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Outline

Deposition of Ge upon Si substrates is the prototype of the mechanism called Stranski-

Krastanov growth, i.e. the self-assembled formation of 3D islands, following the formation

of a thin, 2D Wetting Layer.

As is shown in Chapter 1, the nucleation of these islands is random and non-uniform

when the deposition is performed upon the standard Si(001) substrate.

Deposition of SiGe on different substrates of Si can lead, however, to a high degree of

uniformity. Some examples are described in Chapters 3 and 4.

The aim of this thesis is to supply a quantitative analysis for some peculiar phenomena

concerning island nucleation that occurs on these non-standard substrates.

This is performed through the evaluation of the internal energy of the island (including

also effects on the substrate) as discussed at length in Chapter 2, where the elastic, surface

and edge energy contributions are described, focusing particular attention to the second

one, that turns out to be quite complicated.

Particular attention is devoted to the island nucleation on stepped substrates of Si

(Chapter 4). An in-depth analysis of the formation of faceting upon the substrate Si(1 1 10)

is carried out in Chapter 5, whereas Chapter 6 deals with the transition from the faceting

to three-dimensional islands on this peculiar system.

Conclusions are drawn in Chapter 7.

Appendices A and B contain some additional information regarding the elastic field

and the description of surfaces.

In Appendix C an analysis of the strained surface energy is carried out.

In Appendix D some preliminary work performed during the PhD period on other impor-

tant surfaces for the SiGe system is discussed.

Finally at page 203 a Curriculum Vitæ is reported.
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CP Chemical Potentials

CVD Chemical Vapour Deposition

DFT Density Functional Theory

DVL Dimer Vacancy Line

ECS Equilibrium Crystal Structure

FEM Finite Element Method

FM Frank Van der Merve growth mode of self-assembled nanostructures

FP Facet Plot

GGA Generalized Gradient Approximation

ISK Inverse Stranski-Krastanov

LDA Local Density Approximation

LET Linear Elasticity Theory

MBE Molecular Beam Epitaxy

ML Mono-Layer

MP Monkhorst-Pack way to create a meshes in k-space

PBC Periodic Boundary Conditions
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PF Perfect Faceting = condition of faceting of a surface (e.g. 1,1,10) where all the islands

have the same size and no WL is present

RHEED Reflection High Energy Electron Diffraction

RS Rebonded Step = the most stable reconstruction of Ge(105)

SE Surface Energy

SK Stranski-Krastanow growth mode of self-assembled nanostructures

SOM Surface Orientiation Map

TD Thermo-Dynamics = Total energy calculations

USPP Ultra Soft PseudoPotential

VW Volmer-Weber growth mode of self-assembled nanostructures

WL Wetting Layer (pseudomorphic planar growth of the epilayer)

WS Weighted Slope (see section 2.4.3)

XC eXchange-Correlation contributions



List of Symbols used

ǫij = Component ij of strain field tensor

Cijkh = Component ijkh of the stiffness constants tensor

Cij = Component ij of the stiffness constants tensor in the .... notation

ρ = Elastic energy density

γ = Surface energy density

Γ = Edge energy density

α ≡ AR = Aspect Ratio = height of island / square root of base area

θ = co-latitude angle

ϕ = azimuth angle or inclination of ripples on (1 1 10)

nj = vector of direction: n3 is along z direction

njk = k-th component of the vector nj

Db = Double step B-type

NGe = number of Ge atoms in the simulation cell

NSi = number of Si atoms in the simulation cell

F = relaxation factor = − ρisl−ρWL

ρWL
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1
State of the Art

“Standing on the shoulders of giants”

Bernard of Chartres

1.1 Introduction

Even though the first transistor was made of germanium, in modern technology the role

of silicon is undoubtely the dominant one, thanks to its well-established and cheap set

of processes. In the last few decades the scaling down predicted by the Moore’s law in

Si technology has been fulfilled, yet the top-down approaches for the size of nanometer

(10−9 m) length are ineffective to shrink the size of any device (as the Field Effect Transis-

tor, FET). Due to the fatigue of keeping the reliable top-down approach alive, researchers

has been driving importance to bottom-up approaches where Silicon can still be the main

actor. This is the reason why SiGe heteroepitaxial self-assembled nanostructures have

attracted a considerable interest in the development of new electrical and optical devices.

Besides of these application-driven needs, SiGe systems can be considered the pro-

totypical systems of the self-assembly phenomena and the concepts developed from the

analysis of this system can be extended and used to understand more complex situations

like the partially polar III-V compounds (like InAs/GaAs) or II-VI ones.

In this chapter, some basic concepts and discoveries concerning the growth of SiGe

islands on Si substrates are briefly reviewed and summarized.
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1.2 Heteroepitaxy in a nutshell

Epitaxy is defined as a controlled phase transition that leads to a single crystalline solid [1].

In this process a material, called epilayer, is deposited onto a crystalline solid, called

substrate, of a given structure. In epitaxy the crystallographic orientation is determined

by the exposed surface of the substrate. If the epilayer and the substrate are of the same

material such process is called homoepitaxy. In contrast, when atoms of material A grow on

a material B the process is called heteroepitaxy and the epilayer adopts the in-plane lattice

parameter of the substrate. If A has different lattice parameter than B, elastic energy is

stored in the epilayer. In heteroepitaxy three growth modes are observed [2]: Frank Van

der Merve (FM), Volmer-Weber (VW) and Stranski-Krastanow (SK) mode. The three

mode, sketched in Fig.1.1, can be described as layer by layer two dimensional growth,

island growth and layer by layer (Wetting Layer,WL) plus island growth respectively.

The growth mode is mainly governed by surface energies and by lattice mismatch.

In lattice matched systems (A and B have the same lattice constant) the growth mode is

governed by surface energy only. Let us call γepi the surface epilayer energy, γint the energy

of the interface between A and B and γsub the surface substrate energy. If γepi+γint < γsub
, the deposited material wets the substrate, and the growth proceeds in the FM mode. A

change in γepi + γint alone may drive a transition to the FM to VW growth mode: the

epilayer either wets the substrate or does not.

In lattice mismatched systems there is an additional possibility. In case of systems

with small interface energy but large lattice mismatch, SK growth mode is favored. Initial

growth is layer by layer, but because a thicker layer has large elastic energy, islands are

formed to relax the strain.

Figure 1.1: The three growth mode of heteroepitaxy: FM=Frank van der Merve, SK=Stranski-

Krastanov, VW=Volmer-Weber.
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1.3 Ge/Si island formation: elastic relaxation

Germanium and silicon are group IV semiconductor and they both have a diamond lattice

with lattice constant along the [100] direction equal to aSi = 5.432Å and aGe = 5.658Å [3].

Thus, Ge/Si is a mismatched system, where the difference in lattice parameter accounts

for about 4%.

From a chemical point of view, Ge and Si are very similar. Alloying is favored and

Si1−xGex (x is the Ge content) alloys are fully miscible in the whole composition range

for temperatures used in heteroepitaxy1. By tuning the Ge content x, the lattice mismatch

between the alloy and the substrate varies from 0% to 4%.

The surface energy Si1−xGex is lower than the surface energy of Si, and their interface

energy is small, so the Ge content x is a key parameter in determining the heteroepitaxial

growth mode of SiGe alloys on Si. The initial growth occurs layer by layer, then three-

dimensional islands are formed to relieve the elastic energy stored in the system (elastic

relaxation). The evolution of this system upon increasing deposition and different condi-

tions (typically flux and substrate temperature) in the MBE or CVD growth chamber has

clarified the path followed by the system [4, 5].

The substrate evolve from a Si terminated one to a Ge-terminated since the dangling

bond of Ge are less energetic. Further, the WL evolve through a 2xN-DVL reconstruction

to a MxN patch pattern [6, 7, 8]. Deformed in the pseudomorphic structure, the wetting

layer stores elastic energy that will find paths to be released. By increasing the amount

of deposited material (typically after ∼ 3MLs [4]), because of the high lattice mismatch,

the elastic energy stored in the lattice is sufficient to nucleate 3D nanostructures, called

quantum dots or islands, arising from the substrate in a bottom-up, self-assembled

fashion. As will be shown in section 2.4 at page 39, Ge-on-Si quantum dots represent a

more effective route towards elastic relaxation with respect to a flat film, at the cost of an

extra surface energy exposed and these driving forces are playing in the further evolution

of islands in shape.

Islands are typically described by a parameter called Aspect Ratio (AR) defined as the

ratio of height of island over the square root of the base surface:

AR ≡ h√
B

As reported in Figure 1.2-[a,b], the islands evolve increasing the value of the AR since

a higher aspect ratio typically2 allows a better strain relieve.

The observed islands are reported in Figure 1.2-[c-f].

The first islands to appear are unfacetted, low-aspect-ratio nanostructures, called pre-

pyramids [9], PP in panel [c]. The nucleation barrier to nucleate such structures is zero [10],

which accounts for its actual experimental observation. At later stages of growth, those

structures transform into fully-3D faceted islands, with the shape of a truncated pyramid

[11], TP in panel [c]. Before the transition to a full-3D structure, it was shown the stability

1ranging from ∼ 550◦ to ∼ 800◦

2but with some cautions and limitations, see discussion at sec.2.4.3 at page 50
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of intermediate, metastable shapes of Ge elongated “huts” [12, 13], particularly visible

under specific growth conditions, like temperatures in the range 400-550◦C, panel [d].

Raising the temperature can lead to evolution of steeper and steeper islands.

When the growth temperature is ∼ 600 − 720◦C, a bimodal distribution of square base

pyramids (AR = 0.1) and rounded islands called “domes” (AR ≃ 0.2) are observed [14, 15],

panel [e].

In the range ∼ 720− 800◦C “barn-shaped” islands with AR ≃ 0.3 appear [16] (B in panel

[c]), and recently a even steeper island with AR ≃ 0.4 has been reported if the temperature

is raised to ∼ 900◦C (“Cupola“ islands) [17].

Evidently Ge islands exposes defined crystallographic facets among all the possible

available; this already implies that there must be facets with higher and others with lower

surface energy, so that Ge islands, among all the possible ones, have shapes such that

they preferentially expose the lowest-energetic facets. A detailed morphological analysis

is reported in the next section.

1.4 Morphological analysis: Facets

Every island shape just outlined is characterized by a well-defined set of facets that are

experimentally revealed via a slope analysis leading to a “facet plot” (FP)3 (Fig.1.2-[f])

[19] that has allowed to identify a small number of stable facets for each island species.

The pre-pyramids and pyramids are made of shallow (∼ 11◦) {105} facets. At every step

of the evolution, new steeper facets are added at the bottom of the island [17] with a

mechanism based on step-bunching starting from the facets formed in the previous stage

[20], as is the case of the transition dome in Fig.1.2-[c].

In the domes the {113} and {15 3 23} facets are added [19]; in the barns {20 4 23},
{23 4 20} and {111} appear [16]; finally in the cupola {322}, {715} and {12 3 5} [17].

Depending on the experimental conditions, the tip of the island can be cut by a (001)

facet.

This analysis refers to the case of Si(001) substrate, however the same family facets are

observed to appear if the Ge deposition is performed on different orientation of substrates

[21, 22, 23], although the geometry of islands is different because of the constraint due

to the substrate. This suggests that while the appearance of steeper facets is driven by

the reduction of the strain energy, the orientation of these facets that actually appear

(determining the island’s morphology) is governed by the energetics of a small number of

facets. Moreover, since it happens even on III-V compound like InAs/GaAs [24], this may

be true under a general pespective.

The stability of different facets of Si and Ge has been assessed experimentally and

divided into two categories [25]:

• ‘major’: a stable surface that does not consist of nanofacets of any other stable

surfaces (typically flat surfaces)

3also called Surface Orientation Map, SOM
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Figure 1.2: Ge/Si(001) nanoislands. Evolution of the islands AR as a function of their volume

[a] (from Ref.[16]) and base [b] (from Ref.[18]). “SD” and “R” denote the SuperDomes or Relaxed,

dislocated islands, see sec.1.6. [c] shows a 3D view of the islands: from top left to bottom right

mound, pre-pyramid, pyramid, transition dome, dome, barn. [d] shows an enlarged view of a hut

cluster and a dome. [e] shows a large scale image. [f] shows a 3D view of pyramid, dome and

dislocated (relaxed) dome and their Facet Plot that allows to identify the facets. [c-f] are taken

from Ref.[5]
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• ‘minor’: a stable surface consisting of nanofacets of one or more major surfaces

Some studies on Si and Ge unstrained are reported in Ref.[26]. Here it is shown

that the (105) surface is not a stable facet for Ge, an apparent contradiction to its early

observation. This is easily explained considering that the facets on Ge/Si islands are

compressively strained and literature results [27] show that the (105) surface is stabilized

by compressive strain.

As is costumary, in this thesis we will present the orientation-dependent properties of

crystals (among which surface energies and stability) by using the concept of the “Stere-

ographic Triangle”, that will be first presented and rapidly explained in sec.2.4.2 at

page 40 and used in sec.4.1 at page 83.

1.5 Intermixing

The creation of islands from a WL requires adatoms to have enough mobility on the

surfaces, having their energy provided by the temperature of the substrate itself. At the

same time, high temperature triggers a high intermixing between Si and Ge, with the

consequent that the Ge concentration both in the WL and in islands hardly reaches 100%.

Photoluminescence experiments [28] have confirmed this holds for the WL and quantitative

similar results have been obtained via dedicated atomistic simulations, also with a Monte

Carlo approach [29] of allowed Ge-Si chemical mixing during Ge layer-by-layer deposition.

Altough even at temperature equal to 700◦C, the Ge concentration in a layer-by-layer

growth can exceed 80% [28], this is not true for 3D islands.

The typical concentration for domes grown at 700◦C is ∼ 40% [30], whereas it lowers to

∼ 20− 30% for T=720◦C [31].

Apart from a higher mobility and possibility of exchange Si-Ge at surfaces, a well-

understood mechanism in which islands become Si-rich is described as follows. The

pyramid-to-dome shape transition is accompanied by the formation of trenches surround-

ing the island [32, 33]. Trenches dig into the Si substrate, thus representing a fresh source

of Si at that stage of growth. Ge islands start to incorporate Si and intermixing phe-

nomenon takes place. The driving force towards Si incorporation is the entropy of mixing

that leads to alloy Si and Ge. By lowering the Ge content the local lattice parameter of a

Si1−xGex alloy comes closer to the Si bulk decreasing the lattice mismatch. The compo-

sitional profile of the SiGe island is clearly affected by the intermixing phenomenon. The

intermixing of the deposited Ge, with Si popping up from the substrate, which has been

shown to decrease the Ge content with increasing growth temperatures, both in CVD and

MBE [34] growths.

One experimental technique successfully applied to study the composition profiles in-

side island is etching [35]. By the use of a chemical solvent (the etchant), islands can be

selectively removed over the substrate, allowing for the study of the reaction of the islands

upon attack with a solution able to remove SiGe alloy, but not pure Si. In particular, wet

chemical etching with a 30% solution of hydrogen peroxide (H2O2) selectively removes

Si1−xGex alloys with compositions having x > 0.65 (i.e. Ge-rich material). At this stage,

etching is thus useful to explore the 65% Ge isocompositional profile inside islands, which
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is already enough to get into some details of the anisotropic island Ge concentration. Re-

cent experiments, carried out with etchants able to remove material up to the complete

dissolution of the islands, were carried out assisted by atomic force microscopy (AFM)

scan of the partially etched island at every etching step [36]. Known the etchant composi-

tion selectivity at every etching step, it is finally possible to reconstruct a cross-sectional

map of the Ge content.

The maps come already very useful to get the first insights of the actual Ge distribution

inside islands (domes). The general features are here listed. First of all, a Ge-rich core

is clearly present at the top of the island. Second, Si-rich areas are visible at the island

corners, which can be explained as the accumulation of material driven by strain by

intermixing, during the trenches excavation, as mentioned above. Finally, even if it cannot

be inferred from the maps of Fig.1.3, it is expected a pure-Ge layer at the very free island

surface. This happens because of the reduced surface tension of Ge with respect to Si:

the energy of a dangling bond, in fact, is 0.96 eV for Ge and 1.15 eV for Si from Tersoff

potential. This effect is called “surface segregation”4 and consists in the tendency of

material to expose Ge to a greater extent than Si. This effect has thus strong influence

especially when Si is deposited on Ge, where now surface segregation becomes a direct

driving force towards intermixing.

Recent simulations [37, 38] show that the experimentally revealed profile distribution is

the one minimizing the elastic energy: the Ge atoms are preferentially located at the more

relaxed top of the island, the Si atoms at the bottom. This is a proof that intermixing

phenomena represent an alternative path to the minimization of elastic energy. Indeed, if

it is not triggered because of the not-high-enough temperature, some extended defects are

created to relieve strain (see sec.1.6 below).

It is noteworthy to say that intermixing can play a non-negligible role in the transition

of shape of islands. Indeed the {20 4 23} and {23 4 20} are stable facets of Si but not of

Ge, and indeed these facets appear when the temperature is high enough (see discussion

above), that favours intermixing.

The role played by silicon in islands stability has been established also from the ‘reversal

evolution’, where a dome covered by a capping layer of Si trasforms back into a pyramid

and amorphous mound [39].

As intuitive, typically the higher the temperature, the lower the average Ge concen-

tration in the island. Further on Si(001) the evolution to steeper islands is one-way, the

lower Ge content being present in the steeper islands [40] (because of the high temperature

necessary to create it).

An important counter-example that proves the importance of considering the detailed

geometry and Ge content in the islands for the estimation of their stability has been

studied in the present work and is reported in Chapter 3.

4and the top Ge layer is called “Floating Layer”
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Figure 1.3: [a] Intermixing profiles in islands on Si(001) as determined by etching techniques,

from Ref.[36]. Since the nucleation is random on the surface the Ge profile may be asymmetric as

in (e) due to some ripening phenomena occurring between neighbouring islands. D, TB, SD stands

for Dome, Transtion Barn and SuperDome (i.e. dislocated). [b] shows the creation of the trenches

triggered by the strain compression due to the island and the silicon spilling out from them (c),

thus increasing Si concentration in the island. Reproduced form Ref.[33].
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1.6 Plasticity

As stated, both the transition to steeper islands and the intermixing have the aim to reduce

the elastic budget stored in the island. An alternative route to these is the onset of a plastic

relaxation through the formation of extended crystallographic defects (dislocations) in the

islands.

Under peculiar experimental conditions of deposition flux and temperature, the domes

become dislocated before transforming into barns. Since these defected islands can relieve

strain at a higher degree, they attract adatoms from the surface and enlarge in size, a

reason why they are also called “superdomes” [12]. Examples of dislocated domes are

reported in Fig.1.3-[a] and 1.2-[e,f], where it is evident that the presence of the line defect

alters the island growth, making it asymmetric since atoms prefer to be located in the

nearby of the dislocation.

Evidences [17] show that the higher the temperature, the fewer dislocated islands on

the sample, suggesting that alloying and dislocation onset are competitive mechanisms.

Since dislocations are detrimental for both electronic and optical properties of nanos-

tructures, a great effort is being devoted in literature to the comprehension of their dy-

namics and energetics.

In this thesis, we will deal just with coherent islands, neglecting the dislocated ones.
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2
Modeling the shape and energy of

nanostructures

“Divide et impera” (Divide and conquer)

Latin quote

In this chapter we describe in details the method we adopt to model the nanostructures

and to assess their energy.

After discussing the multiscale description of the internal energy of the nanoislands

adopted in literature, we define and explain the concept of Wulff solid to model the island

shapes.

The basics of atomistic (both ab initio and semiempirical) approach and continuum

ones are described.

Afterwards the volumetric contribution is described focusing on the anisotropy of the

WL. We critically analyze the criterion of the Aspect Ratio for elastic relaxation and show

its incompleteness.

An extensive analysis of the way to model surface energies via slab geometries with

novel solutions is presented along with its analytic dependence on both Ge epilayer thick-

ness and strain. The need to use the proper strained chemical potential is discussed and

proven in Appendix C.

Finally we present the possible nucleation regimes coming out from a different balance

between the energy contributions.

2.1 Multiscale modeling of formation energy of nanostruc-

tures

Following previous studies we may break the net formation energy of a three-dimensional

nanostructure into volumetric (elastic), surface and edge energy contributions [30, 41].

Further we may take the early-stage WL as a reference of energy writing the formation
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energy of an isolated island as:

∆E = Eisl − EWL = ∆Evol +∆Esurf +∆Eedge (2.1)

The volumetric energy is written as

∆Evol = V · (ρisl − ρWL) = V · ρWL ·
(
ρisl − ρWL

ρWL

)
≡ −V · ρWL · F (2.2)

where the energy of a fixed amount of material in a WL or island configuration is compared

and therefore V is the volume of the island that is imposed to be the same as a certain

amount of material in the WL; ρ are the elastic energy density of island and WL.

F is the “relaxation factor” quantifying the percentage of strain energy relaxed by the 3D

island. Since ρisl < ρWL a minus sign is necessary to make F a positive quantity. When

F̃ → 0, the island relaxes very little, when F̃ → 100% it means that ρisl = 0 and the island

is perfectly relaxed. The description and quantification of ρ is reported below in section

2.4 where for its computation both atomistic and continuum approaches have been used.

The surface energy term must take into account the exposed facets of the island Si

and the area of the WL covered by this Bcov, each with the relative surface energy density

per unit area γ:

∆Esurf =

exposed∑

i

Si · γi −Bcov · γWL (2.3)

The surface energy densities γ and their complexity due to the strong dependence on the

atomistic details of the surface are described in sec.2.5, where their estimation is achieved

just via atomistic approaches. Since this data are typically combined with strain results

from continuum approach, this method is called “Multiscale”.

The edges between adjacent facets of a nanoislands represent a discontinuity of the

solid where bonds are broken, they therefore have an energy cost per unit length Γ. Thus,

the edge energy term becomes:

∆Eedge =
∑

j

Lj · Γj (2.4)

where Lj are the lengths of the different edges. Since edges between different facets can in

principle have different energies, different values of Γj are required. The estimation of the

edge energies is not trivial, since they depends not only on the geometries of facets and

their reconstruction but also on the way the facets join to each other. A way to estimate

it is either via atomistic simulations of idealized geometries [42] or via a combination of

theoretical modeling with experimental findings, the latter being a result of this thesis and

described in Chapter 5.

It is customary to use eqn.(2.1) with the aim to predict the variation of an island

shape when it grows self-similarly, i.e. when the shape is not altered [43]. Since in

enlarging the island the ratios surface-to-volume and edge-extension-to-volume change, it
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is a common habit to define adimensional quantities called “geometrical factors” β that

remain unchanged with the volume as follows:

βexp
i =

Si

V 2/3
; βcov =

Bcov

V 2/3
; βedge

i =
Li

V 1/3
(2.5)

That, substituted in the previous relation, turn the internal formation energy into:

∆E = −V · ρWL · F +

+ V 2/3 ·
(

exp∑

i

βexp
i · γi − βcov · γWL

)
+

+ V 1/3 ·
∑

j

βedge
j · Γj (2.6)

This equation can also be expressed as a function of a length characteristic and easy-

to-measure of the island b, such as the diameter or the base length of a pyramid or dome.

In such a case we can use other parameters K:

V ≡ KV · b3 (2.7)

Si ≡ KSi · b2 = βi · V 2/3 ⇒ KSi = βi ·K2/3
V (2.8)

B ≡ KB · b2 = βcov · V 2/3 ⇒ KB = βcov ·K2/3
V (2.9)

Lj ≡ Kedge
j · b = βedge

j · V 1/3 ⇒ Kedge
j = βedge

j ·K1/3
V (2.10)

Hence the equation becomes

∆E

b
= −b2 ·KV · ρWL · F + (2.11)

+ b ·
(

exposed∑

i

KSi · γi −Kcov · γWL

)
+ (2.12)

+
∑

j

Kedge
j · Γj (2.13)

From these results it is evident that the role of edge energy has a vanishing contribu-

tion for large enough volumes, and in literature it is typically neglected. An important

counter-example studied in this thesis is the case of ripples on Si(1 1 10) that is described

in Chapter 5.

Quantifying this energy ∆E in a way as much accurate as possible is the main goal of

this thesis. It is noteworthy to mention that the energy described involves just internal

contribution, with no temperature and entropy contribution included. The hypotesis

underlying the use of this equation is the thermodynamical equilibrium, i.e. the kinetic

accessibility (and stability) of the minimum energy state.

The different nucleation regimes coming from the balance of volume and surface contri-

butions are described in sec.2.6, afterwards a full discussion of the two terms is performed.
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2.2 Nanoislands as Wulff solids

The first step to the simulation of any system is to find a mathematical model and de-

scription of the system itself.

As seen in the previous chapter, the self-assembled SK nanostructures are geometrical

solids laying on a substrate. The first ones observed (the pyramids) are extremely simple

but the next ones observed (domes and barn) appear rather complex and generally they

cannot be described as platonic truncated solids. Finding the geometry of nanoislands

is analogous to finding the equilibrium crystal shape (ECS) of a growing crystal. In the

growing process the system will seek the shape that minimizes the total surface energy

subject to the constraint of fixed volume (i.e. amount of material). This question amounts

to a problem in affine geometry that was first solved by Wulff [44, 45]. In the case

of strained nanostructures we are dealing with, the geometries can be described as the

convex envelope of more than one pyramids (as shown later) and the Wulff solid is the

interior envelope of the family of planes [44, 46].

The basic idea is the following and is sketched in Figure 2.1.

Suppose the solid is composed of a bunch of different facets, such as the {105}, {113}
or any other. Suppose that each i-th surface, whose normal is ni, is laying at a certain

distance wi from a fixed point called Wulff point [47]. The Wulff solid is made by the space

containing the Wulff point delimited by the surfaces nearest to the Wulff point itself. As

shown in the example of Figure 2.1-(a,b) where the Wulff point is the point O, depending

on the relative values of wi, some facets might not be present in the Wulff construction.

Indeed, the higher the value of w, the further away the surface, the smaller the relative

facet (as if w was a surface energy, as discussed below).

In order to create a solid on a surface (as is the case of our nanostructures), we set

the w value of the surface being the substrate to zero in such a way the Wulff point lays

at the base of the solid itself and the wi’s of the experimentally-observed exposed surfaces

are tuned ‘empirically’ to reproduce the desidered geometry. The typical geometries of

dome and barn observed on Si(001) are reproduced in Fig.2.1-(c-f) with the parameters

reported in Tab.2.1.

From these examples some features of the Wulff construction can be deduced.

First of all the mechanism of Wulff construction creates a solid with the steeper facets at

the bottom and the shallower at the top (panels c,d), that is definitely the shape observed

on the experimental islands (see Chapter 1).

Secondly, the ratio between different facets (i.e. the shape of the island) is a function just

of the relative ratio of the w, and not of their absolute values: the same shape is formed

if all the w’s are multiplied by a constant factor.

Further, the relative extension of the facets depends on the orientation and w values of all

the other facets.

Finally, the shape is highly sensitive to the substrate itself (panels g,h).

This shows that if the facets present on the nanostructures are just the few ones with

low energy, then a modification of shape should be expected in changing the substrate as

predicted by the Wulff construction. This is what is observed (see discussion in Chap-

ter 1) and in some circumstances the solid cannot even close (as is the case described
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in Chapter 4). Although the overall solid is the intersection of several pyramids each of

which made of a single family of facets (as depicted in Figure 2.1-c,d), and although the

geometrical values for pyramids are analytically derivable, the geometrical properties of

the islands β are not a priori predictable and must be determined case by case.

Quantity Pyramid Dome Barn

w(105) 10.0 9.6 9.8

w(113) ∞ 10.2 10.2

w(15,3,23) ∞ 12.3 11.9

w(001) ∞ 9.2 9.5

w(111) ∞ ∞ 14.8

w(23,4,20) ∞ ∞ 14.8

w(20,4,23) ∞ ∞ 13.2

Aspect Ratio 0.10 0.23 0.28

βexp 9.846 5.193 4.460

βcov 9.655 4.574 3.544

βexp − βcov 0.191 0.619 0.916

βedge
exp 8.876 15.452 22.806

βedge
cov 12.429 7.722 6.798

Table 2.1: Geometrical parameters of realistic island shapes on (001) substrate. The w are the

surface energies that enter the Wulff construction: ∞ means that the surface is not included in the

solid. The β are the geometrical factors defined in eqn.(2.5). The edges are divided into covered

(if they all lie in the substrate plane) and exposed (if at least one point of the segment is out of

the substrate plane).

As for the surface energies, it is noteworthy to remind something about the physical

interpretation of the Wulff construction.

In an abstract space the fact to include in the solid the portion of space nearest to the

Wulff point is equivalent to minimize the quantity
∑

i

wi · Si

that can be seen as the total surface energy if the wi are the surface energy densities.

This interpretation is not valid in a strained nanostructures like the ones we are studying,

because the strain energy accumulated inside the island1 is an energy term that is not

taken into account in this interpretation. Additionally, the surface energies of any facet

are highly sensitive to the strain state they are subject to2, so in a strained nanostructure

the wi’s are distinct objects from the actual surface energies of the facets in the island γi.

However, when no strain is present, the Wulff solid may be used backward to deduce

the surface energies of different facets [47]. In these respects the Wulff solid is also the

Equilibrium Crystal Structure (ECS) of the system [48].

1see sec.2.4
2see sec.2.5 and Chapter 5
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With this in mind, these models are employed to quantify the elastic relaxation of

realistic island shapes in a Finite Element Method approach (as described below) and fi-

nally to get the effective surface energy of their facets in a multiscale approach (see below).

2.3 Computational approaches

Here some details on the methods used in this work are summarized to allow the repro-

ducibility of data.

2.3.1 Tersoff potential

A way to handle interatomic interactions in a solid is through semiempirical potentials,

that employ ad-hoc analytical expressions to model the interatomic interactions. One

potential that is known to work for group IV systems (like Si and Ge) is Tersoff potential

[49, 50] where also a three-body term is introduced to better describe the diamond lattice.

This potential allows to accurately reproduce the strain field [51].

The potential has been implemented into a hand-made software written in fortran90.

In all the calculations the system has been relaxed through a Steepest Descent algorithm,

the maximum allowed force being 10−6 eV/Å in modulus.

2.3.2 DFT-LDA

In literature several studies of surface energy values are addressed with the use of quantum

mechanical calculations based on density function theory (DFT).

In our calculations, we use the planewave-pseudopotential code VASP [52, 53]. Electron-

core interactions are modelled with ultra soft pseudopotential (USPP) [54], and exchange

and correlation effects are described using the local density approximation (LDA) of Ceper-

ley and Alder [55] as parametrized by Perdew and Zunger [56]. Previous results for GeSi

systems [57] show that the LDA approximation used here gives results in good agree-

ment with calculations using the generalized gradient approximation (GGA) for exchange-

correlation effects.

In order to build a fully consistent set of surface energies, for all calculations the

planewave cutoff energy is set to 355 eV for both Si and Ge atoms, and a vacuum re-

gion between slabs of twice the Si diamond cubic lattice constant (∼ 11 Å) is used in

the calculation cells. Eigenvalues were computed on a Monkhorst-Pack grid of special k

points, the density of which has always been checked to guarantee the convergence. The

atomic positions are optimized via a conjugate gradient algorithm, with relaxed structures

identified when the maximum residual force fell below 5 meV/Å.

2.3.3 FEM

The elasticity theory is a classical problem of partial differential equations [58], thus, it

can be solved in a continuum approach using a finite element method (FEM), that can

be syntetically described with the following points. First of all it is worth recalling the
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Figure 2.1: Wulff solids of nanoislands: Top row = 2D simple case with 2 w’s (black and

red), point O being the Wulff point. In (a) the Wulff construction is the area containing O and

delimited by points ABCDEF. In (b) the w of the red line is too long and its facets are missing in

the construction ACDF. (c) and (d) show the construction of the envelope (black lines) of dome

and barn on (001) with the parameters of Tab.2.1 with all the pyramids (dashed lines). (e) and

(f) are perspective view of (c) and (d) respectively with the facets families highlighted. (g) and

(h) show the same solids when the substrate is not 001 but 105 to show the change in shape. All

the figures are made with a software in fortran90 written on purpose.
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elastic problem which finds in Finite Elements its numerical way of solution. The linear

elasticity theory used here is the generalization to three dimensions of the Hooke’s law of

a spring. In this formulation the deformation is described by the symmetric strain tensor

ǫij , the diagonal components describing the compression or dilation on the three cartesian

axes whereas the off-diagonal components describing a deformation in space. The forces

are described by the stress tensor σij and they are linked to the deformations through the

stiffness tensor Cijkh as:

σij = Cijkh · ǫkh (2.14)

As discussed in Appendix A, symmetries can simplify the problem by using also the Voigt

notation [58].

Our systems consist in a free (uncapped) island laying on a WL or substrate and the

problem to solve for the displacement field u when no external forces apart the mismatch

is applied is the following:




−
∑3

j=1 ∂jσij = 0 inside Ω∑3
j=1 σij(u)nj = 0 on ΓN

ui = 0 on ΓD

(2.15)

where Ω is the region where the solution is found (the SiGe island and the WL or substrate

underneath), ΓN are the Neuman boundary conditions that impose equal to zero the force

normal to the surface (that we apply to the borders of the substrate) and ΓD are the

Diriclet boundary conditions that impose no displacement for points on the boundary (i.e.

fixed boundary, that we apply to the bottom of the cell). The exposed facets of both the

island and the substrate/WL are free to relax.

The initial condition (stress of the island) is introduced thorugh the use of Eshelby’s

Theory of inclusions [58]: the initial stress is computed from an eigenstrain that due to

the strain induced by the lattice mismatch between the epilayer and the substrate:

ǫm =
asub − aepi

aepi
(2.16)

The solution of (2.15) is computed on every node of a properly-created grid and from

this is possible to calculate the displacement field u at each node, and the elastic properties

of the system (stress, strain and elastic energy).

Once the displacement field u is computed, the elastic energy density stored in a

deformed solid is given by:

ρ ≡ 1

2
· Cijkh · ǫij · ǫkh (2.17)

=
1

2
C11(ǫ

2
xx + ǫ2yy + ǫ2zz) +

1

2
C44(ǫ

2
yz + ǫ2zx + ǫ2xy) +

+ C12(ǫxxǫyy + ǫyyǫzz + ǫxxǫzz) (2.18)

Where eqn.(2.18) hold in the case of cubic materials [59] and it is this quantity that enters

the energy balance.

The results showed in this thesis are obtained using the commercial FEM code Comsol

Multiphysics.
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2.4 Elastic field

Here we discuss the properties of the elastic field.

2.4.1 Bulk properties

The elasticity theory describes the deformation with respect to the unstrained bulk, hence

the first step to obtain the strain field of a system is the assessment of its bulk properties.

Since the interatomic interactions are different for different potentials, it is funda-

mental to use the equilibrium values for the potential employed to be consistent. The

equilibrium lattice constant of a bulk material can be obtained by taking the value giving

the minimum energy per atom. An example of this obtained by Tersoff potential for Ge

is sketched in Fig.2.2. The minimum energy value of the lattice constant is the equilib-

rium lattice constant and the corresponding value of energy is the “chemical potential” µ,

whose modulus is the cohesive energy of the system. Its asymmetry from the minimum is

due to non-linearity terms that cannot be described by the elasticity theory. This trend

is well-described by the Birch-Murnaghan equation [60, 61] and allows to extract some

elastic constant as well [62]. On the other hand, the elastic constants can be extracted by

properly straining a bulk cell [63].

The bulk properties for all the parametrization adopted are reported in Tab.2.2, where

the elastic constants given by Tersoff potential are compatible with the ones found by

other authors with the same potential [64].
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Figure 2.2: Example of energy per atom for different lattice constant in the case of a Ge bulk

described by Tersoff potential.
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Material Potential a0 C11 C12 C44 µ

[Å] [GPa] [GPa] [GPa] [eV/atom]

Ge Exp 5.658 128.35 48.23 66.66 X

Tersoff 5.6567 138.441 44.449 66.813 -3.85060

DFT-LDA 5.624 121.6 46.5 64.3 -5.199221

Si Exp 5.432 165.78 63.94 79.62 X

Tersoff 5.4320 142.541 75.392 69.012 -4.62959

DFT-LDA 5.390 160.2 62.1 76.2 -5.976782

Table 2.2: Elastic constants for all the potential used in this work and the chemical potential of

Bulk materials. The experimental constants ‘EXP’ are taken from Ref.[3].

2.4.2 WL: the role of anisotropy and non-linearity

The elastic energy of a WL, ρWL, plays a fundamental role in the stability of nanoislands

in eqn (2.2). Additionally, a biaxially-strained GeSi/Si WL can increase the charge carrier

mobility in high-speed transistors, an effect that already reached the stage of application

[65] and therefore has a relevance on its own.

Unlike the 3D islands, the elastic energy of a biaxially-strained WL can be computed

analytically inside the LET (linear elasticity theory)3, therefore this system can also be

used as a test for the role played by non-harmonic terms by comparing analytic results with

atomistic approaches. At the same time the anisotropic behaviour is analyzed showing

a strong directional-dependent relaxation that must be taken into account when dealing

with the nucleation of islands on substrates different from (001) along with the distorted

shape of the domes.

Additionally, as is proven thoroughly in Appendix C at page 165, giving the correct

energy to a strained bulk is also of fundamental importance to avoid non-sensical results

for surface energies.

ρ of a strained WL in LET

The elastic energy of a WL can be deduced analytically in several ways [66]. Here we

employ the direct definition of elastic energy.

The definition of elastic energy density for a generic system is:

ρ =
1

2
· Cij,kh · ǫij · ǫkh (2.19)

In the case of a WL strained in the direction x of ǫxx = ǫ1, along direction y of ǫyy = ǫ2 and

free to relax along the direction z to minimize its energy reaching a deformation state of

ǫzz = ǫ3, the system cannot undergo any deformation in shape, since the only stresses are

applied along the facets of the parallelepiped. Therefore, all the off-diagonal components

will be zero:

ǫij = 0 if i 6= j

3see Appendix A
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Further, the strain in the plane ǫxx, ǫyy are fixed by the external conditions (the adaptation

to the substrate lattice), the only unknown variable, therefore, being the strain along the

free surface z ǫzz. Since no stress is applied to this surface we have:

σ33 = C33ij · ǫij = 0

After expressing the stiffness constants in Voigt notation this expression can be solved for

ǫzz getting the value:

ǫ∗zz = − C13 · ǫxx + C23 · ǫyy
C33

(2.20)

= − C13 + C23

C33
· ǫ (2.21)

Where the latter equation is for the biaxial strain situation: ǫxx = ǫyy = ǫ.

Note that the strain relaxation has opposite sign with respect to the strain applied in the

plane and typically a different value. This is named Poisson effect and the ratio ǫzz/ǫ

Poisson ratio. Giving the correct value of ǫzz plays a fundamental role in assessing the

correct values of the surface energies (see Appendix C).

From this, the elastic energy for a WL free in the direction 3 turns into:

ρ =
1

2
Cij,khǫijǫkh =

1

2
Cii,kkǫiiǫkk ≡ 1

2
Cikǫiǫk (2.22)

=
1

2

[
Ciiǫ

2
i + 2C12ǫ1ǫ2 + 2C13ǫ1ǫ3 + 2C23ǫ2ǫ3

]
(2.23)

=
1

2
ǫ21 ·
(
C11 −

C2
13

C33

)
+

1

2
ǫ22 ·
(
C22 −

C2
23

C33

)
+

+ ǫ1 · ǫ2 ·
(
C12 −

C13 · C23

C33

)
(2.24)

= ǫ2 · 1
2
·
[
C11 + C22 + 2 · C12 −

(C13 + C23)
2

C33

]
(2.25)

where the last equation is for the biaxial strain case ǫxx = ǫyy ≡ ǫ.

In all these equations the stiffness tensor is expressed in a general form.

Indeed, from the way the elastic constants are defined [63, 67, 68], they refer to the case

where the cartesian axes are along the axis of the cubic cell: i.e. x//[100], y//[010],

z//[001]. If this is the case, the stiffness tensor is the one reported in Appendix A and we

have

C13 = C23 = C12 ;C33 = C22 = C11

Hence in the case of a biaxial strain we get:

ǫ∗zz(001) = −ǫ · 2 · C12

C11
(2.26)

ρWL(001) = ǫ2 ·
[
C11 + C12 − 2

C2
12

C11

]
(2.27)

Where is evident that the elastic energy density is a quadratic function in the deformation,

and the theory is an harmonic one4.

4Hence the name Linear Elasticity Theory



42
CHAPTER 2. MODELING THE SHAPE AND ENERGY OF

NANOSTRUCTURES

For general directions, eqns (2.24,2.25) are still valid, provided that the stiffness tensor

is referred to the proper directions. Indeed, the elastic energy of a biaxially-strained WL

in the case of a general direction z//(n1, n2, n3) can be deduced by properly rotating the

stiffness tensor.

For sake of simplicity we consider directly the case of a biaxial strain and since the

strain applied is isotropic on the xy plane in this case, any couple of mutually-orthogonal

directions can be taken as x and y normal to the z axis. The chosen directions are:





z = [n1, n2, n3]

x = [n2,−n1, 0]

y = z ∧ x = [n1 · n3, n2 · n3,−(n2
1 + n2

2)]

(2.28)

All the subsequent results called “LET” are obtained by numerically rotating the stiffness

tensor and using eqn (2.25).

Atomistic Approach

In the case of atomistic approaches, no expression for the energy as a function of strain

is strictly needed, rather the chemical potential µ of the atoms can be extracted directly

from the energy of the strained cell and since it is a bulk every atom has the same energy.

In any case, the strain along z is a priori unknown and is determined as follows.

As is the case of continuum approach, here we suppose the strain ǫxx and ǫyy to be fixed

and known and the system will relax till the energy reaches a local minimum given these

conditions, the only variable being the strain along z. By imposing to the cell different

ǫzz values, this minimum is found for a value of the strain ǫ∗zz as sketched in Figure 2.3

for the simple case of z//(001).

For a generic direction it is mandatory to find a way to minimize the number of atoms

needed in the cell, since the computational cost and time is proportional to a power of

the number of atoms, a parameter particularly relevant in the case of an ab initio analysis

used in this work. For this reason, a conventional, cubic, 8-atoms, unit cell is exploited,

that is distorted in such a way to reproduce the proper strain.

The chemical potential µ can be linked to the elastic energy density ρ by considering

the latter as the additional energy per unit of UN-strained volume taking the unstrained

condition as a reference:

ρ = (µ− µunstr) ·
N

V0
(2.29)

where µ is the energy per atom in the strained condition, µunstr is the energy per atom

in an UNstrained solid that are reported in Table 2.2, N/V0 is the density of atoms in an

UNstrained solid. In the case of a diamond lattice (as Si, Ge and their alloys) the density

is:
N

V0
=

8

a30
(2.30)

where a0 is the lattice constant of the material in an unstrained bulk.

All the results are reported in the next subsection.
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Figure 2.3: Method to find µ and ǫ∗zz. Tersoff potential trend for the energy per atom of a WL of

Ge(001) strained biaxially at -4% for different strain imposed along z ǫzz. The non-parabolic trend

due to non-linear effects is evident. The minimum energy is µ and the strain at which this happens

is the Poisson-effect-due value ǫ∗zz. In the case of DFT-LDA just some points are computed and

the minimum is found with a interpolation with a third degree polynomial function around the

estimated minimum (not shown).

Results

In this subsection the results for µ, ρ, ǫ∗zz are presented.

After showing the method of the stereographic triangle to visualize directional-dependent

results, an extensive comparison is made between Tersoff potential results and the LET

approach in order to show non-linearity effects.

An analysis of the anisotropy is performed for both experimental elastic constants in LET,

Tersoff potential and DFT-LDA approach.

Visualization:

The visualization of physical property as a function of the direction is typically made in

polar coordinates on a sphere [66]. However, by exploiting the symmetries of cubic crystals

the independent directions to analyze are the ones inside the so-called “stereographic

triangle” [69]5. This triangle is a portion of the full sphere of directions and one of the

possible and simplest way to represent it is as follows.

The directions laying inside it are the ones with the Miller indexes (n1, n2, n3) satisfying

the following criteria: 



n1 ≤ n3

n2 ≤ n1

0 ≤ n2 ≤ n1 ≤ n3

(2.31)

From these the values of the variable in the entire sphere of directions can be determined,

so the stereographic triangle is a convenient 2D representation of direction-dependent

properties in cubic crystals.

5see sec.1.4 at page 24
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Figure 2.4: Anisotropy of ρ for a WL biaxially strained at ǫ = ±4% in the plane (n1, n2, n3)

analyzed with the experimental elastic constants in a LET approach. (a) stereographic triangle with

the direction highlighted from O to B: (001), (1 1 10), (105), (113), (15 3 23), (111). (b) 3D polar

representation with a colour scale. The region in black is the region covered by the stereographic

triangle in panel (a). The units of ρ are meV/Å3.

Elastic energy density:

An example of the use of the stereographic triangle is reported in Figure 2.4, where the

elastic energy density ρ of a WL biaxially strained at ǫ = ±4% is reported as obtained by

LET using experimental constants for germanium. Panel (a) shows the values inside the

stereographic triangles with a colour scale. The black points from O to B highlight the

directions: (001), (1 1 10), (105), (113), (15 3 23) and (111). Panel (b) shows the same

results in a 3D polar representation where the region covered by the stereographic triangle

is represented in black. The same colour scale is used for clarity. As evident the elastic

energy density is highly anisotropic: it ranges from 1.4 meV/Å3 for the case of (001) to

1.85 meV/Å3 for the case of (111), giving rise to a 3D shape already reported in literature

[66], that highlights the {001} directions are ‘soft’ ones in Ge (and Si) systems [70].

Since LET is used, the elastic energy density is quadratic in the in-plane-strain (see

equation (2.25)), so the same energy is for both ǫ = −4% and ǫ = +4%.

This is not the case if any atomistic approach is used. Indeed Figure 2.5 shows that

the values for µ and ρ of a Ge WL subject to a in-plane-strain equal to -4% (panel a)

or +4% (panel b) as computed by Tersoff potential are different to each other: 1.6 and

1.4 meV/Å3 for (001) respectively. Further, they both differ from the results of LET

with Tersoff potential (panel c). This is a clear effect of non-linearity. Indeed panel (d)

shows the trend of µ (left y axis) and ρ (right y axis) as a function of ǫ for the directions

highlighted by the black points in the other panels. The curve is clearly not symmetric

with respect to ǫ = 0 and it resembles a Lennard-Jones potential. Panel (e) focuses on

the values for ǫ = −4%. Panel (f) reports the same quantity obtained with a DFT-LDA

approach.

From the results it is evident that the non-linear effects might play a role in modifying

the value of the elastic energy density (particularly for high strain values). Further they

also show the necessity to compute the elastic energy case by case, taking into account the
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direction under analysis since the anisotropy may modify the elastic energy considerably

(consider the differences between panel (e) and (f)).

As for the anisotropy, the LET may get different values yet it preserves the general trends

of ρ with the direction, indeed panel (c) resembles in tone both (a) and (b).

Strain zz:

Fig. 2.6 shows the results of ǫ∗zz in the same cases as Fig. 2.5.

Panels (a) and (b) shows Tersoff potential results for the case of ǫ = −4% and +4%,

respectively. Some changes in the color gradations are revealable.

The trend of ǫ∗zz vs ǫ is a line in LET, but from the analysis with the in-plane-strain

of panel (c), we see that this is a rather good approximation just for small absolute strain

values, whereas some non-linear contributions (dependent on the surface) are evident.

A comparison of the actual values for Tersoff potential (panel d) and for DFT-LDA

(panel e) shows that a detailed computation case by case is needed, since some variation

are observed: for instance the relative values of (113) and (15 3 23) are inverted in the

two atomistic approaches.

Conclusions

In this simple case it is evident that the anisotropic response cannot be ignored for a

quantitative analysis. Indeed if the elastic constants are imposed to be isotropic all the

directions have the same energy as the (001), leading to a maximum error in the elastic

energy equal to:
ρ(001)− ρ(111)

ρ(111)
≃ 1.4− 1.85

1.85
≃ −24.32% (2.32)

in the case of experimental constants used in LET, a quantity that is considerable com-

pared to the degree of relaxation of a 3D island (see next section).

As for the non-linearity effects, here it has been shown that the LET (and the FEM

analysis used for that) can lead to results compatible with the atomistic treatments pro-

vided the strain is not too high, for the case of strain ∼ −4% being acceptable. Yet for

a quantitative comparison a correction to the LET must be introduced and this will be

explained in Chapter 5.

Additionally, the elastic response must be computed in every case separately since every

potential (Tersoff or DFT-LDA) can give slightly different values but in each treatment

everything must be consistent with the other elements.
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Figure 2.5: Anisotropy of ρ (values at the top of the scale in meV/Å3) and µ (values below the

scale in eV/atom) for a WL biaxially strained at ǫ = −4% (a) and ǫ = +4% (b) analyzed with

the Tersoff potential. In this case the values in the two cases are different and differ also from the

results given by LET with tersoff elastic constants (c). This is an effect of the non-linearities, i.e.

non perfect parabolic shape of the chemical potential with strain (d). In all the triangles the black

points are the same as in Fig.2.4-(a) and their values for (a) are reported in (e). Panel (f) reports

the values for DFT-LDA at ǫ = −4% for comparison.
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Figure 2.6: Anisotropy and non-linearity on ǫ∗zz (in %) analyzed with atomistic potentials. Tersoff

potential results for ǫ = −4% (a) and +4% (b) are reported. In (c) the non-linear trend with strain

is evident for the directions highlighted in the triangles. Panels (d) and (e) show the values for

ǫ = −4% for Tersoff and DFT-LDA approaches respectively. It is noteworthy that the relative

values of (113) and (15 3 23) are inverted in the two panels, showing the necessity of a detailed

computation for each situation.
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2.4.3 Islands and the Aspect Ratio role revisited

In this section, the elastic field of an island is described as obtained from the continuum

approach. After outlining the general feature of relaxation, a detailed check of the degree of

relaxation for numerous islands of different shapes is performed, leading to some interesting

outcomes.

General feature of 3D relaxation

Contrary to the WL situation, analytical expressions for the strain field in a 3D structure

are not known, hence the only possible approach is the FEM one. Obviously nanoislands

are much more complex than a flat WL, with a consequent great variety of features of the

non-homogeneous strain field. The results for the shapes of pyramid, dome and barn are

reported in Fig.2.7 for the ideal case of 100% Ge islands atop of Si(001) in absence of any

WL underneath.

As is the case of the WL, the strain field is influenced by the free surfaces that tends

to expand outwards, but in addition to that even the edges are centers for strain relieve

(see panels d-e) since atoms can experience more degrees of freedom in these regions. As

evident, the islands are more relaxed at their top (see panels a,b,d), a reason why the Ge

atoms tends to accumulate in this region in intermixed islands (see sec.1.5). Contrary to

the WL, the off-diagonal components of strain are non-zero (panels c,e) showing that a

deformation of the shape of island is taking place.

The non-homogeneous expansion of the island causes the deformation of substrate with

some compressive lobes at the bottom lateral borders of the island and an expansive lobe

below the center of the island (see panel b). This lobes compress the WL under the island

to a different extent depending on the island-to-WL size ratio: an effect that makes the

analysis as a function of volumes non self-similar.

The trend of the elastic energy density per unit Ge volume (the stressor) as a function

of the ratio island-height-to-WL-height is reported in Fig.2.8 for the simple case of a 2D

100% Ge island where periodic boundary conditions (PBC) are applied in the plane. The

elastic energy density changes continuously from the one of the WL (1.4 meV/Å3) to the

one of the island on Si (∼1.3 meV/Å3) with the growing of the island size. Considering

that the result for the ratio of height equal to ∼ 6 is just negligibly different from the one

of the island alone and that the typical WL thickness in Ge/Si SK island is ∼ 3ML, we

can infer that this effect can be neglected if the island is ≃ 6·3ML·0.14nm/ML ≃ 2.52 nm

heigh or larger. Since domes and barns are typically higher than ∼ 5 nm [71], this effect

can be neglected, but it can be relevant for shallower and smaller islands like pyramids or

huts6.

It is noteworthy to see that the elastic energy density must be trated carefully in the

stability equations, in a different manner as treated here. This is discussed in Chapter 5.

The values of the elastic energy density ρ are analyzed and reported in the next sub-

section.

6as will be shown in chapter 5
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Figure 2.7: Strain field components in 100% Ge 3D islands on Si(001) as obtained from FEM

with experimental elastic constants.
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Figure 2.8: Effect of WL under the island on the elastic energy for the case of a shallow 2D

island. The value of ρ is per unit volume of Ge in the cell. The colour maps show the values of

the elastic energy.

Is really the steeper the more relaxed?

In the previous section we have highlighted some general properties of the strain field in

the nanostructures. We have also shown that the steeper island has a lower elastic energy

density. Although this is a general statement in literature and it is an argument generally

adopted to explain the shape evolution of strained nanoisland as their volume increases

[72], no detailed analysis of this has been performed so far.

Here we perform a careful check of this trend “The steeper, the more relaxed”.

To fix the ideas, we focus our attention on nanostructures on Si(001) with the same

surface families as dome ({105}, {113} and {15 3 23}) yet without the top (001) surface

to simplify the treatment. In a Wulff construction, the relative extension of these facets

(i.e. the island shape) is governed not by the absolute values but rather by their ratio.

Hence, in the case of three facets any geometry is determined by the two coordinates of

w: (
w(113)

w(105)
,
w(15 3 23)

w(105)

)
(2.33)

The values of the Aspect Ratio (AR) obtained for any geometry can therefore be repre-

sented in a 3D graph7 as Figure 2.9 shows. As already stated in section 2.2, the area of a

facet is roughly inversely proportional to the value of w, hence, when the w value of the

surface is smaller enough than the others, the outcoming island is a pyramid with this

family alone, leading to the plateaux in the figure. For some other regions of this space,

just two families are actually present, whereas all the three families appear in a small

region (highlighted with larger dots in the figure). We focus on the case of this latter

region, where it is evident that there is continuum of AR values from 0.10 (mostly 105

7it is for this purpose that we have neglected the top (001) facet in the dome
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facets) to ∼0.30 (mostly 15 3 23 facets, when all the w have the same value).

It is remarkable that the same value of AR can be obtained with different combina-

tions of the w factors, and therefore with different geometrical features of the islands (see

geometries (d,e) in Fig.2.9).

Elastic energy and AR:

In order to have some statistics, we take both the domes just defined with all the families

of facets and the ‘experimental’ islands analyzed in sec.2.2 at page 34. The elastic energy

is computed in a FEM approach paying attention to have the same mesh density in all

the islands, checking also the variation with the mesh density to ensure the convergence.

For sake of simplicity the domes are 100% Ge and are laying directly on the Si substrate

without any WL. The reported data are shown in Figure 2.10 as a function of the Aspect

Ratio (red points) computed with experimental anisotropic elastic constants for both Si

and Ge. The relaxation factors F defined in sec.2.1 (page 31) are reported on the right y

axis.

The gross trend seems to validate the criterion of the AR, yet if it was 100% correct,

one should expect a very narrow line. Instead, a rather broad dispersion is revealed in

the interval of AR∈ [0.20 : 0.25] where some cases show an opposite result: the higher the

aspect ratio, the higher the elastic energy density. This is the case of panel (b) of figure

2.10, where the points relative to domes (d) and (e) of Figure 2.9 are highlighted. This

shows that the actual relaxation state of the island cannot be described properly by the

Aspect Ratio, but rather it depends on the details of the geometry.

This is thoroughly proven by a comparison with the other islands reported in the same

figure. The result for the {113} pyramid is out of the line of the domes. If the experimental

dome ‘Dome exp’ seems to be inside the red curve, the experimental barn is completely

out of it, with a better strain relieve than domes with the same AR. This proves that

additional facets may vary the elastic response heavily. One last point is the relax of the

truncated {15 3 23} pyramid (green points), that are, again, out of the curve of red points.

The same calculations have been performed with Tersoff elastic constants and by chang-

ing the isotropic factor A8 in the experimental constants (not shown) and the shape of the

trend has not changed, meaning that this is not an artifact given by the anisotropy, par-

ticularly because all the shapes are roughly symmetric (the vertical axis passing through

the center is a symmetry one).

All these points together show that the AR is not a proper variable to describe strain.

Other geometric parameters:

Since the AR is ruled out as the only parameter describing the elastic relaxation, a rea-

sonable question is whether another one can be proper for this purpose. This geometric

parameter is expected to be a general one, able to sort the degree of elastic relaxation for

ANY geometry, from the slightly different domes up to the difference between pyramids

and barn.

Since the relaxation is due mainly to the free surfaces one candidate can be the geo-

8see appendix A
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Figure 2.9: (a) 3D and (b) 2D plot of aspect ratio of the domes with {105}, {113} and {15 3 23}
facets on (001) substrate as a function of the ratio of the ws with colorscale. Smaller dots are

islands where at least one family of facets is missing. Larger dots represent the region where all

the families are present and that is analyzed here. The plateaux in AR are the region where a

single family is present, i.e. a pyramid.

(c,d,e) show some Wulff plots of the domes (1=side view, 2=top view).

(c): AR = 0.3033, w(113)/w(105) = w(15 3 23)/w(105) = 1. This is the maximum AR obtained

for this set of facets.

(d): AR = 0.2028, w(113)/w(105) = 1.1, w(15 3 23)/w(105) = 1.7.

(e): AR = 0.2022, w(113)/w(105) = 1.4, w(15 3 23)/w(105) = 1.5.

(d) and (e) show that a close AR can be obtained with very different geometries, that give very

different relaxation energy (see below).
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Figure 2.10: (a) Elastic energy density as a function of the Aspect Ratio of the 100% Ge domes

without the (001) facet of Figure 2.9 (red points) compared with the values for pure pyramids

(black upward triangles), the dome and barn shown in sec.2.2 (blue rectangle and purple diamond

respectively) and a couple of {15 3 23} pyramids truncated by a (001) facet at different heights.

The non-monotonic trend for the domes at AR∼0.2-0.25 is evident. Further the values of the

truncated pyramids are completely out of the trend of the domes. The energies are computed

within the FEM using the experimental anisotropic constants. The right y axis shows the value

of the relaxation factor F . In (b) a focus on the AR is shown reporting the point relative to the

domes of Figure 2.9 (d,e).
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metrical factors βs. In particular, the total exposed geometrical factor:

βexp =

exposed∑

i

βi =

exposed∑

i

Si

V 2/3
(2.34)

From the values reported in Tab.2.1 at page 35 we can argue that another candidate

parameter could be the difference of the total exposed geometrical factors with the covered

one:

βexp − βcov (2.35)

Panels (a)-(d) of Figure 2.11 shows the value of the AR and the elastic relaxation

as a function of this parameters. As evident, the AR is not a 1-to-1 function of these

parameters, showing again that the AR is just a gross description of the island shapes.

The dispersion in the elastic energy density is lower than the one for AR, yet not enough.

Another possibility can be taken as the following. By considering that the steepest

the facets of the island, the higher the degree of relaxation, another possibility could be

to consider the inclination of the exposed facets averaged over all of them:

tan θ ≡
∑exposed

i βi · tan θi∑exposed
i βi

(2.36)

where θi is the angle formed by the i-th facet with the substrate (in this case the 001

surface).

The analyses for this variable are reported in Panel (e) and (f). In this case the dispersion

is still present, yet much lower and the points seem to belong to a line. However this

treatment seems not be a general one, since the barn seems to be out of the prolongation

of the trend all the others belong to.

Conclusions:

The results of the analysis carried out here lead to the conclusion that the criterion of the

AR for the elastic relaxation is not valid in general, though it can have a validation for the

experimentally observed structures such as the pyramid, dome and barn, hence it has not

been misused in literature if limited to these cases. Yet, more than some counter-examples

have been found in the detailed analysis just carried out.

The use of other parameters, such as the geometrical factors and the average slope can

help in giving a trend but it is not precise enough.

This proves the high sensibility to the geometry of the island and the relative position

and extension of the facets. Therefore when dealing with an island its precise geometry

must be described, for instance by giving the parameters w’s of the Wulff construction in

order to uniquely identify the shape. Due to this high sensitivity on the geometry, the use

of a continuum approach, reliable and fast, taking the detailed geometry into account is

mandatory.

Since the elastic relaxation of the islands alone cannot neither describe nor predict

the experimentally-observed geometries of the nanostructures, this can be explained by

considering the energy of the facets to assess the configuration with lower energy. Another

contribution might be the kinetic evolution of the islands, but this is not considered here

since we make the hypotesis that the islands are at the thermodynamic equilibrium in a

minimum energy configuration.
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Figure 2.11: Variation of the AR (left column) and the elastic energy density (right column) as

a function of other variables for the description of the elastic energy density in nanoislands. (a,b)

= the geometrical factor of the exposed surface βexp; (c,d) = the geometrical factor of the extra

surface βexp − βcov; (e,f) = the average slope tan θ. In all cases the dispersion is lower than the

AR case, but in no situation all the points lie on a single curve.
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2.5 Surface energy: Theory and Method

The second contribution to the formation energy of eqn.(2.1) comes from the surface energy

densities γ. Here we define these quantities and describe a general procedure to build the

cells along with some analytical properties. We also highlight and discuss its dependence

on macroscopic parameters.

2.5.1 Definition and functional dependence

In a gedank experiment a surface along a given direction n is created from an infinite

bulk by cutting the bonds along that direction and moving the two half-bulks far apart

(Fig.2.12-(a)). The atoms on the first few layers on the surface thus experience a different

force field caused by this lack of neighbours, with a consequent relaxation along the direc-

tion normal to the surface (that we define to be z). Along with this phenomenon, called

“Relaxation”[44], the atoms adopt a different geometry with respect to the one they would

have in a bulk due to their extremely reactive dangling bonds causing a different “Recon-

struction” of the surface. This is extremely relevant in semiconductor surfaces heavily

influencing both the energetic stability of the interested surface and its kinetic properties

such as its diffusion constants [73].

The surface energy density γ is the energy provided to the system to create a unit area

of such a surface and it depends on the energy of the broken bonds, hence it is a genuinely

atomistic property of solids and a continuum approach is thus unfeasible.

From an inspection of the large amount of data available in literature, we can explicit the

macroscopic variables influencing its value:

γ = γ(n,Θ, ǫij , Nepi) (2.37)

Here n is the normal to the surface specifying its Miller indexes, Θ is the reconstruction

it adopts, ǫij is its strain state and Nepi is the epilayer thickness (useful in case of Ge/Si

system at different coverage). The contribution of each term is described in the following

subsections.

2.5.2 Anisotropic geometries of surfaces and the Slab Method

The atoms in a solid occupy fixed positions in the Bravais lattice according to their pe-

culiar symmetry space group. It is therefore obvious that the relative position in space

and number of the broken bonds vary with the direction of the surface analyzed. The

anisotropy of solid surface have a direct experimental proof in the growing of small crys-

tallites [47, 74, 75], where the surfaces that have lower energy are growing at a higher rate

than the more energetic ones.

An infinite bulk is reproduced by the replication through periodic boundary conditions

(PBC) of a properly-built cell. A practical way to get the surface geometry for given lattice

symmetry and direction of the cut is by constructing this cell where, let us say, the direction

n3 of the basic vector is the direction analyzed n and the directions n1 and n2 lies in the

plane (n3) and are non-collinear. The basic vectors l1, l2, l3 along these directions are
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found in the way sketched in Fig.2.12-(b) and here briefly summarized. After resolving

a ‘big enough’ cell in planes whose normal is n3 (thin red lines), vectors l1 and l2 are

searched in these planes such that the vectors connect two atoms (blue lines). This is a

necessary condition to have PBC in the plane xy, but to ensure PBC another atom MUST

be found in the position 2 · l1 AND 2 · l2 (blue dashed lines). The same holds for direction

z (vector l3).

If in the cell so obtained the PBC along n3 are omitted by introducing some vacuum

along this direction, we get a slab exposing an infinite9 n3 plane on both sides. This

kind of cell is the one widely adopted for actual calculations of γ in the “Slab Method”

framework [76, 77]. In this approach the total energy of the cell is given by:

ETOT =
N∑

i=1

µi ·Ni + 2A · γ (2.38)

where µi is the reference chemical potential of the atom of species i in the bulk (that must

be computed separately), A is the area of the cell spanned by the vectors l1, l2 and γ is

the surface energy density of the top and bottom surface in the simple case in which they

are identical.

Several papers are present in literature [27, 76, 78, 79, 80] dealing with and using

surface slabs in their calculations, though none of them has ever conducted a systematic

analysis to deduce general rules for their geometrical parameters, such as:

• the directions of the basic vectors (with their Miller indexes) n1, n2, n3

• the length lj of these vectors

• Nlayer = the number of layers along n3 direction determining the thickness of the

cell

• T3 = the distance between two adjacent layers in the direction n3:

T3 =
l3

Nlayer
= length along direction 3 / number of layers

• NAT
plane = number of atoms in a single n3 plane, that are relevant to reproduce a

given reconstruction in the plane, see below

• NTOT = total number of atoms in the cell (that is, the computational cost of the

calculation)

Here we aim to fill this lack of knowledge and to fix the nomenclature.

By performing a systematical analysis on several directions in a 1-species, unitary lat-

tice constant diamond crystal, some of which are reported in Table 2.3, we can infer

the following properties for a generic direction nj = [nj1, nj2, nj3] where the njk are integer

numbers prime with each other.

9thanks to the PBC along n1, n2
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1. The length lj is an integer fraction of the length of nj :

lj =

√
n2
j1 + n2

j2 + n2
j3

fj
=

|nj |
fj

(
fj ∈ N

+, fj ≥ 1
)

(2.39)

Where the factors fj are given by

fj =

{
1 if

∑
i nji = ODD

2 if
∑

i nji = EVEN
(2.40)

2. The distance Tj between a lattice plane and the nearest one may not be fixed in a

diamond crystal. Whenever all the three indexes are odd an alternation of distances

is observed: T-3T-T-3T. . . . We call such surfaces “Type O” (odd) and in literature

the units is defined as the BI-Layer (BL) (Fig.2.12-(d)) [80]. On the contrary, when

at least one index is even the distance is kept constant from a plane to the next

one. We call such surfaces “Type E” (even) and the units are the monolayers (ML).

In the table in the case of type O surface (113 and 15 3 23) Nlayer represents the

number of the layers the cell would have IF all layers are present. Therefore, because

of the “missing layers” (Fig.2.12-(d)), the actual number of layers WITH atoms are

Nlayer/2, as can be deduced by a comparison between Nlayer and NAT
TOT in the table.

3. The smallest cell with n1 ⊥ n2 can be much larger than the case of general (non-

collinear) directions (as shown in the table for the case of 15 3 23). Additionally,

the directions n1 and n2 are not unique: a different search can lead to different

directions, but conserving the area in the plane and the angles between the two

vectors (this is the reason why the 15 3 23 ORTHO has different directions w.r.t.

the free case).

4. The thickness of 1 ML and the areal density of atoms in 1 ML d̃j = Nj/A on the

plane nj is given by the following (Nj = Nlayer):

Tj =
lj
Nj

=
|nj |
fj

· 1

Nj
=

fj
|nj |

· 1
4

(2.41)

d̃j = 8 ·Kj · Tj = 2 ·Kj ·
fj
|nj |

(2.42)

Where the factor Kj takes into account the different density of atoms in the type O

and E surfaces:

Kj =

{
1 if nj = Type E surface

2 if nj = Type O surface
(2.43)

After obtaining the geometry of the bulk-like slab it must be handled and modified

according to the requirements of the calculation, in particular focusing on the vacuum

space, the cell thickness, its area and the position of fixed atoms layers in order to make

the calculation feasible (particularly in DFT approach). The tricks adopted in this thesis,

along with the consequent modification of eqn.(2.38), are discussed at length in Chap.5.
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Figure 2.12: (a) Definition of the surface energy density γ from a gedank experiment where an

inifnite bulk is cut and the two halves pushed apart. (b) Sketch of the method and geometric

properties to determine the cell exposing the facet n3 and therefore creating the slab used in the

calculation of γ. Atoms are resolved in n3 planes by the red thin lines distant T3 from the next

one. l1 and l3 are the base vector of the cell (thick blue lines) and the dashed blue lines are the

borders of the double cell used to check the correcteness of the PBC. Vector l2 penentrates in the

page. (c,d) Real slabs of Si(001) and Si(113)-ORTHO respectively. The unit cell is highlighted by

black lines. Planes are red dashed lines and the distances T (n) are indicated by black arrows. The

(001) is a ‘type E’ surface and all the Ts are the same, whereas the (113) is a ‘type O’ surface

where the succession T-3T-T-3T. . . is highlighted and the unit of BL is also shown. We refer to

this structure as the ‘missing layers’ since it is as if two layers are missing between one BL and the

new one.



6
0

C
H
A
P
T
E
R

2
.

M
O
D
E
L
IN

G
T
H
E

S
H
A
P
E

A
N
D

E
N
E
R
G
Y

O
F

N
A
N
O
S
T
R
U
C
T
U
R
E
S

n3 n1 n2 f3 f1 f2 Nlayer NAT
plane NAT

TOT n1 ⊥ n2? NOTES

(0, 0, 1) [-1, -1, 0] [-1, 1, 0] 1 2 2 4 1 4 YES

(1,1,10) [-1, 1, 0] [-5, -5, 1] 2 2 1 102 2 204 YES

(1, 0, 5) [0, -1, 0] [-5, 0, 1] 2 1 2 26 2 52 YES

(1, 1, 3) [-1, 1, 0] [-1, -2, 1] 1 2 2 44 1 22 NO d-3d-d-3d

(1, 1, 3)ORTHO [-1,1,0] [-3, -3, 2] 1 2 2 44 2 44 YES* d-3d-d-3d

(15, 3, 23) [1, -5, 0] [4, 3, -3] 1 2 2 3052 1 1526 NO d-3d-d-3d

(15, 3, 23)ORTHO [2, 13, -3] [44, -13, -27] 1 2 2 3052 26 39676 YES* d-3d-d-3d

(1,1,1) [0, 1, -1] [1, 0, -1] 1 2 2 12 1 6 NO 3d-d-3d-d

(1,1,1)ORTHO [0, -1, 1] [-2, 1, 1] 1 2 2 12 2 12 YES* 3d-d-3d-d

Table 2.3: Slab properties of some important SiGe surfaces, where the lattice constant is set to unity. See description in sec.2.5.2. Here ORTHO

means that the direction n2 is required to be orthogonal to n1 (YES*). This shows that the smallest cell can be non-orthorombic. NOTES specifies

when the ‘missing layers’ are present (type O surfaces). Here the Miller indeces are divided by commas to make them more easily readable.
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2.5.3 The fundamental role of the reconstruction

The properties of the surfaces outlined above are valid for as-cut (AC), i.e. unrecon-

structed, surfaces. In fact, however, an AC surface has never been observed in literature

in a typical MBE or CVD experiment conducted on Si and Ge, since the surface atoms

tend to rearrange to minimize the overall energy. Therefore, in semiconductor physics the

quest and understanding of the most stable reconstruction for a fixed direction of cut is

a relevant matter and still an open question that challenges both experimentalists and

theoreticians. The typical experimental technique that has been adopted to observe the

reconstruction is the Scanning Tunneling Microscopy (STM) either with filled and empty

states [81, 82]. In particular, the surface energy is a quantity that cannot be determined

from experiments (at least its absolute value), therefore theory plays a dominant role in

the assessment of the relative stability of the different models that experiments propose.

In SiGe systems an extremely wide variety and peculiarities of reconstructions is ob-

served for each surface.

The wide zoology and complessity of the topic can be catched from an inspection of

Fig.2.13, collecting literature data. Each facet has its own peculiarities in the observed

reconstruction (panel a) including elements such as interstitial [80, 83, 84], dimers, trimers

or pentamers and combination of these. In addition to that, several differences can be

found by moving slightly away from the major facet (panel b). In this case the periodicity

of the repeated cell can increase with respect to the one of the unreconstructed surface,

this increase being specified by the numbers such as MxN (as is the case of 113 surface

where the cell is 3x2 [83]). Moreover, the basic cell can also appear rotated wrt the AC

one.

Further, the geometry of surfaces can be complicated by the presence of steps and its

possible rebonding states [85, 86]. This topic is treated at length in Chapter 4 in this

thesis.

Even the reconstruction of a major surface can be subject to changes if other param-

eters are playing a role, such the epilayer thickness. One example of this is the (001)

surface evolution when Ge is deposited onto Si [6, 8, 87]. In this case the WL evolves

from a missing dimer line (DVL–dimer vacancy line) to a system with missing dimer row

(DRV–dimer row vacancy) to the creation of a MxN pattern [6].

The observed reconstruction is highly dependent on the other parameters, such as the

coverage of the epilayer [6] or the strain state [88]10.

For this reason the typical theoretical praxis is to compute the surface energy for a

given reconstruction under several conditions of coverage and strain and to eventually

compare the stability for different reconstructions [76]. In this way the reconstruction of

the strained Ge(105) facet was identified to be the one depicted in panel d (bottom part)

and called Rebonded-Step (RS) that in this thesis will be re-computed in a more detailed

fashion in Chapter 5.

It is worth mentioning that intermixing is also playing a role [6]. In more compli-

cated situations, like the III-V compounds, another variable is the balance of the internal

pressure of the different species in the growth chamber [89].

10along with the experimental growth conditions



62
CHAPTER 2. MODELING THE SHAPE AND ENERGY OF

NANOSTRUCTURES

Even though some general computational methods, like the genetic algorithm [90],

have been invented to search for the reconstruction corresponding to the global minimum

of energy, the experimental observation still remains the major font of information.

Since different reconstructions can have a different value of energy, in the computation

of the formation energy of nanostructures it is important to adopt the geometry of the

observed reconstruction for both the facets and the WL surface, as will be shown in

Chapter 5 in this thesis.

Figure 2.13: Examples of reconstructions on SiGe surfaces. (a) Revealed features of different Ge

surfaces in the stereographic triangle, from Ref.[25]. (b) Peculiar features of the line connecting

(001) and (111) for Si, from Ref.[91]. The important topic of the steps is discussed in Chapter 4.

(c) (001)-MxN reconstruction of Ge/Si from Ref.[7]. (d) Different reconstructions of Ge/Si(105),

from Ref.[27].
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2.5.4 Dependence on strain

Although several papers have addressed the dependence on strain of the surface energy

(SE) [27, 77], none11 has ever underlined the general trend expected, so here we address

this issue.

The surface energy is a measure of the strength of the bonds at the surface to be

broken in creating the surface. A qualitative trend of γ(ǫij) can be deduced by following

this definition.

The energy of pair interaction along any direction as a function of the distance of the

atoms has the shape outlined in Figure 2.14. The vertical distance between the points

on the curve and the zero energy (i.e. atoms at an infinite distance) is a measure of the

energy to give the system to break the bonds, i.e. the surface energy if the direction taken

is the z one. In the case of no external strain the atoms will be located at the distance

of the minimum (l∗) and the strength of their bond is the position of the minimum. The

strength of the bond in this position is the maximum possible and a high energy must

be supplied to the system to break them and eventually creating a surface. This point

has the maximum SE value. If either a compressive (or tensile) strain is applied to the

surface in the xy plane, the atoms along z direction move apart to the distance l2 > l∗

(or l1 < l∗) because of the Poisson effect (see sec.2.4.2, page 40). In these cases a lower

energy is necessary to create a surface, so a lower SE is expected.

In the case of real surfaces the peculiar many-body interaction of the atoms, the

relaxation and the reconstruction have the effect to deviate the maximum of γ from the

case of zero applied strain to a certain value of strain ǫ∗ij . The position of this point,

therefore, depends critically on the normal considered n3 and with the reconstruction Θ.

This shows that for a fixed n3,Θ, Nepi holds:

1. γ(ǫij) is a function with a single MAXIMUM at the certain strain state ǫ∗ij

2. γ(ǫij) → 0 if (ǫij ≫ ǫ∗ij) or (ǫij ≪ ǫ∗ij)

In this interpretation the variation in surface energy is due entirely to mechanical strain

effects, and assumes that possible electronic contributions are second order, as noted in

Ref. [92]. Additionally, this shows that trend of γ is the opposite of the trend of µ with

strain (compare sec.2.4.2) as evident from eqn (2.38) after expliciting γ.

The strained surface energy density can be referred to the unit area of the deformed

or un-deformed surface. In the former convention (called Eulerian [77]) the area of the

surface can be ideally measured by a ruler. The latter is called Lagrangian [27].

From results in literature [27], strain can heavily modify the value of the SE. Con-

sidering that the strain field in nanostructures is highly non-homogenous and the WL is

biaxially strained at the lattice constant of Si, this dependence must be taken into account

for the quantification of the surface energies entering eqn.(2.1).

In this thesis (chapter 5), the analysis with strain is performed with a 1-species cell

(typically Ge) whose strain is applied in the plane xy and strain is expressed with respect

to the bulk lattice constant. The strain is applied along the two orthogonal directions x

11to our knowledge
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and y independently, the length of cell along these direction being modified according to

the relation:

lii → lii · (1 + ǫii) (2.44)

The strain applied along z, instead, is the one obtained by bulk calculations governed by

the Poisson effect (see sec.2.4.2).

Intuitively, the reference for a strained surface must be the strained bulk, consequently

the chemical potential µ in eqn.(2.1) must be the one strained in x and y and Poisson-

corrected in z. This is thoruoghly proven in Appendix C.

Figure 2.14: Explanation of trend of γ with strain. Lennard-Jones-type curve of the potential

energy between adjacent layers along z direction as a function of their distance. There exists

a certain distance l∗ that stabilizes the surface most (top sketch of the cells). If the surface is

dilated in the plane, it will be compressed along z for the Poisson effect (bottom left sketch) and

viceversa (bottom right sketch). In both cases the surface is destabilized. The surface energy γ is

a measure of the distance of each point of the red curve from the zero potential energy. Therefore

γ as a funciton of strain has a maximum value. This suggests also that gamma might have a

non-symmetric trend from the maximum value.
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2.5.5 Dependence on epilayer thickness and convention

As the case of the Ge WL on Si(001) shows, the reconstruction changes as a function of

the coverage of the epilayer. Published results [76, 93] show that this can be explained as

a dependence of the surface energy on the epilayer thickness causing a monotonic decrease

with the increase of the Ge overlayer thickness.

As reported in literature [94], this is a general effect due to the wetting factor that

decreases in both directions away from the Ge-Si interface. For semiconductors, an expo-

nential function is determined as the best fit for this decay [94, 95]. Since our interest is

mostly on Ge/Si surfaces, and since Ge has typically a lower SE than Si, in this work we

model γ as a function of overlayer thickness according to:

γ(N) = (γ0 − γ∞) · e−B·N + γ∞ (2.45)

Where N is the number of Ge (001) MLs (as obtained from the conversion described by

eqn(2.48) below), γ0 and γ∞ are the surface energy values of pure Si (N=0) and of pure

compressed Ge, and B is a parameter with units of (001) ML−1.

This trend is the one expected for Ge/Si cells when all the other parameters in eqn

(2.37) are fixed. In particular, here the strain ǫij is a fixed quantity because the Si substrate

is fixed at its own lattice constant.

This trend can also be used as a check to deduce the correct chemical potential µ to

use in eqn (2.38) as described in Appendix C.

In Chapter 5, the surface energies of (105) and (1 1 10) are computed as a function of

Ge coverage and, since this trend is not fullfilled by the results obtained via the Tersoff

potential, we deduce that this is not proper for this kind of analysis and an ab initio

approach is mandatory.

In comparing the surface energies for different directions as a function of the overlayer

thickness a general definition of coverage is needed. In theoretical praxis, coverage is

defined as the normal distance between the topmost (external) layer of epilayer and the first

layer underneath of substrate atoms. In Ge/Si heteroepitaxy12 the coverage is typically

expressed in terms of (001)MLs. This has its origin in the experimental habit to reveal

the thickness of the epilayer from the RHEED peaks measured on a Si(001) sample put

in the growth chamber along with the sample to study. It is, therefore, useful to deduce a

relation between the number of layers to convert into epilayer in a general direction that

have the same thickness as 1 ML (001).

Calling D3 the deposited MLs along direction n3 and D001 the number of (001) MLs of

the same thickness, the equality of material implies that

D3 · T3 = D001 · T001 (2.46)

Hence,

D3

D001
=

T001

T3
=

|n3|
f3

(2.47)

12but also in III-V compounds
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Some example of the conversion are given below:

1 ML (001) =





√
26/2 MLs (105) ≃ 2.550 MLs (105)√
11 MLs (113) ≃ 3.317 MLs (113)√
102/2 MLs (1 1 10) ≃ 5.050 MLs (1 1 10)√
763 MLs (15 3 23) ≃ 27.622 MLs (15 3 23)

(2.48)

In applying these relations the presence of the missing layers for Type O surfaces must be

taken in mind (compare Fig.2.12-(d), page 59).
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2.6 Nucleation Regimes

In a field of research like the self-assembly of SiGe nanoisland, the experiments are getting

more and more detailed and controlled. Likewise, the theoretical models must include

more details in the treatment in order to be able to follow and explain the experimental

discoveries.

The internal energy outlined in section 2.5.2 (page 56) is a very simple and widely

adopted one [43]. In the past, it has been used to correctly explain the nucleation mecha-

nism underlying the Ge/Si deposition, predicting the onset of steeper islands (dome) at a

later stage of deposition than the shallower one (pyramids) [96], as sketched in Fig.2.15.

However, it has been shown recently [30] that a highly-controlled deposition and an-

nealing procedure can lead to an apparent violation of this thermodynamical ordering.

This violation is completely explained by taking into account the role played by the WL

in the mechanism of island formation. Indeed the hypotesis underlying the use of the equa-

tion is the constantness of the WL surface energy before and after the island nucleation,

condition that we have seen not be strictly valid for the first few MLs of coverage.

The generalization of the energy expression (and the limitations of the previous one)

is obtained by considering Figure 2.16.

Taking the initial condition as a N-MLs thick WL of area A, we have two possibilities for

an additional ML of the deposited Ge:

1. The additional material can form one additional ML of the WL, leading to the final

thickness of (N+1)-ML (panel a)

2. The additional material can rearrange and create a 3D island atop the N-ML thick

WL (panel b)

The total energy of condition 1 is:

EWL = V · ρWL +A · γ(N + 1) (2.49)

where the volume V is the amount of additional material (in this case 1 ML of Ge).

The total energy of condition 2 is:

Eisl = V · ρisl + (A−B) · γ(N) + S · γS + L · Γ (2.50)

where the exposed area of the WL is the original area A minus the area covered by the

island B and the thickness of the WL is N ML’s in this case. The contribution S ·γS takes

into account the exposed facets of the island and L · Γ the edge terms.

The island will be energetically favoured to form if Eisl − EWL < 0, otherwise a

layer-by-layer growth is preferred. The difference is therefore:

∆E = Eisl − EWL =

= V · (ρisl − ρWL) + S · γS −B · γ(N) + L · Γ +

+ A · [γ(N)− γ(N + 1)] (2.51)

From this it is straighforward to obtain the simple expression if γ(N) = γ(N + 1), a

condition that is the underlying hypotesis of that use. The area A involved in the transition
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is obtained by considering that the volume V of the island must come form 1 ML of the

WL:

V = A · h1
where h1 is the height of 1 ML of the WL.

Hence the additional contribution is a volume-scaling one:

∆E = V ·
[
ρisl − ρWL +

γ(N)− γ(N + 1)

h1

]
+

+ S · γS −B · γ(N) + L · Γ (2.52)

The volumetric contribution can be written in terms of an effective elastic energy of

the WL given by:

ρeff = ρWL − γ(N)− γ(N + 1)

h1
< ρWL (2.53)

where the inequality holds for Ge/Si systems since γ(N) > γ(N + 1).

Therefore the concavity of the trend is given by the effective volumetric term:

∆Eeff
vol = V · [ρisl − ρeff ]

that, depending on the values of N and the trend of γ, can be reduced in module wrt

ρisl − ρWL or even made positive, leading to a growth condition called ‘Inverse Stranski-

Krastanov’ [30] where the energy curves bend upward with the consequent that the islands

have a preferential size not tending to grow indefinitely. Neglecting this term for the early

deposition can lead to gross mistakes.

Since a 3D island relaxes strain better than a 2D WL, the elastic term (ρisl−ρWL) < 0,

so for large enough volumes this dominates and ∆E < 0, leading to a higher stability of

the island. By contrast, the surface term is typically a cost13 (positive contribution)

both because of the extra surface exposed with respect to the one covered and because of

different values of the surface energies γi’s. The edge term is always a cost for an island,

whose contribution being relevant for small volumes.

Accidentally, this statement can be corrected in the following way. If we neglect the

edge term contribution, from the balance between the elastic and surface terms of the

generalized expression we can get three different nucleation regimes sketched in

Fig.2.16-(c):

1. Stranski-Krastanov (SK) regime if ∆Eeff
vol < 0 and ∆Esup > 0

2. Barrierless (BL) regime if ∆Eeff
vol < 0 and ∆Esup < 0

3. Inverse-Stranski-Krastanov (ISK) regime if ∆Eeff
vol > 0 and ∆Esup < 0

The SK regime is the typically obtained when the dependence on overalyer thickness

of γ is neglected or when the difference γ(N) − γ(N + 1) is negligible in comparison to

the difference in elastic energy densities. In this case the elastic relaxation is a term

favouring 3D nucleation whereas the balance between exposed surfaces and covered ones

13an important counter-example is the case of Ge growth on Si(1 1 10), Chap.5
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is a barrier that the increasing elastic budget with volume can overcome. Since typically

the steeper islands (blue line in Figure 2.15) expose a higher surface, they have an extra

initial cost, but they also relax strain better leading to a higher negative derivative, making

them more favourable for higher volumes (as is the case of the pyramid-to-dome transition

[20]). Hence in this case the expected succession is: WL, shallow island, steeper islands

(red curve in Fig.2.16). In the case of alloys the elastic relaxation is smaller (since the

misfit is smaller) and islands’ volume are expected to be larger14.

The BL regime favours the islanding at a very low volumes, since the exposed facets

have such a low energy with respect to the WL that it compensates the extra surface

exposed.

The ISK regime is the one raising from the explicit dependence of γWL to N. In this

case for a fixed N, the volumetric energy ∆Eeff
vol is destabilizing the islands, with the net

effect that the 3D nanostructures have a preferential volume and they do not show the

tendency to grow. This is the reason why it is called Inverse. This stable volume depends

on the value of N and an evolution of the islands size can be observed by increasing the

coverage (as discussed in Chapter 5). Moreover, in such cases, under a detailed control

of growth conditions, the steeper islands can be observed BEFORE the shallower one,

thanks to coarsening effects [30].

Finally, it is noteworthy that for a detailed analysis the elastic energy stored in the

condition with the island ρisl is not a self-similar quantity with the volume V of the is-

land, since the WL underneath makes a perturbation to the elastic field dependent on the

island-height to WL-height ratio15.

14see results concerning the nucleation of domes on Si(1 1 10) in Chap.6
15see discussion at section 2.4.3 at page 48 and Chapters 3,5 for the importance of taking the detailed

geometry into account
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Figure 2.15: Example of trend of ∆E vs volume using eqn (2.1) in the SK regime. The steeper

island exposes more surface, that is a cost, yet it relaxes better, so at higher volumes it is more

stable. The succession observed is: WL, shallow island, steeper island.

Figure 2.16: Generalization of the energy balance to take the γWL(N) dependence into account.

(a) Sketch of the condition where the additional material is creating a 1-ML-thick WL upon the

existing N-ML-thick WL. (b) Sketch of the condition where the additional material is creating a

3D island atop the existing N-ML-thick WL. (c) Nucleations regimes.
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2.7 Summary and conclusions

In short in this chapter we have:

• described the division of the internal energy of nanostructures into volume, surface

and edge contribution

• described the concept of the Wulff solid and shown that the shape of nanoislands on

any substrate orientation can be described with this mathematical concept

• highlighted the computational approaches adopted in this thesis: Tersoff and DFT-

LDA for surface energies with atomistic approaches and FEM method for the elastic

energy density

• described the elastic field of the strained objects involved:

– Wetting Layer: where we showed the importance of the anisotropy in the elastic

response

– 3D nanoislands: describing the general features of their elastic elastic field (free

surfaces and compression of the substrate)

– 3D nanoislands: analyzing their degree of relaxation in details we showed that

the Aspect Ratio is not a proper parameter to describe the “Steepness” of the

islands themselves, suggesting its definition in terms of the average slope

• described the simulation of the surface energy

– by expliciting the dependence of γ on the other parameters of the system (strain,

epilayer thickness etc.)

– by showing a general method to determine a slab exposing any direction and

the slab geometric properties

– by showing the role played by the reconstructions in semiconductor physics

– by studying in details the dependence of γ on the strain the facet is subject

to, and by proving with simple arguments that it must have a maximum with

strain

– by studying in details the dependence of γ on the epilayer thickness

• showed what types of different nucleation regimes exist depending on the balance

between the energy terms

In the next chapters we will exploit all these methods to evaluate the internal en-

ergy ∆E for the systems under analysis.
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3
Patterned substrates and

intermixing: Shape Oscillations

“In the struggle for survival,

the fittest win out at the expense of their rivals

because they succeed in adapting themselves

best to their environment.”

Charles Darwin

In this chapter, the estimation of the internal energy of Ge/Si(001) nanoislands is

used as a tool to understand the formation and evolution of domes and barns in a real

situation of potential technological interest in a patterned substrate. This modeling allows

to understand the fundamental role played in the system of self-assembled islands by the

intermixing and the importance of properly taking the balance between elastic and surface

energy into account in the theoretical approach.

The case of study is a joint work of our group with experimental colleagues [97] showing

an unexpected evolution of islands onto a pit-patterned substrate with respect to the one on

flat. The peculiarities of the nucleation and growth of nanoislands on patterned substrate

are also highlighted.

3.1 Uniformity and site-controlled nucleation of islands: the

patterned substrates

Ge/Si(001) islands not only represent the stereotypical system for the formation of the

self-assembled nanoislands, but also may cover important roles in technology. They can

have possible applications in electronic [98, 99] and optoelectronic devices [100]. As an

example, strained Si channels on top of buried, coherent SiGe islands may be used for

field effect transistors with enhanced electron mobility [98]. For such an application and

several others, both spatially and morphologically ordered island ensembles are required

[101]. None of these criteria are, however, satisfied by the nucleation on flat Si(001) surface
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[32]. In the last few years, on the contrary, patterned substrates have been acquiring a

growing interest because of their capability to accomplish with both of them [100, 101, 102].

The pattern adopted in these works is a 2D arrays of holes (“pits”) obtained by optical

lithography and selective ion etching [101]. The phenomenology in this system is rather

complex and involve a faceting of the cylindrical holes (driven by the Si buffer layer), and

its deformation into a {105} inverted pyramid upon Ge deposition.

It is an evidence that the pits act as preferential sites for the island formation [103, 104]

defining also equally sized capture zones for the deposited Ge, so that different islands

form and grow simultaneously after the completion of a wetting layer. As a consequence,

coarsening due to material exchange among islands with dissimilar sizes [105]1 is largely

suppressed [101]. This has also the intriguing effect to make visible the different stages of

evolution of islands being able to discern the transition forms (like the transition pyramids

and domes) much more clearly than the random nucleation on unpatterned substrates

allow [101]. This has also allowed to be distinguish the steps of the evolution of the facets

of the barn, as discussed in the next section.

In addition, the rate of Ge accumulated within a capture zone determined by the

pits can be precisely controlled by changing the Ge flux or the pit period [101]. This is

important, since Ge-rich islands with high aspect ratio are needed as efficient stressors for

strained-silicon transistors [98].

As alredy explained in Chapter 1, on both planar and patterned substrates, by increas-

ing the amount of deposited Ge at relatively high growth temperatures, 3D islands evolve

from pyramids into domes, and eventually into steeper barns [101, 106]. This sequence

corresponds to a monotonic increase of the aspect ratio, driven by a progressive strain

release with island steepness [105].

With further Ge deposition, the strain energy is eventually released by plastic relax-

ation. Plastically relaxed islands display a “cyclic” growth, accompanied by “oscillations”

of the island shape after the introduction of each new dislocation [107]. As the growth on

pit-patterned substrates has been found to delay the onset of plastic relaxation by lowering

the critical elastic budget in the island, it is reasonable to expect aspect ratios beyond the

one of barns, as happens on planar substrates, though for higher temperatures [17].

3.2 Experimental evidences of “shape oscillations”

Experiments reveal that the nucleation and growth in a pit-patterned substrate may take

a different path from the one on flat.

Indeed, such a desirable result of increasing aspect ratio may be hindered by unex-

pected shape oscillations during Ge deposition, which nevertheless allow the islands to

keep growing in size without plastic relaxation. We observe that with increasing Ge de-

position domes transform into barns, then back into domes, and subsequently again into

barns, and so on.

The samples were grown by solid-source molecular beam epitaxy on 2D pit-patterned

Si(001) substrates with periods of 500 and 900 nm. The pit depth and width were about

1also called Ostwald ripening
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Figure 3.1: Experiments of Shape Oscillations in pits. Left: AFM images of islands obtained

after deposition of 9 (a), 12 (b), 14 (c), 17 (d), 19 (e), and 26 ML Ge (f) on pit-patterned substrates

with a period of 500 nm at 720◦C. The gray scale represents the first derivative along the horizontal

axis, and the insets show surface orientation maps with different symbols marking different facets.

Right: (g) AFM line scans passing through island centers along [110] direction for islands shown

in panels (a–f). (h) Island aspect ratio as a function of deposited amount of Ge for pit-patterned

substrates with periods 500 and 900 nm, respectively.

65 and 350 nm, respectively. Above 45 nm of Si buffer, different amounts of Ge [from 6 to

26 monolayers (ML)] were deposited at a substrate temperature of 720◦C and at a rate of

0.03 Å/s. After growth, the samples were cooled to room temperature for AFM imaging.

Figures 3.1(a)-(f) show AFM images of a sample series obtained after deposition of 9, 12,

14, 17, 19, and 26 ML Ge, respectively, for a pit period of 500 nm.

For all investigated Ge coverages from 9 to 26 ML, 2D ordered arrays of islands with

homogeneous shape are observed. Before 12 ML Ge, the island evolution follows the same

path as on the flat surface: {105} pyramids (6 ML), domes bounded by {105}, {113},
and {15 3 23} facets (9 ML) and steeper {111} and {20 4 23} facets appear after 12

ML, characteristic for barns. The corresponding surface orientation maps (SOM, see, e.g.,

Ref.[36]) are plotted in the insets of Figs.3.1(a) and (b), respectively. In all cases, a highly

uniform array of island that coherently evolve in size, shape and composition is observed.

Based on previous results [107, 106], one would expect the transition to even steeper

morphologies or dislocation formation with further deposition of Ge. Surprisingly, we

find here that after 14 ML Ge barns transform back into domes [see SOM in the inset of

Fig.3.1(c)]. After 17 ML Ge, the steeper facets reappear again [inset of Fig.3.1-(d)] and

the domes evolve into barns. At 19 ML Ge, barn-shaped islands with additional {23 4 20}
facets are observed, as illustrated by the SOM in the inset of Fig.3.1-(e). We denominate

this kind of islands as ‘steep barns’ (SB). This demonstrate that the observed barn on

flat surfaces is actually the result of two successive introductions of steep facets, where

the {23 4 20} appear at a later stage, as was speculated in Ref.[16]. By continuing the Ge
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deposition, the SBs transform back to barns (not shown) which, for 26 ML Ge, transform

for a second time back to domes, as shown in Fig.3.1-(f).

It is important to note that such a sequence of transformations occurs without dis-

location introduction, as proven by TEM investigations. To distinguish the domes and

barns at different stages, we denominate the first appearing domes and barns as D1 and

B1, the second domes and barns as D2 and B2, and so on. These morphologies are further

illustrated by AFM line scans passing through the island centers along the [1̄10] direction

[Fig.3.1-(g)], which clearly show the appearance and disappearance of steep {111} facets.

When domes transform to barns, the island base width stays almost constant but their

height increases. When barns transform back into domes, the island base width increases

while the height stays almost the same.

Figure 3.1-(h) displays the island aspect ratio as a function of the Ge amount for growth

on patterned substrates with a period of 500 nm and for a period of 900 nm under the

same growth conditions. For the larger pit period, only one shape oscillation is observed

while dislocated islands appear with further Ge deposition, showing that the number of

oscillations before plastic relaxation depends on the pattern period.

3.3 Measured role of intermixing

Several works [35] highlight the role played by intermixing in the evolution of islands as

another channel to relieve strain apart from the ones outlined in sec.2.4.3. For this reason

we focus our attention on the Ge distribution inside the islands. We determine the 3D

composition profiles at different evolution stages by a nanotomography approach based

on atomic force microscopy (AFM) and selective wet chemical etching [36], and by x-ray

diffraction (XRD) measurements. This analysis clearly shows that the level of intermixing

between deposited Ge and Si from the substrate is not constant throughout the deposition

in spite of a constant Ge flux and that intermixing leads to Ge distributions in the islands

which are more complex than in islands grown on planar substrates.

More precisely, at constant Ge supply rate, the rate of Ge incorporated into islands

depends linearly on the capture zone area [101]. Therefore, we expect the Ge incorporation

rate for islands on substrates with a pit period of 900 nm to be by a factor of about2 3.2

larger than the corresponding value for a pit period of 500 nm. The larger local Ge flux

leads to reduced intermixing, and correspondingly to a higher Ge content. The higher

strain associated with the larger Ge content results in an earlier onset of plastic relaxation

[108], as happens for islands on flat substrates for moderate temperatures. The critical

role of composition explains why only one shape oscillation is observed for island growth

on substrates with the 900 nm period and possibly also why no shape oscillations were

reported for island growth performed at lower temperatures [101]. In order to obtain a

more detailed understanding of this effect, we investigated the Ge composition evolution

from D1 to D3 by nanotomography [36].

Figures 3.2(a)–(d) show AFM line scans obtained at different steps of etching and the

extracted cross-sectional Ge distributions on (110) planes passing through the centers of

2=(900/500)2 = 1.82
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D1, B1, D2, and B2 islands, respectively3.

The first dome D1 shows a composition profile for which the Ge fraction increases

rather monotonically along the growth direction, consistent with XRD results for domes

grown on patterned substrates. However, the first barn B1 shows some deviation from this

commonly observed trend: we see in fact a relatively Ge-poor region sandwiched between

a Ge-rich top shell and the bottom core [SO-Fig. 3(b)]. This behavior becomes more

pronounced for the D2 and B2 islands. Our XRD measurements further confirm these

observations and support the accuracy of the nanotomography results.

As shown in Fig.3.2-(e), corresponding to the shape oscillations in the sample with pit

period of 500 nm, the average Ge content also follows an oscillatory behavior. The average

Ge content increases from D1 to B1, and it drops by more than 4% when B1 transforms

back to D2 before increasing again when D2 evolves to B2 and SB. Finally, the evolution

of SB into D3 is again accompanied by a decrease in Ge fraction by more than 6%.

We also note that the average Ge content of D2 and B2 is lower than that of D1 and

B1, respectively, indicating that the ratio between Si and Ge incorporation rates is not

constant during the Ge deposition process. The average incorporation rates of Si and

Ge, calculated from the measured Ge composition distributions, are shown in Fig.3.2-(f).

From the plot we see that the Si incorporation rate in the process leading from B1 to D2 is

∼3 times higher than the one for the process from D1 to B1. These values indicate that the

B1-to-D2 shape transformation is associated with a larger Si-Ge intermixing. The same

phenomenon is observed for the SB-to-D3 transition, and its possible origin is discussed

later on.

On the other hand, the Ge incorporation rates remain rather constant and close to the

expected nominal rate. The latter [see horizontal dashed line in Fig.3.2-(f)] is estimated

from the nominal deposition flux and pattern size, assuming a constant amount of Ge in

the wetting layer.

3.4 Confirmation from modeling

Total energy calculations for different island shapes with realistic volumes show that the

shape oscillations can be well explained as due to oscillations of the average Ge content

in SiGe islands with increasing size.

To fix the idea we focus on the Barn-to-Dome transition with the shape outlined in

Fig.3.3-(a).

Following the experimental data, a barn of composition x is modeled as sitting on an

inverted, {105} pyramid4 (fixed composition, 10% in Ge), so that the barn base perimeter

is tangential to the square base of the inverted pyramid5 (see Fig.3.3-(b)).

If we now transform the barn into a dome of equal V and x, but larger in base and

smaller in height, the dome base will move upwards and an additional layer of composition

x will be added on top of the base of the inverted pyramid (still at 10% in Ge). Despite the

3For the sake of simplicity, results for SB and D3 are not shown
4whose inclination is 11◦

5that determines, in turn, the filling of the pit
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Figure 3.2: (a)–(d) Cross-sectional Ge distributions along [110] direction of the sample with pit

period of 500 nm passing through the island centers for the first dome D1 (a), first barn B1 (b),

second dome D2 (c), and second barn B2 (d) obtained by selective etching. (e) Average Ge content

as a function of deposited Ge amount for D1, B1, D2, B2, steep barn (SB), and third dome (D3);

the dotted line is a guide for the eye. (f) Calculated Si and Ge incorporation rates at different

stages of Ge deposition; the dashed line shows the nominal Ge incorporation rate.

Figure 3.3: Modeling of shape oscillations. (a) Top view of the Barn (left) and Dome (right) used

in the calculation where the surface energies contribution are highlighted. (b) Color map of ǫzz for

the two cases in the case of x(island)=0.30 and x(pit)=0.10. (c) Morphological stability diagram

for domes and barns, depending on volume and composition, as calculated by the finite element

method. The dotted blue line is the predicted domain boundary and the dashed black lines are

our maximum estimated error in the surface energies (see text). Experimental values are shown by

black (D, domes) and red (B, barns; SB, steep barns) points, along with their experimental error

bars.
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presence of the pit geometry that makes the analysis slightly more complex, the energetic

balance between the two islands is analogous to the flat-substrate case [30]: steeper islands

better relax the elastic-energy density, ρB(x) < ρD(x), whereas shallower islands allow for

a lower surface energy because of their lower surface exposed.

By making the hypotesis that the dome and barn are at equilibrium when they are

at the same average Ge concentration, we can take the energy difference between the two

configurations as6:

∆EBD = EB − ED = V · [ρB(x)− ρD(x)] + V 2/3 · [ES ] (3.1)

By setting this to zero, we obtain for each volume Vcrit the average composition xcrit at

the border of the stability domains for domes and barns.

Here ES includes all the differences in surface terms of the two configurations, including

the exposed surfaces of the island γD/B, the exposed surface of the pit filling γ001 and the

tilted surface of the pit γpit as explained in Fig.3.3-(a).

In this case the volume of eqn.(3.1) is the volume of the entire stressor, i.e. island

(+WL in the case of the dome) and the pit filling. To compare the results of the nan-

otomography, the volume of the island alone must be extracted. This is straightforwardly

done if eqn.(3.1) is supposed to hold in the case of a self-similar growth of the system

(both island and pit). Within the simulated geometry the corrective factor is:

1 +
Vpit

Visl
≃ 1.257

The volumetric elastic-energy terms ρ were evaluated by the finite element method,

following the procedure described in Ref.[30] where ab initio elastic constants and a cor-

rection to describe non-linearity effects are employed. In the simulated systems, the Ge

concentration in the island is homogeneous and set equal to the measured average value.

Following the results of Ref.[30], we set the surface energy of the exposed surfaces of

both the dome and barn γB = γD to be 65 meV/Å2, whereas the surface energy of the

top inverted pyramid to 60.5 meV/Å2.

The pit sidewalls are {105} faceted [109], and are characterized by the high energy

contribution of the trenches at the island base perimeter (see Fig.3.3-(b)) which are to-

tally unknown. Based on ab initio calculations of the surface energy with strain [76] and

reasonable estimations, we set the effective value for the surface energy of the pit side-

walls to be 62.5 meV/Å2. However, this is the least known quantity: in order to give a

reasonable error bar to our prediction, we varied it between 60.0 meV/Å2, corresponding

to the average surface energy density for {105} facets in a pyramid, and 65.0 meV/Å2,

corresponding to the best estimate for the surface energy of the dome and the barn [30].

In Fig.3.3-(c) we display the morphological stability diagram for barns and domes with

a blue dotted line sharing the two domains corresponding to the solutions of ∆EBD = 0.

The critical volume as a function of the Ge concentration as a trend

Vcrit ∼
(

1

xcrit

)6

6where the edge terms are neglected
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that is straightforwadly obtained from (3.1) considering that the surface energy is inde-

pendent on the Ge contration (due to the Ge floating layer [6]) and that the strain energy ρ

scales as x2. The black dotted lines represent the maximum error range in our estimation

as obtained by varying the unknown γpit within the previously said interval.

By reporting the experimentally measured average concentrations and volumes for D1,

B1, D2, B2, SB, andD3 in the morphological phase diagram of Fig.3.3-(c), we observe that

the data points for domes and barns nicely fall into their respective stability regions. We

also note that the data point corresponding to the SB with additional steeper facets lies

farther away from the blue dotted line compared to B2, as expected because of its larger

aspect ratio compared to B1 and B2. Since the experimental data points remain close

to the calculated transition line, the balance between Ge flux (provided by deposition)

and Si flux (provided by the substrate) determines the morphological evolution: slight

fluctuations in the Ge content with increasing size can trigger the transformation of one

shape into the other.

3.5 Conclusions

With the confirmation of the role played by the intermixing given by Fig.3.3-(c), our inter-

pretation of the collective shape oscillations for coherent islands on patterned substrates

is therefore the following.

First, the observation of such a phenomenon on pit-patterned substrates is easier with

respect to flat substrates because the plastic relaxation is delayed. This is due to

(i) the elastic-energy relaxation provided by the shallow pit filled with a Ge-poor SiGe

alloy located below the island (a purely elastic effect),

(ii) the larger availability of Si flow from the faceted pit sidewalls which do not display a

homogeneous wetting layer [109], and

(iii) the effect of ordered pits in producing islands with very similar properties at all stages

of growth. The latter prevents local composition and size fluctuations which are typical

for growth on planar surfaces and are responsible for the occurrence of a few plastically

relaxed islands even at relatively low Ge coverages [16, 19].

Second, the small variations in average concentration triggering the morphological

transitions are linked to the relative fluxes of Ge and Si. The latter depends on the

growth temperature and varies during Ge deposition. In particular, Fig.3.2-(f) shows that

the Si flux increases considerably whenever islands reach steep morphologies. A possible

explanation is that steeper islands, such as barns, are able to carve by compressive load a

deeper trench at the base perimeter, expelling Si out at a higher rate than flatter islands

[110]. The expelled Si within a capture zone is then readily available for intermixing with

the island material and allows the islands to keep growing in size through shape oscillations

and explains why the average Ge concentration is lower in the domes wrt the previous barn

islands. On the contrary, evolution to flatter islands, such as domes, covers the trenches

by base expansion, so that the Si flux is drastically reduced and the Ge flux incoming

from the deposition can increase the Ge content in the island. This ‘kinetic’ explanation

is consistent with the observed Ge distribution in second-generation islands that does not
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correspond to the one obtained by elastic energy minimization with Monte-Carlo-FEM

method [38].

In conclusion we have reported on the observation of island shape oscillations oc-

curring during the deposition of Ge on pit-patterned Si(001) substrates. Such collective

oscillations (all islands in the ensemble evolve rather simultaneously) are accompanied

by a complex evolution of the Ge distribution and correlate with oscillations in the aver-

age Ge content in the islands. The latter, which are produced by a time-varying Si flux

from the substrate, allow the islands to keep growing in size while avoiding plastic relax-

ation via efficient Si-Ge intermixing. The detailed structural information retrieved from

AFM-based nanotomography and x-ray scattering measurements may allow the selection

of island growth parameters for best device performance and guide the development of

models describing the complex kinetic pathway determining the composition evolution of

self-assembled islands.

From the point of view of modeling, these results show that thermodynamic equilibrium

conditions leading to Fig.3.3 is a valuable tool to understand the energetic contributions

and to explain the experimental findings. However, they also show that the actual state

reached by the system is heavily influenced by kinetics and diffusion of ad-atoms on the

surfaces reaching the island. This is the reason why nowadays new kinetic approaches

including the thermodynamic driving forces are being studied [111, 112].
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4
Stepped surfaces and

Ge/Si(1 1 10)

“What saves a man is to take a step.

Then another step.”

Clive Staples Lewis

In this chapter we present the important topic of the stepped (or vicinal) surfaces.

After discussing their importance in heteroepitaxy and classification, we describe some

instabilities happening on these systems and the method adopted so far in literature to

assess their energy.

Finally, we present the situation of the (1 1 10) surface, leading to the nucleation of

Ge islands that show remarkable peculiarities with respect to the standard SK islands

mentioned in Chapter 1. An in-depth analysis of this system is carried out in the next

two chapters.

4.1 Stepped surfaces: importance

In diamond (and solids in general) just a limited number of surfaces are atomically flat,

some examples of which are (001), (113), (111), (110) as shown in Fig.4.1-(a) [86].

The surfaces whose normal is slightly tilted from these directions are called “vicinals”.

They are typically characterized by high Miller indeces and consist of terraces of the flat

major surface separated by steps, hence they are also called ‘stepped’ surfaces. In fact

the steps can be regarded as the (partial) reconstruction of these surfaces themselves [91].

In the stereographic triangle they are located in the neighbourhood of the flat surface

to which they are vicinal (see sec.1.4, page 24) and typically they belong to the major’s

‘family territory’ [25, 22] (panel b of Fig.4.1). This is a practical way to determine what

the flat surface consisting the terraces is.

The presence of steps cannot in fact be ignored in experiments, indeed the wafers are

cut with a finite precision and even the nominally (001) surfaces are slightly miscutted of a
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small angle1. Steps are extremely reactive regions of the surface, hence the adatoms of Ge

(or Si) have a preference to aggregate in this neighbourhood and create nanoclusters (see

panel c of Fig.4.1), thus being a first nucleus for nanostructures as is the case of 2D arrays

or V-grooves at the nanoscale size [91, 113] in the same way as made by the holographic

pits described in the previous chapter.

As for the nanostructures, the concept of steps has been widely adopted for their

description. Indeed a possible approach to describe their elastic behaviour is performed

by analyzing them as a superposition of steps [114, 115] and their shape evolution as due

to the kinetic of these steps [116, 117] (see sec.4.2 below).

Therefore, the energy of the stepped surfaces themselves has been assigned a paramount

importance for nanostructures. As an example, both for the surface energy of the sub-

strate and the exposed facets have been analyzed to prove the barrierless nucleation of the

mound (precursor to {105} pyramids, see Chapter 1) [118].

Figure 4.1: Generalities on stepped surfaces. (a) Position of the flat surfaces in diamond (Si) of

the type (11n) and an highlight of the steps on these surfaces, reproduced form Ref.[86]. (b) Stere-

ographic triangle for Ge showing major surfaces and their family territories, from Ref.[25]. (c) Ex-

ample of preferential site nucleation on a stepped surface: upon a vicinal of Si(111) less than 0.5

MLs Ge create nanoclusters at the upper terraces of the steps (black arrow), from Ref.[86].

4.2 Vicinal surfaces: structure and instabilities

For the reasons mentioned before, in the last twenty years the structures and evolution

of steps have been analyzed in details using STM studies of clean (and also passivated)

surfaces.

The typical steps observed and analyzed on Si(001)2 have an azimuth angle towards

< 110 > direction and a normal given by (11n) direction. Along this direction, the steps

are classified in S- and D-type if they are single- or double-ML high, respectively [119].

Further, they are classified as A- or B-type depending on the direction of the dimers on

the upper terraces following Fig.4.2-[a]. Since the direction of the dimer rows formed by

consecutive (001) planes alternates, an SA step must be followed by an SB step and so

on. This does not happen for double steps, where actually no DA type step has ever

1for the definition of miscut and azimuth angle see Appendix B
2that is the typical substrate used in homo- and heteroepitaxy, as well as in the microelectronic industry
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been observed, as well as a triple-height one. The border of the step can be non-bonded

or rebonded depending on the dimerization of the outermost atoms [120]. The length

of terraces is dictated by the miscut angle θ, but the symmetry of diamond causes the

possibility of having two types of terraces of different length when n is even3 [91].

Phenomenologically, the dynamics of stepped surface is complex and thus represents

a rich field of investigation. In the simpliest case of Si homoepitaxy, the evolution of the

surface can follow three paths, sketched in Fig.4.2-[c,d,e]. The incoming adatoms may

attach to the border elongating all the terraces at the same rate (Step-Flow process),

or some terraces may elongate faster than others with a consequent shrinking of some

terraces and accumulation of steps in a narrow region (Step-Bunching) that can lead to

the formation of the “rippled-structure” shown in Fig.4.2-[d] [122], or the terraces may

grow rough profiles (Step-Meandering). It is an evidence that A- and B-type steps evolve

differently: SA steps have a straight profile but the upper terraces is shorter than the

ones of SB, on the contrary SB type steps are rough with larger terraces (Fig.4.2-[c])

[122, 121, 123].

The most adopted approach for studying surface dynamics is the Kinetic Monte Carlo

(KMC) [122], where the detailed energetic barriers are modeled following different flavours

(the Burton-Cabrera-Frank model, the introduction of Ehrlich-Schoebel barrier sketched

in Fig.4.2-[b] and the Asaro-Tiller-Grinfeld instability are just some examples [86]). All of

these effective models can be made more systematic if the Potential Energy Surface (PES)

of adatoms is analyzed directly within a DFT approach [124].

The complex of all phenomena that alters the geometry and structure of the system is

cathegorized under the name of “Instability”. The evolution just mentioned are defined

as “kinetic” (or growth) instabilities [122, 125, 126, 127]. These instabilities may eventually

modify the mobility of adatoms causing some ‘exotic’ effects [128].

The case of heteroepitaxy is further complicated by the presence of instabilities linked

to the long-ranged strain, and the effective dynamics is a balance between the two terms

[127, 129].

The phenomenon of step-bunching has also been invoked to explain and model the

pyramid-to-dome transition in SiGe heteroepitaxy [130].

4.3 Vicinal surfaces: energy

The dynamical phenomena can be regarded as the path leading to the thermodynamic

minimum. Therefore, assessing the energetic stability of all types of steps as a function of

the terrace length (such as the experimental evidence regarding Si homoepitaxy shown in

Fig.4.2-[b] [86]), temperature and strain is a matter that involves much effort in literature

with the aim of predicting the geometry expected and its evolution. In particular, these

variables can be coupled requiring a more complex analysis [123] (Fig.4.3-(a)). Addition-

ally, the energy of the stepped surfaces can heavily influence the ECS at both zero and

finite temperature [126] as well as the stability of islands [10].

Ideally we can divide the surface energy of a stepped surface with miscut angle θ into a

3compare the discussion in the next chapter for the case of (1 1 10)
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Figure 4.2: Structure and instabilities on vicinal surfaces. Structure of the steps SA, SB and

DB [a] and the observed ones for Si(001) at different miscuts [b] (reproduced from [86]). [c] Ex-

perimental image on a miscutted surface 0.5◦ off along [110] direction Si(001). Straight steps are

SA, the rough ones SB . (full image reproduced from Ref.[121]). [d] Examples of the kinetic insta-

bilities happening on a stepped surfaces (from Ref.[122]). [e] Evolution of the surface as an effect

of the instabilities. [f] The ‘rippled surface’ as a result of the step bunching process in the case of

Si(001). Top row are experimental 600nm x 600nm AFM images, lower row are results from KMC

simulation, reproduced form Ref.[122].
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Figure 4.3: (a) Calculated phase diagram for strain and vicinal angles, from Ref.[123]. (b)

Surface energy of various vicinal surfaces as a function of biaxial strain as obtained from Tersoff

potential, from Ref.[118]. (c) Model for the calculation of the stepped surface energy in function

of the energy of the flat ones, leading to the relation used in Ref.[131].

contribution coming from the flat terraces and the step. Taking Fig.4.3-(c) as a reference,

we can define the stepped surface energy density γstep per unit area of the tilted surface

Ã, γ0 the energy density per unit area of the terrace A, Γ the edge energy per unit length

L. In this case it holds that:

h = x · tan θ; d =
√
x2 + h2 = x · sec θ; Ã = L · d = (L · x) · sec θ = A · sec θ

Hence we get

γstep =
γ0 ·A
Ã

+
Γ · L
Ã

= γ0 · cos θ +
Γ

h
· sin θ (4.1)

that is the same relation used in Ref.[131]. Some authors, though, modify this equation by

further expliciting the different contributions (such as the dipolar interaction energy)[118].

If elasticity theory can describe effects such as the long-ranged step-step interactions,

monopole and dipole contributions in a continuum approach [117], the other contributions

arising from the instabilities mentioned in the previous section have a clear atomistic

origin, thus requiring a purely atomistic approach. The praxis is to study the energy of

the stepped surface for different geometries and reconstruction and report either γstep [118]

or use eqn.(4.1) along with the energy of the flat surface γ0 at the same strain state to give

the mere value of the step formation energy Γ [132]. Incidentally, the trend of γstep with

strain reported in Ref.[118] (and reproduced in Fig.4.3-b) clearly shows that they have a

maximum as deduced in this thesis in sec.2.5.4 (page 63) from general arguments.

The concern for vicinal surfaces is to give an estimation of the energy for different

geometries of terrace length, strain, epilayer thickness and temperature. Since the unit

cell for vicinal surfaces is extremely large (see some examples in Tab.2.3 at page 60), so

far they have been analyzed just with (semi)empirical potentials, neglecting to check the

results inside a purely ab initio treatment4.

Unfortunately, as pointed out in Ref.[133], the usage of different potential makes the

definite estimation of step energies strenuous and not univocal. However, different poten-

tials like the Extended Brenner and Stillinger-Weber [133] agree in finding negative step

formation energies for Si(001) unstrained. The same result was found some years before

4this is performed by us showing some unexpected results, see chapter 5
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in Ref.[132] where it was shown that a compressive strain largely reduce the formation en-

ergy. This is reasonable since the steps allow a partial relieve of the strain itself, implying

that the creation of steps on compressed surfaces should be expected. A discussion of this

result and a comparison with our DFT outcomes is performed in the next chapter.

Some other authors assign to the vicinal surfaces continuum values that can consis-

tently reproduce the Wulff solid of the islands [10].

The computation of the step free energy can attempt to explain the observation of the

single or double step on Si(001) reported in Ref.[86] with peculiar methods, as discussed

at length in Ref.[120].

It is mention-worth that, regardless of the apparent simplicity with which the vicinal

surface energies are computed, the explanation of the observed reality may be more com-

plex because of the requirement to involve several competing ingredients. An example of

this is the variation of the surface energy on the miscut angle dγstep/dθ. In Ref.[118] it is

computed to be highly negative, but the addition of the experimentally-observed Dimer

Vacancy Lines (DVL) on the terraces reduces the magnitude of the change in energy lead-

ing to a rather flat γ(θ) [134], that is actually consistent with the observed WL roughness

in typical Ge/Si(001) experiments.

4.4 The case of Ge/Si(1 1 10): a path to faceting

In this section we highlight the peculiar phenomenology observed upon deposition of Ge on

Si(1 1 10) surface taken from literature results, the outcomes of our work being reported

in the next two chapters.

4.4.1 Experimental evidences and importance

In the previous chapter we highlighted the importance of having an homogeneous and

ordered nucleation of islands for both application purposes and pure studies. Apart from

the∼ 200 nm-wide pits already described [109], a number of other options are adopted such

as stripe-patterned substrates [135, 136] (see Fig.4.4), V-grooves [137] and laser-textured

substrates leading to large scale pits (∼ 3µm) [138].

For this reason the detailed evolution of these structures has been object of intense

studies in the last few years. In several systems, the spontaneous onset of ripple-like

structures elongated along the [110] direction were observed on large scale pits (Fig.4.5-

(a)). The same objects were observed on stripe-patterned substrates (panel b), where the

more detailed analysis reported in Fig.4.5-b allowed to determine that they are composed

of {105} facets and the Si substrate upon which they formed is the Si(1 1 10) created by its

instabilities upon the Si buffer deposition [135]. The applicability of these ‘105-ripples’ as

a proper template for dot ordering was actually already proven earlier in Ref.[139], where

a SiGe layer was deposited upon a ∼ 10◦ off (001) surface to create the ripples followed

by a pure Ge deposition leading to an ordered dot nucleation, see Fig.4.5-(c).

It is important to notice that notwithstanding the same adopted name, these structures

are not the same as the ones obtained by Si homoepitaxy reported in Fig.4.2 discussed

before. Indeed their elongation direction is perpendicular to the step edges underneath
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Figure 4.4: Stripe-patterned substrate to control island nucleation.[a] AFM images of Ge de-

posited on a stripe-patterned Si substrate for different sample from Ref.[136]. [b] STM image and

profile sketch of deposition of pure Ge on a stripe-patterned substrate after this was covered for

some SiGe ML, from Ref.[137]. In [b] the elongated structure on the sidewall of the stripes are the

{105} ripples we are dealing with in this thesis.

(see Fig.4.6), evidence that they are not created by a step bunching process [129]. More-

over, they are observed when Ge (or a low diluted alloy with Si) is deposited. From an

in-depth analysis of several vicinal surfaces to (001) [129], the formation of these and

similar structures is explained in terms of formation of {105} facets, which develop in

SiGe/Si systems. In Ref.[129] it is proposes the explanation that the observed morphol-

ogy on vicinals surfaces for SiGe/Si systems is therefore dictated by the frustrated shape

of equilibrium nanocrystals, see Fig.4.6-(a), that is equivalent to the concept of the Wulff

solid laying on a tilted substrate discussed in sec.2.2 at page 34. This idea was confirmed

by successive observations [23, 140].

With this interpretation, the elongated ripples on Si(1 1 10) are the degenerate version

of the pyramids, since the direction of the edge between the facets (105) and (015) lies

parallel to the plane (1 1 10), with the consequence that the solid cannot close if the sole

{105} facets are available, see Fig.4.6-(b).

What is remarkable is that on Si(1 1 10) a very high degree of coherence is observed

leading to a structure that very nicely resembles the ideal class of periodically faceted

surfaces [141] that ideally can be exploited as the recently-hot-topic of “in-plane” Nano

Wires with appealing optoelectronic properties.

4.4.2 Geometry and evolution

The discussion about the various kinetic effects in this chapter suggests their importance

in stepped surfaces. Hence, the microscopic processes happening at the early stages of

Ge growth on the Si(1 1 10) surface leading to the ripple formation have been studied in

detail in P. D. Szkutnik et al in 2007 [143], with the experimental observation reported in

Fig.4.7 and here resumed.

As can be determined by the stereographic triangle reported in Fig.2.4 at page 44, the
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Figure 4.5: Evidences of Ge “ripples” in literature. [a] Ripple formation on laser-textured pits

at different stages of deposition, from Ref.[138]. Evolution of Si stripes upon deposition of Si [b1],

where the (1 1 10) is formed, and overgrowth of Ge [b2], where ripples are formed, from Ref.[135].

[c] Overgrowth of Ge on GexSi1−x ripples: the bright spots are domes nucleated at specific sites,

from Ref.[139]. [d] Large scale deposition of 30% Ge on Si(1 1 10), from Ref.[86].

Figure 4.6: Explanation of {105} ripples as a degenerate pyramid. (a) General structure of a

pyramid on a (11n) surface, from Ref.[142] and on the (1 1 10) surface when the pyramid cannot

close, from Ref.[140]
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(1 1 10) direction is a surface vicinal to (001), the azimuth direction being [110] and whose

miscut angle is ∼ 8.04◦ (see the relations reported in Appendix B). From the experimental

stability diagram reported in Fig.4.2-[b], in this case the Si surface is composed of Db steps

alone, separating terraces whose average5 length is equal to 1.9 nm.

Figure 4.7: Microscopic processes of Ge/Si(1 1 10) leading to {105} facets, reproduced from

Ref.[143]. [a] Evolution of the Si surface upon deposition of 0 (top), 1 (middle) and 2 (bottom)

MLs Ge. [b] Model of the movement of steps triggered by the formation of adatoms chain (top)

and formation of the (105)-RS reconstruction from the dimers of terraces (bottom). [c] STM view

of the sample after 6 ML Ge. In this case short {105} ripples are formed.

Deposition of pure Ge is performed in a MBE chamber at 600◦C with a flux of ∼ 0.75

ML/min upon the thermally-annealed Si substrate, where no Si buffer is deposited to

suppress kinetic step bunching. For this reason, the initial reconstruction is compatible

with the ideal one with Db steps (panel a-top). At submonolayer Ge coverage the recon-

struction on the terraces turns from 2x1 (dimers) to p(2x2) (alternated dimers), probably

due to Ge-Si intermixing processes where Ge tends to be incorporated at the step-edge

sites. Between 1 and 4 ML Ge, the step-flow mechanism is observed (panel [a]-bottom) as

triggered by single addimers located at the middle of the terraces (panel [b]-top) forming

zig-zag chains, that is an example of the local modification of the geometry induced by Ge

atoms that was postulated in Ref.[129]. This observation allows to have a better insight

in the microscopical mechanism underlying the step-flow process, an explanation that the

typical simulations performed within the Kinetic Monte Carlo (KMC) [122] technique

cannot provide. The dimers of the train of propagating steps eventually merge with the

addimers creating the horse-shoe reconstruction of the Rebonded-Step (RS) (105) facet

[81] (panel [b]-bottom). The {105} ridges form from the bottom increasing in height and

joining at the top. Meanwhile the propagation of the double steps via step flow induces

the elongation of the ripples themselves (panel [b]-bottom) along the miscut direction

to create the non-closing degenerate pyramid mentioned before. At 6 ML coverage, the

surface is covered by several terminated ripples whose length is ∼ 40 nm (panel [c]).

With the growth parameters in this experiments, the island are rather short, not

showing the faceting behaviour revealed in similar experiments as shown in Fig.4.8-(a)

5see discussion in next chapter
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from Ref.[142]. In panel (b) of the same figure is reported an image taken after 18 hours

annealing. They observe some not-well-defined triangular shaped islands that the authors

in 2003 describe as formed by three {113} facets (panel c). This explanation is, however,

controversial, since it is geometrically impossible to have just three (113) facets in a cubic

lattice and this shape is inconsistent with any Wulff solid of the typical islands (domes

and barns) observed on Si substrates.

We solve this puzzle in chapter 6 with the introduction and description of the “Tadpole”-

shaped islands as the missing evolutionary ring between ripples and domes.

Figure 4.8: Evidences of elongated ripples from Berbezier et al [142]. AFM images islands

obtained after the deposition of ∼ 17 ML of Si0.7Ge0.3. (a) as deposited, (b) after 18 hours of

annealing. (c) is a controversial schematic representation of the facets of the annealed islands, that

we clarify and explain in chapter 6.

4.4.3 Surface energy

Since the nucleation of {105} facets on any substrate has been shown to be due to ther-

modynamics and not to kinetic instabilities, the stability of the islands can be determined

by the use of eqn.(2.1) at page 32. For this purpose, the energy of the (1 1 10) surface is

to be assessed with a comparable accuracy as the {105} one (since it is the other surface

involved in the problem). Thus, all the contributions of the Ge/Si surface must be taken

into accout at the same time: reconstruction, strain, Ge epilayer thickness (if an analysis

as a function of the deposition is to be performed), etc.

This analysis for the (1 1 10), however, is not present in literature, particularly if one

considers that the habit in this field is to define the surfaces on the basis of the length

of the terraces with the implicit hypotesis that all the terraces have the same length.

However, in diamond lattice the surfaces of the type (1 1 2n) have two types of terraces

[91], therefore this type of surfaces, to which the (1 1 10) under analysis belongs, has been

excluded in these previous studies.

Reported in the next chapter, our calculations show the two different length can ac-

tually have relevant effects on the surface energy. Therefore the detailed analysis of this

surface is performed in next chapter.



5
Ge/Si(1 1 10) early stages:

surface-driven transition from SK

seeds to faceting

“Once excluded the impossible, whatever remains,

however improbable, must be the truth”

Sir Arthur Conan Doyle

In this chapter, we present our original results concerning the heteroepitaxy of Ge /

Si(1 1 10), whose interest has been highlighted in sec.4.4 at page 88.

After showing the experimental outcomes from our collaborators, we describe in details

the complex multiscale approach used to study this system.

Afterwards, the detailed computation of the surface energy both in DFT and Tersoff

potential is performed. Here the so-far neglected interaction of the dimer tilting pattern

and the double step is shown to be relevant in order to estimate the surface energy properly,

leading to some unexpected results.

The obtained surface energies are applied to the system of ripples on Si(1 1 10) in

order to quantify their onset from a rough WL. In so doing we combine our theoretical

outcomes with the experimental observations and we give an estimation of the ‘actual’

value of the edge energy between adjacent facets, otherwise hard to compute, with some

unexpected results that we rationalize.

Finally we envision a mechanism that may explain the complete faceting of the sample

and quantify it.

We describe the observed transition to 3D islands upon further deposition in the next

chapter.
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5.1 Experimental evidences

In order to better elucidate the evolution and growth behavior of Ge on Si (1 1 10) and

in particular the phase transition happening here, the experiment described in sec.4.4.2 is

replicated and studied in details using in situ scanning tunneling microscopy (STM) and

electron diffraction by our experimental colleagues at the Joannes Kepler University at

Linz (Austria).

The growth experiments were performed in a multi-chamber molecular beam epitaxy

system, allowing sequential deposition and imaging of epitaxial surfaces without exposure

to ambient conditions [135]. After oxide desorption and 40 nm (∼ 294 ML) Si buffer

growth, Ge was deposited on Si (1 1 10) substrates at 550◦C and 1.1 Å/min (∼ 0.785

ML/min) in 0.5 ML increments up to a total thickness of 7 ML. Here, one ML is de-

fined as number of atoms contained in one atomic layer of Si(001) with a thickness of

1.4 Å(=5.6Å/4). After each growth step, the samples were quenched to room tempera-

ture and imaged in situ by STM with negative sample bias around 2-4 V. Several MLs

were deposited in one step for in situ reflection high energy electron diffraction (RHEED)

studies and control experiments, giving essentially the same results as for the stepwise

grown samples.

After buffer growth (that differs this experiments from the one described in the previ-

ous chapter by Szkutnik et al), the clean Si (1 1 10) surface displays a regular structure

consisting of narrow (001) terraces separated by straight double monolayer DB steps par-

allel to the [1̄10] direction. The terraces exhibit the typical (2x1) surface reconstruction

with dimer rows perpendicular to the step edges and the DB steps are rebonded in order

to reduce the number of dangling bonds [144, 119].

Similarly to Ref.[143], upon Ge deposition, the terraces break up into short segments

of varying length and shorter terrace segments are formed (showing that the Si buffer layer

does not affect the main features of this system). In addition to that, the missing dimer

rows of adjacent terraces start to line up along the [551̄] direction. As growth proceeds,

this leads to the formation of 1-2 ML deep trenches along the miscut direction as shown

by the STM image at 3.6 ML Ge coverage depicted in Fig.5.1-(a).

From these structures elongated mounds are formed as indicated by the dashed

rectangle in Fig.5.1-(a) that resembled the mounded Stranski-Krastanow seeds observed

for subcritical Ge on Si(001) [11]. The elongated mounds have typical widths of 5-10

nm and lengths of 15-30 nm and their sidewalls are formed by small areas with local

{105} orientation. This leads to the appearance of weak {105} facet spots in the surface

orientation density map (SOM) of the STM images shown in Fig.5.1-(a) as insert.

The isolated ripple-seeds persist up to 4 ML coverage without much change in amplitude

or size.

At a critical coverage of 4.2 ML, however, a dramatic and sudden surface transition

occurs by which the whole epilayer surface is completely transformed into a perfectly

{105} facetted, quasi-periodic ripple structure. This is demonstrated by the STM images

displayed in Figs.5.1-(c) and (d) at 4.5 ML coverage. In the high resolution STM images,

the sidewalls of the ripples exhibit the characteristic zig-zag structure of the rebonded-step

{105} surface reconstruction [81, 145] and the surface orientation map [insert in Fig.5.1-



5.1. EXPERIMENTAL EVIDENCES 95

(d)] exhibits exclusively two sharp maxima at the {105} surface positions.

The nanoripples seamlessly cover the whole epilayer surface and the original (1 1 10)

surface is nowhere exposed. The abruptness of the ripple transition is revealed by in situ

RHEED experiments shown in Fig.5.2-(a), where the intensity evolution of the specular

spot and of a 3D ripple spot (blue, respectively, black line) are plotted as a function of

Ge coverage. The corresponding diffraction features are indicated in the corresponding

RHEED patterns displayed in Figs.5.2-(b) to (d). Since the electron beam was directed

perpendicular to the ripples, the diffraction pattern strongly changes upon ripple forma-

tion due to surface diffraction from the tilted ripple facets. The sudden appearance of

the ripple diffraction spots at 4.2 ML coverage clearly proves that the abrupt surface

transition is completed within a fraction of a ML. As demonstrated by the large scale

STM image displayed in Fig.5.1-(d), all ripples are perfectly aligned along the [551̄] miscut

direction and they are remarkable uniform in size. Their height is 1.2 nm and their aver-

age width 17 nm according to statistical analysis, whereas their length well exceeds 300 nm.

Figure 5.1: STM images of Ge on Si (1 1 10) deposited at 550◦C recorded at coverages of

(a) 3.7 ML (b) 4.0 ML and 4.5 ML for (c) and (d). Note the different scale of the images. The

inserts in (a) and (c) depict the surface orientation maps (SOM) calculated from larger STM

images, revealing complete {105} facetation of the Ge surface at thicknesses exceeding 4.2 ML.

Only isolated mounds and pre-ripples are seen for lower coverages. The inserts in (b) and (d) show

the 2D FFT power spectra of the STM images. For the perfectly facetted Ge surface at 4.5 ML,

FFT satellite peaks (indicated by circles) up to the second order are observed.
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The ripple transition exhibits several remarkable features distinguishing it from the

common SK evolution observed for Ge on Si(001) [14, 30, 40, 146]. First, the ripples cover

the whole epilayer surface, i.e., initial ripple seeds do not evolve into separate SK islands

but the layer as a whole is transformed to a non-planar, perfectly facetted wetting layer

as shown schematically in Fig.5.2-(e) and (f). Secondly, the ripples display a remarkable

uniformity in size and shape, as well as an excellent lateral ordering. This is evidenced

by the appearance of even second order FFT satellites in the 2D FFT power spectrum of

the STM image depicted in the insert of Fig.5.1-(d). This ordered configuration with high

correlation degree among the ripples is in contrast to the uncorrelated island nucleation

seen for the usual SK growth mode. Whereas SK islands grown on top of the wetting

layer, the ripple transition consumes most of the layer underneath the ripple-seeds and

the ripples extends all the way down to the Si/Ge interface. This follows from the analysis

of the ripple volume per unit area VR/A using

VR

A
=

1

2
· b · hl

bl
=

1

2
h =

1

4
b tanϕ (5.1)

where the sidewall angle ϕ = 7.97◦ is fixed to the precisely defined {105} ripple geometry

on (1 1 10) surface, h being the height of the ripples, b their base. Since at the used growth

temperature of 550◦C only little Si/Ge intermixing occurs [147], and the ripple period of

b=16.8 nm can be precisely derived from the FFT satellite spacings, we obtain the result

that at 4.5 ML coverage, 4.1 ML of material is contained in the ripples, leaving less than

half of a ML at the interface.

This is strictly true in the case of pure Ge ripples, but also allowing, e.g., a ∼ 10%

intermixing, the residual WL would still only be of the order of one ML. The ripple

array also display a remarkable stability upon post-growth annealing, showing no signs of

coarsening, even for extended annealing cycles at 550◦C (not shown).
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Figure 5.2: (a) RHEED intensity of the specular spot (SS, blue line) and a facet diffraction

spot (FS, black line) plotted as a function of Ge coverage on Si (1 1 10), indicating an abrupt

morphological transition at a critical coverage of 4.2 ML. RHEED patterns recorded at different

coverages are shown in (b) to (d). The schematic illustration of the flat 2D wetting layer (WL)

and the perfectly faceted (PF) ripple surface are shown in (e) and (f), respectively. Panel (g)

shows the evolution of the surface profile along <110> as a function of Ge coverage. The shaded

regions below the profiles represent the respective total Ge amount deposited in each case and the

horizontal dashed lines the location of the Ge/Si heterointerface. For clarity, the profiles are offset

in the vertical direction
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5.2 Simulation technique: Multiscale approach

The described features above are observed during deposition. However, the atoms imping-

ing on the surface represent an hindrance to the diffusion of the adatoms diffusing on the

substrate themselves, thus reducing their mobility and diffusion length and making them

unable to reach the thermodynamic equilibrium. It is therefore reasonable that the tran-

sition may happen at a lower coverage if the adatoms are given enough time and energy to

diffuse on the surface. In order to check this idea, and to find the thermodynamic critical

coverage, a series of small depositions with subsequent annealing are performed. In so

doing, the critical coverage lowers to ∼ 3.6 − 3.8 ML for the transition from the rough

surface and the perfectly faceted one. It is this value that an energetic theory can (and

should) predict.

In this respect the basic idea is to compare the energy of the different phases (finite-size

ripples, perfect faceting and WL) with equation (2.1):

Esystem − EWL = V · (ρsystem − ρWL) + Ssystem · γsystem −B · γWL + L · Γedge (5.2)

As seen in sec.2.5.5 at page 65, the surface energies γ depend on the distance between

silicon and the topmost layer of germanium:

γ(N) = (γ0 − γ∞) · e−B·N + γ∞ (5.3)

Here N , in the case of the WL, is equivalent to the ML of coverage, and since the transition

here is happening in the first few MLs, corresponding to the region of higher derivative in

γ(NGe), a precise estimation of its value is mandatory, particularly because it is this term

the one giving the critical deposition we are looking for. For these reasons, the strategy

we adopt is the same applied in Brehm et al [30], leading to eqn.(2.52) at page 68.

However, contrary to that paper, here the analysis is complicated by the reduced size

of the islands we are dealing with1. Indeed in this case, the distance Ge-Si must be taken

into account not only in the WL surface energy (as in Ref.[30]), but also in the estimation

of the effective {105} surface energy, since the fraction of facet adjacent or near to the Si

is non-negligible, thus influencing the energy overall.

As already discussed in sec.2.5.4, the γ is a function of the strain to which it is subject.

While this dependence is already included in the simulations of the Ge/Si(1 1 10) WL,

this must be taken explicitly into account for the {105} facets. Considering that the

relaxation on the surface of these elongated structures is strongly anisotropic, a uniaxial

strain dependence is needed, that is still missing in literature.

We aim to fill this gap of knowledge in the following way. For calculations of the strain

dependence of surface energy we consider pure Ge slabs subject to biaxial or uniaxial

strains. In this case µGe is calculated for Ge compressed in x and y and Poisson corrected

in z for the reasons highlighted in Appendix C. To map discrete calculations into a

continuum model for the strain dependence of surface energy we fit γ(ǫxx, ǫyy) with a

second-order polynomial. This models the variation in surface energy as due entirely to

mechanical strain effects, and assumes that possible electronic contributions are second

1as already discussed in Ref.[30]
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order, as noted in Ref. [92]. In the strain interval of interest ranging from ∼-4% (Ge

compressed to the Si lattice constant) to 0%, surface energy is interpolated as [148]:

γ(ǫxx, ǫyy) = γ0 + τxx · ǫxx + τyy · ǫyy + (5.4)

+ Sxx · ǫ2xx + Syy · ǫ2yy + Sxy · ǫxx · ǫyy

Here the surface energy γ is defined per unit of deformed area (i.e. is defined in the

Eulerian reference frame), and τ and S are defined as the surface stress and surface elastic

constants, respectively [148]. For completeness, we conduct this analysis for both (105)

and (1 1 10) surfaces, as reported below.

A further complication consists in handling both the depedence on strain and NGe

at the same time, that, to our knowledge, has not been performed before. The way we

handle this is described in the next subsection.

A further complication due to the reduced size of the islands is the non-negligible role

played by the WL under the islands to the strain budget in the system2. Therefore, the

actual geometry of the system must be taken into account in the FEM analysis.

A resume of the multiscale strategy adopted is reported in the next subsection.

5.2.1 Multiscale

Our starting ingredients are:

• ρ, ǫ = elastic energy density and strain tensor of the relaxed structure as obtained

by a FEM modeling

• γ(ǫx, ǫy) = strain-dependent surface energy of the facets as computed from a pure

Ge cell in atomistic (DFT or Tersoff) approach, fitted as given by eqn.(5.4)

• γ(NGe) = epilayer-thickness dependent surface energy of the facets as computed

from Ge/Si cell in atomistic approaches, interpolated by the exponential function (5.3)

In this section we outline how to combine all of them to accurately estimate the {105}
facets contribution to the internal energy. The method is resumed in Figure 5.3.

Solving the elastic problem in FEM calculations, we get the strain tensor on every

point of the mesh ǫ̃ij . Let us focus on point P in the figure. This strain must be used

to get the local value of the surface energy by applying eqn.(5.4), paying attention that

in this equation, the strain values ǫ are the ones along the direction of the slab adopted

(ǫxx, ǫyy), that not necessarily coincide with the strain along the {100} directions of the

cell in the continuum calculation (that are the ones obtained by FEM) (ǫ̃ij). The strain

values to be used in this equation are obtained from the FEM ones simply by rotating the

strain tensor [66] along the same directions of the slab of the facet used, for instance along

the system of reference of each facet as shown in Fig.5.3, steps 1 and 2 in the figure.

2compare the results shown in sec.2.4.3 at page 48
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This would be the correct surface energy value for the (105) ripple facet if the influence

of the underlying Si substrate could be neglected—that is, if the height of the island surface

at P was sufficiently far from the substrate. In other words, the “pure Ge (105)” surface

energy extracted for point P of the ripple surface is the local value of γ∞(105) as defined

in Eq. (5.3). Given this connection, we re-write Eq. (5.3) for the strain and thickness

dependent surface energy at the point P as:

γ(P ) = [γ0 − γ∞(ǫP )] · exp(−B · zP ) + γ∞(ǫP ) , (5.5)

The strain state ǫP represents (ǫxx, ǫyy) evaluated at P .

Rigorously, the distance zP from the silicon should be taken orthogonal to the surface

considered, but, noting that the island we study are very shallow ones with an inclination

angle equal to ∼ 7.97◦, here we take the vertical distance for sake of simplicity. This ap-

proximation is obviously not valid for steeper islands. Following the convention described

in sec.2.5.5, this distance is expressed in units of (001) MLs.

As a simplifying assumption, the B parameter is assumed to be independent of strain

state, as is taken from the fit of Eq. (5.3) to calculated atomistic results. Finally, γ0 is set

equal to the Si(105) surface energy. This is the step 3 of the figure.

This procedure is used to estimate the value of the surface energy at point P.

The effective energy of the facet to which P belongs is given by numerically integrating

the energies of every point and dividing by the area of the facet considered:

γ(105)eff =
1

A
·
∫

γ(P )dA (5.6)

And this is step 4 in the figure.

From this discussion, it is evident that this method is strictly valid for 100% Ge islands

where no (or negligible) intermixing is happening. This hypotesis is very well fulfilled here

since pure Ge is deposited at moderate low temperature and no Si from the substrate can

spill out from the trenches3 since the latter are not excavated by very shallow islands4.

He we will adopt the hypotesis that the ripples are 100% Ge.

5.2.2 DFT and non-linear elastic field

As is shown below, Tersoff potential is not able to reproduce the smooth trend of the

surface energy γ(NGe) as the Ge thickness changes. For this reason, the used values of

the surface energies will be the ab initio ones. For internal consistency, the elastic energy

must be computed with the elastic constants deduced from the same parametrization,

reported in Tab.2.2 at page 40, along with the misfit strain as deduced from the lattice

constants reported there.

However, a comparison between elastic energy density derived from FEM with this

constants for a biaxially-strained Ge(001) WL slightly differ from the ones obtained by a

DFT-LDA calculation directly, see Fig.5.4, left panel.

3see discussion in Chapter 3
4compare the strain maps of Fig.2.7 at page 49 showing that the substrate in the case of the pyramid

is less perturbed than the Dome or Barn case.
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Figure 5.3: Multiscale method for evaluating the effective energy of (105) facets with both strain

and distance dependence. See description in sec.5.2.1. zP is the distance of point P from the Si

interface, here we sketched the case of no WL under the ripple.
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Figure 5.4: Studies of the elastic energy density as obtained for a biaxially strained Ge WL for

DFT-LDA and FEM where the elastic constants of DFT are used. Left panel shows they differ,

and this difference may be due to non-linear terms in DFT. We fit the ratio between the two values

of the elastic field with eqn.(5.7), that is a good fit for ǫin−plane ∼ −4%.
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This discrepancy is due to non-linearity effects included in DFT, but excluded, by

definition, from the continuum-based Linear Elasticity Theory of FEM.

We overcome this prolem by interpolating the two values with a polynomial function in

order to get a “non-linear correction factor” for the WL. Throughout the present work,

we make the ansatz that this function is valid for every shape and Ge concentration in

the islands and the elastic energies reported are given by:

ρnon−lin = ρFEM · (anon−lin · ǫin−plane + bnon−lin) (5.7)

where ǫin−plane = 0.5 · (ǫxx + ǫyy) is the absolute value of the strain in plane (not %),

anon−lin ≃ −2.67387 and bnon−lin ≃ 1.01013.
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5.3 Surface energy and the role of dimer tilting

In this section we compute the energies of the surfaces involved in this system.

We report the procedure and data of our estimation of the surface energies γ(105) and

γ(1 1 10) both in DFT-LDA and Tersoff potential approach.

After describing the geometry of the reconstruction and the simulation cells to make

the calculation more efficient (if not affordable at all), a careful check on the k-points

density is performed leading to what we baptise “the bulk criterion”.

By comparing the outcomes from DFT-LDA and Tersoff potential, we understand the

non-negligible role played in stepped surfaces by the path of the dimer tilting in raising

the energy of such surfaces, thus showing that the sole strain is not enough to assess the

stability of surfaces when steps and dimers are present.

All the obtained data are reported in Table 5.1 at page 114.

5.3.1 Surface geometries

Here we outline the geometries of the cells adopted in the calculations.

From a general point of view, layers of atoms with fixed atomic positions are in-

cluded in the calculation slabs in order to impose bulk coordinations within the slab and

to prevent drift of the slabs in the z direction. As discussed in Ref.[148], the distance

between any surface of interest and the fixed layers should be maximized to yield cal-

culated surface energies applicable in bulk (semi-infinite) systems. Minimizing the total

number of atoms in the calculation cell while maximizing this separation can be achieved

with asymetric slabs which place fixed layers closer to the bottom surface of the slab

than the top. In this construction the energy of a cell with top and bottom surface with

different energies is:

ETOT = NSi · µSi +NGe · µGe + (γT + γB) ·A (5.8)

where γT (TOP) is the surface energy value of interest, and, as the bottom surface is

present only to allow for periodic boundary conditions perpendicular to the surface, γB
(BOTTOM) is not physically meaningful, A is the area of the surface.

Here the chemical potentials µmust be computed at the strain of interest considering

also the Poisson relaxation (see discussion in Appendix C and sec.2.4.2). We take as the

µ the minimum value of the energy per atom obtained by applying the strain in plane and

changing the strain normal to the free surface. Since using the slab along the (105) and

(1 1 10) surface may be very large5, this procedure is performed on an 8-atoms conventional

cell deformed in such a way that the strain tensor is the one imposed by the slab state we

are considering.

The value of γB is computed in a separate calculation with a cell whose slab thickness

is twice the distance from the bottom surface to the fixed layers in the asymetric slab, and

is given as:

γB =
Esym

tot −NSi · µSi

2A
(5.9)

5see discussion below
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(105)-RS surface

The geometrical parameters of the As Cut (AC) surface can be extracted from Tab.2.3

at page 60. The reconstruction we adopt is the Rebonded-Step (RS) model, that is the

established most stable one [81, 88, 145], that fits in a single AC cell in the xy plane. Our

cell is reproduced in Fig.5.6 and consists of 52 (105) MLs along z direction (corresponding

to the thickness of 2 AC cells) with both top and bottom surfaces reconstructed. The

reconstructed cell contains 208 atoms.

Five fixed (105) MLs are located in the bottom third of the slab, i.e. the middle of the

bottom AC cell, maximizing the thickness of relaxed atoms associated with the surface of

interest at the top of the slab. These are coloured in green in Fig.5.6.

The bottom surface energy γB is computed from a symmetric cell (not shown) com-

posed of 26 (105) layers along the z direction and reconstructed on both surfaces, where

the fixed layers are kept the same as in the larger cell.

(1 1 10)-DB surface

The (1 1 10) is the substrate in this system.

From Tab.2.3, we see that the As Cut cell contains 204 atoms.

The (1 1 10) surface is a vicinal of (001) whose miscut angle is ∼ 8.04◦. The experimental

results shown in Fig.4.2-[b] predict the expected reconstruction for Si at this miscut angle

to be a double step DB. The need to create dimers on the terraces compels to double the

cell size, thus reaching 408 atoms, that represent a very demanding calculation in an ab

initio framework.

If both surfaces had to be reconstructed with the same idea as the (105), the number of

atoms would double, making the calculation unaffordable. For this reason here we adopt

a different geometry in order to use a single cell in z direction. In this case the bottom

surface is composed of fixed atoms in the position of the AC cells, as shown in Fig.5.5.

The reconstructed cell contains 91 (1 1 10) MLs where the bottom 13 (1 1 10) layers

(equivalent to a thickness of ∼ 3.5 Å) are kept fixed at their strained bulk positions. The

total number of atoms is 360.

The bottom surface energy γB is computed independently from a symmetric cell made

of 91 (1 1 10) MLs with top and bottom layers fixed at their (strained) bulk positions.

Here we use less than an integer cell along the z direction, but in sec.5.3.3 below we

prove that this does not affect the results.

(001)-2xN DVL

Given that (1 1 10) surfaces are constructed of (001) terraces, we have also calculated the

surface energy of the Ge on Si (001) surface (γ
(001)
Ge/Si). While the Ge and Si (001) surfaces

have been widely studied with both DFT and Tersoff potential [76, 88, 93], we include

calculations of the Ge on Si (001) surface to provide a fully consistent set of ab initio

surface energy values calculated with uniform input parameters. We limit our present

work to the (001) 2×8 dimer vacancy line (DVL) reconstruction, which has been shown

by other authors [76, 93] as the stable structure of the Ge on Si wetting layer surface,
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Figure 5.5: Geometry of (1 1 10) cell. (a) Side view of the as cut (1 1 10) surface with the Db

step profile highlighted (red lines), the atoms in the green circles being rebonded to reproduce the

rebonded step configuration, the atoms in the black squares being erased to create a double step.

The two types of terraces are delimited by the vertical red lines. Panels (b,c) show the relaxed

positions in the case of Ge/Si(1 1 10) cell with 4 ML (001) of Ge. The simulation cells is delimited

by the black lines. In (c) the dotted vertical lines are at the Db step position and the dimers are

encircled. In (b) instead red atoms are the Ge ones, blue atoms are Si, the Si fixed atoms are in

green (light atoms). The numbers in brackets are the extension of the cells expressed in Å along

x and y or the thickness of the atoms along z. The tip of z axis designate the top surface (energy

γT ), the other surface is the bottom one (energy γB). The figures are created by using the VESTA

software [149].
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Figure 5.6: Geometry of the reconstructed Ge/Si(105) cell with 6 ML (105) of Ge. See Fig. 5.5

for the meaning of colors and quantity in parenthesis. (a) side view, (b) top view.
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and focus our calculations on only Ge on Si slabs. The geometry of the cell for DFT

calculations (not shown) is similar to that used for (1 1 10) surface calculations, and

consists of an asymmetric slab with 15 (001) MLs free to relax and 5 (001) MLs at the

bottom of the cell fixed in their bulk positions. Dimers are initialized in an alternating

configuration similar to the tilts selected for the (1 1 10) surfaces described above (see

Figure 5.12(a) for a side view), except where specifically noted.

5.3.2 Methods

The details of the simulation in the DFT-LDA approach and with Tersoff potential are

the same as the reported in sec.2.3 at page 36.

The cells described in the previous subsection are the ones adopted for ab initio cal-

culations. Since Tersoff potential is much less expensive than DFT, for Tersoff potential

calculations cells with 306 or 260 layers [for (1 1 10) and (105) surfaces respectively] are

used. The bottom 6 (1 1 10) and 28 (105) layers of these slabs are kept fixed, and ETOT

for the slabs is computed by excluding the energy of all fixed atoms. The slab thicknesses

were selected to ensure that the last unfixed atoms above the fixed atoms have energies

per atom equivalent to the energy per atom of bulk Ge or Si (that is, µGe or µSi), as

appropriate. While being aware that this method involves the use of very thick cells, we

note that thinner slabs, similar to the ab initio case, could be adopted to guarantee a

reasonable degree of convergence as well.

In both Tersoff and ab initio cells, the epilayer of Ge is put just on the top surface and

a certain number of the topmost Si atoms (see below) are converted into Ge in order to

have the desidered Ge thickness expressed in (001) MLs as described in sec.2.5.5 at page

65:

1 ML(001) ≃ 5.049 ML(1110) ≃ 2.549 ML(105) (5.10)

In the case of Ge/Si surfaces the chemical potential of Si is the unstrained one, whereas

the one for Ge is compressed in x, y and subject to the Poisson effect along z.

The trend with strain is analyzed for pure Ge cells. In this case the applied strain

includes the Poisson effect along z direction (the normal to the surface) in such a way that

the fixed atoms in the cell are at the same strain state as the reference chemical potential

µ computed from bulk cells.

The choice of the reciprocal space sampling is described in the next subsection.

5.3.3 k-point convergence of ab initio results

Accurate calculation of materials properties within the DFT framework requires a careful

assessment of the convergence of calculated values with respect to input parameters. While

parameters like energy cutoff for the planewave expansion of the electronic wavefunction

are generally well-determined by the atom types included in the calculation, the grid

of reciprocal space points over which the Kohn-Sham equations are discretely integrated

depends on the geometry of the calculation cell. As we seek to compare calculations across

varying cell geometries, care must be taken to assure relatively uniform convergence with
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respect to k-space sampling. We have specifically explored this issue for the surfaces

considered here.

Using the 8-atom diamond cubic bulk unit cell we considered Monkhorst-Pack (MP)

meshes of special k points of increasing density. Meshes of 6×6×6 k-points or greater gave

convergence of the total energy per atom to within 0.5 meV/atom. The 6×6×6 k-mesh

is equivalent to a k-density of ∼ 140 Å3, a value we take as a baseline and call the “bulk

criterion” for k-point convergence.
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Figure 5.7: Convergence checks for the (1 1 10) cell as a function of thickness (91 MLs or 102

MLs of (1 1 10)) and input kpoints along x (abscissa). The values plotted are the difference of γT
obtained for 4 MLs (001)-thick Ge epilayer and the one obtained for the best 7 1 1 kpoint, 102

MLs thickness. The values at Kpoint=4 1 1 are those predicted by the bulk criterion, and they

are within 0.10 meV/Å2 from that value.

Directly applying the bulk criterion to the (1 1 10) surface cells (see cell geometry in

Fig. 5.5) implies a MP mesh of 4×1×1 k-points. Energy convergence for (1 1 10) slabs was

checked by comparison with both higher and lower density k-meshes up to a 7×1×1 mesh,

and by comparison 91- and 102-ML thick slabs6 (where the 102-ML thick calculation cell

is taller, and hence realizes a high k-point density in z). The results of this analysis for a

4 ML Ge epilayer-on-Si structure are reported in Figure 5.7 by plotting the deviation of

the calculated value of γ
(1110)
Ge/Si from the best converged calculation (“thick”, 102 ML slab

with 7×1×1 k-mesh). These results demonstrate that the 4×1×1 k-mesh as predicted

by the bulk criterion converges the calculated surface energy to within 0.1 meV/Å2. In

addition, no appreciable variation is observed between the 102 and 91 ML-thick slabs,

demonstrating that the 91-ML thick slab is thick enough to prevent interaction between

the top and bottom surfaces.

Having validated the applicability of the bulk k-point convergence criterion on the

(1 1 10) surface slabs, we apply the same criterion to both the (105) and (001) surface

slabs. For the (105) calculation cells (shown in Figure 5.6), this gives a required MP

k-mesh of 3×2×1. Similarly, for (001) surface slabs as considered in sec. 5.3.6 we have a

required MP k-mesh of 1×4×1.

6corresponding to an entire AC cell
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5.3.4 Calculated Surface Energies

We show first the results of DFT-LDA and then the Tersoff potential ones.

Ab Initio Results

(1 1 10)-Db Surface: The Ge and Si (1 1 10) surfaces are vicinal to the (001) surface

and exhibit a miscut angle of ∼ 8.05◦. Both the Ge and Si (1 1 10) surfaces consist of

(001) terraces separated by atomically sharp steps, as depicted in Figure 5.5.

As a general phenomenon of (11n) surfaces for even n in diamond cubic systems,

alternate terraces differ in length [144]. In the case of (1 1 10) (see Fig. 5.5) Terrace

1 is ∼ 1.7 nm long and has three dimers along with a rebonded step, while Terrace 2

is ∼ 2.1 nm long with four dimers and a rebonded step. The detailed reconstruction

adopted throughout our calculations is the one experimentally observed on silicon, where,

for ∼ 8◦ miscuts with respect to (001), double ML height “Db”-reconstructed steps are

observed [86]. The full reconstructed calculation cell is shown in Fig. 5.5-(b,c) where the

(001) surface dimers and rebond configuration of the Db steps are highlighted [85]. Note

that care has been taken to construct initial atomic configurations with correct tilting

of the terrace dimers, as the effect of dimer tilting significantly influences the calculated

surface energies (see detailed discussion in sec. 5.3.6 below).

Figure 5.8 plots the values of γ
(1110)
Ge/Si as a function of Ge on Si overlayer thickness for

Ge on Si slabs with triangles. Given this reconstruction, the number of Ge atoms in these

cells are 16, 36, 56 and 76 for a coverage of ∼ 1, 2, 3 and 4 ML(001) respectively. These

same numbers hold for the Tersoff potential calculations reported below.

Materials parameters fit from Eq. (5.3) are reported in Table 5.1. The Ge overlayer

surface energy decreases monotonically with increasing Ge thickness. This is consistent

with previous results which have justified the decreasing surface energy on the basis of

the lower energy of the Ge dangling bonds combined with the decreasing surface-induced

elastic effects in the stiffer Si substrate [76, 150].

Figure 5.10-(c) plots the calculated values of γ
(1110)
Ge as a function of strain state for

pure Ge slabs. Biaxial compressive strain is clearly shown to stabilize the (1 1 10) surface,

with γ
(1110)
Ge = 66.4 meV/Å2 at ǫij = 0% (unstrained Ge) and γ

(1110)
Ge = 61.3 meV/Å2

at a biaxially compressive strain of −4% (Ge strained to the Si lattice constant). Figure

5.10-(c) also shows that the surface lowers its energy when the Db steps are squeezed

towards each other: specifically, for a fixed value of strain along the steps (here, ǫxx),

the minimum (in the range analyzed) surface energy occurs at −4% strain along the di-

rection perpendicular to the dimers (ǫyy). This results in a positive value of the surface

stress τyy, as reported in Table 5.1. In contrast, for a fixed state of strain perpendicular

to the dimers (ǫyy), a local maximum in surface energy is found between ǫxx = 0 and

−4%. The lowest calculated surface energy value occurs for ǫxx = 0 and ǫyy = −4% with

γ
(1110)
Ge = 60.6 meV/Å2.

(105)-RS Surface: The calculated values of γ
(105)
Ge/Si as a function of Ge overlayer

thickness for Ge on Si slabs are plotted as circles in Fig. 5.8. In this case the number of

Ge atoms in the cells are 14, 22, 30 and 38 for a coverage of ∼ 1, 2, 3 and 4 ML(001)
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respectively. These same values hold for the Tersoff potential calculations shown below as

well.

The parameters of the fit to Eq. (5.3) are reported in Table 5.1. Compared to previous

reported results of similar calculations by Liu et al [76, 93], we calculate a lower surface

energy for Ge (105) overlayers by∼ 3 meV/Å2. We attribute this discrepancy to differences

in calculation settings, specifically: different k-mesh densities (in the plane of the surface,

1×1 versus 2×1 used here), different planewave cut-offs (163 eV versus 355 eV used here),

as well as the use of thicker slabs in the present work.

Calculated values of γ
(105)
Ge for Ge (105) surface energy as a function of applied strain are

plotted in Fig. 5.10-(a). While it is clear that biaxial compressive strain strongly stabilizes

the Ge (105) surface, as shown previously [88], Fig. 5.10-(a) also shows that uniaxial

compressive strains also stabilize the Ge (105) surface. This is reflected in positive values

of the surface stresses τxx, τyy, reported with other parameters of eqn.(5.4) in Table 5.1.

In addition, it should be noted that the negative values for the surface elastic constants

also contribute to a reduction in (105) surface energy under compression.

Consideration of both the (1 1 10) and (105) surface energies as a function of Ge

overlayer thickness (see Fig. 5.8) shows that while the pure Si (1 1 10) and (105) sur-

face energies are similar (90.0 vs 89.9 meV/Å2), the (105) surface energy decreases more

rapidly with increasing Ge overlayer thickness than the (1 1 10) surface energy. The

present results indicate that at any non-trivial Ge overlayer thickness the (105) surface

has lower absolute energy than the (1 1 10) surface. For Ge overlayer thicknesses greater

than ∼ 0.2 MLs, surface energy is in fact a driving force for the formation of (105) facets

on (1 1 10) Si substrates. This is consistent with a number of recent experimental results

showing both (i) the formation of (105) facets on (1 1 10) surfaces upon deposition of

Ge [86, 129, 143, 151, 152, 153] and (ii) the stability against (105) facetting of the bare

Si(1 1 10) surfaces.

(001) Surface: The calculated Ge on Si (001) surface energy is plotted in Fig. 5.8 as a

function of Ge overlayer thickness. Fitting parameters for eqn.(5.3) are given in Table 5.1.

The present results are quantitatively and qualitatively consistent with previous DFT

calculations of Ge on Si overlayer DVL (001) surface energies [148], and show a monotonic

decrease in surface energy with increasing overlayer thickness. Figure 5.8 shows that DFT

predicts the (1 1 10) surface to have higher absolute energy than the (001) surface over the

thickness range considered. These results are consistent with experimental observation of

(001) surfaces stable against spontaneous facetting to (1 1 10).
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Figure 5.8: DFT-LDA results for γT (NGe), i.e. the dependence of the surface energy on the Ge

epilayer thickness. Points are the direct calculations, lines the interpolation given by eqn (5.3).

See discussion at Section 5.3.4.

Figure 5.9: Tersoff potential results for γT as a function of the Ge epilayer thickness. The lines

are just to guide the eye. Inset is a zoom at 3-4 ML Ge to show the slightly higher energy of (001)

than (1 1 10). See discussion at Section 5.3.4.
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Figure 5.10: γT (ǫxx, ǫyy) of pure Ge cells as obtained from DFT-LDA (left) and from Tersoff po-

tential (right). Black points are direct calculations, the red grid is the interpolation with eqn.(5.4).

The strain is the one for Ge. The directions x and y are the same as in Figures 5.5 and 5.6. Here

the γ are per unit deformed area. See text for details.
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Figure 5.11: Biaxial strain (ǫxx = ǫyy) dependence of the surface energies as obtained by first

principles approach (open symbols) and from Tersoff potential (close symbols) for both (1 1 10)

surface (squares) and (105) (circles). The curves are those obtained by the fit reported in Table 5.1,

the points are just sampling of the curves at a fixed interval and are aimed to guide the eye. Here

the values of γT (ǫ) are plotted with respect to the value of the same curve at -4% strain in order

to compare the derivative of each curve on the same scale. The relative position of the curves is

therefore meaningless. For a discussion of results see Section 5.3.5.
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Tersoff Potential Results

(1 1 10)-Db Surface: Figure 5.9 plots the Ge on Si surface energy as a function of

overlayer thickness and shows that the Tersoff potential predicts almost no long-ranged

decrease in surface energy after deposition of the first atomic layer of Ge. In addition,

the Tersoff potential predicts a shallow local minimum in surface energy at an overlayer

thickness of 2 (001) MLs [154].

Figure 5.10-(d) plots the Ge surface energy as a function of applied strain state as calcu-

lated with the Tersoff potential, and shows that the unstrained Ge (1 1 10) is predicted

to have a lower surface energy (80.4 meV/Å2) than the Ge (1 1 10) surface biaxially com-

pressed to ǫxx = ǫyy = −4% (82.1 meV/Å2 at -4%). The Tersoff potential predicts a local

maximum in the Ge (1 1 10) surface energy at ǫxx = ǫyy = −3.5%. Surface stress and

surface elastic constants parameterizing eqn.(5.4) are given in Table 5.1.

(105)-RS Surface: The overlayer thickness dependent Ge (105) surface energy as

calculated with the Tersoff potential is also plotted in Fig. 5.9. The Ge (105) surface

energy decreases to a stable value after deposition of ∼ 1.5 (001) MLs (001). Figure 5.10-

(c) plots the strain-dependent Ge (105) surface energy, and, as with the Tersoff potential

results for Ge (1 1 10), shows a local maximum in surface energy near ǫxx = ǫyy = −1%.

In contrast to the (1 1 10) Tersoff results, the Ge (105) surface energy for Ge biaxially

compressed to the Si lattice constant is lower (80.4 meV/Å2) than that calculated for the

uncompressed state (82.1 meV/Å2).

As is the case of first principles calculations, the pure Si value is almost degenerate as

the one for (1 1 10) and the thick-Ge energies are lower than the one for (1 1 10), but the

trend is not smooth, contrary to ab initio calculations.

(001) Surface: Figure 5.9 plots the Ge on Si (001) overlayer surface energy as a func-

tion of thickness as calculated from Tersoff potentials. The (001)-2x8-DVL and (1 1 10)-Db

have close energies after thickness saturation is reached, but with the vicinal surface hav-

ing slightly lower energy than the singular one.

The Tersoff results are consistent with previously published results using semi-empirical

potentials [132, 150] on vicinal surface in Si and Ge. In these works the vicinal surfaces

are found to have a lower energy than the singular (001) because the steps allow a larger

strain relaxation of the biaxially compressed Ge layers. While results of Tersoff potential

calculations show a lower absolute surface energy for Ge (1 1 10) overlayer surfaces with

respect to (001), these results are still consistent with the absence of experimentally ob-

served spontaneous faceting of Ge (001) overlayers to (1 1 10) because of the surface area

correction accounting for the ∼ 8◦ miscut of (1 1 10) relative to (001).
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Parameter DFT-LDA Tersoff

a(Si-BULK)[Å] 5.390 5.4320

a(Ge-BULK)[Å] 5.624 5.6567

µ(Si-BULK)[eV/atom] -5.976782 -4.62959

µ(Ge-BULK)[eV/atom] -5.199221 -3.85060

µ(Ge/Si-1 1 10)[eV/atom] -5.162938 -3.81370

µ(Ge/Si-105)[eV/atom] -5.162474 -3.81318

µ(Ge/Si-001)[eV/atom] -5.163430 -3.81397

γ Ge/Si(1 1 10) vs NGe γ∞ ≃ 62.463 X

B ≃ 0.75 X

γ0 ≃ 89.93 X

γ Ge/Si(105) vs NGe γ∞ ≃ 56.90 X

B ≃ 0.85 X

γ0 ≃ 90.03 X

γ Ge/Si(001) vs NGe γ∞ ≃ 62.44 X

B ≃ 1.02 X

γ0 ≃ 90.55 X

γ Ge(1 1 10) vs strain γ0 ≃ 66.428 80.39

τxx ≃ −24.765 −66.389

τyy ≃ 55.081 −33.850

Sxx ≃ −1534.85 −595.67

Syy ≃ −2127.37 −415.31

Sxy ≃ 1191.64 −427.42

γ Ge(105) vs strain γ0 ≃ 64.281 82.05

τxx ≃ 46.070 −16.834

τyy ≃ 72.195 −9.898

Sxx ≃ −624.74 −597.29

Syy ≃ −850.99 −547.89

Sxy ≃ −651.72 −542.53

Table 5.1: All the parameters used and obtained in this work. The results of the interpolation of

Figures 5.8 and 5.10 are reported both for dependence on strain and on deposition. It is noteworthy

to remember that the values of surface energies as a function of strain for pure Ge cells and that

the strain is referred to the Ge bulk lattice parameter, whereas in the case of Ge/Si surface as a

function of NGe the germanium is strained according to the lattice mismatch with Si (i.e. ∼ 4%).

Here strain is expressed in absolute numbers (not %). The different values of the µ along the

directions analyzed reveal the slight difference due to the anisotropic elastic behaviour (constants)

of the materials.
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5.3.5 Comparison of ab initio and semiempirical results

Given the computational difficulty of treating arbitrary surface orientations in a fully

ab initio context, semiempirical potentials, particularly the Tersoff potential, have been

widely applied to calculate surface energies in the Ge/Si system. Even so, semiempirical

potentials are known not to accurately address all physical effects that may influence

surface energy and surface structure. This has been previously explored in terms of the

electron transfer effects leading to sp2 and sp3 configured surface atoms and the resulting

dimer tilting in (001)-based Ge and Si surfaces [155, 156, 157]. The present set of DFT and

Tersoff potential results for (105), (1 1 10) and (001) Ge and Ge on Si overlayer surfaces

provides an excellent dataset within which to compare the predictions of DFT and Tersoff

potential calculations for surface energies in the Ge/Si system. As shown below, such

comparison is instructive to highlight deviations due to electronic effects [88].

Comparison of the DFT and Tersoff predicted strain-dependent surface energies for

pure Ge (105) and (1 1 10) surfaces (see Fig. 5.10) reveals a number of differences. While

both DFT and Tersoff potential predict smooth variations in surface energy with applied

strain, DFT predicts a significantly greater stabilization of both the Ge (1 1 10) and (105)

surfaces with the application of compressive strain. This can be highlighted by considering

surface energy as a function of biaxial strain alone, as plotted in Fig. 5.11. Of particular

note is that while DFT predicts the zero strain state (Ge lattice constant) as the strain

state at which both the (1 1 10) and (105) Ge surface have local maxima in surface energy,

as noted above Tersoff potential calculations predict local maxima in surface energy at

∼ −3.5% and ∼ −1% biaxial strain for (105) and (1 1 10) surfaces, respectively. Moreover,

Tersoff potential predicts that the zero strain state is in fact the local minimum in surface

energy over the range of strain considered for the (1 1 10) Ge surface.

In addition, as discussed above, DFT calculations show a smooth exponential decrease

in Ge surface energy with increasing Ge overlayer thickness for all considered surface

orientations, suggesting the decay of a long-ranged interaction effect. This is in contrast

with the results of Tersoff calculations, which suggest a rapid convergence to thick film

behavior with deposition of the first 1-3 atomic layers. In the case of (1 1 10) surface, the

appearance of a shallow local minimum in the Ge surface energy at ∼2 MLs of Ge is also in

contrast to the monotonic relaxation of surface energy predicted by DFT calculations. In

addition, while the bare Si (1 1 10) surface energies are quantitatively similar for DFT and

Tersoff calculations, the relaxation of surface energy [that is, the value of B in eqn.(5.3)]

is much greater in DFT-based results. This leads to DFT calculated surface energies for

Ge (1 1 10) for thick Ge overlayers of ∼20 meV/Å2 lower than Tersoff calculated values.

This same difference between first principles and Tersoff values at convergence is found

in the trend of the (105) surface. Similarly to the case of (1 1 10) surface, also in this case

the value of pure Si surfaces is comparable to the ab initio one, but for the (105) no local

minimum is found. In both Tersoff and first principle results the value at convergence for

the (105) is lower than the (1 1 10) one.

Finally we note that DFT calculations predict that Ge (1 1 10) overlayers have higher

absolute surface energy than both Ge (001)-2x8-DVL and (105)-RS overlayers throughout

the Ge deposition range analyzed. This is in contrast to the Tersoff potential results (see
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Fig. 5.9), which predict that Ge (1 1 10) overlayers have lower absolute surface energy

than the Ge (001)-2× 8 DVL.
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5.3.6 Role of Dimer Tilting

There is growing interest in continuum level models of nanostructure stability in hetero-

geneous systems. Such models generally balance changes in net surface energy against

changes in strain energy. In order to yield accurate predictions of nanostructure stability,

calculated surface energies employed in these models must exhibit at least qualitatively

accurate relative values of surface energy among the various surfaces present in the nanos-

tructure(s) of interest. The above comparison between DFT and Tersoff potential results

for (1 1 10), (105) and (001) Ge and Ge on Si surfaces suggests that care should be taken

when employing surface energies calculated using Tersoff potential and other semimepiri-

cal approaches [132] alone. This is particularly relevant with respect to the qualitatively

different predictions for the magnitude and nature of the relaxation of surface energy with

increasing overlayer thickness—particularly for the Ge on Si (105) surface. In addition,

as the Tersoff potential is widely used to study stepped or vicinal surfaces in the Ge/Si

system, the qualitatively different predictions of the relative stability of (1 1 10) and (001)

Ge overlayers is also of particular importance.

In an effort to assess this last difference—that DFT predicts the (1 1 10) surface to

have higher absolute energy than the (001) surface in contrast to current and previous

Tersoff results—we have considered the potential role of experimentally observed (and

DFT-predicted) tilted dimers on (001) surfaces.

Previous DFT calculations [148] predict that correct arrangements of alternating dimer

tilts on (001) surface reduces the Si and/or Ge surface energy by ∼ 2 meV/Å2–a significant

amount when comparing the (1 1 10) and (001) surface energies (see Figs. 5.8 and 5.10).

Given that DFT predicts that the RS (105) is stable with respect to the (1 1 10) by ∼
4 meV/Å2 while Tersoff calculations predict that (1 1 10) is stable for thin enough films

(≤3 MLs), an error in surface energy due to treatment of tilt patterns on (001) terraces

of (1 1 10) surfaces could be important.

As noted above, all (11n) vicinal surfaces in diamond cubic lattices with even n and

terraces separated by double-height steps necessarily have inequivalent terraces. For the

(1 1 10) surface, one terrace has 4 dimers and the second has 3 dimers. As dimer tilts

have been shown to alternate along the rows of dimers, the terrace with an odd number

of dimers cannot complete a tilt pattern. Moreover, the presence of rebonded steps likely

influences the tilting of both the first and last dimers on each terrace. As dimer tilts are

only predicted in DFT calculations, we hypothesize that step interference with dimer tilt

patterns will represent a penalty against the (1 1 10) surface energy in DFT calculations

that is absent in Tersoff calculations. Assuming equivalent treatment of other strain effects,

and a second-order nature to all other electronic effects, this hypothesis would imply that

Tersoff calculated (1 1 10) surfaces would be lower in energy relative to (001) surface

energies than equivalent DFT calculated (1 1 10) vs (001) calculations. That is

γTersoff
(001) − γTersoff

(1 1 10) = γDFT
(001) − γDFT

(1 1 10) +∆DFT
Tilt (5.11)

for ∆DFT
Tilt a positive value (energy penalty). Hence, a large enough ∆DFT

Tilt could result in

differing predictions for the relative stability of the (1 1 10) and (001) surfaces—e.g., as

observed here for Ge on Si overlayers.
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To directly address the hypothesis that dimer tilt patterns can play a key role in

determining relative surface stability, and, in fact, explain the differing predictions for

(1 1 10) versus (001) stability in the present work, we have used DFT to compare surfaces

with tilted and un-tilted dimers. Results reported above were calculated using cells initially

constructed with alternating dimer tilts and which retain alternating tilts upon structural

relaxation.

In contrast, cells constructed with symmetric (flat) dimers relax to a local (but not

global) energy minimum that retains flat dimers, as shown in Figure 5.12-(c) and (d).

Comparison of the surface energy of tilted and un-tilted (1 1 10) and (001) Ge on Si

surfaces shows that the predicted relative surface stability is reversed depending on the

state of dimer tilts.

In the case of a 3 ML Ge overlayer, the (001) and (1 1 10) surfaces have surface energies

of 64.0 and 65.2 meV/Å2, respectively, if dimer tilting is allowed [structures in Figs. 5.12-

(a) and (b)] and 71.2 and 67.42 meV/Å2 if dimer tilting is not allowed [structures in

Figs.5.12-(c) and (d)]. The un-tilted dimer DFT results are therefore consistent with

the predictions of Tersoff potential, which, like other semi-empirical potentials, does not

predict tilted dimer (001) reconstructions.

These results demonstrate that correct dimer tilt patterns are an essential factor in

determining the relative stability of different surface orientations and structures. Such

effects are likely at play on any Ge or Si surface that exhibits dimer bonds, and hence the

potential for mixed arrangements of sp2 and sp3 configured surface atoms. Such surfaces

include, e.g., surfaces vicinal to (001) and “rebonded step” structures like Ge (105).

Figure 5.12: Relaxed side views of (001) and (1 1 10) surfaces with 3 ML(001) Ge deposited on

it when tilting is allowed or not compared with the outcome of Tersoff potential. The repeated cell

is delimited by the black vertical lines. See Section 5.3.6 for details.
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5.4 Perfect faceting simplified

With these needed surface energies at hand, we can compare the energy of the two extremal

situations sketched in Fig.5.13-(a): a WL and a perfect {105} faceting with no WL under

the ripples, and for that purpose, we need to asses the effective surface energy of the (105)

facets as explained in sec.5.2.1 as follows.

Leveraging the DFT calculated surface energies reported above, we first evaluate the

in-plane components of the strain tensor, ǫxx and ǫyy, for the case of perfect {105} faceting

on (1 1 10) (see Fig. 5.13) using elasticity theory solved using Finite Element Method

(FEM) calculations. Since the ripples are infinite in the y direction (we use a 2D model)

as defined in Fig. 5.13-(a), ǫyy ≃ −0.04. The FEM calculated dependence of ǫxx on the

position P along the ripple facets given in Fig 5.13-(b). Given the local ǫxx and ǫyy values,

we can extract a local pure Ge (105) surface energy value from eqn.(5.4) as fit to calculated

DFT surface energies as shown graphically in Fig. 5.13-(c). The curve as a function of

epilayer thickness (i.e. distance from the Si substrate) that crosses this γ∞(105) value is

drawn in panel (d) in green.

Using the above procedure we have calculated the net surface energy of a perfectly

facetted Ge {105} ripple structure on a Si(1 1 10) substrate and that of a flat Ge on

Si(1 1 10) wetting layer with the same Ge volume. Figure 5.14 compares these net surface

energies as a function of ripple width as expressed by base size. Note that these results

show that surface energy alone is a driving force for the formation of Ge {105} ripples at

all non-vanishingl ripple widths.

Following previous studies we may break the net formation energy of a three-dimensional

nanostructure into volumetric (elastic energy), surface and edge energy contributions

[30, 41]:

∆E(PF-WL) = ∆Eel +∆ES +∆Eed (5.12)

Simple geometrical arguments lead to the following relations for the three contributions

in the case of perfectly facetted {105} ripples on (1 1 10):

∆Eel = LM · hR
2

· (ρR − ρt) (5.13)

∆ES = LM · (secϕ · γR − γWL) (5.14)

∆Eed = LM ·
(
ΓR

b

)
(5.15)

Here LM is the total surface area covered in ripples with base widths b and height hR
(see Fig.5.13-(a)). The pure Ge ripples lie directly atop a Si(1 1 10) substrate. The elastic

energy density of a uniform, flat, tetragonally strained WL is ρt, and ρR is the elastic

energy density of Ge in a perfectly facetted ripple configuration. The angle between the

ripple facet and the substrate is given by ϕ, and is 7.97◦ for (105) ripples on (1 1 10). ΓR

is the edge energy density per ripple.

As both the elastic energy density and net surface energy are both driving forces

for the formation of ripple facetting, a positive value of ΓR is required to reproduce the

experimentally observed onset of ripple formation with finite Ge overlayer deposition. As
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Figure 5.13: Multiscale approach to merge strain-dependent and Ge-thickness dependent surface

energies discussed in sec.5.2.1. (a) Sketch of the systems whose stability is compared. A flat Wetting

Layer (WL) is compared with a Perfect Faceting (PF) made up of pure Ge (105) adjacent ripples

laying directly on the Si substrate. (b,c,d) Method used to model the strain and the deposition

dependence of γ(105) on ripples at the same time. (b) strain along x on a (105) facet in a PF.

(c) From this strain, the corresponding value of γ∞ is deduced from the uniaxial dependence of

γ(105). (d) Trends with the numbers of Ge ML’s. Blue triangles are (1 1 10)-Db, red circles

are (105) from slab calculations, the green line is the trend estrapolated from the point P (green

square).
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described in detail in the next section, based on experimental evidence we estimate ΓR as

∼ 370 meV/Å. Figure 5.15 shows ∆E (PF −WL) /(LM) as a function of Ge deposition

in an interval of ΓR of ±10% of this estimated value. The transition deposition nicely

reproduce the experimental evidence as discussed at length in the next section where we

also propose a kinetic path leading to the ripple formation.
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Figure 5.14: Effective (105) surface energies of ripples in a PF as compared with the (1 1 10)-WL

as a function of the ripples base. In this case the base is linked to the Ge deposition as shown in

Figure 5.8 top x-axis.

Figure 5.15: Stability of Perfect Faceting with respect to a flat Wetting Layer as a function

of the Ge deposition. estimated through eqn (5.12). Central curve is for ΓR = 370 meV/Å, the

external ones for a variation of ±10% of this value. In the lower part the PF has lower energy, in

the upper part the WL is stable.
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5.5 Elongation of SK seeds and the ‘actual’ edge energy

density

The previous section compares the energy of the initial and final situation experimentally

observed where we put the unknown value of the edge energy density Γ of the order of

∼ 370 meV/Å2.

However in so doing we are neglecting the first stages of formation of isolated islands,

like the one shown in Fig.5.1-(a). These islands form randomly on the substrate, have a

finite extension and lay atop of a non-vanishing WL, qualities that make them similar to

the typical Stranski-Krastanow islands on other substrates, such as the Si(001).

In this section we compute the stability of these isolated islands as a function of their

parameters (WL thickness underneath and their base size). This detailed computation

allows to extrapolate the unknown edge energy density Γ by comparing the theoretical

outcomes with the experimental observations. This value turns out to be too high in

comparison with previous estimations, however we also rationalize our result.

5.5.1 Model

Even though the SK seeds observed have a finite extension, they are rather elongated.

Further, since a {105} pyramid cannot close on this substrate7, it is not clear how to

close these islands8. We simplify the treatment by considering an extremely-long ripple

of length L and base b laying atop of a N ML(001)-thick WL, by adopting the 2D model

sketched in Fig.5.16.

Our aim is to deduce the conditions (N and b) at which additional material prefers to

attach to an existing ripple to make it elongate rather than creating WL. This condition

is actually mathematically equivalent to compare the energy of the ripple condition and

the same amount of material distributed on the substrate creating an additional layer of

WL.

The corresponding total energy difference between these two configurations is calcu-

lated taking volumetric, surface and edge energy costs into account:

∆ETOT = ∆Evol +∆Esurf +∆Eedge (5.16)

Following the same reasoning as in sec.2.6, we can write the volumetric energy term

per unit length as:

∆Evol

L
=

b2 tanϕ

4
·
(
ρR − ρWL +

γ1110WL (N)− γ1110WL (N + 1)

hWL

)
(5.17)

which contains:

1. the differences in elastic energy densities ρR − ρWL between the ripple and the

biaxially strained WL

7see discussion in sec.4.4.2, page 89
8although some evidences reveal some (001) facets, as discussed in sec.6.3 below
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2. the energy cost for adding one ML on top of the WL instead of covering its Nth

ML surface by the basal area of a ripple, expressed by the difference in γ1110WL , as

described in sec.2.6 at page 67

The surface energy term can be written as

∆Esurf

L
= b ·

(
secϕ · γ105R − γ1110WL (N)

)
(5.18)

where γ105R is the effective surface energy of the {105} ripple facets.

Finally, the edge energy term is given by

∆Eedge

L
= 3Γ (5.19)

where 3Γ is the triple edge energy at the top and two basal ripple facet intersections, that

represent a discontinuity in the surfaces.

In simulating this system, a FEM calculation for each couple of variables (b,N) is

needed. This holds not only to compute the effective surface energy of the {105} facets

with a numerical integration as shown in sec.5.2.1 by taking the distance of the WL into

account, but also for the elastic term. Indeed, it was already shown in sec.2.4.3 at page

48 that, when the islands lay atop of a WL whose heigth is non-negligible in comparison

to theirs, the elastic relaxation is non self-similar as a function of the islands’ size. Since

we have to look for small bases (∼ 10nm), we need to model each real situation inside our

FEM code.

The elastic energy density in eqn.(5.17) are multiplied by the volume (in two dimen-

sions, the area) of the ripple alone, since it is the energy of this system we are comparing to

the WL. However, in assessing these energies, we need to take into account the compressive

lobes the ripple is creating in the WL underneath as well.

One way to correctly estimate the term ρR − ρWL is by comparing the total elastic

energy W of the two cells sketched in Fig.5.16-(b). In this case we substract from the

total elastic energy of the cell with the WL and ripple, the energy of a cell without the

island, but with the same amount of WL. This difference accounts for the role played

by the presence of the island. If we divide this quantity by the volume of the island

itself, we get an energy density per unit volume of the ripple account for just its presence.

Mathematically we can write it as:

ρR =
WR+WL −WWL

VR
=

(VR + VWL) · ρGe − VWL · ρWL

VR

= ρGe +
VWL

VR
· (ρGe − ρWL) (5.20)

where ρGe is the elastic energy density per unit of stressor (Ge) in the cell with the island.

In the calculation we have fixed the cell size to 100 nm and the WL elastic energy

is computed to be equal to9 1.624 meV/Å3. In Fig.5.16-(c) the values of the difference

9Reminder: we are using ab initio elastic constants and non linear corrections here, so its value is

different from the 1.4 meV/Å3 for experimental elastic constants
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ρR − ρWL is reported for the case of M=100 nm and for different values of N.

The other term entering the volume contribution is the difference in WL surface energy

divided by the thickness of 1 ML (001). This quantity is independent of the ripple base b

and the ab initio results reported in the previous sections give the results:

γ1110WL (N)− γ1110WL (N + 1)

hWL
≃





4.889 meV/Å
3

(N = 1)

2.310 meV/Å
3

(N = 2)

1.412 meV/Å
3

(N = 3)

0.516 meV/Å
3

(N = 4)

(5.21)

Comparing these values with the ones of ∆ρ in Fig.5.16-(c), we see that the former are

∼1 order of magnitude larger than the latter. This shows that the term in b2 (giving the

curvature of the curves) is actually dominated by surface energy terms. Consequently, the

coefficient of b2 is positive, leading to what we have called an Inverse Stranski-Krastanow

in sec.2.6.

Also the pure surface energy term depend on the ripple base b and N via the effective

105 surface energy, where the distance from Si is the sum of the height of the point

considered and the WL thickness underneath. The trend of the effective surface energy

multiplied by the constant secϕ ≃ 1.0097 is reported in Fig.5.16-(d), from which it is

evident that the term ∆Esurf is negative, thus favouring the elongation and nucleation of

the ripple.

5.5.2 Total energy and extrapolation of edge energy density

Once all the contributions have been estimated as in the previous subsection, we can put

them together to predict the stability of the ripple.

The only missing term is the edge energy 3 Γ, whose an ab initio estimation is neither

present, nor feasible. Typically this term is neglected in SK islands on other substrates like

the (001) since the islands are growing self-similarly and the edge contribution to the total

energy scales as ∼ V 1/3, becoming negligibly small with respect to the volume and surface

contributions for the typical volumes observed (∼ 106 nm3). However, in the ripples the

edges extent is as long as the ripple itself, being thus far from negligible. But fortunately

in this system its contribution is a constant, therefore we can evaluate the difference

∆ETOT

L
− 3Γ =

b2 tanϕ

4
·
[
ρR − ρWL +

γ1110WL (N)− γ1110WL (N + 1)

hWL

]
+

+ b ·
[
secϕ · γ105R − γ1110WL (N)

]
(5.22)

for different values of N and b as reported in Fig.5.17 (left y axis values).

It is evident that in this system the trend of the energy is the same as the Inverse SK

regime discussed in sec.2.6 at page 67.

As evident, the points at bases of some nm are at negative values of energy. This

means that not only the the volumetric term but also the surface one pushes to create a

ripple instead of a WL, contrary to what happens for SK islands like domes on (001). This
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Figure 5.16: (a) Geometry of the model of the isolated SK seeds on Si(1 1 10) used in the

calculation. We compare the energy of the ripple atop a N-ML thick WL (right) with the one of a

(N+1)-ML thick WL (left). (b) Sketch of the method used to compute the elastic energy density

per unit volume of the island ρR leading to eqn.(5.20). (c) Difference ∆ρ for different Ns for a

fixed substrate of M=100 nm. (d) Surface energy contribution of the (105) surface secϕ ·γ(105)eff
(left y axis and coloured lines) compared to the values of γ1110(N) for various N (black horizontal

lines). As evident, the (105) surface energy is much lower than the energy of the covered WL, so

that ∆ESurf < 0, that is a driving force for ripple nucleation and elongation.

Figure 5.17: Energy difference ∆ETOT /L − 3Γ = ∆Evol/L + ∆Esurf/L calculated using

Eqs.(5.17) and (5.18) between an infinitely long {105} facetted ripple on a N ML thick WL and

the N+1 ML thick 2D WL with the same volume plotted as a function of ripple base b at different

coverages N (left axis). The horizontal line represents the value of Eedge/L = 3Γ = 370 meV/Å

obtained by comparison with experiments (vertical shaded bar). The right hand axis shows the

total energy ∆ETOT /L of the system using this value.
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happens because the (1 1 10) surface energy is so high that the system prefers to cover it

with a much less expensive surface as the (105).

Putting apart the problem that for a tiny island this method of dividing the energy

into volumetric, surface and edge contribution is not valid anymore since there are just a

few atoms with “bulk” properties, we can deduce that for small bases the sole opposing

factor to the creation of the ripple lies in the edge term 3 Γ. Hence, we can take the

experimental input of the observation of the first ripples and deduce backward from this

an estimation of the value of the edge term needed to reproduce this observation.

The extrapolation of the values of b and N from experiments is not an easy task. Both

because there are just a few measurements made for carefully-annealed samples we are

aiming at simulating10 and because the experimentally determined coverage D is not easily

linked to the WL thickness under the ripples. Furthermore, in experiments a number of

nearby ripples are observed, in contrast to the simplified model we are using here.

A careful analysis estimates the material stored in the ripples as ∼ 1 ML and the base

b of the first finite-sized ripples is ∼ 10 nm observed at a deposition equal to ∼ 3.6 ML.

If we make the assumption that the ripples, when observed, are of finite extension

because at equilibrium with the WL and the adatoms have just a small gain in energy in

forming an elongated ripple, then we can put

∆ETOT = 0 (Ripples in equilibrium with the WL)

Hence, the value of the horizontal cross of the base band represent the value of −3Γ.

Further, if we suppose that the ripples lie on the minima of the curves since all of them have

roughly the same base, then we deduce that the edge energy amounts to approximately:

3Γ ∼ 370 meV/Å (5.23)

The total energy value and the stability region of the ripple and WL in the case of

3Γ = 370 meV/Å is reported in Fig.5.17.

10see discussion at sec.5.2
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5.5.3 Rationalization of the edge energy found

The edge energy just deduced is more than one order of magnitude higher than the one

estimated by the use of Tersoff potential in literature studies on similar objects [42], see

Fig.5.18-(a), that predicts Γ ∼ 10 meV/Å. However in that study particular care has

been used to properly rebond the atoms on the edges in order to minimize the number of

dangling bonds. In this way the built edges are extremely sharp and ordered.

On the contrary, the top edges of the ripples we are considering are extremely dis-

ordered and rough, with several adatoms attached to them, Fig.5.18-(b). The junction

between the two {105} facets resembles the tile on a roof, i.e. it has a certain, non-

negligible extension.

This observation helps to explain the high value of the edge energy we find. Indeed, we

model the ripple as sketched in Fig.5.18-(c,right sketch): pure (105)-RS facets with ideal,

infinitely-sharp edges at the top. Instead, the actual ripple structure includes perfect

(105)-RS facets at the bottom of the ripple itself, an edge at the top, but in between the

two regions is an extended (∼ 3 nm wide) surface with disordered structure, whose surface

energy is unknown (Fig.5.18-(c,left sketch)). In our modeling, therefore, we are attributing

to a linear energy (the edge one) also a contribution from this disordered surface.

From the STM images, it appears that just the top edge is rough, whereas the two

bottom ones are rather sharp, suggesting that the value found can be entirely attributed

to the top edge. This anomaly can be explained as a consequence of the ripple formation,

indeed experimental results [143] show that the {105} facets form from the bottom and

join at the top, creating a rough junction. The very same mechanism and a very similar

edge structure are observed for the {105} pyramids on Si(001) [5], Fig.5.18-(d).

This observation suggests that the edge energy found here may have a valency in other

Ge/Si islands, not only limited to the ripple case. In this way, we exploited the peculiari-

ties of the ripples (extended edges) to deduce this so-far unknown value and can apply it

to other systems.

From these observations we can also give an estimation of the unknown energy of

the disordered surface adjacent to the edge, as follows. Taking the model depicted in

Fig.5.18-(c) as a reference, we have:

• B = base of the ripple

• b = base of the triangle at the top of the ripple that has a higher surface energy

• γ1 = standard surface energy of the well-rebonded reconstruction (105)-RS

• γ2 = higher surface energy in the upper triangle γ2 > γ1

• ϕ ≃ 7.97◦ = inclination of ripples

• Γideal = the ‘standard’ edge energy (if the reconstruction is good enough, well done)

∼ 10 meV/Å

• Γeff = the effective edge energy to be attributed to the edge if the surface energy is

supposed to be γ1 on the whole surface
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In the two cases we have the following energy:

E1 = (B − b) · sec θ · γ1 + b · sec θ · γ2 + Γideal (5.24)

E2 = B · sec θ · γ1 + Γeff (5.25)

By imposing E1 = E2, we get:

Γeff = Γideal + b · secϕ · (γ2 − γ1) (5.26)

We can give an estimation of the extra energy of the disordered surface with repsect

to the ordered one as:

γ2 − γ1 =
Γeff − Γideal

b · secϕ ≃ (370− 10)meV/Å

30Å · 1.009
≃ 12 meV/Å

2
(5.27)

where the base of the disordered region b is estimated from the images to be ∼ 3 nm.

This difference in γ is not an unreasonable number considering that the difference in

energy between the RS reconstruction and the (very ordered) PD is ∼ 8 meV/Å2 at a

strain -4% [88].

5.5.4 Alloy and a surface-driven nucleation regime

The results reported above refer to the case where both the WL and the ripples are made

of pure Ge.

As already stated, this is a reasonable assumption in this shallow islands grown at low

temperature, as directly measured in literature results [158, 159]. However here we check

what happens if a small amount of intermixing is introduced.

In handling intermixed systems the method used so far is not strictly appliable any-

more. Indeed in an intermixed system the Si and Ge atoms are expected to mix together

even at the surface, apart from the very top layer where a pure Ge “floating layer” is

observed and predicted11. Since performing ab initio simulations for every level of inter-

mixing is an extremely demanding task, here we adopt an approximate approach.

Exploiting the existence of the floating layer, we make the hypothesis that the surface

energies are the same as the one obtained from the pure Ge case, whereas the only term in-

fluenced by the concentration is the difference ρR−ρWL where both the WL and the ripple

are assumed to have an equal content of Ge. Reasonably, this approach is approximately

valid for rather high Ge content, as is expected to be our case.

The results for the Ge content equal to 80% and 60% are reported in Fig.5.19.

As evident, the values change slightly but the trends remains the same as well as the

position of the minimum pf the curve N=2.6 ML. The trend is preserved because the only

parameters that change in this treatment is the ∆ρ. This difference for the alloy is smaller

than the pure Ge case. Since, as stated before, the volumetric term (the coefficient of

b2) is dominated by ∆γ1110WL rather than the ∆ρ, where the latter is roughly one order of

magnitude smaller than the former. Thus the variation due to the alloy is minimal.

11see Chapter 1
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Figure 5.18: Rationalization of the edge energy value. (a) Structure simulated in Ref.[42] there

analyzed with Tersoff potential, where the energy of the very ordered edge is found to be ∼ 10

meV/Å. (b) STM image of our ripples, showing a disordered structure of the top edge, very different

from the one simulated in (a). (c) Models to explain the high value of the edge energy we find,

since we include in our idealized model of situation 2, the surface contribution as skecthed in the

situation 1. (d) Models and STM image of the formation of a {105} pyramid on Si(001), taken

from Ref.[5]. Here it is shown that the pyramids (as our ripples) are formed from the bottom and

the facets join at the top. The disordered structure of the edges on the pyramid resembles the one

found in the ripples, suggesting that the edge energy we find may be valid even in standard SK

islands.

Figure 5.19: SK seeds: Alloys. Ge 80% (a) and 60% (b). The effect of alloying in our treatment

is just to lift the curves slightly but does not modify their shape, nor the estimation of 3Γ.



130
CHAPTER 5. GE/SI(1 1 10) EARLY STAGES: SURFACE-DRIVEN

TRANSITION FROM SK SEEDS TO FACETING

For this reason this transition could be called a “surface-driven nucleation regime”, as

the title of this chapter suggests.

Our estimation of the edge term 3Γ is practically unaltered even in the case of an alloy.

5.6 Dynamical path to perfect faceting: the Wave Model

So far we have analyzed the energetics of a single ripple atop of a N-ML thick WL, we

still have to explain (or at least model) a path leading to the formation of the observed

faceting.

Thanks to its stability upon annealing, we are allowed to make the hypothesis that

the faceting is at least a local minimum in the internal energy of the system. Thus, we

describe the kinetic path leading to the faceting as a minimization of energy.

As evident from RHEED data of Fig.5.2, the transition from unfaceted to faceted sub-

strate happens abruptly. This urges to look for a path involving just local rearrangement

of material, since longer diffusion length would require longer relaxation times. This local

rearrangement should, however, allow the observed uniformity on a long scale.

From our DFT results, we already know that the (105) surface energy is much smaller

than the (1 1 10) one. This suggests that the driving force for this transition must be

the covering of the (1 1 10) surface with some (105) facets. By taking Fig.5.20-(a) as a

reference, we can imagine a wave-like lateral ripple multiplication process in which from

each isolated ripple studied in the previous sections, secondary satellite ripples are created

by downward excavation of the wetting layer at the ripple edges. The resulting lateral

motion of material rapidly transforms the 2D film to a completely {105} facetted WL.

This calculation is performed by taking two cells 100 nm wide and comparing the

volumetric, surface and edge energies in the case of the first generation satellites of different

sizes with respect to the case of no satellite, where the volume of Ge is the same in both

cells, since the satellites are made with the material extracted from the WL.

The difference in energy between the condition with satellites (middle condition in

panel a) and the one without satellites (top condition in panel a) is shown in Fig.5.20-(b)

as a function of the measurable satellite base b2 for the case of the base of the precursor

b1 = 10 nm for the edge energy 3Γ = 370 meV/Å. Here the edge energy is the sole factor

opposing the formation of satellites, since a triangle shaped structure also relaxes strain

better than a flat WL. The edge energy is opposing the satellite formation because the

satellites creates additional edges wrt to case of no satellites, but since their number is

independent on the base b2, it causes just a rigid upward shift of the curves.

Here the curve corresponding to the value of N for the isolated ripple formation (N=2.6

ML) crosses the value ∆E = 0 in its minimum. This means that the two conditions of

elongation of the isolated ripple and the formation of the wave are almost concomitant,

a fact that is consistent with the experimental observations, since no infinitely-elongated

isolated ripple is observed before the onset of the faceting.

The reason why these curves have a minimum, i.e. they bend upwards for a certain b2
on, lays in the surface term alone. Indeed the excavation of the WL responsible for the

satellites growth makes the facets of the ripples nearer and nearer to the Si substrate, thus
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increasing their surface energy. This has also the effect that the values of b2 corresponding

to the minima of the curves is independent on the value of the precursor’s base b (not

shown).

It is noteworthy to see that the residual WL thickness under the ripple12 when the

system reaches the condition correspondent to the minimum is less than 1 ML, as experi-

ments reveal. Further, the base b2 of the minimum corresponds to the measured one even

for the samples at higher deposition. For instance, for a transformed material of N =

4.5 ML we see that the system smoothly evolves to satellite ripples with preferred base

b2 ∼ 15 nm leaving a residual WL thickness of 0.75 ML underneath.

The fact that the preferred base b2 is independent of the precursor’s base guarantees

a very high degree of uniformity in the satellites, being insensitive to oscillations in the

size of the precursor due, e.g., to thermal fluctuations. This also allows to have satellites

of the same base b2 for the second and any further generation of satellites themselves, till

the entire substrate is faceted (Fig.5.20-(a, bottom)).

Figure 5.20: (a) Wave propagation mechanism starting from an isolated ripple (top) on a WL,

creating first two asymmetric satellites (middle) with satellite base b2, finally leading to full faceting

(bottom). (b) Energy difference between the configurations of the single ripple b1 = 10 nm (as

experimentally observed) and the ripple with two satellite ripples as a function of the final satellite

base b2 for the different values of N and 3Γ = 370 meV/Å.

12deducible from the values of the upper scale in Fig.5.20-(b)
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5.7 Summary and conclusions

Summarizing, in this chapter we have:

• deduced the uniaxial strain dependence of the (105)-RS surface in both Tersoff po-

tential and DFT-LDA approach

• depicted a method to deduce the value of the surface energy from the strain field

computed in FEM

• proven that the interaction of the dimer tilting pattern with the double steps play a

non-negligible role in the surface energy, raising the value one would obtain from an

analysis involving the strain field alone, showing thus that an ab initio treatment is

needed (from the results of 1 1 10 surface)

• deduced (and proven) the smooth decrease of the surface energy with increasing

thickness of the Ge epilayer

• depicted a method to merge the trend with strain and epilayer thickness together in

a multiscale method

• described a method to compute the elastic energy density properly in a non-self-

similar growth model (ripple + WL)

• obtained the energy of “actual” edges Γ that is ∼ 1 order of magnitude higher than

expected from simple calculations because of the disordered geometry of the edge

and discussed about its extension to other systems than the hereby analyzed ripples

• obtained and described a nucleation regime governed mostly by the surface energy

term rather than the volumetric ones

• depicted and quantified a model for the formation of faceting starting from an iso-

lated ripple involving just local rearrangement of material (the “wave model”) lead-

ing to results in accordance with experiments

In conclusion, our experimental and theoretical results suggests that the facetted film

corresponds to a new type of wetting layer rather than a SK configuration. Therefore, the

usual monotone evolution of SK seeds to 3D islands during the initial deposition stages is

strongly altered on the vicinal (1 1 10) surface. Such an anomaly should be present also in

other systems whenever peculiar shallow facets displaying geometric degeneracy and low

surface energy densities compared to the substrate are present.

Eventually, at higher coverages and temperatures, a transition to islands with steeper

side facets (analogous to the domes on 001 substrate) will occur, as the energetics for

larger islands is dominated by elastic effects.

This transition is described in the next chapter.
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Ge/Si(1 1 10): Elastic-driven

transition from faceting to dome

“Evolution is the key”

adapted from

Herbert Spencer & Charles Darwin

In this chapter we study the observed phase transition on Si(1 1 10) from the faceted

structure described in the previous chapter to steeper islands, analogous to the transition

from pyramids to domes. We study that for differently diluted SiGe alloy Si1−xGex.

We describe the experimental observations and the stability phase diagram found.

After presenting a global transition model and its results, we highlight its shortcomings.

A more detailed model involving a transition involving an intermediate-step island that

we call “Tadpole” or “Fish” is described after a careful experimental observation of the

transition.

All the results reported here are obtained with our collaboration with experimental

groups in Linz, Austria.

6.1 Further deposition: annealing-driven transition to domes

As explained in chapter 1, upon increasing deposition of Ge the islands undergo a shape

deformation from shallow slopes (the case of pyramids on 001 substrates) to steeper ones

(domes on 001) where the larger amount of extra-surface allows a better strain relaxation.

Since the ripples observed on Si(1 1 10) are the degenerate version of the pyramids,

the same evolution should be expected here.

However the experimental conditions are crucial in determining the actual possibility

of transition. An example of this is reported in Ref.[160], where up to 1250 ML of a 20%

Ge alloy are deposited onto the Si(1 1 10) at 650◦C at a rate of 0.012 nm/sec ≃ 5.14

ML/min and the faceted structure is preserved with a thick WL underneath if annealing

is not performed. Even though an explanation in terms of the stability of the concave
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intersection can be called out due to the strain-dependent (105) surface energy [160], here

the role of the kinetic limitations during growth is the predominant one [160].

Urged by this reasoning, new measurements are performed after annealing the samples.

In particular, Si (1 1 10) substrates were cut into 9×9 mm2 pieces, and prepared for solid

source molecular beam epitaxy (MBE) by device-grade chemical pre-cleaning with a final

HF treatment. The samples were then immediately introduced into either an MBE system

equipped with e-beam evaporators for Si and Ge, or into a multi-chamber Si/Ge STM

system, the latter being equipped with a Si e-beam evaporator, a Ge effusion cell and an

STM.

A 40 nm thick Si buffer was then grown at 450-520◦C, followed by mild annealing at

600◦C for 5 minutes. This procedure results in flat surfaces free of step bunches or surface

defects. Si1−xGex layers with compositions of x = 0.2, 0.25, 0.3 were then deposited

with growth rates of 0.1 – 0.2 nm/min (0.71–1.43 ML/min) at a substrate temperature

of 650◦C. The samples then underwent to an additional in-situ annealing step at the

growth temperature for 15 min before being transferred to a scanning probe microscope.

This measure ensures close-to-equilibrium conditions, that is the only one the energetic

approach we are going to develop can predict.

The surface obtained after annealing for low Ge concentration (x= 25% and 30% Ge)

are shown in Fig.6.1-(a-f). In these images the surface seems to transit from a faceted

one to a perfect array of domes. This confirms that when the kinetic limitations can

be overcome by thermal energy supply, the thermodynamically stable islands are the

steep domes. This means that the ripples are as stable as the pyramids on 001, but their

geometry is an hindrance to the diffusion of adatoms and evolution of limited-sized islands

as domes from such elonged structures.

A systematic analysis is carried out on this transition with the aim to draw the phase

diagram as a function of the Ge concentration. For completeness, even higher Ge con-

centration (50% and 100% Ge) are analyzed in Fig.6.1-(g-m). The resulting diagram

is reported in Fig.6.2, which is extracted from the experiments as a function of the Ge

concentration x.

As evident, the pure ripple and island phase regions are separated by a coexistence

area that enlarges for smaller Ge content. This effect can be due to kinetic effects as well,

since the diffusion on a Si-rich surface is slower because of the more rigid Ge-Si bond with

respect to the Si-Si one1.

1see chapter 1
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Figure 6.1: Onset of Domes: annealed samples. xGe = 0.25 and 0.30: AFM images 5x5 µm2,

laplacian view and surface orientation map. xGe = 0.50 and 1.00: STM images 1x1 µm2, top

view, laplacian view and 3D rendering. (Courtesy of Dr. Gang Chen and prof. Springholz,

Joannes Kepler University, Linz)

Figure 6.2: Onset of Domes: Experimentally-determined phase diagram.
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6.2 Tiling of domes simplified: the χ model

In an effort to support the experimental phase diagram in Fig.6.2 with total energy calcu-

lations, we can attempt to create a model mimicking this system as a transition between

a complete {105} faceting of the WL to an ordered nucleation of domes.

6.2.1 Idea and model

In order to predict the transition coverage we take into consideration a substrate of width

M and length L and let us suppose the total deposition to be D. Let us make the

additional hypotesis that all the deposited material is either in the ripples or in the dome

and let us consider the amount of material stored in the WL in the dome configuration to

be negligible.

Our model simplifies the geometry as depicted in Fig.6.3-(a), and consists in:

Situation 1: a perfect faceting situation of identical nr ripples of base b and length L

Situation 2: a covering of the substrate of identical nd domes nucleated equidistantly,

each of which has a volume Vd, exposed surface Sd and covered surface Bd.

Ripples geometry

If we make the assumption that all the ripples have the same base, we have

b =
M

nr
(6.1)

By indicating as Vr, Sr, Br and L the volume, 105 surface exposed and the area covered

and the top edge length by a SINGLE ripple respectively, we can express them as follows:

Vr =
b2

4
· tanϕ · L =

b

4
· tanϕ · LM

nr
(6.2)

Sr = b · secϕ · L =
LM

nr
· secϕ (6.3)

Br = b · L =
LM

nr
(6.4)

L = L (6.5)

The total volume of the ripples in this area must reproduce all the deposited material.

LM ·D = nr · Vr =⇒ b =
4

tanϕ
·D (6.6)

So the geometrical quantities can be expressed as:

Vr =
LM

nr
·D (6.7)

Sr = b · secϕ · L =
LM

nr
· secϕ (6.8)

Br = b · L =
LM

nr
(6.9)

As already discussed in sec.5.4 at page 119, the total amount of exposed surface Sr · nr is

independent of the coverage if a defect-free faceting is created.
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Ripple energy

The energy per ripple of situation 1, therefore, reads as:

Er

nr
= Vrρr + Srγ105 + ΓL (6.10)

=
LM

nr
·D · ρr +

LM

nr
· secϕ · γ105 + Γ · L (6.11)

From which we get the energy per unit surface

Er

LM
= D · ρr + secϕ · γ105 +

Γ

b
(6.12)

= D · ρr + secϕ · γ105 +
tanϕ

4D
· Γ (6.13)

Where in the latter equation the base of the ripples has been expressed as:

hr =
b

2
· tan θ = 2D → b =

4D

tan θ
(6.14)

that holds in the case of NO WL under the ripples themselves in which case the ripples

height hr is exactly two times the deposition.

Dome geometry

For the situation of the domes, it is convenient to define a “filling factor” χd defined as

the ratio between the area of the exposed WL in the cell (A in a single repeated cell) to

the area of the substrate covered by the domes (Bd in a single repeated cell):

χd ≡ Bfree−WL−Domes

Bcovered−WL−Domes
=

LM − nd ·Bd

nd ·Bd
=

A

Bd
=

LM

nd ·Bd
− 1 (6.15)

This quantity χd can be directly determined from the experiments (AFM measurements)

and represent a measure of the island vicinity as:

χ → 0 ⇐⇒ neighbouring islands touching each other

χ → ∞ ⇐⇒ almost isolated islands.

Let us introduce the geometrical factors that describe the geometry of a single dome:

Vd ≡ Vd (6.16)

Sd ≡ βexp−s−d · V 2/3
d (6.17)

Bd ≡ βcov−s−d · V 2/3
d (6.18)

λd ≡ βedge−exp−dome · V 1/3
d (6.19)

where the λd is the length of the total exposed edges of the dome, making the hypothesis

that the edges at the base contribute negligibly to the energy, as was the case of the pure

Ge ripples discussed in the previous chapter.

The total volume of the domes must reproduce the total deposition:

LM ·D = nd · Vd =⇒ V
1/3
d = βcov−s−d · (1 + χd) ·D (6.20)
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where eqn.(6.15) has been used.

The number of tiles nd (a priori unknown) can be expressed in terms of the dome base

Bd by imposing that the total area is the substrate one:

nd · (A+Bd) = LM (6.21)

=⇒
nd =

LM

A+Bd
=

LM

Bd
· 1

1 + χd
=

LM

βcov · V 2/3
d

· 1

1 + χd
(6.22)

Dome energy

From eqn.(6.15) we get the following:

BfreeWLdomes

nd
= χd ·Bd (6.23)

So we get the total energy per unit of tile is:

Ed

nd
= Vd · ρd + Sdγd +

BfreeWLdomes

nd
· γWL + λd · Γdome

= Vd · ρd +Bd ·
(
Sd

Bd
· γd +

BfreeWLdomes

nd ·Bd
· γWL

)
+ βedge,exp,d · V 1/3

d · Γd

= Vd · ρd +Bd ·
(
Sd

Bd
· γd + χd · γWL

)
+ βedge,exp,d · V 1/3

d · Γd

= Vd · ρd + βcov−s−d · V 2/3
d ·

(
Sd

Bd
· γd + χd · γWL

)
+ βedge,exp,d · V 1/3

d · Γd

≡ Vd · ρd + βcov−s−d · V 2/3
d · γ̃d + βedge,exp,d · V 1/3

d · Γd

By using also eqns.(6.20) we get the energy per unit surface

Ed

LM
= D · ρd + βcov−s−d ·

D

V
1/3
d

· γ̃d +
βedge,exp,d

βcov
· 1

V
1/3
d

· 1

1 + χd
· Γd

= D · ρd + βcov−s−d ·
D

βcov−s−d · (1 + χd) ·D
· γ̃d +

βedge,exp,d
β2
cov−s−d · (1 + χd)2

· Γd

D

= D · ρd +
1

1 + χd
· γ̃d +

βedge,exp,d
β2
cov−s−d · (1 + χd)2

· Γd

D

= D · ρd +
1

1 + χd
·
(
Sd

Bd
· γd + χd · γWL

)
+

βedge,exp,d
β2
cov−s−d · (1 + χd)2

· Γd

D

Energy balance

The balance of energy between situation 1 and 2 reads as:

∆E(d− r) = D · (ρd − ρr) (6.24)

+
Sd/Bd

1 + χd
· γd − secϕ · γ105 +

χd

1 + χd
· γWL (6.25)

+
βedge,exp,d

β2
cov−s−d · (1 + χd)2

· Γd

D
− tanϕ

4D
· Γtop,ripple (6.26)
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By imposing this equation to be zero, the critical depositionDcr at which the transition

occurs can be found.

Figure 6.3: Onset of Domes: χ Model. (a) Sketch of the situations we are comparing: a {105}
Perfect Faceting of nr ripples of base b and an ordered onset of nd domes. In the ratio between the

black area to the aea covered by a single dome is χd. In (b) we report the elastic energy density

of the quantity entering the calculations: WL, Ripples of (a) and domes at different χ.
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6.2.2 Results and comparison with experiments

The elastic energy density of the domes ρd must take into account the elastic repulsion be-

tween neighbouring islands. This is performed by using the periodic boundary conditions

at the cell borders.

The values of χd are determined by AFM images and are determined as: χd ∼ 0.5

(xGe = 20, 25 and 30%) ; χd ∼ 0.8 (xGe=50%) ; χd ∼ 8 (xGe=100%). The trend of the

elastic energy density for the domes with different χd is reported in Fig.6.3-(b), along with

the ripple in the PF situation (NO WL) and the WL itself.

The used value of the 105 surface energy is the one obtained by the perfect faceting

situation where the dependence on the height is neglected since the ripples are large ones:

γr ≃ 58.41 meV/Å2.

The surface energy of the WL is put equal to the one of the 100% Ge (1 1 10)-Db

surface obtained in the previous chapter. Different values of its thickness (and its values)

are tested from N=1 to N=4 ML.

Following the result of the previous chapter, the energy Γ of the exposed edges alone

is put equal to 370 meV/Å for both the ripples and the domes.

Fig.6.4 reports the values of the transition coverage obtained by using these parameters

for different values of the WL surface energy (rows) and the elastic energy density for the

initial ripple situation (columns). Left column refers to the case of NO WL under the

ripples (i.e. Perfect Faceting) situation, the right column consider the limiting case of a

thick WL under the ripples leading to an elastic energy density equal to the one of a WL.

Panels (a) and (b) refer to the case of 1 ML-thick (1 1 10) WL, (c,d) the case of 4 MLs-

thick (1 1 10), (e,f) to the case in which the (1 1 10) is never exposed, but rather some

mini (105) ripples are formed (see experimental evidences discussed in sec.6.3 below).

As evident we have the following trends:

• the larger the value of χd, the more distant the domes, the lower their elastic repul-

sion, the lower the transition thickness (different lines inside each panel)

• the larger the elastic energy density of the initial ripple situation, the lower the

transition deposition (left or right column)

• the lower the surface energy of the WL exposed, the lower the transition deposition

(different rows)

Although the situations depicted in (e) and (f) seem in qualitative accordance with

experimental findings, this simple model has some logical shortcomings.

First of all, here we make the implicit hypothesis that as the deposition proceeds,

the periodicity2 is increasing in such a way that all ripples have the same base (Perfect

Faceting situation). The base of the ripples in this model is linked to the deposition D as:

D =
b

4
· tanϕ =⇒ bPF =

4D

tanϕ
(6.27)

2i.e. the ripples base
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Figure 6.4: χ model: Results. Left column shows the case of the elastic energy density of the

ripple equal to the PF situation, right column shows the case where the ripples lay atop a thick

WL. From top row to bottom the surface energy of the exposed WL is set equal to: γ(1ML, 1110),

γ(2ML, 1110), γ(105−PF ). Γedge is set equal to 370 meV/Å for both the ripples and the domes.
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A comparison between the measured base of the ripples and bPF is reported in Fig.6.5

along with the measured base (diameter) of the dome. From this images we can see that:

1. the observed maximum width of the ripple is much larger than bPF

2. the measured minimum base of the domes are compatible with the measured maxi-

mum base of the ripples

So our hypothesis has no experimental foundations.

Secondly, the domes are randomly distributed on the substrate, thus the value of χd

is just an average measure of the elastic repulsion. This holds for the results coming from

the use of this parameter as well.

Lastly we have to consider that on any other substrate the transition in SK deposition

from an island to another with steeper facets occurs via the enlargement of the first one.

This substrate cannot be an exception. This suggests that the evolution of the domes

might occur from an isolated ripple, without the requirement of a long scale coherent

growth of the ripples themselves.

The evolution path of the domes from an isolated ripple has been carefully analyzed,

leading to the observations discussed in the next session.
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Figure 6.5: Onset of Domes: experimental bases vs perfect aceting hypotesis. Black lines are

the expected bases of the ripples (empty triangles) or domes (empty squares) if the PF hypotesis

holds obtained from the deposition using eqn.(6.27). Red and blue points represent the measured

bases of the domes and of the maximum ripples width. This shows that the hypotesis that the

underlying hypotesis of the χ model, i.e. that the increasing period with coverage is due to a

growth of ALL ripples, is not supported by experiments. Therefore a single ripple model must be

developed.
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6.3 Detailed analysis of the phase transition

If on one hand the diluted alloys allow to have larger, easier-to-observe, islands, their

evolution path is complicated by intermixing processes.

The STM images in Fig.6.6 show the surface morphology for different coverages of

pure Ge. At Ge = 4.5 ML (panel a), a ripple-dominated surface morphology has formed,

whereas at Ge = 5.5 ML (panel b), the ripple-to-island phase transition has set in with

different geometries.

Figure 6.6: Differential-view STM images of the surface morphology in a 200×200 nm2 area with

different Ge coverage. (a) Ripple-dominated surface after the growth of 4.5 ML Ge; (b) Phase

transition region with a complete set of evolutional stages appearing at a coverage of 5.5 ML.

In Figure 6.7 all stages of the coherent ripple-to-island evolution in the case of 100%

Ge are covered by high-resolution STM images.

Starting from the perfect faceting situation described in the previous chapter, the

additional material accumulates in the concave regions thus increasing the base of some

ripples for a certain extension of their length on the sample and creating additional {105}
facets. Reasonably this is the only way the islands can grow on a seamless faceted sample

involving local diffusion of the additional material. No WL thickening under the ripples

is observed that would imply a movement of material overall on the sample. For the same

reason even an enlargement of the period (i.e. base) of all ripples simultaneously3 is ruled

out, since it would involve a coherent movement of ripples that can be baptised as “hut

flow”. The fact that a thick WL is observed for non-annealed, low Ge content samples of

Ref.[160] can be attributed to Ge segregation at the surface and the phase transition of

the sole topmost surface Ge-rich region.

The effect of this growth of some ripples is the formation of the ripple bifurcation shown

3as postulated in the χ model of the previous section
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in Figure 6.7-(a) where three prism-shaped ripples meet. This point allows a partial strain

relieve of the compressed ripples. Hence, ripple disruption by the formation of low-energy

(001) end facets (white circle) becomes energetically favorable. Also, a step is found on

the sidewall of the ripple in the center of the image (dark arrow), hinting to the mechanism

for ripple broadening, as already discussed.

The images show that these enlarged ripples assume a shape resembling that of a

“Tadpole” or “Fish” (white arrows #1 - #3 in Fig.6.6-(b)).

Figure 6.7-(b) shows a high resolution STM image of tadpole #1 from Figure 6.6-(b),

which is already about three times wider than the initial ripples. The dark arrows show

that the tail forms via the formation of step bunches on the {105}-bound body.

Therefore, we can think of the Tadpoles as composed of three parts:

• a Head that is (001)-teminated

• a Body composed of the two facets already exposed by the ripples

• a triangular-shaped Tail composed of stepped 105 facets

While the Body presents very sharp and ordered facets originated, presumably, by a single

enlarged ripple, the Tail is made of the facets of the smaller ripples that are enlarging

their base at a different rate, with a base growing from the extremum to the body. The

conjunction between facets of different sizes creates the steps.

The next evolution stage, indicated by arrows #2 and #3 in Figure 6.6-(b), leads to

the transformation of the (001)-terminated head into another set of two adjacent {105}
facets (white arrows in Fig.6.7-(c,d)). In this way, the head of the tadpole develops into

a tilted pyramid, because the miscut does not allow the formation of an upright {105}
pyramid, as would be the case on Si(001).

The so formed {105}-terminated Head is a region that allows better strain relaxation,

i.e. a region of low chemical potential for Ge, thus attracting the Ge atoms wandering

around. What is observed is that when the tadpole base exceeds a certain size, the

Head enlarges at the expense of the Tail that start shortening and shrinking, which is

associated with pronounced step bunching in the tail region. Schematics of the two tadpole

morphologies are depicted in Fig.6.7-(i) and (j), respectively.

When the head size exceeds a certain limit, the same step bunching phenomenon

underlying the pyramid-to-dome transition4 takes place, thus creating the “Dome-headed

Tadpole”, island # 5 in in Fig.6.6-(b). Since the dome has even lower chemical potential

the process of tail and body absorption becomes more favoured with the final result to

assist to a 1-Tadpole-to-1-Dome transition.

Since the enlargement of ripples creating the domes is random on the surface (presum-

ably driven by local surface defects), the final substrate has randomly nucleated domes

sorrounded by smaller ripples, as in Fig.6.7-(e). In this case, the very dense step bunches

at the tadpole perimeter have already evolved into smooth {113} and {15 3 23} facets,

as confirmed by the surface orientation map shown in the inset. The resulting island

structure is shown schematically in Fig.6.7-(k). Figure 6.7-(f) displays a transition stage

4see discussion in chapter 1
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Figure 6.7: Differential-view, high resolution STM images of the complete morphological evolu-

tion of pure Ge samples. (a): (001)-terminated ripples; (b) and (c): tadpoles with long stepped-tails

and (001)- or {105}-bound heads; (d): tadpole with 105-bound head and shrinking, highly stepped

tail; (e): dome; (f): transition barn with densely steppe edges; (g) and (h): barn and its 3D view.

(i)-(l): Corresponding geometrical sketches, identifying the respective facets.



146
CHAPTER 6. GE/SI(1 1 10): ELASTIC-DRIVEN TRANSITION FROM

FACETING TO DOME

between a dome and a barn, in which dense step bunches and small areas of steeper facets

are seen at the perimeter of the dome (white arrows).

It is interesting to note that the shape of Tadpole with the enlarged Head resembles a

triangle very similar to the one reported in Fig.4.8-(c) at page 92. This observation resolves

the controversal results described in sec.4.4.2 [142] regarding the evolution of islands on

these miscutted substrates without considering any unexplicable {113} facets.

It is noteworthy to see that even in the presence of the low-energy domes, the (1 1 10)

surface is never exposed. This suggests that the seamless {105} faceting in this system is

playing the role of the WL on other substrates. In this respect, the Tadpoles are playing

the role covered by the standard {105} pyramids on other substrates.

As on the (001) substrate, the islands change morphology by adding family facets as

they enlarge. Barn-shaped island forms (Fig.6.7-(g)) with a higher aspect ratio of ≃ 0.25.

A 3D rendering and the surface orientation map of the barn are displayed in Fig.6.7-(h),

revealing the steep {101}, {111}, and {20 4 23} facets with inclination angles larger than

30◦. The barn structure is sketched in Fig.6.7-(l).

These results appear in contrast with others recently published [140, 161].

In these papers the authors perform similar experiments but leads to different conclusions.

First of all they observe that larger ripples form by coalescence of several other smaller

ripples, rather than growing from a single one. Moreover, they come to the conclusion

that ripple agglomeration, and the observation of dislocated superdome clusters with pref-

erential orientation at higher coverage, might be caused by the reduced symmetry of the

elastic strain field on vicinal substrates. Our results, on the contrary, never found any in-

dications for ripple agglomeration or dome coalescence with a preferred orientation under

clean experimental conditions. Any seeming ripple or dome clustering phenomena could be

identified as being due to either multiple STM-tip artefacts or substrate contaminations.

Indeed, recent reports in the literature confirm the absence of ripple clustering [162].

Also, all structures in Fig.6.6-(b) are fully coherent, again in contrast to Ref.[140],

where for at 4 ML already dislocated superdomes were reported. Fig.6.7, instead, clearly

demonstrates a fully coherent evolution route that neither involves ripple aggregation

[140] nor dome bunching [161]. As an example, Figs. 6.8-(a) and (b) show differential-

view AFM images of samples with 20 and 60 ML of Si0.75Ge0.25. At 20 ML, the surface is

dominated by (001)-headed tadpoles with a length of 600±200 nm. At 60 ML the surface

is exclusively covered with isolated domes. At intermediate coverage, a coexistence of

tadpoles and domes is observed with a similar morphology as in Fig.6.6-(b). Figure 6.8-

(c) and (d) show STM images of the surface morphology for 5.0 and 6.7 ML of pure

Ge. The surface of the former sample is dominated by ripples, whereas on the latter the

phase transition to isolated domes is fully established. No coarsening of the domes into

dislocated superdomes is observed at this coverage. Figure 6.8-(e) and (f) show 10×10

µm2 and 2×2 µm2 large AFM images at 7.5 ML of pure Ge, i.e. at the same coverage for

which in Ref.[161] the dominance of dislocated superdomes was reported. In contrast, the

morphology in Fig.6.8-(e) is dominated by coherent domes with diameters of 60±10 nm.

Less than 3% of the > 400 islands in Fig.6.8-(e) are dislocated superdomes. We found an

even lower percentage of coalescing domes. These are, however, randomly oriented with
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no indications for the reported [161] preferential clustering orientation with respect to the

miscut direction.

A zoom-in of a superdome is displayed in Fig.6.8-(f), which exhibits a clear dislocation

line perpendicular to the miscut direction (dark arrow). In fact, we observed this char-

acteristic dislocation line on many superdomes, and attribute them to the asymmetrical

strain accumulated in the islands and ripples on the vicinal Si (1 1 10) substrate [160],

rather than to the purported wedge defect caused by coalescence [161].

Several shallow structures in the vicinity of the superdome, including empty trenches

(ET) and shrinking domes (SD), are footprints of dome-dissolution in a Ostwald ripening

process [163, 164]. Thus, again the pathway to superdomes on vicinal Si(1 1 10) substrates

appears to be very similar to the behavior on a Si(001) surface [165].

Figure 6.8: First derivative of AFM [(a), (b), (e), (f)] and STM [(c)-(d)] images showing the

morphological evolution from ripples to islands under equilibrium growth condition for two com-

positions.
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6.4 Single Tadpole to Dome: energetics

Starting from the observed evolution we model the onset of steeper islands as a one-to-

one evolution from Tadpole to Dome. In this idea the value of the critical deposition is

actually a measure of the ripple coarsening leading finally to the domes. Further, the

critical deposition may depend on the experimental conditions (substrate temperature,

deposition flux, time of annealing etc.), but if the transition from the large ripple to dome

is governed by thermodynamics then it is the base of the former the real general and

predictable parameter. Following this reasoning a TD model cannot predict a critical

deposition, but rather a critical base for dome onset. In other words, what TD can predict

is that domes with bases smaller than the critical one cannot be observed (or if they are,

they are not thermodynamically stable). In the following we present this model.

6.4.1 Model

We want to compare the energy of the Dome with the ones of the Tadpole in order to

find the transition base, measurable from experiments. The geometries of the islands are

reported in Fig.6.9 and, since they are aimed at replicating the observed ones, the tadpole

can be either (001)- or (105)-headed.

The energy of the tadpole (Fish, F) with respect to the flat WL is expressed as:

EF − EWL = VF · (ρF − ρWL) [Volume] (6.28)

+ SH · γH + SB · γB + ST · γT [Exposed surface] (6.29)

− (BH +BB +BT ) · γWL,T [Covered surface] (6.30)

+ LT · ΓT [Edge term] (6.31)

where the subscripts T, H, B refer to the Tadpole Tail, Head and Body, respectively.

Similarly, the energy of the dome is:

ED − EWL = VD · (ρD − ρWL) [Volume] (6.32)

+ SD · γD [Exposed surface] (6.33)

− BD · γWL,D [Covered surface] (6.34)

+ LD · ΓD [Edge term] (6.35)

Since we are interested in a transition base, we need to express everything in terms of

the base of the fish bF and the dome bD, where we can link to each other via:

ξ =
bF
bD

≥ 1 =⇒ bF = bD · ξ (6.36)

and exploit the same relationships as in sec.2.1 at page 31:

VD = KDV · b3D (Volume) (6.37)

SD = KDS · b2D (Exposed Surface) (6.38)

BD = KDB · b2D (Covered Surface) (6.39)

ED = KDE · bD (Edges) (6.40)
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We can express the geometry of the fish as a function of its base bF and therefore bD.

Volumes :

VF = VH + VB + VT (6.41)

VH = KHV · b3F = KHV · ξ3 · b3D (6.42)

VB = KBV · b3F =
tan θ

4
·
(
LB

bF

)
· b3F =

tan θ

4
·
(
LB

bF

)
· ξ3 · b3D (6.43)

VT = KTV · b3F = KTV · ξ3 · b3D (6.44)

Exposed Surfaces :

SF = SH + SB + ST (6.45)

SH = KHS · b2F = KHS · ξ2 · b2D (6.46)

SB = KBS · b2F = KBS · ξ2 · b2D (6.47)

ST = KTS · b2F = KTS · ξ2 · b2D (6.48)

Covered (Buried) surfaces :

BF = BH +BB +BT (6.49)

BH = KHB · b2F = KHB · ξ2 · b2D (6.50)

BB = KBB · b2F = KBB · ξ2 · b2D (6.51)

BT = KTB · b2F = KTB · ξ2 · b2D (6.52)

Edges :

LF = LH + LB + LT (6.53)

LH = KHE · bF = KHE · ξ · bD (6.54)

LB = KBE · bF = KBE · ξ · bD (6.55)

LT = KTE · bF = KTE · ξ · bD (6.56)

The factor LB

bF
(lateral aspect ratio of the body) can be determined if we make the

hypothesis of negligible intermixing during the phase change. Indeed by imposing the

volume of the fish to be equal to the volume of the dome, we get:

VF = VD =⇒ LB

bF
=

4

tan θ
·
(
KDV

ξ3
−KHV −KTV

)
(6.57)

so it is univocally determined.

We can make the additional reasonable hypothesis that the surface energy of the WL

does not change appreciably with the different strain induced on it by the ripple or the

dome (γWL−R = γWL−D)
5.

5since any surface energy depends on the strain state, compare the discussion in sec.2.5.4 at page 63
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By expressing everything as a function of bD we get the energy balance:

∆EDF ≡ ED − EF (6.58)

= b3D ·KDV · (ρD − ρF ) (6.59)

+ b2D ·
{
KDS · γD − ξ2 · (KHS · γB +KBS · γB +KTS · γT )

}
(6.60)

− b2D · γWL ·
{
KDB − ξ2 · (KHB +KBB +KTB)

}
(6.61)

+ bD · {KDE · ΓD − (KHE +KBE +KTE) · ΓF } (6.62)

Figure 6.9: Single Tadpole calculation. (a) Models of the tadpoles (fishes) and the dome used

in the calculation. (b) Trend of the elastic energy density for the two tadpoles and the dome as

a function of the Ge content. The geometries are so elongated that the elastic energy of the two

tadpoles is unaffected by the head termination but depends largely on the body and tail, that are

the same for both.
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6.4.2 Energy terms

The elastic energy densities ρ for the case of the tadpoles with the two terminations and

the domes are reported in Fig.6.9-(b) as a function of the Ge content in the island as

obtained by a FEM calculation in absence of any WL under the islands themselves. Here

we adopt the same ab initio elastic constant and non-linear corrections used in the previous

chapter.

The surface energy of the dome facets γD are imposed to be equal to 65 meV/Å2 [30],

whereas the surface energy of the (001) termination is in the range [60 : 75] meV/Å2.

The surface energies of the {105} facets for the head and the body are computed in

FEM by considering the value of the actual strain without considering the distance from

the Si substrate since the experimental islands are ≥ 50 nm large. Given this geometry the

obtained values are: γH ≃ 57.5meV/Å2 (for the 105-headed tadpole), γB ≃ 56.70meV/Å2

(for the body of the fish) and γT ≃ 56.4 meV/Å2 (for the unincremented tail). Similarly

to what done in the previous chapter, these values are obtained from the case of pure Ge

islands, by making the hypotesis that the floating Ge layer at the surface compels this

value to be the one of 100% Ge case.

The tail is composed of (105) facets as well, but the presence of the steps can alter

their energy. For simplicity we include the effect of the steps by adding the surface energy

a cost in the interval [0 : 10] meV/Å2 to the value computed by FEM.

As done in the χ model, the WL can be treated as a (1 1 10), so to use the ab

initio values. However, as discussed above, the detailed experimental analysis on 100% Ge

samples reveal that a flat WL is never exposed, instead some mini-{105} ripples are always

observed. This confirms our conclusion that the faceting on this system is a simil-WL.

When we consider the WL to consist in mini-ripples, its surface energy is put equal to the

one of the perfect faceting (58.41 meV/Å2).

Considering the result obtained in the previous chapter, the energy of the exposed

edges is put equal to 370 meV/Å for both the tadpoles and the dome.

From the experimental measurements shown in Fig.6.5, the base of the tadpole is

roughly the same as the one of the dome, i.e. ξ = 1 and we consider this situation.

The theoretical trend should fall between the range of the dome base and the one of

the ripples, this is because our bD is the one where the domes are thermodinamically at

equilibrium with the Fish.
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6.4.3 Results and comparison with experiments

Figure 6.10 show the trend of the energies EF − EWL and ED − EWL for the case of the

{105}-headed tadpole where the WL is modeled as a {105} PF for the Ge content equal to

100%, 50% and 25% Ge. The stars highlight the crossing points between the two curves

(domes and tadpole). In all cases the stars are below the line of zero energy, i.e. where

the WL (105-faceting) is unstable against the formation of islands.

In order to compare these results with the experiments we report these crossing points

along with the experimental measurements in Fig.6.11 for different thickness of the exposed

WL (rows) and for the two different tadpoles (columns). In both cases we report the data

by varying the parameters γ(001),∆γT in the aforementioned interval.

In any case the best agreement is achieved when the WL is treated as a {105} faceting

(panels e and f), as experimentally revealed. In the case of the (001)-headed tadpole

(panel e) we have the unknown variable of the (001) surface energy, but both the case of

60 and 75 meV/Å2 is found in good agreement with experiments if the ∆γT is put equal

to 10 meV/Å2. In the case of the (105)-headed tadpole, a good agreement is also found for

both extrema of ∆γT in the region xGe ≥ 0.30. It is very plausible that in the region xGe

< 0.30 the hypoteses underlying this model concerning the usage of the surface energy of

the 100% Ge case are no longer valid because of intermixing and kinetic limited processes,

without mentioning a possible thick WL under the tadpoles due to surface segregation

effects (not included in the model).

Figure 6.10: Tadpole-to-Dome transition: Energy curves. Trends of the energy ED − EWL

(empty circles) and EF − EWL (full triangles) for the case of the {105}-headed tadpole and the

WL is modeled as a {105} PF. The stars highlight the crossing points between the two curves.
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Figure 6.11: Results of Tadpole-to-Dome compared with the experimental energies. See discus-

sion in sec.6.4.3.
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6.5 Summary and conclusions

In this chapter we have shown the transition from the perfect faceting situation to the

formation of 3D steeper islands.

We have seen the complex path leading from the breaking down of the faceting and

to the developing of the domes through a “novel” island that we baptise “Tadpole” or

“Fish”. In this system this island is playing the role that the 105 pyramids have on other

substrates (like the 001).

These detailed measurements have also allowed to identify the same facets observed on

other substrates, hinting so that the shape of the islands is dictated by the surface energy

of a small number of facets.

These measurements allowed to build the phase diagram of this system.

We developed a global model (the χ model) to predict these diagram, but it has some

logical shortcomings. Considering, on the other hand, the transition from a single tadpole

to a single dome (as observed experimentally), lead to a more reliable prediction of the

critical base at which the transition occurs.
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General conclusions and

perspectives

“The scientific man does not aim at an immediate result.

He does not expect that his ideas will be readily taken up.

His duty is to lay the foundation for those who are to come,

and point the way.”

Nikola Tesla

The activity of the scientific research is like a journey.

People start from a known ground and, endowed with the will to go beyond the present

limits, undertake a travel. This travel may have some hardships, both conceptual and

technical, and like climbing a rope or hiking a mountain, many times the road compels

either to change route or to undertake considerable efforts. But once at the top of the

mountain, the gain is priceless.

In the best case it can be either a new discovery that opens new fields and new perspec-

tives on the future, or, more modestly, it can merely represents an alternative, maybe

more insightful, view of some already known fields, or it allows to enjoy the known matter

from a different, maybe broader, perspective.

In this thesis, we have investigated a phenomenon that has already been investigated

by several groups: self-assembled nanoislands focusing on the Ge/Si prototypical case.

We have put together several ingredients sparcely present in literature, starting from

the concept of the Wulff solid, the elastic field, the surface energies with their contribu-

tions, the different nucleation regimes arising from a different balance between these terms

and some effects due to the presence of steps.
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We have used these techniques to model the role of intermixing on patterned substrates,

leading to a comparison with experiments that accounts quantitatively to the evolution

pattern followed by the islands nucleated on this peculiar system.

To a larger extent we have focused our attention to the peculiar case of the islands

formed on the Si(1 1 10) substrate. This substrate represents a peculiarity since here

geometrical constraints prevent the {105} pyramids from forming a close solid. This has

the effect to have all the islands elongated along the same direction, a geometrical factor

that facilitates the complete faceting of the substrate. In chapter 5 we have shown that

this faceting is compatible and explicable as a reduction of the total energy, particularly

the (here dominant) surface contribution as Fig.5.8 at page 111 proves.

By following a similar reasoning in terms of the surface energy reduction, this same

figure also would predict a {105} faceting on Si(001) as well. Urged by this theoretical

outcomes, we performed a deep analysis of literature results on this substrate, arriving to

the conclusion that here kinetic effects can play a non-negligible role and further investi-

gations are needed.

As discussed in this thesis, the careful estimation of the energy of the nanofacets may

play an important role in assessing the stability of the islands themselves. To this aim the

multiscale method we have developed and described in sec.5.2 (page 98) can be improved

and extended. A first relevant extension could consist in considering the facets of the

dome: {113} and {15 3 23}. Considering, in particular, their dependence on the strain

could help in understanding the stability of the observed shapes, since, as discussed in

sec.2.4.3, the strain relaxation is not enough to predict what the precise shape of the

islands is to be expected (i.e. the relative extensions of the different facets).

The same modeling could be applied to other facets appearing in the barn island as

{20 4 23}, {111}, {23 4 20}.
Since we have observed the same facets appearing even in the Ge/Si(1 1 10), this ana-

lysis would have a general value on substrates other than (001).

As for the other substrates, one may ask what happens if the miscut goes beyond

the 8.04◦ along < 110 > direction, i.e. what happens if the {105} facets are not enough

to make an island of finite volume. Intuitively, additional facets would form, creating

a different island shape, thus a different elastic relaxation and thus different effective e-

nergy of the facets making the analysis non-trivial. This intuition is confirmed by some

experimental studies where the substrate is Si(11n) with n∼< 101. In other cases studied

in literature completely different island shape are formed, as, for instance, for Si(5 5 12)

[166] (where no 105 facet appears) or on Si(113) [167].

In predicting the shape of nanoislands, we also discussed and demonstrated that the

concept of the Wulff solid can be adopted to have an insight to the overall shape. And for

this reason we have developed a code to handle this concept to be used as a tool.

1prof. Gunther Springholz, private communication
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In literature some stable reconstructions of important facets have been identified, such

as the one for (113) [83, 80] and even the large-scale (15 3 23) [84]. However this does not

hold for any surface and indeed another rich field of research consists in the developing of

global minimum research of the surface energy as, e.g. through a genetic algorithm [90].

As we have proven in this thesis, however, this search must account for the strain state

of the facet, since some reconstruction may be stable if subject to a proper amount of

strain (as is the case of the (105)-RS that is stable against compression).

It is noteworthy to say that, as a matter of fact, researchers have recently renovated

their interest for one of the case of our study, the SiGe ripples on Si(1 1 10), not only as

an example of SK growth on tilted substrate, but also to an effective, self-assembled, way

to realize in-plane nanowires [162].

So our theoretical study may eventually find an application in technology.
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A
Basics of Elasticity Theory

In this appendix we recall some basic concepts about elasticity theory often used in this

work.

A.1 Strain tensor

Under external applied forces, any elastic medium undergoes a deformation from its equi-

librium (external force-free) configuration. By denoting with r the position of a given

point inside the medium prior of the deformation, and with r’ its position in the deformed

medium, it is possible to define the displacement field u=r’-r at every point. Elastic de-

formation is completely known when u(r) is known for every r. Given a small deformation

δr, it can be written

ui(r+ δr) = ui(r) +
∂ui(r)

∂xk

· δxk

where the derivatives ∂kui defines the components of a rank 2 tensor γik, which can

be decomposed into a symmetric and an anti-symmetric part:

ǫik =
1

2
·
(
∂ui
∂xk

+
∂uk
∂xi

)
; ωik =

1

2
·
(
∂ui
∂xk

− ∂uk
∂xi

)

In other words, any possible deformation of the elastic body is decomposed into one

rotation, described by the tensor ωik, and one distortion, which is described by ǫik. The

tensor ǫik is the strain tensor. As it is clear from its definition, ǫ is symmetric: ǫik = ǫki.

Figure A.1 is intended to show the physical meaning of each strain tensor component.

The on-diagonal components represent the relative variation of length (deformed, def)

with respect to the undeformed case (l0)

ǫii =
ldef − l0

l0

In the case of hepitaxy Ge/Si the strain is:

ǫ =
aSi − aGe

aGe
≃ −4.0%
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The off-diagonal components are proportional to the variation of the angle between

adjacent axes. For instance, the variation (from 90◦) of the angle between axis 1 and 2 is

∆α12 = 2 · ǫ12

If dV is the volume of a small portion of the solid before the deformation and dV ′ is

the volume of the same portion after the deformation, those quantities are linked by the

relation [58]

dV ′ = dV · (1 + Tr(ǫ))

This means that the trace of the strain tensor is the relative volume change with

deformation (dV ′ − dV )/dV

Likewise the undeformed and deformed area in the plane xy (A0 and Ã, respectively)

are linked by:

Ã = A0 · (1 + ǫxx + ǫyy)

Figure A.1: Geometrical meaning of the strain tensor components
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A.2 Stress and stiffness tensor

The elastic response of a medium under applied external forces is completely described by

the stiffness tensor Cijkl. This tensor links stress to strain tensor, since it holds

σij = Cijkl · ǫkl

The tensor Cijkl have several symmetries. The symmetry of the stress tensor implies that

Cijkl = Cjikl, while the symmetry of the strain tensor implies Cijkl = Cijlk. Finally, from

thermodynamic arguments it is possible to demonstrate that Cijkl = Cklij .

Since both σ and ǫ are symmetric tensors, this means that each one has six independent

coefficients.

It is thus useful to use Voigt indexes, to simplify the notation.

Making the following statements:

xx → 1; yy → 2; zz → 3;xy → 4; yz → 5;xz → 6

it is possible to explicit Cijkl with only two indexes; this way the stress-strain relaxation

can be written as

σxx = C11ǫxx + C12ǫyy + C13ǫzz + C14ǫyz + C15ǫzx + C16ǫxy

σyy = C21ǫxx + C22ǫyy + C23ǫzz + C24ǫyz + C25ǫzx + C26ǫxy

σzz = C31ǫxx + C32ǫyy + C33ǫzz + C34ǫyz + C35ǫzx + C36ǫxy

σyz = C41ǫxx + C42ǫyy + C43ǫzz + C44ǫyz + C45ǫzx + C46ǫxy

σzx = C51ǫxx + C52ǫyy + C53ǫzz + C54ǫyz + C55ǫzx + C56ǫxy

σxy = C61ǫxx + C62ǫyy + C63ǫzz + C64ǫyz + C65ǫzx + C66ǫxy

In addition to that, the symmetry of the crystal imposes further reduction to the

independent coefficient in the stiffness tensor.

Depending on the type of crystal, there are 21 independent components in the case of the

triclinic crystal, 13 for the monoclinic, 9 for the orthorhombic and 3 for the cubic.

The latter ones are usually mentioned as C11, C12, C44 leading to a stiffness tensor in

Voigt notation as the following:

Cij =




C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44




(A.1)

Generally the crystals are anisotropic, i.e. their properties depend on the direction. In

the case of cubic crystals, the behaviour is perfectly isotropic if the following holds:

C44 =
C11 − C12

2
(A.2)
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The quantification of the grade of anisotropy is, therefore, the factor of anisotropy A [58]

A = C44 −
C11 − C12

2
(A.3)

If A=0, the system is isotropic, the larger A in modulus, the larger the anisotropy.

To deform the medium, external forces must do work, which must equal the elastic

energy stored by the medium in consequence of the applied forces. The correspondent

elastic energy density is definite as

ρ ≡ 1

2
· Cijkh · ǫij · ǫkh (A.4)

=
1

2
C11(ǫ

2
xx + ǫ2yy + ǫ2zz) +

1

2
C44(ǫ

2
yz + ǫ2zx + ǫ2xy) +

+ C12(ǫxxǫyy + ǫyyǫzz + ǫxxǫzz) (A.5)

Where the latter equation holds in the case of cubic materials [59]. It is noteworthy that

the relation stress-strain here adopted is a linear one (that is an anisotropic version of the

Hooke’s law). That is why this theory is also called Linear Elasticity Theory (LET)1 and

it is a good approximation for small strain values [59] although the real crystal can have

non linear effects.

A.3 Alloys

The previous definitions are general and are valid for a GeSi alloy as well.

As discussed in Chapter 3, intermixing is a possible channel available to the system to

relax strain and, further, an alloy of GeSi can be deposited directly on Si.

It is generally assumed [67, 168], that the lattice constant in an alloy is subject to the

Vegard law, that implies it is the linear combination of the constants in the pure materials

averaged over the concentration. A similar trend is supposed to hold for the stiffness

constants. Therefore, an alloy Si1−xGex, where x is the fraction of Ge, is modeled to have

a lattice constant and stiffness tensor equal to:

a = a(Ge) · x+ a(si) · (1− x) (A.6)

Cij = Cij(Ge) · x+ Cij(Si) · (1− x) (A.7)

1or Harmonic Elasticity Theory since the energy is quadratic in the deformation
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Description of surfaces

In this appendix the convention used to describe the surfaces are reported.

B.1 Describing a general surface

In a crystal a plane is identified by the normal to the plane itself, that is a direction. A

general direction in a crystal is described as sketched in Figure B.1: a versor (unitary

vector) in a 3D space n.

This versor can be described either in terms of the three cartesian components [n1, n2, n3]

(panel a) 1 or in terms of the two Eulerian angles (θ, ϕ) (panel b).

The former (θ) is called co-latitude or, in the case of vicinal surfaces, miscut and is

the angle between n and the z axis.

The latter (ϕ) is called longitude (or azimuth) and is the angle between the projection

of n on the xy plane and the x axis.

When the indexes nj are prime among themselves they are called Miller indexes.

Given a generic direction (n1, n2, n3), the following relations hold:

tanϕ =
n2

n1
(B.1)

tan θ =

√
n2
1 + n2

2

n3
(B.2)

and the reciprocal ones:

n1 = |n| · cosϕ · sin θ (B.3)

n2 = |n| · sinϕ · sin θ (B.4)

n3 = |n| · cos θ (B.5)

1an exception to this are the exagonal crystals that need 4 numbers to be fully identified but this case

is not treated in this thesis
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Figure B.1: Surface description in terms of the (a) Miller indeces of the normal or (b) the

Eulerian angles. ϕ is the azimuth (or longitude), θ the miscut (or co-latitude).



C
Strained surface energies:

What chemical potential to use?

C.1 Statement of the problem

By definition, the surface energies must describe properties of the surfaces alone, without

including volume (bulk) effects.

In the slab configuration discussed in sec.2.5 at page 56, the bulk contribution is

cancelled out from γ through the chemical potentials µs, therefore the concern is to give

µ the proper value.

For an unstrained solid, the value to use is trivially the bulk one. But when the surface

is strained isotropically or anisotropically along two directions x and y, a strain along the

z (free) direction must be considered as well because of the Poisson effect (see sec.2.4.2).

Since in this thesis we are dealing with relaxed surfaces, it appears natural that the

chemical potential must be computed taking these two effects into account, yet this was

not clear at the first attempts of such calculations and in literature some “misleading”

and confusing results can be found.

Our aim here is to perform a systematic analysis of the effects on γ if chemical potentials

at different strain states are used, to prove that the Poisson relaxation along z must be

taken into account to avoid non-sensical results.

The analysis is performed for Ge and Ge/Si systems for different in-plane strains

focusing not only on the case -4% (Ge/Si case) but also for higher strain up to -7% with

the aim of studying the effect of higher deformation. This latter value of strain is the one

for the system InAs/GaAs, that is the prototype for III-V compounds. Tersoff potential

is employed as a benchmark for the simplicity and speed of calculation on a pure Ge cell.

First principles results are used to study the dependence on epilayer thickness for Ge/Si

cells. Last, it is shown the importance of considering anisotropy in the chemical potential

as well.
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C.2 Chemical potentials employed

The chemical potentials are computed by straining an 8-atoms conventional bulk cell in a

proper way, as already described in sec.5.3.1 (page 103).

Let us suppose that the surface is subject to a strain along x and y equal to (ǫ∗xx, ǫ
∗

yy).

The different chemical potentials are computed on a bulk cell strained along x,y,z with

the strain µ = µ(ǫxx, ǫyy, ǫzz) according to the following definitions.

• µ0 ≡ µ(0, 0, 0)%: the case of the unstrained bulk

• µS ≡ µ(ǫ∗xx, ǫ
∗

yy, 0)%: strained situation, no Poisson effect taken into account, i.e. the

bulk is strained along x and y by the external stress while it is left at its unstrained

bulk position along z

• µP ≡ µ(ǫ∗xx, ǫ
∗

yy, ǫzz)%: Poisson effect taken into account, i.e. the bulk is strained

along x and y by the external stress and along z it is strained according to the

Poisson effect

C.3 A simple test: Ge(001)-AC using Tersoff

The effect of the surfaces should be the same regardless of the thickness of the cell used

in the calculations: the same physical effects should occur at the surface for very thick or

moderately thin slabs.

This property is used as a benchmark to test the chemical potentials of the previous

section.

The cell adopted is the most simple one: a pure Ge cell of the (001) unreconstructed

surface (as cut, AC), where direction x is [100], y is [010], z is [001]. This is studied

with Tersoff potential since it allows to analyze very thick slabs with no computational

problems. All the atoms are free to relax in the cell (no atom is kept fixed), the maximum

allowed force being 10−6 eV/Å in modulus. For simplicity the in-plane strain applied to

the cell is isotropic: ǫ∗xx = ǫ∗yy ≡ ǫ∗.

The chemical potentials used are plotted in Figure C.1 where different ǫzz are applied

to a bulk strained along x and y. There the used values of the chemical potentials are

highlighted with black points. It is evident that the difference between µP and µ0 is higher

for higher in-plane strain values.

In this case the chemical potential used are:

• µ0 ≡ µ(0, 0, 0)% ≃ −3.85059 eV/atom

• µS(1) ≡ µ(−4,−4, 0)% ≃ −3.80521 eV/atom

• µP (1) ≡ µ(−4,−4, 2.813)% ≃ −3.81344 eV/atom

• µS(2) ≡ µ(−7,−7, 0)% ≃ −3.70187 eV/atom

• µP (2) ≡ µ(−7,−7, 5.608)% ≃ −3.73424 eV/atom
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In this case the slab is symmetric and the surface energy is given by:

γ =
ETOT −NGe · µGe

2 ·A (C.1)

Figure C.2 shows the values of the SE for different thickness of the cells in the case of

ǫ = −4% (top) or ǫ = −7% (bottom). The following properties can be deduced:

1. if µP is used, the SE is very stable as a function of the cell thickness (up to the

fourth decimal digit in this case)

2. if a µ < µP is used (such as µ0), the surface energy will monotonically increase for

thicker cells and it will diverge

3. if a µ > µP is used (such as µS), the surface energy will monotonically decrease till

it becomes negative (that is physically non-sensed)

The explanation of these trends are easily found if the energy per atom is compared with

these chemical potentials.
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Figure C.1: Chemical potentials used for the case Ge(001)-AC analyzed with Tersoff potential

from a strained bulk calculation. The values in parenthesis near to each curve are the strain

applied along [100] and [010]. The CPs described in section C.2 are highlighted by black points.

The Poisson corrected value is defined as the minimum of each curve at different ǫzz. The dotted

line connecting the µP s is the same line as in Fig.2.3 at page 43.
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Figure C.2: Trend of the surface energy for Ge(001)-AC with Tersoff potential as a function

of the cell thickness for different values of µGe. TOP = case of ǫ = −4%. BOTTOM = case

of ǫ = −7%. In both cases the values are very stable if the Poisson-corrected value µP is used,

otherwise, the trend is monotonically increasing or decreasing. The derivative is higher the higher

the strain applied (bottom figure). This shows that the chemical potential to use for strained

surfaces is the Poisson-corrected one.
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C.3.1 Explanation in terms of energy per atom

In the case of semiempirical potential the total energy ETOT is simply the sum over the

energy of the single atoms Ei. Since the chemical potential µ is the same for all the atoms,

the surface energy can be expressed as follows:

γ =
1

2A
·
NGe∑

i=1

[Ei − µ] (C.2)

From this we can deduce that in order to have an independence of the cell thickness (that

is NGe), the atoms in the middle of the cells must have the same energy as the bulk. It is

this energy to be therefore taken as a reference bulk. By comparing the energy per atom

in the cells with the chemical potentials used, their difference can be highlighted.

Figure C.3 shows the energy per atom for all the cells analyzed in the case of ǫ = −4%.

The top panel shows that the atoms in the central part of the cell have all the same energy

regardless of the thickness. The bottom panel shows that the value µP coincides with these

common value, while the others do not.

Therefore when a CE other than µP are used, the central atoms still have a contribution

to the SE, leading to a monotonic trend.
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Figure C.3: Comparison of the chemical potentials with the energy per atom in the case of a

slab Ge(001)-AC analyzed with Tersoff in the case of ǫ = −4%. The atoms are numbered from the

top of cell to the bottom. TOP = large scale image showing the atoms in the central part of the

cell to have all the same energy regardless of the thickness. BOTTOM = enlargement comparing

the chemical potential with this energy of the central atoms.
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C.4 Effects on trend with epilayer thickness

The previous analysis shows that when the Poisson corrected CP is not used as the bulk

reference, some errors are introduced proportional to the number of atoms of the strained

species.

In literature, the typical analysis performed is the one as a function of coverage (as

performed in this work at sec.5.3.4, page 109). In this case the Ge atoms are a few,

additionally the exponential trend described in sec.2.5.5 at page 65 is superimposed on

the possible error due the use of an improper chemical potential. In order to have a

criterion for the choice of the CP, here we explain a procedure to identify the correct

trend.

The cell employed is an asymmetric one where Ge is on top and Si below (like the 1

1 10 cell studied in this thesis). Along z the cell contains 30 unit cells (∼ 163 Å) and no

atom is kept fixed. In increasing the Ge coverage the correct number of the topmost Si

atoms are turned into Ge. The total energy of such a cell is:

ETOT = NSi · µSi +NGe · µ+A · γT +A · γB (C.3)

In this case the CP of Si is its value µ0 since no strain is applied to silicon, instead the

CP for Ge is computed when strained at the lattice constant of Si. The value of interest

is γT and γB is computed from a relaxed pure Si cell.

The trend with deposition in the case of Ge/Si(001)-AC analyzed with Tersoff is re-

ported in figure C.4-(a). As equation (2.45) (page 65) suggests, at a large enough coverage

the value should stabilize to a definite value γ∞.

The only curve that fullfils this property is the one obtained with µ = µP .

In the case of µ0 the trend will predict that the thicker the Ge layer the higher the SE,

leading to a value γ(Ge) > γ(Si|NGe = 0), that is against any known results. This increase

in surface energy has been reported in some early article [169] showing that at that time

a confusion of what chemical potential to use was present.

In the other case (µS), a monotonic decrease is observed.

In all the curves a local minimum is found at 1 ML coverage: this is a problem of

Tersoff potential in dealing with the interfaces and has nothing to do with the chemical

potential chosen.

To get rid of this problem, a check with DFT-LDA is done where the top surface is

reconstructed as the (001)-2x8-DVL (the details of the cell and of the reconstruction are

described in sec.5.3.1, page 103). A reconstructed surface in the case of ab initio calculation

is needed to achieve convergence, otherwise the atoms will not find their stable positions.

The results are reported in Figure C.4-(b), where it is evident that the minimum at 1 ML

has disappeared.

Since eqn (2.45) is appliable with DFT-LDA data, we can use this trend as a check for

the chemical potential.

Table C.1 reports the value of the reduced χ square of the fit with this equation. The

case with µ0 cannot be fitted since the trend is not monotonically decreasing. The case

with µS has a moderately high value (∼ 4), but the one with µP has a very low value

(∼ 0.5), as it should be. Therefore we can conclude that just the Poisson corrected
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chemical potential leads to a trend with deposition that is in accordance with

the theoretically expected exponential trend.

µ used χ2 with eqn (2.45) χ2 with eqn (C.9)

µ0 does not fit 0.1919

µS 4.1232 0.2047

µP 0.5424 0.2019

Table C.1: Reduced χ2 of the DFT-LDA results for Ge/Si(001)-2x8-DVL for different chemical

potentials used. The second column shows the interpolation for the equation γ(µ) = (γ0 − γ∞) ·
e−B·x + γ∞ i.e. the analitically expected trend for the correct values. The third column shows

that the general relation found is a good trend. Just the Poisson corrected value µP has a good

fit (low χ2 value) for the theoretically expected trend, i.e. this is the proper CP to use.

We can also deduce an analytical trend for the general case where even a ‘wrong’ CP

is employed.

For porpose of generality, let us consider a generic normal direction n3. Let µP be the

correct chemical potential to use and µ be the one used.

Since both the total energy of the cell and γB are the same regardless of the Ge chemical

potential, from eqn (C.3) we get the deviation of the obtained SE from the correct one:

γ(µ)− γ(µP ) =
NGe

A0 · (1 + ǫ)2
· (µP − µ) (C.4)

Where the area A0 is the area of the Un-strained material. Using the geometric properties

discussed in sec.2.5.2 at page 56, we can express this quantity as a function of the number

of (001)ML D001, as is the habit in theory (see discussion at sec.2.5.5, page 65). By

defining Ã as the area of the surface per unit lattice constant, a0 as the lattice constant

of the unstrained bulk and D3 as the number of n3 MLs, we get the following relation:

NGe

A0
= D3 ·

N3

Ã
· 1

a20
(C.5)

=

( |n3|
f3

·D001

)
·
(
2 · K3 · f3

|n3|

)
· 1

a20
(C.6)

= 2 ·K3 ·D001 ·
1

a20
(C.7)

Hence:

γ(µ)− γ(µP ) =
2 ·K3 ·D001

a20 · (1 + ǫ)2
· (µP − µ) (C.8)

Since everything is a constant for a fixed µ, by introducing γ(µP ) in this equation and

calling D001 = x we get the functional relation for a generic SE with a generic µ:

γµ(x = D001) = (γ0 − γ∞) · e−B·x + γ∞ +A · x (C.9)
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The fits with this function are the lines in Figure C.4-(b) and the reduced χ2 are reported

in Table C.1 showing a good agreement for all the curves, that prove the quality of such

trend.
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Figure C.4: Effect of using different CPs in the case of Ge/Si(001). (a) = Tersoff potential results

for the AC cell. (b) = DFT-LDA results for the 2x8-DVL reconstruction. In (b) the lines are the

interpolation with eqn (C.9), whereas in (a) they are just to guide the eye.
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C.5 Effects of neglected anisotropy

As described in sec.2.4.2 at page 40, crystals have a highly anisotropic elastic response.

In particular the chemical potential for a fixed in-plane-strain assumes different values for

different surfaces, due to a different Poisson relaxation.

When considering surfaces other than (001), therefore, the chemical potential to use is the

one strained in the direction analyzed.

In order to clarify the important role of anisotropy, our purpose here is to quantify the

error introduced in the surface energy if anisotropy is neglected, that is if the µP (001) is

used instead of the Poisson-corrected value of the CP along the analyzed direction. Let

define γ001 the former and γn the latter. Here the interest is in quantifying the difference

γn − γ001 regardless of the exact value of the energy. Following the steps outlined to

deduce eqn (C.8), this difference when the strain is applied in plane to the surface can be

expressed just as a function of the chemical potential as follows:

γn − γ001 = − NGe

A0 · (1 + ǫ)2
· [µP (n)− µP (001)] (C.10)

= − 2 ·K3

a20 · (1 + ǫ)2
·D001 · [µP (n)− µP (001)] (C.11)

This can be used to check the effect both of Ge/Si cells and for pure Ge cells containing

D001 MLs (001) of Ge.

These trend using the Tersoff potential are reported in Figure C.5.

Panel (a) reports the values of µP (n)−µP (001) that have already been deduced in sec.2.4.2.

This shows that the chemical potential has a larger difference wrt the (001) one the larger

the strain in modulus.

Since the difference in surface energy is proportional to ∆µ this trend is present in ∆γ

as well. This is shown in Panel (b) where eqn (C.11) is plotted for the case of D001 = 1ML,

that is a single ML of Ge is present in the cell. Panel (c) shows the same trend for the

case of D001 = 20ML, that is the typical thickness of a pure Ge cell to guarantee the

independence of the two surfaces from each other, showing that in such cells neglecting

the anisotropy can lead to misleading results. Panel (d) focuses on the difference observed

at the strain-in-plane equal to -4% (the case Ge/Si) for both cell thickness.

Figure C.6 shows the results for the case of DFT-LDA in case the strain in plane is

-4%. Panel (a) shows the difference in chemical potential, whereas panel (b) the difference

in SE for 1 and 20 MLs (001) of Ge in the cell.
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Figure C.5: Effect of neglecting anisotropy by using Tersoff potential. Panel (a) shows the differ-

ence of the anisotropic CP with µ001 computed along (001) for some directions in the stereographic

triangle. Panel (b) and (c) show the difference in SE for 1 ML (001) and 20 MLs (001) Ge respec-

tively for different strain states. Panel (d) focuses on the Ge/Si case of ǫ = −4%: left y axis refers

to 1 ML Ge, the right one for 20 ML Ge.

Figure C.6: Effect of neglecting anisotropy by using DFT-LDA approach for a biaxial strain

ǫ = −4%. Panel (a) shows the chemical potential obtained (left y axis) along with the difference

with the value at (001) (right y axis). Panel (b) show the difference in SE for 1 ML (001) (left y

axis) and 20 MLs (001) Ge (right y axis) for these values of the chemical potential and with this

strain.
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In both cases we can deduce that if the anisotropy in µP is neglected:

1. a great error in surface energy can be obtained for cells with typical thickness used

in calculations (lower value predicted)

2. the higher the number of Ge atoms (ML), the higher the error

3. the higher the strain (absolute value), the higher the error

4. typically, the steeper the surface wrt (001), the higher the error

C.5.1 Check for real reconstruction

Strictly speaking, eqn (C.11) is valid just for bulk-like (AC) cells since the relations used

to derive it are so. However it turns out to be approximately valid even for a real,

reconstructed surface as shown here.

Let us consider the same slab of Ge/Si(105)-RS studied in sec.5.3, page 103.

The surface energies obtained as a function of Ge epilayer thickness are reported in Figure

C.7-(a) where the chemical potential used are both the Poisson-corrected µP (105), µP (001)

and the non-Poisson-corrected µS(105), µS(001). This shows again that a use of µS leads to

a monotonic decrease of the values.

In this case eqn (C.11) becomes:

γ105 − γ001 = − 2 · 1
a20 · (1 + ǫ)2

·D001 · [µP (105)− µP (001)] (C.12)

This theoretical trend is plotted in panel (b) (black line) along with the real difference

obtained by this reconstructed surface. As evident the deviation of the actual calculations

(red points) is very close to the one predicted by the As-Cut cell.

This shows the almost general validity of the relation found and that it can be used

as a check for quality of the obtained results.
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the ideal case of the AC surface with the actual values for this case. The agreement is good.
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C.6 Conclusion

In this Appendix I have shown that in modelling the surface energy, the correct chemical

potential for strained material must have the following properties:

1. must be strained in xy (plane direction) according to the extrenally applied strain

2. the strain state along z (normal to the surface) must be the one predicted by the

Poisson relaxation

3. the directions x,y,z must be the ones of the surface, i.e. the anisotropic nature of

crystals must not be neglected

Therefore, all the results of surface energy values should be computed using a chemical

potential obtained following these rules (as performed in this thesis).



D
Other surfaces studied

(preliminary work)

In this appendix I present some (preliminary) results, not necessarily connected to the

problem of ripples, obtained during the PhD period.

I apply the methods developed in the thesis to the study additional important surfaces

for the nanostructures (secs.D.1 and D.2) and show a method to take the intermixing

into account by combining semiempirical calculations with a Monte Carlo approach and

DFT-LDA results (sec.D.3).
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(PRELIMINARY WORK)

D.1 (113) surface

D.1.1 Interest and motivation

As discussed in this thesis, the (113) facet is one of those appearing in the Dome structure

of Ge/Si islands. Therefore the estimation of its energy is of paramount importance in

assessing from an ab initio approach the surface energy of the nanoislands. In particular, its

dependence on strain could help in elucidating the stability of domes with different relative

extensions of the facets to predict its shape in conjunction with the elastic relaxation

described in sec.2.4.3 at page 50.

Along with this, the Si(113) has been studied in the past because of its potential as a

substrate for quantum wire formation1 [170].

D.1.2 Previous works

Because of the reasons just outlined the focus at the beginning was given to the (113)

surface of silicon, as in Ref.[171, 172].

The most complete treatment of this surface with the reconstructions actually observed

with LEED [170] is Ref.[173]. Here the authors used a Car-Parrinello-like technique with

LDA and got surface energies of Si of the order of 95-111 meV/Å2.

This estimation of the surface energy is slightly reduced in subsequent papers by Stekol-

nikov et al [80, 174], where both Si (∼ 87.4 meV/Å2) and Ge surface (∼ 61.7 meV/Å2)

are computed in a DFT-LDA approach. In this case all the surfaces are unstrained.

At present no study of the dependence of the surface energy as a function of Ge coverage

on Si or of strain applied to the surface has been performed. The latter dependence can

play an important role to check possible strain-induced surface reconstruction shift.

Here we aim to fill this gap of knowledge by adopting the same procedure as used in

this thesis, i.e. by comparing DFT-LDA and Tersoff potential. For the former we adopt

the same parameters described in sec.2.3 (page 36). For the k-points sampling we exploit

the results in sec.5.3.3 and adopt the “bulk criterion”.

D.1.3 Bulk chemical potential

The chemical potential is computed as described in Chapter 5.3.1, i.e. by properly straining

a conventional 8 atoms cell.

The values for Ge in a DFT-LDA approach are reported in Fig.D.1. There panel (a)

shows the trend of the energy per atom for a biaxial in-plane compression equal to -4% at

different strain along z with the aim to find the chemical potential (black point). Panel (b)

reports the trend of the chemical potential µ so determined for different values of biaxial

strain.

1this was believed before the studies on the Si(1 1 10)
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Figure D.1: Ge(113)-DFT-LDA: Chemical potential. In (a) we report the method to find the

chemical potential (black point) by varying the strain along z for fixed values of in-plane strain (in

this case equal to -4%). (b) shows the obtained values of µ for different in-plane strains.

D.1.4 Cell geometries and reconstructions

The (113) surface is a O-type one2, so it is composed of bilayers (BL), see Fig.2.12-(d),

page 59. From Tab.2.3 at page 60, we see that a single AC cell contains 44 (113) MLs.

Actually this value refers also to the “missing layers”3. Since, however, the distance

between one BL and the next one is 4 “fictitious MLs” we get that the cell contains: 44

ML / 4 (ML/BL) = 11 BLs (113).

We study the reconstructions proposed in Ref.[173] and studied also in Ref.[174], but

we neglect the buckled ones. Fig.D.2 reproduces the cells used and the top view of the

reconstructions that we baptise as:

• A = As Cut (AC) (not shown)

• Rec B = 3x1 dimerized model where the surface atoms rebond to create a pentagon

structure (AD model, adatom-dimer)

• Rec C = 3x2 surface void, where one pentagon of the repeated cell is erased

• Rec D = 3x2-ADI “interstitialcy”, where one interstitial atom creates bonds with

the ones of one pentagon thus becoming 6-fold coordinated

In this case the first number (3) in the geometry refers to the [1 1̄ 0] direction [173].

The reconstructions (b-d) are O1 type4. We speculate that the presence of interstitial

atoms can be found more easily in type O surfaces (like this one), since the additional

atom can accomodate in the space ‘3T’ between two adjacent BLs5.

It is noteworthy to say that in the reconstruction called “adatoms” the atoms forming

the pentagons can be either added or simply rebonded depending on what layer of the BL

2see sec.2.5.2, page 56
3see discussion of this concept in sec.2.5.2
4i.e. the distance from one layer and the next one from the topmost ayer is 3T, T, 3T,...
5see Fig.2.12
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the surface has been cut, i.e. if the starting AC cell is O1 or O26. The starting bulk cell

adopted is the one called (113)-ORTHO in Tab.2.3 at page 60.

Our results are for a cell thickness along z direction either of 2 AC cells or 3, depending

on the cases. The bottom surface is either reconstructed (as in the case of 105 surface in

this thesis) or kept fixed (as is the case of 1 1 10).

To specify the different cases we use the notation X-(Y)-Z where we mean that the cells

contains X (113) BLs free to relax, Y (113) BLs fixed at the strain bulk position, Z (113)

BLs free to relax. The case reported in Fig.D.2 are the ones with 2 cells along z called

9-(2)-9.

As done in Chapter 5, in every ab initio cell, a vacuum equal to two times the lattice

constant of the cell = 2 · 5.39 ≃ 10.78 Å(Si) and = 2 · 5.624 ≃ 11.248 Å(Ge)

For the reciprocal space points sampling (KPOINTS) we followed the bulk criterion

derived and tested in sec.5.3.3 at page 107. For the 3x2 cells (the reconstructed ones) we

have values of: 3 2 1, but we also checked the trend with 3 3 1.

When dealing with Ge/Si cells, we use the same convention described in sec.2.5.5 at

page 65 for the epilayer thickness, i.e. the physical distance along z between the topmost

Ge atoms and the first layer of Si encountered as entering in the substrate. By exploiting

eqn.(2.48) (page 66), we get:

1 ML (001) =
√
11 ML (113) (D.1)

Taking into account the missing layers as explained before, we conclude that the real

thickness of 1 BL counts as 4 fictitious MLs and its thickness is expressed as follows:

1 BL (113) = 4 ML(113) =
4√
11

ML (001) ≃ 1.2060 ML (001) (D.2)

Therefore in practice we turned into Ge the atoms in a fixed number of the topmost BLs

in the cells and used he previous equation to quantify the thickness. In the cell geometry

adopted (3x2) every complete BL contains 12 atoms.

6a O2 surface has distance from one layer and the next one from the topmost as T, 3T, T, 3T,...
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Figure D.2: Ge/Si(113): Reconstructions and cells. Side view and top view of the reconstructions

analyzed in this work. They are the same as in Ref.[173]. The color code is the same as Fig.5.5 (page

105). The cells shown are the ones with 2 cells along z called 9-(2)-9 and refers to a Ge coverage

equal to ∼1.2 ML(001) (Rec B,C) or ∼1.5 ML(001) (Rec D). Both surfaces are reconstructed and

covered by Ge. From B to C is evident the missing pentagon. The interstitial atoms in D the one

at the center of the pentagons at the right.
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D.1.5 Comparison and check of convergence

We cannot avoid to compare our results with the ones by Stekolnikov et al [174].

We focus our attention to the as cut (AC) geometry of an unstrained Ge, for which

surface Stekolnikov reports a value of surface energy equal to ∼ 80.524 meV/Å2.

We compare our data with this value in Fig.D.3-(a).

We change the thickness and position of fixed atoms (top x axis), the vacuum thickness

(the first number of the bottom x axis is the thickness of vacuum expressed in units of

lattice constant) and input kpoints (second number of the bottom x axis). For the last

ones the values predicted by the bulk criterion are 821, since here we use a small cell

in the xy plane (no reconstruction must fit here). All our cells have a complete BL at

both surfaces, i.e. they are type O2 (see sec.2.5.2, page 56), whereas Stekolnikov does not

mention about what surface is studied.

By comparing the data for 9-(2)-9 cells, we see that both a variation in the vacuum

thickness and the kpoints density affect just slightly the data, yet the value differs from

Stekolnikov’s ones (Stek) for ∼ 2 meV/Å2. The presence of the fixed layers does not falsify

the results as the datum 11-(0)-11 shows, where all atoms are free to relax.

Taking thicker and thicker slabs the surface energies approach the one of Stekolnikov

(data of 15.5-(2)-15.5, 21-(2)-21 and 26.5-(2)-26.5), but apparently no plateau is found.

Using asymmetric slabs with the bottom surface consisting in fixed atoms in the AC

positions (data of 20-(2)-0 and 29-(4)-0) reduce the value of symmetric slabs with the same

thickness slightly.

The discrepancy with Stekolnikov’s data can be also attributed to a different pseu-

dopotential or a different estimation of the chemical potential, indeed he finds a Ge bulk

chemical potential equal to -5.195 eV/atom, whereas ours is equal to -5.19922 eV/atom.

D.1.6 Results and discussion

Ge/Si(113)

The effects of the cell thickness may vary as a consequence of the strain induced by the

reconstruction.

For this reason we perform the same preliminary study on a cell with reconstruction

B (the pentagon one) for a Ge thickness equal to ∼ 3.9 MLs (001) in Fig.D.3-(b). Here

we get that the difference between an asymmetric cell with both surfaces reconstructed

(26-(3)-4), with bottom layers fixed in the AC configuration (29-(4)-0) and for a thinner

cell (9-(2)-9) for fixed kpoints (321) lies inside the 0.4 meV/Å2 range. Within this range

is also the difference caused by a different (higher) k-points sampling (331 and 441 in the

same panel) and it represent therefore the error bar in our calculations.

Since in sec.5.3.4 at page 113 we established that the trend with deposition cannot

be properly described by the Tersoff potential, here we study this trend in the DFT-LDA

approach only.

Fig.D.3-(c) reports all the data for the three reconstructions considered with the dif-

ferent cell configurations written in the key. By exploiting the previous checks, in this



D.1. (113) SURFACE 185

case the k-points are set equal to 3 2 1. It is evident that the differences revealed in panel

b are hardly revealable on this scale and the symmetric thinner slab gives results that do

not differ considerably from the thicker cells.

As expected7, all the curves have a monotonic trend leading the surface energy to

smaller values for Ge than for Si.

On all the coverage range analyzed the void reconstruction (“C”) is the more energetic

one. On the contrary the interstitial reconstruction (“D”) is the most stable and from the

trend no crossing with the others is expected till ∼ 5 MLs (001). Indeed the interstitial

reconstruction is the one reproducing accurately the STM data [173] and is found to be

the most stable even in previous works [174].

Ge(113) strained

The data on Ge/Si predict no coverage-induced change of reconstruction.

A change can, however, be found as induced by the strain, since the different recon-

structions may have a different response to a modification of the relative position of atoms.

In order to look for a crossing, we analyzed a broad range of biaxial strain in the plane

[-7%:+4%] for Ge.

The ab initio prediction of the surface energies for Ge(113) are reported in Fig.D.3-(d),

where superimposed on the data are fits of quadratic function of the same type as eqn.(5.4)

at page 99. These fits are not reproducing well the trend because non linear contribution

are non negligible in such a broad range of strain. In these cases the maximum of the

curves is for a biaxial strain of ∼ -1%, the preferred reconstruction being always the

interstitial one. A crossing of this with the pentagon one (“B”) occurs at a biaxial strain

equal to -7%. Since on a Ge/Si nanostructures the strain is within the range [-4%:0], the

reconstruction most likely to be osserved on a nanoisland is the interstitial one, provided

that it can geometrically fit on the facets.

As discussed in sec.5.3.4, Tersoff potential can in principle give reasonable results as

a function of strain. For this reason we compare our DFT-LDA results with this semiem-

pirical approach. As Fig.D.3-(e) proves, the stability of the reconstructions is reversed

with respect to the ab initio results: the most favoured reconstruction for ab initio (D)

is even more destabilized than the unreconstructed (AC) one. This has its origin in the

interstitial 6-fold coordinated atom, that induces a very high strain to the atoms in the

pentagon. The perturbation is so strong that in conjunction with higher compression

(∼ −7%,−8%) it can induce some bond-breaking, causing some points to be out of the

trend established by the other ones. In addition to that, the maxima of the curves occur

at a higher compression (around -4% or -7%).

These data suggest that the stabilization of the interstitial reconstruction can be due

to charge transfer phenomena leading to a more complicated electron distribution [80] and

that a description in terms of the sole strain cannot handle8.

7compare the discussion at sec.2.5.5, page 65
8as is the case for the Ge/Si(1 1 10) analyzed in sec.5.3.6 at page 117
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Figure D.3: Results. Comparison of the unreconstructed γ(Ge-113)-AC (a) for different parame-

ters and cell geometry with the value obtained by Stekolnikov et al (‘Stek’) in Ref.[174]. The top x

axis specifyes the geometry of the (113) BLs free-(fixed)-free from top to bottom, whereas the bot-

tom x axis specifies the vacuum thickness (in units of Ge lattice constant) and the input kpoints.

See discussion at sec.D.1.5. Panel (b) compares the results for the reconstruction B covered with

3.9 ML(001) Ge. DFT-LDA results of Ge/Si for different cell thickness and geometry are reported

in panel (c), showing that the interstitial reconstruction is the most stable one. Panels (d) and

(e) compare the resuts for strained pure Ge cells in the case of DFT-LDA and Tersoff potential

respectively. They predict opposite stability regimes.
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D.2 (001)-MxN surface

In this section we apply the methods employed in this thesis to the analysis of the

“patched” reconstruction of Ge/Si(001) (also called MxN), that we mentioned in sec.2.5.3

at page 61.

We perform a systematic analysis of the surface energy in the Tersoff potential by

using the Poisson-corrected chemical potential for Ge. In so doing, we get results that

differ from published ones by Raiteri et al [6, 8], but our trend is actually confirmed by

DFT-LDA calculations on selected structures.

D.2.1 Introduction

Experimentally, on a Ge-covered Si(001) surface a number of reconstructions appear [175].

On the clean Si substrate the topmost atoms dimerize and align to form dimer rows and

lines as depicted in Fig.D.4-(a), resulting in a (2x1) reconstruction and buckling of these

dimers can lead to a larger supercell, such as the p(2x2) or c(4x2). Epilayers of germanium

induce a transition towards a 2xN Dimer Vacancy Lines (DVL) reconstructions, with N

typically around 8-10 [175], with a geometry similar to the one shown in Fig.D.4-(b)9. This

transition is believed to be induced by the partial relief of the compressive strain allowed

by the missing dimer lines [6, 7, 176]. The same explanation is often called out to describe

the transition to the MxN pattern, where “patches” of 001 terraces are separated from the

others by both dimer vacancy lines and dimer row vacancies (DRV) (see Fig.D.4-(c,d))10.

The interest in these surfaces is not strictly bound to the need of putting the experi-

mental observations on firm theoretical bases, but it is also linked to the formation of SK

islands on this important substrate for the microelectronics. Indeed it was shown [177]

that the DVLs are barrier for the diffusion of adatoms on the surface. This leads to their

forced accumulation on the terraces and to the more favourable nucleation of 3D mounds

that eventually crystallize in {105} pyramids and huts [178].

Hence understanding the energetic stability of the different geometries for different

values of M and N as a function of the Ge coverage is fundamental in predicting the

expected terrace width and, therefore, the kinetics of nucleation. Another reason lays

in the fact that finding the minimum energy reconstruction is important to assess the

stability of the nanostructures laying upon that surface and to do this absolute numbers

of surface energies are needed, that are not computed on a regular base (see e.g. Ref. [7]).

If studies on the 2xN-type reconstructions are present [76], to the best of our knowledge,

no ab initio study of the MxN-type reconstructions (with M>2) has been performed, if,

however, the explanation of the strain relief is the correct one, Tersoff potential should

suffice to the correct description and energy ordering and evolution with coverage, if any.

Some works were already performed in this direction, both dealing with Tersoff poten-

tial directly (such as Refs.[6, 8, 179]) and by using some tight binding method [7]. However

9this is the case studied in chapter 5 where the 2x8-DVL reconstruction of 3ML Ge/Si was taken as a

comparison to the (1 1 10) surface
10it is noteworthy to see that the notation commonly used is the one we adopt here, that is the reverse

of the one adopted in Ref.[7] that was reported in Fig.2.13 at page 62
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from their results, it appears that they used the non-Poisson corrected chemical potential

for Ge or at least it is not clear. Since in Appendix C we PROVE that this is the one

to be used, and since the cells here have different periodicities in the xy plane, a differ-

ent chemical potential can lead to different values of the surface energies and therefore

to a different prediction of stability, here we aim at recomputing the surface energies by

considering this point.

As shown below, we arrive to different results as the published ones with different

conclusions.

D.2.2 Geometry and Method

Since we want to compare our results with those in Refs.[6, 8], we use Tersoff potential

as well. The speed of the calculations allows us to perform an extensive and systematic

analysis of the surface energy density γ as a function of both coverage D and values of M

and N. Afterwards we study the energy in a DFT-LDA approach for selected geometries

to check our predictions and understandings.

In order to have a systematic and general analysis we need to find a way to create

the cells in a fast and automatic way. We have seen in Chapter 5 that Tersoff potential

predicts flat, untilted, dimers since it cannot handle the charge transfer. For this reason

we can simply create a small number of “basic” reconstructed cells from where to get all

the others needed by replicating the regions where no vacancies are found in the cell.

The basics cells are shown in Fig.D.4-(b,c,d) and are:

• 2x4-DVL → creating all the 2xN-DVL (N ≥ 4, ∆N = 1)

• 4x2-DRV → creating all the Mx2-DRV (M ≥ 4, ∆M = 2)

• 4x4-DRV-DVL → creating all the MxN (M ≥ 4, ∆M = 2 and N ≥ 4, ∆N = 2)

where the geometry of the cell compels the interval defined in parenthesis.

All the results with Tersoff are obtained with a cell 20 MLs (001) thick (equal to 5

unit cells). Ge is put just on the top surface, whereas the bottom one is unreconstructed

(as cut, AC) and kept Si-terminated. As in Refs.[6, 8], no atom is kept fixed in order to

have the same conditions as the paper we want to compare our results with. The lattice

constant is kept fixed to the one of the silicon substrate. The bottom surface energy is

computed with an AC pure Si cell and estimated to be equal to ∼ 141.581 meV/Å2.

Results with thicker cells give results in good agreement with the ones shown here, thus

guaranteeing convergence. The lattice constants and the chemical potentials used are the

ones reported in Tab.5.1, page 114.
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Figure D.4: (a) Top view of the dimers on (001) surface, where the Lines and Rows are high-

lighted. (b,c,d) The basic cells from whose handling all the cells are created: 2x4-DVL, 4x2-DRV

and 4x4-DRV+DVL. The cells used are the ones minimized by Tersoff with 1 ML Ge and the atoms

forming the topmost dimers are Ge (red atoms). In each panel the figure at the top left is a side

view directed along [110], the figure at the bottom left a side view directed along [11̄0], the figure

at the right the top view with the same directions as panel (a). Blue arrows in (b,c,d) highlight

Dimer Vacancy Lines, green arrows Dimer Row Vacancy.
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D.2.3 Results for 3 ML Ge coverage: Tersoff

Fig.D.5 resumes the surface energies found in Tersoff potential with the method just

described in the case of a Ge epilayer equal to 3 MLs, as in Ref.[8].

Panel (a) reports the results for 2xN-DVL if the Poisson-corrected chemical potential

for Ge is used (red line) along with the data from Ref.[8] (black triangles). As evident

the values obtained in the article are almost compatible with our data if the unstrained

bulk chemical potential is used (green line).

Our doubt was, therefore, legitimate, indeed it seems that here this value is adopted.

However, as proven in Appendix C, this leads to wrong results and to a different value of

the surface energy if the compared cells have different periodicity in the xy plane, as is

our case.

Indeed the author has confirmed that the chemical potential used here was the energy

per atom of the bulk at the temperature of the experiments11. We speculate that the

deviations of some points in Fig.D.5-(b) from our predictions could be caused by the

authors’ estimation of energy form a simulated annealing approach.

In the same panel, not only the absolute values are different but even the trend differs

from our data.

From geometrical intuition, for a fixed value of M (as in panels and b) the effect of the

DVL should be more and more negligible for larger area of surfaces (i.e. values of N) with

the consequence that:

lim
N→∞

γ(MxN) = γ̃ (D.3)

for a finite value of γ̃. This happens for our data, but on the contrary the data of Raiteri

et al appear to diverge for larger M (panel b).

Panels (c) and (d) make a similar analysis for fixed values of N=4 and N=6, respec-

tively, and changing the value of M. In this case the should expect that:

lim
M→∞

γ(MxN) = γ(2xN) (D.4)

as is the case for our data. The difference with Raiteri et al data is also evident, both in

the values and in trends.

Our data for all the analyzed MxN reconstructions with the Poisson-corrected chemical

potentials are reported in a color scale in panels (e) and (f) in 3D and 2D respectively.

From these data it is evident that the reconstructions without the DRV (i.e. the 2xN-type)

are preferred over any MxN type one. This result is in contrast with the published results

[6, 8], where the 10x6 is the most stable one and apparently in contrast to experimental

findings [8].

Following our results, we may interpret the formation of DRV and a MxN reconstruc-

tion as an “incomplete coverage” due, e.g., by kinetic limiting factors, rather than an

overall surface energy minimization. It is noteworthy to remind, however, that in our cal-

culations no estimation of the entropic term is given, that at the operating temperatures

may play a role.

11Dr. Paolo Raiteri, private communication
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Figure D.5: 3 ML Ge/Si(001) Tersoff potential results. (a) Surface energy of 2xN-DVL re-

constructions with the Poisson-corrected Ge chemical potential (red lines) or the unstrained bulk

chemical potential (green lines) and comparison with the data published by Raiteri et al in Ref.[].

(b,c,d) Same comparison for 4xN, Mx4 and Mx6 reconstructions. It seems that the data reported

in literature are comparable with the ones obtained with the incorrect bulk chemical potential.

(e,f) 3D and 2D view of the values of surface energy γ for different values of M and N obtained

with the Poisson-corrected Ge chemical potential. The reconstruction with DRV have higher en-

ergy than the ones with DVL alone, contrary to the explanation of DRV in terms of a better strain

relieve.
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D.2.4 Results for 3 ML Ge coverage: DFT-LDA

We speculate that another alternative explanation of the disagreement between experi-

ments and our results can be due to some role played by the dimer tilting as discussed at

length in sec.5.3 (page 103) in this thesis for the case of (1 1 10) surface.

To check this possibility, we study some cells in an ab initio approach after properly

tilting the dimers in an alternate fashion as did in chapter 5. We choose the p(2x2) tilting

pattern since it has already been proven to be the most stable configuration [177]. Because

of the large cells, we analyze just the smaller ones.

Also in this case our cells are 20 MLs (001) thick but the bottom-most Si atoms in

the AC configuration are kept fixed. The energy is minimized with the same parameters

used in chapter 5 and discussed in sec.2.2. For the kpoints sampling, the bulk criterion

described in sec.5.3.3 is adopted.

The relaxed cells and the data are reported in Fig.D.6.

Our DFT results for the few data 2xN-DVL nicely agree with others found in literature [76].

Panel (a) clearly shows that, as in the case of Tersoff potential, the introduction of a DRV

increases the energy of the surface (at least in the small range analyzed here). The value

of the 3ML Ge 2x8-DVL is the same found in chapter 5.

From panel (a) we clearly see that the insertion of a DRV (4xN reconstructions) desta-

bilizes the surface by increasing its energy. Although this trend agrees with the Tersoff

potential results, the difference is energy is much higher from the 2xN and 4xN case than

the Tersoff ones.

In the relaxed geometries shown in Fig.D.6-(b,c,d) the dimer tilting pattern does not

appear perturbed by the steps. This is not in contrast with what was found in the case

of (1 1 10). Indeed the degree of strain relieve (i.e. expansion of the compressed Ge) is

proportional to the height of the step itself. Therefore the expansion of a double-height

step is roughly double to the one of a single-height step where it seems that in the latter

case it is not sufficient to appreciably perturb the dimers and break their patterns.

D.2.5 Results for other coverages

So far we have established that for 3 ML Ge coverage the vacancy row-free reconstructions

are favoured against the MxN for any M and N. We now turn our attention to other

coverages.

Fig.D.7-(a) shows the surface energy ontained with Tersoff potential with 1,2,3 and

4 ML Ge for the case of 2xN reconstruction alone. It does not surprise to observe an

oscillation of the value of the energy with deposition instead a monotonic decrease as

expected since we have already shown in sec.5.3.4 that Tersoff potential cannot handle the

dependence on coverage properly. Notwithstanding that, the oscillation are rather small

in comparison to the non-sensical results of other published papers [169] where the surface

energy was increasing monotonically with coverage because the chemical potential used

was not the proper one.

For this incapability of handling the interfaces by Tersoff potential, the results for 1

ML Ge are not trustable. Particularly they would predict a 2xN with the largest possible

N to be stable, against experimental outcomes.



D.2. (001)-MXN SURFACE 193

Figure D.6: (a) DFT-LDA results for 3 ML Ge/Si(001) for selected reconstructions. It is evident

that ab initio data confirms that the insertion of a DRV causes an increase in energy (at least in

the recontructions analyzed), as predicted by Tersoff potential. (b,c,d) Side view of the relaxed

basic cells showing that the alternating tilting pattern is not altered by the 1 ML-deep trenches

created by the reconstruction. The directions of the cells are the same as in Fig.D.4.
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The safer results for 2 and 4 ML Ge come to the same conclusion of the 3 ML: the

preferred reconstruction form the energetic point of view is the one without DRV. Inci-

dentally, the results for 4 ML is almost degenerate to the case of 3 ML, meaning that we

are almost at convergence.

Figure D.7: Results of Tersoff potential for coverages other than 3 ML Ge. (a) Trend of the 2xN

reconstructions for 1,2,3,4 ML Ge. The values of 3 and 4 ML are very similar, showing that 3 ML

is almost at convergence. (b,c,d) 2D representation of the surface energy for 1, 2 and 4 ML Ge,

respectively, to be compared with the data in Fig.D.5-(f). In every case the reconstructions with

M=2 are the most stable ones.
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D.2.6 Discussion and conclusions

Here we have shown that the use of the Poisson-corrected chemical potential for Ge predicts

a different stability for the (001)-MxN surfaces as established in literature, leading to the

conclusion that no DRV is energetically favoured.

This is not only in contrast to published results, but urges also to reconsider the

interpretation of the patched-reconstruction onset. Indeed, following our results, we can

rule-out the description of the onset of DVR+DVL as a way to relieve strain. This may

be regarded as a result of an “incomplete” coverage of the substrate, or as a first attempt

to create 2D islands as precursors for SK 3D islands. Another option could be the role

played by entropic term or by kinetic factors, indeed the 2xN or MxN are observed under

different experimental conditions (see discussion in Ref.[175]).

If this is the case, a prolonged annealing at a not-too-high temperature should allow

the system to reach the thermodynamic minimum where no DRV are formed. To our

knowledge, such an experiment is still missing.

Understanding what are the roles of the other contributions could elucidate the pre-

dictability of purely energetic approaches, but this analysis is beyond the scope of the

present work.

Incidentally, the 2xN reconstruction is the one used in several published works handling

first-principles methods. In one of these works [175] they use the energetics to predict the

critical thickness of the WL before islanding takes place. Although the method adopted is

approximated, it is noteworthy to see that the analysis of the 2xN geometry is enough to

predict the value of 3-4 ML, in agreement with experimental values. If the 2xN was not

the minimimum energy condition, this result should not be expected.

As Ref.[8] shows, intermixing can actually alter the ordering of the reconstructions,

and this contribution is not considered in the present work.

We present a method to analyze and discuss the issue of intermixing in the next section

for the case of the (1 1 10) surface.
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D.3 (1 1 10) intermixed with Monte Carlo and Tersoff

D.3.1 Introduction

In chapter 3 we have shown the importance of intermixing in the elastic relaxation and

hence in the overall stability. Actually intermixing can influence the surface energy term

as well.

In all the calculations on surfaces presented so far in this thesis we have made the

assumption that the interface Ge-Si is sharp and parallel to the free surface, with the

consequence that Ge is deposited layer by layer, leading to the convention (and conversion)

of coverage we have highlighted in sec.2.5.5 at page 65.

If temperature is high enough, however, the atoms can mix leading to a certain non-

uniform distribution both in depth and in the xy plane. Intuitively, in the case of Ge/Si

surfaces, the Ge atoms will tend to saturate the surface (since their dangling bonds have

lower energy) and will preferentially take the place of Si atoms in those regions where the

reconstruction leads to tensile strain.

D.3.2 System and Method

Here we want to study the effects of intermixing on the surface we have studied most

in this thesis: the (1 1 10)-Db and approach the problem via a Basin-Hop Monte Carlo

algorithm.

Following some ideas already present in literature in continuum models [180], we make

the hypothesis that atoms of Ge can swap place with the atoms of Si inside a region of a

certain depth that we fix equal to 4 MLs (001).

The generic algorithm should allow not only to accept swaps allowing a reduction of

energy, but also those increasing it since atoms might have to overcome some barriers to

reach the absolute minimum energy condition. Therefore the simulation should be carried

out at a finite temperature T. The algorithm is therefore the following:

1. randomly chose a couple atom Ge and an atom Si in the region of intermixing and

swap their position

2. relax the system and compute the internal (and surface) energy

3. the swap is accepted if a randomly chosen positive number ℵ ∈ [0 : 1] is such that

ℵ < exp

(
−∆E

kT

)
(D.5)

where ∆E is the change in energy caused by the swap and k is the Boltzmann factor.

This criterion automatically allows the acceptance for ∆E < 0.

4. another couple of atoms is randomly chosen and the cycle starts over

Obviously the temperature T must be high enough to allow atoms overcome energetic

barriers but low enough not to have a too high rate of acceptance of swap raising the

overall energy.
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Since this method requires several steps and attempts to reduce the surface energy

to a considerable extend, it is unfeasable in an ab initio environment. Therefore here we

evaluate the energy by using the Tersoff potential.

D.3.3 Results: one-shot

In order to check the efficiency of the method and to find a proper temperature to reduce

the energy, we first consider the case of overall minimization of energy by taking 4 MLs

(001) of Ge that can intermix with 4 MLs (001) Si underneath (corresponding to ∼ 20

ML 1 1 10), reproduced in Fig.D.8-(a).

We use asymmetric cells as done in sec.5.3.1, where the bottom surface is left unre-

constructed (AC) and fixed, but we double the size of the cell along x direction in order

to contain two dimers in a line with the aim to reveal possible intermixing in the dimers

themselves. The energy E we use for the criterion of acceptance of swap is the surface

energy of the top (reconstructed) surface γ ·A.
The surface energy γ of the top (reconstructed) surface of the cell during the swap

process and the accepted swaps are reported in Fig.D.8-(b,d) for temperatures equal to 10

K and 600 K respectively, where the structures obtained in the final accepted swap (blue

point) are reported in panels (c,e) respectively. As evident, the 10 K case is very effective

in reducing the surface energy leading the energy from ∼ 82 meV/Å2 to ∼ 76.5 meV/Å2.

On the contrary, in the same range of attempted swaps, the case of higher temperature

(600 K) is less effective in reducing the energy leading to a final value of ∼ 79 meV/Å2.

This happens because the high temperature causes several swaps increasing the energy to

be accepted.

The final configuration in panel (c) shows that, consistently with the expectation

highlighted before, the atoms at the very surface are all Ge atoms. The atoms underneath

have a peculiar distribution between Ge and Si, where the Ge atoms are more likely to be

at the positions with tensile strain. No difference is noted along x direction, showing that

there was no need to consider a large cell in this direction.

D.3.4 Results: Layer by layer and DFT-LDA values

The prediction just made is based on the overall minimization of the surface energy by

allowing a free intermixing in a thick layer in the substrate. However, during the deposition

several complex kinetic mechanisms can take place. In an attempt to model the effects

of such mechanisms we can ideally find the minimum energy configuration by allowing

intermixing of the topmost Ge layer with the atoms laying underneath in a thickness

of 3 (001) MLs as discussed in some articles [181]. If we perform this at every Ge

ML deposited, then some atoms intermixed in the lowest layers will be “frozen” in this

configuration mimicking their impossibility to swap with atoms on the surface.

Since the (1 1 10) surface is both non-planar and reconstructed, a big effort is spent to

carefully consider the addition of the (N+1)-th ML(001) Ge upon the optimized structure

with N MLs Ge in order to recreate the geometry while keeping the distribution of atoms

equal to the one obtained at the step before.
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Figure D.8: Intermixing studied with Tersoff potential and a Monte Carlo approach for 4 ML

(001) Ge. The intermixing is allowed to occur in the region of the Ge MLs with 4 ML (001)

underneath. (a) initial configuration. (b,d) trend of the surface energy γ for the case of low and

high temperature, respectively. Panels (c,e) show the final configurations obtained. See discussion

at sec.D.3.3.
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Since in the previous results no difference is found in the x direction, here we employ a

cell with a single dimer along x. In this way we employ a cell with 102 ML (1 1 10) equal

to the one adopted in first principles calculations in sec.5.3.1.

By exploiting the results of the ‘one-shot’ calculations, we use the low temperature

values, and since we halve the area A, we employ a temperature equal to 5 K in eqn.(D.5).

The results are shown in Fig.D.9.

Panel (a) shows the configuration with 1 ML Ge, whereas panels (c,e,g,i) show the min-

imum energy condition obtained for 1,2,3,4 (001) MLs Ge, respectively. The energies in

panels (b,d,f,h) show the trend as intermixing is working. The starting value of the energy

in the panel with (N+1) ML is not the same as the final value of the one with N ML

because the added Ge ML alters the energy of the surface.

Panel (h) shows that the final configuration with this “artificially-kinetically-hindered”

intermixing phenomena is higher in energy (final value in the plateau of ∼ 78.3 meV/Å2)

with respect to the previous case of energetic minimization without frozen atoms.

This suggests that the complex phenomena occurring during deposition with the con-

sequent freezing of some atoms deep in the surface, can in fact alter the prediction of the

overall intermixing within a certain thickness in the substrate.

We can estimate the effect of such a distribution of atoms in DFT-LDA approach by

computing the energy of the cells with the atoms distribution found here. The energy is

reported in Fig.D.10 where a comparison with the non-intermixed case is performed.

D.3.5 Discussion

Our results show that intermixing can actually lower the surface energy as predicted by

strain contribution alone (from Tersoff potential), yet the surface energy of the intermixed

case is higher wrt the pure one as predicted by first principles approaches. This trend is

in accordance with literature results [6], both from LDA and GGA and again prove the

necessity to adopt first principles calculations for the estimation of the surface energies,

rather than using semiempirical potentials.

It is worth mentioning that the entropic terms are not taken into account, that, instead,

can be relevant at the higher growth temperature.

In Chapter 5 intermixing for the (1 1 10) substrate is neglected because experimentally

the deposition occurs at low temperature (550◦C), a condition that can hinder the swaps

leading to intermixing.
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Figure D.9: Intermixing studied in a layer-by-layer method with Tersoff and Monte Carlo. The

intermixing is allowed to occur in the region of the topmost Ge ML(001) and 3 ML (001) under-

neath. (a) initial configuration with 1 ML Ge. (b,d,f,h) trend of the surface energy γ · A for the

case of 1,2,3,4 Ge ML (001) leading to the final distribution of species depicted in panels (c,e,g,i).

See discussion at sec.D.3.4.
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Figure D.10: (1 1 10)-Db Intermixed with MC and Tersoff: Results Layer by layer analyzed with

DFT-LDA. Cells with 102 (1 1 10) MLs, with Ge on top non intermixed (‘Pure’) and intermixed.

The intermixed situation has higher energy than the pure one for higher coverage.
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Schäffler and G. Bauer. Appl. Phys. Let., 93 : 121901 , (2008).

[29] R.J. Wagner and E. Gulari. Phys. Rev. B, 69 : 195312 , (2004).

[30] M. Brehm, F. Montalenti, M. Grydlik, G. Vastola, H. Lichtenberger, N. Hrauda,

M. J. Beck, T.Fromherz, F. Schäffler, L. Miglio, and G. Bauer. Phys. Rev. B, 80 :

205321 , (2009).

[31] J. J. Zhang, F. Montalenti, A. Rastelli, N. Hrauda, D. Scopece, H. Groiss, J. Stangl,

F. Pezzoli, F. Schaffler, O. G. Schmidt, L. Miglio,2 and G. Bauer. Phys. Rev. Let.,

105 : 166102 , (2010).

[32] A. Rastellia, M. Stoffel, G. Katsaros, J. Tersoff, U. Denker, T. Merdzhanova, G.S.

Kar, G. Costantini, K. Kern, H. von Kanel, O.G. Schmidt. Microelectronics Journal,

37 : 1471 , (2006).

[33] G. Katsaros, A. Rastelli, M. Stoffel, G. Isella, H. von Kanel, A.M. Bittner, J. Tersoff,

U. Denker, O.G. Schmidt, G. Costantini, K. Kern. Surf. Sci., 600 : 2608 , (2006).



BIBLIOGRAPHY 213

[34] T.U. Schulli, M. Stoffel, A. Hesse, J. Stangl, R.T. Lechner, E. Wintersberger, M.

Sztucki, T.H. Metzger, O.G. Schmidt, and G. Bauer. Phys. Rev. B, 71 : 035326 ,

(2005).

[35] G. Katsaros, G. Costantini, M. Stoffel, R. Esteban, A. M. Bittner, A. Rastelli, U.

Denker, O. G. Schmidt, and K. Kern. Phys. Rev. B, 72 : 195320 , (2005).

[36] A. Rastelli, M. Stoffel, A. Malachias, T. Merdzhanova, G. Katsaros, K. Kern, T.H.

Metger, and O.G. Schmidt. Nanoletters, 8 : 1404 , (2008).

[37] R. Gatti, F. Uhlik and F. Montalenti. New J. Phys., 10 : 083039 , (2008).

[38] D. Digiuni, R. Gatti and F. Montalenti. Phys. Rev. B, 80 : 155436 , (2009).

[39] A. Rastelli, M. Kummer, and H. von Kanel. Phys. Rev. Let., 87 : 256101 , (2001).

[40] E. Sutter, P. Sutter, and J. E. Bernard. Appl. Phys. Let., 84 : 2262 , (2004).

[41] E. Pehlke, N. Moll, A. Kley, M. Scheffler. Appl. Phys. A: Mater. Sci. Process, 65 :

525 , (1997).

[42] C. M. Retford, M. Asta, M. J. Miksis, P. W. Voorhees, and E. B. Webb III. Phys.

Rev. B, 75 : 075311 , (2007).

[43] J. Tersoff and F.K. LeGoues. Phys. Rev. Let., 72 : 3570 , (1994).

[44] A. Zangwill. Physics at surfaces (Chapter 1). Cambridge University Press, (1987).

[45] G. Wulff. Z. Krystallog., 34 : 449 , (1901).

[46] M. Holzer. PhD thesis, Simon Fraser University, (1990).

[47] H. P. Bonzel, M. Nowicki. Phys. Rev. B, 70 : 245430 , (2004).

[48] A. A. Stekolnikov and F. Bechstedt. Phys. Rev. B, 72 : 125326 , (2005).

[49] J. Tersoff. Phys. Rev. B, 39 : 5566 , (1989).

[50] J. Tersoff. Phys. Rev. B, 41 : 3248 , (1990).

[51] D. Srivastava, R. S. Taylor, and B. J. Garrison. Journal of Vacuum Science and

Technology B, 9 : 1517 , (1991).

[52] G. Kresse and J. Furthmüller. Phys. Rev. B, 54 : 11169 , (1996).

[53] G. Kresse and J. Furthmüller. Computational Materials Science, 6 : 15 , (1996).

[54] D. Vanderbilt. Phys. Rev. B, 41 : 7892 , (1990).

[55] D. M. Ceperley and B. J. Adler. Phys. Rev. Lett., 45 : 566 , (1980).

[56] J. P. Perdew and A. Zunger. Phys. Rev. B, 23 : 5048 , (1981).



214 BIBLIOGRAPHY

[57] S. Cereda and F. Montalenti. Phys. Rev. B, 81 : 125439 , (2010).

[58] E. M. Liftshitz. Theory of elasticity. Elsevier, (1986).

[59] L. W. Wang A. J. Williamson C. Pryor, J. Kim and A. Zunger. Jour. Appl. Phys.,

83 : 2548 , (1998).

[60] F.D. Murnaghan. Proc. NAS, 30 : 244 , (1944).

[61] F. Birch. Phys. Rev., 71 : 809 , (1947).

[62] D.S.Scholl and J.A.Steckel. Density functional theory: A practical introduction.

Wiley, 2009.

[63] T. Soma. J. Phys. F: Metal Phys., 4 : 2157 , (1974).

[64] P. Beauchamp L. Pizzagalli and J. Rabier. J. Phys.: Condens. Matter, 14 : 12681

, (2002).

[65] E. M. Fitzgerald. Mat. Sci. Eng. B, 124 : 8 , (2005).

[66] T. Hammerschmidt, P. Kratzer, and M. Scheffler. Phys. Rev. B, 75 : 235328 ,

(2007).

[67] M. Fearn M. A. Migliorato, A. G. Cullis and J. H. Jefferson. Phys. Rev. B, 65 :

115316 , (2002).

[68] R Zhu, E Pan, P W Chung, X Cai, K M Liew and A Buldum. Semicond. Sci.

Technol., 21 : 906 , (2006).

[69] T. Sakurai R. G. Zhao Z. Gai, W. S. Yang. Phys. Rev. B, 59 : 13009 , (1999).

[70] F Montalenti, A Marzegalli, G Capellini, M De Seta and Leo Miglio. J. Phys.:

Condens. Matter, 19 : 225001 , (2007).

[71] R. Stanley Williams, G. Medeiros-Ribeiro, T. I. Kamins and D. A. A. Ohlberg. Acc.

Chem. Res., 32 : 425 , (1999).

[72] M. Stoffel, A. Rastelli, J. Tersoff, T. Merdzhanova, and O. G. Schmidt. Phys. Rev.

B, 74 : 155326 , (2006).

[73] P. Kratzer T. Hammerschmidt and M. Scheffler. Phys. Rev. B, 77 : 235303 , (2008).

[74] R.E. napolitano, S. Liu. Phys. Rev. B, 70 : 214103 , (2004).

[75] P. J. Hesketh, C. Ju, S. Gowda, E. Zanoria and S. Danyluk. J. Electrochem. Soc.,

140 : 1080 , (1993).

[76] G. Lu, M. Cuma and F. Liu. Phys. Rev. B, 72 : 125415 , (2005).

[77] M. J. Beck. “Surface and Interface Properties in Ge/Si Heteroepitaxy from First-

Principles”. PhD thesis, Northwestern University, Evanston, Illinois, USA, (2005).



BIBLIOGRAPHY 215

[78] S. Cereda. “Atomic-scale modeling of surface processes relevant for Si thin-film

growth”. PhD thesis, University of Milano-Bicocca, Italy, (2007).

[79] S. Cereda and F. Montalenti. Phys. Rev. B, 75 : 195321 , (2007).

[80] A. A. Stekolnikov, J. Furthmuller and F. Bechstedt. Phys. Rev. B, 68 : 205306 ,

(2003).

[81] P. Raiteri, D. B. Migas, L. Miglio, A. Rastelli, H. von Känel. Phys. Rev. Lett., 88 :

256103 , (2002).

[82] T. Hashimoto, Y. Morikawa, Y. Fujikawa, T. Sakurai, M.G. Lagally, K. Terakura.

Surf. Sci., 513 : L445 , (2002).

[83] A. A. Stekolnikov, J. Furthmuller and F. Bechstedt. Phys. Rev. B, 67 : 195332 ,

(2003).

[84] Z. Gai, X. Li, R. G. Zhao and W. S. Yang. Phys. Rev. B, 57 : R15060 , (1998).

[85] E. Pehlke and J. Tersoff. Phys. Rev. Lett., 67 : 465 , (1991).

[86] I. Berbezier and A. Ronda. Surf. Sci. Rep., 64 : 47 , (2009).

[87] A. Rastelli, H. von Känel, G. Albini, P. Raiteri, D. B. Migas and L. Miglio. Phys.

Rev. Let., 91 : 229901 .

[88] D. B. Migas, S. Cereda, F. Montalenti, L. Miglio. Surf. Sci., 556 : 121 , (2004).

[89] C. B. Duke. Chem. Rev., 96 : 1237 , (1996).

[90] R.T. Fu, K.Esfarjani, Y. Hashi, J. Wu, X. Sun and Y. Kawazoe. Sci. Rep. RITU,

A44 : 77 , (1997).

[91] A. A. Baski, S.C. Erwin, L.J. Whitman. Surf. Sci., 392 : 69 , (1997).

[92] V. A. Shchukin, N. N. Ledentsov, P. S. Kop’ev and D. Bimberg. Phys. Rev. Lett.,

75 : 2968 , (1995).

[93] G. Lu and F. Liu. Phys. Rev. Lett., 94 : 176103 , (2005).

[94] P. Muller and R. Kern. Appl. Surf. Sci., 102 : 6 , (1996).

[95] V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov. Phys. Rev. B, 68 : 075409 ,

(2003).

[96] G. Vastola. PhD thesis, Univ. of Milano-Bicocca, 2008.

[97] J. J. Zhang, F. Montalenti, A. Rastelli, N. Hrauda, D. Scopece, H. Groiss,

J. Stangl, F. Pezzoli, F. Schaffler, O.G. Schmidt, L. Miglio, and G. Bauer.

Phys. Rev. Let., 105 : 166102 , (2010)– and supplementary material at

http://link.aps.org/supplemental/10.1103/PhysRevLett.105.166102.



216 BIBLIOGRAPHY

[98] V. Jovanovic et al. IEEE Electron Device Lett., 31 : 1083 , (2010).

[99] G. Katsaros, P. Spathis, M. Stoffel, F. Fournel, M. Mongillo, V. Bouchiat, F. Lefloch,

A. Rastelli, O. G. Schmidt and S. De Franceschi. Nature Nanotechn., 5 : 458 , (2010).
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