbacks of the

change in the prior (i.e. a slight increase of background COV — +1.0% at 5

iterations, +2.1% at 10 iterations and +3.2% at 50 iterations) are much less

important than the obtained gains. Finally, as stated also in section 7.4.3, the

introduction of the regularization accelerates the convergence of the algorithm.

The images (figure 8.14) confirm the numerical results. RwPSF-R efficiently

reduces the noise content, preserving a natural appearance and retaining good

definition and contrast of the spheres, both in the hot and in the cold cases.
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(a) TOF RnoPSF (b) TOF RnoPSF-Filt

(c) TOF RwPSF (d) TOF RwPSF-Filt

(e) TOF RwPSF-PR (f) TOF RwPSF-R

Figure 8.14: NEMA IEC Body Phantom at 10 iterations: comparison of TOF
RnoPSF, TOF RnoPSF-Filt, TOF RwPSF, TOF RwPSF-Filt, TOF RwPSF-PR
and TOF RwPSF-R [the images are shown using the same display parameters]
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Figure 8.15: NEMA IEC phantom: comparison of the CRhot for the 37-mm
diameter sphere (left) and for the 10-mm diameter sphere (right) versus the
background coefficient of variation for the reconstruction algorithms considered
(top) and TOF RwPSF-Filt and the different regularization priors used (bottom)
[each point represents one iteration]
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Recon algorithm
∆CRcold for the largest sphere
5 it. 10 it. 50 it.

TOF RnoPSF-Filt -3.9% -4.2% -4.3%
TOF RwPSF +1.6% +3.7% +7.3%
TOF RwPSF-Filt -2.2% -0.7% +2.2%
TOF RwPSF-PR +0.5% +2.4% +6.4%
TOF RwPSF-R +0.6% +2.5% +6.9%

Recon algorithm
∆CRhot for the smallest sphere

5 it. 10 it. 50 it.

TOF RnoPSF-Filt -37.1% -39.6% -40.3%
TOF RwPSF +10.2% +18.7% +36.4%
TOF RwPSF-Filt -26.2% -23.4% -19.6%
TOF RwPSF-PR -16.9% -16.8% -17.0%
TOF RwPSF-R -7.6% -3.2% -2.2%

Recon algorithm
∆COV

5 it. 10 it. 50 it.

TOF RnoPSF-Filt -75.6% -81.4% -87.3%
TOF RwPSF -55.3% -53.8% -21.3%
TOF RwPSF-Filt -77.2% -79.9% -79.5%
TOF RwPSF-PR -79.9% -85.7% -90.7%
TOF RwPSF-R -79.7% -85.4% -90.4%

Table 8.3: Percent differences of CRcold coefficient for the largest sphere (37-mm
diameter), of CRhot coefficient for the smallest sphere (10-mm diameter) and
of the background coefficient of variation COV with respect to TOF RnoPSF
reconstructions
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Recon algorithm
∆CRcold for the largest sphere
5 it. 10 it. 50 it.

TOF RwPSF +3.9% +4.4% +5.0%
TOF RwPSF-PR +2.8% +3.1% +4.1%
TOF RwPSF-R +2.9% +3.2% +4.7%

Recon algorithm
∆CRhot for the smallest sphere

5 it. 10 it. 50 it.

TOF RwPSF +49.3% +54.9% +69.7%
TOF RwPSF-PR +12.5% +8.7% +3.3%
TOF RwPSF-R +25.1% +26.4% +21.6%

Recon algorithm
∆COV

5 it. 10 it. 50 it.

TOF RwPSF +96.3% +129.7% +283.7%
TOF RwPSF-PR -11.8% -28.9% -54.7%
TOF RwPSF-R -11.0% -27.6% -53.4%

Table 8.4: Percent differences of CRcold coefficient for the largest sphere (37-mm
diameter), of CRhot coefficient for the smallest sphere (10-mm diameter) and of
the background coefficient of variation COV with respect to TOF RwPSF-Filt
reconstructions
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8.4.3 Qualitative improvements

A qualitative assessment of the regularization effect was performed by recon-

structing the acquired data of the oncological patients described in section 8.3.2

with the same reconstruction parameters. The regularization parameters for TOF

RwPSF-R were set equal to the optimal values (0.003, 0.4) found in section 8.4.1.

For TOF RwPSF-PR, the parameter β was set equal to the TOF RwPSF-R one,

i.e. β = 0.003.

As far as patient C is concerned, in figures 8.16 and 8.17 the comparison

between the different reconstruction algorithms is performed on some coronal

images, while one set of transaxial images is provided in figure 8.18. TOF RwPSF-

R provides a very positive control of noise, maintaining good natural appearance

and high enough spatial resolution and contrast, lower only when compared to

TOF RwPSF (even if, in this case, with much better background uniformity).

TOF RwPSF-R increases also the definition of non active regions, such as the

external layer of the thighbones and the intervertebral disks, improving also the

global quality of the image. TOF RwPSF-PR generates similar images to TOF

RwPSF-R, with slightly less noisy images, but also with lower spatial resolution

and definition of the details.

For what concerns patient D, in figures 8.19 and 8.20 the comparison between

the different reconstruction algorithms is performed on a set of coronal images,

while some transaxial images are provided in figure 8.21. The coronal images

show how the proposed prior produces a very effective control of the noise, but

maintains natural appearance, good contrast and spatial resolution, also for the

smallest structures. Moreover, the global image quality and the definition of the

activity distribution appear better when compared to TOF wPSF-Filt. Finally,

also for patient D TOF RwPSF-PR generates similar images to TOF RwPSF-R,

with the same differences as stated for patient C.
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(a) TOF RnoPSF (b) TOF RnoPSF-Filt (c) TOF RwPSF

(d) TOF RwPSF-Filt (e) TOF RwPSF-PR (f) TOF RwPSF-R

Figure 8.16: Coronal images of oncological patient C, comparison of the different
reconstruction algorithms [the images are shown using the same display param-
eters]
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(a) TOF RnoPSF (b) TOF RnoPSF-Filt (c) TOF RwPSF

(d) TOF RwPSF-Filt (e) TOF RwPSF-PR (f) TOF RwPSF-R

Figure 8.17: Coronal images of oncological patient C, comparison of the different
reconstruction algorithms [the images are shown using the same display param-
eters]
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(a) TOF RnoPSF (b) TOF RnoPSF-Filt

(c) TOF RwPSF (d) TOF RwPSF-Filt

(e) TOF RwPSF-PR (f) TOF RwPSF-R

Figure 8.18: Transaxial images of oncological patient C, comparison of the dif-
ferent reconstruction algorithms [the images are shown using the same display
parameters]
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(a) TOF RnoPSF (b) TOF RnoPSF-Filt (c) TOF RwPSF

(d) TOF RwPSF-Filt (e) TOF RwPSF-PR (f) TOF RwPSF-R

Figure 8.19: Coronal images of oncological patient D, comparison of the different
reconstruction algorithms [the images are shown using the same display param-
eters]
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(a) TOF RnoPSF (b) TOF RnoPSF-Filt (c) TOF RwPSF

(d) TOF RwPSF-Filt (e) TOF RwPSF-PR (f) TOF RwPSF-R

Figure 8.20: Coronal images of oncological patient D, comparison of the different
reconstruction algorithms [the images are shown using the same display param-
eters]
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(a) TOF RnoPSF (b) TOF RnoPSF-Filt

(c) TOF RwPSF (d) TOF RwPSF-Filt

(e) TOF RwPSF-PR (f) TOF RwPSF-R

Figure 8.21: Transaxial images of oncological patient D, comparison of the dif-
ferent reconstruction algorithms [the images are shown using the same display
parameters]
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Chapter 9

Discussion

Positron Emission Tomography and, more recently, hybrid PET/CT systems have

become increasingly important in the clinical practice thanks to their capabil-

ity to provide complementary, spatially coregistered anatomical and functional

information. However, PET imaging is still characterized by a “poor” spatial

resolution due to the multiple physical effects linked with the 511 keV photon-

matter interaction and with the detection apparatus. Low spatial resolution leads

to a spread in the activity distribution, resulting in a degradation of the image

quality (e.g. reduction of the contrast), in an underestimation of the tracer up-

take (activity concentration) and in an overestimation of the lesion volume. In

principle, each effect could be estimated by experimental measurements or by

simulation studies and then included in the reconstruction scheme to be compen-

sated. Unfortunately, some of these effects are very difficult or nearly impossible

to be measured. Consequently, another approach may consist in accounting for

all these effects by a “global” Point Spread Function (PSF), which describes how

a point source is rendered by the system itself. The knowledge of the PSF, in

principle, allows the correction of the resolution degradation and the recovery of

the correct quantitative information; on the other hand, this approach requires

the knowledge of the PSF in each point of the PET FOV since the response of

the system is not uniform across the FOV of the scanner.

Several methods have been proposed to estimate the PSF, which can be gen-

erally categorized into one of the following classes: Monte Carlo simulations [34],

analytical modelization [78, 79] and experimental measurements [4, 70, 97]. Once

the PSF is known, different reconstruction methods have been proposed to take it

into account in the reconstruction process, based on two different approaches, dif-

ferentiating on the level at which the PSF is introduced: the sinogram approach

(which assumes that the resolution leakage happens in the space of raw data)

and the image approach (which models the PSF acting on the image to be recon-
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structed). The first approach, more used up to now (e.g. [4, 70, 78]), evaluates

the resolution spread acting on the acquired data, without any additional factor

coming from the reconstruction process. Anyway, this is strictly dependent on

the width of the sinogram bins and thus not linked with the chosen reconstruc-

tion FOV. On the other hand, if the PSF is taken into account at the image level

(e.g. [83, 91]), its evaluation depends on the reconstruction algorithm used, but

this method is simpler and allows a higher match between the pixel size and the

precision in the PSF modelling. Both methods can only approximate the actual

resolution model, which is complex due to the superposition of several different

effects. Moreover, some of these effects are characteristic of the sinogram level

(e.g. the detector blurring), while others are more relative to the image level

(e.g. the positron range). On the other hand, from a theoretical point of view

the two strategies should convey the same information about the response of the

tomograph, especially in cases where the system response varies slowly across the

FOV. Nevertheless, the implementation of the PSF in the image space appears to

be more suitable for list–mode data, which is the basic acquisition modality used

for TOF acquisition, as well as for 4D PET, i.e. a modality in which the acquired

data, subject to some cyclic effects (usually the breathing process, even if also

the cardiac functionality has been studied in the very last years), are divided into

different phases of the cycle and are separately reconstructed in order to “freeze”

the movements introduced by the effects. This suggests that the image–space

approach might be more useful in the future developments of PET.

In this thesis it has been proposed a spatially variant PSF implementation in

the image space of a 3D OSEM algorithm. Two different scanners from General

Electric Medical Systems were considered, without (DSTE) and with (D690)

TOF information. The PSF was chosen to be a 3D Gaussian function, which —

thanks to the cylindrical symmetry of the scanners under study — was factorized

into a transaxial two-dimensional Gaussian function and an axial one-dimensional

Gaussian function. Consequently, in each point of the FOV the knowledge of the

PSF coincides with the knowledge of four spread parameters, the internal radial,

the external radial, the tangential and the axial ones.

Experimental measurements, therefore, were performed to determine the de-

pendences of the PSF spread parameters on the position inside the scanner FOV.

The way of measuring the response of the PET system is, in fact, an important

point. Even in the simplest case, i.e. using a small point source in different

positions of the scanner FOV, several factors have then to be taken into account

to obtain a good and representative response of the PET system such as: di-

mension of the source, type of isotope, media surrounding the point source (air,

water, warm radioactive background), number and position of the measurements

to account for the spatial detector configuration [29, 70].

In the case here presented the cylindrical symmetry of the scanners suggested
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considering dependences on the radial and axial distances from the scanner cen-

tre. To measure the PSF of the system a small radioactive 22Na point source

(a cylinder with diameter and height of 1 mm encapsulated in Lucite) in air was

used. As demonstrated in [2] this type of source resembles well the character-

istics of a 18F point source in water, which is the most frequent condition in

clinical practice. Other authors have used a line source in a warm radioactive

background to measure the spatial resolution of a PET system [29]. This ap-

proach is interesting, in particular if a point source is considered instead of a

line source, since it could resemble more accurately the response of a system in a

“clinical” condition. Nevertheless, this way of measuring the PSF of the system

is much more complex and the specific experimental conditions (e.g. ratio of the

activity between warm background and point source, dimensions and shape of

the point source container) and the following data processing (e.g. scatter cor-

rection, attenuation correction, estimation of the warm background etc.) should

be carefully evaluated, as they could play a very important role, particularly in

the estimation of the asymmetric tails of the PSF functions over the entire FOV

of the PET system.

After establishing the source to be used for the PSF estimation, the number

of point measurements is also another important factor. Not having a robotic

system (as used e.g. in [70]), approximately 400 single measurements uniformly

distributed within the scanner FOV were performed per scanner. Finally, since

the PSF should act at the image level of an OSEM algorithm, it was considered

important to determine the trend of the PSF widths in the same conditions, to

match, as much as possible, the PSF evaluations and the algorithm and, so, the

same algorithm was used to reconstruct the point source raw data.

Furthermore, it is known that the results obtained with iterative algorithms

depend on the number of iterations used for the reconstruction of the data and

this is particularly true when the activity distribution to be reconstructed is

complex (e.g. whole body). On the other hand the convergence for a point source

in air is fast: the number of total iterations (i.e. the product of the number of

subsets and number of iterations) chosen (280 and 180, respectively for DSTE and

D690) appeared to be adequate, since even increasing the number of iterations

no significant variation in the numerical results of the resulting model was found

(results not shown).

Moreover, the results from 22Na acquisitions are equivalent to the ones ob-

tainable with 18F -FDG, as demonstrated in [2]. If another isotope (significantly

different from 18F for the positron emission energy) were used, a new set of

measurements should be acquired to account for the contribution of the positron

range specific of that isotope in the “global” PSF.

From each reconstructed image three orthogonal two-dimensional planes, pass-

ing through the voxel with the maximum intensity, were extracted along three
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privileged directions (originating the radial-tangential, radial-axial and tangential-

axial planes): each of them was then fitted by a two-dimensional function to

determine the corresponding spread parameters.

Before fitting, the reconstructed images of the acquired point sources were

post-filtered with a 2D Gaussian function (FWHM=5 mm in the transaxial

planes) to reduce the noise and fluctuations in their peaks which otherwise would

have made the fitting results unreliable to estimate the spread parameters. The

post-filter did not invalidate the results of the fit, however, since its FWHM

was included into the fitting function. Moreover, the fitting function took into

account also the actual position of the point source (in order to correct the un-

avoidable imprecisions in the source positioning), the source dimensions (to avoid

an overestimation of the spread parameters due to the approximation of point

source) and the intrinsic discretization along the axial direction due to the finite

dimension of slices.

The entire set of spread results obtained with 22Na were then fitted with a

two-dimensional function of the radial and axial distances from the scanner center

to determine the required analytical dependences.

A validation of the proposed method of measurement showed its good accu-

racy in the building of the PSF model, justifying its use.

The implementation of the PSF consisted in a redefinition of the projector

and backprojector of the OSEM algorithm. The practical implementation has

been performed by a factorization of the 3D-PSF into a transaxial 2D PSF and

an axial 1D PSF. Both the transaxial and the axial PSFs were stored into a

three-dimensional matrix; the continuous model of the PSF has been discretized

by calculating its integral for each voxel, allowing for a better adaptive imple-

mentation for each specific reconstruction FOV and pixel size. The much more

common strategy of filling each voxel with the value of PSF in the middle point

yields different shapes of the kernel, leading to possible inaccuracies. The dimen-

sion of the stored kernel was chosen about 4 times the spatial resolution of the

scanners: this choice is conservative with respect to the possibility of generating

artefacts due to the truncation of the PSF kernel.

The PSF was tested on some phantom and clinical data. The results showed

improved quantitative accuracy, spatial resolution and image quality, with better

results for higher number of iterations. The combined use of TOF and PSF

appeared to allow them to take advantage of each other, leading to the best

results. This is probably because TOF improves the SNR as a consequence of the

more accurate events positioning but it does not improve the spatial resolution,

which is the main goal of PSF. Thus, if TOF acts as an “accelerator” for the

convergence of the signal, PSF can recover a better signal at a lower number of

iterations, introducing, at the same time, a “filtering” effect.

Unfortunately, a common effect of iterative reconstruction techniques is the
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increase of noise as iterations proceed, due to the ill-posed nature of the recon-

struction problem [103]. Usually in clinical practice the quality of the images is

privileged over their quantitative accuracy by stopping the iterative algorithm

after few iterations and, consequently, far from convergence. This is true all

the more if PSF is included in the algorithm, since the speed of convergence

results lower than in non PSF algorithms [96]. Another important effect ob-

served in PSF-based reconstructions is the enhancement of regions with sharp

intensity transitions: this effect is recognizable throughout the literature (e.g.

[10, 73, 83, 89]). In this thesis it was demonstrated, by means of 1D and 2D

simulations, that it is strongly related to the PSF implementation and, even in

presence of a perfectly matched kernel, unavoidable unless an unpractical number

of iterations is used.

Regularization techniques have been demonstrated to be useful for taking

noise under control during the reconstruction and improving the benefits from

the use of the PSF information by increasing the number of iterations used. In

particular, in this thesis a Bayesian variational regularization strategy [36, 84]

has been tested and employed.

Two important topics should be taken into account when dealing with regu-

larization techniques:

• since many regularization strategies exist (and each of them leads to dif-

ferent characteristics on the image), it is important to understand which

effects are desired, in order to choose the “best” regularization strategy for

the particular scope under study;

• since every regularization strategy depend on one or more parameters, it

is useful to set some optimization criteria to select their values in order to

obtain the best results.

As far as the first issue is concerned, in PET it is usually desirable to suppress the

noise (to obtain smooth, uniform background regions) while retaining as much

spatial resolution as possible, all the more if the PSF information is taken into

account. Two good candidates are the Huber (or Gauss-Total Variation) [44, 50]

and the generalized p-Gaussian [15] priors. The former provides good preserva-

tion of spatial resolution thanks to the TV component for high gradients, but the

Gaussian component for low gradients might be insufficient in controlling very

noisy environments (as often encountered in PET, in particular when the num-

ber of iterations is increased to exploit the PSF action) unless the regularization

strength is set to a very high value, obtaining an unnatural reconstructed image.

The p-Gaussian prior provides a very strong smoothing on background regions,

resulting in good noise control, while it smoothes much less in signal regions. In

this thesis a modification of the p-Gaussian prior was proposed to maintain the

smoothing effect for low gradients (i.e. in background regions) and to reduce the
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spatial resolution loss, while retaining “natural” transitions and appearance in

the image. A 3D OSEM algorithm has been modified to include the proposed

prior using a MAP OSL multiplicative approach. The value for the parameter p

was chosen by qualitatively evaluating the results obtained with different values

and choosing the one yielding the best compromise between noise suppression,

preservation of spatial resolution and natural appearance of the image.

The second issue to be studied deals with the optimization criterion for the

regularization parameters to be used. In this thesis a figure of merit, taking

into account both the qualitative and the quantitative content, was proposed to

evaluate the global “detectability” of a lesion. The validation of this detectability

index showed a very good correlation with the human response and, thus, justified

its use to set the regularization parameters.

The priors needed two regularization parameters: the regularization strength

β (which controls the effect of the regularization strategy on the final image) and

the signal-background threshold δ (which distinguishes the different behaviours

to be applied in the different regions of the image). Among them, the latter

parameter is, in principle, more intricate and delicate to set, since different regions

in the same study might require different thresholds to maximize the general

spatial resolution preservation. One conservative strategy may consist in setting

the parameter for the worst conditions expected (e.g. for the smallest lesions and

the lowest contrasts), assuming that larger lesions and/or higher contrasts lead

to lower resolution loss introduced by the regularization.

The regularization parameters were determined by maximizing the detectabil-

ity index for each prior. This optimization was performed for a sphere with diam-

eter 10 mm and 10 OSEM iterations. The maximization results hinted a different

behaviour of the two priors: the GTV prior showed a very narrow peak along

the direction of the δ parameter, suggesting very different behaviours for small

changes of this parameter and, consequently, indicating that setting this param-

eter could be a delicate process. For the proposed prior, small changes of the δ

parameter around the maximum lead to very little differences in its behaviour,

guaranteeing higher stability and “margins of security”.

The validation of the proposed modifications was quantitative on data ac-

quired with a NEMA IEC Body Phantom and qualitative on data relative to

two oncological patients and consisted of a comparison between the standard re-

construction algorithms, the proposed algorithm, the results obtained with the

p-Gaussian prior and with Gauss-Total Variation. This comparison showed an

effective control of noise (but with natural appearance of the image) by the pro-

posed prior with a contemporary good preservation of spatial resolution, con-

trast and definition of the activity distribution. Moreover, the proposed prior

was shown to be able also to take the edge artefact under control, drastically

reducing the overshoots originating at large transitions in the image.
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Future perspectives

The fitting procedure appears to be consistent and useful in determining the

spread parameters. Like every fitting procedure, its reliability would probably

benefit from larger datasets available. This could be obtained by reducing the

reconstruction FOV and/or increasing the size of the matrix (e.g. 512×512). In

case of a future improvement in the precision of the projectors and of the entire

reconstruction process (in addition to an increased computational performance on

the reconstruction console) the spread parameters might be determined with even

higher precision and accuracy. In principle, the proposed fitting procedure should

be already adequate to support (thanks to the inclusion of the source dimensions

in the fit function itself) the reduced validity of the point source approximation

due to the reduced size of the voxels.

The value used for the p-Gaussian prior (p = 4/3) — i.e. the starting point for

the proposed modifications — resulted in the best compromise between preserva-

tion of spatial resolution, noise suppression and natural appearance of the clinical

image. Whether this particular choice of the parameter gives the “globally” best

results (i.e. considering all possible choices for the different parameters) is be-

yond the scope of this work. Anyway, the proposed strategy to modify the prior

is independent of the parameter p and, thus, in the case of a different p this

strategy is expected to remain valid.

It is important to underline also that the priors were optimized considering 10

OSEM iterations as a limit for the image reconstruction in clinically acceptable

times. If, in the future and/or for different clinical requirements, the number of

iterations could be increased, different regularization parameters and consequent

numerical results would be probably obtained and the comparison between the

reconstruction algorithms might yield different results. However, this goes beyond

the scope of this work, which is based on the present situation of computational
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power and was focused on the most used (and general) application of PET, i.e.

oncology.

In other fields, e.g. neurology, the (even small) unavoidable spatial resolution

loss introduced by the proposed prior might be excessive. On the other hand, in

neurology the characteristics of the image (and, as a consequence, the requests

for the prior) are very different to the oncology case: for example, the activity

distribution is usually distributed on smaller dimensions, with generally lower

noise. The less stringent constraint of noise control and, contemporarily, the need

of lower loss of spatial resolution might require a completely different approach,

but could be obtained also by simply reducing the β strength parameter. More

studies on this topic might provide further hints.

The emissive regularization strategy here presented demonstrated good noise

control and image quality. In some applications (of which neurology might be

the most significative) the regularization characteristics could be more efficiently

determined on an anatomical (or morphological) basis. The implementation of

an anatomical regularization, either alone or in combination with the emissive

one, could improve the definition of the structures and allow a better differen-

tiation and definition of the effects to be applied on the image. Nevertheless,

the use of an anatomical a-priori information could introduce a bias in the re-

constructed images, since the functional information would be influenced by the

a-priori assumptions; moreover, small (and unavoidable) mismatches between the

anatomical and functional data would generally create artefacts, unless ad-hoc

strategies are developed. Finally, a combined anatomical-functional prior would

increase the complexity of the regularization strategy, e.g. for what concerns the

set-up of the corresponding parameters and the evaluations of their respective

effects.
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M.1 Poisson statistics

Let X be a random variable following a Poisson distribution with mean λ. The

probability of obtaining the value x is consequently

P (X = x) =
e−λλx

x!

If n independent random variables X1, X2, . . . , Xn are considered, the joint proba-

bility of obtaining respectively the values x1, x2, . . . , xn is the product of n Poisson

distributions:

P (X1 = x1, X2 = x2, . . . , Xn = xn) =
e−λ1λx11

x1!

e−λ2λx22

x2!
. . .

e−λnλxnn
xn!

where λi is the mean relative to the variable Xi.

Now consider the variable Y = X1 + X2. The probability of obtaining the

value y is then

P (Y = X1 +X2 = y) =

y∑
i=0

P (X1 = i,X2 = y − i)

since the different cases (X1 = i,X2 = y − i) are independent and mutually

exclusive. Expliciting the summation content,

P (Y = y) =

y∑
i=0

e−λ1λi1
i!

e−λ2λy−i2

(y − i)!
=
e−λ1e−λ2

y!

y∑
i=0

y!

i!(y − i)!
λi1λ

y−i
2 =

=
e−λ1e−λ2

y!

y∑
i=0

(
y

i

)
λi1λ

y−i
2 =

e−(λ1+λ2)

y!
(λ1 + λ2)y =

e−λλy

y!

(M.1)

where λ = λ1 + λ2. Consequently, the sum of two Poisson distributions is a

Poisson distribution, too, having as mean the sum of the means of the two starting

distribution. The generalization to n Poisson distributions is then immediate

showing that the sum of n − 1 Poisson distributions is a Poisson distribution
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itself. In addition, if the variables X̃i = aiXi (where ai < 1 is a multiplicative

constant) are considered, the variable Ỹ =
∑

i aiXi describes a thinning of a

Poisson process and therefore it follows a Poisson distribution [102] with mean

value λ =
∑

i aiλi. If the substitutions
Ỹ = yd
Xi = nb
ai = pbd
X̃i = xbd

are performed, the parallelisms with the EM algorithm are apparent.

The expectation value of X1 conditioned to Y = X1 +X2 = y can be written

as

E [X1 |Y = y ] =

y∑
x1=0

x1P (X1 = x1 |Y = y )

where

P (X1 = x1 |Y = y ) =
P (X1 = x1, Y = y)

P (Y = y)
=
P (X1 = x1, X2 = y − x1)

P (Y = y)
=

=

e−λ1λx11

x1!

e−λ2λy−x12

(y − x1)!

e−(λ1+λ2)

y!
(λ1 + λ2)y

=

(
y

x1

)
λx11 λ

y−x1
2

(λ1 + λ2)y

(M.2)

Consequently

E [X1 |Y = y ] =

y∑
x1=0

x1P (X1 = x1 |Y = y ) =

y∑
x1=1

x1P (X1 = x1 |Y = y ) =

=

y∑
x1=1

λx11 λ
y−1−(x1−1)
2

(λ1 + λ2)y
y!

(x1 − 1)! (y − x1)!
=

=
yλ1

(λ1 + λ2)y

y−1∑
x′1=0

λ
x′1
1 λ

y−1−x′1
2 (y − 1)!

x′1! (y − 1− x′1)!
=

yλ1

(λ1 + λ2)y
(λ1 + λ2)y−1 =

= y
λ1

λ1 + λ2

(M.3)

Considering the general case Y =
N∑
i=1

Xi, it is possible to introduce the auxil-

iary random variable X̃2 =
N∑
i=2

Xi and write Y = X1 + X̃2: the above statements
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are then appliable in a similar way, obtaining

E

[
Xi

∣∣∣∣∣Y =

N∑
i=1

Xi = y

]
= y

λi
N∑
i=1

λi

With the same substitutions presented above, the application to the expectation

step of the MLEM algorithms (equation 3.11) is evident.

M.2 Point and non–point sources with Gaussian PSF

Consider two regular functions f, g : Rn → R. The convolution operation f ? g is

defined as

(f ? g) (~x) =

∫
Rn
f
(
~h
)
g
(
~x− ~h

)
d~h

As a first step, consider the convolution between two symmetric monodimen-

sional gaussians

f(x) = Ae
− (x−b)2

2σ21 g(x) = Be
− x2

2σ22

Their convolution is

(f ? g)(x) =

∫ +∞

−∞
Ae
− (t′−b)2

2σ21 Be
− (x−t′)2

2σ22 dt′
t=t′−b

=

∫ +∞

−∞
Ae
− t2

2σ21Be
− (x−b−t)2

2σ22 dt
y=x−b

=

= AB

∫ +∞

−∞
e
− t2

2σ21 e
− (y−t)2

2σ22 dt

(M.4)

The sum in the exponential can be rearranged as follows:

t2

σ2
1

+
(y − t)2

σ2
2

=

(
1

σ2
1

+
1

σ2
2

)
t2 − 2y

σ2
2

t+
y2

σ2
2

=
1

σ2
2

[
σ2

1 + σ2
2

σ2
1

t2 − 2yt+ y2

]
=

=
1

σ2
2

[(
σ̃

σ1
t− σ1

σ̃
y

)2

+
σ2

2y
2

σ̃2

]
where σ̃2 = σ2

1 +σ2
2 has been introduced. Therefore, equation M.4 can be rewrit-

ten as

(f ? g)(x) = ABe−
y2

2σ̃2

∫ +∞

−∞
e
− 1

2

(
σ̃

σ1σ2
t− σ1

σ̃σ2
y
)2
dt = AB

σ1σ2

σ̃
e−

y2

2σ̃2

∫ +∞

−∞
e−z

2/2dz︸ ︷︷ ︸
√

2π

in which the substitution z = σ̃
σ1σ2

t − σ1
σ̃σ2

y has been performed. In conclusion,

then, (
Ae
− (x−b)2

2σ21

)
?

(
Be
− x2

2σ22

)
=
√

2πAB
σ1σ2

σ̃
e−

(x−b)2

2σ̃2 (M.5)
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Secondly, consider the convolution between two monodimensional gaussians,

a symmetric one and an asymmetric one

f(x) = A

[
θ(b− x)e

− (x−b)2

2σ2
l + θ(x− b)e−

(x−b)2

2σ2r

]
g(x) = Be

− x2

2σ2c

where

θ(t) =


1 if t > 0

1/2 if t = 0

0 if t < 0

(M.6)

Following the same scheme of the previous example, their convolution is

(f ? g)(x) = AB

[∫ 0

−∞
e
− t2

2σ2
l e
− (y−t)2

2σ2c dt+

∫ +∞

0
e
− t2

2σ2r e
− (y−t)2

2σ2c dt

]
=

= AB

[
e
− y2

2σ̃2
l

∫ 0

−∞
e
− 1

2σ2c

(
σ̃l
σl
t−σl

σ̃l
y
)2
dt+ e

− y2

2σ̃2r

∫ +∞

0
e
− 1

2σ2c

(
σ̃r
σr
t−σr

σ̃r
y
)2
dt

]
(M.7)

where, similarly to before, the symbols σ̃2
l = σ2

l +σ2
c and σ̃2

r = σ2
r +σ2

c have been

used. Now, performing the substitutions

z =
1√
2σc

(
σ̃l
σl
t− σl

σ̃l
y

)
w =

1√
2σc

(
σ̃r
σr
t− σr

σ̃r
y

)
equation M.7 changes into

(f ?g)(x) = AB
√

2σc

[
σl
σ̃l
e
− y2

2σ̃2
l

∫ − 1√
2

σl
σ̃lσc

y

−∞
e−z

2
dz +

σr
σ̃r
e
− y2

2σ̃2r

∫ +∞

− 1√
2

σr
σ̃rσc

y
e−w

2
dw

]
Introducing the functions

erf(x) =
2√
π

∫ x

0
e−t

2
dt erfc(x) = 1− erf(x) =

2√
π

∫ +∞

x
e−t

2
dt

the convolution can finally be written as

(f ? g)(x) = AB

√
2πσc
2

{
σl
σ̃l
e
− (x−b)2

2σ̃2
l erfc

[
1√
2

σl
σ̃lσc

(x− b)
]

+

+
σr
σ̃r
e
− (x−b)2

2σ̃2r erfc

[
− 1√

2

σr
σ̃rσc

(x− b)
]}

(M.8)

The last preliminary step is to calculate the convolution of two two-dimensional

elliptical gaussians

f(x) = Ae
− (x−a)2

2σ2a
− (y−b)2

2σ2
b g(x) = Be

− x2

2σ21
− y2

2σ22
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An important point is the absence of mixed terms xy, i.e. the ellipses in the expo-

nential have their axes parallel to the coordinate axes. The required convolution

is

(f ? g) (x) =

∫ +∞

−∞

∫ +∞

−∞
ABe

− (t−a)2

2σ2a
− (s−b)2

2σ2
b e
− (x−t)2

2σ21
− (y−s)2

2σ22 dtds =

= AB

(∫ +∞

−∞
e
− (t−a)2

2σ2a e
− (x−t)2

2σ21 dt

)(∫ +∞

−∞
e
− (s−b)2

2σ2
b e
− (y−s)2

2σ22 ds

)

Therefore, the two-dimensional convolution — if no mixed terms are present in

the product of the functions — is expressable as the product of two monodimen-

sional convolutions (the statement is valid also for N–dimensional convolutions

without mixed variables). Using equation M.5, then,(
Ae
− (x−a)2

2σ2a
− (y−b)2

2σ2
b

)
?

(
Be
− x2

2σ21
− y2

2σ22

)
= 2πAB

σaσbσ1σ2

σ̃aσ̃b
e
− (x−a)2

2σ̃2a
− (y−b)2

2σ̃2
b (M.9)

where the symbols σ̃2
a = σ2

a + σ2
1 and σ̃2

b = σ2
b + σ2

2 have been used once again.

Now consider the physical case of a point source

S = Asδ
(3) (x− µx, y − µy, z − µz)

where As is the activity of the source. This point source will be spread by the

PSF

PSFr(x) = Ar

[
θ(−x)e

− x2

2σ2
l + θ(x)e

− x2

2σ2r

]

PSFt(y) = Ate
− y2

2σ2t

PSFa(z) = Aae
− z2

2σ2a

PSF (x, y, z) = PSFr(x)PSFt(y)PSFa(z) =

= ArAtAa

[
θ(−x)e

− x2

2σ2
l + θ(x)e

− x2

2σ2r

]
e
− y2

2σ2t e
− z2

2σ2a (M.10)

PSF must have unitary integral, since the counts cannot be created or destroyed:∫∫∫
R3

PSF (x, y, z) dx dy dz
!

= 1

[∫ +∞

−∞
PSFr(x) dx

]
︸ ︷︷ ︸

Ar
√

2π(σl+σr)/2

[∫ +∞

−∞
PSFt(y) dy

]
︸ ︷︷ ︸

At
√

2πσt

[∫ +∞

−∞
PSFa(z) dz

]
︸ ︷︷ ︸

Aa
√

2πσa

!
= 1
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=⇒ ArAtAa =
2

(2π)3/2 σaσt (σl + σr)
= k (M.11)

Now introduce a post–filter

PF =
1

2πσ2
c

e
−x

2+y2

2σ2c
1√

2πσca
e
− z2

2σ2ca

where z refers to the scanner axis and (x, y) define transaxial planes. The post–

filter, then, consists in a transaxially symmetric two-dimensional gaussian of

sigma σc and an axially monodimensional gaussian∗ of sigma σca. The filter

has already been written adequately to have its space integral normalized to one.

The result of the physical measure M can then be schematized as

M = (S ? PSF ) ? PF = As PSF (x− µx, y − µy, z − µz) ? PF (x, y, z)

where the fundamental property of the δ distribution has been used in the last

step. Substituting, then,

M = K

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

[
θ(µx − t)e

− (t−µx)2

2σ2
l + θ(t− µx)e

− (t−µx)2

2σ2r

]
e
− (s−µy)2

2σ2t e
− (u−µz)2

2σ2a ·

· e−
(x−t)2+(y−s)2

2σ2c e
− (z−u)2

2σ2ca dt ds du (M.12)

with

K =
2As

(2π)3σ2
cσcaσaσt (σl + σr)

Equation M.12 can be factorized in the product of the three monodimensional

integrals. The results obtained above yield

+∞∫
−∞

[
θ(µx − t)e

− (t−µx)2

2σ2
l + θ(t− µx)e

− (t−µx)2

2σ2r

]
e
− (x−t)2

2σ2c dt =

=

√
2πσc
2

{
σl
σ̃l
e
− (x−µx)2

2σ̃2
l erfc

[
1√
2

σl
σ̃lσc

(x− µx)

]
+

+
σr
σ̃r
e
− (x−µx)2

2σ̃2r erfc

[
− 1√

2

σr
σ̃rσc

(x− µx)

]}

+∞∫
−∞

e
− (s−µy)2

2σ2t e
− (y−s)2

2σ2c ds =
√

2π
σtσc
σ̃t

e
− (y−µy)2

2σ̃2t

∗Even if in this thesis the filter along z is not applied, the result obtained with σca = 0
(σ̃a = σa) is the same obtained with no axial filter at all.
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+∞∫
−∞

e
− (u−µz)2

2σ2a e
− (z−u)2

2σ2ca du =
√

2π
σaσca
σ̃a

e
− (z−µz)2

2σ̃2a

The physical measure with a point source can be expressed, then, as

M =
As√

(2π)3 (σl + σr) σ̃aσ̃t

{
σl
σ̃l
e
− (x−µx)2

2σ̃2
l erfc

[
1√
2

σl
σ̃lσc

(x− µx)

]
+

+
σr
σ̃r
e
− (x−µx)2

2σ̃2r erfc

[
− 1√

2

σr
σ̃rσc

(x− µx)

]}
e
− (y−µy)2

2σ̃2t e
− (z−µz)2

2σ̃2a (M.13)

or, splitting the formula into its components (M = AsMrMtMa),

Mr(x− µx) =
1√

2π (σl + σr)

{
σl
σ̃l

e
− (x−µx)2

2σ̃2
l erfc

[
1√
2

σl
σ̃lσc

(x− µx)

]
+

+
σr
σ̃r
e
− (x−µx)2

2σ̃2r erfc

[
− 1√

2

σr
σ̃rσc

(x− µx)

]}

Mt(y − µy) =
1√

2πσ̃t
e
− (y−µy)2

2σ̃2t

Ma(z − µz) =
1√

2πσ̃a
e
− (z−µz)2

2σ̃2a

(M.14)

If a non-point source is used, the function describing the spatial extent of

the source has to be convolved with the postfiltered PSF response of the point

source† (as defined in equation M.14).

In this work a cylindrical source, with axis parallel to the tangential direc-

tion, is used (figure M.1). A cylinder‡ with radius R and height H, centered in

(µx, µy, µz), can be described by

ξ(x, y, z) =

{
(x− µx)2 + (z − µz)2 ≤ R2

|y − µy| ≤ H/2

or, using the function θ(t) defined in expression M.6,

ξ(x, y, z) = θ
(
R2 − (x− µx)2 + (z − µz)2

) [
θ

(
y − µy +

H

2

)
− θ

(
y − µy −

H

2

)]
†Probably, the most immediate (even if algebraically more complex) sequence would be to

first convolve the finite source with the PSF (this represents the natural resolution loss by the
scanner and the reconstruction algorithm) and then to postfilter the resulting function. It is
important to recall, however, that the convolution operation is commutative and associative:
this guarantees the invariance of the final result on the order of application of the different steps.

‡For the sake of simplicity, in order to not increase the complexity of the notation, the
activity in the cylinder is assumed to be unitary (or, in the general case, included in a global
multiplicative constant); therefore, it will not be indicated hereafter.
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2R

H

radial (x)

tangential (y)

axial (z)

Figure M.1: Cylindrical source with axis parallel to the tangential (y) direction

The distribution in the final image would then be represented by

M ′ = (ξ ? PSF ) ? PF = ξ ? (PSF ? PF ) = ξ ? (MrMtMa) (M.15)

Each plane (radial-tangential, radial-axial, tangential-axial) may then be ana-

litically described as follows.

Radial-tangential plane

Since the planes pass through the pixel with the maximum intensity (which,

along the axial direction, is likely to be the center of the cylinder along the

axial direction, being the diameter of the cylinder much smaller than the spacing

between slices), both along the radial and tangential direction the profile is box-

shaped and the two contributions are independent each other:

ξr(x) = θ(x− µx +R)− θ(x− µx −R)

ξt(y) = θ(y − µy +H/2)− θ(y − µy −H/2)

The object in the radial-tangential plane is described by

Prt =

+∞∫
−∞

+∞∫
−∞

Mr(t)Mt(s)ξr(x− t)ξt(y − s) dt ds =

=

 +∞∫
−∞

Mr(t)ξr(x− t) dt

 +∞∫
−∞

Mt(s)ξt(y − s) ds

 = Pr(x)Pt(y)

where the terms Pr(x) and Pt(y) can be calculated by expliciting the integrals:

Pr(x) =

+∞∫
−∞

Mr(t)ξr(x− t) dt =

+∞∫
−∞

Mr(x− t)ξr(t) dt =

=

R∫
−R

Mr(x− µx − t) dt
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Pr(x) =
1√

2π (σl + σr)

R∫
−R

{
σl
σ̃l
e
− (x−µx−t)2

2σ̃2
l erfc

[
1√
2

σl
σ̃lσc

(x− µx − t)
]

+

+
σr
σ̃r
e
− (x−µx−t)2

2σ̃2r erfc

[
− 1√

2

σr
σ̃rσc

(x− µx − t)
]}

dt (M.16)

Pt(y) =

+∞∫
−∞

Mt(s)ξr(y − s) ds =

H/2∫
−H/2

Mt(y − µy − s) ds

Pt(y) =
1√

2πσ̃t

H/2∫
−H/2

e
− (y−µy−s)2

2σ̃2t ds =

=
1

2

[
erf

(
y − µy +H/2√

2σ̃t

)
− erf

(
y − µy −H/2√

2σ̃t

)] (M.17)

Radial-axial plane

In the radial-axial plane the radioactive source is described by a circle§:

ξra = θ
(
R2 − (x− µx)2 + (z − µz)2

)
(M.18)

In the radial-axial plane the object can be described as

Pra =

+∞∫
−∞

+∞∫
−∞

Mr(t)Ma(s)ξra(x− t, z − s) dt ds

=

R∫
−R

Mr(x− µx − t)


√
R2−t2∫

−
√
R2−t2

Ma(z − µz − s) ds

 dt =

=
1

2

R∫
−R

Mr(x− µx − t)

[
erf

(
z − µz +

√
R2 − t2√

2σ̃a

)
−

−erf

(
z − µz −

√
R2 − t2√

2σ̃a

)]
dt

§In the expressions presented hereafter a monometric Cartesian system of coordinates is
assumed. In the scanner, however, the spacing along the axial direction is different from the
spacing between pixels in the transaxial plane; consequently, in the resulting functions a scaling
along the z axis — expression 4.2 — is necessary.
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Pra =
1

2
√

2π (σl + σr)

R∫
−R

{
σl
σ̃l
e
− (x−µx−t)2

2σ̃2
l erfc

[
1√
2

σl
σ̃lσc

(x− µx − t)
]

+

+
σr
σ̃r
e
− (x−µx−t)2

2σ̃2r erfc

[
− 1√

2

σr
σ̃rσc

(x− µx − t)
]}
·

·

[
erf

(
z − µz +

√
R2 − t2√

2σ̃a

)
− erf

(
z − µz −

√
R2 − t2√

2σ̃a

)]
dt (M.19)

Tangential-axial plane

With the same arguments presented for the radial-tangential plane, it is possible

to assume that both along tangential and axial direction the profile is box-shaped

and the two contributions are independent each other:

ξt(y) = θ(y − µy +H/2)− θ(y − µy −H/2)

ξa(z) = θ(z − µz +R)− θ(z − µz −R)

The object in the tangential-axial plane can therefore be described by

Pta =

+∞∫
−∞

+∞∫
−∞

Mt(s)Ma(t)ξt(y − s)ξa(z − t) dt ds =

=

 +∞∫
−∞

Mt(s)ξt(y − s) ds

 +∞∫
−∞

Ma(t)ξa(z − t) dt

 = Pt(y)Pa(z)

with Pt(y) defined as in equation M.17 and

Pa(z) =
1√

2πσ̃a

R∫
−R

e
− (z−µz−t)2

2σ̃2a dt =
1

2

[
erf

(
z − µz +R√

2σ̃a

)
− erf

(
z − µz −R√

2σ̃a

)]
(M.20)

M.3 The convolution operator

Since the image λ is described using a Cartesian coordinate system (x, y, z) with

origin coincident with the scanner centre, the transaxial PSF — characterized by

a circular symmetry and naturally described using a cylindrical coordinate system

— should be referred to a Cartesian system, too (the axial component of the PSF

is already referred to z axis, assuming for the PSF a cylindrical symmetry). A

rotated elliptical, radially asymmetric, spatially-variant 2D Gaussian function
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centred in (t,u) is described as

PSF (x, y|t, u) =
1

π [σi(t, u) + σe(t, u)]
·

·
[
θ(−d)e−[A1(x−t)2+B1(x−t)(y−u)+C1(y−u)2]+

+θ(d)e−[A2(x−t)2+B2(x−t)(y−u)+C2(y−u)2]
]

(M.21)

where

d = xt+ yu−
(
t2 + u2

)
A1 =

cos2 ϕ

[σi (t, u)]2
+

sin2 ϕ

[σt (t, u)]2
A2 =

cos2 ϕ

[σe (t, u)]2
+

sin2 ϕ

[σt (t, u)]2

B1 =
2 sinϕ cosϕ

[σi (t, u)]2
− 2 sinϕ cosϕ

[σt (t, u)]2
B2 =

2 sinϕ cosϕ

[σe (t, u)]2
− 2 sinϕ cosϕ

[σt (t, u)]2

C1 =
sin2 ϕ

[σi (t, u)]2
+

cos2 ϕ

[σt (t, u)]2
C2 =

sin2 ϕ

[σe (t, u)]2
+

cos2 ϕ

[σt (t, u)]2

cosϕ =
t√

t2 + u2
sinϕ =

u√
t2 + u2

Given this representation of the PSF (and its spatial dependence), the oper-

ator * constitutes a modification of the standard convolution. The continuous

representation of the operator * is

[λ ∗ PSF ] (x, y, z) =

+∞∫∫∫
−∞

Nλ (t, u, v)
[
θ(−d)e−[A1(x−t)2+B1(x−t)(y−u)+C1(y−u)2]+

+θ(d)e−[A2(x−t)2+B2(x−t)(y−u)+C2(y−u)2]
]
· e−

(z−v)2

2[σa(t,u,v)]
2 dt du dv (M.22)

where the normalization factor N is given by

N =
2

(2π)3/2 [σt (t, u, v)] [σa (t, u, v)] [σi (t, u, v) + σe (t, u, v)]

and all coefficients are defined as stated above, performing only the substitutions

σi (t, u)→ σi (t, u, v) σe (t, u)→ σe (t, u, v) σt (t, u)→ σt (t, u, v)

Given the discrete representation of the image, also the operator should be

represented in a discrete way. If the PSF is described by a kernel of dimensions

(2R+ 1)× (2C + 1)× (2S + 1), the discretized version of the * operator is

[λ ∗ PSF ]i,j,k =
R∑

r=−R

C∑
c=−C

S∑
s=−S

λi+r,j+c,k+s [PSF (i+ r, j + c, k + s)]i,j,k

where PSF (i+ r, j + c, k + s) indicates the PSF relative to the voxel (i+ r, j +

c, k + s).
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M.4 The transposed PSF

Inside an iterative reconstruction algorithm of a tomographic imaging technique,

a key concept is the projection operator (or projector), which links the image space

with the space of the detected information (here called sinogram). Considering

for simplicity only square images N ×N and using some lexicographical ordering

criteria, it is possible to represent the sinogram and the image as two vectors Y

and X of length, respectively, D and B = N2:

Y =
(
y1 y2 · · · yd · · · yD

)T
X =

(
x1 x2 · · · xb · · · xB

)T
Using this scheme, the projector may then be expressed as a matrix

P =



p11 p21 · · · · · · pB1

p12
. . .

...
...

. . .
...

... pbd
. . .

...

p1D · · · · · · · · · pBD


(where pbd has the meaning indicated in the text, i.e. it represents the probability

of detecting an event coming from pixel b into the sinogram bin d) so that the

projection process may be written as a product between a vector and a matrix:

Y = PX yd =
B∑
b=1

xbpbd

The inverse process (which consists in passing from the detection space to the

image space) is called backprojection:

X = P TY xb =
D∑
d=1

ydpbd

where the matrix P T is the representation of the backprojector

P T =



p11 p12 · · · · · · p1D

p21
. . . pbd

...
...

. . .
...

...
. . .

...

pB1 · · · · · · · · · pBD


The introduction of the PSF in the iterative reconstruction algorithm may be

interpreted as a redefinition of the projector (and consequently the backprojector)

operators:

Y = P ′X X =
(
P ′
)T
Y
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If the PSF is considered to act on the image and stored in a square kernel

M ×M

K =


k11 k12 · · · k1M

k21 k22
...

...
. . .

...

kM1 · · · · · · kMM


the convolution between the image and the PSF will result in a square matrix

with (N +M − 1) lines. Starting from this resulting matrix, a cutout of borders

should be performed to obtain a matrix of dimensions N ×N .

Using the vector X, the convolution process can be written as the product

between a rectangular matrix C with (N + M − 1)2 rows and N2 columns: the

following cutout phase, in this case, would consist in removing proper rows from

the matrix C and so defining a new matrix C ′. The following example should

help clarify these steps.

Consider the case with N = 4, M = 3 and a spatially invariant kernel K:

Image =


1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

 ≡ X =
(

1 2 3 4 5 6 7 8 9 . . . 16
)T

K =

 a d g

b e h

c f i



Image∗PSF =



1′ 7′ 13′ 19′ 25′ 31′

2′ 8′ 14′ 20′ 26′ 32′

3′ 9′ 15′ 21′ 27′ 33′

4′ 10′ 16′ 22′ 28′ 34′

5′ 11′ 17′ 23′ 29′ 35′

6′ 12′ 18′ 24′ 30′ 36′


≡ X ′ =

(
1′ 2′ 3′ . . . 36′

)T

(the region inside the dashed lines corresponds to the original image), where

1′ = 1 · a
2′ = 1 · b + 2 · a
...

15′ = 1 · i + 2 · h + 3 · g + 5 · f + 6 · e + 7 · d + 9 · c + 10 · b + 11 · a
...

Introducing the matrix C, it is then possible to write

X ′ = CX

where C is organized as follows:
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C =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1’ a

2’ b a

3’ c b a

4’ c b a

5’ c b

6’ c

7’ d a

8’ e d b a

9’ f e d c b a

10’ f e d c b a

11’ f e c b

12’ f c

13’ g d a

14’ h g e d b a

15’ i h g f e d c b a

16’ i h g f e d c b a

17’ i h f e c b

18’ i f c

19’ g d a

20’ h g e d b a

21’ i h g f e d c b a

22’ i h g f e d c b a

23’ i h f e c b

24’ i f c

25’ g d

26’ h g e d

27’ i h g f e d

28’ i h g f e d

29’ i h f e

30’ i f

31’ g

32’ h g

33’ i h g

34’ i h g

35’ i h

36’ i

(the empty cells are equal to zero). The grey rows correspond to the resulting im-

age elements to be removed in order to obtain an image with the same dimensions
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of the original ones:

Cropped image =


8′ 14′ 20′ 26′

9′ 15′ 21′ 27′

10′ 16′ 22′ 28′

11′ 17′ 23′ 29′

 ≡ X ′′ = ( 8′ 9′ 10′ 11′ . . . 29′
)T

So, it is possible to write

X ′′ = C ′X

where

C ′ =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

8’ e d b a

9’ f e d c b a

10’ f e d c b a

11’ f e c b

14’ h g e d b a

15’ i h g f e d c b a

16’ i h g f e d c b a

17’ i h f e c b

20’ h g e d b a

21’ i h g f e d c b a

22’ i h g f e d c b a

23’ i h f e c b

26’ h g e d

27’ i h g f e d

28’ i h g f e d

29’ i h f e

The “PSF-aware” projector may be defined, then, as

P ′ = PC ′

and, consequently, the corresponding backprojector is

(
P ′
)T

=
(
PC ′

)T
=
(
C ′
)T
P T

where (C ′)T can be written using the above representation of C:
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(C ′)T =

8’ 9’ 10’ 11’ 14’ 15’ 16’ 17’ 20’ 21’ 22’ 23’ 26’ 27’ 28’ 29’

1 e f h i

2 d e f g h i

3 d e f g h i

4 d e g h

5 b c e f h i

6 a b c d e f g h i

7 a b c d e f g h i

8 a b d e g h

9 b c e f h i

10 a b c d e f g h i

11 a b c d e f g h i

12 a b d e g h

13 b c e f

14 a b c d e f

15 a b c d e f

16 a b d e

Comparing C ′ (and how the kernel K is organized inside it) and (C ′)T , it is

then possible to explicit how the transposed PSF kernel K ′ should be organized

(consider for example the greyed column in C ′):

K ′ =

 i f c

h e b

g d a


Not all the columns in (C ′)T contain the complete kernel: the missing rows,

however, correspond to the pixels created by the convolution externally to the

dimensions of the original matrix (see above). Consequently, when translating

the PSF matrix in the PSF kernel, these missing rows can be considered filled

with any number, since they will not have any influence on the final image.

Consequently, if the PSF is assumed spatially invariant inside the FOV (as

chosen up to this point),

PSF T (~x) = PSF (−~x)

as stated also in [32].

If, instead, a spatially variant PSF is considered

Ki =

 ai di gi
bi ei hi
ci fi ii


(where i labels the pixel the PSF refers to), the matrices C and C ′ have to be

changed (for simplicity, only the latter is reported):
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C ′ =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

8’ e1 d2 b5 a6

9’ f1 e2 d3 c5 b6 a7

10’ f2 e3 d4 c6 b7 a8

11’ f3 e4 c7 b8

14’ h1 g2 e5 d6 b9 a10

15’ i1 h2 g3 f5 e6 d7 c9 b10 a11

16’ i2 h3 g4 f6 e7 d8 c10 b11 a12

17’ i3 h4 f7 e8 c11 b12

20’ h5 g6 e9 d10 b13 a14

21’ i5 h6 g7 f9 e10 d11 c13 b14 a15

22’ i6 h7 g8 f10 e11 d12 c14 b15 a16

23’ i7 h8 f11 e12 c15 b16

26’ h9 g10 e13 d14

27’ i9 h10 g11 f13 e14 d15

28’ i10 h11 g12 f14 e15 d16

29’ i11 h12 f15 e16

and, consequently, its transpose will be

(C ′)T =

8’ 9’ 10’ 11’ 14’ 15’ 16’ 17’ 20’ 21’ 22’ 23’ 26’ 27’ 28’ 29’

1 e1 f1 h1 i1
2 d2 e2 f2 g2 h2 i2
3 d3 e3 f3 g3 h3 i3
4 d4 e4 g4 h4

5 b5 c5 e5 f5 h5 i5
6 a6 b6 c6 d6 e6 f6 g6 h6 i6
7 a7 b7 c7 d7 e7 f7 g7 h7 i7
8 a8 b8 d8 e8 g8 h8

9 b9 c9 e9 f9 h9 i9
10 a10 b10 c10 d10 e10 f10 g10 h10 i10

11 a11 b11 c11 d11 e11 f11 g11 h11 i11

12 a12 b12 d12 e12 g12 h12

13 b13 c13 e13 f13

14 a14 b14 c14 d14 e14 f14

15 a15 b15 c15 d15 e15 f15

16 a16 b16 d16 e16

The kernel (Ki)’ should then be organized as follows:

(Ki)
′ =

 ii−(4)−1 fi−1 ci+(4)−1

hi−(4) ei bi+(4)

gi−(4)+1 di+1 ai+(4)+1


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or, referring to the row and column indexes r and c,

(Kr,c)
′ =

 i−1,−1 f−1,0 c−1,+1

h0,−1 e0,0 b0,+1

g+1,−1 d+1,0 a+1,+1


where ai,j refers to the coefficient a relative to the pixel located at row r+ i and

column c+ j.

Considering general values for N and M , if – with a necessary change in

notation – the kernel is indicated with

Kr,c =


a1 aM+1 · · ·

a2
. . .

...
. . . aM2−1

aM · · · aM2−M aM2


r,c

the transposed kernel will be represented as

(Kr,c)
′ =



a
[−M−1

2
,−M−1

2 ]
M2 a

[−M−1
2

,−M−1
2

+1]
M2−M · · ·

a
[−M−1

2
+1,−M−1

2 ]
M2−1 . . .

...
a
[+M−1

2
−1,+M−1

2 ]
2

· · · a
[+M−1

2
,+M−1

2 ]
1


where an [i, j] refers to the coefficient an relative to the pixel located at row r+ i

and column c + j (with this notation, the generic element an of the kernel Kr,c

may also be written as an [0, 0]). Once again, if the PSF is considered spatially

invariant, for a generic term an in the kernel holds an [i, j] = an [0, 0] = an and,

as a consequence, the previously shown result

(Kr,c)
′ =



aM2 aM2−M · · · aM

aM2−1
. . .

...

...
. . . a2

... · · · aM+1 a1


r,c

PSF T (~x) = PSF (−~x)

is obtained.
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Analogously as above, if a one-dimensional kernel, relative to slice s, is rep-

resented by

Hs =
(
a1 a2 · · · aM

)
s

the transposed kernel will be represented by

(Hs)
′ =

(
aM
[
−M−1

2

]
aM−1

[
−M−1

2 + 1
]
· · · a1

[
+M−1

2

] )
where an [i] refers to the coefficient an relative to the pixel located at slice s+ i.

M.5 Derivation of the variational regularization term

In this section the derivative of the energy function in the variational regulariza-

tion approach, with respect to the image (equation 6.8) is derived. By introducing

the notation

〈f, g〉 = 〈g, f〉 =

∫
(fg) (t) dt

(where the integral is calculated over the entire space in which f and g are

defined), the following equality holds:〈
∂U

∂λ
, s

〉
= lim

ρ→0

U (λ+ ρs)− U (λ)

ρ
(M.23)

where the energy function is

U (λ+ ρs) =

∫
Ω

φ (|∇ (λ (ω) + ρs (ω))|) dω =

∫
Ω

φ (|∇λ (ω) + ρ∇s (ω)|) dω

(M.24)

as defined in equation M.24.

Assuming ρ� 1, since

|∇λ+ ρ∇s| =
√

(∇λ+ ρ∇s) · (∇λ+ ρ∇s) ≈
√
|∇λ|2 + 2ρ∇s · ∇λ ≈

≈ |∇λ|
(

1 +
ρ∇s · ∇λ
|∇λ|2

)
= |∇λ|+ ρ∇s · ∇λ

|∇λ|
equation M.24 can be rewritten as

U (λ+ ρs) ≈
∫
Ω

φ

(
|∇λ|+ ρ∇s · ∇λ

|∇λ|

)
dω ≈

≈
∫
Ω

[
φ (|∇λ|) +

ρ∇s · ∇λ
|∇λ|

φ′ (|∇λ|)
]
dω =

= U (λ) +

∫
Ω

ρ∇s · ∇λ
|∇λ|

φ′ (|∇λ|) dω =

= U (λ) +

〈
φ′ (|∇λ|) ∇λ

|∇λ|
, ρ∇s

〉
=

= U (λ)− ρ
〈
∇ ·
[
φ′ (|∇λ|) ∇λ

|∇λ|

]
, s

〉
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where it has been assumed the Neumann boundary condition

φ′ (|∇λ|)
∣∣
∂Ω

= 0

with ∂Ω indicating the boundary of the image domain Ω.

Consequently, by comparison with equation M.23,

∂U (λ)

∂λ
= −∇ ·

(
φ′ (|∇λ|) ∇λ

|∇λ|

)
and, given the definition of D [λ] in equation 6.8,

D [λ] = −∂U (λ)

∂λ
= ∇ ·

(
φ′ (|∇λ|) ∇λ

|∇λ|

)
An alternative derivation for anisotropic diffusion can be found in [111].
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