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Abstract

In this paper asymptotic confidence intervals for the Sortino and Omega Ratio are
proposed and analyzed. First the confidence intervals are derived under the strong
assumption of temporal independence and identical distribution of the returns. Later
they are obtained assuming that the process followed by returns is strictly stationary
and α-mixing of a certain size. In order to evaluate the minimum sample size for a
good coverage accuracy of the asymptotic confidence intervals, a simulation study is
performed. It is obtained that the minimum sample sizes are very high, especially
under the more realistic assumption of not-i.i.d. returns.

keywords: financial performance ratio, dependent central limit theorem, strong mix-
ing condition, coverage probability, GARCH model.

1 Introduction

The performance of financial assets is usually measured by means of the ratio of a reward
measure and a risk measure. The Sharpe Ratio (Sharpe , 1964, 1966, 1994) is the most
important example of this kind of measure and it can be considered the “father” of a plethora
of ratios such as the Sortino Ratio (Sortino and Van der Meer , 1991; Sortino and Price ,
1994), the MAD Ratio (Konno and Yamazaki , 1991), the MD Ratio (Shalit and Yitzhaki
, 1984), the MiniMax Ratio, the Stable Ratio (see Farinelli et al , 2008, and the references
therein) and the recently introduced Omega function (Keating and Shadwick , 2002). All the
aforementioned indicators depend on some unknown features of the returns distribution. As
a consequence the performance ratios associated to a particular financial asset are unknown
and they are usually estimated starting from an observed time series of returns. In this
situation, a confidence interval for the value of the ratios is very useful since its length
incorporates a precious information about the variability of the point estimator and, then,
it sheds light on the uncertainty of the estimates. Confidence intervals for the Sharpe Ratio
have been developed in Lo (2002), Opdike (2007), and De Capitani (2010). The confidence
interval for the MAD ratio and for the MD ratio are obtained in De Capitani and Zenga
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(2011) under the assumption of i.i.d. returns. In this paper we derive the confidence intervals
for the Sortino Ratio and for Omega function. In more details, the paper is organized as
follows. In Section 2 we recall the definitions of the Sortino Ratio and the Omega function
and we introduce their natural estimators. In Section 3 we recall the general central limit
theorem for dependent observations due to Ibragimov (see Ibragimov , 1962) and we prove
a corollary to the aforementioned theorem which is very useful to derive the large sample
distribution of the Sortino Ratio and Omega Ratio estimators. In Section 4 we obtain the
asymptotic confidence interval for the Sortino Ratio under the assumption of i.i.d. returns
and, later, in the more general scenario in which returns follow a strictly stationary and
α-mixing process. Section 5 concerns the asymptotic confidence intervals for the Omega
function. In Section 6 we describe the simulation study performed in order to asses the
coverage accuracy of the aforementioned confidence intervals. In Section 7 we discuss the
simulation results while Section 8 is devoted to the conclusions.

2 The Sortino Ratio and the Omega Ratio

The Sortino Ratio and the Omega function can be considered descendant of the Sharpe Ratio
(ψ). Then, we think it is useful to briefly recall the definition and the meaning of ψ. Let X
be the random variable describing the log-returns of a risky financial activity and let ξ be the
(log) risk-free rate of return. Let fX and FX be the density and distribution functions of X,
respectively. Finally, denote by µX and σX the expected value and the standard deviation
of X. The Sharpe Ratio is defined as

ψ =
µX − ξ
σX

.

The value of ψ can be interpreted as the expected excess return per unit of risk where the risk
is measured by the standard deviation of the returns. The Sortino Ratio (υ) was proposed
by Sortino and Van der Meer (1991) as an alternative to the Sharpe ratio. In order to define
υ, let k be a target return which can be intended as the (individual) threshold beyond which
an investment starts to produce income for a particular investor. In what follows we always
assume that k is a known constant. The Sortino Ratio is defined as:

υ =
µX − k
σ−X(k)

where σ−X(k) =

(∫ k

−∞
(x− k)2fX(x)dx

) 1
2

.

The quantity σ−X(k) is usually called downside deviation and it can be considered the main
element of innovation with respect to the Sharpe Ratio. In more detail, a criticism commonly
raised against the Sharpe Ratio is that the variability index σX , employed by it as risk
measure, gives equal weight to the variability of the returns greater than µX (which can
be interpreted as “good” variability) and to the variability of returns lower than the µX
(interpretable as “worst” variability). The use of the downside deviation σ−X(k) tries to
overcome this criticism since it takes into account only the returns lower than the threshold
k. In analogy with ψ, υ can be interpreted as the expected excess return per unit of risk
where the risk is measured by the downside deviation and the excess return is defined with
respect to the target k.
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The performance measure known as Omega function (Ω) has been recently introduced
by Keating and Shadwick (2002). This measure can be defined as follows:

Ω =

∫∞
k

(1− FX(x)) dx∫ k
−∞ FX(x)dx

(1)

= 1 +
µX − k
δ−X(k)

, (2)

where

δ−X(k) =

∫ k

−∞
|x− k|fX(x)dx

can be called downside mean absolute deviation. Expression (1) is the definition of the Omega
function as proposed by Keating and Shadwick (2002) while expression (2) can be easily

obtained observing that (µX − k) =
∫∞
k

(1−FX(x)) dx−
∫ k
−∞ FX(x) dx. From expression (2)

it can be seen that the quantity (Ω − 1) has a structure very similar to that of the Sortino
Ratio. In particular, the quantity

ω = Ω− 1 =
µX − k
δ−X(k)

can be interpreted as the “downside counterpart” of the MAD Ratio which is given by (see,
for example, De Capitani and Zenga , 2011):

ψδ =
µX − ξ
δX

where δX =

∫ ∞
−∞
|x− µ|fX(x)dx .

Roughly speaking, we can say that “the Sortino Ratio is related to the Sharpe Ratio such
as ω is related to the MAD Ratio”. For this reason, in the following, we will prefer to study
the features of ω instead those of Ω and we will call ω the Omega Ratio. For completeness,
we recall that ω can be interpreted as the expected excess return per unit of risk where the
risk is measured by the downside mean absolute deviation and the excess return is defined
with respect to the target k.

The Sortino and Omega Ratio of a particular financial asset can be estimated starting
from a time series of log-returns. In particular, let X1, X2, . . . , Xn be a time series of log-
returns and consider the following estimators:

X̄ =
1

n

n∑
i=1

Xi ;

σ̂−X(k) =

(
1

n

n∑
i=1

(Xi − k)2Ik(Xi)

) 1
2

where Ik(Xi) =

{
1 Xi ≤ k
0 otherwise

;

δ̂−X(k) =
1

n

n∑
i=1

(k −Xi)Ik(Xi) .
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The natural estimators of υ and ω can, then, be introduced:

Υ̂ =
X̄ − k
σ̂−X(k)

; (3)

Ω̂ =
X̄ − k
δ̂−X(k)

. (4)

The following sections aim to derive the asymptotic distribution of the estimators (3) and
(4). This objective can be reached in an easier way focusing directly on the excess returns
Yi = Xi − k with i = 1, ..., n. Indeed, with this change of notation, all the expressions
required to describe the large sample distributions of (3) and (4) result more elegant and
interpretable. Moreover, in order to further ease the notation, we will drop the subscript
Y and the indication of the target return k from the symbols denoting the moments or the
relevant quantity relative to the excess return random variable Y = X−k. For example, the
expectation of Y will be denoted simply by µ, the quantity δ−X(k) = δ−Y (0) will be denoted

by δ−, and so on. Finally, note that using the simplified notation we have: Υ̂ = Ȳ
σ̂− and

Ω̂ = Ȳ

δ̂−
.

3 Recalling the Ibragimov Central Limit Theorem for

stationary α-mixing processes

If the returns are assumed i.i.d., the asymptotic distributions of Υ̂ and Ω̂ can be obtained
starting from the classical and well known multivariate central limit theorem (see, e.g.,
Serfling , 1980). On the contrary, if the independence assumption is relaxed, a more general
Central Limit Theorem (CLT) for dependent observations is necessary. In literature there
are several CLTs of this kind, all based on quite different regularity conditions. Even if
these limit theorems was proposed several years ago (from 1960 to 1980), nowadays their
knowledge is not as widespread as that of the limit theorems for i.i.d. observations. For
this reason, in this section we briefly recall the CLT for stationary α-mixing (strong mixing)
processes proposed by Ibragimov (1962). This theorem is the fundamental results we use to

derive the asymptotic distribution of Υ̂ and Ω̂ when returns are dependent.
Let (Ω,F , P ) be a probability space and let G and H be two σ-subfield of F . The σ-

subfields G and H are independent if for all G ∈ G and H ∈ H it turns out that P (G∩H) =
P (G)P (H). As a measure of dependence between G and H, the strong mixing coefficient is
usually adopted:

α(G,H) = sup
G∈G;H∈H

|P (G ∩H)− P (G)P (H)| .

Now, let {Xt}t∈N = {X1, X2, ...} be a one-sided strictly stationary and ergodic (for the
definition of ergodicity, we refer the interested reader to Karlin and Taylor , 1975) stochastic
process. As it is well known (see Billingsley , 1999, Appendix M22), the process {Xt}t∈N can
be extended to a stationary and ergodic two-sided process {Xt}t∈Z = {..., X−1, X0, X1, ...}.
The one-sided and two-sided processes have the same finite-dimensional distributions. For
this reason they can be considered equivalent for our purposes since “all the convergence
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in distributions results” depend only on the finite dimensional distributions. Then, all the
results described in this section hold both for {Xt}t∈N and for {Xt}t∈Z. Usually, this results
are derived for the two-sided process {Xt}t∈Z and we follow this custom even if, in our
application, it is usual to work with the one-sided process.

Now, the two-sided stationary sequences {Xt}t∈Z is said to be α-mixing (or strong mixing)
if limm→∞ αm = 0 where

αm = α(F t−∞,F∞t+m) ,

F t−∞ = σ(..., Xt−1, Xt), and F∞t+m = σ(Xt+m, Xt+m+1, ...). Obviously, the slower the con-
vergence to 0 of the sequence {αm}, the stronger the persistence of the time dependence.
The evaluation of the rate of convergence of {αm} is fundamental for the development of a
central limit theorem and it is usually evaluated introducing the notion of size of a α-mixing
process. In more detail, a stationary process is α-mixing of size −ϕ if αm = O(m−ϕ

∗
) for

some ϕ∗ > ϕ. In this case it turns out that

∞∑
m=1

α1/ϕ
m <∞ .

It is well known that a stationary α-mixing process is ergodic and, moreover, the strong
mixing condition is preserved by measurable transformations, as stated below (see Davidson
, 1994, p. 210).

Proposition 1 Let {Xt}t∈Z be stationary and α-mixing of size −ϕ and let Yt = g(Xt) be a
measurable function. Then the process {Yt}t∈Z is stationary and α-mixing of size −ϕ.

Now, we are ready to recall the following central limit theorem due to Ibragimov (1962)
(see, for istance, Hall and Heyde , 1980, p. 132).

Theorem 1 Let 0 < δ < ∞ be fixed and let {Xt}t∈Z be stationary and α-mixing of size
−2+δ

δ
with E[Xt] = µ and E[|Xt|2+δ] ≤ ∞. Then

∞∑
i=1

αδ/(2+δ)
m <∞ and lim

n→∞
nE[(X̄ − µ)2] = V .

Moreover, if V > 0, then
√
n(X̄ − µ)

d→ N (0, V ).

Now, in the following it will be used the corollary to Theorem 1 stated below.

Corollary 1 Let {Xt}t∈Z be stationary and α-mixing of size −2+δ
δ

with 0 < δ < ∞. Let
Yt = g(Xt) be a measurable function and assume that

E[Xt] = µ , E[Yt] = µY , and max
{
E[|Xt|2+δ];E[|g(Xt)|2+δ]

}
<∞ .

Let Sn denote the variance-covariance matrix of the random vector
√
n

[
X̄ − µ
Ȳ − µY

]
. Then,

limn→∞ Sn = S is finite and if it is positive-definite then

√
n

[
X̄ − µ
Ȳ − µY

]
d→ N (0,S) .
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Proof
Let Sij denote the element in row i and column j of S. Note that the positive definiteness
of S assures that Sii > 0 (i = 1, 2). Moreover, Theorem 1 assures that Sii < ∞ (i =
1, 2) and, from the Cauchy-Schwarz inequality, we have S12 = S21 < ∞. In addition, the
positive definiteness of S assures that λ′Sλ > 0 for all vectors λ = (λ1, λ2)′ 6= (0, 0). Then,

from Theorem 1 it directly follows that
√
n(X̄ − µ)

d→ N (0,S11). Analogously, thanks to

Proposition 1 we have that
√
n(Ȳ −µY )

d→ N (0,S22) and
√
n(λ1X̄ + λ2Ȳ − λ1µ− λ2µY )

d→
N (0, λ′Sλ) for all λ 6= 0. Now, the Corollary follows from the Cramer-Wold device.

Finally, we state the following proposition, which will be very useful in the next sections.

Proposition 2 Let {Xt}t∈Z be stationary and α-mixing of size −2+δ
δ

with 0 < δ < ∞. If
E[|Xt|2+δ] <∞ then

∞∑
m=1

|Cov(X1, X1+m)| <∞ .

Proof
The proposition follows form Corollary A.2 on page 278 of Hall and Heyde (1980). In more
detail, from this corollary we have that:

|Cov(X1, X1+m)| ≤ 8E[|Xt|2+δ]
2

2+δα
δ

2+δ
m .

Now the proposition follows from
∑∞

i=1 α
δ

2+δ
m <∞ which is assured by the fact that {Xt}t∈Z

is stationary and α-mixing of size −2+δ
δ

.

4 Asymptotic distributions of Υ̂ and confidence inter-

val for υ

4.1 The case of i.i.d returns

First, let us assume that the sample excess returns Y1, Y2 . . . , Yn are i.i.d.. Obviously, the
latter is a strong assumption and it is clearly confuted by the empirical evidence. However
we think it is important to analyze first this particular case since it furnishes a useful starting
point for the more complex analysis we will make in the following. As in Lo (2002) and De

Capitani and Zenga (2011), the asymptotic distribution of Υ̂ will be obtained applying the
delta method to the large sample distribution of the random vector[

Ȳ
(σ̂−)2

]
=

1

n

n∑
i=1

[
Yi

Y 2
i I0(Yi)

]
. (5)

In order to obtain the asymptotic distribution of (5) we derive its variance-covariance matrix.
First, we recall that

E[Ȳ ] = µ and V ar(Ȳ ) =
σ2

n
. (6)
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Moreover, we have:

E
[
(σ̂−)2

]
= E

[
1

n

n∑
i=1

Y 2
i I0(Yi)

]
= E

[
Y 2

1 I0(Y1)
]

=

∫ 0

−∞
y2fY (y)dy

= µ−2 . (7)

Analogously, since the Yi’s are assumed independent and identically distributed, we obtain:

V ar
[
(σ̂−)2

]
= V ar

(
1

n

n∑
i=1

Y 2
i I0(Yi)

)

=
V ar (Y 2

1 I0(Y1))

n

=
1

n

[∫ 0

−∞
y4fY (y)dy − (µ−2 )2

]
=

µ−4 − (µ−2 )2

n
(8)

Finally, the covariance between Ȳ and (σ̂−)2 is:

Cov
[
Ȳ ; (σ̂−)2

]
=

1

n2
Cov

[
n∑
i=1

Yi;
n∑
i=1

Y 2
i I0(Yi)

]

=
1

n2
E

[(
n∑
i=1

Yi

)
·

(
n∑
i=1

Y 2
i I0(Yi)

)]
− µ · µ−2

=
1

n2

n∑
i=1

n∑
j=1

E
[
Yi · Y 2

j I0(Yj)
]
− µ · µ−2

=
1

n2
nE
[
Y 3

1 I0(Y1)
]

+
n2 − n
n2

E [Y1]E
[
Y 2

1 I0(Y1)
]
− µ · µ−2

=
(µ−3 − µ · µ−2 )

n
. (9)

Now, thank to the multivariate central limit theorem (see, e.g. Serfling , 1980) and to ex-
pressions (6), (7), (8),and (9) we can state the following theorem.

Theorem 2 Let Y be a random variable with distribution function F and assume that
E[Y j] <∞ for j = 1, 2, 3, 4. Let Y1, ..., Yn be an i.i.d. sample from F . It follows that

√
n

[
Ȳ − µ

(σ̂−)2 − µ−2

]
d−→ BN (0; Σ) ,
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where BN means “bivariate normal”,

0 =

[
0
0

]
, and Σ =

 σ2 µ−3 − µ · µ−2

µ−3 − µ · µ−2 µ−4 − (µ−2 )2

 .

By applying the delta method, the following corollary is obtained.

Corollary 2 If the assumptions of Theorem 1 are satisfied, it results that

√
n
(

Υ̂− υ
)

d−→ N (0;Vυ),

where

Vυ =
σ2

µ−2
−
(
µ−3 − µµ−2

(µ−2 )3/2

)
υ +

(
µ−4 − (µ−2 )2

4(µ−2 )2

)
υ2 .

A consistent estimator for the variance Vυ is

V̂υ =
S2

µ̂−2
−
(
µ̂−3 − Ȳ µ̂−2

(µ̂−2 )3/2

)
Υ̂ +

(
µ̂−4 − (µ̂−2 )2

4(µ̂−2 )2

)
Υ̂2 ,

where

S2 =
1

(n− 1)

n∑
i=1

(Yi − Ȳ )2 , µ̂−j =
1

n

n∑
i=1

Y j
i I0(Yi) with j = 2, 3, 4.

Consequently, the following aymptotic (1−α)-Confidence Interval (CI) for υ can be obtained
applying the standard analytical inversion method:Υ̂− z1−α

2

√
V̂υ
n

; Υ̂ + z1−α
2

√
V̂υ
n

 . (10)

4.2 The general case of not-i.i.d. returns

If the sample excess returns are not i.i.d., the large sample distribution of the random vector
(5) can be obtained form the Corollary 1 observing that g : R → R+, x 7→ xI0(x) is
measurable. However, before specializing Corollary 1 to the analysis of (5) we derive its
asymptotic variance-covariance matrix in the case of not-i.i.d. returns.

First, we note that the expectation of Ȳ and (σ̂2
−) are not affected by the time dependence

of the Yi’s and, thanks to the strict stationarity of {Yi}i∈N, we have that E
[
Ȳ
]

= µ and
E [(σ̂−)2] = µ−2 . Concerning the variance of Ȳ , thanks to the strict stationarity of {Yi}i∈N,
we have that (see, e.g., Brockwell and Davis , 1991)

V ar[Ȳ ] =
σ2

n
+

2

n

n∑
i=1

(
1− i

n

)
σi (11)
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The variance of (σ̂−)2 is given by:

V ar
[
(σ̂−)2

]
= V ar

[
1

n

n∑
i=1

Y 2
i I0(Yi)

]

=
1

n2
V ar

[
n∑
i=1

Y 2
i I0(Yi)

]

=
1

n
V ar

[
Y 2

1 I0(Y1)
]

+
2

n2

n∑
i=1

n∑
j=i+1

Cov
[
Y 2
i I0(Yi), Y

2
j I0(Yj)

]
=

µ−4 − (µ−2 )2

n
+

2

n

n∑
i=1

(
1− i

n

)
Cov

[
Y 2

1 I0(Y1), Y 2
i+1I0(Yi+1)

]
=

µ−4 − (µ−2 )2

n
+

2

n

n∑
i=1

(
1− i

n

)
σ−2,i .

Now, we obtain the covariance between the two random variables involved in (5).

Cov
[
Ȳ ; (σ̂−)2

]
=

1

n2

n∑
i=1

n∑
j=1

Cov(Yi;Y
2
j I0(Yj))

=
1

n2

n∑
i=1

Cov(Yi;Y
2
i I0(Yi)) +

1

n2

n∑
i=1

n∑
i 6=j=1

Cov(Yi;Y
2
j I0(Yj))

=
µ−3 − µµ−2

n
+

1

n

n−1∑
i=1

(
1− i

n

)
(σ−1,2,i + σ−2,1,i)

where
σ−1,2,i = Cov(Y1;Y 2

i+1I0(Yi+1)) = E[Y1;Y 2
i+1I0(Yi+1)]− µµ−2

and
σ−2,1,i = Cov(Yi+1;Y 2

1 I0(Y1)) = E[Yi+1;Y 2
1 I0(Y1)]− µµ−2 :

The asymptotic variance covariance covariance matrix of the vector (5) is then given by

Σ̃ = Σ + lim
n→∞

 2
∑n

i=1

(
1− i

n

)
σi +

∑n
i=1

(
1− i

n

)
(σ−1,2,i + σ−2,1,i)∑n

i=1

(
1− i

n

)
(σ−1,2,i + σ−2,1,i) 2

∑n
i=1

(
1− i

n

)
σ−2,i

 .

Note that the matrix Σ̃ coincides with the matrix Σ plus a term reflecting the time depen-
dence among subsequent excess returns. Now, it is worthwhile to note that if {Xt}t∈N is
assumed stationary and α-mixing of size −2+δ

δ
, then Proposition 1 and Proposition 2 assure

that:
∞∑
i=1

|σi| <∞
∞∑
i=1

∣∣σ−2,i∣∣ <∞ (12)
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Moreover, the above expressions and the α-mixing assumption assure also that:

∞∑
i=1

∣∣σ−1,2,i + σ−2,1,i
∣∣ <∞ (13)

Now, if (12) and (13) hold, then

lim
n→∞

n∑
i=1

(
1− i

n

)
σi =

∞∑
i=1

σi

lim
n→∞

n∑
i=1

(
1− i

n

)
(σ−1,2,i + σ−2,1,i) =

∞∑
i=1

(σ−1,2,i + σ−2,1,i)

lim
n→∞

n∑
i=1

(
1− i

n

)
σ−2,i =

∞∑
i=1

σ−2,i

and Corollary 1 can be specialized as follows.

Corollary 3 Let {Yt}t∈Z be stationary and α-mixing of size −2+δ
δ

with 0 < δ < ∞ and
E[|Yt|4+δ] <∞. Then

√
n

[
Ȳ − µ

(σ̂−)2 − µ−2

]
d−→ BN

(
0; Σ̃

)
where

Σ̃ = Σ +

 2
∑∞

i=1 σi
∑∞

i=1(σ−1,2,i + σ−2,1,i)∑∞
i=1(σ−1,2,i + σ−2,1,i) 2

∑∞
i=1 σ

−
2,i

 .

The following proposition follows again from an application of the delta method.

Proposition 3 Under the assumption of Corollary 3, it follows that

√
n
(

Υ̂− υ
)

d−→ N (0; Ṽυ),

where

Ṽυ = Vυ + 2
∞∑
i=1

σi
µ−2
− υ

∞∑
i=1

(σ−1,2,i + σ−2,1,i)

(µ−2 )3/2
+
υ2

2

∞∑
i=1

σ−2,i
(µ−2 )2

.

As suggested by Lo (2002) in the analysis of the Sharpe Ratio, under some additional
regularity assumptions (see Newey and West , 1987), the variance Ṽυ can be consistently

estimated starting from the Newey-West estimator
̂̃
ΣNW of Σ̃ as follows:

̂̃V υ =

 1
σ̂−

− Ȳ
2(σ̂−)3/2

′ ̂̃ΣNW

 1
σ̂−

− Ȳ
2(σ̂−)3/2

 .



Interval estimation for Sortino and Omega ratios 11

Finally, the following asymptotic (1− α)-CI for υ can be introduced:Υ̂− z1−α
2

√ ̂̃V υ

n
; Υ̂ + z1−α

2

√ ̂̃V υ

n

 . (14)

5 Asymptotic distribution of Ω̂ and confidence interval

for ω

5.1 The case of i.i.d. returns

As for the Sortino Ratio, we first assume that the sample excess returns Y1, Y2, ..., Yn are
i.i.d. and we search for the large sample distribution of the random vector[

Ȳ

δ̂−

]
=

1

n

n∑
i=1

[
Yi

−YiI0(Yi)

]
. (15)

With this aim, we first obtain the expectation and the asymptotic variance-covariance matrix
of (15). The algebraic passages followed in this analysis are very similar to those followed in
the analysis of the Sortino Ratio. For this reason, in this section we provide only the main
results.

The expectation and variance of Ȳ are reported in (6). The expectation of δ̂− is given
by:

E
[
δ̂−
]

= −
∫ 0

−∞
yfY (y)dy = −µ− . (16)

Thanks to the independence and the identical distribution of the Yi’s, we have that:

V ar
[
δ̂−
]

=
1

n

[∫ 0

−∞
y2fY (y)dy − (µ−)2

]
=
µ−2 − (µ−)2

n
; (17)

Cov
(
Ȳ ; δ̂−

)
=

(µ · µ− − µ−2 )

n
. (18)

Thank to the multivariate central limit theorem, and to expression (6), (16), (17), and (18),
we can state the following theorem.

Theorem 3 Let Y a random variable with distribution function F and assume that E[Y j] ≤
∞ for j = 1, 2. Let Y1, ..., Yn ne an i.i.d. sample from F . It follows that

√
n

[
Ȳ − µ
δ̂− + µ−

]
d−→ N (0,Ξ)

where BN means “bivariate normal”,

0 =

[
0
0

]
, and Ξ =

 σ2 µ · µ− − µ−2

µ · µ− − µ−2 µ−2 − (µ−)2

 .
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By applying the delta method, it possible to prove the following corollary.

Corollary 4 If the assumptions of Theorem 2 are satisfied, it results that

√
n
(

Ω̂− ω
)

d−→ N (0;Vω),

where

Vω =
σ2

(µ−)2
− 2

(
µ · µ− − µ−2

(µ−)2

)
ω +

(
µ−2 − (µ−)2

(µ−)2

)
ω2 ,

A consistent estimator for the variance Vω is

V̂ω =
S2

(µ̂−)2
− 2

(
Ȳ µ̂− − µ̂−2

(µ̂−)2

)
Ω̂ +

(
µ̂−2 − (µ̂−)2

(µ̂−)2

)
Ω̂2

and the following asymptotic (1 − α)-Confidence Interval (CI) for ω can be obtained by
applying the standard analytical inversion method:Ω̂− z1−α

2

√
V̂ω
n

; Ω̂ + z1−α
2

√
V̂ω
n

 . (19)

5.2 The general case of not-i.i.d. returns

As done for the Sortino Ratio, we first derive the variance-covariance matrix of the random
vector (15). As in the previous subsection, here we report only the main results, avoiding
several algebraic passages.

The variance of Ȳ is given by (11). The variance of δ̂− is:

V ar
[
δ̂−
]

=
µ−2 − (µ−)2

n
+

2

n

n∑
i=1

(
1− i

n

)
Cov [Y1I0(Y1), Yi+1I0(Yi+1)]

=
µ−2 − (µ−)2

n
+

2

n

n∑
i=1

(
1− i

n

)
σ−i

The covariance between Ȳ and δ̂− results:

Cov
[
Ȳ ; δ̂−

]
=

µµ− − µ−2
n

− 1

n

n−1∑
i=1

(
1− i

n

)
(σ−1,i + σ−i,1) ,

where
σ−1,i = Cov(Y1;Yi+1I0(Yi+1)) = E[Y1;Yi+1I0(Yi+1)]− µµ−

and
σ−i,1 = Cov(Yi+1;Y1I0(Y1)) = E[Yi+1;Y1I0(Y1)]− µµ− .
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The asymptotic variance-covariance matrix of the random vector (15) is then given by:

Ξ̃ = Ξ + lim
n→∞

 2
∑n

i=1

(
1− i

n

)
σi −

∑n
i=1

(
1− i

n

)
(σ−1,i + σ−i,1)

−
∑n

i=1

(
1− i

n

)
(σ−1,i + σ−i,1) 2

∑n
i=1

(
1− i

n

)
σ−i


As explained in detail in Section..., if {Yt}t∈N is assumed stationary and α-mixing of size
−2+δ

δ
with δ > 0 and E[|Yt|2+δ] <∞, then

∞∑
i=1

|σi| <∞ ,

∞∑
i=1

∣∣σ−1,i + σ−i,1
∣∣ <∞ ,

∞∑
i=1

∣∣σ−i ∣∣ <∞ ,

and, consequently

lim
n→∞

n∑
i=1

(
1− i

n

)
σi =

∞∑
i=1

σi ,

lim
n→∞

n∑
i=1

(
1− i

n

)
(σ−1,i + σ−i,1) =

∞∑
i=1

(σ−1,i + σ−i,1) ,

lim
n→∞

n∑
i=1

(
1− i

n

)
σ−i =

∞∑
i=1

σ−i .

Then, Corollary 1 can be specialized as follows.

Corollary 5 Let {Yt}t∈Z be stationary and α-mixing of size −2+δ
δ

with 0 < δ < ∞ and
E[|Yt|2+δ] <∞. Then

√
n

[
Ȳ − µ
δ̂− + µ−

]
d−→ BN

(
0; Ξ̃

)
where

Ξ̃ = Ξ +

 2
∑∞

i=1 σi −
∑∞

i=1(σ−1,i + σ−i,1)

−
∑∞

i=1(σ−1,i + σ−i,1) 2
∑∞

i=1 σ
−
i


From Corollary 5 the following proposition follows.

Proposition 4 Under the assumption of Corollary 5, it follows that

√
n
(

Ω̂− ω
)

d−→ N (0, V̆ω) ,

where

Ṽω = Vω + 2
∞∑
i=1

σi
(µ−)2

+ 2ω
∞∑
i=1

(σ−1,i + σ−i,1)

(µ−)2
+ 2ω2

∞∑
i=1

σ−i
(µ−)2

.
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Under some additional regularity assumptions (see Newey and West , 1987), the variance

Ṽω can be consistently estimated starting from the Newey-West estimator
̂̃
ΞNW of Ξ̃ as

follows:

̂̃V ω =


1

δ̂−

− Ȳ

(δ̂−)2


′ ̂̃
ΞNW


1

δ̂−

− Ȳ

(δ̂−)2

 .

Then the following asymptotic (1− α)-CI for ω can be introduced:Ω̂− z1−α
2

√ ̂̃V ω

n
; Ω̂ + z1−α

2

√ ̂̃V ω

n

 . (20)

6 Design of the simulation study

In the present section it is described the simulation study we perform to evaluate the proper-
ties of the large sample confidence intervals (10), (14), (19) and (20). Under the assumption
of i.i.d. returns we replicate the simulation study performed in De Capitani and Zenga
(2011). In the general case of not-i.i.d. returns the design of simulations is taken from De
Capitani (2010). The confidence interval for the Sharpe Ratio ψ is also computed in order to
provide a useful cornerstone for the comment of the results. The aforementioned confidence
interval for ψ can be obtained from the results in Lo (2002) both under the i.i.d. assumption
and under the not-i.i.d assumption (for a re-examination of their derivation and a study of
their properties we refer the interested reader to De Capitani and Zenga , 2011; De Capitani
, 2010).

Design of the simulation study under the i.i.d. assumption

• sample sizes: 50, 100, 200, 400, 800;

• return distributions: Normal; Laplace; Student’s t with 3 and 5 degrees of freedom;
Skew Normal with low/high, positive/negative asymmetry; Skew t with 5 degrees of
freedom and low/high, positive/negative asymmetry. A brief summary of the main
features of the considered distribution is given in Table 1 where the values of the
asymmetry indicator γ1 = E[(X−µ)3/σ3] and Pearson’s kurtosis γ2 = E[(X−µ)4/σ4]−
3 are given.

• nominal coverages of the large sample CIs: 0.9, 0.95, 0.975, 0.99;

• value of the (daily) target return k: 0.000068 (which correspond to a annual rate of
return of about 2.5%)

• value of the standard deviation σ of the excess return Y : σ = 0.01, σ = 0.05, σ = 0.1.
The different values of σ are chosen coherently with the values of the standard deviation
of the daily returns of the equities in the S&P 100 along the period 2005-2007.

• true values of ψ, υ and ω: for each value of σ we consider 3 different values of µY =
E[Y ] = E[X] − k. The lowest value gives rise to a Sharpe Ratio of 0.05; the highest
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Distribution γ1 γ2 Distribution γ1 γ2

Normal 0 0 Laplace 0 3
t with 3 df 0 ∞ t with 5 df 0 6

Skew N. (High as.) ±0.6670 0.5098 Skew N. (Low as.) ±0.4538 0.3051
Skew t (High as.) ±1.0758 8.9208 Skew t (Low as.) ±0.5527 6.8020

Table 1: Values of γ1 and γ2 for the 12 distributions considered.

value gives rise to a Sharpe Ratio of 0.5; the remaining value corresponds to a Sharpe
Ratio of 0.25. As for the values of σ the three different values of ψ are chosen on
the basis of the daily Sharpe Ratios of the equities in the S&P 100 along the period
2005-2007. The three different values of υ and ω are determined by the different
combinations of µ and σ according to the particular distribution under investigation.

• number of replications: 5× 104

Design of the simulation study in the not-i.i.d. case

• data generating process: we consider a GARCH(1,1) process with symmetric innova-
tions and finite fourth moment. In more detail:

Xt − µX = σtεt where σ2
t = 0.001 + 0.1(Xt−1 − µX)2 + 0.8σ2

t−1 ,

and εt (t = 1, 2, ...) i.i.d., symmetrically distributed and with E[εt] = 0, E[ε2t ] = 1
and E[ε4t ] <∞. Note that this process satisfies the regularity conditions necessary to
obtain the confidence intervals (14) and (20) since , as proved in Carrasco and Chen
(2002), it is β-mixing with exponential decay and, consequently it is also α-mixing
of size −2+δ

δ
for some δ > 0. According to the simulations design under the i.i.d.

assumption, we consider three different values of µX : 0.005068, 0.025068, 0.050068.
The values of the Sharpe Ratio associated to the three values of µX are, respectively,
0.05, 0.025 and 0.5.

• Distribution of εt: Standard normal distribution, Laplace distribution with unit vari-
ance and zero mean, Student’s t distribution with 5 degrees of freedom rescaled by the
factor (3/5)0.5 (in this way, the resulting distribution has zero mean and unit variance).

• sample sizes: 50, 100, 200, 400, 800, 1600, 3200;

• nominal coverages of the large sample CIs: 0.9, 0.95, 0.975, 0.99;

• number of replications: 5× 104.

Concluding, we highlight that the Newey-West estimator ̂̃ΣNW and ̂̃ΞNW , necessary to
define the confidence intervals (14) and (20), are obtained determining the value of the
bandwidth m in three different way:

• naive method : deterministic bandwidth given by m = 5× n1/4;
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• Newey and West’s procedure (NW-bw): automatic and “data dependent” selection
procedure proposed in Newey and West (1994) and clearly outlined in Hall (2005),
pp. 82-83.

• Andrews and Monahan’s procedure (PR-bw): automatic and “data dependent” selec-
tion procedure proposed in Andrews and Monahan (1992) and based on the so-called
“pre-whitening and recoloring” technique (see, again, the clear presentation in Hall ,
2005, pp. 84-85).

7 Results

7.1 Independent and identically distributed returns

Here, we do not give all the detailed results of the simulation study. Only a brief summary is
given in order to emphasize the main aspects: the impact of asymmetry and kurtosis of the
parent distribution on the coverage accuracy of the large sample confidence intervals. The
minimum sample sizes assuring a sufficient adherence of the actual coverage to the nominal
one is determined by the criterion described below. It is well known that the t distribution
approaches the Normal distribution when the df increase. Further, it is common to retain
that the t distribution with 30 df is approximated by the Normal distribution very well. As
a consequence, when sampling from the Normal distribution, the asymptotic CI

(X̄ − z1−α/2
√
S2/n; X̄ + z1−α/2

√
S2/n) (21)

is considered accurate if n ≥ 30. The actual coverages of the above CI when n = 30 (reported
in Table 2) can, then, be adopted as a cornerstone to determine the aforementioned minimum
sample sizes. In more detail, we will consider the simulated coverages sufficiently close to
their nominal value (1−α) if they belong to the interval (1− α− εα; 1− α + εα), where εα is
defined in Table 2. In Table 3 the minimum sample sizes obtained applying this criterion are
given. To give an example, the sample size 50 corresponding to “performance ratio = Sharpe
Ratio”, “parent distribution = N”, “Value of ψ = small”, “100(1−α)% = 90%” means that,
when samplig from the Normal distribution, a sample size of 50 can be considered sufficient
for the asymptotic confidence interval at nominal confidence level 90% whether is the value
of σ among (0.01, 0.05, 0.1). In general, the simulations highlight that:

• the fatter the tails of the parent distribution, the worst the coverage accuracy of the
confidence interval for all the three performance measures. In more detial, the CIs for
ψ and υ are very sensible to the increase in the fatness of the tails while the confidence
interval for ω shows a substantial robustness with respect to this feature of the parent
distribution. It is worthwhile to note that if the tails of the parent distribution are so
heavy that the existence of fourth moment is not assured (Student’s t with 3 df), the
CIs for the Sharpe and Omega Ratio are not defined since the asymptotic theory on
which they are based requires the existence of the moments up to the fourth order.
Nevertheless they can be calculated even when sampling from the Student’s t with 3
df since the fourth sample moment is always finite. However, these CIs are incorrect
and, ideed, the simulations show that their coverage accuracy is bad for all the sample
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Nominal Coverage: (1− α) 0.9 0.95 0.975 0.99

Actual Coverage: aα 0.8896 0.9407 0.9674 0.9848
εα = |(1− α)− aα| 0.0104 0.0093 0.0076 0.0052
1− α + εα 0.9104 0.9593 0.9826 0.9952
1− α− εα 0.8896 0.9407 0.9674 0.9848

Table 2: Comparison between the nominal and actual coverage probabilities of the asymptotic
CI (21)

sizes. On the contrary, the CI for ω is well defined for all the parent distributions with
second moment and the simulations show that, when sampling from T3 a sample size
of 400 is sufficient. This result is coherent with those provided in De Capitani and
Zenga (2011) for the MAD and MD ratios.

• the coverage accuracy of the CI for ψ is better when the parent distribution is positively
skewed. On the contrary the coverage accuracy of the CIs for υ and ω slightly improves
for negatively skewed distributions. Also in this case the confidence interval for ω is the
most robust whit respect to the changes in the asymmetry of the parent distribution.

• the higher is the true value of the ratio, the worst is the coverage accuracy. Again, this
effect is more evident for the CIs for ψ and υ and sligtly visible concerning the CI for
ω.

• Globally, a sample size of 800 is sufficient for the CIs for ψ and υ in all the cases
investigated with the relevant exception of the Student’s t with 3 df. On the contrary
a sample size of 400 is always sufficient for the CI for ω even if the convergence of
the actual coverage to the nominal one is, for this CI, slower in the more “regular”
simulation settings (such as those concerning the Normal, Laplace, Student’s t with 5
df or the Skew Normal).

7.2 Dependent identically distributed returns

In tables 4, 5 and 6 we give the simulated coverages of the large sample CIs for the Sharpe
Ratio (see De Capitani , 2010), Sortino Ratio (see expression 14) and Omega Ratio (see
expression 20), respectively. In these tables the simulated coverages sufficiently adherent to
the nominal coverages (in accordance to the criterion described in the previous section) are
highlighted coloring the background of the corresponding cells in gray. As it is evident from
the tables, the presence of the time dependence has a great impact on the coverage accuracy
of the asymptotic CIs. Some of the features of the CIs derived under the i.i.d. assumption
can be observed also in this this context with a greater evidence. In detail:

• The dependence of the coverage accuracy on the true value of the ratio is, in this
context, very strong. Also the CI for ω is now affected by this effect even if, under the
i.i.d. assumption only a slight impact was observed.
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SHARPE RATIO
Value of ψ small medium high
100(1− α)% 90% 95% 97.5% 99% 90% 95% 97.5% 99% 90% 95% 97.5% 99%

N 50 50 50 50 50 50 50 50 100 50 50 50
L 200 100 100 100 200 200 200 200 200 200 200 200
T5 100 100 100 100 200 200 200 100 400 400 400 200
T3 – – – – – – – – – – – –
SNL+ 50 50 50 50 50 50 50 50 50 50 50 50
SNH+ 50 50 50 50 50 50 50 50 50 50 50 50
STL+ 100 100 100 100 200 200 100 100 400 200 200 200
STH+ 50 100 100 100 50 100 50 50 200 200 100 200
SNL- 50 50 50 50 50 50 50 50 100 100 50 100
SNH- 50 50 50 50 50 50 50 50 100 100 100 50
STL- 100 100 100 200 400 200 200 200 800 400 400 200
STH- 200 200 200 200 400 400 400 200 800 800 800 800

SORTINO RATIO
Value of υ small medium high
100(1− α)% 90% 95% 97.5% 99% 90% 95% 97.5% 99% 90% 95% 97.5% 99%

N 50 50 100 200 50 50 100 200 100 50 100 200
L 50 100 200 400 100 200 200 400 400 400 400 400
T5 50 100 200 200 400 400 400 400 800 800 800 800
T3 – – – – – – – – – – – –
SNL+ 50 50 100 400 50 50 100 200 50 100 100 200
SNH+ 50 100 200 200 50 100 100 200 50 100 100 200
STL+ 50 100 200 200 400 200 200 400 800 800 800 400
STH+ 100 200 400 400 200 200 400 400 800 800 800 400
SNL- 50 50 50 100 50 50 50 200 50 50 100 200
SNH- 50 50 50 100 50 50 100 100 100 50 100 200
STL- 50 100 100 200 400 400 200 400 800 800 800 800
STH- 50 100 100 200 800 800 400 400 800 800 800 800

OMEGA RATIO
Value of ω small medium high
100(1− α)% 90% 95% 97.5% 99% 90% 95% 97.5% 99% 90% 95% 97.5% 99%

N 50 200 200 400 50 200 200 400 50 100 200 400
L 100 200 400 400 50 200 400 400 50 200 400 400
T5 50 200 400 400 50 200 400 400 50 200 400 400
T3 200 400 400 400 50 400 400 400 50 400 400 400
SNL+ 50 200 400 400 50 200 400 400 50 200 400 400
SNH+ 50 200 200 400 50 100 200 400 50 100 200 400
STL+ 100 200 400 400 50 200 400 400 50 200 400 400
STH+ 100 400 400 400 50 200 400 400 50 200 400 400
SNL- 50 100 400 400 50 100 200 400 50 100 200 400
SNH- 50 100 200 400 50 100 200 400 50 100 400 400
STL- 50 100 200 400 50 100 200 400 50 100 400 400
STH- 50 100 200 400 50 100 200 400 50 100 400 400

Table 3: Minimum sample sizes necessary to reach a good coverage accuracy for the CIs for
Sharpe, Sortino and Omega Ratio under i.i.d. assumption.
Legend: Normal (N), Laplace (L), Student’s t with 5 df (t5), Student’s t with 3 df (t3), Skew Normal with

low positive skewness (SNL+), Skew Normal with high positive skewness (SNH+), Skew t with low
positive skewness (StL+), Skew t with high positive skewness (StH+), Skew Normal with low negative
skewness (SNL-), Skew Normal with high negative skewness (SNH-), Skew t with low negative skewness

(StL-), Skew t with high negative skewness (StH-)
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• The simulation results highlight that the CIs obtained with the PR-bw and NW-bw
methods for the determination of the bandwidth of the Newey-West estimator have a
better coverage accuracy with respect to that obtained with the “naive” method. This
result is rather expected and agrees with the evidence in Newey and West (1994).
Moreover, we observe a substantial equivalence between PR-bw and NW-bw methods.
This is (almost surely) due to the fact that the GARCH process has uncorrelated
(but dependent) components and, as explained in Andrews and Monahan (1992) and
recalled in Hall (2005) (see on page 83), the PR-bw should perform better than NW-bw
when the data generating process exhibits a autoregressive behavior.

• In general, if the true value of the ratios is small and using the PR-bw method, a
sample size between 400 and 800 can be considered sufficient for the CIs for the three
ratio. On the contrary, when the true value of the ratios is medium, 800 is sufficient
only in the case of Gaussian innovations. In the Laplace and Student’s t innovations
cases, 3200 seems to be almost adequate only for the CI for ω. Finally, if the true value
of the ratios is high, a sample size of 3200 is not sufficient in any scenarios.

8 Conclusions

In this paper we derive a large sample confidence interval for the financial performance
measures known as Sortino Ratio and Omega Ratio. These confidence intervals are obtained
first under the strong assumption of independence and identical distribution of the returns
and, later, generalized to the more general and realistic case in which returns follows a
stationary and α-mixing process. In order to evaluate the properties of the aforementioned
CIs, a wide simulation study is performed both under the i.i.d. assumption and in the not-
i.i.d case. In the simulation, also the CIs for the Sharpe Ratio (obtained form the results
in Lo , 2002, and De Capitani , 2010) is considered for a comparison. Evidence from the
simulations suggests that the asymptotic confidence interval for the Omega Ratio seems to
have the best features. It is worthwhile to note that the last is the only confidence interval
that can be derived assuming the existence of “only” the second moment while the confidence
intervals for the Sortino and Sharpe ratios require the existence of at least the fourth moment.
This fact agrees with the results in De Capitani and Zenga (2011) where it is shown that
the confidence intervals for the MAD an MD ratios, that are based on the existence of the
second moment, are more accurate than the CI for the Sharpe Ratio. Simulation results
emphasize that all CIs are very sensitive to the true value of the ratio: the grater is the
value of the ratios, the worst is the coverage accuracy of the confidence intervals. Moreover,
as expected, the fatter the tails of the returns distribution, the worst the coverage accuracy.
However, the most meaningful result we obtain is that, under the more general assumption
of not-i.i.d. returns, a sample size of 3200 is far to be generally sufficient for a good coverage
accuracy of all the considered CIs. This is due mainly to the impact of the true value of the
ratio on the convergence of the actual coverage to the nominal one and seriously affect the
real applicability of the proposed confidence intervals. In fact, in the simulations we choose
the true values of the ratios, the values of the standard deviation of the returns distribution
and the parameters of the GARCH model coherently with the empirical evidence on daily
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Value of ψ small medium high
100(1− α)% 90% 95% 97.5% 99% 90% 95% 97.5% 99% 90% 95% 97.5% 99%

bw n Gaussian Innovations

PR-bw 50 84.39 90.69 93.87 96.41 83.20 89.51 93.22 96.10 79.92 86.42 91.03 94.43
100 87.46 93.11 96.27 98.19 86.31 92.09 95.44 97.63 83.50 89.71 93.55 96.35
200 88.48 93.87 96.52 98.17 87.33 92.78 95.78 98.06 83.71 90.32 94.30 97.10
400 89.47 94.37 97.01 98.69 88.31 93.65 96.50 98.30 85.67 91.92 95.19 97.41
800 90.23 95.43 97.58 99.01 89.45 94.35 96.95 98.68 86.04 92.34 95.64 97.81

1600 89.54 94.65 97.29 98.84 88.47 93.87 96.74 98.59 86.60 92.01 95.61 98.01
3200 89.67 94.64 97.24 98.77 88.99 94.09 97.02 98.63 86.97 92.98 96.11 98.08

NW-bw 50 83.94 89.98 93.40 96.05 82.60 89.05 92.74 95.50 79.76 86.34 90.76 94.13
100 87.36 92.84 96.12 98.07 86.18 91.97 95.20 97.54 83.70 89.72 93.32 96.38
200 88.51 93.69 96.47 98.19 87.30 92.74 95.80 98.05 83.93 90.35 94.44 97.16
400 89.48 94.51 97.11 98.75 88.33 93.72 96.59 98.35 85.81 91.98 95.27 97.49
800 90.18 95.45 97.56 99.03 89.39 94.35 96.98 98.73 85.93 92.31 95.65 97.81

1600 89.57 94.70 97.30 98.87 88.48 93.85 96.77 98.62 86.55 92.05 95.54 97.99
3200 89.67 94.67 97.22 98.78 88.98 94.11 97.04 98.62 86.90 92.90 96.08 98.06

naive 50 79.18 85.89 90.29 93.64 77.97 84.84 89.51 93.27 75.09 82.19 87.56 91.53
100 83.68 89.56 93.45 96.24 82.44 88.91 92.84 95.63 80.60 86.85 91.05 94.43
200 85.98 91.66 94.73 97.18 84.84 91.10 94.34 96.79 82.57 88.73 93.07 96.19
400 87.71 93.14 96.11 98.02 86.90 92.54 95.72 97.70 85.12 91.48 94.84 97.09
800 89.12 94.72 97.06 98.69 88.57 93.99 96.59 98.32 86.75 92.39 95.54 97.91

1600 89.27 94.25 97.10 98.70 88.43 93.79 96.48 98.47 87.15 92.52 95.82 98.07
3200 89.48 94.48 97.08 98.66 88.67 94.10 97.04 98.56 88.01 93.53 96.49 98.37

Laplace Innovations

PR-bw 50 83.25 88.94 92.39 95.36 80.64 87.05 90.77 94.10 74.72 81.98 86.77 91.09
100 86.51 92.03 94.97 97.47 83.73 89.82 93.46 96.23 77.85 85.15 89.54 93.49
200 87.77 93.53 96.41 98.57 85.32 91.19 94.78 97.58 79.49 86.72 91.17 94.62
400 88.77 93.98 96.80 98.56 85.31 91.91 95.33 97.73 79.86 87.18 91.70 95.42
800 89.04 94.21 96.77 98.55 86.41 92.25 95.47 97.59 81.61 88.69 92.80 96.02

1600 88.94 94.36 97.19 98.63 86.48 92.63 96.08 98.03 82.76 89.81 93.76 96.61
3200 89.75 94.67 97.20 98.68 87.58 93.17 96.14 98.22 84.26 90.81 94.31 97.08

NW-bw 50 82.69 88.51 92.11 94.94 80.65 86.92 90.76 93.57 75.48 82.51 87.23 91.21
100 86.71 92.14 94.76 97.16 84.06 90.11 93.37 96.28 78.68 85.60 90.07 93.84
200 88.06 93.55 96.52 98.65 85.49 91.35 94.96 97.75 80.09 87.04 91.34 94.90
400 88.84 94.00 96.80 98.60 85.50 92.05 95.33 97.81 80.13 87.30 91.83 95.50
800 89.15 94.21 96.74 98.45 86.46 92.26 95.50 97.65 81.60 88.69 92.80 95.91

1600 88.93 94.35 97.17 98.66 86.46 92.65 96.07 98.05 82.71 89.72 93.70 96.65
3200 89.82 94.68 97.18 98.65 87.57 93.14 96.10 98.22 84.07 90.62 94.27 97.06

naive 50 77.79 84.28 88.78 92.46 75.40 82.15 86.65 90.50 70.25 77.66 82.79 87.17
100 82.76 88.58 92.31 95.24 80.00 86.34 90.55 93.94 75.42 82.50 87.31 91.04
200 85.29 91.11 94.52 97.10 83.23 89.17 92.89 95.95 79.16 85.37 90.00 93.74
400 86.95 92.42 95.78 97.89 84.52 91.03 94.61 97.15 80.83 87.78 91.94 95.22
800 88.27 93.41 96.16 98.03 86.14 91.92 95.05 97.19 83.32 89.75 93.49 96.25

1600 88.28 93.83 96.89 98.51 86.67 92.95 96.00 98.12 84.64 91.23 94.71 97.19
3200 89.52 94.39 96.93 98.63 88.19 93.51 96.35 98.29 86.21 91.91 95.07 97.67

Student’s t Innovations

PR-bw 50 83.99 89.70 93.44 95.72 81.32 87.78 91.76 94.57 74.80 81.94 87.09 91.01
100 86.72 92.08 95.43 97.57 84.08 90.09 93.82 96.49 77.32 84.91 89.39 93.31
200 87.91 93.00 96.20 98.20 84.87 90.97 94.60 97.14 78.38 85.80 90.32 94.22
400 88.73 93.92 96.64 98.45 85.19 91.41 94.83 97.34 78.40 86.22 90.68 94.51
800 88.99 94.18 96.84 98.52 85.74 91.68 95.00 97.37 80.18 87.43 91.65 94.97

1600 89.36 94.39 97.06 98.74 86.25 92.12 95.49 98.02 81.33 88.30 92.46 96.03
3200 89.60 94.62 97.17 98.81 86.96 92.78 95.85 97.91 83.16 89.89 93.66 96.52

NW-bw 50 83.62 89.16 92.37 95.22 81.04 87.53 91.45 94.23 75.47 82.21 87.16 91.06
100 86.54 92.00 95.18 97.43 84.18 90.45 93.90 96.37 77.70 85.41 89.83 93.48
200 88.14 92.94 96.29 98.20 85.24 91.08 94.75 97.32 78.61 86.22 90.76 94.35
400 88.65 93.93 96.74 98.53 85.26 91.59 94.98 97.41 78.72 86.32 90.76 94.76
800 89.01 94.11 96.94 98.55 85.63 91.68 95.10 97.40 80.26 87.43 91.67 95.06

1600 89.31 94.38 97.11 98.80 86.20 92.13 95.52 98.00 81.22 88.22 92.40 96.03
3200 89.68 94.60 97.17 98.85 86.84 92.78 95.83 97.91 82.94 89.76 93.55 96.48

naive 50 78.70 85.36 89.29 92.75 75.92 83.14 87.52 91.45 70.33 77.74 82.78 87.71
100 82.37 88.68 92.57 95.41 79.60 86.44 90.68 93.98 74.09 81.61 86.65 90.69
200 85.18 91.01 94.33 96.95 82.53 88.90 92.83 95.88 77.52 84.62 89.69 93.21
400 87.06 92.53 95.78 97.88 84.01 90.34 94.02 96.68 79.68 86.44 90.75 94.28
800 87.92 93.19 96.15 98.11 85.45 91.42 94.83 97.27 81.87 88.58 92.50 95.40

1600 88.91 93.87 96.71 98.53 86.49 92.45 95.62 98.12 83.28 89.84 93.69 96.64
3200 89.32 94.45 96.93 98.76 87.70 93.04 96.12 98.15 85.26 91.44 94.51 96.98

Table 4: Simulated percentage coverages of the CIs for the Sharpe Ratio in the general not-
i.i.d. setting.
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Value of υ small medium high
100(1− α)% 90% 95% 97.5% 99% 90% 95% 97.5% 99% 90% 95% 97.5% 99%

bw n Gaussian Innovations

PR-bw 50 82.81 88.64 92.00 94.57 81.47 87.97 91.52 94.36 78.97 85.77 89.97 93.11
100 86.89 92.30 95.12 96.92 85.92 91.55 94.76 96.62 82.68 89.55 93.23 95.87
200 88.75 93.62 96.17 97.96 87.62 92.96 95.74 97.77 84.21 90.60 94.62 97.02
400 89.82 94.65 97.08 98.71 88.52 93.83 96.46 98.31 85.67 91.78 95.03 97.37
800 90.56 95.56 97.52 98.92 89.43 94.48 97.15 98.56 86.21 92.47 95.83 97.88

1600 89.78 94.73 97.32 98.87 88.97 94.12 96.77 98.60 86.43 92.28 95.56 97.79
3200 89.58 94.69 97.27 98.82 88.65 94.26 96.89 98.60 86.49 92.73 96.01 98.08

NW-bw 50 81.93 87.60 91.37 94.12 82.79 88.34 91.69 94.32 85.62 89.98 92.88 94.90
100 85.06 90.59 93.57 96.01 85.24 90.76 93.64 96.08 85.53 90.67 93.68 95.83
200 87.16 92.38 95.43 97.31 86.77 92.20 95.16 97.27 85.55 91.47 94.77 97.03
400 89.59 94.45 96.84 98.50 88.49 93.91 96.33 98.05 86.31 92.17 95.45 97.47
800 90.54 95.48 97.48 98.93 89.54 94.55 97.14 98.55 86.80 93.15 95.88 97.96

1600 89.84 94.78 97.33 98.96 89.01 94.23 96.88 98.66 86.82 92.50 95.61 98.03
3200 89.68 94.73 97.25 98.81 88.76 94.30 97.04 98.62 86.73 92.77 96.12 98.13

naive 50 79.61 86.34 90.39 93.66 78.75 85.64 90.22 93.66 76.38 83.84 88.82 92.69
100 83.92 89.91 93.28 96.10 83.10 89.19 93.08 95.75 80.33 87.51 91.53 94.71
200 86.10 91.61 94.63 97.00 85.14 91.06 94.51 96.92 82.72 89.38 93.29 96.40
400 87.87 93.13 95.86 97.90 87.08 92.54 95.55 97.57 84.87 90.91 94.51 96.83
800 89.41 94.73 97.00 98.66 88.69 93.93 96.61 98.32 86.81 92.47 95.68 97.96

1600 89.34 94.33 96.96 98.58 88.43 93.67 96.56 98.40 87.11 92.68 95.68 98.06
3200 89.44 94.52 97.14 98.70 88.62 94.16 96.90 98.57 87.53 93.50 96.51 98.30

Laplace Innovations

PR-bw 50 82.57 88.13 91.63 94.17 80.53 87.09 91.09 93.97 75.97 83.57 88.34 92.07
100 86.96 92.04 94.84 96.66 84.65 90.46 93.80 96.19 80.24 87.11 91.37 94.63
200 88.62 93.97 96.64 98.23 86.17 91.98 95.47 97.60 81.45 88.45 92.57 95.95
400 89.32 94.41 97.02 98.62 86.66 92.70 95.87 98.11 81.57 88.89 93.36 96.60
800 89.32 94.28 96.93 98.52 86.90 92.61 95.76 97.97 82.91 89.67 93.54 96.62

1600 89.17 94.54 97.16 98.72 86.89 92.87 96.09 98.23 83.28 89.88 94.05 96.91
3200 89.94 94.77 97.15 98.74 87.80 93.22 96.18 98.35 84.68 90.85 94.81 97.32

NW-bw 50 81.94 88.01 91.28 93.94 82.84 88.16 91.38 94.11 83.76 88.59 91.46 94.03
100 85.41 90.50 93.70 95.92 84.55 90.01 93.23 95.81 83.48 89.43 92.66 95.23
200 87.73 93.20 95.85 97.68 85.72 91.61 95.13 97.34 82.78 89.15 93.14 96.21
400 88.95 94.03 96.77 98.51 86.55 92.65 95.57 98.12 82.21 89.08 93.65 96.63
800 89.31 94.25 96.80 98.49 87.17 92.83 95.86 97.95 83.48 90.02 93.78 96.68

1600 89.30 94.60 97.16 98.76 87.19 92.93 96.17 98.27 83.66 90.11 94.25 96.93
3200 90.00 94.80 97.17 98.78 88.02 93.36 96.26 98.42 84.76 91.11 94.91 97.29

naive 50 78.93 85.27 89.39 92.68 77.39 84.04 88.60 92.57 72.73 81.01 86.43 90.89
100 83.27 89.37 92.93 95.58 81.40 87.97 92.10 95.20 77.54 85.13 89.71 93.46
200 85.82 91.75 94.78 97.18 83.61 89.95 93.60 96.69 79.75 86.69 91.24 94.97
400 87.20 92.60 95.65 97.83 85.03 91.19 94.91 97.43 81.22 88.15 92.87 95.95
800 88.24 93.42 96.10 98.12 86.36 91.99 95.44 97.69 83.42 89.87 93.92 96.56

1600 88.53 94.02 96.76 98.51 86.93 92.77 96.03 98.14 84.42 91.02 94.83 97.10
3200 89.59 94.41 96.98 98.65 87.91 93.51 96.34 98.33 86.15 92.10 95.45 97.74

Student’s t Innovations

PR-bw 50 82.98 88.48 91.60 94.25 80.46 86.89 90.60 93.80 75.08 82.76 87.55 91.38
100 86.56 91.98 94.54 96.68 83.76 90.05 93.69 96.19 77.84 85.43 90.38 94.35
200 88.11 93.44 96.02 98.12 85.37 91.39 94.65 97.34 78.79 86.66 91.44 95.20
400 89.08 94.45 96.91 98.52 85.86 91.66 95.10 97.58 79.09 86.89 91.39 95.23
800 88.96 94.09 96.76 98.60 85.56 92.00 95.08 97.54 80.16 87.27 91.59 95.06

1600 89.50 94.41 97.09 98.83 86.09 92.03 95.55 98.04 80.96 87.62 92.42 95.93
3200 89.74 94.67 97.17 98.73 86.84 92.89 95.87 97.98 82.44 89.09 93.21 96.30

NW-bw 50 82.08 87.72 90.82 93.67 82.88 88.12 91.31 94.00 83.67 89.03 91.63 93.95
100 84.95 90.37 93.20 95.73 83.85 89.48 93.03 95.79 82.02 88.23 92.11 94.96
200 87.41 92.51 95.34 97.59 85.18 91.18 94.46 96.85 80.96 88.18 92.47 95.69
400 88.82 94.14 96.77 98.31 85.86 91.54 94.90 97.50 79.88 87.27 91.75 95.17
800 88.80 93.70 96.69 98.65 85.83 91.99 95.05 97.61 80.55 87.54 91.92 95.20

1600 89.54 94.48 97.11 98.82 86.37 92.18 95.66 98.13 81.29 87.88 92.65 95.93
3200 89.88 94.76 97.26 98.72 87.16 92.87 95.93 97.96 82.54 89.14 93.18 96.25

naive 50 80.02 86.14 89.72 92.84 77.16 84.45 89.20 92.75 71.65 80.24 85.87 90.64
100 83.01 89.10 92.54 95.21 80.38 87.08 91.50 94.83 74.92 82.59 87.77 92.56
200 85.65 90.88 94.35 96.79 82.84 89.24 93.11 96.19 77.24 85.10 89.98 93.83
400 87.22 92.85 95.75 97.79 84.37 90.53 94.27 96.73 78.91 86.14 91.03 94.55
800 88.03 93.00 95.95 98.05 84.56 91.17 94.51 97.26 80.74 87.71 91.80 95.14

1600 88.94 93.91 96.70 98.60 86.24 92.07 95.45 98.10 82.37 88.60 93.12 96.29
3200 89.39 94.51 96.91 98.62 87.28 93.09 96.02 98.26 84.16 90.42 94.13 96.89

Table 5: Simulated percentage coverages of the CIs for the Sortino Ratio in the general
not-i.i.d. setting.
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Value of ω small medium high
100(1− α)% 90% 95% 97.5% 99% 90% 95% 97.5% 99% 90% 95% 97.5% 99%

bw n Gaussian Innovations

PR-bw 50 81.40 86.69 89.95 92.89 81.16 86.84 90.09 92.95 79.99 85.73 88.96 91.97
100 86.08 91.04 93.46 95.61 85.90 90.38 93.18 95.50 83.74 89.50 92.36 94.39
200 88.27 92.99 95.62 97.41 87.10 92.46 95.37 97.10 84.98 90.72 94.08 96.35
400 89.92 94.44 96.81 98.49 88.84 93.73 96.38 98.14 86.32 92.23 95.27 97.40
800 90.72 95.44 97.52 98.90 89.70 94.81 97.07 98.52 86.90 92.75 95.90 98.10

1600 89.95 94.82 97.34 98.85 88.82 94.15 96.83 98.66 86.62 92.55 95.80 97.87
3200 89.73 94.70 97.22 98.79 88.98 94.39 96.94 98.62 87.29 93.08 96.07 98.10

NW-bw 50 84.26 88.78 91.42 93.60 83.54 88.28 91.19 93.59 81.46 86.70 89.85 92.61
100 87.62 91.94 94.30 96.11 86.70 91.17 93.46 95.58 84.10 89.72 92.62 94.72
200 88.68 93.06 95.67 97.38 87.45 92.49 95.25 97.17 85.42 91.16 94.20 96.41
400 90.26 94.54 96.97 98.39 88.93 93.92 96.50 98.15 86.54 92.47 95.40 97.55
800 90.84 95.41 97.47 98.87 89.97 94.87 97.14 98.60 87.22 92.97 96.11 98.13

1600 90.06 94.94 97.24 98.86 88.97 94.32 96.89 98.65 86.78 92.68 95.78 97.91
3200 89.79 94.78 97.27 98.80 89.02 94.57 96.99 98.62 87.22 93.12 96.06 98.10

naive 50 80.12 85.98 89.74 92.75 80.17 86.38 90.04 92.97 79.44 85.75 89.68 92.50
100 84.14 89.78 92.92 95.26 83.89 89.64 92.96 95.24 82.66 88.84 92.35 94.65
200 86.00 91.14 94.44 96.63 85.44 91.12 94.27 96.50 83.85 90.16 93.35 95.98
400 87.91 93.10 95.81 97.77 87.40 92.57 95.49 97.59 86.00 91.65 94.73 97.02
800 89.51 94.72 96.88 98.51 88.87 94.19 96.73 98.23 87.36 93.06 95.89 98.05

1600 89.29 94.33 96.97 98.49 88.54 93.84 96.65 98.40 87.52 92.98 96.13 98.09
3200 89.49 94.46 97.07 98.66 88.95 94.31 96.95 98.59 88.27 93.81 96.59 98.29

Laplace Innovations

PR-bw 50 81.44 86.40 89.35 92.20 81.21 86.46 89.80 92.46 80.66 85.47 88.79 91.42
100 86.21 91.04 93.80 95.77 85.34 90.78 93.47 95.30 83.07 88.92 91.71 94.32
200 88.21 93.19 95.86 97.54 86.82 92.57 95.41 97.25 84.40 90.60 93.64 96.27
400 89.33 94.31 96.70 98.35 88.05 93.22 96.48 98.16 84.95 91.34 94.96 97.18
800 89.42 94.30 96.75 98.52 87.62 93.18 96.28 98.29 84.85 91.05 94.81 97.24

1600 89.33 94.60 97.11 98.75 87.90 93.61 96.55 98.40 85.09 91.69 95.28 97.70
3200 89.98 94.96 97.24 98.81 88.84 93.81 96.57 98.55 86.45 92.16 95.62 97.97

NW-bw 50 84.64 89.16 91.51 93.74 83.64 88.40 91.31 93.43 81.85 86.66 89.62 92.21
100 87.65 92.25 94.66 96.41 86.39 91.52 93.96 95.97 84.12 89.38 92.47 94.68
200 89.17 94.07 96.22 97.77 87.30 93.05 95.59 97.39 85.19 91.08 94.04 96.49
400 89.56 94.35 96.94 98.39 88.34 93.44 96.51 98.22 85.48 91.59 95.15 97.34
800 89.61 94.42 96.72 98.46 87.75 93.42 96.35 98.33 85.21 91.26 94.97 97.30

1600 89.42 94.71 97.14 98.79 88.08 93.72 96.69 98.44 85.19 91.70 95.39 97.79
3200 90.01 95.05 97.33 98.81 88.85 93.91 96.64 98.56 86.33 92.01 95.56 97.93

naive 50 79.18 84.96 88.52 91.65 79.18 85.67 89.32 92.25 79.53 85.76 89.27 91.55
100 83.59 89.12 92.34 94.92 83.07 89.22 92.69 95.37 81.98 88.06 91.87 94.60
200 85.90 91.60 94.63 96.70 84.85 91.09 94.38 96.70 83.20 89.80 93.52 95.88
400 87.36 92.56 95.56 97.63 86.78 92.24 95.44 97.77 84.63 91.16 94.63 97.23
800 88.38 93.41 95.96 97.99 87.17 92.67 95.82 97.97 85.74 91.59 95.13 97.45

1600 88.48 94.03 96.73 98.56 87.94 93.47 96.57 98.30 86.75 92.47 95.95 97.95
3200 89.61 94.60 97.10 98.72 88.98 94.02 96.79 98.54 87.96 93.31 96.39 98.28

Student’s t Innovations

PR-bw 50 81.69 86.79 89.58 92.21 80.92 86.42 89.75 92.37 79.45 85.01 88.19 91.28
100 85.74 90.41 93.18 95.46 84.55 89.96 93.26 95.35 82.09 88.33 91.67 94.19
200 87.98 93.05 95.72 97.59 86.75 92.11 94.96 97.11 83.70 90.10 93.56 95.99
400 89.17 94.40 96.94 98.29 87.76 93.11 96.23 97.94 84.17 90.82 94.44 96.73
800 89.14 94.16 96.72 98.52 87.40 93.06 96.01 97.91 84.38 90.64 94.38 96.98

1600 89.66 94.66 97.33 98.86 88.27 93.76 96.64 98.52 85.19 91.37 95.21 97.56
3200 90.03 94.80 97.30 98.78 88.67 93.94 96.77 98.50 86.38 92.18 95.39 97.79

NW-bw 50 84.97 89.21 91.85 93.86 83.54 88.32 91.52 93.75 80.99 86.48 89.51 92.08
100 87.73 91.82 94.05 95.85 85.83 90.71 93.54 95.67 82.84 88.94 92.22 94.61
200 89.00 93.72 96.10 97.66 87.45 92.66 95.16 97.11 84.40 90.56 94.09 96.17
400 89.62 94.48 97.02 98.38 88.17 93.27 96.41 98.06 85.00 91.29 94.79 97.02
800 89.20 94.13 96.83 98.56 87.64 93.33 96.15 98.00 84.72 90.90 94.68 97.09

1600 89.65 94.85 97.32 98.88 88.45 93.82 96.70 98.63 85.41 91.37 95.27 97.58
3200 90.24 94.92 97.35 98.82 88.77 94.05 96.75 98.58 86.27 92.16 95.34 97.71

naive 50 80.10 85.75 89.30 92.09 79.71 85.60 89.40 92.47 78.59 84.95 88.86 91.81
100 83.35 88.92 92.15 94.66 82.37 88.77 92.07 94.81 80.50 87.25 91.30 94.14
200 86.00 90.97 94.04 96.45 84.80 90.57 93.88 96.27 82.80 89.44 93.00 95.75
400 87.30 93.08 95.86 97.68 86.24 92.38 95.48 97.56 84.24 90.76 94.33 96.79
800 88.15 93.01 95.96 98.07 86.99 92.64 95.72 97.76 85.25 91.17 94.87 97.08

1600 89.10 94.08 96.86 98.59 88.32 93.74 96.71 98.45 86.68 92.29 95.82 98.12
3200 89.54 94.57 97.15 98.68 89.08 94.06 96.79 98.54 88.00 93.22 96.23 98.20

Table 6: Simulated percentage coverages of the CIs for the Omega Ratio in the general not-
i.i.d. setting.



Interval estimation for Sortino and Omega ratios 23

returns. This means that about 15 years of daily observations are not sufficient in order
have, in general, a good coverage accuracy. We emphasize that, in this context, a good
interval estimator for the performance ratios would be very useful since the estimators of
this ratio have a huge variability. This fact is highlighted by the expressions of the variance
of the estimators and by the simulations results which, for brevity, are not given here. The
high variability of these estimators is due to the fact that they are defined as the ratio of
two random variables. Indeed, it is well known that a “ratio random variable” has usually a
high variability. For example, the ratio of two independent normal random variables follows
the Chauchy distribution which do not possesses moments; a similar example is given by the
ratio of two independent uniform random variables; others examples are the F and Student’s
t distributions which do not posses the moments of all order even if they are defined as the
ratio of two random variables whit all moments.

Concluding, we think that the negative result obtained by the simulation study suggests
that the performance ratios considered should be applied with caution especially when they
are used to address the investment choices.
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