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Milano - Bicocca, Via R. Cozzi 53, I-20125 Milano, Italy.
e-mail address: g.bonfanti3@campus.unimib.it





Contents

1 Introduction 1

1.1 On the Euler-Lagrange equation . . . . . . . . . . . . . . . . 1

1.1.1 The state of the art . . . . . . . . . . . . . . . . . . . 3

1.1.2 Without growth conditions . . . . . . . . . . . . . . . 4

1.1.3 On the semi-classical Euler-Lagrange equation . . . . 5

1.1.4 Without differentiability assumptions . . . . . . . . . 7

1.1.5 Beyond exponential growth . . . . . . . . . . . . . . . 7

1.2 On the non-occurrence of the Lavrentiev phenomenon . . . . 9

I On the Euler-Lagrange equation 13

2 Without growth assumptions 15

2.1 Assumptions and main result . . . . . . . . . . . . . . . . . . 15

2.2 Proof of the Theorem . . . . . . . . . . . . . . . . . . . . . . 16

3 Without differentiability assumptions 19

3.1 Preliminaries and assumptions . . . . . . . . . . . . . . . . . 19

3.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Proof of the Theorem . . . . . . . . . . . . . . . . . . . . . . 24

II Higher Integrability 29

4 Beyond exponential growth 31

4.1 Assumptions and higher integrability results . . . . . . . . . . 31

4.2 The validity of the Euler-Lagrange equation . . . . . . . . . . 40



iv Contents

III On the Lavrentiev phenomenon 45

5 Non-occurrence of the Lavrentiev phenomenon 47
5.1 Assumptions and main result . . . . . . . . . . . . . . . . . . 47
5.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Differentiability results . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . 65

6 A two-dimensional Manià-type example 71
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A.1 Carathéodory functions . . . . . . . . . . . . . . . . . . . . . 75
A.2 Luzin’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.3 Convex functions - Some basic properties . . . . . . . . . . . 75

A.3.1 Subdifferential of convex functions . . . . . . . . . . . 76
A.3.2 Polars of convex functions . . . . . . . . . . . . . . . . 77

Bibliography 79



Chapter 1

Introduction

Outline of the thesis

In this chapter we introduce most of the problems that we will treat in
detail later, we recall a (far from being complete) list of known results, and
we state our main results. In the following chapters we will present the full
proofs of the results.

For the most part, the results presented in this thesis are available in [5],
[6], [7], and [8].

1.1 On the Euler-Lagrange equation

The basic problem (P) of the Calculus of Variations is the minimization of
an integral functional, the so called action

I(u) =
∫

Ω
L(x, u(x),∇u(x)) dx,

where Ω is a bounded domain in Rn and u : Ω→ R lies in a suitable space
X of trajectories and satisfies some appropriate boundary conditions. The
integrand function L : Ω×R×Rn → R is called the Lagrangian function.

One of the first natural question which are related to our problem (P) is
the existence of a minimizer in the space X. As one can guess, in this full
generality, the answer is negative.

However, once the existence is proven, one can wonder whether this mi-
nimizer satisfies some auxiliary properties, e.g. necessary conditions such as
the validity of the Euler-Lagrange equation along the minimizer. Moreover,
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it is quite natural to ask if there is any further regularity property, such as
higher integrability and higher differentiability.

One of the first answers to the existence problem was given in the second
decade of the 20th century: in the one-dimensional case (n = 1), L. Tonelli
could prove that if one considers X as the space of absolutely continuous
function AC[a, b], then a minimizer u does exist, provided L satisfies some
kind of lower semicontinuity and it is convex and superlinear with respect
to the third variable, i.e.,

L(x, u, ξ) ≥ ϕ(|ξ|) for some ϕ such that lim
t→+∞

ϕ(t)
t

= +∞.

The proof of this (classical) result is now known as the Direct Method of the
Calculus of Variations.

Assuming the existence of a minimizer u, one can look for necessary
conditions satisfied by u. Following an idea which is quite standard in Anal-
ysis, one can explore a neighbourhood of the minimizer, that is, one can
do variations and consider u + εη. In here, ε is a small positive parameter
and η is a smooth function which vanishes at the boundary of Ω, so that
u + εη is a competitor for the minimization problem, since it belongs to X
and u+ εη = u on the boundary of Ω.

Being u a minimizer, I(u + εη) − I(u) ≥ 0 holds for any ε and any
admissible variation η, and so∫

Ω

L(x, u(x) + εη(x),∇u(x) + ε∇η(x))− L(x, u(x),∇u(x))
ε

dx ≥ 0.

The integrand converges pointwise to

〈∇ξL(x, u(x),∇u(x)),∇η(x)〉+ Lu(x, u(x),∇u(x))η(x),

then, if one can pass to the limit ε→ 0 under the integral sign,∫
Ω

[〈∇ξL(x, u(x),∇u(x)),∇η(x)〉+ Lu(x, u(x),∇u(x))η(x)] dx ≥ 0.

Replacing now η with −η, one finally has the so called Euler-Lagrange
equation, (EL):∫

Ω
[〈∇ξL(x, u(x),∇u(x)),∇η(x)〉+ Lu(x, u(x),∇u(x))η(x)] dx = 0. (1.1)

Notice that if one considers div as the weak divergence, (EL) can be written
in a shorter form as

divx∇ξL(·, u,∇u) = Lu(·, u,∇u).
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Anyway, as a first step one has to prove that equation (1.1) makes sense,
or, in other words, that ∇ξL(·, u,∇u) and Lu(·, u,∇u) are (at least locally)
integrable.

In the following we will mainly focus on the term ∇ξL since we will
assume |Lu(x, u, ξ)| ≤ KL(x, u, ξ) for a.e. x in Ω and for every (u, ξ) in
R×Rn.

1.1.1 The state of the art

It is well known that the Euler-Lagrange equation plays an important role
in the minimization problems of the Calculus of Variations, in particular in
the regularity theory for minimizers. In spite of this, we are still far from
having a general theorem on its validity.

So far, without any further assumption on the Lagrangian L, the validity
of the Euler-Lagrange equation has to be considered a conjecture.

Indeed, the result cannot be true in its full generality and further condi-
tions on L are needed. In [2], J. M. Ball and V. J. Mizel present a Lagrangian
whose derivative with respect to the “gradient variable” is not integrable
and, therefore, (EL) cannot hold along the minimizer.

Notice that Ball and Mizel built their famous counterexample in the one-
dimensional context, although the validity of necessary conditions of very
general nature has been proved in this case.

As for the scalar case, the validity of the Euler-Lagrange equation has
been proved only for particular cases: in the following, we are going to
present some of these results.

As one can guess, in the multidimensional case u : Rn → Rm, m > 1,
(see [22] and the references cited there) things get even worse...

The conditions on the Lagrangian L which are usually imposed to prove
the validity of the Euler-Lagrange equation can be of growth type: for in-
stance, consider a Lagrangian L(x, u, ξ) = f(ξ) + g(x, u), where x lies in a
domain Ω ⊂ Rn, u is real and f grows at most polynomially, i.e.,

|f(ξ)| ≤M(1 + |ξ|p), for some positive p and M. (1.2)

In this case, classical results show that (EL) holds along the minimizer u,
provided u belongs to W 1,p(Ω). Indeed, from (1.2) and the convexity of f ,
it follows |∇f(ξ)| ≤ K(1 + |ξ|p−1), for some K. A slightly more accurate
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argument can be used to prove that f(ξ) with exponential growth are also
allowed.

However, superexponential growth is still a challenging problem, al-
though some special results have been obtained: in [29], G. M. Lieberman
considers the problem

minimize
∫

Ω
exp(|∇u(x)|2) dx

and proves that minimizers are classical solutions to the corresponding
Euler-Lagrange equation.

Otherwise, one can try to get some regularity properties for the solution
u: for instance, if u ∈ W 1,∞

loc (Ω), then it is easy to prove the validity of
the Euler-Lagrange equation. P. Marcellini, in [31], gains local Lipschitz
continuity for solutions to variational problems requiring some growth as-
sumptions on the Lagrangian L. A. Cellina, [13], instead, proves global
Lipschitz continuity through conditions on the set Ω and on the boundary
datum u0. More recently, weaker assumptions on Ω and on u0 were intro-
duced by P. Bousquet and F. H. Clarke, [9], to get local Lipschitz continuity.

Another remarkable result is the recent one by M. Degiovanni and M.
Marzocchi: in [23], they consider the functional∫

Ω
L(∇u(x)) dx + ϕ(u),

where u ∈ u0 + W 1,p
0 (Ω), 1 ≤ p < ∞ and ϕ ∈ W−1,p′(Ω), and prove that

any minimizer u satisfies the associated Euler-Lagrange equation∫
Ω
〈∇L(∇u(x)),∇η(x)〉 dx = −ϕ(η), ∀η ∈ C∞0 (Ω).

Since there is no upper growth condition (main hypotheses on L are just
convexity and regularity), at present this is the border of knowledge about
the validity of the Euler-Lagrange equation in the regular case.

1.1.2 Without growth conditions

The lack of growth assumptions may lead one to say that Degiovanni and
Marzocchi opened a new path in order to prove the validity of the Euler-
Lagrange equation.
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The main result of Chapter 2 is inspired by their work. In fact, we use
some results presented in [23] as a main tool applied to the functional

I(u) =
∫

Ω
[L(∇u(x)) + g(x, u(x))] dx,

where L is a convex function and g is a Carathéodory map (see Appendix
A.1) such that u 7→ g(x, u) is concave for almost every x in Ω and satisfies
some growth assumptions. We prove that for any minimizer u of I, there
exists a selection σ(x) from the subdifferential ∂g (x, u (x)) such that, for
every η ∈ C∞c (Ω), we have∫

Ω
〈∇L (∇u (x)) ,∇η (x)〉 dx = −

∫
Ω
σ (x) η (x) dx.

Our result generalizes the case considered by Degiovanni and Marzocchi:
in fact, the functional ϕ ∈ W−1,p′(Ω) which appears in [23] is substituted
by a more generic u 7→

∫
g(x, u(x)) dx.

Functionals of this type, with the same concavity assumption, were con-
sidered by A. Cellina and G. Colombo, [15], but their purpose was to prove
existence of solutions and the domain of integration was one-dimensional.

1.1.3 On the semi-classical Euler-Lagrange equation

Consider the problem

minimize
∫

Ω
[f(|∇u(x)|) + g(x, u(x))] dx on u0 +W 1,1

0 (Ω),

where f is a convex function defined on R+ and g is a Carathéodory func-
tion, differentiable with respect to u, and whose derivative gu is also a
Carathéodory function. The main point here is that we ask f to be convex
but we do not require any differentiability properties on f .

As a consequence, one cannot speak about the “differential of f” and
one only has the notion of subdifferential of f , which is a generalization of
the gradient in the convex context, see e.g. [37] and Appendix A.3.1.

Definition 1.1. A vector x∗ is said to be a subgradient of a convex function
f at a point x if

f(z) ≥ f(x) + 〈x∗, z − x〉, ∀z.

The set of all subgradients of f at x is called the subdifferential of f at x
and is denoted by ∂f(x).



6 1. Introduction

Obviously, one cannot write the Euler-Lagrange equation in its classical
form (1.1) and may therefore wonder which is the right statement. A sug-
gestion comes from the Pontryagin Maximum Principle for optimal control
problems, [34].

So as to show what we mean, consider a one-dimensional domain [a, b]
and express our variational problem in terms of an optimal control problem

minimize
∫ b

a
f(t, x(t), u(t))dt and x(a) = x0, x(b) = x1, (1.3)

where the state x and the control u are linked by the differential condition
x′(t) = u(t) and the set of the admissible controls U is the effective domain
of f(t, u, ·).

The Pontryagin Maximum Principle states that if (x, u) is a solution to
(1.3), then there exist a non negative p0 and a map p in W 1,1([a, b]) such
that (p0, p) 6= (0, 0) and almost everywhere in [a, b]:

i)
d

dt
p(t) = p0

∂f

∂x
(t, x(t), u(t));

ii) p(t)u(t)− p0f(t, x(t), u(t)) = max
u∈U

{
p(t)u− p0f(t, x(t), u)

}
.

In the non-trivial case p0 6= 0, when we consider the problem of mini-
mizing functionals of the form∫

Ω
[f(∇u(x)) + g(x, u(x))] dx,

where f is a convex function defined on Rn, one can conjecture that the
suitable form of the Euler-Lagrange equations satisfied by a solution u should
be

there exists p ∈ (L1(Ω))n such that div p(·) = gu(·, u(·)),

in the sense of distributions and, for a.e. x and every ξ in Rn, we have

〈p,∇u(x)〉 − [f(∇u(x)) + g(x, u(x))] ≥ 〈p, ξ〉 − [f(ξ) + g(x, u(x))].

Equivalently, the condition can be expressed as

∃ p ∈ (L1(Ω))n, a selection from ∂f(∇u), such that div p(·) = gu(·, u(·)).

In this form, this condition is the equivalent of the Pontryagin Maximum
Principle and we call it the Euler-Lagrange equation in semi-classical form.

Some results about this topic are available in [10], [11], and [14].
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1.1.4 Without differentiability assumptions

Let u be a locally bounded solution to the problem of minimizing∫
Ω
L(x, u(x),∇u(x)) dx

on u0 +W 1,1
0 (Ω), where L(x, u, ξ) is a Carathéodory function, differentiable

with respect to u, and whose derivative Lu is also a Carathéodory function,
and the map ξ 7→ L(x, u, ξ) is convex and defined on Rn. We do not assume
further regularity on L, with the exception of standard growth estimates.

On the same wave-length of Section 1.1.3, it has been conjectured that
the suitable form of the Euler-Lagrange equations satisfied by u should be

∃ p ∈ (L1(Ω))n, a selection from ∂ξL(·, u(·),∇u(·)), such that

div p(·) = Lu(·, u(·),∇u(·))

in the sense of distributions. This fact has been proved in a few special
cases: in [20] for maps of the form L(u, ξ), jointly convex in (u, ξ), and,
more recently, in [16] for maps L(x, u, ξ) = f (|ξ|) + g (x, u), depending on ξ
through its norm.

The proof introduced in [16] is elementary and it is based on the Riesz
representation Theorem and on the Hahn-Banach Theorem. The result
which is presented in Chapter 3 is a sequel to [16] and one can see that a
modification of the same elementary proof allows us to prove the conjecture
in its full generality. The proofs we present are self-contained.

Notice that this is not the most general problem about the validity of
necessary conditions for minimization problems with f convex: our f is
defined on R and in our result are not included problems with restrictions
on ∇u, e.g. |∇u| ≤ 1, that would require extended valued convex functions.
This is a very active and difficult area of research and only a few results are
available: [3], [4], and [19].

1.1.5 Beyond exponential growth

In this work we consider a higher integrability property of a solution u to
the problem of minimizing∫

Ω
L(x, u(x),∇u(x))dx.
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More precisely, our aim is to establish the local integrability of the map

|∇ξL (·, u(·),∇u(·)) ||∇u(·)|. (1.4)

In fact, for Lagrangians L(x, u, ·) growing faster than exponential, the inte-
grability of L (·, u(·),∇u(·)) does not, in general, imply the integrability of
|∇ξL (·, u(·),∇u(·)) | (see an example in [17]).

This inconvenience does not occur as soon as we are able to prove some
additional regularity properties of the solution u. Consider a problem of the
type

minimize
∫

Ω
L
(
|∇u(x)|

)
dx :

in [38], the author, using a barrier and under smoothness conditions on the
boundary and on the second derivative of L, proves that the gradient of the
solution is bounded. In [31] and in [32], under general growth conditions,
the authors, taking advantage of the regularity properties of solutions to el-
liptic equations, prove that the gradient of the minimizer is locally bounded.
Clearly, a proof of regularity (∇u in L∞) of the solution is also a proof of the
higher integrability of the solution. In this sense, for the case L(ξ) = exp |ξ|2,
special cases of higher integrability have been obtained by Lieberman, [29],
and by H. Naito, [33]; Lieberman, in the same paper, considers also a more
general Lagrangian, but assuming, among other regularity conditions, that
the Euler-Lagrange equation admits a C3 solution.

On the one hand our result, that is, the local integrability of (1.4), is
weaker than the local boundedness of ∇u, but on the other hand it holds
for a larger class of functionals. Indeed, we do not assume the existence of a
second derivative of L(x, u, ·), nor we assume its strict convexity. Moreover,
we also allow a dependence on x and on u.

However, the integrability of (1.4) is needed both to establish the validity
of the Euler-Lagrange equation for the solution to this problem, i.e., in order
to prove that the equation∫

Ω
[〈∇ξL(x, u(x),∇u(x)),∇η(x)〉+ Lu(x, u(x),∇u(x))η(x)]dx = 0

holds for every admissible variation η, and to prove additional regularity
properties (higher differentiability) of the solution, as in [18].

In [17], the authors obtain a higher integrability result considering a
Lagrangian of the kind L = ef(|∇u|) + g(x, u), where f and g are regular
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functions satisfying some growth assumptions and f is convex. In Chapter
4 we follow their steps and we are aimed by a twofold purpose: first we wish
to present a more general result, suited for being used in the investigation
of further regularity properties of the solution; second, we wish to use the
higher integrability property to establish the validity of the Euler-Lagrange
equation for a class of Lagrangians growing faster than exponential.

It is well known, in fact, (see e.g. [20]) that, so far, the validity of
the Euler-Lagrange equation has been established for Lagrangians growing
at most exponentially; some exceptions to this statement exist, beginning
with the already mentioned Lieberman [29]; more recently, [23] and [8].
However, the few results proved so far for integrands having growth faster
than exponential hold only for Lagrangians of a very special form.

The proof of the higher integrability result, that will be presented in
Chapter 4, is independent on the validity of the Euler-Lagrange equation;
this fact prompted us to try to use the higher integrability property to extend
the validity of the Euler-Lagrange equation beyond exponential growth. A
result along these lines is presented in the second part of Chapter 4: in
it, we allow the growth of L with respect to ξ to be approximately up to
|ξ||ξ| ≡ exp(|ξ| log |ξ|).

1.2 On the non-occurrence of the Lavrentiev phe-

nomenon

In Section 1.1 we recalled that L. Tonelli could prove the existence of a mini-
mizer for a one-dimensional minimization problem over the space AC(a, b).
It is natural to ask what would happen if one considers a different set X
of trajectories: one cannot expect existence results in every space, but, at
the same time, one would expect the infimum to be the same over different
spaces. Indeed, in 1927, a remarkable paper by M. A. Lavrentiev, [28], pre-
sented an example of a variational functional over the interval (a, b), with
boundary conditions u(a) = α, u(b) = β, whose infimum over the set of
absolutely continuous functions was strictly lower than the infimum of the
same functional over the set of Lipschitzean functions satisfying the same
boundary conditions. Since then, this phenomenon is called the Lavren-
tiev phenomenon. Some years later, in 1934, B. Manià, [30], published an
example of a simpler functional exhibiting the Lavrentiev phenomenon.
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Notice that the occurrence of this phenomenon prevents the possibility
of computing the minimum, and the minimizer, by standard finite-element
schemes: indeed, these methods base on Lipschitz continuous approxima-
tions.

In the autonomous case, which is the one we will treat, several authors
presented sufficient conditions to prevent the occurrence of this phenomenon,
through growth assumptions, as in [21] for n = 1, or through some regularity
conditions on the Lagrangian: in 1993, G. Alberti and F. Serra Cassano, [1],
did show that the phenomenon does not occur for autonomous integrands
over a one-dimensional integration set. As for n ≥ 1, G. Buttazzo and
M. Belloni in [12, Remark 3.4] use an approximation technique in order to
prove that the Lavrentiev phenomenon can never occur in the autonomous
case: unfortunately such a method does not seem to preserve the boundary
value. Finally, connections between the regularity of a solution and the
non-occurrence of the Lavrentiev phenomenon have been pointed out e.g.
in [25].

In [24], Lemma 2.1, L. Esposito, F. Leonetti, and G. Mingione prove
that the phenomenon does not occur for functionals of the form∫

Ω
f(∇v(x)) dx,

provided that Ω is the unit ball, f is a convex C2(RN ) function and the
growth of f is of the (p − q) type, i.e., m|z|p ≤ f(z) ≤ L(1 + |z|)q, with
2 ≤ q < p < 2 + q; in addition, some further growth conditions on the first
and second derivatives of f are assumed.

In Chapter 5, we show that the Lavrentiev phenomenon does not occur
for functionals of the form ∫

Ω
L(|∇u(x)|) dx,

where L is an arbitrary convex function, provided that both ∂Ω and u0

are of class C2. Our Theorem 5.1 contains neither regularity nor growth
assumptions on the Lagrangian L, besides its being convex.

Notice that, when the integration set Ω is a subset of RN , the boundary
condition is described by the inclusion u − u0 ∈ W 1,1

0 (Ω) and, in order for
the problem of the occurrence of the Lavrentiev phenomenon to make sense,
u0 is a Lipschitzean function on Ω.
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Finally, in Chapter 6 we present a modification of Manià’s functional
on Ω ⊂ R2 with a linear boundary function u0, exhibiting the Lavrentiev
phenomenon.





Part I

On the Euler-Lagrange

equation





Chapter 2

Without growth assumptions

This chapter is based on a joint work with M. Mazzola: [8], On the vali-
dity of the Euler-Lagrange equation in a nonlinear case, Nonlinear Analysis:
Theory, Methods & Applications 73 (2010), no. 1, pp. 266-269.

2.1 Assumptions and main result

Let us consider the problem (P) of minimizing the integral functional

I(u) =
∫

Ω
[L(∇u(x)) + g(x, u(x))] dx on the set u0 +W 1,p

0 (Ω),

where Ω is an open bounded subset of RN , L : RN → R is a convex map
and 1 ≤ p < ∞. We also suppose that the boundary datum u0 lies in
W 1,p(Ω) ∩ L∞loc(Ω) and satisfies I(u0) < +∞.

We observe that assuming u0 to be locally bounded is non restrictive if
the Lavrentiev phenomenon does not occur, as already remarked in [23].

In the following, we denote by p′ the dual conjugate exponent of p, i.e.,
1/p + 1/p′ = 1, and by p∗ the Sobolev conjugate exponent of p, that is
p∗ = Np

N−p if p < N .

As already remarked, for the properties of convex and concave functions
we refer to [37]: we only recall here that, given a concave function f : RN →
R, its subdifferential at the point ξ ∈ RN is the set

∂f(ξ) = {s ∈ RN : f(x) ≤ f(ξ) + 〈s, x− ξ〉 , ∀x ∈ RN},

where 〈·, ·〉 is the standard scalar product in RN .
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In order to prove our result we will need the following growth assumption
on the map g:

Assumption 2.1. Let g : Ω × R → R be a Carathéodory map such that
u 7→ g (x, u) is concave for almost every x ∈ Ω. Moreover:

• if p < N , there exist α1 ∈ L(p∗)′ (Ω) and β1 ∈ L∞ (Ω) such that

|g (x, u) | ≤ α1 (x) + β1 (x) |u|p∗ , a.e. x ∈ Ω, ∀u ∈ R;

• if p = N , there exist r > 1, α2 ∈ Lr
′
(Ω) and β2 ∈ L∞ (Ω) such that

|g (x, u) | ≤ α2 (x) + β2 (x) |u|r, a.e. x ∈ Ω, ∀u ∈ R;

• if p > N , there exist α3 ∈ L1 (Ω) and β3 : R→ R non-decreasing such
that

|g (x, u) | ≤ α3 (x) + β3 (u) , a.e. x ∈ Ω, ∀u ∈ R.

We can now state our main result

Theorem 2.2. If L is convex of class C1(RN ) and g satisfies Assumption
2.1, then the Euler-Lagrange equation associated to problem (P) holds, that
is, if u is a minimizer for I, then there exists a selection σ(·) from the set
valued map x 7→ ∂g (x, u (x)) such that∫

Ω
〈∇L (∇u (x)) ,∇η (x)〉 dx = −

∫
Ω
σ (x) η (x) dx ∀η ∈ C∞c (Ω) .

Remark : We observe that Assumption 2.1 is sufficient in order to prove
our main result, but it does not guarantee the existence of a minimum for
problem (P) in the case p > N .

2.2 Proof of the Theorem

For the sake of brevity, we will treat at the same time the cases p < N and
p = N , by assuming g to satisfy the following general condition:

|g(x, u)| ≤ α(x) + β(x)|u|r, a.e. x ∈ Ω, ∀u ∈ R, (2.1)

where r = p∗ if p < N , some r ∈ (1,∞) if p = N and α ∈ Lr
′
(Ω), β ∈ L∞(Ω).
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Proof of Theorem 2.2. Given a set X, we denote

‖X‖ = max
{
|x| : x ∈ X

}
.

We prove the theorem in several steps.

a) When p ≤ N , we show that if g satisfies (2.1), then there exist a
constant C > 0 and a function β′ ∈ L∞(Ω) such that

‖∂g(x, u)‖ ≤ 2α(x) + β′(x)|u|r−1 + C, a.e. x ∈ Ω, ∀u ∈ R.

Fix (x, u) ∈ Ω×R and let y ∈ ∂g(x, u). From the concavity of the map
u 7→ g(x, u), we have

g(x, u+ h) ≤ g(x, u) + yh, ∀h ∈ R.

Define the constant
h0 = − y

|y|
(1 + |u|r)1/r.

By the choice of h0, we have

|yh0| ≤ |g(x, u+ h0)|+ |g(x, u)|

≤ 2α(x) + β(x) [|u+ h0|r + |u|r]

≤ 2α(x) + β′(x) [|h0|r + |u|r]

= 2α(x) + β′(x) [1 + 2|u|r] .

Finally, using the inequality

(1 + |ξ|s)1− 1
s ≤ 1 + |ξ|s−1

and up to renaming β′, we obtain

|y| ≤ 2α(x)
(1 + |u|r)1/r

+ β′(x) (1 + |u|r)1− 1
r

≤ 2α(x) + β′(x)|u|r−1 + C.

b) Assume that g satisfies Assumption 2.1. We claim that for any u ∈
Lr(Ω) there exists a measurable selection σ(·) from the set valued map x 7→
∂g(x, u(x)) such that σ belongs to Lr

′
(Ω) if 1 < r <∞ (that is case p ≤ N)

and to L1(Ω) if r =∞ (case p > N).
Recalling that g is a Carathéodory map, we have that for any u : Ω→ R

measurable, the set valued map x 7→ ∂g(x, u(x)) is also measurable (see
Corollary 4.6 of [36]).
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So, the Kuratowski and Ryll-Nardzewski theorem, [27], yields the exis-
tence of a measurable selection σ(x) from the map ∂g(x, u(x)).

As for the integrability, by step a), we obtain that in the case p ≤ N

|σ(x)| ≤ ‖∂g(x, u(x))‖ ≤ 2α(x) + β′(x)|u(x)|r−1 + C, a.e. x ∈ Ω.

Then, Assumption 2.1 let us conclude that σ belongs to Lr
′
(Ω). When

p > N , we use the boundedness of u in order to prove that σ is in L1(Ω).

c) Let u be a solution of problem (P) and let σ(·) ∈ ∂g(·, u(·)) be the
selection given by step b). For u ∈ u0 +W 1,p

0 (Ω), define the functional

J (u) =
∫

Ω
[L (∇u (x)) + σ (x) · (u (x)− u (x)) + g (x, u (x))] dx.

We claim that u is a minimizer for J , too.
Indeed, let v ∈ u0 + W 1,p

0 (Ω). From the concavity of u 7→ g (x, u), we
have

g (x, v (x)) ≤ g (x, u (x)) + σ (x) ·
(
v (x)− u (x)

)
, for a.e. x ∈ Ω;

then
J (u) = I (u) ≤ I (v) ≤ J (v) .

d) Consider the functional Φ : W 1,p
0 (Ω)→ R such that

Φ : ϕ 7→
∫

Ω
σ (x)ϕ (x) dx.

Since, by step b), σ belongs to L(p∗)′(Ω) if p < N , to Lr
′
(Ω) if p = N

and to L1(Ω) if p > N , Sobolev embedding theorem let us conclude that Φ
is continuous in all three cases.

Finally, Theorem 1.1 in [23] yields that the minimizer u of J satisfies the
Euler-Lagrange equation, that is∫

Ω
〈∇L(∇u(x)),∇η(x)〉 dx = −Φ(η) ∀η ∈ C∞0 (Ω),

hence our claim.



Chapter 3

Without differentiability

assumptions

This chapter is based on a joint work with A. Cellina: [5], The validity of
the Euler-Lagrange equation, Discrete and Continuous Dynamical Systems.
Series A 28 (2010), no. 2, pp. 511-517.

3.1 Preliminaries and assumptions

Let u be a locally bounded solution to the problem of minimizing∫
Ω
L(x, v(x),∇v(x)) dx (3.1)

on v0 +W 1,1
0 (Ω), where L(x, v, ξ) is a Carathéodory function, differentiable

with respect to v, and whose derivative Lv is also a Carathéodory function.
Assume also that the map ξ 7→ L(x, v, ξ) is convex and defined on Rn.

We do not need further regularity on L, with the exception of standard
growth estimates.

We consider RN with the Euclidean norm | · | and we call B the unit ball.
`(A) is the N -dimensional Lebesgue measure of a set A.

Given a closed convex K ⊂ RN , by mK we mean the unique point of K
of minimal norm and by ‖K‖ we mean sup{|k| : k ∈ K}.

A set valued map K with values in the non-empty compact subsets of
RN is called upper semicontinuous at x0 if for every ε there exists δ such
that |x − x0| < δ implies K(x) ⊂ K(x0) + εB. In this chapter we shall
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also meet real valued upper and lower semicontinuous maps, with the usual
definitions.

Given a function L(x, v, ξ), convex with respect to ξ for each fixed (x, v),
by ∂ξL(x, v, ξ) we mean the subdifferential of L with respect to the variable
ξ. Under the assumptions of the present work, ∂ξL(x, v, ξ) is a non-empty
compact convex subset of RN and the map ξ 7→ ∂ξL(x, v, ξ) is (for fixed
(x, v)) an upper semicontinuous set valued map. We shall assume further
properties of this map in Assumption 3.1.

IA(·) is the indicator function, in the sense of the Convex Analysis, of
the set A and f∗ is the polar or Fenchel transform of f , see Appendix A.3.2
and [37].

Ω is a bounded open subset of RN . Given a solution u, the shorthand
notation DL(x) means the set ∂ξL(x, u(x),∇u(x)).

Assumption 3.1. i) L(x, v, ξ) is a Carathéodory function, differentiable
with respect to v, and whose derivative Lv is also a Carathéodory function,
and, for every pair (x, v), the map ξ 7→ L(x, v, ξ) is convex and defined on
RN .

ii) There exist a convex function f and constants H1 and H2 such that

‖∂f(ξ)‖ ≤ H1f(ξ) +H2 (3.2)

and, for every U , there exist functions αU , βU and γU in L1(Ω) and positive
constants h1

U , h2
U and h3

U , such that |v| ≤ U implies

αU (x) + h1
Uf(ξ) ≤ L(x, v, ξ) (3.3)

∂ξL(x, v, ξ) ≤ βU (x) + h2
U∂f(ξ) (3.4)

|Lu(x, v, ξ)| ≤ γU (x) + h3
Uf(ξ). (3.5)

iii) For every δ > 0, there exists Ωδ ⊂ Ω with `(Ω \ Ωδ) < δ, such that
the restriction of ∂ξL(x, v, ξ) to Ωδ ×R×RN is upper semicontinuous.

Notice that Assumption 3.1 ii) limits the growth of L in the variable ξ
to be exponential. This growth limitation still holds, so far, for the proofs
of the validity of the Euler-Lagrange equation for variational problems of
general form, independently on whether there are additional differentiability
assumptions or not.

We recall that the only exceptions, as far as we know, to this statement
are the recent paper [23], where no growth limitations are assumed but
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functionals have a special form; our generalization (Chapter 2); and the
result we are going to present in Chapter 4.

3.2 Main result

It is our purpose to prove the following

Theorem 3.2. Let L satisfy Assumption 3.1. Let u be a locally bounded
solution to Problem (3.1). Then,

there exists p ∈ (L1(Ω))N , a selection from ∂ξL(·, u(·)∇u(·)),

such that
div p(·) = Lu(·, u(·),∇u(·))

in the sense of distributions.

We shall need the following variant of the Riesz Representation Theorem.

Lemma 3.3. Let D be a map from Ω to the closed convex non-empty subsets
of RB, such that v ∈ (L∞(Ω))N implies that the map x 7→ m[D(x)−v(x)] is
measurable; let T : (L1(Ω))N → R be a linear functional satisfying

T (ξ) ≤
∫

Ω
(ID(x))

∗(ξ(x)) dx.

Then, there exists p̃ ∈ (L∞(Ω))N , p̃(x) a.e. in D(x), that represents T , i.e.,
such that

T (ξ) =
∫

Ω
〈p̃(x), ξ(x)〉 dx. (3.6)

Proof. a) Since |(ID(x))∗(ξ(x))| ≤ ‖D(x)‖|ξ(x)|, we have that T is a bounded
linear functional on (L1(Ω))N . Writing ξ as ξ1(x)e1 + . . . + ξN (x)eN and
applying the standard Riesz representation Theorem, we infer the existence
of a function p̃ ∈ (L∞(Ω))N that satisfies (3.6). To show that p̃(x) is in
D(x) almost everywhere, assume that there exists a set E ⊂ Ω of positive
measure such that, on E, p̃(x) /∈ D(x), i.e., 0 /∈ D(x) − p̃(x). Setting
D∗ := D(x)− p̃(x), we can equivalently say that |mD∗(x)| > 0 on E.

Let z(x) be the projection of minimal distance of p̃(x) on D(x), so that,
z(x)−p̃(x) = mD(x)−p̃(x) or, z(x)−p̃(x) = mD∗(x). From the characterization
of the projection of minimal distance, we obtain

〈p̃(x)− z(x), z(x)〉 ≥ 〈p̃(x)− z(x), k〉, ∀k ∈ D(x).
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that can be rewritten as

〈−mD∗(x), p̃(x)〉 ≥ |mD∗(x)|2 + 〈−mD∗(x), k〉, ∀k ∈ D(x).

Hence, we have that, on E,

〈−mD∗(x), p̃(x)〉 > sup
{
〈−mD∗(x), k〉 : k ∈ D(x)

}
= (ID(x))

∗(−mD∗(x)).

b) Setting ξ̃ := −mD∗χE , we have that ξ̃ ∈ (L1(Ω))N and

T (ξ̃) =
∫

Ω
〈p̃, ξ̃〉 =

∫
E
〈p̃,−mD∗〉 >

∫
Ω

(ID(x))
∗(ξ̃) ≥ T (ξ̃),

a contradiction.

We shall also need the following propositions:

Proposition 3.4. Let x 7→ K(x) be an upper semicontinuous set valued
map. Then,

i) the real valued map x 7→ |mK(x)| is lower semicontinuous and the real
valued map x 7→ ‖K(x)‖ is upper semicontinuous;

ii) the real valued map (x, ξ) 7→ (IK(x))∗(ξ) is continuous in ξ for each
fixed x and upper semicontinuous in x for each fixed ξ.

Proposition 3.5. Let x 7→ K(x) be an upper semicontinuos set valued map
with values in the closed convex subsets of RN . Then, |mK(·)| continuous at
x0 implies that mK(·) is continuous at x0.

Proof. Fix x0, a point of continuity of |mK(·)|, and consider two cases: i)
0 /∈ K(x0) and, ii), 0 ∈ K(x0).

i) Fix ε > 0, with ε < 2
√

2|mK(x0)|. Let σ > 0 be such that

(
|mK(x0)| − σ

)2 = |mK(x0)|2 −
ε2

8

and let η be such that

1
2
(
|mK(x0)|2 + (|mK(x0)|+ η)2

)
= |mK(x0)|2 +

ε2

8
.

Let δ be such that |x − x0| < δ implies that both K(x) ⊂ K(x0) + σB
and

∣∣|mK(x0)| − |mK(x)|
∣∣ < η. As a consequence, from the convexity of

K(x0) + σB, we obtain that

mK(x0) +mK(x)

2
∈ K(x0) + σB,
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so that ∣∣∣∣mK(x0) +mK(x)

2

∣∣∣∣ ≥ |mK(x0)| − σ.

From the identity∣∣∣∣mK(x0) −mK(x)

2

∣∣∣∣2 =
1
2
(
|mK(x0)|2 + |mK(x)|2

)
−
∣∣∣∣mK(x0) +mK(x)

2

∣∣∣∣2 ,
we obtain∣∣∣∣mK(x0) −mK(x)

2

∣∣∣∣2 ≤ 1
2
(
|mK(x0)|2 + |mK(x0) + η|2

)
− (|mK(x0)| − σ)2

= |mK(x0)|2 +
ε2

8
− |mK(x0)|2 +

ε2

8
=
ε2

4
.

ii) Fix ε > 0; for σ > 0 such that |x−x0| < σ implies K(x) ⊂ K(x0)+εB,
we have that mK(x) − 0 ∈ εB.

Lemma 3.6. i) v ∈ (L∞(Ω))N implies that the map

x 7→ m[ 1
‖DL(x)‖DL(x)−v(x)] is in (L∞(Ω))N

and, ii), for ξ ∈ (L1(A))N , the map

x 7→ (I[ 1
‖DL(x)‖DL(x)−v(x)])

∗(ξ(x)) is in L1(Ω).

Proof. i) Fix ε. Let Ω′ be the subset of Ω provided by Assumption 3.1 iii),
with δ = ε

4 .
Applying Luzin’s Theorem (see Appendix A.2), there exists E ⊂ Ω′ with

`(Ω′ \ E) ≤ ε
4 , such that u|E , v|E and ∇u|E are continuous so that, on E,

the set valued map DL is upper semicontinuous and, by Proposition 3.4, the
real valued map ‖DL‖ is upper semicontinuous.

Hence, there exists E′ ⊂ E, with `(Ω′\E′) ≤ 2
4ε, such that the restriction

of ‖DL‖ to E′ is continuous. Then, the set valued map x 7→ 1
‖DL(x)‖DL(x)

is upper semicontinuous on E′.
In fact, let xn ∈ E′ such that xn → x∗ and wn ∈ 1

‖DL(xn)‖DL(xn) with
wn → w∗. Then, ‖DL(xn)‖wn → ‖DL(x∗)‖w∗ that belongs to DL(x∗), i.e.,
w∗ ∈ 1

‖DL(x∗)‖DL(x∗).

We have obtained that the restriction to E′ of the map 1
‖DL‖DL has

closed graph, and it follows that it is upper semicontinuous. Then, so is the
the restriction to E′ of the set valued map 1

‖DL‖DL − v.
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Applying Proposition 3.4 i), we infer that the restriction to E′ of the
map x 7→ |m[ 1

‖DL(x)‖DL(x)−v(x)]| is lower semicontinuous, hence, for a suitable

E′′ ⊂ E′ with `(Ω′ \ E′′) ≤ 3
4ε, its restriction to E′′ is continuous. By

Proposition 3.5, the restriction to E′′ of m[ 1
‖DL‖

DL−v] is continuous, and

`(Ω \ E′′) ≤ ε. Being ε arbitrary, m 1
‖DL‖

DL−v is measurable on Ω and

belongs to (L∞(Ω))N .

ii) Consider a simple function ξs =
∑
αiχAi , with ∪Ai = E′; we have

(I[ 1
‖DL(x)‖DL−v(x)])

∗(ξs(x)) =
∑

(I[ 1
‖DL(x)‖]DL−v(x))

∗(αi)χAi(x) :

by Proposition 3.4 ii), it is upper semicontinuous in x on each Ai, hence
measurable on E′.

Let (ξν) be a sequence of simple functions, converging to ξ|E′ . Fix x̃:
again by Proposition 3.4,

(I[ 1
‖DL(x̃)‖DL(x̃)−v(x̃)])

∗(ξν(x̃)) converges to (I[ 1
‖DL(x̃)‖DL(x̃)−v(x̃)])

∗(ξ(x̃)).

Moreover, each of the functions x 7→ (I[ 1
‖DL(x)‖DL−v(x)])

∗(ξν(x)) is measur-

able, and so is their pointwise limit (I[ 1
‖DL(·)‖DL(·)−v(·)])

∗(ξ(·)). Being ε ar-

bitrary, we have that x 7→ (I[ 1
‖DL(x)‖DL(x)−v(x)])

∗(ξ(x)) is measurable on Ω.

Finally, |(I[ 1
‖DL‖

DL−v])
∗(ξ)| ≤ |ξ|.

3.3 Proof of the Theorem

Proof of Theorem 3.2. a) Let u be a locally bounded solution to problem
(3.1), let η ∈ C∞0 (Ω). Without loss of generality assume that sup |η| ≤ 1
and sup |∇η| ≤ 1.

Set ω = supp(η), let U∗ such that |u(x)| ≤ U∗ on ω, and set U = U∗+1.
From (3.2) we infer that, for |z| ≤ 1, f(ξ + z) ≤ f(ξ)eH . Recalling the
notation DL(x) = ∂ξL(x, u(x),∇u(x)), we have that

1
ε

[
L(x, u(x) + εη(x),∇u(x) + ε∇η(x))− L(x, u(x),∇u(x))

]
→
[

sup
k∈DL(x)

〈k,∇η(x)〉
]

+ Lu(x, u(x),∇u(x))η(x)

pointwise w.r.t. x.
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Moreover,∣∣∣∣1ε [L(x, u(x) + εη(x),∇u(x) + ε∇η(x))− L(x, u(x),∇u(x))
]∣∣∣∣

=
∣∣∣∣1ε [L(x, u(x) + εη(x),∇u(x) + ε∇η(x)) + . . .

. . .− L(x, u(x),∇u(x) + ε∇η(x))
]∣∣∣∣

+
∣∣∣∣1ε [L(x, u(x),∇u(x) + ε∇η(x))− L(x, u(x),∇u(x))

]∣∣∣∣
≤
∣∣Lu(x, u(x) + θ1εη(x),∇u(x) + ε∇η(x))η(x)

∣∣
+
∣∣ sup{〈k,∇η(x)〉 : k ∈ ∂ξL(x, u(x),∇u(x) + θ2ε∇η(x))}

∣∣.
From (3.5), we have

|Lu(x, u(x) + θ1εη(x),∇u(x) + ε∇η(x))η(x)|

≤ γU (x) + h3
Uf(∇u(x) + ε∇η(x))

≤ γU (x) + h3
Uf(∇u(x))eH .

(3.7)

Assumption (3.3) implies that f(∇u) is integrable, so that the right hand
side of (3.7) is an integrable function, independent of ε.

We also have:∣∣ sup{〈k,∇η(x)〉 : k ∈ ∂ξL(x, u(x),∇u(x) + θ2ε∇η(x))}
∣∣

≤ |∇η(x)|
[
βU (x) + h2

U

∣∣∂f(∇u(x) + θ2ε∇η(x))
∣∣]

≤ |∇η(x)|
[
βU (x) + h2

UKf(∇u(x) + θ2ε∇η(x))
]

≤ |∇η(x)|
[
βU (x) + h2

UHf(∇u(x))eH
]
,

an integrable function, independent of ε.

Hence, by dominated convergence,

1
ε

[∫
Ω
L(x, u(x) + εη(x),∇u(x) + ε∇η(x)) dx−

∫
Ω
L(x, u(x),∇u(x)) dx

]
→
∫

Ω
sup

k∈DL(x)
〈k,∇η(x)〉 dx+

∫
Ω
Lu(x, u(x),∇u(x))η(x) dx

=
∫

Ω
(IDL(x))

∗(∇η(x)) dx+
∫

Ω
Lu(x, u(x),∇u(x))η(x) dx.

Hence, we obtain

0 ≤
∫

Ω
(IDL(x))

∗(∇η(x)) dx+
∫

Ω
Lu(x, u(x),∇u(x))η(x) dx
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or,

−
∫

Ω
Lu(x, u(x),∇u(x))η(x) dx ≤

∫
Ω

(IDL(x))
∗(∇η) dx

=
∫

Ω
sup

{k∈DL(x)}
〈k,∇η〉 =

∫
Ω

sup
{k∈DL(x)}

〈 k

‖DL(x)‖
, ‖DL(x)‖∇η〉.

(3.8)

b) From (3.4), (3.3) and (3.2), we have that

‖DL(x)‖ ≤ βU (x) + h2
UHf(∇u(x))

≤ βU (x) + h2
UH

1
h1
U

(L(x, u,∇u(x))− αU (x)),

so that ‖DL‖ ∈ L1(Ω); for every η ∈ C∞0 (Ω) we have that ‖DL‖∇η is in
(L1(Ω))N . Consider L, the linear subspace of (L1(Ω))N defined as

L =
{
ξ ∈ (L1(Ω))N : ∃η ∈ C∞0 (Ω) : ξ = ‖DL(x)‖∇η

}
and, on L, the linear functional

T (ξ) = −
∫

Ω
Lu(x, u(x),∇u(x))η(x) dx.

We notice that T is well defined: assume that there exist η1 and η2 in
C∞0 (Ω) such that ξ = ‖DL‖∇η1 = ‖DL‖∇η2. Then, from (3.8), we have

| −
∫

Ω
Lu(x, u(x),∇u(x))η1(x) dx+

∫
Ω
Lu(x, u(x),∇u(x))η2(x) dx| = 0,

so that T is well defined.
The map

%(ξ) : =
∫

Ω
sup

{k∈DL(x)}
〈 k

‖DL(x)‖
, ‖DL(x)‖∇η〉 dx

=
∫

Ω
sup

{h∈ 1
‖DL(x)‖DL(x)}

〈h, ‖DL(x)‖∇η〉 dx

=
∫

Ω

(
I 1
‖DL(x)‖DL(x)

)∗(‖DL(x)‖∇η(x)
)

dx

appearing at the right hand side of (3.8) is defined on L as a convex, pos-
itively homogeneous map. It can be extended, preserving these properties,
to (L1(Ω))N , since

(
I 1
‖DL(x)‖DL(x)

)∗(ξ(x)) ≤ |ξ(x)|.
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Hence, by the Hahn-Banach Theorem, the linear map T can be extended
from L to the whole of (L1(Ω))N , still satisfying |T (ξ)| ≤ %(ξ).

c) By Lemma 3.6, we can apply Lemma 3.3 to the map D = 1
‖DL‖DL.

Hence, we infer the existence of a p̃ ∈ (L∞(Ω))N , with p̃(x) ∈ 1
‖DL(x)‖DL(x)

almost everywhere on Ω, i.e., p̃(x) = 1
‖DL(x)‖p(x) with p(x) ∈ DL(x), re-

presenting the extension of T to (L1(Ω))N , in particular, representing T on
L.

Hence, for every η ∈ C∞0 (Ω), we have

−
∫

Ω
Lu(x, u(x),∇u(x))η(x) dx =

∫
Ω
〈p̃(x), ‖DL(x)‖∇η(x)〉 dx

=
∫

Ω
〈p(x),∇η(x)〉 dx

In other words, for every η ∈ C∞0 (Ω),∫
Ω
〈p(x),∇η(x)〉 dx+

∫
Ω
Lu(x, u(x),∇u(x))η(x) dx = 0.

The map p(·) is a selection from ∂ξL(·, u(·),∇u(·)) defined on Ω, thus
proving the Theorem.
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Higher Integrability





Chapter 4

Beyond exponential growth

This chapter is based on a joint work with A. Cellina and M. Mazzola: [7],
The higher integrability and the validity of the Euler-Lagrange equation for
solutions to variational problems, preprint (submitted 2011).

4.1 Assumptions and higher integrability results

Some results in this chapter will depend on the properties of the polar or
Legendre-Fenchel transform L∗ of a convex function L; for its definition, we
refer to Appendix A.3.2 and [37].

We shall consider Lagrangians L satisfying the following convexity and
regularity assumptions.

Assumption 4.1. L(x, u, ξ) is non negative and positive whenever ξ 6= 0,
and the map t 7→ L(x, u, tξ) is non-decreasing for t ≥ 0. In addition, for
every (x, u), the restriction to the set |ξ| ≥ 1 of the mapping ξ 7→ L(x, u, ξ) is
the restriction to the same set of a convex function. Moreover, L(x, u, ξ) is
C1(u× ξ), for each fixed x, and measurable in x for each fixed (u× ξ) and it
is such that, for every ω ⊂⊂ Ω and U , there exist constants M = M(ω,U),
K = K(ω,U) and, for every R, a function αω,U,R in L1(ω) such that for
almost every x ∈ ω, for every |u| ≤ U , we have

• i) for every ξ ∈ Rn,
∣∣∣∂L(x,u,ξ)

∂u

∣∣∣ ≤ KL(x, u, ξ);

• ii) sup{|∇ξL(x, u, ξ)| : |u| ≤ U ; |ξ| ≤ R} ≤ αω,U,R(x);

• iii) 〈∇ξL (x, u, ξ) , ξ〉 ≥M |∇ξL (x, u, ξ) | |ξ|.
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The higher integrability results will depend on the following Condition.
In it, and for the remainder of the chapter, for an open O ⊂⊂ Ω and δ > 0,
we set Oδ = O+B(0, δ). Explicit classes of Lagrangians satisfying Condition
4.2 will be provided by Theorem 4.5.

Condition 4.2. For every open O ⊂⊂ Ω, δ0 > 0 and U there exist: a
constant δ ≤ δ0 such that Oδ is in Ω; a Lipschitz continuous function η ∈
Cc(Oδ), with η(x) ≥ 0 and η(x) = 1 on O, and constants K̃ = K̃(U,Oδ) ≥ 0
and R̃ = R̃(U,Oδ), such that: for every ξ with |ξ| ≥ R̃, for every u with
|u| ≤ U , for almost every x ∈ Oδ, for every ε > 0 sufficiently small, we have

logL(x, u− εηu, ξ(1− εη)− εu∇η)− logL(x, u, ξ) ≤ εK̃. (4.1)

Next Theorem infers the higher integrability result from the validity of
Condition 4.2.

Theorem 4.3. Let L satisfy Assumption 4.1 and Condition 4.2. Let u be
a locally bounded solution to the problem of minimizing∫

Ω
L(x, u(x),∇u(x))dx

on u0 +W 1,1
0 (Ω). Then,

|∇ξL (·, u(·),∇u(·)) ||∇u(·)| ∈ L1
loc (Ω) .

Proof of Theorem 4.3. a) Fix O ⊂⊂ Ω. It is enough to prove the existence
of H1 such that ∫

O
〈∇ξL (x, ũ(x),∇ũ(x)) ,∇ũ(x)〉 dx ≤ H1.

In fact, if this is true, taking O to be ω in Assumption 4.1, point iii) proves
the claim.

Hence, let Oδ0 ⊂⊂ Ω, let U be a bound for |u| on Oδ0 . Let δ, η and the
constants R̃ and K̃ be provided by Condition 4.2 (we assume R̃ ≥ 1).

Since u is a solution, for the variation −εηu, with ε > 0, we obtain

0 ≤ 1
ε

∫
Oδ

[L (x, u− εηu,∇ũ(1− εη)− εu∇η)− L (x, ũ,∇ũ)] dx. (4.2)

We have

L (x, u− εηu,∇ũ(1− εη)− εu∇η)− L (x, ũ,∇ũ) =

= ε

∫ 1

0

[
∂L

∂u
(−ηu) + 〈∇ξL,−η∇ũ− u∇η〉

]
ds,
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where ∂L
∂u and ∇ξL are computed at (x, u − sεηu,∇ũ(1 − sεη) − sεu∇η);

hence, as ε→ 0, by the continuity of the partial derivatives of L,

L (x, u− εηu,∇ũ(1− εη)− εu∇η)− L(x, u,∇ũ)
ε

→ (4.3)

→ ∂L

∂u
(−ηu) + 〈∇ξL,−η∇ũ− u∇η〉 ,

pointwise in x, and with the r.h.s. computed at (x, u(x),∇ũ(x)). Set Oδ− =
{x ∈ Oδ : |∇ũ(x)| < R̃} and Oδ

+ = {x ∈ Oδ : |∇ũ(x)| ≥ R̃}: on Oδ
−, the

left hand side of (4.3) is uniformly bounded, so that, for every ε and for
some M̃ , we have∣∣∣∣1ε

∫
Oδ
−

[L (x, u− εηu,∇ũ(1− εη)− εu∇η)− L(x, ũ(x),∇ũ(x))]dx
∣∣∣∣ ≤ M̃.

b) On Oδ
+, consider the constant K̃: setting

˜̀
ε(x) = logL(x, u(x)− εη(x)u(x),∇ũ(x)(1− εη(x))− εu(x)∇η(x)),

from (4.2) we have

−M̃ ≤
∫
Oδ

+

(
e

˜̀
ε − elogL(x,u(x),∇ũ(x))

ε

)
dx

=
∫
Oδ

+

(
e

˜̀
ε−εK̃+εK̃ − elogL(x,u(x),∇ũ(x))

ε

)
dx

=
∫
Oδ

+
e

˜̀
ε−εK̃

[
eεK̃ − 1 + 1− elogL(x,u(x),∇ũ(x))−˜̀

ε+εK̃

ε

]
dx,

i.e.,

M̃ +
∫
Oδ

+
e

˜̀
ε−εK̃

[
eεK̃ − 1

ε

]
dx (4.4)

≥
∫
O+
δ

e
˜̀
ε−εK̃

[
elogL(x,u(x),∇ũ(x))−˜̀

ε+εK̃ − 1
ε

]
dx

Since, on Oδ
+, ˜̀

ε(x) − εK̃ ≤ logL(x, u(x),∇ũ(x)) and also eεK̃−1
ε ≤ K̃eK̃ ,

the left hand side of (4.4) is bounded by

M̃ + K̃eK̃
∫

Ω
L(x, u(x),∇ũ(x))dx = H,

independent of ε.
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c) Consider the right hand side. For fixed x we have

logL
(
x, ũ(x),∇ũ(x)

)
− ˜̀

ε(x)

= −ε
[

1
L

∂L

∂u
(−ηu) +

1
L
〈∇ξL,−η∇ũ− u∇η〉

]
+ o(ε)

so that, as ε→ 0, pointwise w.r.t. x,

elogL(x,ũ,∇ũ)−˜̀
ε+εK̃ − 1

ε
→ K̃ +

1
L

∂L

∂u
ηu+

1
L
〈∇ξL, η∇u+ u∇η〉 . (4.5)

In addition, by (4.1), logL
(
x, ũ(x),∇ũ(x)

)
− ˜̀

ε(x)+εK̃ ≥ 0, so that the
left hand side of (4.5) is non negative and so is its limit,

K̃ +
1
L

∂L

∂u
ηu+

1
L
〈∇ξL, η∇u+ u∇η〉 ≥ 0.

Finally, pointwise, e˜̀
ε−εK̃ → elogL(x,ũ,∇ũ). Hence, applying Fatou’s lemma,

we obtain∫
O+
δ

L(x, ũ,∇ũ)
[
K̃ +

1
L

∂L

∂u
ηu+

1
L
〈∇ξL, η∇ũ+ u∇η〉

]
≤ H,

i.e., ∫
O+
δ

[
K̃L(x, ũ,∇ũ) +

∂L

∂u
ηu+ 〈∇ξL, η∇ũ+ u∇η〉

]
≤ H.

Since the integrand above is non-negative, we have obtained, in partic-
ular, that∫

O∩O+
δ

[
K̃L(x, ũ,∇ũ) +

∂L

∂u
ηu+ 〈∇ξL, η∇ũ+ u∇η〉

]
≤ H.

On O we have that η ≡ 1, ũ is bounded and that, by i) of Assumption
4.1, there exists K such that∣∣∣∣∂L(x, u(x),∇u(x))

∂u

∣∣∣∣ ≤ KL(x, u(x),∇u(x));

hence there exists H+ such that∫
O∩O+

δ

〈∇ξL (x, u(x),∇u(x)) ,∇ũ(x)〉 dx ≤ H+.

Consider O ∩O−δ : by Assumption 4.1, ii), we have that

| 〈∇ξL (x, u(x),∇u(x)) ,∇ũ(x)〉 | ≤ R̃ · αω,U,R̃(x) on O ∩O−δ .
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Hence we have obtained that the integral∫
O
〈∇ξL (x, u(x),∇u(x)) ,∇ũ(x)〉dx

is bounded, thus proving the theorem.

It is easy to show that the Lagrangians of exponential growth satisfy
Condition 4.2. However, the following result shows that this condition is
satisfied by a substantially larger class of functions. We shell need the
following

Definition 4.4. A convex C1 function Λ is called a comparison function for
L if for every U there exist constants K0, K1 and K2 such that for almost
every x ∈ ω, |u| ≤ U and |ξ| ≥ 1 imply

1) Λ(|ξ|) ≤ K0L(x, u, ξ);

2) K1Λ′ (|ξ|) ≤ |∇ξL (x, u, ξ)| ≤ K2Λ′ (|ξ|) .

We shall also refer to the following
Exponential growth condition. For every open O ⊂⊂ Ω and U there
exists a constant c such that, for almost every x ∈ O, |u| ≤ U and |ξ| ≥ 1
imply |∇ξL(x, u, ξ)| ≤ cL(x, u, ξ).

Theorem 4.5. Let L satisfy Assumption 4.1. Assume that, either
i) L satisfies the Exponential growth condition, or
ii) for |ξ| ≥ 1, the map log(L(x, u, ·)) is convex; there exists a comparison

function Λ such that L(·) = log(Λ(·)) is convex and such that L∗ is defined
on R. Assume that ∫ ∞ 1

z∂(L∗)(z)
dz <∞. (4.6)

Then, Condition 4.2 is satisfied.

Remark 4.6. For every sufficiently large z, 0 /∈ ∂(L∗)(z); if this was not the
case, in fact, the map z 7→ L∗(z) would be constant and L, hence Λ, would
be defined on a single point.

Remark 4.7. The map t 7→ exp(|t|p) for p > 1 satisfies condition ii) but
not condition i); the map t 7→ exp(exp(t)) satisfies neither condition i) nor
condition ii).

In the proof of Theorem 4.5, we shall need the following preliminary
result (Lemma 1 in [17]).
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Lemma 4.8. Let G : R → 2R be upper semicontinuous, strictly increasing
and such that G(0) = {0}. Assume that, for a selection g from G,∫ ∞

g(1/s)ds <∞.

Then, the implicit Cauchy problem{
x(t) ∈ G(x′(t))
x(0) = 0,

admits a solution x̃, positive on some interval (0, τ).

Proof of Theorem 4.5. Fix O, δ0 and U . Let 0 < δ ≤ δ0 be such that Oδ is
in Ω. For a fixed variation η, we shall use the following notation

`ε(x, u, ξ) = logL (x, u− εηu, ξ(1− εη)− εu∇η) .

a) In case i), choose any Lipschitz continuous function η ∈ Cc(Oδ),
with η(x) ≥ 0 and η(x) = 1 on O, and set µ = sup |∇η|. Choose R̃ =
max{4, 2Uµ}, so that, for ε ≤ 1

2 , |ξ| ≥ R̃ implies, for s ∈ [0, 1], |ξ(1− εη)−
sεu∇η| ≥ 1.

Fix u such that |u| ≤ U and notice that, for s ∈ [0, 1], we have |u −
sεηu| ≤ U . It holds

`ε − logL(x, u, ξ) =
∫ 1

0

∂ logL(x, u− sεηu, ξ(1− εη)− εu∇η)
∂u

(−εηu)ds

+
∫ 1

0
〈∇ξ logL(x, u, ξ(1− εη)− sεu∇η),−εu∇η〉 ds

+ logL(x, u, ξ(1− εη))− logL(x, u, ξ).

By Assumption 4.1, t 7→ L(x, u, tξ) is non-decreasing with respect to t

on {t ≥ 0}, hence the third term at the right hand side is non positive.
Moreover, |∂ logL

∂u | =
1
L |

∂L
∂u | ≤ K so that the first term is bounded by ε times

a constant. By the Exponential growth assumption, |∇ξ logL| = |∇ξL|
L ≤ c,

hence, the same is true for the second term.

b) Consider case ii). From

`ε(x, u, ξ)− logL(x, u, ξ)

= ε(−ηu)
∫ 1

0

1
L

∂L

∂u
ds+ ε

∫ 1

0

〈
∇ξL
L

,−ηξ − u∇η
〉

ds,
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where the first integrand is evaluated at (x, u− sεηu, ξ(1− εη)− εu∇η) and
the second at (x, u, ξ(1− sεη)− sεu∇η), we obtain

`ε(x, u, ξ)−logL(x, u, ξ) ≤ ε
[
KU +

〈
∇ξL
L

(x, u, ξε) ,−ηξ − u∇η
〉]

, (4.7)

where ξε = (1− sεεη) ξ − sεεu∇η, for some 0 ≤ sε ≤ 1.

For z 6= 0, set

G(1/z) =
1
z

7U
M∂(L∗)(z)

.

From the assumption of convexity, ∂(L∗) is non-increasing as a function
of 1

z , while 7U
M∂(L∗)(z) is non-decreasing as a function of 1

z , so that G satisfies
the assumptions of Lemma 1.

Consider x̃, the solution to x̃ ∈ G(x̃′), provided by Lemma 1, defined
and positive on (0, τ ]. Possibly decreasing τ , we can assume, without loss
of generality, that

x′(t) ≤ 1, for all t ∈ (0, τ ]. (4.8)

Notice that, from the inclusion x(t) ∈ G(x′(t)), we infer that x′ > 0 on
(0, τ ], hence that x is strictly increasing, so that x′ is strictly increasing as
well. Set δτ = min{τ, δ} and define η as follows let d(x) be the distance
from a point x ∈ Oδτ to ∂Oδτ and set

η(x) = inf
{

1
x̃(δτ )

x̃(d(x)), 1
}

so that, in particular, η = 1 on O. Almost everywhere, d is differentiable
with |∇d| = 1 and, at a point of differentiability, we have

∇η(x) =

0 if d(x) > δτ
1

x̃(δτ ) x̃
′(d(x))∇d(x) if d(x) < δτ .

Hence, almost everywhere, we have that |∇η| ≤ 1
x̃(δτ ) x̃

′(δτ ) and that, either
∇η = 0, or

η(x) =
1

x̃(δτ )
x̃
(
d(x)

)
=

1
x̃(δτ )

x̃′
(
d(x)

) 7U
M∂(L∗)

(
1

x̃′(d(x))

)
= h

(
x̃(δτ )|∇η(x)|

)
|∇η(x)|, (4.9)

where we have set
h(z) =

7U
M∂(L∗)(1

z )
, (4.10)
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an increasing function.
Consider the term ε

〈
∇ξL
L (x, u, ξε) ,−ηξ − u∇η

〉
in (4.7) and set ξ =

(1− εη) ξ − εu∇η.
Set µ1 = sup |∇η| and R̃ = 2 + Uµ1, so that, for ε ≤ 1

2 , |ξ| ≥ R̃ implies
that both |ξε| ≥ 1 and |ξ| ≥ 1. For those x such that〈

∇ξL
L

(x, u, ξε) ,−ηξ − u∇η
〉
≤ 0, (4.11)

any K̃ ≥ KU will do to prove the result. Moreover, since the mapping
ξ 7→ L(x, u, ξ) is convex and attains its minimum in 0, for 0 ≤ ε ≤ 1 we have
d
dsL(x, u, ξ(1− sεη)) ≤ 0, i.e., 〈∇ξL(x, u, ξ(1− sεη)),−ηξ〉 ≤ 0, so that〈

∇ξL
L

(x, u, ξ(1− sεη)),−ηξ
〉
≤ 0;

from this, we infer that, when ∇η(x) = 0, (4.11) holds.
Hence, we are left to consider those x such that, at once,〈
∇ξL
L

(x, u, ξε) ,−ηξ − u∇η
〉
> 0 and η(x) = |∇η(x)|h

(
x̃(δτ )|∇η(x)|

)
.

Given any v, w ∈ Rn, from the assumption of convexity of logL (x, u, ·),
we obtain that its gradient is monotonic, i.e., that

(s1 − s2)
〈
∇ξL
L

(x, u, v + s1w)−
∇ξL
L

(x, u, v + s2w) , w
〉
≥ 0,

i.e., that the mapping s 7→
〈
∇ξL
L (x, u, v + sw) , w

〉
is non decreasing. Hence,

from the inequality 〈
∇ξL
L

(x, u, ξε) ,−ηξ − u∇η
〉
> 0,

we obtain
〈
∇ξL
L

(
x, u, ξ

)
,−ηξ − u∇η

〉
> 0, where ξ = (1− εη) ξ − εu∇η.

We infer that〈
∇ξL
L

(
x, u, ξ

)
, ξ

〉
<

〈
∇ξL
L

(
x, u, ξ

)
,−u∇η

η

〉
≤

∣∣∣∣∇ξLL (
x, u, ξ

)∣∣∣∣ · U |∇η|η . (4.12)

Recalling Assumption 4.1, iii), we have〈
∇ξL
L

(
x, u, ξ

)
, ξ

〉
=
〈
∇ξL
L

(
x, u, ξ

)
, ξ + ε

(
ηξ + u∇η

)〉
(4.13)

≥
∣∣∣∣∇ξLL (

x, u, ξ
)∣∣∣∣ [M |ξ| − εη|ξ| − εU |∇η|].
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From inequalities (4.12) and (4.13), we infer

U
|∇η|
η

> M |ξ| − εη|ξ| − εU |∇η|

≥ M [(1− εη) |ξ| − εU |∇η|]− εη|ξ| − εU |∇η|,

i.e.,

U
|∇η|
η

+ εU [M + 1]|∇η| > |ξ|[M(1− εη)− εη].

We are free to assume M < 1; taking ε < M
4 , we finally have

3U
|∇η|
η

> U
|∇η|
η

+ ε|∇η|U [M + 1]

> |ξ|[M(1− εη)− εη] >
1
2
M |ξ| (4.14)

and, recalling (4.9), we obtain

|ξ| < 6U
Mh(x̃(δτ )|∇η(x)|)

. (4.15)

From Definition 4.4 we have〈
∇ξL
L

(x, u, ξε),−ηξ − u∇η
〉
≤
(
η|ξ|+ U |∇η|

)
K0K2L′ (|ξε|) ; (4.16)

noticing that

|ξε| ≤
6U

Mh
(
x̃(δτ )|∇η|

) + ε|∇η|U (4.17)

and that L′ is non-decreasing, from (4.7), (4.9), (4.14), (4.16) and (4.17),
we obtain

`ε− logL(x, u, ξ)

≤εKU + ε (η|ξ|+ U |∇η|)K0K2L′ (|ξε|)

≤εKU + ε|∇η|K0K2 L′
(

6U
M · h(x̃(δτ )|∇η|)

+ ε|∇η|U
)(

6U
M

+ U

)
.

By (4.8), we have that x̃(δτ )|∇η| ≤ 1; there exists σ such that, for t < σ,
we have

h(1) ≤ 1
MUt

so that for |∇η| < σ, h(x̃(δτ )|∇η|) ≤ h(1) ≤ 1
MU |∇η| . Then,

6
M · h(x̃(δτ )|∇η|)

+ ε|∇η|U ≤ 7
M · h(x̃(δτ )|∇η|)

.
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Hence, for those x such that |∇η(x)| < σ, recalling (4.10), we obtain

L′
(

6U
M · h

(
x̃(δτ )|∇η|

) + ε|∇η|U

)
|∇η| ≤ L′

(
7U

M · h
(
x̃(δτ )|∇η|

)) |∇η|
= L′

(
∂(L∗)

(
1

x̃(δτ )|∇η|

))
|∇η|

=
1

x̃(δτ )
,

a constant independent on ε, thus proving the result in this case.

It is left to consider those x such that |∇η(x)| ≥ σ: in this case, from
(4.15), we have |ξ| ≤ 6U

M ·h(x̃(δτ )σ) and, from (4.7), the result follows from the
boundedness of |∇η|.

4.2 The validity of the Euler-Lagrange equation

The higher integrability property for a minimizer u is independent on the
validity of the Euler-Lagrange equation. In the next theorem we wish to use
this result in order to establish the validity of the Euler-Lagrange equation
for a class of problems including Lagrangians having growth faster than
exponential.

Theorem 4.9. Let L (x, u, ξ) satisfy Assumption 4.1 and assume that there
exist a comparison function Λ and a constant c > 0 such that, for t ≥ 1,
either

i) d
dtL(t) ≤ c, or

ii) d
dtL(t) ≤ c (1 + log t), L(·) is convex and Dom(L∗) is open,

where L = log Λ. Then, a locally bounded solution u to the problem of
minimizing ∫

Ω
L (x, u (x) ,∇u (x)) dx for u ∈ u0 +W 1,1

0 (Ω)

satisfies the Euler-Lagrange equation.

Lagrangians of exponential growth satisfy i); the map Λ(t) = tt is not of
exponential growth but satisfies ii): in this case, Dom(L∗) = R.

In order to prove Theorem 4.9, we shall need the following Lemma.
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Lemma 4.10. Let L : R → R be convex and C1 and such that Dom(∂L∗)
is open; let δ∗ be any selection from ∂L∗. Then, there exists a sequence of
convex C2 functions Lm such that

i) Dom(L′m) ⊃ [−m + 1,m − 1]; ∀x ∈ Dom(L′m), we have |L′m(x) −
L′(x)| < 1

m ;
ii) L∗m ∈ C1(Dom(∂L∗)); for every [a, b] ⊂ Dom(∂L∗) there exists a

subsequence m(j) such that (L∗m(j))
′ → δ∗ pointwise a.e. on [a, b].

Proof. Ad i). By assumption, L′ is a single-valued, continuous and non-
decreasing function; hence, its inverse, ∂L∗, is strictly increasing, possibly
multi-valued, defined on the image of L′. The selection δ∗ (discontinuous
at most on a set of measure zero) is strictly increasing and bounded on sets
compactly contained in its domain.

Consider the interval [−n, n], so that [L′(−n), L′(n)] is a compact subset
of the open set Dom(∂L∗). Then, there exists a subsequence n(m) such
that both L′(−n(m + 1)) < L′(−n(m)) and L′(n(m + 1)) > L′(n(m)).
Moreover, there exists N(n(m)), with N(n(m)) ≥ n(m) and 1

N(n(m)) ≤
1
4 min{L′(−n(m))− L′(−n(m+ 1)), L′(n(m+ 1))− L′(n(m))}, such that

[L′(−n(m))− 1
N(n(m))

, L′(n(m)) +
1

N(n(m))
] ⊂ Dom(∂L∗),

so that the map
(L∗m)′ = ρN(n(m)) ∗ δ∗,

where ρN(n(m)) is a standard mollifier having support in [− 1
N(n(m)) ,

1
N(n(m)) ],

is well defined on [L′(−n(m)), L′(n(m))] as a strictly increasing function. Its
image is the interval I(n(m)) = [(L∗m)′(L′(−n(m)), (L∗m)′(L′(n(m)))].

We claim that I(n(m+ 1)) ⊃ [−n(m), n(m)] ⊃ [−m,m].
In fact, consider p = 1

2(L′(−n(m + 1)) + L′(−n(m))): for every p such
that |p − p| ≤ 1

N(n(m)) , we have δ∗(p) < δ∗(L′(−n(m))) = −n(m), so that
ρN(n(m+1)) ∗ δ∗(p) < −n(m). Analogously for 1

2(L′(n(m+ 1)) + L′(n(m))).
The map (L∗m)′ is a C1 and strictly increasing, hence invertible, function:

on the interval I(n(m)) we set L′m = ((L∗m)′)−1. Fix arbitrarily m and
x ∈ I(n(m)). Set ym = L′m(x), so that

x = ρN(n(m)) ∗ δ∗(ym) =
∫

[ym− 1
N(n(m))

,ym+ 1
N(n(m))

]
ρN(n(m))(ym − y)δ∗(y) dy.

We notice that x ∈ co{δ∗(y) : |y − ym| ≤ 1
N(n(m))}: in fact, otherwise, there

exists α such that, for every y ∈ {|y−ym| ≤ 1
N(n(m))}, we have αx > αδ∗(y);
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then,

αx =
∫
αx · ρN(n(m))(ym − y) > α

∫
δ∗(y) · ρN(n(m))(ym − y) = αx.

Hence, there are y1 and y2 such that |yi − ym| ≤ 1
N(n(m)) and δ∗(y1) ≤ x ≤

δ∗(y2). By the monotonicity of L′, the last inequality can be written as
y1 ≤ L′(x) ≤ y2, so that

ym −
1

N(n(m))
≤ y1 ≤ L′(x) ≤ y2 ≤ ym +

1
N(n(m))

.

We have obtained

|L′(x)− L′m(x)| ≤ 1
n(m)

≤ 1
m
.

Ad ii). Fix arbitrarily [a, b]: we have that (L∗m)′ → δ∗ in L1([a, b]).
Hence, there exists a sequence (L∗m(j))

′ converging to δ∗ pointwise a.e. on
[a, b].

The condition that Dom(∂L∗) be open is not satisfied by a map like
L(t) = |t|; however it is satisfied by the minimal area functional L(t) =√

1 + |t|2 and, a fortiori, by any L of superlinear growth.

Proof of Theorem 4.9. Fix h0 > 0, set Λ∗ = sup{Λ′(s) : 0 ≤ s ≤ 1 + h0}.
We claim that, both in case i) and in case ii), there exists K such that
0 < h < h0 implies

Λ′ (t+ h) ≤ K
[
1 + Λ (t) + tΛ′ (t)

]
. (4.18)

In fact, in case i), we have Λ′(t + h) ≤ Λ∗ for t ≤ 1, while, for t >
1, Λ(t + h) ≤ cΛ(t)ech and we infer that (4.18) holds. In case ii), again
Λ′(t+ h) ≤ Λ∗ for t ≤ 1, while, for t > 1, we have

Λ′ (t+ h) = L′ (t+ h)
Λ (t+ h)

Λ (t)
Λ (t)

= L′ (t+ h) · exp
(∫ t+h

t
L′ (s) ds

)
· Λ (t)

≤ c [1 + log (t+ h0)] · exp
[
c

∫ t+h0

t
(1 + log s) ds

]
· Λ (t)

≤ c

(
1 + log t+

h0

t

)
· (t+ h0)ch0 · e[c t(log(t+h0)−log t)] · Λ (t)

≤ c1 (1 + log t) · tch0ech0Λ (t) ≤ c2 · tΛ (t) .
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By assumption, log(Λ) is convex, so that there exists c3 such that Λ′(t)
Λ(t) ≥

c3. Hence, Λ′ (t+ h) ≤ c2c3 · tΛ′ (t) , and (4.18) is established.
Next, we claim that, setting t = |∇u(x)| in the right hand side of (4.18),

we obtain a function integrable on compact subsets of Ω. By i) of the
comparison assumption, we have that Λ(|∇u|) ∈ L1

loc(Ω). By ii) of the
comparison assumption, to show that |∇u|Λ′(|∇u|) ∈ L1

loc(Ω), is enough to
show that Theorem 4.3 holds, i.e., that the assumptions of Theorem 4.5 are
satisfied. The assumptions are obviously satisfied in case i), so we consider
case ii). We have to prove that∫ ∞ 1

z∂(L∗)(z)
dz <∞.

Since Dom(∂L∗) is open, Lemma 4.10 can be applied to L. Consider the
sequence (Lm); for any α, β (α ≥ 1), by the change of variables z = L′m(t),
we have ∫ L′m(β)

L′m(α)

dz

z(L∗m)′(z)
dz =

∫ β

α

L′′m (t)
t · L′m (t)

dt (4.19)

=
log L′m (t)

t

∣∣∣∣β
α

+
∫ β

α

log L′m (t)
t2

dt.

By assumption ii),

log L′ (t)
t

∣∣∣∣β
α

+
∫ β

α

log L′ (t)
t2

dt ≤ log(c (1 + log t))
t

∣∣∣∣β
α

+
∫ β

α

log(c (1 + log t))
t2

dt

and there exists H such that, for every α ≥ 1, for every β, the right hand side
is bounded by H. Whenever m− 1 ≥ β, Dom(L′m) ⊃ [α, β] and |L′−L′m| ≤
1
m , so that the right hand side of (4.19) is bounded by H + 2 (independent
of α, β and m). Consider the subsequence m(j) provided by ii) of Lemma
4.10. Fix any a, b ∈ R; let α, β such that, for j sufficiently large, [a, b] ⊂
[L′m(j)(α),L′m(j)(β)]. By ii) of Lemma 4.10 and by Fatou’s Lemma,∫ b

a

1
z∂(L∗)(z)

dz =
∫ b

a

1
zδ∗(z)

dz ≤ lim inf
∫ b

a

dz

z(L∗m(j))
′(z)

dz ≤ H + 2,

so that (4.6) is satisfied and the integrability claim holds.
To establish the validity of the Euler-Lagrange equation, fix η ∈ C1

c (Ω)
(we assume sup η ≤ 1) and set h̃ = sup |∇η| and S = spt(η). Since u is a
solution, we have∫

S

L (x, u (x) + εη (x) ,∇u (x) + ε∇η (x))− L (x, u (x) ,∇u (x))
ε

dx ≥ 0;
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the integrand converges pointwise to

〈∇ξL (x, u,∇u) ,∇η〉+
∂L

∂u
(x, u,∇u) · η

and we wish to dominate the integrand by an integrable function.

We have∣∣∣∣L (x, u+ εη,∇u+ ε∇η)− L (x, u,∇u)
ε

∣∣∣∣
≤
∣∣∣∣L (x, u+ εη,∇u)− L (x, u,∇u)

ε

∣∣∣∣
+
∣∣∣∣L (x, u+ εη,∇u+ ε∇η)− L (x, u+ εη,∇u)

ε

∣∣∣∣
≤
∣∣∣∣∂L∂u (x, u+ sεη,∇u) · η

∣∣∣∣
+
∣∣〈∇ξL (x, u+ εη,∇u+ tε∇η

)
,∇η

〉∣∣.
By Assumption 4.1, i), the first term is bounded byK L (x, u,∇u)·eK ·|η|,

an integrable function. Set E = {x : |∇u(x)| ≥ 1 + h̃} and write the second
term as ∣∣〈∇ξL (x, u+ εη,∇u+ tε∇η

)
,∇η

〉∣∣χS\E
+
∣∣〈∇ξL (x, u+ εη,∇u+ tε∇η

)
,∇η

〉∣∣χE .
Set U = sup{|u(x)|}+ 1. On S \E, |∇u+ ε∇η| ≤ 1 + 2h̃ = R, hence by

Assumption 4.1, ii), the first term is bounded by an integrable function.
On E, we have |∇u+ ε∇η| ≥ 1, hence, by ii) of the comparison assump-

tion and (4.18), whenever εh̃ < h0,∣∣〈∇ξL (x, u+ εη,∇u+ tε∇η
)
,∇η

〉∣∣
≤ K2Λ′

(
|∇u(x) + tε∇η|

)
≤ K2K

[
1 + Λ

(
|∇u(x)|

)
+ |∇u(x)|Λ′

(
|∇u(x)|

)]
.

The last term is integrable, by our previous claim, and is independent
of ε, so that we can pass to the limit under the integral sign. Finally,
considering also −η, we obtain that∫

Ω
[〈∇ξL(x, u(x),∇u(x)),∇η(x)〉+ Lu(x, u(x),∇u(x))η(x)]dx = 0

for every admissible variation η.
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On the Lavrentiev

phenomenon





Chapter 5

Non-occurrence of the

Lavrentiev phenomenon

This chapter is based on a joint work with A. Cellina: [6], On the non-
occurrence of the Lavrentiev phenomenon, preprint (submitted 2011).

5.1 Assumptions and main result

The purpose of the present chapter is to prove the following result, an ap-
proximation result that, in particular, guarantees the non-occurrence of the
Lavrentiev phenomenon.

Theorem 5.1. Let Ω ⊂ RN be an open bounded set, with ∂Ω ∈ C2; let
u0 ∈ C2(Ω); let L : [0,∞) → [0,∞) be convex and such that L(0) = 0. Let
u ∈ u0 +W 1,1(Ω) be bounded on Ω and such that∫

Ω
L(|∇u(x)|) dx <∞.

Then, given ε > 0, there exists uε ∈ u0 +W 1,1(Ω), with uε Lipschitzean on
Ω, such that ∫

Ω
L(|∇uε(x)|) dx ≤

∫
Ω
L(|∇u(x)|) dx+ ε.

Notice that neither regularity nor growth conditions are assumed on
the Lagrangian L, besides its being convex. When u is a solution, the
boundedness of u follows from the boundedness of u0.
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We shall use the following notation: B(x, δ) is the open ball centered at
x of radius δ; the Lebesgue measure of a subset A of RN is |A|; ωN is the
measure of the unit ball; the complement of Ω is CΩ; d(x) = dist(x,CΩ),
a Lipschitzean function of Lipschitz constant 1; diam is the diameter of Ω;
Ωδ = {x ∈ Ω : d(x) ≤ δ}; dH is the Hausdorff distance; the normal to ∂Ω at
the point y, pointing towards the interior of Ω, is ν(y); T (y) is the tangent
plane to ∂Ω at y and T 1(y) = {τ ∈ T (y) : |τ | = 1}. A vector x ∈ RN will
be often written as (x̂, xN ). The Hessian matrix of a function φ is Hφ. For
the coarea Theorem and the notion of Jacobian of a map g : RN → Rn we
refer to [26].

With the above notations, we summarize the assumptions of Theorem
5.1 assuming that there exists K > 1 such that: |∇u0| ≤ K; |Hu0 | ≤ K; the
map y 7→ ν(y) is Lipschitzean of constant K. Moreover, dH(T (y1), T (y2)) ≤
K|y2−y1|. In addition, there exists M ≥ 1 such that for x ∈ Ω, |u(x)| ≤M ,
|u0(x)| ≤M .

5.2 Preliminary results

In what follows, a constant h will be chosen; apart from further conditions,
we shall always assume that h > 3K.

Definition 5.2. For x ∈ Ω, set

wh+(x) = min{u0(z) + h|z − x| : z ∈ ∂Ω}, (5.1)

wh−(x) = max{u0(z)− h|z − x| : z ∈ ∂Ω},

and

Mh(x) =


wh+(x) when u(x) > wh+(x),
u(x) when wh−(x) ≤ u(x) ≤ wh+(x),
wh−(x) when u(x) < wh−(x).

Lemma 5.3. Let Ω and u0 be as in Theorem 5.1. Let y = y(x) be a point
where wh+(x) = u0(y(x)) + h|y(x)− x|. Then

i) |y − x| ≤ h+K
h−K d(x) ≤ 2d(x) and |wh+(x)− u0(y(x))| ≤ [K + h]d(x),

and
ii) (uniqueness) there exist h∗ and d∗ such that h ≥ h∗ and d(x) ≤ d∗

imply that y = y(x) is uniquely defined and we have

|y − x| =
wh+(x)− u0(y)

h
.
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The same inequalities hold for wh−, provided that in ii) we read |y− x| =
u0(y)−wh−(x)

h .

Proof. We shall prove the inequalities for wh+.
Ad i). Let y∗ ∈ ∂Ω be such that |y∗ − x| = d(x). From the definition

of wh+ we have that u0(y∗) + hd(x) ≥ u0(y) + h|y − x|, hence h|y − x| ≤
hd(x) + |u0(y∗)−u0(y)| ≤ hd(x) +K|y∗− y| ≤ hd(x) +K[|y−x|+ d(x)], so
that

|y − x| ≤
(
h+K

h−K

)
d(x);

again from u0(y∗) + hd(x) ≥ wh+(x) we infer

|wh+(x)− u0(x)| ≤ |u0(y∗)− u0(x)|+ hd(x)

≤ K|y∗ − x|+ hd(x) = [K + h]d(x),

thus proving i).
Ad ii). Whenever the minimum is attained at a point y, since y is a

constrained minimum point, we must have

∇u0(y) + h
y − x
|y − x|

= ∇
(
u0(y) + h|y − x|

)
= λν(y),

so that, for any τ in T (y),

〈∇u0(y), τ〉 = −h〈 y − x
|y − x|

, τ〉. (5.2)

Assume that y1 and y2 are points where the minimum is attained; set
r = |x− y2| − |x− y1|, so that |r| ≤ |y2 − y1|.

For any τ i ∈ T (yi), from (5.2) we infer

0 = 〈x− y2 + |x− y2|∇u
0(y2)
h

, τ2〉 = 〈x− y1 + |x− y1|∇u
0(y1)
h

, τ1〉

so that

〈x− y2 + |x− y2|∇u
0(y2)
h

, τ1〉 − 〈x− y1 + |x− y1|∇u
0(y1)
h

, τ1〉 (5.3)

= 〈x− y2 + |x− y2|∇u
0(y2)
h

, τ1 − τ2〉.

There exists η∗ such that: for any y2 with |y2 − y1| ≤ η∗ there is τ ∈ T (y1)
(with τ depending on y2) such that

〈 y
1 − y2

|y1 − y2|
, τ〉 ≥ 1

2
.
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We have

〈x− y2 + |x− y2|∇u
0(y2)
h

, τ〉 − 〈x− y1 + |x− y1|∇u
0(y1)
h

, τ〉

= 〈y1 − y2 + r
∇u0(y2)

h
, τ〉 − |x− y1|〈∇u

0(y1)−∇u0(y2))
h

, τ〉

= |y1− y2|〈 y
1 − y2

|y1 − y2|
, τ〉+ r〈∇u

0(y2)
h

, τ〉− |x− y1|〈∇u
0(y1)−∇u0(y2))

h
, τ〉.

Set d1 = min{η
∗

4 , 1}, so that d(x) ≤ d1 implies |y1 − y2| ≤ η∗ and, from
equation (5.3), we obtain, for any τ1 ∈ T (y1),

〈x− y2 + |x− y2|∇u
0(y2)
h

, τ1 − τ2〉 ≥ 1
2
|y1 − y2| − 3|y2 − y1|K

h
.

Consider the left hand side for τ1 = τ ; choose τ2 ∈ T 1(y2) so that
|τ2 − τ | ≤ K|y1 − y2|; we obtain

2d(x)
(

1 +
K

h

)
K|y1 − y2| ≥ 1

2
|y1 − y2| − 3|y2 − y1|K

h
;

choosing h = 12K and d∗ = min{d1, 1
20K }, the previous inequality implies

|y2 − y1| = 0.

It is easy to check that ∇wh+ is constant of norm h along the line segment
joining y to x and is directed in the direction from y to x; hence we have
the identity

|y − x| =
wh+(x)− u0(y)

h
. (5.4)

Lemma 5.4. Let v ∈ W 1,1(Ω) be such that |v(x)| ≤ M a.e. on Ω and, on
Ω \ Ωδ, define the function

ṽ(x) =
1

|B(x, δ)|

∫
B(x,δ)

v(z) dz.

Then: i) ṽ is Lipschitzean of constant NM 1
δ and, ii) ṽ is a.e. differentiable

and, at a point x of differentiability, we have

∇ṽ(x) =
1

ωNδN

∫
B(0,δ)

∇v(x− z) dz.



Preliminary results 51

Proof. Ad i).

|ṽ(x2)− ṽ(x1)| =

∣∣∣∣∣ 1
|B(x2, δ)|

∫
B(x2,δ)

v(z) dz − 1
|B(x1, δ)|

∫
B(x1,δ)

v(z) dz

∣∣∣∣∣
≤ 1

ωNδN
M |B(x1, δ)4B(x2, δ)|

and
|B(x1, δ)4B(x2, δ)| ≤ 2ωNδN ≤ ωNδN−1|x1 − x2|

when |x1 − x2| ≥ 2δ, while, when |x1 − x2| < 2δ,

|B(x1, δ)4B(x2, δ)| ≤ ωN [(δ + |x1 − x2|)N − δN ] ≤ NωNδN−1|x1 − x2|

so that, in either case,

|ṽ(x2)− ṽ(x1)| ≤ NM 1
δ
|x1 − x2|.

Ad ii). From i) we have that there exists Ω∗δ ⊂ Ωδ of full measure, such
that ṽ is differentiable on Ω∗δ . Hence, for x ∈ Ω∗δ , there exists a vector ∇ṽ(x)
and a function ε(h), ε(h) → 0 as h → 0, such that, for every h sufficiently
small, we have ṽ(x+h)−ṽ(x) = 〈∇ṽ(x), h〉+|h|ε(h). Consider one coordinate
direction ei. On almost every line parallel to ei, the map t 7→ v(x + tei) is
absolutely continuous; there exists Ωi

δ of full measure such that x ∈ Ωi
δ and

t small imply

ṽ(x+ tei)− ṽ(x) =
1

ωNδN

∫
B(0,δ)

v(x− z + tei)− v(x− z) dz

=
1

ωNδN

∫
B(0,δ)

[
∫ 1

0
〈∇u(x− z + stei), tei〉 ds] dz

=
1

ωNδN
[
∫
B(0,δ)

〈∇v(x− z), tei〉 dz

+
∫
B(0,δ)

dz
∫ 1

0
〈∇u(x− z + stei)−∇v(x− z), tei〉ds]

= 〈 1
ωNδN

∫
B(0,δ)

∇v(x− z) dz, tei〉+ ri(t)

and

ri(t) =
1

ωNδN

∫ 1

0
[
∫

[B(0,δ)−stei]\B(0,δ)
〈∇v(x− z), tei〉 dz

−
∫
B(0,δ)\[B(0,δ)−stei]

〈∇v(x− z), tei〉 dz]ds
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so that ri(t)
|t| → 0. Hence, for x ∈ Ω∗δ ∩ [∩iΩi

δ], we have

∇ṽ(x) =
1

ωNδN

∫
B(0,δ)

∇v(x− z) dz.

Lemma 5.5. Assume that either i) g is measurable and such that |g(x)| ≤
Dd(x) or, ii), that g is Lipschitzean with Lipschitz constant D. Then, there
exists D∗ such that the function

g̃(x) =
1

|B(x, d(x))|

∫
B(x,d(x))

g(z) dz

is Lipschitzean of constant D∗.

Proof. Fix x1 and x2, let d(x2) ≥ d(x1), let y1 and y2 in ∂Ω be the nearest
points to x1 and x2. From |x2 − y2| ≤ |x2 − y1| ≤ |x2 − x1|+ |x1 − y1|, we
obtain

|x2 − x1| ≥ d(x2)− d(x1). (5.5)

On the segment [y2, x2], let x2∗ be such that d(x2∗) = |y2 − x2∗| = d(x1).
We have

|x1 − x2∗| ≤ |x1 − x2|+ |x2 − x2∗|

= |x1 − x2|+ (d(x2)− d(x1))

≤ 2|x1 − x2|. (5.6)

Ad i). We have

|g̃(x2)− g̃(x1)| =

∣∣∣∣∣ 1
|B(x2, d(x2))|

∫
B(x2,d(x2))

g(z) dz

− 1
|B(x1, d(x1))|

∫
B(x1,d(x1))

g(z) dz

∣∣∣∣∣
≤ 1
|B(x2, d(x2))|

∣∣∣∣∣
∫
B(x2,d(x2))

g(z) dz

−
∫
B(x1,d(x1))

g(z) dz

∣∣∣∣∣
+
∫
B(x1,d(x1))

|g(z)| dz
∣∣∣∣ 1
|B(x2, d(x2))|

− 1
|B(x1, d(x1))|

∣∣∣∣
= α+ β.
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Consider α.

α ≤ 1
|B(x2, d(x2))|

{
|
∫
B(x2,d(x2))

g(z) dz −
∫
B(x2∗,d(x2∗))

g(z) dz|

+|
∫
B(x2∗,d(x2∗))

g(z) dz −
∫
B(x1,d(x1))

g(z) dz|

}
=

1
|B(x2, d(x2))|

{α1 + α2}.

Since B(x2∗, d(x2∗)) ⊂ B(x2, d(x2)), we have

α1 = |
∫
B(x2,d(x2))\B(x2∗,d(x2∗))

g(z) dz|

≤ ωN [(d(x2))N − (d(x2∗))N ] · 2Dd(x2)

≤ 2DωNPN (d(x2))N [d(x2)− d(x2∗)]

= 2DωNPN (d(x2))N [(x2)− d(x1)].

Also,

α2 ≤
∫
B(x2∗,d(x1))4B(x1,d(x1))

|g(z)| dz

≤ 2Dd(x1)|B(x2∗, d(x1))4B(x1, d(x1))|,

and we have: when 2d(x1) ≤ |x1 − x2∗|, it follows

|B(x2∗, d(x1))4B(x1, d(x1))| = 2ωN (d(x1))N

≤ ωN (d(x1))N−1|x1 − x2∗|;

when 2d(x1) > |x1 − x2∗|,

|B(x2∗, d(x1))4B(x1, d(x1))| ≤ ωN [(d(x1) + |x1 − x2∗|)N − d(x1))N ]

≤ ωN |x1 − x2∗|PN (d(x1) + |x1 − x2∗|)N−1

≤ ωN |x1 − x2∗|PN (3d(x1))N−1.

In either case,

|B(x2∗, d(x1))4B(x1, d(x1))| ≤ ωN |x1 − x2∗|3N−1PN (d(x1))N−1.

Hence, α2 ≤ 2 · 3N−1DωNPN (d(x1))N |x1 − x2∗|, so that

α ≤ 2DPN [(d(x2)− d(x1)) + 3N−1|x1 − x2∗|].
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From (5.5) and (5.6) we obtain

α ≤ 2DPN (1 + 2 · 3N−1)|x1 − x2|.

Consider β: we have∫
B(x1,d(x1))

|g(z)| dz ≤ ωN (d(x1))N · 2Dd(x1)

and

| 1
|B(x2, d(x2))|

− 1
|B(x1, d(x1))|

| =
|B(x2, d(x2))| − |B(x1, d(x1))|
|B(x1, d(x1))||B(x2, d(x2))|

=
1
ωN

(d(x2))N − (d(x1))N

(d(x2))N (d(x1))N

≤ PN
ωN

(d(x2)− d(x1))
d(x2)(d(x1))N

so that

β ≤ 2DPN (d(x2)− d(x1)) ≤ 2DPN |x2 − x1|.

We have obtained

|g̃(x2)− g̃(x1)| ≤ 2DPN (2 + 2 · 3N )|x2 − x1|.

Ad ii).

|g̃(x2)− g̃(x1)| =
∣∣∣∣g(x2)− g(x1)

+
1

|B(x2, d(x2))|

∫
B(x2,d(x2))

(g(z)− g(x2)) dz

− 1
|B(x1, d(x1))|

∫
B(x1,d(x1))

(g(z)− g(x1)) dz
∣∣∣∣.

a) When |x2 − x1| ≥ d(x2) + d(x1)∣∣∣∣∣ 1
|B(x2, d(x2))|

∫
B(x2,d(x2))

(g(z)− g(x2)) dz

− 1
|B(x1, d(x1))|

∫
B(x1,d(x1))

(g(z)− g(x1)) dz

∣∣∣∣∣
≤ Dd(x2) +Dd(x1) ≤ D|x2 − x1|.
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b) Let |x2 − x1| ≤ d(x2) + d(x1). We have

|g̃(x2)− g̃(x1)| ≤ |g(x2)− g(x1)|

+| 1
ωN (d(x2))N

∫
B(x2,d(x2))\B(x1,d(x1))

(g(z)− g(x2)) dz|

+| 1
ωN (d(x1))N

∫
B(x1,d(x1))\B(x2,d(x2))

(g(z)− g(x1)) dz|

+|
∫
B(x1,d(x1))∩B(x2,d(x2))

[
1

ωN (d(x2))N
(g(z)− g(x2))

− 1
ωN (d(x1))N

(g(z)− g(x1))] dz|

= |g(x2)− g(x1)|+ α+ β + γ.

We have

|α| ≤ Dd(x2)
1

(d(x2))N
[(d(x2) + |x2 − x1|)N − (d(x1))N ];

since d(x2)− d(x1) ≤ |x2 − x1| ≤ 2d(x2), we obtain

|α| ≤ D

(d(x2))N−1
2|x2 − x1|PN (3d(x2))N−1 = 2PN3N−1D|x2 − x1|.

Consider β; we have

|β| ≤ D

ωN (d(x1))N−1
|B(x1, d(x1)) \B(x2, d(x2))|.

Since B(x1, d(x2)− |x2 − x1|) ⊂ B(x2, d(x2)), we infer

B(x1, d(x1)) \B(x2, d(x2)) ⊂ B(x1, d(x1)) \B(x1, d(x2)− |x2 − x1|),

hence

|B(x1, d(x1)) \B(x2, d(x2))| ≤ ωN [((d(x1))N − (d(x2)− |x2 − x1|)N ]

≤ ωN (d(x1)− d(x2)

+|x2 − x1|)PN (2d(x1))N−1

≤ ωN |x2 − x1|PN (2d(x1))N−1

and

|β| ≤ DPN2N−1|x2 − x1|.
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Consider γ; write the absolute value of the integrand as

| 1
ωN (d(x2))N

(g(z)− g(x2))− 1
ωN (d(x2))N

(g(z)− g(x1))

+
1

ωN (d(x2))N
(g(z)− g(x1))− 1

ωN (d(x1))N
(g(z)− g(x1))|

= | 1
ωN (d(x2))N

(g(x1)− g(x2))

+(g(z)− g(x1))(
1

ωN (d(x2))N
− 1
ωN (d(x1))N

)|.

Since |B(x1, d(x1)) ∩B(x2, d(x2))| ≤ ωN (d(x1))N , we obtain

γ≤
[

D

ωN (d(x2))N
|x2 − x1|+Dd(x1)

(
(d(x2))N − (d(x1))N

ωN (d(x1))N (d(x2))N

)]
ωN (d(x1))N

≤ D|x2 − x1|+D
d(x1)
d(x2)

PN (d(x2)− d(x1))

≤ D(1 + PN )|x2 − x1|.

5.3 Differentiability results

Let P ∈ ∂Ω; we choose as coordinate system (depending on P ) the one that
has the origin in P and the xN axis in the direction of the normal to the
inside of Ω, so that, for i < N , the xi axis is on the tangent plane to P .
On this system, ∂Ω is described locally by xN = φ(x̂), with φ a smooth
function such that φ(0̂) = ∇φ(0̂) = 0; given Φ ≤ 1, we shall call BΦ(P ) the
maximal open ball centered at 0̂ in RN−1 such that, for x̂ ∈ BΦ, we have
|∇φ(x̂)| < Φ.

Set

ν =


−φx1

...
−φxN−1

1

 ; τ1 =


1
0
...
φx1

 ; . . . ; τN−1 =


0
...
1

φxN−1


and

ν =
ν

|ν|
; τi =

τ i
|τ i|

.

Given a point x ∈ Ω, as before we denote by y(x) the point in ∂Ω where
the minimum in (5.1) is attained. We shall consider the map x 7→ ŷ(x); J(ŷ)
is the Jacobian of this map.
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Lemma 5.6 (Differentiability Lemma). For every η there exist h̃ and
Φ̃ such that h ≥ h̃ and Φ ≤ Φ̃ imply that the map x 7→ ŷ is well defined and
differentiable on Ω 3M

h
, and we have

1− η
1 + η

≤ J(ŷ) ≤
√

1 + η2

(1− η)
.

Being the case N = 2 substantially simpler than the general case, we
present it separately. In the proof of this lemma we shall consider partial
derivatives evaluated at different points; it will be convenient to set f ′j to
denote the partial derivative of the (scalar-valued) function f with respect
to its j-th variable.

Proof. The case N = 2. a) We first claim that the map ∇wh+ is a known
function when computed at a generic point (y1, φ(y1)) ∈ ∂Ω. In fact, from
u0(y1, φ(y1)) ≡ wh+(y1, φ(y1)) we obtain

d

dy1
u0(y1, φ(y1)) = 〈∇u0, τ〉 =

d

dy1
wh+(y1, φ(y1)) = 〈∇wh+, τ〉

so that
〈∇wh+(y1, φ(y1)), τ〉 ≡ 〈∇u0(y1, φ(y1)), τ〉;

since the norm of ∇wh+ is h, we also have

〈∇wh+(y1, φ(y1)), ν〉 =
√
h2 − 〈∇u0(y1, φ(y1)), τ〉2.

Let ei be the coordinate directions; writing

e1 = 〈τ, e1〉τ + 〈ν, e1〉ν; e2 = 〈τ, e2〉τ + 〈ν, e2〉ν

we obtain the Cartesian coordinates of ∇wh+, i.e.,(
(wh+)′1
(wh+)′2

)
=

(
〈∇wh+, e1〉
〈∇wh+, e2〉

)
=

(
〈∇wh+, τ〉〈τ, e1〉+ 〈∇wh+, ν〉〈ν, e1〉
〈∇wh+, τ〉〈τ, e2〉+ 〈∇wh+, ν〉〈ν, e2〉

)

=

(
〈∇u0, τ〉〈τ, e1〉+

√
h2 − 〈∇u0, τ〉2〈ν, e1〉

〈∇u0, τ〉〈τ, e2〉+
√
h2 − 〈∇u0, τ〉2〈ν, e2〉

)
.

In particular,

(wh+)′1(y1, φ(y1)) ≡ [〈∇u0, τ〉〈τ, e1〉+
√
h2 − 〈∇u0, τ〉2〈ν, e1〉]|(y1,φ(y1)).

(5.7)
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b) Consider h∗ and d∗ defined in Lemma 5.3. We can assume that
h∗ ≥ 3M

d∗ . For every h ≥ h∗ and d(x) ≤ d∗, the map (depending on h)
x 7→ y(x) = (y1, φ(y1)) is well defined. We claim that y1 is a differentiable
function of x.

Recalling that ∇wh+ is constant along the line segment joining (x1, x2)
and (y1, φ(y1)), we obtain the identity

∇wh+(x1, x2) =

(
〈∇u0, τ〉〈τ, e1〉+

√
h2 − 〈∇u0, τ〉2〈ν, e1〉

〈∇u0, τ〉〈τ, e2〉+
√
h2 − 〈∇u0, τ〉2〈ν, e2〉

)
, (5.8)

where the right hand side is computed at the point (y1(x), φ(y1(x))).
The points x and y are related by the identity x = y + |x− y| x−y|x−y| , i.e.,

from (5.4), by(
x1

x2

)
=

(
y1(x)
φ(y1(x))

)
+

(wh+(x)− u0(y1(x), φ(y1)))
h

∇wh+(y1(x), φ(y1))
h

.

In particular,

x1 ≡ y1 +
1
h2

(wh+(x1, x2)− u0(y1, φ(y1))(wh+)′1(y1, φ(y1));

differentiating with respect to x1 this identity, we have

1 ≡ (y1)x1 +
1
h2

{
[(wh+)x1 −

(
〈∇u0, τ〉 · (y1)x1

)
](wh+)′1(y1, φ(y1))

+(wh+ − u0(y1, φ(y1)))〈∇((wh+)′1), τ〉 · (y1)x1

}
and

0 ≡ (y1)x2 +
1
h2

{
[(wh+)x2 −

(
〈∇u0, τ〉 · (y1)x2

)
](wh+)x1(y1, φ(y1))

+(wh+ − u0(y1, φ(y1)))〈∇((wh+)′1), τ〉 · (y1)x2

}
.

From (5.8), we have (wh+)′i(y1, φ(y1)) = (wh+)′i(x1, x2) and we obtain

(y1)x1 =
1− 1

h2 ((wh+)′1)2

1− 1
h2 [〈∇u0, τ〉(wh+)′1 − (wh+ − u0(y1, φ(y1)))〈∇((wh+)′1), τ〉]

and

(y1)x2 =
− 1
h2 (wh+)′1(wh+)′2

1− 1
h2 [〈∇u0, τ〉(wh+)′1 − (wh+ − u0(y1, φ(y1)))〈∇((wh+)′1), τ〉]

.
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c) We wish to estimate the Jacobian of the map x 7→ y1(x). Differenti-
ating (5.7),

d

dy1
(wh+)′1(y1, φ(y1)) = 〈∇((wh+)′1), τ〉

= (〈∇u0, τ〉)y1〈τ, e1〉+ 〈∇u0, τ〉(〈τ, e1〉)y1

−〈∇u
0, τ〉(〈∇u0, τ〉)y1√
h2 − 〈∇u0, τ〉2

〈ν, e1〉

−
√
h2 − 〈∇u0, τ〉2(〈ν, e1〉)y1

= A+B + C +D;

also

(
d

dy1
〈∇u0, τ〉) 1√

1 + (φ′)2
= τTHu0τ +

φ′′

(1 + (φ′)2)
3
2

〈∇u0, ν〉

and
(〈τ, e1〉)y1 = − φ′φ′′

(1 + (φ′)2)
3
2

; (〈ν, e1〉)y1 = − φ′′

(1 + (φ′)2)
3
2

.

We have |(wh+)′1| ≤ h and |∇u0| ≤ K; |〈∇u0, τ〉| ≤ K
√

1 + (φ′(y1))2. Re-
calling that Φ < 1 and h > 3K,

|A| ≤ 2K +K2; |B| ≤ K2; |C| ≤ 2K +K2

h
K ≤ K2; |D| ≤ hK,

so that ∣∣∣∣ ddy1
(wh+)′1(y1, φ(y1))

∣∣∣∣ ≤ K1 +Kh.

Recalling i) of Lemma 5.3, on the set Ω 3M
h

we have wh+(x) − u0(y(x)) =

h|x− y(x)| ≤ h · 23M
h = 6M , so that∣∣∣∣(wh+(x)− u0(y1, φ(y1)))

1
h2

(
d

dy1
(wh+)′1

)∣∣∣∣ ≤ 6M
1
h2

(K1 +Kh);

in addition, ∣∣∣∣〈∇u0, τ〉 1
h2

(wh+)′1

∣∣∣∣ ≤ 2K
1
h2
h;

we have obtained that the denominator satisfies

1 +
2
h2

[3M(K1 + 2Kh)]

≥ 1− 1
h2

[〈∇u0, τ〉(wh+)′1 − (wh+ − u0(y1, φ(y1)))〈∇((wh+)′1), τ〉]

≥ 1− 2
h2

[3M(K1 + 2Kh)].
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In addition, from (5.8), we have 1
h |w

h
x1
| ≤ K

h +Φ and | 1
h2w

h
x1
whx2
| ≤ K

h +Φ
so that we can make either term arbitrarily small by choosing 1

h and Φ small.

d) Fix η. Fix h̃ so large and Φ̃ so small that h ≥ h̃ and Φ ≤ Φ̃ imply:

1− η ≤ 1− 1
h2

[〈∇u0, τ〉(wh+)′1 − (wh+ − u0(y1, φ(y1)))〈∇((wh+)′1), τ〉] ≤ 1 + η;

1
h2

((wh+)′1)2 ≤ η and
∣∣∣∣ 1
h2

(wh+)′1(wh+)′2

∣∣∣∣ ≤ η.
We obtain, for every x ∈ Ω 3M

h
,

1− η
1 + η

≤ (y1)x1 ≤
1

1− η
; 0 ≤ |(y1)x2 | ≤ η

and
1− η
1 + η

≤ J((y1)(x)) =
√

(y1)2
x1

+ (y1)2
x2
≤
√

1 + η2

(1− η)
. (5.9)

Proof. The general case. a) Consider a generic point (ŷ, φ(ŷ)) ∈ ∂Ω, so that
τi = τi(ŷ) and ν = ν(ŷ): we claim that the map ∇wh+ is known when
computed at (ŷ, φ(ŷ)). In fact, from u0(ŷ, φ(ŷ)) ≡ wh+(ŷ, φ(ŷ)), we obtain

d

dyi
u0(ŷ, φ(ŷ)) = 〈∇u0, τ i〉 =

d

dyi
wh+(ŷ, φ(ŷ)) = 〈∇wh+, τ i〉,

so that
〈∇wh+(ŷ, φ(ŷ)), τi〉 = 〈∇u0(ŷ, φ(ŷ)), τi〉. (5.10)

For a vector v in R3, let P (v) be the projection of v on the tangent
plane; write v = 〈v, ν〉ν +

∑
aiτi, so that

∑
aiτi = P (v); we obtain, for the

coefficients ai, the system

〈v, τj〉 =
∑
i

ai〈τi, τj〉. (5.11)

In particular, for the vector ∇wh+, we obtain

∇wh+ = 〈∇wh+, ν〉ν +
N−1∑
i=1

aiτi,

and so, from (5.10), (5.11) becomes

〈∇u0, τj〉 =
∑

ai〈τi, τj〉. (5.12)
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The coefficient matrix T = (〈τi, τj〉) of system (5.12) converges to (δi,j)
as Φ→ 0; hence, for every Φ small, system (5.12) is solvable.

We also have

h2 = |∇wh+|2 = 〈∇wh+, ν〉2 + (P (∇wh+))2,

and we obtain

〈∇wh+, ν〉 =

√√√√√h2 −

N−1∑
i=1

a2
i +

∑
i 6=l

aial〈τi, τl〉

. (5.13)

b) Equations (5.10) and (5.13) provide 〈∇wh+, τi〉 and 〈∇wh+, ν〉; in order
to obtain the Cartesian coordinates of ∇wh+, write, for j = 1, . . . , N ,

ej = 〈ej , ν〉ν +
N−1∑
i=1

bji τi. (5.14)

We have

(wh+)′j = 〈∇wh+, ej〉 = 〈ej , ν〉〈∇wh+, ν〉+
N−1∑
i=1

bji 〈∇w
h
+, τi〉,

hence

〈∇wh+, ej〉(ŷ, φ(ŷ)) ≡
[N−1∑
i=1

bji 〈∇u
0, τi〉 (5.15)

+〈ej , ν〉

√√√√√h2 −

N−1∑
i=1

a2
i +

∑
i 6=l

aial〈τi, τl〉

]∣∣∣∣∣
(ŷ,φ(ŷ))

.

c) We have the identity(
x̂

xN

)
=

(
ŷ(x)
φ(ŷ(x))

)
+

(wh+(x)− u0(ŷ(x), φ(ŷ(x))))
h

∇wh+(ŷ(x), φ(ŷ(x))
h

.

Differentiate with respect to xj the first N − 1 lines and recall that
(wh+)′j(x) = (wh+)′j(ŷ, φ(ŷ)), to have

δi,j = yixj +
1
h2

[(
(wh+)xj −

∑
l

〈∇u0, τ l〉(yl)xj

)
(wh+)xi

+(wh+ − u0)
∑
l

〈∇((wh+)′i), τ l〉ylxj

]
,



62 5. Non-occurrence of the Lavrentiev phenomenon

where 〈∇((wh+)′i), τ l〉, u0 and 〈∇u0, τ l〉 are computed at the point (ŷ, φ(ŷ)).
Hence, for i = 1, . . . , N − 1 and j = 1, . . . , N ,

δi,j −
1
h2

(wh+)′i(w
h
+)′j = yixj +

1
h2

{∑
l

[wh+〈∇((wh+)′i), τ l〉. (5.16)

−(wh+)xi〈∇u0, τ l〉 − u0〈∇((wh+)′i), τ l〉]ylxj

}
.

System (5.16) has the form
1 + σ1,1 σ1,2 . . . σ1,N

...
...

. . .
...

σN−1,1 1 + σN−1,2 . . . σN−1,N

 (5.17)

=


(1 + η1,1) . . . η1,N−1

...
. . .

...
ηN−1,1 . . . (1 + ηN−1,N−1)




y1
x1

y1
x2

. . . y1
xN

...
...

. . .
...

yN−1
x1

yN−1
x2

. . . yN−1
xN

 ,

with

ηi,l =
1
h2

[wh+〈∇((wh+)′i), τ l〉 − (wh+)xi〈∇u0, τ l〉 − u0〈∇((wh+)′i), τ l〉].

We claim that system (5.17) is solvable in the unknowns yixj ; for this it is
enough to show that the ηi,l can be made arbitrarily small.

d) The expression for ηi,l contains second derivatives of the function wh+,
computed at (ŷ(x), φ(ŷ(x))), that can be obtained differentiating (5.15); in
turn, this requires the existence of the derivatives of ai and of the bij . We have
the derivatives of ai by differentiating the identity, obtained from (5.12),

〈∇u0(ŷ, φ(ŷ)), τ j(ŷ)〉 ≡
∑

ai(ŷ)〈τi(ŷ), τ j(ŷ)〉;

we have

∂

∂yl
〈∇u0, τ j〉 = (τ j)THu0τ l + u0

yN
φyjyl =

∑
[(ai)yl〈τi, τ j〉+ ai

∂

∂yl
〈τi, τ j〉],

i.e.,

(τ j)THu0τ l + u0
yN
φyjyl −

∑
i

ai
∂

∂yl
〈τi, τ j〉 =

∑
i

(ai)yl〈τi, τ j〉. (5.18)

Again, for all Φ sufficiently small, system (5.18) is solvable and (ai)yj exist.
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Consider (5.14) and take scalar products with ∇u0; since the left hand
side is differentiable, so is the right hand side and we obtain

(〈ej ,∇u0〉)xl − [〈ν, ej〉〈ν,∇u0〉]xl =
N−1∑
r=1

(bjr〈τr,∇u0〉)xl . (5.19)

Finally, consider (5.15); since we have shown that the right hand side is
differentiable, so is the left hand side and we obtain

∂

∂yl
〈∇wh+, ej〉(ŷ, φ(ŷ)) = (

∂

∂yl
〈ej , ν〉)

√√√√√h2 −

∑
i

a2
i +

∑
i 6=j

aiaj〈τi, τj〉



+〈ej , ν〉
∂

∂yl

√√√√√h2 −

∑
i

a2
i +

∑
i 6=j

aiaj〈τi, τj〉


+
N−1∑
i=1

(bji 〈∇u
0, τi〉)yl . (5.20)

e) Consider the following estimates as Φ→ 0. We have that, as Φ→ 0,
for j = 1, . . . , N − 1, τj → ej , while ν → eN ; from (5.12) we obtain

aj → 〈∇u0(0̂, 0), ej〉 = u0
yj (0̂, 0),

so that

〈∇wh+, ν〉 −→
√
h2 −

∑
i

(〈∇u0, ei〉)2

and √
h2 − (

∑
i

a2
i +

∑
i 6=j

aiaj〈τi, τj〉) −→

√√√√h2 −
N−1∑
i=1

(〈∇u0, ei〉)2.

We also have

(〈ej , ν〉)→

{
0 when j 6= N

1 when j = N

and, from (5.14), we obtain bij → δij . Moreover,

(〈ej , ν〉)yl →

{
−φyjyl when j 6= N

0 when j = N,

〈ν,∇u0〉 → u0
yN
, and (〈ν,∇u0〉)yl → −

N−1∑
i=1

φyiylu
0
yi + u0

yNyl
.
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From (5.15) we infer

(wh+)xj = 〈∇wh+, ej〉 →

{
〈∇u0, ej〉 for j 6= N√
h2 −

∑
i〈∇u0, ei〉2 for j = N.

(5.21)

From ∂
∂yl

φyi√
1+φ2

yi

→ φyiyl we infer that ∂
∂yl
〈τi, τj〉 → 0; hence, solving

system (5.18), we obtain

(aj)yl → (Hu0)j,l + u0
yN
φyjyl

that implies that there exists H1 such that, for all sufficiently small Φ and
all h, |(aj)yl | ≤ H1. Hence, there exists H2 such that

∂

∂yl

√√√√√h2 −

∑
i

a2
i +

∑
i 6=j

aiaj〈τi, τj〉


=

∑
i 2ai(ai)yl +

∑
i 6=j [(aiaj)yl〈τi, τj〉+ aiaj(〈τi, τj〉)yl ]

2
√
h2 − (

∑
i a

2
i +

∑
i 6=j aiaj〈τi, τj〉)

≤ H2.

From (5.19) we obtain

N−1∑
r=1

(bjr〈τr,∇u0〉)yl →

{
u0
yjyl

+ φyjylu
0
yN

j 6= N∑
i φyiylu

0
yi j = N

that yields the existence of H3 such that, for all Φ sufficiently small,

|
N−1∑
r=1

(bjr〈τr,∇u0〉)yl | ≤ H3.

Then, from (5.20),∣∣∣∣ ∂∂yl 〈∇wh+, ej〉(ŷ, φ(ŷ))
∣∣∣∣ ≤ 2Kh+H2 +H3.

Since |(wh+)xj | ≤ h, on the set Ω 3M
h

we obtain

|ηi,l| ≤
1
h2

[6M(2Kh+H2 +H3) + 2Kh].

f) Consider system (5.16) and notice that i < N : from (5.21) we obtain
that each σi,j can be made arbitrarily small by choosing 1

h and Φ small. From
(5.16) we obtain that, as both Φ and 1

h → 0, yixj → δij , with i = 1, . . . , N−1
and j = 1, . . . , N . The determinant of the minor of the matrix (yixj ) obtained
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by suppressing the last column, (yixN ), converges to 1, while the determinants
of all the other square matrices, that must contain the last column, tend to
0. Hence, by the formula for the Jacobian ([26], p. 89), given η, we can find
h̃ ≥ h∗ and Φ̃ such that h ≥ h̃ and Φ ≤ Φ̃ imply that, for x ∈ Ω 3M

h
,

1− η
1 + η

≤ J(ŷ(x)) ≤
√

1 + η2

(1− η)
.

5.4 Proof of Theorem 5.1

The Proof of Theorem 5.1 is partially based on the following fact: the prob-
lem of minimizing ∫ b

a
L(|u′(t)|) dt

on the set of u : [a, b] → RN absolutely continuous and satisfying u(a) =
α; u(b) = β, where L is a convex function defined on R, admits the solution

ũ(t) = α+
β − α
b− a

(t− a).

We shall need the following Definition. In it, and for the remainder of

this section, for ξ ∈ BΦ(P ), we set yξ =

(
ξ

φ(ξ)

)
.

Definition 5.7. For given h, Φ, δ, and for P ∈ ∂Ω, set,

V +
h,Φ,δ(P ) =

{
x ∈ Ω : x = yξ + `

∇wh+(yξ)
h

;

ξ ∈ BΦ(P ); ` ∈ (0, `∗); d(yξ + `∗
∇wh+(yξ)

h
) = δ

}
.

For a measurable subset Z of the ball BΦ(P ), set V +
Z to be the subset of

V +
h,Φ,δ(P ) such that ξ ∈ Z.

Set

V −h,Φ,δ(P ) =

{
x ∈ Ω : x = yξ − `

∇wh−(yξ)
h

;

ξ ∈ BΦ(P ); ` ∈ (0, `∗); d(yξ − `∗
∇wh−(yξ)

h
) = δ

}
.

For a measurable subset Z of the ball BΦ(P ), set V −Z to be the subset of
V −h,Φ,δ(P ) such that ξ ∈ Z.
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Proof of Theorem 5.1. Fix ε. Set ε1 = ε
4

R
Ω L(|∇u(x)|) dx

and let η (0 < η < 1)
be such that

(1 + η)
√

1 + η2

(1− η)2
= (1 + ε1);

consider h̃, and Φ̃ supplied by the Differentiability Lemma for this η; set
δ̃ = 3M

h̃
; recall the function M h̃ in Definition 5.2.

a) Set Ω+ = {x : u(x) > wh̃+(x)}, Ω− = {x : u(x) < wh̃−(x)} and Ω0 =
{x : wh̃−(x) ≤ u(x) ≤ wh̃+(x)}. Notice that d(x) ≥ δ̃ implies that wh̃+(x) =
u0(y(x))+wh̃+(x)−u0(y(x)) ≥ −M+ h̃|y(x)−x| ≥ 2M > M ≥ u(x), so that
Ω+ ⊂ Ωδ̃. In the same way one obtains also Ω− ⊂ Ωδ̃. Hence, the estimates
on the Jacobian of the map x 7→ ŷ, provided by the Differentiability Lemma,
hold on Ω+ and on Ω−.

We have, almost everywhere in Ω,

|∇M h̃| =

{
h̃ for x ∈ Ω− ∪ Ω+

|∇u| for x ∈ Ω0,

so that∫
Ω
L(|∇M h̃(x)|) dx =

∫
Ω−

L(h̃) dx+
∫

Ω+

L(h̃) dx+
∫

Ω0

L(|∇u|) dx

b) We wish to show that∫
Ω
L(|∇M h̃(x)|) dx ≤

∫
Ω
L(|∇u(x)|) dx+

ε

2
; (5.22)

it is enough to show that∫
Ω+

L(|h̃|) dx =
∫

Ω+

L(|∇M h̃(x)|) dx ≤
∫

Ω+

L(|∇u(x)|) dx+
ε

4
(5.23)

and∫
Ω−

L(|h̃|) dx =
∫

Ω−
L(|∇M h̃(x)|) dx ≤

∫
Ω−

L(|∇u(x)|) dx+
ε

4
. (5.24)

c) We hall prove (5.23), being (5.24) proved in the same way. Consider
∆ = {x ∈ Ω : d(x) = δ̃

2}: ∆ is a compact subset of Ω. By ii) of Lemma 5.3,
the collection of open sets, defined in Definition 5.7, {V +

h̃,Φ̃,δ̃
(P ) : P ∈ ∂Ω}

is a covering of ∆. Let {V +

h̃,Φ̃,δ̃
(Pj) : 1 ≤ j ≤ J} be a finite subcover. We

are going to define measurable subsets Zj of BΦ̃(Pj): set Z = Z1 = BΦ̃(P1);
consider P2 and set

Z2 = {ξ ∈ BΦ̃(P2) : (yξ +
δ̃

2
∇wh̃+(yξ)

h̃
) ∩ V +

Z1
= ∅}.
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Having defined Zj up to j̃, set

Zj̃+1 = {ξ ∈ BΦ̃(Pj̃+1) : (yξ +
δ̃

2
∇wh̃+(yξ)

h̃
) ∩ V +

Zj
= ∅ for 1 ≤ j ≤ j̃}.

Hence, every point in ∆ belongs to one and only one V +
Zj

and, by the unique-
ness in Lemma 5.3, so is for Ωδ̃.

d) We claim that for every j,∫
Ω+∩V +

Zj

L(|∇M h̃(x)|) dx ≤ (1 + ε)
∫

Ω+∩V +
Zj

L(|∇u(x)|) dx.

Apply the Coarea Theorem, [26], to the set Ω+ ∩ V +
Zj

and to the function
ŷ(x) to obtain∫

Ω+∩V +
Zj

L(|∇u(x)|) dx =
∫
Zj

+
[
∫
{ŷ(x)=ξ}∩(Ω+∩V +

Zj
)

L(|∇u(x)|)
J(ŷ(x))

dH1] dξ;

(5.25)
consider the line segment

Lξ = {yξ + `
∇wh̃+(yξ)

h̃
: ` ∈ (0, `∗); d(yξ + `∗

∇wh̃+(yξ)

h̃
) = δ̃} :

we have that {ŷ(x) = ξ} ∩ (Ω+ ∩ VZj ) = Lξ ∩ Ω+. For almost every ξ ∈ Zj
the maps

ũξ(`) = u(yξ + `
∇wh̃+(yξ)

h̃
),

w̃h̃+(`) = wh̃+(yξ + `
∇wh̃+(yξ)

h̃
)

are absolutely continuous, so that the set Sξ = {` : ũξ(`) > w̃h̃+(`)} is a
(possibly empty) open set. Then, there are at most countably many open
intervals (aj , bj) such that Sξ = ∪(aj , bj) and ũξ(aj) − w̃h̃+(aj) = ũξ(bj) −
w̃h̃+(bj) = 0 while, for ` ∈ (aj , bj), ũξ(`) > w̃h̃+(`). Fix one such (aj , bj). The
problem of minimizing∫ bj

aj

L(|v′(`)|) d`; v(aj) = ũξ(aj); v(bj) = ũξ(bj)

admits the solution w̃h̃+, so that, in particular,∫ bj

aj

L(h̃) d` ≤
∫ bj

aj

L(|ũ′ξ(`)|) d`

=
∫ bj

aj

L(|〈∇u(yξ + `
∇wh̃+(yξ)

h̃
),
∇wh̃+(yξ)

h̃
〉|) d`.
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Recall that |∇w
h̃(yξ)

h̃
| = 1; since L is non-decreasing, we obtain that

L(|〈∇u(yξ + `
∇wh̃+(yξ)

h̃
),
∇wh̃+(yξ)

h̃
〉|) ≤ L(|∇u(yξ + `

∇wh̃+(yξ)

h̃
)|),

hence that ∫ bj

aj

L(h̃) d` ≤
∫ bj

aj

L(|∇u(yξ + `
∇wh̃(yξ)

h̃
|) d` (5.26)

Since the restriction to Lξ ∩ Ω+ of the gradient of M h̃ is ∇wh̃(yξ) when `

belongs to the intervals (aj , bj), inequality (5.26) implies∫
{ŷ(x)=ξ}∩(VZj∩Ω+)

L(|∇M h̃|) dH1 ≤
∫
{ŷ(x)=ξ}∩(VZj∩Ω+)

L(|∇u|) dH1.

(5.27)
By (5.25), (5.9) and (5.27),∫

VZj∩Ω+

L(|∇u(x)|) dx =
∫
Zj

[
∫
{ŷ(x)=ξ}∩(VZj∩Ω+)

L(|∇u(x)|)
J(ŷ(x))

dH1] dξ

≥ (1− η)√
1 + η2

∫
Zj

[
∫
{ŷ(x)=ξ}∩(VZj∩Ω+)

L(|∇u(x)|) dH1] dξ

≥ (1− η)√
1 + η2

∫
Zj

[
∫
{ŷ(x)=ξ}∩(VZj∩Ω+)

L(|∇M h̃(x)|) dH1] dξ

≥ (1− η)√
1 + η2

∫
Zj

[
∫
{ŷ(x)=ξ}∩(VZj∩Ω+)

1− η
1 + η

L(|∇M h̃(x)|)
J(ŷ(x))

dH1] dξ

=
(1− η)2

(1 + η)
√

1 + η2

∫
VZj∩Ω+

L(|∇M h̃(x)|) dx.

We have obtained∫
VZj∩Ω+

L(|∇M h̃(x)|) dx ≤ (1 + ε1)
∫
VZj∩Ω+

L(|∇u(x)|) dx.

Summing over j, we have∫
Ω+

L(|∇M h̃(x)|) dx ≤ (1 + ε1)
∫

Ω+

L(|∇u(x)|) dx

≤
∫

Ω+

L(|∇u(x)|) dx+
ε

2
,

thus (5.22) is proved.
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e) Write

M h̃(x) = u0(x) + [M h̃(x)−M h̃(y(x))− u0(x) + u0(y(x)];

we have |(M h̃(x) −M h̃(y(x)) − (u0(x) − u0(y(x)))| ≤ (h̃ + K)|y(x) − x| ≤
2(h̃+K)d(x), by i) of Lemma 5.3. Hence, M h̃ is the sum of a Lipschitzean
function and of a function g such that |g(x)| ≤ Dd(x).

Apply Lemma 5.5 to infer the existence of D∗ such that

M̃ h̃(x) =
1

|B(x, d(x))|

∫
B(x,d(x))

M h̃(z) dz

is Lipschitzean of constant D∗. Consider L(D∗): there exists δ∗ ≤ δ̃ such
that ∫

Ωδ∗
L(D∗) dx <

ε

2
.

f) Having fixed δ∗, define the continuous function

uε(x) =

{
1

|B(x,d(x))|
∫
B(x,d(x))M

h̃(z) dz, when d(x) ≤ δ∗,
1

|B(x,δ∗)|
∫
B(x,δ∗)M

h̃(z) dz, when d(x) > δ∗.

From e) and Lemma 5.4, we have that uε is Lipschitzean and, moreover,
that uε|∂Ω = u0|∂Ω. We claim that∫

Ω
L(|∇uε(x)|) dx ≤

∫
Ω
L(|∇M h̃|) dx+

ε

2
.

Write Ω = Ωδ∗ ∪ [Ω \ Ωδ∗ ]. Consider the restriction of uε to Ω \ Ωδ∗ . By ii)
of Lemma 5.4 (applied to δ = δ∗), we have that, for a.e. x ∈ Ω \ Ωδ∗ ,

∇uε(x) =
1

ωN (δ∗)N

∫
B(0,δ∗)

∇M h̃(x− z) dz,

so that, by the convexity of L(| · |),

L(|∇uε(x)|) ≤ 1
ωN (δ∗)N

∫
B(0,δ∗)

L(|∇M h̃(x− z)|) dz

and∫
Ω\Ωδ∗

L(|∇uε(x)|) dx ≤ 1
ωN (δ∗)N

∫
B(0,δ∗)

dz
∫

Ω\Ωδ∗
L(|∇M h̃(x− z)|) dx

≤
∫

Ω
L(|∇M h̃(x)|) dx.
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By Lemma 5.5, uε is Lipschitzean of constant D∗. From our choice of
δ∗, we have ∫

Ωδ∗
L(|∇uε(x)|) dx ≤

∫
Ωδ∗

L(D∗) dx ≤ ε

2
,

and so∫
Ω
L(|∇uε(x)|) dx =

∫
Ωδ∗

L(|∇uε(x)|) dx+
∫

Ω\Ωδ∗
L(|∇uε(x)|) dx

≤
∫

Ω
L(|∇M h̃|) dx+

ε

2
,

thus, by (5.22), proving the Theorem.



Chapter 6

A two-dimensional

Manià-type example

Set Ω be the square Q = [−1/2, 1/2] × [0, 1] ⊂ R2 and let u0(x, y) = y

be the boundary data. We wish to show the occurrence of the Lavrentiev
phenomenon, i.e., that

inf
v∈W1

∫
Q
f(x, y, v,∇v) dxdy < inf

v∈W∞

∫
Q
f(x, y, v,∇v) dxdy, (6.1)

where

f(x, y, u,∇u) :=
{[

(1− 2|x|) 3
√
y + 2|x|y

]3 − u3(x, y)
}2
{
∂u

∂y
(x, y)

}6

,

and Wp = {u ∈ W 1,p(Q) : u|∂Q = u0}, for p ∈ [1,∞]. As one can easily
see, the functional is non negative, the minimum over W1 is zero and it is
attained at u(x, y) = (1− 2|x|) 3

√
y + 2|x|y.

In order to prove (6.1), we adapt the original proof by B. Manià, [30],
to the two-dimensional case.

Let u be in W∞. By regularity, for any fixed x > 0, one can choose
α = α(x) and β = β(x) such that α(x) < β(x) and

u(x, α(x)) =
1
4
[
(1− 2x) 3

√
α(x) + 2xα(x)

]
;

u(x, β(x)) =
1
2
[
(1− 2x) 3

√
β(x) + 2xβ(x)

]
.

Moreover, if one considers x ∈ [1/8, 1/4], then
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u(x, β(x))− u(x, α(x)) =
1
2

[(1− 2x) 3
√
β + 2xβ]− 1

4
[(1− 2x) 3

√
α+ 2xα]

≥ 1
4

3
√
β(x) +

1
8
β(x)− 3

16
3
√
α(x)− 1

8
α(x)

≥ 1
16

3
√
β(x).

Using Jensen’s inequality and the fact that β(·) < 1,

∫ 1/4

1/8
dx
∫ β(x)

α(x)

{
[(1− 2x) 3

√
y + 2xy]3 − u3(x, y)

}2
{
∂u

∂y
(x, y)

}6

dy

≥
∫ 1/4

1/8
dx
∫ β(x)

α(x)

{
[(1− 2x) 3

√
y + 2xy]3

−1
8

[(1− 2x) 3
√
y + 2xy]3

}2{∂u
∂y

}6

dy

≥ 72

82

∫ 1/4

1/8
dx
∫ β(x)

α(x)
y2

{
∂u

∂y
(x, y)

}6

dy

=
7235

8255

∫ 1/4

1/8
dx
∫ β3/5(x)

α3/5(x)

{
∂u

∂y
(x, y(ξ))

}6

dξ

=
7235

8255

∫ 1/4

1/8

β3/5(x)− α3/5(x)
β3/5(x)− α3/5(x)

∫ β3/5(x)

α3/5(x)

{
∂u

∂y
(x, y(ξ))

}6

dξdx

≥ 7235

8255

∫ 1/4

1/8
[β3/5(x)− α3/5(x)] ·

·

(
1

β3/5(x)− α3/5(x)

∫ β3/5(x)

α3/5(x)

{
∂u

∂y

}
dξ

)6

dx

≥ 7235

8255

∫ 1/4

1/8

1
[β3/5(x)− α3/5(x)]5

[u(x, β(x))− u(x, α(x))]6 dx

≥ 7235

8255

∫ 1/4

1/8

1
β3(x)

[u(x, β(x))− u(x, α(x))]6 dx

≥ 7235

8255

1
16

∫ 1/4

1/8

3
√
β(x)

β3(x)
dx

≥ 7235

825524

1
8
.
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Appendix A

A.1 Carathéodory functions

We recall Definition 3.5 and Remark 3.6 in [22].

Let Ω ⊂ Rn be an open set and let f : Ω × RN → R ∪ {+∞}. Then f

is said to be a Carathéodory function if

• x 7→ f(x, ξ) is measurable for every fixed ξ ∈ RN ;

• ξ 7→ f(x, ξ) is continuous for almost every fixed x ∈ Ω.

In most of the uses of the above notion, we apply it to functions f :
Ω×Rm×RM → R∪{+∞}, f = f(x, u, ξ). When we speak of Carathéodory
functions in this context, we consider the variable ξ as playing the role of
(u, ξ) and RN = Rm ×RM .

A.2 Luzin’s Theorem

Theorem (Luzin). Let f : X → R be a measurable function defined on a
Lebesgue measurable set X ⊂ Rn, for which the Lebesgue measure `(X) is
finite. Then for each ε > 0 there exists a compact subset K ⊂ X such that
`(X \K) < ε and such that f |K , the restriction of f to K, is continuous on
K.

For a proof, see for example [35] .

A.3 Convex functions - Some basic properties

What follows is arranged from [37]: Chapters 4, 12, and 23.
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Let f be a function whose values are real or ±∞ and whose domain is a
subset S of Rn. The set

epi f = {(x, µ) : x ∈ S, µ ∈ R, µ ≥ f(x)}

is called the epigraph of f and is denoted by epi f . We define f to be a
convex function on S if epi f is convex as a subset of Rn+1. A concave
function on S is a function whose negative is convex. An affine function on
S is a function which is finite, convex and concave.

The effective domain of a convex function f on S, which we denote by
Dom f , is the projection on Rn of the epigraph of f :

Dom f = {x : ∃ µ s.t. (x, µ) ∈ epi f} = {x : f(x) < +∞} .

A convex function f is said to be proper if its epigraph is non-empty
and contains no vertical lines, i.e., if f(x) < +∞ for at least one x and
f(x) > −∞ for every x.

The following theorem states an important characterization of convex
functions.

Theorem A.1. Let f be a function from C to (−∞,+∞], where C is a
convex set. Then f is convex on C if and only if

f
(
(1− λ)x+ λy

)
≤ (1− λ)f(x) + λf(y), ∀x, y ∈ C, ∀λ ∈ [0, 1].

A.3.1 Subdifferential of convex functions

A vector x∗ is said to be a subgradient of a convex function f at a point x if

f(z) ≥ f(x) + 〈x∗, z − x〉, ∀z.

This condition, which we refer to as the subgradient inequality, has a simple
geometric meaning when f is finite at x: it says that the graph of the affine
function h(z) = f(x) + 〈x∗, z − x〉 is a non-vertical supporting hyperplane
to the convex set epi f at the point (x, f(z)).

The set of all subgradients of f at x is called the subdifferential of f
at x and is denoted by ∂f(x). The set valued mapping ∂f : x 7→ ∂f(x) is
called the subdifferential of f . Obviously ∂f(x) is a closed convex set and,
in general, it may be empty, or it may consist of just one vector. If ∂f(x) is
not empty, f is said to be subdifferentiable at x.
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For example, the Euclidean norm f(x) = |x| is subdifferentiable at every
x ∈ Rn, although it is differentiable only at every x 6= 0. The set ∂f(0)
consists of all the vectors x∗ such that |z| ≥ 〈x∗, z〉 for every z. In other
words, it is the Euclidean unit ball.

The following theorem shows how gradients and subgradients are related.

Theorem A.2. Let f be a convex function, and let x be a point where f is
finite. If f is differentiable at x, then ∇f(x) is the unique subgradient of f
at x and, in particular,

f(z) ≥ f(x) + 〈∇f(x), z − x〉, ∀z.

Vice versa, if ∂f(x) consists of just one vector, then f is differentiable at x
and ∂f(x) = {∇f(x)}.

A.3.2 Polars of convex functions

Given a convex function f : Rn → R ∪ {±∞}, we define

f∗(x∗) := sup
x
{〈x, x∗〉 − f(x)} = − inf

x
{f(x)− 〈x, x∗〉}.

This f∗ is called the conjugate or the polar of f . It is actually the
pointwise supremum of the affine functions g(x∗) = 〈x, x∗〉 − µ such that
(x, µ) belongs to the set epi f . Hence, f∗ is another convex function, in fact
a closed convex function. Since f is the pointwise supremum of the affine
functions h(x) = 〈x, x∗〉 − µ∗ such that (x∗, µ∗) belongs to epi f∗, we have

f(x) = sup
x∗
{〈x, x∗〉 − f∗(x∗)} = − inf

x∗
{f∗(x∗)− 〈x, x∗〉}

But this says that the polar f∗∗ of f∗ is f .

Theorem A.3. Let f be a convex function. The polar function f∗ is then a
closed convex function, proper if and only if f is proper. Moreover, (cl f)∗ =
f∗ and f∗∗ = cl f .

Taking polars clearly reverses functionals functional inequalities: f1 ≤ f2

implies f∗1 ≤ f∗2 .
The theory of conjugacy can be regarded as the theory of the “best”

inequalities of the type

〈x, y〉 ≤ f(x) + g(y), ∀x, ∀y,
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where f and g are functions from Rn to (−∞,+∞]. Let W denote the set
of all function pairs (f, g) for which this inequality is valid. The “best”
pairs (f, g) in W are those for which the inequality cannot be tightened, i.e.,
those such that, if (f ′, g′) ∈ W , f ′ ≤ f and g′ ≤ g, then f ′ = f and g′ = g.
Clearly, one has (f, g) ∈W if and only if

g(y) ≥ sup
x
{〈x, y〉 − f(x)} = f∗(y), ∀y,

or, equivalently

f(x) ≥ sup
y
{〈x, y〉 − g(y)} = g∗(x), ∀x.

Therefore, the “best” pairs in W are precisely those such that g = f∗ and
f = g∗. The “best” inequalities thus correspond to the pairs of mutually
conjugate closed proper convex functions.

It is useful to remember, in particular, that the inequality

〈x, x∗〉 ≤ f(x) + f∗(x∗), ∀x, ∀x∗ (Fenchel’s inequality),

holds for any proper convex function f and its conjugate f∗. The pairs
(x, x∗) for which Fenchel’s inequality is satisfied as an equation form the
graph of the subdifferential ∂f :

Theorem A.4. For any proper convex function f and any vector x, the
following four conditions on a vector x∗ are equivalent to each other:

• x∗ ∈ ∂f(x);

• 〈z, x∗〉 − f(z) achieves its supremum in z at z = x;

• f(x) + f∗(x∗) ≤ 〈x, x∗〉;

• f(x) + f∗(x∗) = 〈x, x∗〉.

If (cl f)(x) = f(x), three more conditions can be added to this list

• x ∈ ∂f∗(x∗);

• 〈x, z∗〉 − f∗(z∗) achieves its supremum in z∗ at z∗ = x∗;

• x∗ ∈ ∂(cl f)(x).
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