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Introduction

To build up models for natural phenomena is an attitude of the human being, needed in order
both to develop an understanding of what is going on around us and to design strategies
to master it. Mathematics has gained a prominent position amongst the tools which can
be used to perform such a modeling. Indeed, the evolution of technology has always been
demanding in its request for precise previsions, in any field of application. The great, and
sometimes surprising, achievements obtained by the interaction of physics, natural sciences
and engineering with mathematics, resulted in a continuous growth of each of the disciplines
involved in this process.

Nowadays, any kind of application is requiring new mathematical models, also because
computers essentially read mathematics. The interaction with scientific calculus and numer-
ical simulations also emphasizes an important fact: mathematical models cannot perfectly
reproduce reality, but this is not a major drawback, provided that the achieved approxima-
tion be good enough.

Continuum Mechanics is an important field of applied mathematics, based on approxi-
mating the essentially granular matter with a continuum, which has provided a number of
models, successfully exploited in physics and engineering. The main mathematical ingredient
in Continuum Mechanics are differential equations, since their solutions represent the expected
configuration or evolution of the physical system under consideration. Hence, we understand
why three fundamental steps within continuum mechanical modeling are: to write the right
equations, to analyze the properties of their solutions, and to solve them, mostly by means
of numerical simulations. The theory of differential equations has produced a variety of ap-
proaches to them; those evolving perspectives have always improved the possibility of setting
up continuum mechanical models, capturing new applications and phenomena. Moreover,
they helped in constructing more flexible frameworks for Continuum Mechanics.

Within the present thesis, I want to consider the Virtual Power framework for Continuum
Mechanics, which has gained considerable attention after a seminal paper by Germain [13],
mainly in connection with its applicability to non-classical models for materials. That frame-
work is intimately related to the weak (or variational) form of partial differential equations,
whose introduction provided great enhancements in their mathematical theory, and is also
the basis for the modern numerical simulations. I introduce, in Chapter 1, a geometrical
approach to possibly infinite dimensional dynamical systems, based on the theory of Banach
manifolds, which has not yet been fully exploited in Continuum Mechanics, though it has
been used in some particular cases, as explained in [1]. This theory generalizes the Virtual
Power framework, being even more flexible and allowing for the construction of continuum
mechanical models on non-Euclidean domains.

Higher-gradient continuum mechanical theories has been considered by Toupin [32] in the
context of elasticity, and by Germain [13] within the Virtual Power framework. More recently,
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Gurtin [18] applied them to single-crystal viscoplasticity, and Fried and Gurtin [12] proposed
a second-gradient model for viscous fluids. The importance of [12] relies also in having set
these models into a more general and logically well-established framework, as they were, until
then, merely ad hoc extensions of the differential problems related to classical models. The
key feature of second-gradient theories is the presence of multiple length scales and the pos-
sibility of encompass non-standard interactions. In two papers with Marzocchi and Musesti
([16],[17]), using the Virtual Power framework, I studied the mathematical properties of a gen-
eral linear isotropic incompressible second-gradient fluid. Constitutive prescriptions for these
fluids are presented in Chapter 3, together with the constraints imposed by thermodynamical
considerations on some new material parameters.

The key features of the analyzed model are the possibility of describing the adherence
interaction of a three-dimensional fluid with one-dimensional structures immersed in it, and
also of including concentrated interactions, thanks to the non-classical structure of the power
expended by both the internal and the external stresses which act on the fluid. A presentation
of higher-gradient theories is contained in Chapter 2. They are introduced, using the general
framework proposed in Chapter 1, as a particular class of continuum mechanical models,
arising from precise assumptions on the kinematics of the descriptors of the system. That
assumptions are encoded in the fact that descriptors belong to a suitable function space, which
constitutes a Banach manifold, and higher-order powers are defined as integral representations
of elements of the cotangent bundle on that Banach manifold. Exploiting equivalent integral
representations for powers of arbitrary order, the appearance of boundary interactions with
a non-standard structure is described.

In Chapter 4, the differential problems associated with the pressure-driven flow of a second-
order linear liquid, which adheres to a one-dimensional structure, is considered. Existence
and uniqueness of solution are established, also for the situation in which the one-dimensional
structure drags the three-dimensional fluid, producing the motion. Finally, some examples
are provided in Chapter 5, in order to give explicit solutions, to show how the concentrated
stresses, if present, can be computed, and to suggest possible interpretations for the physical
meaning of the higher-order material parameters.
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Chapter 1

Continuum Mechanics and the
Principle of Virtual Powers

Continuum Mechanics is intended to give a way to describe the possible configurations, kine-
matics and dynamics of objects geometrically described by “infinitely many” points. Once
settled configurations and kinematics, the Principle of Virtual Powers is a tool (amongst many
available ones) to mathematically synthesize the dynamics of the object. Though the history
of the usage of that principle has not been analyzed in detail, the contemporary attention
to it has certainly originated by [13] and also by [3], and in [11] and [19] it is systematically
employed to set up continuum mechanical theories.

As it will become clear later, the Virtual Powers approach to Continuum Mechanics corre-
sponds to a nice geometrical approach to dynamical systems, which will be briefly described
in the following section. The striking advantages of such a perspective consists both in a
reconciliation under the same mathematical structure of Continuum Mechanics, Rational
Mechanics, Lagrangian Field Theories and other branches of Mathematical Physics, and in a
formulation of the related Differential Equations which corresponds to that required by the
modern tools used in Functional and Numerical Analysis.

1.1 Geometrical approach to dynamical systems

A dynamical system is a triple (Ω,D ,S) where Ω is a set named underlying space, the phase
space D is a product of sets of functions, whose domain is Ω, endowed with the structure
of differentiable Banach manifold,(1) and S is a section of the cotangent bundle on D . The
section S evaluated at u ∈ D will be denoted Su. Elements of D are called configurations,
their components are the descriptors of the system, and elements of the tangent space at any
u ∈ D are called virtual velocities. We can characterize equilibrium configurations for the
dynamical system (Ω,D ,S) as points u of D at which S is vanishing (or vertical), that is
〈Su, v〉 = 0 for any virtual velocity v ∈ TuD .

Notice that I use the adjective ‘virtual’ to indicate that virtual velocities are not only far
from being the actual velocity field of the system, but often far from being velocities at all,
since their physical units depend on the units of the descriptors. Moreover, the term ‘velocity’

(1)For basic facts about differentiable Banach manifolds see Appendix A.
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2 Chapter 1. Continuum Mechanics and the Principle of Virtual Powers

is used to convey the idea of changing, and it is borrowed from the particular, though very
important, problem of mechanical equilibrium for a system of point masses.

Dynamics concerns the determination of paths in the phase space, which are parametrized
by time, describing feasible evolutions of the system. Equilibrium configurations correspond
to constant paths, while feasible evolutions u(t) are characterized by the differential equation:

〈u̇, v〉(t) = 〈Su, v〉(t) (1.1)

for any virtual velocity v ∈ Tu(t)D at any instant t. A major issue is to clarify the meaning of
both the time derivative (denoted by a superimposed dot) and of the phrase ‘at any instant’.

Indeed, equation (1.1) suggests an interpretation of u̇ as an element of the cotangent
space T ∗uD , whereas the definition of the time derivative as the derivative along a path,
traced on D and parametrized by t, places u̇ in the tangent space TuD . Hence, in order to
give an unambiguous meaning to (1.1), we need a bijection between the tangent space and its
topological dual, the cotangent space. If the tangent space is a Hilbert space, Riesz’ isometry
provides such a correspondence, but also when the tangent space is a reflexive Banach space,
there is a canonical bijection into its dual space (see [29, Chap. 6]). By means of such duality
application, we can identify a unique element in T ∗uD representing the tangent vector u̇, and
make use of it in equation (1.1).

Nevertheless, it is often useful to restate evolutionary problems, whose solutions are non-
constant paths on D , as static problems, whose solutions are constant paths, in a larger space.
This can be done including the time variable in the underlying space, which becomes of the
form Ω̂× [tI , tF ], with [tI , tF ] ⊆ R. The phase space D shall be accordingly updated, and the
section S will contain inertial terms, which encode the need for evolution. In this way, the
differential problem associated with the dynamical system becomes:

〈Su, v〉 = 0 (1.2)

for any virtual velocity v ∈ TuD . Since now the underlying space includes the temporal
domain, also evolutionary solutions are recovered.

Within the subsequent section I will settle Continuum Mechanics in the described frame-
work, but now I want to show how it encompasses Rational Mechanics and Lagrangian Field
Theories. As to the former, let E be a discrete set with N elements; the set of functions, which
associates to each point its position in R3 and its linear momentum, is isomorphic to (R3)2N .
Let D be the set of differentiable functions (q, p) : [tI , tF ] → (R3)2N , then, solutions to the
Newton’s equations, for the system of point masses (mi)

N
i=1, are equilibrium configurations

for the dynamical system (E × [tI , tF ],D ,S), where the first component of S is p, and the
second one is the sum of internal and external forces and reactions, to which is added also
the inertial term, which is proportional to −(q̇, ṗ).

As to Lagrangian Field Theories, Ω is often the Minkowski space-time (a Lorentzian
manifold), D is the functional space to which the field belongs, and S is the first variation
of the Lagrangian action which defines the theory. The condition (1.2) corresponds to the
Euler–Lagrange equations associated with the action.

1.1.1 Observer’s changes and covariance

The covariance of the physical laws is a principle, requiring the physics of a system to be
invariant with respect to changes in the frame of reference used by an observer to describe it.
It is an essential requirement which must be satisfied when constructing any physical theory.
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Given a dynamical system (Ω,D ,S), assume that we can describe Ω by means of a (maybe
local) coordinate system and let A denote the expression of any mathematical object of the
theory in that coordinate system. Assume also that there is a group G of transformations
which associate to the original coordinate system a new one and, given φ ∈ G, denote by Aφ

the expression of A in this new coordinate system. The dynamical system (Ω,D ,S) is said
to be G-covariant if, for any u ∈ D and any v ∈ TuD ,

〈Sφ
uφ
, vφ〉φ = 〈Su, v〉 ,

for any φ belonging to the group G of frame transformations.
If there exists a coordinate system on Ω, we can always consider the trivial group of

transformations {Id}, containing only the identity map, but {Id}-covariance wouldn’t require
anything. As an opposite situation, we could consider a group of transformations which spans
the whole set of possible coordinate system on Ω. This for instance the choice in General
Relativity, but it is certainly not the most popular choice in Continuum Mechanics. Indeed,
one can argue that there is a proper subset of the set of frames of reference, the set of so-
called inertial frames, amongst which observers should choose their frame. Hence, most of
the times, the group G spans only a set of “nicer” coordinate systems.

1.2 Continuum Mechanics

While speaking about Continuum Mechanics, two different aspects come into play: the me-
chanics of a continuum and the mechanics on a continuum. If the on side is to be emphasized,
the natural choice is that of an Eulerian perspective, where the descriptors of the state of
the system are fields living on a fixed continuous space-time. While that underlying space is
the common domain of all the fields, they can take values in quite different sets, describing
different objects. If the of side is stressed, a Lagrangian perspective is taken, the underly-
ing space describes the continuum and its topological properties, while the placement of the
continuum into the real space is a descriptor with a prominent kinematical role.

In both cases, the phase space D is the product of sets of functions whose components
are descriptors of the continuum. Since a continuity assumption affects also the motion, the
kinematics is essentially encoded in the tangent space of the phase space. Given the aims of
Continuum Mechanics, it is very natural to assume D to be a Banach space, and hence TuD
turns out to be isomorphic to D for any u. If, moreover, D is a Hilbert space the isomorphism
is a canonical one. Notice that the choice of descriptors implies a choice of the virtual fields:
kinematics is encoded in the descriptors.

The dynamics of the system which is to be modeled is encoded in the definition of S. A
key concept, used while modeling it, is that of power expenditure: any action which is likely to
produce a change in the actual configuration expends a nonzero power on the virtual velocity
which represents the “direction” of such a change. An equilibrium configuration is such that
the powers expended on any virtual velocity, by anything which can expend power, sum up
to zero. From a mathematical point of view, linear forms on the space of virtual velocities
are the objects which expend power, and the amount of the expended power is the value of
the linear form calculated on a virtual velocity. Such linear forms represent interactions.

The Principle of Virtual Powers is now the name which is given to (1.2) when 〈Su, v〉
represents the total power expended by the system in the configuration u on the virtual
velocity v. Usually, the total power is the difference between the power of the internal
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interactions and the power of the external interactions, where the distinction comes from
viewing the system as opposed to the environment. The internal power contains mutual
interactions between parts of the system, while the external power represents the actions
which can be performed on the system by the environment. Notice that (1.2) is a balance of
powers only when we are looking for the mechanical equilibrium of a system, while, when we
include the temporal domain in Ω, it becomes a balance of works (usually referred to as the
Principle of Virtual Works), and it would be a balance of something else if the application
required so.

The modeling of internal and external interactions will be treated in subsequent chapters,
while now I want to emphasize the extended notion of kinematics which naturally arises from
the present approach. In fact, while the original notion of kinematics is related to the possible
evolutions of the position of point masses or of the placement of a continuous body in the
physical space, here any descriptor carries its own kinematics, since it has its own possible
evolutions, corresponding to paths traced on D . Moreover, the evolution can be with respect
to a parameter which is not necessarily the time. Finally, recall that, given a configuration
u ∈ D , the possible directions of the evolution are the elements of the tangent space TuD ,
which describes the kinematical constraints.

1.2.1 Inertial terms

In order to encompass evolutionary problems, we have to include in the balance (1.2) the power
expended by the linear form associated with the time derivative of the descriptor. When the
time variable is included in Ω by the very structure of the problem under consideration (e.g. in
Relativistic Field Theories), time-evolution terms arise in a natural way. On the other hand,
if we want to make an evolution equation out of a static problem with associated dynamical
system (Ω̂, D̂ , Ŝ), we have to consider equation (1.1); then, in order to put it in the form (1.2),
we have to set Ω := [tI , tF ]× Ω̂ and D := B([tI , tF ]; D̂), where B is a suitable Banach space,
and we have to extend Su := Ŝu − u̇, which naturally belongs to T ∗u D̂ , to a continuous linear
form on T ∗uD . Such an extension is usually straightforward in concrete situations.

There are some particular cases in which such terms produce the so-called inertial forces.
It essentially happens when we have a placement field and the linear momentum field as
relevant descriptors: given the link between them, expressed by the evolution equation for
the placement, the time-evolution term in the equation for the linear momentum becomes the
Newtonian ‘mass times acceleration’, which is often described as ‘minus the inertial forces’.

A particular class of interactions, typical of the Eulerian perspective, which has an inertial
origin, is that of advective terms: when a field describes a property which is carried about by
the moving matter, it is transported by the associated velocity field, and it evolves in time
also in the absence of any other interaction, if its gradient field is not everywhere orthogonal
to the velocity field.

1.2.2 Thermodynamics brought in

Thinking about physics, we are often led to separate mechanical facts from thermodynamical
ones. But, if thermodynamics is thought of as a theory involving quantities and laws which
describe the global behavior of a system of many many particles, somehow discarding the
details of their mechanical behavior at a microscopic level, then I would say that Continuum
Mechanics as a whole is a thermodynamical theory.
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Indeed, the points (or infinitesimal elements) of a continuous body are usually described
as small enough to assume that any relevant descriptor takes a unique value on each point,
but big enough to contain a number of particles which allows for a statistical treatment of
their physical properties. Hence, mechanical and thermodynamical descriptors of a continuum
deserve an identical mathematical treatment, being simply different components of a u ∈ D .

It is then clear that the Principle of Virtual Powers can produce thermodynamical bal-
ances, contributing necessary additional equations to many continuous models. This perspec-
tive is introduced e.g. in [30] and in [19], where it is also explained how thermodynamical
imbalances are obtained, and how the latter can be used to select constitutive prescriptions
by the Coleman-Noll procedure [6].

1.3 Examples and further possibilities

In this section I want to show that some well-established continuum mechanical theories do
fit into the proposed framework. Then I will enlighten the flexibility of that approach in
defining theories on non-Euclidean domains, which still represent a non-standard setting for
Continuum Mechanics.

1.3.1 Hyperelasticity and compressible fluids

As a first example I will consider a hyperelastic material. The variational structure of the
problem, considered e.g. in [4] or [7], allows for a straightforward reinterpretation of it in
the dynamical system setting. The information about the internal stresses is encoded in the
stored elastic energy density ψ(∇u), where ψ is a real-valued function on Mat3(R), and the
vector field u(x) represent the displacement of the material point with respect to its reference
configuration x. For simplicity, we can assume that the external stresses are described by a
volumetric force density f(x).

The underlying space Ω is an open bounded subset of R3, whose elements are material
points. Considering the static problem, it requires the minimization of the functional∫

Ω
[ψ(∇u)− f · u] (1.3)

on a suitable function space, which will be our phase space D , to which u belongs. It is then
straightforward to see that the Euler–Lagrange equations associated with (1.3) are∫

Ω

∂ψ(A)

∂A

∣∣∣∣
∇u
· ∇v =

∫
Ω

f · v (1.4)

for any v ∈ TuD . They represent the balance of an internal power expenditure (the left-hand
side) with the external one (the right-hand side).

It remains to identify the function space D . It will be strictly related to the constitutive
assumption on ψ, since, in order to prove the existence of a solution, the quantity∫

Ω

∂ψ(A)

∂A

∣∣∣∣
∇u
· ∇u

should represent, roughly speaking, the norm of u ∈ D . As an example, assume, for p > 2,

ψ(∇u) =
1

p
|∇u|p ,
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and Dirichlet boundary conditions: then D should be the Sobolev space W 1,p
0 (Ω;R3).(2)

As a second example I will consider the theory of compressible, viscous and heat conduct-
ing fluids, in the barotropic regime, as presented in [10]. Given a bounded domain Ω ⊆ R3,
the state of the fluid at any instant t ∈ [0, T ] is described by the density ρ(t, x), the Eule-
rian velocity field u(t, x) and the absolute temperature ϑ(t, x). Barotropicity implies that the
pressure p is a given function of ρ and ϑ, and the following constitutive relation is assumed:

p(ρ, ϑ) = pe(ρ) + ϑpϑ(ρ) . (1.5)

Other relevant quantities are:

• the specific internal energy e(ρ, ϑ), which is the sum of an “elastic” part Pe(ρ), related
to intermolecular forces, and a “thermal” part Q(ϑ);

• the heat flux q, for which the Fourier’s law q = −κ(ϑ)∇ϑ, with the conductivity κ > 0,
is assumed;

• the Newtonian viscosity tensor

V := µ(∇u + (∇u)†) + λ div uI ,

where the viscosity coefficients µ and λ depend on the absolute temperature;

• the given external force density f(t, x) and heat source g(t, x).

As to the boundary conditions, adherence to the fixed boundary and thermal insulation are
assumed, so that u = 0 and q = 0 on ∂Ω.

According to this setting, the equation of motion, which will be supplemented by suitable
initial conditions, are

∂ρ

∂t
+ div(ρu) = 0 , (1.6)

∂

∂t
(ρu) + div(ρu⊗ u) +∇p = div V + ρf , (1.7)

∂

∂t
(ρe) + div(ρeu) + div q = V · ∇u− p div u + ρg . (1.8)

A direct consequence of the stated assumptions is that the third equation can be replaced by

∂

∂t
(ρQ(ϑ)) + div(ρQ(ϑ)u)− div(κ(ϑ)∇ϑ) = V · ∇u− ϑpϑ div u + ρg . (1.9)

In [10], the existence of a global solution for (1.6)-(1.7)-(1.9), with the stated boundary
conditions and suitable initial conditions, is proved. What I want to clarify now is how to
interpret the problem as a dynamical system, and the equations as a balance of powers. The
underlying space can be easily recognized in [0, T ] × Ω, and an element u ∈ D is a triple
(ρ, u, ϑ), but, in order to identify D as a Banach space, we have to consider the weak form of

(2)For the theory of Sobolev spaces see [2] or [33].
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the equations of motion: ∫ T

0

∫
Ω

(
ρ
∂φ

∂t
+ ρu · ∇φ

)
= 0 , (1.10)∫ T

0

∫
Ω

(
∂

∂t
(ρu) · v + div(ρu⊗ u) · v + [V − pI] · ∇v

)
=

∫ T

0

∫
Ω
ρf · v , (1.11)∫ T

0

∫
Ω

(
(ρQ(ϑ)) · ∂σ

∂t
+ ρQ(ϑ)u · ∇σ +K(ϑ)∆σ

)
=

∫ T

0

∫
Ω

(ϑpϑ div u− V · ∇u− ρg) · σ ,

(1.12)

where K(ϑ) :=
∫ ϑ

0 κ(s) ds , and the triple (φ, v, σ) is the generalized virtual velocity, belonging
to TuD .

It is easy, by the form of equation (1.11), to see that it represents the balance of power
expenditures on the virtual field v belonging to L2([0, T ];H1

0 (Ω;R3)); it is also easy to recog-
nize the internal power (defined by V − pI), the external one (defined by ρf) and the inertial
contribution, containing the time derivative and the advective term. It is less easy to guess
the proper functional space to which ρ and ϑ should belong; but, interpreting (1.6) and (1.9)
at first in the sense of distributions and following the analysis in [10], it turns out that

ρ ∈ L∞([0, T ];Lγ(Ω)) ∩ C([0, T ];L1(Ω)) ,

ϑ ∈ Lα([0, T ];Lα(Ω)) .

for suitable exponents α and γ, related to growth assumption on κ and pϑ respectively. Then
we can recognize that equations (1.10) and (1.12) represent the balance of generalized power
expenditures on the virtual fields φ and σ.

1.3.2 Continuum mechanics on manifolds and non-smooth spaces

Though it is a hard task to generalize the classical continuum mechanical models to situations
where the body itself or the space in which the body moves are not Euclidean manifolds,
recent applications in material science, biology, environmental physics and multiscale and/or
multiphysics systems, are more and more involving such non-smooth spaces. The dynamical
system approach to Continuum Mechanics has a great potential with respect to that issue.

In fact, the modeler’s attention is switched from the topological properties of the underly-
ing space to the topological properties of the phase space D ; this because phase spaces with
a similar structure can be defined on underlying spaces with very different structures, and
hence a continuum mechanical model based on the properties of D can be adapted to very
different situations. Here I just want to mention a very important example of that operation.

Many continuum mechanical models, especially those with a variational structure, require
D to be a Sobolev space. Now it is well-known that the original definition of such spaces,
given on Euclidean domains, can be easily generalized to compact Riemannian manifolds. This
gives an immediate generalization for many theories, but we can go much further. Indeed,
in recent years, various possible definitions of Sobolev spaces on metric measure spaces have
been proposed (the review articles [20] and [21] provide very clear introductions to this rapidly
evolving field). A metric measure space is a topological space endowed with a distance function
and a Borel measure which define the metric and the measurable structure respectively, and
those structures can be interrelated in various ways. It turns out that the interrelation
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between the Lebesgue measure and the Euclidean distance, on which differentiability notions
and Sobolev spaces are built in classical settings, can be partly reproduced in much weaker
situations, such as subriemannian manifolds, singular manifolds (Alexandrov spaces) and even
on some fractal set. This fact is the basis for the generalization to non-smooth underlying
spaces of continuum mechanical theories based on Sobolev spaces.



Chapter 2

Higher-order power expenditures
and concentrated interactions

Within this chapter I will focus on what is known in the literature as higher-order gradient
power expenditures. I will show how this concept is related to a kinematical prescription
involving the phase space, and I will describe how it can allow for a treatment of concentrated
interactions, together with non-standard boundary interactions.

2.1 Integral representation of the power

In order to characterize a continuous medium, the power of the internal interactions is to
be modeled. In great generality, such a power is a section of the cotangent bundle on the
phase space D , but it is usually better to deal with an integral representation of it. Indeed,
powers has often been defined through their integral representation, on the basis of dynam-
ical, rather than kinematical, considerations. In spite of that tradition, I want to emphasize
that kinematical prescriptions often suggest a preferred integral representation for the power
expenditures. This also reveals a constitutive side of kinematics. The argument is the fol-
lowing: if we declare the functional space of descriptors, usually isomorphic to that of virtual
velocities, we will most likely find a theorem in Functional Analysis providing us an integral
representation for the action of the elements of its topological dual, which will be the powers.

I will now focus on an example which represents a very common situation in Continuum
Mechanics: let Ω be an open subset of Rn, and let D be the Sobolev space Hk(Ω), for some
k ∈ N fixed. Then, since D is a Hilbert space, for any u ∈ D , TuD = D , and, for any
F ∈ T ∗uD = (Hk(Ω))′ there is a unique f ∈ Hk(Ω) such that

〈F, v〉 =
k∑
i=0

∫
Ω
∇if · ∇iv , (2.1)

for any v ∈ Hk(Ω); here ∇iv denotes the i-th distributional gradient of v. It is also clear
that, given for i = 0, . . . , k some function A(i) ∈ L2(Ω;Rni), there is a unique F ∈ (Hk(Ω))′

such that

〈F, v〉 =
k∑
i=0

∫
Ω
A(i) · ∇iv , (2.2)

9
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for any v ∈ Hk(Ω). It is this last relation which motivates the definition of a higher-order
power.

Definition 2.1. We say that a section P of the cotangent bundle T ∗D is a power of order
k, or k-power, if there are {A(i)}ki=0 vector fields on D , with values in L2(Ω;Rni), such that

〈Pu, v〉 =

k∑
i=0

∫
Ω
A(i)
u · ∇iv , (2.3)

for any v ∈ TuD , where A
(i)
u denotes the vector field evaluated at u ∈ D .

If we now assume that D = TuD = Hk1(Ω)× . . .×HkD(Ω), D ∈ N, the previous definition
can be generalized.

Definition 2.2. We call a (k1, . . . , kD)-power a section P of the cotangent bundle T ∗D such
that, for any v = (vs)

D
s=1 ∈ TuD ,

〈Pu, v〉 =

D∑
s=1

ks∑
i=0

∫
Ω
A(i,s)
u · ∇ivs , (2.4)

for some vector fields A(i,s) on D , with values in L2(Ω;Rni).

The last definition is relevant if one needs different Sobolev regularities for the different
descriptors which enter D ; on the other hand, if k1 = . . . = kD = k, I will write ‘k-power’ for
‘(k, . . . , k)-power’.

Obviously, there are a lot of continuum mechanical models for which D is formed by more
complicated Hilbert spaces, or even with Banach spaces. In such cases there can still be
canonical integral representations for the power expenditures, but it is hard (and not very
useful) to classify them introducing new notions of order of the power. There is also a little
chance, if compared to the possibility given by Definition 2.2, to find a continuum mechanical
theory completely described by a k-power. Nevertheless, this is the case for second-gradient
materials, which have been widely studied in recent years, and one of which is the subject
of the following chapters. Within such theories we have n = D = 3 (or equal to 2) and a
(2, 2, 2)-power acting on a sole vectorial descriptor, which usually represents a displacement
or a velocity field. I will present below some additional results about these particular cases.

2.1.1 Galilean covariance, frame indifference, and consequences

Let me now carry out the consequences of some invariance principles within a continuum
mechanical theory defined by a k-power. As underlying space we take [tI , tF ] × Ω̂ with
Ω̂ ⊆ R3 open, and as descriptor we have a velocity vector field u ∈ L2([tI , tF ];Hk(Ω̂;R3)).
The k-power is therefore defined by

〈Pu, v〉 =
k∑
i=0

∫ tF

tI

∫
Ω̂

A
(i)
u · ∇iv , (2.5)

for any v ∈ L2([tI , tF ];Hk(Ω̂;R3)), where {A(i)}ki=0 are vector fields on L2([tI , tF ];Hk(Ω̂;R3)),
with values in L2([tI , tF ];L2(Ω̂; (R3)i+1)). Notice that ∇ represents only the gradient with
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respect to the spatial variables, and that (2.5) does not perfectly fit into Definition 2.2, but
we can still speak about a k-power, thanks to the fact that the L2 regularity in time keeps
the form of the power very similar to that of a genuine k-power.

Given an orthonormal Euclidean basis on R4, we obtain a frame of reference considering
times along the direction of the first base vector, and Ω̂ as a subset of the orthogonal comple-
ment. We stipulate that any “nice” frame of reference can be obtained by direct isometries
of the three-dimensional subspace containing Ω̂ (that is translations and rotations, but not
reflections with respect to any plane), by translations of the time-axis, and by a rectilinear
motion of the new origin, with uniform velocity s. Those transformations form the Galilean
group G of inertial frame transformations.

Take now φ ∈ G, and let (t, x) be the vector of the components of a point P ∈ Ω with
respect to the original basis fixed on R4. We have

(t, x)φ = (t+ a,Q†(x− ts) + a) ,

for some a ∈ R, a, s ∈ R3 representing different kinds of translations, and some Q ∈ SO3(R)
representing the rotation of the basis (I denote by Q† the transpose of Q). If we consider only
transformations of the previous kind, with a = 0 and s = 0, we obtain the Euclidean subgroup
E ⊆ G. Since the virtual velocity field at any instant t is a section of the tangent bundle
T Ω̂, it is an Euclidean contravariant vector field; moreover, since we consider the Euclidean
connection on T Ω̂, at any instant, the k-th gradient ∇kv is a tensor field on Ω̂ with k covariant
components and one contravariant component, so that we get the following transformation
laws:

vφ(tφ, xφ) = Q†v(t, x) , [∇kv]φ(tφ, xφ) = Q†[∇kv(t, x)]Qk . (2.6)

The requirement of Euclidean covariance for the power expenditure (2.5) becomes

k∑
i=0

∫ tF

tI

∫
Ω̂φ

[A
(i)
u · ∇iv]φ dL3(xφ) dL1(t) =

k∑
i=0

∫ tF

tI

∫
Ω̂

A
(i)
u · ∇iv dL3(x) dL1(t)

for any φ ∈ E, since it is a scalar field; hence, taking into account the transformation
laws (2.6), we have

k∑
i=0

∫ tF

tI

∫
Ω̂

[A
(i)
u ]φ · [Q†(∇kv)Qk] dL3(x) dL1(t) =

k∑
i=0

∫ tF

tI

∫
Ω̂

A
(i)
u · ∇iv dL3(x) dL1(t)

which implies [A
(i)
u ]φ = Q†(A

(i)
u )Qk, that is, each A

(i)
u must be, at any time, a tensor field on

Ω̂ with k covariant components and one contravariant component. This is what Euclidean
covariance implies, and it must be satisfied when proposing constitutive prescriptions for the

power, by assigning the dependence of each A
(i)
u on the base point u ∈ D . Thanks to the

peculiar role of the time variable, Galilean covariance does not add relevant constraints to
those implied by Euclidean covariance, hence I will not insist on them.

Within the context of Continuum Mechanics it is customary to require a much stronger
invariance, called frame indifference. It is the invariance of the power expenditure (2.5) with
respect to any frame transformation of the form

(t, x)φ = (t,Q†tx + at) . (2.7)
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Notice that at and Qt depend on the time instant t, and hence the frame of reference pro-
duced by (2.7) is generically non-inertial, though many inertial frames can be described by a
transformation of that kind. I will denote by R the group of transformations defined by (2.7),
which are called rigid motions, since they correspond to possible evolutions of a rigid body.

Definition 2.3. Given a scalar field f , a vector field b and tensor fields Bi of order i + 1,
we say that they are frame indifferent (that is, respectively, R-invariant, R-contravariant, i
times R-covariant and one time R-contravariant) if

fσ(t, xσ) = f(t, x) ,

bσ(t, xσ) = Q†tb(t, x) ,

Bσi (t, xσ) = Q†tBi(t, x)Q i
t ,

for any σ ∈ R.

Obviously, Euclidean covariant or contravariant tensors need not be covariant or con-
travariant with respect to the action of the group R of all rigid motions. Indeed, given σ ∈ R,
we have the following transformation rules for a velocity field and its gradient:

vσ(t, xσ) = Q†tv(t, x) + ȧt + Q̇†tx , (2.8)

[∇v]σ(t, xσ) = Q†t [∇v(t, x)]Qt + Q̇†tQt . (2.9)

Notice that wσ := Qtȧt + QtQ̇
†
tx is a rigid velocity field, associated with the rigid motion σ;

moreover, differentiating the relation Q†tQt = I, we get

Q̇†tQt + Q†tQ̇t = 0 ,

so that Ωt := Q̇†tQt is skewsymmetric, and, similarly, we get also QtQ̇
†
t skewsymmetric. On

the other hand, for k > 2, the k-th gradients of the velocity field are frame indifferent.
Based on the previous considerations, we obtain the following results.

Proposition 2.1. Fix u ∈ D ; given the power expenditure (2.5), assume that the Euclidean

tensor fields {A(i)
u }ki=0 are frame indifferent. Then the power expenditure (2.5) is frame indif-

ferent if and only if 〈Pu,w〉 = 0 for any rigid velocity field w.

Proof. Let σ ∈ R be a rigid motion and let wσ be the associated rigid velocity field. By the

frame indifference of each A
(i)
u , we have

k∑
i=0

∫ tF

tI

∫
Ω̂

[A
(i)
u ]σ · [∇iv]σ =

k∑
i=0

∫ tF

tI

∫
Ω̂

A
(i)
u · ∇iv +

∫ tF

tI

∫
Ω̂

A
(0)
u · wσ +

∫ tF

tI

∫
Ω̂

A
(1)
u · ∇wσ ,

that is
〈Pσu , vσ〉σ = 〈Pu, v〉+ 〈Pu,wσ〉 ,

from which the assertion follows.

Proposition 2.2. Fixed u ∈ D , if the power expenditure (2.5) and the Euclidean tensor fields

{A(i)
u }ki=0 are frame indifferent, then A

(0)
u = 0, and (A

(1)
u )† = A

(1)
u almost everywhere on Ω.
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Proof. By the previous proposition, we can choose any rigid velocity field of the form w = w̄
constant, and we have

0 = 〈Pu, w̄〉 =

∫ tF

tI

∫
Ω̂

A
(0)
u · w̄ ;

by the arbitrariness of w̄, we get A
(0)
u = 0 almost everywhere on Ω.

Taking now any uniformly rotating rigid velocity w = Wx, with W ∈ Matn(R) skewsym-
metric, we get

0 = 〈Pu,Wx〉 =

∫ tF

tI

∫
Ω̂

A
(1)
u ·W ;

by the arbitrariness of W, we get (A
(1)
u )† = A

(1)
u almost everywhere on Ω.

2.1.2 Interactions at the boundary

Now I will introduce an equivalent representation for the k-power expenditure

k∑
i=0

∫
Ω̂

A
(i)
u · ∇iv (2.10)

in terms of boundary integrals. In order to obtain such a representation I need to make some

regularity assumptions on ∂Ω̂, and to assume A
(i)
u ∈ H i(Ω̂; (R3)i+1).

Proposition 2.3. Let Ω̂ ⊆ R3 be an open bounded domain with smooth boundary and let n
denote the unit outer normal to ∂Ω̂; then there exist Euclidean tensor fields b̂u, t̂u and, if

k > 2, {M̂(s)
u }k−2

s=0 , such that

k∑
i=0

∫
Ω̂

A
(i)
u · ∇iv =

∫
Ω̂

b̂u · v +

∫
∂Ω̂

t̂u · v +
k−2∑
s=0

∫
∂Ω̂

M̂
(s)
u ·

∂

∂n
(∇sv) (2.11)

and such that

b̂u =

k∑
i=0

(−div)iA
(i)
u , (2.12)

t̂u =
k∑
i=1

i∑
j=1

(−divS)(j−1){[(−div)(i−j)A
(i)
u ]n} , (2.13)

M̂
(s)
u =

k−2∑
i=s

i−s∑
j=0

{(−divS)(j)[[(−div)(i−j−s)A
(i+2)
u ]n]}n , (2.14)

where div is the divergence operator, ∂
∂n is the normal derivative, and divS is the surface-

divergence operator.(1)

Proof. The proof repeatedly exploits integration by parts, divergence theorem, the decompo-
sition on ∂Ω̂ of the gradient operator in surface and normal part, and the surface-divergence

(1)Definitions and basic properties are collected in Appendix B.
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theorem B.1. By means of such manipulations, it is easy to verify (2.11) for k = 0, 1; more-
over, I will show by induction on l that, given two tensor fields B and S (with the right
tensorial order), for any l > 2, we have∫

∂Ω̂
S · ∇lv =

∫
∂Ω̂

(−divS)lS · v +

l−1∑
s=0

∫
∂Ω̂

[(−divS)l−1−sS]n · ∂
∂n

(∇sv) , (2.15)

and∫
Ω̂

B · ∇lv =

∫
Ω̂

(−div)lB · v +
l∑

j=1

∫
∂Ω̂

(−divS)(j−1){[(−div)(l−j)B]n} · v

+
l−2∑
s=0

l−s−1∑
j=1

∫
∂Ω̂
{(−divS)(j−1)[[(−div)(l−j−1−s)B]n]}n · ∂

∂n
(∇sv) . (2.16)

For l = 2 it is immediate to verify (2.15) and (2.16). Assuming that they hold for some l > 2,
we have∫

∂Ω̂
Ŝ · ∇l+1v =

∫
∂Ω̂

(−divS Ŝ) · ∇lv +

∫
∂Ω̂

Ŝn · ∂
∂n

(∇lv)

=

∫
∂Ω̂

(−divS)l(−divS Ŝ) ·v+
l−1∑
s=0

∫
∂Ω̂

[(−divS)l−1−s(−divS Ŝ)]n · ∂
∂n

(∇sv)+

∫
∂Ω̂

Ŝn · ∂
∂n

(∇lv)

=

∫
∂Ω̂

(−divS)l+1Ŝ · v +

l∑
s=0

∫
∂Ω̂

[(−divS)l−sŜ]n · ∂
∂n

(∇sv) ,

which establishes (2.15); consequently, substituting (B̂n) for S,∫
Ω̂

B̂ · ∇l+1v =

∫
Ω̂

(−div B̂) · ∇lv +

∫
∂Ω̂

B̂n · ∇lv

=

∫
Ω̂

(−div)l(−div B̂) · v +

l∑
j=1

∫
∂Ω̂

(−divS)(j−1){[(−div)(l−j)(−div B̂)]n} · v

+
l−2∑
s=0

l−s−1∑
j=1

∫
∂Ω̂
{(−divS)(j−1)[[(−div)(l−j−1−s)(−div B̂)]n]}n · ∂

∂n
(∇sv)

+

∫
∂Ω̂

(−divS)l(B̂n) · v +
l−1∑
s=0

∫
∂Ω̂

[(−divS)l−1−s(B̂n)]n · ∂
∂n

(∇sv)

=

∫
Ω̂

(−div)l+1B̂ · v +

l+1∑
j=1

∫
∂Ω̂

(−divS)(j−1){[(−div)(l+1−j)B̂]n} · v

+

l−1∑
s=0

l−s∑
j=1

∫
∂Ω̂
{(−divS)(j−1)[[(−div)(l−j−s)B̂]n]}n · ∂

∂n
(∇sv) ,

and also (2.16) is established.

Now it only remains to apply (2.16), substituting i for l and A
(i)
u for B, and then to sum

up the identities for i = 0, . . . , k, to obtain the representation (2.11).
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I will now consider what happens if the ∂Ω̂ is only piecewise smooth.

Proposition 2.4. Let Ω̂ ⊆ R3 be an open bounded domain with piecewise smooth boundary,
let n denote the unit outer normal to the regular part of ∂Ω̂, and let E denote the singular part

of ∂Ω̂; then there exist Euclidean tensor fields b̂u, t̂u, and, if k > 2, {M̂(s)
u }k−2

s=0 and {K̂(s)
u }k−2

s=0 ,
such that

k∑
i=0

∫
Ω̂

A
(i)
u · ∇iv =

∫
Ω̂

b̂u · v +

∫
∂Ω̂

t̂u · v +
k−2∑
s=0

∫
∂Ω̂

M̂
(s)
u ·

∂

∂n
(∇sv) +

k−2∑
s=0

∫
E

K̂
(s)
u · ∇sv (2.17)

and such that b̂u, t̂u, {M̂(s)
u }k−2

s=0 satisfy relations (2.12), (2.13), (2.14) respectively, and

K̂
(s)
u =

k−2∑
i=s

i−s∑
j=0

{(−divS)(j)[[(−div)(i−j−s)A
(i+2)
u ]na]}ea

+

k−2∑
i=s

i−s∑
j=0

{(−divS)(j)[[(−div)(i−j−s)A
(i+2)
u ]nb]}eb , (2.18)

where na and nb are the limits of n coming from the two sides of an edge in E, and ea and eb
are unit vector fields orthogonal to E and to na and nb respectively, and pointing outward the
a- and b-face respectively.

Proof. Since ∂Ω̂ is piecewise smooth, we have ∂Ω̂ =
⋃
k Sk with Sk a smooth subsurface whose

unit outer normal will be denoted by nk, and E =
⋃
k ∂Sk. Hence, for any s > 1 and any

tensor field T, decomposing the gradient on the surfaces as ∇ = ∇S + (nk ⊗ nk)∇,∫
∂Ω̂

Tn · ∇sv =
∑
k

∫
Sk

Tnk · ∇sv =
∑
k

∫
Sk

Tnk · ∇S(∇s−1v) +
∑
k

∫
Sk

Tnknk ·
∂

∂n
(∇s−1v) .

Denote now by ek the outer unit normal to ∂Sk orthogonal to nk; applying the surface-
divergence theorem on each Sk it follows

∑
k

∫
Sk

Tnk · ∇S(∇s−1v) = −
∑
k

∫
Sk

divS(Tnk) · ∇s−1v +
∑
k

∫
∂Sk

Tnkek · ∇s−1v

= −
∫
∂Ω̂

divS(Tn) · ∇s−1v +

∫
E
(Tnaea + Tnbeb) · ∇s−1v ,

where na, ea and nb, eb are related to the two faces Sa and Sb which meet along any edge in E .
Hence we have∫

∂Ω̂
Tn · ∇sv = −

∫
∂Ω̂

divS(Tn) · ∇s−1v +

∫
∂Ω̂

Tnn · ∂
∂n

(∇s−1v) +

∫
E
(Tnaea + Tnbeb) · ∇s−1v .

Once established the last relation, the proof is similar to that of Proposition 2.3.

If we consider the case k = 2, we obtain the following representation for a second-order
power:

k∑
i=0

∫
Ω̂

A
(i)
u · ∇iv =

∫
Ω̂
b̂u · v +

∫
∂Ω̂

t̂u · v +

∫
∂Ω̂

m̂u ·
∂v

∂n
+

∫
E

k̂u · v (2.19)
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with

b̂u = A
(0)
u − div A

(1)
u + div div A

(2)
u , (2.20)

t̂u = [A
(1)
u − div A

(2)
u ]n + divS [A

(2)
u n] , (2.21)

m̂u = A
(2)
u nn , (2.22)

k̂u = A
(2)
u naea + A

(2)
u nbeb . (2.23)

This corresponds to the results in [12] and [31].
Thanks to Propositions 2.3–2.4, we see that, once an integral representation for internal

interactions is given in terms of volume integrals, it is possible to split it in bulk and surface
contributions. This splitting, applied to higher-order powers, produces a number of surface
terms which, containing the derivatives of n, are related to the geometry of the boundary in a
way which is forbidden in the classical theories, based on first-order powers. Moreover, those
terms expend power at the boundary on the normal derivative of the virtual velocity and of
its gradients.

Remark 2.1. Relations (2.11) and (2.17) are representations for a k-power, initially defined
by tensor fields on Ω̂, through some interaction fields which are not defined on Ω̂, with the

exception of b̂u. In particular, t̂u and {M̂(s)
u }k−2

s=0 are defined on ∂Ω̂, and {K̂(s)
u }k−2

s=0 are defined

only on E . Notice that equations (2.11) and (2.17) have been proved only for tensors A
(i)
u

regular enough, but we cannot in general expect this regularity.
Nevertheless, the integral representation (2.10) is equivalent to an interaction-fields rep-

resentation ∫
Ω̂

b̂u · v +

∫
∂Ω̂

t̂u · v +

k−2∑
s=0

∫
∂Ω̂

M̂
(s)
u ·

∂

∂n
(∇sv) +

k−2∑
s=0

∫
E

K̂
(s)
u · ∇sv . (2.24)

in more general situations. Indeed, if (2.24) defines a linear continuous form on the space of

virtual velocities, Riesz’s representation theorem implies the existence of tensor fields A
(i)
u ∈

L2(Ω̂; (R3)i+1) such that (2.17) holds. Now, since trace operators(2) are linear and continuous,
we easily see that it is enough to require

b̂u ∈ (Hk(Ω̂;R3))′ ,

t̂u ∈ (Hk− 1
2 (∂Ω̂;R3))′ ,

M̂
(s)
u ∈ (Hk−s− 3

2 (∂Ω̂; (R3)s+1))′ ,

K̂
(s)
u ∈ (Hk−s−1(E ; (R3)s+1))′ ,

(2.25)

in order to obtain the interaction-fields representation of a k-power expenditure. ♦

2.2 Representation of the internal contact interactions

In the previous section I gave a representation for a k-power, initially defined by tensor fields
on Ω̂, through some interaction fields, which are not all defined on Ω̂. A natural question is
whether it be possible to give a representation akin to (2.17) for any subregion contained in
Ω̂, obtaining interaction fields defined on the whole closure of Ω̂.

Many authors contributed to the study of such representations, and the main ingredient
is to require, on a suitable class of subbodies, the same kind of balances which are imposed on

(2)For the theory of traces of Sobolev functions and the related trace spaces see [2] or [33].
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the whole body. The definition of the class of subbodies is still not universal, and a discussion
on it would involve notions of Geometric Measure Theory which I do not want to introduce. I
will just state, in the present context, a result [8, Theorem 7] which provides a representation
for second-order power expenditures on any M ⊆ Ω with curvature measure(3). The simplest
example of such a set is a cube: the curvature of its surface is a measure, since it can be seen
as a Dirac’s delta function with support along the edges of the cube.

Definition 2.4. Given the integral representation (2.10) for a power expenditure, its restric-
tion to M ⊆ Ω̂ is

〈Pu|M , v〉 =
k∑
i=0

∫
M

A
(i)
u · ∇iv . (2.26)

Moreover, the restriction of a power Pu|M is a contact power if 〈Pu|M , v〉 = 0 for any virtual
velocity v with compact support contained in M .

In what follows, the notation A
(2)
u [B] means, in components, (A

(2)
u [B])i =

∑
j,k(A

(2)
u )ijkBjk .

Theorem 2.5. Let Pu|M be a contact power of order 2. Then, for any M ⊆ Ω̂ with curvature
measure, we have

〈Pu|M , v〉 =

∫
∂∗M
{[A(1)

u − div A
(2)
u ]n + divS [A

(2)
u n]} · v

+

∫
∂∗M

A
(2)
u [n⊗ n] · ∂v

∂n
+

∫
∂∗M

A
(2)
u [U] · v dλM , (2.27)

where ∂∗M is the measure theoretic boundary of M , U(x) is a unimodular matrix for λM -
almost every x ∈ ∂∗M , and λM is a measure, possibly singular with respect to the surface
measure.

It is clear that the possibility of developing interactions which are concentrated along
edges is related to the nature of the last integral in (2.27). If M has a piecewise smooth
boundary, λM turns out to be exactly the one-dimensional Hausdorff measure concentrated
on E , and, with the notations of Proposition 2.4, we have

U = na ⊗ ea + nb ⊗ eb . (2.28)

The previous result has a nice corollary, pointed out also in [31], related to the existence
of second-order materials which cannot develop interactions concentrated along edges of any
subbody.

Corollary 2.6. Let Pu|M be a contact power of order 2, and let I denote the identity matrix.

If the tensor field A
(2)
u is of the form β(g ⊗ I) for some vector g and some constant β, then

we have A
(2)
u [U] = 0, and there is no concentrated interaction along the edges of any subbody

M with curvature measure.

Proof. Assume that the boundary of M is piecewise smooth, so that (2.28) holds; since, by
construction, na ⊥ ea and nb ⊥ eb, it is clear that the trace of U is equal to zero. Hence

A
(2)
u [U] = β(g ⊗ I)[U] = β(I · U)g = 0 .

It is enough to note that, also in general cases, U is traceless, and the proof is complete.

(3)For the precise definition see [8, Definition 14].
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Second-order isotropic linear liquids

In the sequel I will always consider incompressible fluids, often referred to as liquids. This
means that the volume of any portion of the fluid is preserved during the evolution, and it is
equivalent to require the Eulerian velocity field u to be solenoidal.

The usual theory of Newtonian liquids aims at modeling viscosity. Since during a rigid
motion viscous and ideal fluids display the same behavior, the action of viscous interactions
must be related to the shear between adjacent fluid layers, and opposes to such a shear. Hence
we say that viscous interactions should be proportional to the symmetric part of the gradient
of the velocity field u, and, moreover, they act on the velocity field in order to modify its
gradient. This argument classically leads to assume an internal power expenditure of the form∫

Ω
Tu · ∇v =

∫
Ω

div Tu · v +

∫
∂Ω

Tun · v ,

where Ω ⊆ R3 is the space domain. It should be now clear that it corresponds to a natural
representation of linear forms on the Sobolev space H1(Ω;R3): indeed this is the correct
functional setting in order to develop both the existence theory and the finite element ap-
proximation of the flow equations for Newtonian liquids.

What if we require the space of velocity field to be H2 instead of H1?
There are at least three reasons for such an assumption:

• the velocity field would be continuous, and hence the adherence to one-dimensional
structures (or even to points) could be modeled;

• new kinds of boundary interactions could be considered;

• the well-posedness of the corresponding PDEs could be established.

I will then set up a theory for incompressible linear viscous fluids, requiring both the real
velocity field u and the virtual velocities v to belong either to H2(Ω;R3), if steady flows are
considered, or to L2([0, T ];H2(Ω;R3)), when evolutionary problems are studied. Since clearly
I need second-order power expenditures, I will name such fluids second-order liquids.

Now, physical situations are characterized by the balance of the expenditures of the in-
ternal and the external power, P in and Pex, and then the following fundamental principle
provides the equation to be solved in order to describe the dynamics of the system.

18
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Principle of Virtual Powers. The motion described by the velocity field u is feasible if, for
every virtual velocity field v, we have

〈P in
u , v〉 = 〈Pex

u , v〉 , (3.1)

for any instant in a time interval.

According to Proposition 2.4 and Remark 2.1, the expenditures of P in and Pex for second-
order fluids can take the equivalent forms:

〈P in
u , v〉 =

2∑
i=0

∫
Ω

A
(i)
u · ∇iv =

∫
Ω
b̂u · v +

∫
∂Ω

t̂u · v +

∫
∂Ω

m̂u ·
∂v

∂n
+

∫
E

k̂u · v ,

〈Pex
u , v〉 =

2∑
i=0

∫
Ω

E
(i)
u · ∇iv =

∫
Ω
bu · v +

∫
∂Ω

tu · v +

∫
∂Ω

mu ·
∂v

∂n
+

∫
E

ku · v .

Clearly, the classical viscous interactions are included in that powers, but new interactions
come into play. Some of them have been described as hyperviscous ones, but their physical
nature is far from being understood.

Notice that I model as second-order powers both P in and Pex, since, when we model the
action of the environment on a system, it is important to make the external world act in a
way that can be experienced by the system. As to the external power expenditure, using the
interaction-fields representation, I introduce:

• an external volume interaction field bu;

• external traction and hypertraction fields tu and mu as surface interactions on appro-
priate smooth parts of ∂Ω;

• the field ku as concentrated interaction on non-smooth parts of the boundary, if any.

We can most of the times drop the dependence of the external volume interaction bu on the
base point u, and it is useful to single out its conservative contribution, which plays the role
of a pressure term in an incompressible theory. Hence we have

bu = d +∇f ,

where f is a scalar field and d includes all non-conservative contributions (e.g. Coriolis forces)
to the volume interactions of the medium. Statements about the surface interactions, concern-
ing boundary conditions, will appear in Section 3.3, while in what follows I will not employ
concentrated interactions at the boundary of the whole body Ω. Applying D’Alembert’s
principle, I also include within the external power expenditure the inertial term

−
∫
M
ρ u̇ · v := −

∫
M
ρ

(
∂u

∂t
+ (u · ∇)u

)
· v ,

which will make the differential problem a nonlinear one.
I will now turn to the task of specifying a model of homogeneous fluid by means of

constitutive prescriptions on the internal power expenditure; however, I want to emphasize
that also the prescription of the order of the power is a matter of choice, related to the
interactions which one wants to model.
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3.1 Mechanical constraints

The descriptor of the state at any instant t in the time interval [0, T ] ⊂ R is the Eulerian
velocity field u(t, x), and the incompressibility condition, together with the assumption of
homogeneity, allows us to set the mass density ρ = 1 identically, giving the first constraint
on the velocity:

∀t ∈ [0, T ] : div u = 0 . (3.2)

Further prescriptions are related to internal and external powers.
Since viscous interactions should not act during a rigid motion, and since I want to model

generalized viscous fluids, I require the second-order internal power expenditure to vanish on
any rigid velocity field. Then, by Propositions 2.1–2.2, its general form becomes

〈P in
u , v〉 =

∫
Ω

T · ∇v +

∫
M

G · ∇∇v ,

where T is a symmetric tensor field of order 2 and G a tensor field of order 3. Linearity and
isotropy of the fluid are encoded in the dependence of the tensor fields T and G on u. It is
well-known that, within incompressible theories,

Tij = µ(ui,j + uj,i)− p δij ;

besides, in [28, Theorem 1.1] it has been shown that

Gijk =η1ui,jk + η2(uj,ki + uk,ij − ui,ssδjk)

+ η3(uj,ssδki + uk,ssδij − 4ui,ssδjk)− pkδij ,

where µ, η1, η2, η3 ∈ R and δij is the usual Kronecker symbol. The fields p and p, respectively
a scalar and a vector one, enter the definition of the pressure, whose role in incompressible
theories reduces to that of a Lagrange multiplier of the constraint (3.2).

Defining the symmetric part of a tensor X of order m as

Sym X :=
1

m!

∑
σ

Xσ(i1...im) ,

where σ runs over the group of permutations of m elements, and setting I = (δij), the previous
relations can be written in intrinsic notation as

T = 2µ Sym∇u− p I ,

G =(η1 − η2)∇∇u + 3η2 Sym∇∇u

− (η2 + 5η3)∆u⊗ I + 3η3 Sym(∆u⊗ I)− I⊗ p .

Following these definitions, since also the virtual velocities undergo the constraint (3.2),
we can write the internal power expenditure for a linear isotropic incompressible fluid as

〈P in
u , v〉 = 2µ

∫
Ω

Sym∇u · ∇v + (η1 − η2)

∫
Ω
∇∇u · ∇∇v

+ 3η2

∫
Ω

Sym∇∇u · ∇∇v − (η2 + 4η3)

∫
Ω

∆u ·∆v .
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3.2 Thermodynamical constraints

By thermodynamical considerations, we need the instantaneous dissipation to be non-negative
for any flow; hence we require the dissipation inequality

T · ∇v + G · ∇∇v > 0 (3.3)

to be satisfied for every velocity v. This inequality, specialized for our model, reads

2µ| Sym∇v|2 + (η1 − η2)|∇∇v|2 + 3η2| Sym∇∇v|2 − (η2 + 4η3)|∆v|2 > 0

for every virtual velocity v.

Since the first- and second-order derivatives of v can be independently set equal to zero,
the dissipation inequality will be satisfied if and only if µ > 0 and

Γ := ∇∇v · G[∇∇v] = η1vi,jkvi,jk + η2(2vk,ijvi,jk − vi,rrvi,ss)− 4η3vi,rrvi,ss > 0

for every virtual velocity v. This last requirement is equivalent to the following conditions on
the coefficients η1, η2 and η3.

Proposition 3.1. We have Γ > 0 for every virtual velocity v if and only if

η1 + 2η2 > 0 , η1 − η2 > 0 , η1 − η2 − 6η3 − 2
√
η2

2 + 4η2η3 + 9η2
3 > 0 . (3.4)

Proof. Let us identify the 18 independent components of ∇∇v with an element x ∈ R18

according to the following table:

x1 = v1,11 x2 = v1,22 x3 = v1,33 x4 = v2,12 x5 = v3,13

x6 = v2,22 x7 = v2,33 x8 = v2,11 x9 = v3,23 x10 = v1,12

x11 = v3,33 x12 = v3,11 x13 = v3,22 x14 = v1,13 x15 = v2,23

x16 = v1,23 x17 = v2,13 x18 = v3,12 .

Then we can write

Γ = x · (η1A + B)x , (3.5)

where A = diag(A5, A5, A5, A3), B = diag(B5, B5, B5, B3) and

A5 = diag(1, 1, 1, 2, 2), A3 = diag(2, 2, 2),

B5 =


η2 − 4η3 −η2 − 4η3 −η2 − 4η3 0 0
−η2 − 4η3 −η2 − 4η3 −η2 − 4η3 2η2 0
−η2 − 4η3 −η2 − 4η3 −η2 − 4η3 0 2η2

0 2η2 0 2η2 0
0 0 2η2 0 2η2

 , B3 = η2

0 1 1
1 0 1
1 1 0

 .

The quadratic form (3.5) is positive definite if and only if its eigenvalues are all positive. Since
A is positive definite, this is tantamount to say that the eigenvalues of η1I + A−1B are positive
definite.
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Since A−1B = diag(A−1
5 B5, A

−1
5 B5, A

−1
5 B5, A

−1
3 B3) and

A−1
5 B5 =


η2 − 4η3 −η2 − 4η3 −η2 − 4η3 0 0
−η2 − 4η3 −η2 − 4η3 −η2 − 4η3 2η2 0
−η2 − 4η3 −η2 − 4η3 −η2 − 4η3 0 2η2

0 η2 0 η2 0
0 0 η2 0 η2

 ,

A−1
3 B3 = η2

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 ,
a straightforward calculation shows that the eigenvalues of A−1B are

λ1,2 = −η2 − 6η3 ± 2
√
η2

2 + 4η2η3 + 9η2
3 , λ3,4 = ±η2 , λ5 = 2η2 , λ6 = −η2

2
.

Hence Γ > 0 for every velocity field if and only if η1 + λmin > 0, where λmin is the minimal
eigenvalue. Since

λmin = −η2 − 6η3 − 2
√
η2

2 + 4η2η3 + 9η2
3 if η2 + 4η3 > 0

λmin = −η2 if η2 + 4η3 6 0 and η2 > 0

λmin = 2η2 if η2 + 4η3 6 0 and η2 6 0 ,

one has the global conditions (3.4).

3.3 Interactions at the boundary

In order to have a picture in mind, we can think of Ω as a pipe containing the fluid, with solid
walls and some open ends. I want to impose no-slip conditions on a part of the boundary
denoted by SW , representing the wall of the pipe, for which I require H2(SW ) > 0 (where
Hn is the n-dimensional Hausdorff measure). Then, I partition the remaining part of the
boundary into two regions, SD and SF , on which different conditions will be imposed.

The prescriptions of the external interaction fields tu and mu are related to such boundary
conditions:

• assuming vanishing hypertraction and adherence to fixed boundaries, we have mu = 0
and u = 0 on SW ;

• imposing on SD only a constant and uniform normal pressure gradient which drives the
fluid flow, means mu = 0 and tu = qn, q ∈ R, on SD;

• prescribing no external action on the remaining part of the boundary, gives mu = 0 and
tu = 0 on SF .

In the following chapter, I consider also the adherence of the fluid to one-dimensional immersed
structures, but it does not appear within the boundary conditions, since it will be encoded
in the definition of an appropriate functional space.



Chapter 4

Analysis of the differential problems

I now want to investigate existence and uniqueness of solutions for both the stationary and
the evolutionary motion of a second-order incompressible fluid in a bounded Lipschitz domain
Ω, in which a one-dimensional structure Λ is immersed. The assumption of the balance
principle (3.1) in integral form leads directly to an interpretation of the functions as defined
up to negligible sets (with zero Lebesgue measure). Indeed, both the real velocity field u and
the virtual velocity v will belong to Hilbert spaces, whose definition is given in what follows.

4.1 The functional setting

We can construct a Hilbert subspace X of the Sobolev space H2(Ω;R3) in the following way:
we set

V :=
{

v|Ω : v ∈ C∞0 (R3;R3) , div v = 0
}

and denote with H and H2
d the completions of V in L2(Ω;R3) and H2(Ω;R3) respectively.

Since H2(Ω;R3) is continuously embedded in C0(Ω;R3), we can define in an obvious way the
closed subspace

Y :=
{

v ∈ H2(Ω;R3) : v = 0 on SW ∪ Λ
}

;

finally we set X := H2
d ∩ Y endowed with the H2(Ω;R3) norm

‖v‖2X :=

∫
Ω
|v|2 +

∫
Ω
|∇v|2 +

∫
Ω
|∇∇v|2,

that encodes the natural regularity requested by the problem.
It is apparent that velocity fields belonging to the space X vanish on SW ∪Λ (while their

derivatives in general do not); hence we can model adherence to walls and to one-dimensional
immersed structures in a way consistent with the boundary conditions of Section 3.3. It
remains to specify the role of the time variable t, which clearly enters the problem via the
time derivative of u. As a first step we could take u ∈ L2([0, T ];X), so that u(t, ·) ∈ X for
almost every t ∈ [0, T ]; but we will see that, if u is a solution of our problem, then

u ∈ L2([0, T ];X) ∩ C0([0, T ];H) ∩H1([0, T ];X ′) =: X .

Given the representations of internal and external powers introduced in the previous chap-
ter, the Principle of Virtual Powers, which corresponds to the equation of motion, becomes
the following statement.

23
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Problem 1. Find u ∈ X such that

2µ

∫ T

0

∫
Ω

Sym∇u · ∇v + (η1 − η2)

∫ T

0

∫
Ω
∇∇u · ∇∇v

+ 3η2

∫ T

0

∫
Ω

Sym∇∇u · ∇∇v − (η2 + 4η3)

∫ T

0

∫
Ω

∆u ·∆v∫ T

0

∫
Ω

(
∂u

∂t
+ (u · ∇)u

)
· v =

∫ T

0

∫
SD
qn · v +

∫ T

0

∫
Ω

d · v , (4.1)

for every v ∈ X.

When stating the evolutionary problem, I will add an initial condition, while, to obtain
the stationary problem, it is enough to set the time derivative of u equal to zero, to erase the
time integrals, and to change X into X in the previous statement.

In equation (4.1) the only nonlinearity is the convective term (u · ∇)u ; clearly, it is the
source of the main difficulties in solving our problem. I will work it out via a topological
method in which compactness is the key tool; therefore, let me introduce some considerations
about the compactness properties of that term.

Consider the bilinear function

F :

{
H2 ×H2 → L2

(u, v) 7→ (u · ∇)v
;

by Hölder’s inequality, since H2(Ω;R3) is embedded in L∞(Ω;R3), we have(1)

‖F (u, v)‖L2 = ‖(u · ∇)v‖L2 6 ‖u‖L∞ ‖∇v‖L2 6 c0 ‖u‖H2 ‖v‖H2 (4.2)

for any u, v ∈ H2(Ω;R3); hence F is continuous.

Theorem 4.1. The Navier operator K0(u) := F (u, u) is compact from X to X ′.

Proof. As already noticed, the bilinear function F is continuous and so is K0, by composition
with the function { u 7→ (u, u) }. Moreover, by virtue of (4.2), it is bounded on bounded
subsets of X.

Since X ⊆ H2(Ω;R3) is compactly embedded in L2(Ω;R3), we can identify L2(Ω;R3) with
its dual space and apply Schauder’s theorem [5, Theorem 6.4] to obtain L2(Ω;R3) compactly
embedded in X ′.

Remark 4.1. The operator K0 is also compact from any W ⊆ H1(Ω) to W ′; in fact the
immersion H1(Ω)→ Lq(Ω) is compact for q ∈ [1, 6[ and such it is the dual Lq

′
(Ω)→ (H1(Ω))′.

We can take q = 4, q′ = 4
3 , make the extension

F :

{
H1 ×H1 → L

4
3

(u, v) 7→ (u · ∇)v

and accordingly define K0 on W . We have

‖(u · ∇)v‖
L

4
3
6 ‖u‖L4 ‖∇v‖L2 6 c̃0 ‖∇u‖L2 ‖∇v‖L2 < +∞

for any u, v ∈ W and, following the arguments of the previous theorem, we obtain the com-
pactness of K0 from W to W ′. ♦

(1) Throughout this chapter ci, i ∈ N, denotes a positive constant depending only upon the geometry of Ω.
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When considering the evolutionary problem, we need K0 to be a compact operator from
L2([0, T ];X) into L2([0, T ];X ′). The following lemma, proved in [26, Chap. 1, Sec. 5.2], will
be useful.

Lemma 4.2. Given three Banach spaces B0 ⊂ B ⊂ B1 with B0 and B1 reflexive and B0

compactly embedded in B, and for T ∈ (0,+∞) and p0, p1 ∈ (1,+∞) fixed, set

W :=

{
v : v ∈ Lp0([0, T ];B0) ,

∂v

∂t
∈ Lp1([0, T ];B1)

}
.

Then W is a Banach space compactly embedded in Lp0([0, T ];B).

Theorem 4.3. The Navier operator K0 is compact from the space

X = L2([0, T ];X) ∩ C0([0, T ];H) ∩H1([0, T ];X ′)

into L2([0, T ];X ′).

Proof. Since X is compactly embedded in L3(Ω;R3) and so is L
3
2 (Ω;R3) into X ′, we can

apply Lemma 4.2 with X ⊂ L3(Ω;R3) ⊂ X ′ and p0 = p1 = 2. It remains to show that K0, as

an operator with range in L2([0, T ];L
3
2 (Ω;R3)), is bounded on bounded subsets of its domain.

The estimate ∫ T

0
‖F (u, v)‖2

L
3
2
dt 6

∫ T

0
‖∇v‖2L6 ‖u‖2L2 6 c2

1

∫ T

0
‖v‖2H2 ‖u‖2L2

gives the needed property since u belongs to L∞([0, T ];H).

4.2 The stationary problem

I will first solve the stationary version of Problem 1, in which time dependence is suppressed.
Stationary solutions represent an important class in Fluid Mechanics for many applications;
moreover, the treatment of the evolutionary problem follows a similar argument.

Let us define the bilinear form a : X ×X → R as follows:

a(u, v) := 2µ

∫
Ω

Sym∇u · ∇v + (η1 − η2)

∫
Ω
∇∇u · ∇∇v

+ 3η2

∫
Ω

Sym∇∇u · ∇∇v − (η2 + 4η3)

∫
Ω

∆u ·∆v .

In view of the dissipation inequality (3.3) and Proposition 3.1, I will assume a slightly stronger
hypothesis on the sign of the coefficients.

Proposition 4.4. Provided that

µ > 0 , η1 + 2η2 > 0 , η1 − η2 > 0 , η1 − η2 − 6η3 − 2
√
η2

2 + 4η2η3 + 9η2
3 > 0 ,

the bilinear form a(u, v) is continuous and coercive on X.
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Proof. The continuity of a is apparent. With the notation of Proposition 3.1, we have:

a(u, u) = 2µ

∫
Ω
|Sym∇u|2 +

∫
Ω
Γ > 2µ ‖Sym∇u‖2L2 + (η1 + λmin) ‖∇∇u‖2L2 ;

by an application of Korn’s inequality [22, Lemma 6.2], there exists κ > 0 such that

a(u, u) > κ(‖u‖2L2 + ‖∇u‖2L2) + (η1 + λmin) ‖∇∇u‖2L2 .

Setting

ν := min {κ , η1 + λmin } > 0 ,

we have a(u, u) > ν ‖u‖2X .

Consider now the trilinear form b : H2 ×H2 ×H2 → R given by

b(u, v,w) :=

∫
Ω
F (u, v) · w =

∫
Ω

(u · ∇)v · w ,

which is indeed continuous since

|b(u, v,w)| 6 ‖F (u, v)‖L2 ‖w‖L2 6 c0 ‖u‖H2 ‖v‖H2 ‖w‖H2

for every u, v,w ∈ H2(Ω;R3).

Lemma 4.5. For every u ∈ X we have b(u, u, u) = 0 .

Proof. By standard formulae in tensor calculus we get the assertion for u ∈ V and we can
extend it by a density argument.

In the course of the proof of the existence result for solutions of the stationary problem,
also the following theorem [9, Corollary 8.1] will be applied.

Theorem (Fixed Point). Let X be a Banach space and Φ : X → X a compact operator.
Then either Φ(u) = u has a solution, or the set

S =
{

u ∈ X : Φ(u) = λu for some λ > 1
}

is unbounded.

Theorem 4.6. There exists u ∈ X such that, for every v ∈ X,

a(u, v) + b(u, u, v) = 〈ϕ, v 〉 , (4.3)

where ϕ ∈ X ′ is the linear form defined by

〈ϕ, v 〉 =

∫
SD
qn · v +

∫
Ω

d · v .
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Proof. By the Lax-Milgram theorem, the function L : X → X ′ defined by

∀v ∈ X : 〈L(u), v 〉 = a(u, v)

is a homeomorphism. We have

L(u) +K0(u) = ϕ in X ′ (4.4)

and then

u = L−1 (ϕ−K0(u)) =: Φ(u).

Assume that u ∈ X is a solution of (4.4); it means that for every v ∈ X

〈L(u), v 〉+ 〈K0(u), v 〉 = 〈ϕ, v 〉.

Taking v = u and applying Lemma 4.5, we can write

ν ‖u‖2X 6 a(u, u) 6 |b(u, u, u)|+ |〈ϕ, u 〉| 6 ‖ϕ‖X′ ‖u‖X ;

from which we have the a priori estimate

‖u‖X 6
1

ν
‖ϕ‖X′ =: R < +∞ . (4.5)

Take now λ > 1 and assume that Φ(u) = λu; it means that

〈L(λu), u 〉+ 〈K0(u), u 〉 = 〈ϕ, u 〉

and, following the argument leading to (4.5), we obtain ‖u‖X 6 λ−1R < R .

Hence the set S introduced in the Fixed Point theorem is bounded and there exists a
fixed point u ∈ X for Φ. We can then conclude that such u is a stationary solution for
Problem 1.

Remark 4.2. Considering the Sobolev constant c0 introduced in (4.2), it is easy to prove that,
if the condition c0 ‖ϕ‖X′ < ν2 is satisfied, then the solution of the stationary problem is
unique. This condition resembles that of a low Reynolds number: indeed it entails also the
exponential stability of the unique stationary solution of the evolutionary problem treated
below. ♦

4.3 The evolutionary problem

I now come to analyze the evolutionary problem. Take u ∈ L2([0, T ];X), whose norm is

‖u‖2L2([0,T ];X) :=

∫ T

0
‖u(s)‖2X ds ,

and take ϕ ∈ L2([0, T ];X ′) defined by

〈ϕ, v 〉 =

∫ T

0

∫
SD
qn · v +

∫ T

0

∫
Ω

d · v .
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Theorem 4.7. For every u0 ∈ H there exists u ∈ L2([0, T ];X) such that

u(0) = u0, (4.6)∫ T

0

(∫
Ω

∂u

∂t
· v + a(u, v) + b(u, u, v)

)
= 〈ϕ, v 〉, (4.7)

for every v ∈ L2([0, T ];X).

Remark 4.3. Notice that the time derivative of u has to be interpreted as a linear form
in L2([0, T ];X ′), whose representation enters equation (4.7), and thus we will take u ∈
H1([0, T ];X ′). A key role in the evolutionary problem is played by the initial datum u0

which belongs to H. At first the initial condition (4.6) should be understood in X ′, but we
will see that it actually holds in H, as u belongs to C0([0, T ];H). After these considerations
we can take u ∈ X. ♦

Proof. In order to proceed we need some estimates; first we set v = u in (4.7) and apply
Lemma 4.5 obtaining that ∫

Ω

∂u

∂t
· u + a(u, u) = 〈ϕ, u 〉

for almost every t ∈ [0, T ]. Integrating in time we get:

1

2

∫ t

0

d

ds
‖u(s)‖2L2 ds+

∫ t

0
a(u, u) ds =

∫ t

0
〈ϕ, u 〉 ds ;

hence, applying also Young’s inequality,

1

2
‖u(t)‖2L2 + ν

∫ t

0
‖u‖2X ds 6

1

2
‖u0‖2L2 +

ν

2

∫ t

0
‖u‖2X ds+ c2

∫ t

0
‖ϕ‖2X′ ds ,

that gives the first estimate for a.e. t ∈ [0, T ]:

‖u(t)‖2L2 + ν

∫ t

0
‖u‖2X ds 6 ‖u0‖2L2 + 2c2

∫ t

0
‖ϕ‖2X′ ds =: M .

This a priori bound tells us that any solution u of our problem belongs to a bounded subset
of L2([0, T ];X) ∩ L∞([0, T ];H). We now need the following theorem whose proof is given
in [27, Chap. 3, Sec. 4.4].

Theorem (J. L. Lions). Let X and H be two Hilbert spaces, with X dense and continuously
embedded in H; identify H with its dual in such a way that X ⊂ H ⊂ X ′ and fix T > 0.
Consider a bilinear form at(u, v) : X ×X → R such that:

i) the function t 7→ at(u, v) is measurable for every u, v ∈ X ;

ii) |at(u, v)| 6 C1 ‖u‖X ‖v‖X for a.e. t ∈ [0, T ], for every u, v ∈ X;

iii) at(v, v) > α ‖v‖2X − C2 ‖v‖2H for a.e. t ∈ [0, T ], for every v ∈ X;

where α > 0, C1 and C2 are constants.
Then, for every f ∈ L2([0, T ];X ′) and for every u0 ∈ H, there exists only one u such that

u ∈ L2([0, T ];X) ∩ C0([0, T ];H) ∩H1([0, T ];X ′)

u(0) = u0

〈 ∂u

∂t
(t), v 〉+ at(u(t), v) = 〈 f(t), v 〉 for a.e. t ∈ [0, T ], for every v ∈ X.
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It is easy to see that the spaces X, H and the bilinear form at(u, v) := a(u(t), v(t)) fulfill
the hypotheses of the previous theorem; then the function

L :


X → H × L2([0, T ];X ′)

u 7→
(

u(0),
∂u

∂t
(t) + a(u(t), · )

)
is a homeomorphism.

We can now write equations (4.6)–(4.7) in H × L2([0, T ];X ′) as

L(u) + ( 0 , K0(u) ) = ( u0 , ϕ ),

from which

u = L−1( u0 , ϕ−K0(u) ) =: Φ(u).

By Theorem 4.3 and composition arguments, Φ turns out to be a compact operator, and we
can then apply the Fixed Point theorem in the Banach space X. Arguing as in the previous
section, we take λ > 1 and assume Φ(u) = λu; in particular u0 = λu(0) and

λ

2

∫ t

0

d

ds
‖u(s)‖2L2 ds+ λ

∫ t

0
a(u, u) ds =

∫ t

0
〈ϕ, u 〉 ds .

We then obtain

λ

2
‖u(t)‖2L2 + λν

∫ t

0
‖u‖2X ds 6

λ

2

∥∥λ−1u0

∥∥2

L2 +
ν

2

∫ t

0
‖u‖2X ds+ c2

∫ t

0
‖ϕ‖2X′ ds ,

that gives

λ ‖u(t)‖2L2 + (2λ− 1)ν

∫ t

0
‖u‖2X ds 6 λ−1 ‖u0‖2L2 + 2c2

∫ t

0
‖ϕ‖2X′ ds < M .

Since 2λ− 1 > λ, we can write

‖u(t)‖2L2 + ν

∫ t

0
‖u‖2X ds < λ−1M

and the set S in the Fixed Point theorem is bounded in L2([0, T ];X)∩L∞([0, T ];H). In order
to complete the proof, it remains to show that S is bounded also in H1([0, T ];X ′).

If there exists λ > 1 such that Φ(u) = λu, then we have that

∂u

∂t
= −a(u, · )− 1

λ
K0(u) +

1

λ
ϕ in L2([0, T ];X ′)

and that ∥∥∥∥∂u

∂t

∥∥∥∥
X′

6 ‖a(u, · )‖X′ +
1

λ
‖K0(u)‖X′ +

1

λ
‖ϕ‖X′ .

By the continuity of a and the embeddings mentioned in the proof of Theorem 4.3 we can
write: ∥∥∥∥∂u

∂t

∥∥∥∥
X′

6 c3 ‖u‖X +
c4

λ
‖K0(u)‖

L
3
2

+
1

λ
‖ϕ‖X′ .
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We know that u belongs to a bounded subset of L2([0, T ];X) and ϕ ∈ L2([0, T ];X ′); we
deduce that ∫ T

0

∥∥∥∥∂u

∂t

∥∥∥∥2

X′
6 c5 +

2c2
4

λ2

∫ T

0
‖K0(u)‖2

L
3
2
< N

for a fixed N > 0, since K0 maps bounded subsets of L2([0, T ];X)∩L∞([0, T ];H) to bounded

subsets of L2([0, T ];L
3
2 (Ω;R3)).

The last bound shows that ∂u
∂t belongs to a bounded subset of L2([0, T ];X ′) and implies

that S is bounded in X. Hence there exists a fixed point u ∈ X for Φ and this is a solution
for the Cauchy problem (4.6)–(4.7).

Thanks to the H2-regularity of the solution we have found, which in particular guarantees
the L∞-regularity in three dimensions, an important uniqueness result can be proved.

Theorem 4.8. There exists a unique solution u ∈ X of the Cauchy problem (4.6)–(4.7).

Proof. Let u1 and u2 be solutions of equation (4.7) with the same initial datum and set
w := u1 − u2. We easily obtain, by equations (4.6)–(4.7) and Lemma 4.5,

w(0) = 0,∫
Ω

∂w

∂t
· w + a(w,w) + b(w, u2,w) = 0 ,

from which, integrating in time and applying the coercivity of a, we can deduce that

1

2
‖w(t)‖2L2 + ν

∫ t

0
‖w‖2X ds 6

∫ t

0
|b(w, u2,w)| ds .

By Young’s inequality,

‖w(t)‖2L2 + 2ν

∫ t

0
‖w‖2X ds 6 2

∫ t

0
‖w‖L∞ ‖∇u2‖L2 ‖w‖L2 ds

6 2c0

∫ t

0
‖w‖X ‖u2‖X ‖w‖L2 ds 6 2ν

∫ t

0
‖w‖2X ds+

c2
0

2ν

∫ t

0
‖u2‖2X ‖w‖

2
L2 ds ;

hence we have

‖w(t)‖2L2 6
c2

0

2ν

∫ t

0
‖u2(s)‖2X ‖w(s)‖2L2 ds

and by Gronwall’s lemma we conclude that ‖w(t)‖2L2 = 0 for every t ∈ [0, T ], that is u1 =
u2.

Remark 4.4. Notice that, if η1 = η2 = 0 and η3 < 0, the bilinear form a is no longer coercive
on X; nevertheless, all the previous results are still valid, if we replace X with the space

X̂ := { v ∈ {completion of V in H1(Ω;R3)} : ∆v ∈ L2(Ω;R3) and v = 0 on SW ∪ Λ } ,

on which the bilinear form a remains coercive, a key feature for existence theorems.
Moreover, standard regularity theorems for elliptic second-order PDEs, guarantee that

functions belonging to X̂ are essentially bounded [14, Theorem 8.16] and Hölder continuous
[14, Theorem 8.22]. Essential boundedness provides the needed estimates for uniqueness of
the solution, while the continuity in space of the solutions allows to assign their value on a
one-dimensional set contained in the interior of Ω. ♦
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4.4 Immersed structures dragging the fluid

I now want to study the flow of a second-gradient linear liquid dragged by one-dimensional
immersed structures in an arbitrary time interval [0, T ] when the three-dimensional region
occupied by the fluid Ω is a bounded domain with Lipschitz boundary which is fixed in time.
Since here the emphasis is on the drag, I impose the boundary conditions stated in Section 3.3,
with SW = ∂Ω. For the sake of simplicity I consider only one rigid body Λ0 immersed in the
fluid, where Λ0 is a connected one-dimensional closed subset of Ω such that Λ0 ∩ ∂Ω = ∅.
Moreover, I denote by Λ(t) the image at time t of Λ0 under the rigid displacement ϕ, i.e.
Λ(t) = ϕ(Λ0, t) and Λ(0) = Λ0. I assume the existence of a family of C2-diffeomorphisms
ψt : Ω→ Ω such that ψt(Λ0) = Λ(t) and any ψt reduces to the identity map in a neighborhood
of ∂Ω. This assumption will be fulfilled if the one-dimensional structure never reaches the
boundary of the domain, namely Λ(t) ∩ ∂Ω = ∅ for every t ∈ [0, T ]. Finally, to avoid
technicalities, I assume that ϕ and ψt enjoy a C1 dependence on time. The introduction of
such diffeomorphisms will enable us to map the linearized parabolic problem with a moving
domain into an equivalent problem, easier to work out, where Λ(t) = Λ0 for all the time.

I construct, for every t ∈ [0, T ], a Hilbert subspace Xt of the Sobolev space H2(Ω;R3) in
the following way: recall that I set

V :=
{

v|Ω : v ∈ C∞0 (R3;R3) , div v = 0
}

(4.8)

and denote with H and H2
d the completions of V in L2(Ω;R3) and H2(Ω;R3) respectively.

Since H2(Ω;R3) is continuously embedded in C0(Ω;R3), we can define the closed subspace

Xt :=
{

v ∈ H2(Ω;R3) : v = 0 on ∂Ω ∪ Λ(t)
}
∩H2

d (4.9)

endowed with the H2-norm.
Now I can redefine the space

X := L2([0, T ];Xt) ∩ C0([0, T ];H) ∩H1([0, T ];X ′t) (4.10)

of divergence-free virtual velocities on Ω which belong to Xt for almost every t ∈ [0, T ], and
whose first derivatives with respect to t belong to the dual space X ′t of Xt for a.e. t ∈ [0, T ].
Moreover, it is apparent that velocity fields belonging to the space X vanish on [0, T ] × ∂Ω
and on the surface { (t, x) : t ∈ [0, T ], x ∈ Λ(t) }.

Consider again the continuous bilinear form on H2(Ω;R3) defined by

at(u, v) := 2µ

∫
Ω

Sym∇u · ∇v

+ (η1 − η2)

∫
Ω
∇∇u · ∇∇v + 3η2

∫
Ω

Sym∇∇u · ∇∇v

− (η2 + 4η3)

∫
Ω

∆u ·∆v . (4.11)

Since at(u, u) represents the dissipation at time t of the flow u, the classical Korn’s inequality
together with the constraints (3.4) on the coefficients (taken with strict inequalities) guarantee
the coercivity of this bilinear form on the space Xt.

In order to prove the existence of a solution for the dynamical problem, assume to have
an interpolator û, namely a divergence-free velocity field which vanishes on ∂Ω and equals the
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velocity of the rigid body on Λ(t), and to look for a solution of the type u + û where u ∈ X.
Then, substituting into the balance (3.1) and using the properties of û, it is straightforward
to see that u must satisfy the following problem.

Problem 2. Given u0 ∈ H and û as above, find u ∈ X such that u|t=0 = u0 and∫ T

0

(∫
Ω

∂u

∂t
· v + at(u, v)

)
+

∫ T

0
(b(u, u, v) + b(û, u, v) + b(u, û, v))

+

∫ T

0

(∫
Ω

∂û

∂t
· v + at(û, v) + b(û, û, v)

)
= 0 (4.12)

for every v ∈ X.

In order to show that Problem 2 has a solution u ∈ X (and that it is the sole one), I need
a further “smallness” condition on the interpolator û, that is, for a suitable β > 0,

|b(v, û, v)| 6 β ‖v‖2H2 , (4.13)

which we suppose, for the time being, to be fulfilled. The problem of finding an interpolator
will be considered in a while.

Now I will solve Problem 2. The first step is to define the linearized parabolic operator

L :


X → H × L2([0, T ];X ′t)

u 7→
(

u|t=0 ,
∂u

∂t
(t) + at(u(t), · )

)
(4.14)

and to establish that it is a homeomorphism. This fact guarantees that, at least when the
convective term can be neglected (e.g. in the case of low Reynolds numbers), the problem
admits a unique solution. Such a result can be obtained by the same argument used in the
previous section, once we have noticed that the time-varying spaces Xt turn all into X0 when
we apply ψ−1

t to Ω, and the coercivity of the bilinear form at is transferred to a new bilinear
form ã, as explained in [25]. After this transformation, we obtain a parabolic problem on the
domain { (t, ψ−1

t (x)) : t ∈ [0, T ], x ∈ Ω }, which enjoys existence and uniqueness of solution in
the space

L2([0, T ];X0) ∩ C0([0, T ];H) ∩H1([0, T ];X ′0) ; (4.15)

hence L is a homeomorphism.
As a second step, one has to deal with the nonlinear term K(u) := (u · ∇)u. Its com-

pactness properties have been successfully exploited in the previous sections and, since the
same arguments apply also here, we need no additional effort to establish the existence of a
solution u ∈ X for Problem 2. Uniqueness follows again by the proof of Theorem 4.8.

The construction of a good interpolator û is not trivial, because in order to prove the
existence of solutions we need a family of interpolators of the velocity assigned on Λ(t) and
∂Ω among which, for any β > 0, a û can be selected such that (4.13) holds for every v ∈ Xt.
In order to obtain a divergence-free interpolator g(t, x), we consider, at any fixed time t, a
neighborhood Rt ⊂ Ω of Λ(t) with ∂Rt smooth. On Rt the field g is taken equal to the
velocity of the rigid motion ϕ; since this is a divergence-free velocity and since we want g to
vanish on ∂Ω, we get ∫

∂(Ω\Rt)
g · n =

∫
∂Ω

g · n−
∫
∂Rt

g · n = 0 , (4.16)



4.4. Immersed structures dragging the fluid 33

where n is the outer unit normal to ∂(Ω \ Rt). The existence of such a g is granted by the
following lemma, which can be easily proved, adapting the argument in [15, Lemma 2.2].

Lemma 4.9. Let A be an open connected subset of R3. For each g̃ ∈ H
3
2 (∂A;R3) satisfying∫

∂A
g̃ · n = 0 ,

there exists a function g ∈ H2(A;R3) such that div g = 0 in A and g = g̃ on ∂A.

Carefully considering what happens on ∂Rt, it turns out that the function

h :=

{
ϕ on Rt

g on Ω \Rt

belongs to H2(Ω;R3). Once h is found, we can construct û satisfying (4.13) via two steps: we
take Rt small enough, and then we apply Lemma 7.1 of [26, p. 103] on Ω \ Rt thanks to the
regularity of ∂Rt.



Chapter 5

The role of higher-order material
parameters

The aim of this chapter is to analyze the effects of the higher-order material parameters η1, η2,
η3 in some examples, in order to gain some insight into their meaning both from a physical
and a mathematical point of view. It will become clear that η1 is strictly related to the
presence of concentrated interactions, while η3 is only responsible for higher-order dissipation
phenomena. The role of η2 is less clear.

5.1 Dragged flow in a cylinder

Consider a fluid placed in the cavity between two infinitely long coaxial cylinders of radii
R1 < R2; the flow is driven imposing a motion with constant velocity U of the inner cylinder
along the axial direction ez. Looking for cylindrically symmetric stationary solutions u(r)ez,
where r is the cylindrical radius, in the case of Newtonian liquids with viscosity µ and the
usual adherence condition on the walls, one easily finds

u(r) = U
logR2 − log r

logR2 − logR1
. (5.1)

It is clear that this solution has no continuous extension to the case R1 = 0.
However, with a second-order linear isotropic viscous liquid the analogous problem gives

the family of solutions

u(r) = α1 + α2I0

( r
L

)
+ α3 log

( r
L

)
+ α4K0

( r
L

)
, (5.2)

where αi, i = 1 . . . 4, are constants (depending on R1, R2) fixed by the boundary conditions,
I0, K0 are Bessel functions of imaginary argument [24, Sec. 5.7], and the parameter

L :=
√

(η1 − η2 − 4η3)/µ (5.3)

arises from the higher-oreder terms. If we now set R1 = 0 the solution remains bounded
provided that α3 = α4, since

lim
r→0

(
log
( r
L

)
+K0

( r
L

))
< +∞ ; (5.4)

34
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ex

ey

Figure 5.1: Section of the cylindrical sector.

besides, one can still meet the prescribed boundary conditions by a suitable choice of the
constants.

Actually, true boundary conditions can now be imposed only at r = R2, while, at r = 0,
I will impose the value of the velocity field to be equal to U . This is an example of the
constraint on the space of velocities which is considered in the previous chapter. Hence, being
n the outer unit normal to the cylinder, the three conditions are:

u(0) = U , (5.5)

u(R2) = 0 , (5.6)

(Gn)n|r=R2 = 0 . (5.7)

While the first two conditions are clear and do not contain explicitly the higher-order param-
eters, condition (5.7) has to be specialized. On the surface of the cylinder we have

(Gn)n = η1
∂2u

∂r2
− (η2 + 4η3)

1

r

∂

∂r

(
r
∂u

∂r

)
which implies [

η1
∂2u

∂r2
− (η2 + 4η3)

1

r

∂

∂r

(
r
∂u

∂r

)]
r=R2

= 0 . (5.8)

Now, recall that the thermodynamical constraints (3.4) force η2 to vanish if η1 = 0, while
η3 can be any non-positive real number. On the other hand, in order to prove Proposition 4.4,
η1 cannot vanish, but if this is the case, with η3 < 0, the fluid is still a non-simple one,
thermodynamics is not violated, and we still have a unique solution according to Remark 4.4.

So far there is no clear distinction between the effects of the presence of the three pa-
rameters. Let us now calculate the concentrated force on the edges of a π/2-wide cylindrical
sector, whose section is depicted in Fig. 5.1. Given the geometry, we have to evaluate the
concentrated traction on the edges; with the notation of Proposition 2.4, we get

K̂u = G(ex ⊗ ey + ey ⊗ ex) = 2G(ex ⊗ ey) ;

indeed

G112 = G212 = 0 , and G312 = η1
∂2u

∂x∂y
.
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Figure 5.2: Comparison of the flow rates.

Hence it is clear that the parameter η3 does not play any role in the determination of the
concentrated force K̂u. Moreover, if η1 = 0, no concentrated force can appear.

This result is in agreement with the general feature discussed in Section 2.2, and the
results in [31, Sec. 4]. Indeed, the hyperstress takes the form

G = −5η3∆u⊗ I + 3η3 Sym(∆u⊗ I) + I⊗ p ,

whose active part, given the incompressibility constraint, is G0 = −4η3∆u ⊗ I, which, by
Corollary 2.6, cannot develop concentrated interactions.

Remark 5.1. The results of the present section show that the adherence to a one-dimensional
object should not be viewed as a concentrated interaction; indeed, we can constitutively
choose to have a fluid which can interact with one-dimensional objects without developing
concentrated stresses. This is in fact the case when η1 = η2 = 0 and η3 < 0, and that
situation corresponds to the particular choice, introduced in Remark 4.4, of the functional
space to which our velocity field belong.

Such a result is a bit surprising. But we have to properly understand the meaning of
concentrated interactions; in fact, what we get in the case η1 = η2 = 0, η3 < 0 is that the ad-
herence to a one-dimensional structure can be represented, on any material surface containing
it, by diffused surface interactions. On the other hand, when η1 > 0, the representation of
internal stresses can have a concentrated part on the singular edges of the surface of some
subbody, even though there are no concentrated interactions on any part of the boundary or
the interior of the whole body. ♦

As to the meaning of the length-scale L, an interesting feature appears. Computing the
dependence upon R1 of the flow rate through an annular section in the Newtonian case, and
comparing it with the dependence upon L of the flow rate of our second-gradient fluid when
the inner radius is equal to zero (Fig. 5.2), one can observe that the relative difference between
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the two values computed at R1 = L is very small, indeed negligible when R1, L � 1. This
fact suggests that the parameter L represents a sort of effective thickness in the limiting case.

5.2 Pressure-driven flows

I will finally describe analytic expressions for the pressure-driven flow of a second-order liquid
in a pipe with squared or circular section.

Consider a pipe with squared section in the (x, y)-plane, a velocity field v = w(x, y)ez, and
a constant and uniform pressure gradient Cez whic drives the flow. The differential equation
for the steady flow of a second-order liquid with viscosity µ, becomes

µ∆w − ξ∆∆w = C , (5.9)

with w = 0 and ∂2w
∂n2 = 0 on the boundary of the pipe. Notice that ∆ is the bidimensional

Laplace operator in the (x, y)-plane. The previous equation can be written as

−∆(w − L2∆w) = −C
µ
, L2 :=

ξ

µ
,

and, since w − L2∆w = 0 on the boundary, we can set u = w − L2∆w, obtaining{
−∆u = −C/µ =: C̃

u = 0 on the boundary.
(5.10)

Take now the section of the pipe to be [0, π]× [0, π], so that we can expand on the basis given
by the eigenfunctions of the Laplace operator on that square:

Xh,k =
4

π2
sinhx sin ky,

with eigenvalues λh,k = h2 + k2, with h, k ∈ N. We have

〈C̃,Xh,k〉 =

{
fh,k := 8C̃

π2 hk for h, k odd

0 otherwise.

Hence the solution of (5.10) is

ũ =
∑

h,k odd

fh,k
λh,k

Xh,k. (5.11)

It remains to solve
−L2∆w + w = ũ .

The operator (−L2∆ + 1) has again Xh,k as eigenfunctions, with eigenvalues L2λh,k + 1; then
we get

w(x, y) =
∑

h,k odd

fh,k
λh,k(L2λh,k + 1)

Xh,k =

= −32C

µπ4

∑
h,k odd

hk

(h2 + k2)(L2h2 + L2k2 + 1)
sinhx sin ky . (5.12)



38 Chapter 5. The role of higher-order material parameters

Now we can evaluate the concentrated traction along the edges of the pipe. As in the
previous section we have

K̂u = 2G(ex ⊗ ey) ;

and

G112 = G212 = 0 , G312 = η1
∂2w

∂x∂y
.

Once more, we see that a concentrated stress can appear only if η1 > 0, while a second-order
liquid with η1 = 0 cannot develop such a concentration even if the boundary of the domain
has a singular part.

Let us compute, with η1 > 0, the concentrated stress density in the origin:

K̂u(0, 0) = 2η1
∂2w

∂x∂y
(0, 0)ez = −2η1

32C

µπ4

∑
h,k odd

h2k2

(h2 + k2)(L2h2 + L2k2 + 1)
ez 6= 0 .

Thanks to the symmetry of the problem, we get the same result on the remaining edges.
Take now an incompressible fluid which moves in a cylindrical pipe of radius R; the motion

is again produced imposing a uniform pressure gradient Cez (C ∈ R) on the z = 0 circular
section, being the axis of the cylinder along the z direction ez. Looking for cylindrically
symmetric stationary solutions u(r)ez, where r2 = x2 + y2, in the case of Newtonian liquids
with viscosity µ and the usual adherence condition, one finds

u(r) =
C

4µ
(r2 −R2)

for the axial component of the velocity field.
With a second-order fluid the analogous problem gives the family of solutions

u(r) =
C

4µ
r2 + α1 + α2I0

( r
L

)
+ α3 log r + α4K0

( r
L

)
,

where, as in the previous section, αi, i = 1 . . . 4, are constants fixed by the boundary condi-
tions, L is the length-scale arising from the higher-order terms and I0, K0 are Bessel functions.
Regularity assumptions for r = 0 imply α3 = α4 = 0, and the boundary conditions become

u(R) = 0 , (5.13)

(Gn)n|r=R = 0 , (5.14)

that is

C

4µ
R2 + α1 + α2I0

(
R

L

)
= 0 , (5.15)

(η1 − η2 − 4η3)

(
α2

2L2

[
I0

(
R

L

)
+ I2

(
R

L

)])
− (η2 + 4η3)

(
C

µ
+
α2

LR
I1

(
R

L

))
= 0 , (5.16)

from which

α1 = − C
4µ
R2 − α2I0

(
R

L

)
, (5.17)

α2 =
C

µ

η2 + 4η3
η1−η2−4η3

2L2

[
I0

(
R
L

)
+ I2

(
R
L

)]
− η2+4η3

LR I1

(
R
L

) . (5.18)

Since the modified Bessel functions In grow exponentially fast, we see that, when L is small
compared to the radius R of the cylinder, the second-order solution is very similar to the
classical one.



Appendix A

Differentiable Banach manifolds

Within the present section I collected basic definitions and properties of Banach manifolds,
which essentially are differentiable manifolds whose local charts are isomorphic to an open
subset of a Banach space, not necessarily of Rn, so that the more familiar theory of differ-
entiable manifolds is recovered as a particular case. For a complete treatment of the subject
the reader is referred to [23] and [1].

Definition A.1. Let S be a set. A chart on S is a bijection ϕ from a subset U of S to an
open subset of a Banach space. We sometimes denote ϕ by (U,ϕ), to indicate the domain U
of ϕ. A Ck atlas on S is a family of charts A = {(Ui, ϕi) : i ∈ I} such that:

(i) S =
⋃
i∈I Ui ;

(i) Any two charts in A are compatible in the sense that the overlap maps between members
of A are Ck diffeomorphisms: for any two charts (Ui, ϕi) and (Uj , ϕj) with Ui ∩ Uj 6=
∅, we define the overlap map on the intersection as ϕji := ϕi ◦ ϕ−1

j , and we require

ϕi(Ui ∩ Uj) to be open and ϕji to be a Ck diffeomorphisms.

Definition A.2. Two Ck atlases A1 and A2 are equivalent if A1 ∪ A2 is a Ck atlas. A Ck

differentiable structure D on S is an equivalence class of atlases on S. The union of the atlases
in D,

AD :=
⋃
{A : A ∈ D}

is the maximal atlas of D, and a chart (U,ϕ) ∈ AD is an admissible local chart.
A differentiable manifold M is a pair (S,D), where S is a set and D is a Ck differentiable

structure on S. If a covering by charts takes values in a Banach space B, then B is called the
model space and we say that M is a Ck Banach manifold modeled on B.

It is now clear that any Banach space B is a Banach manifold, whose differentiable struc-
ture is given by the atlas with the sole identity chart.

Definition A.3. Let (S1,D1) and (S2,D2) be two manifolds. The product manifold

(S1 × S2,D1 ×D2)

consists of the set S1 × S2 together with the differentiable structure D1 × D2 generated by
the atlas

{ (U1 × U2, ϕ1 × ϕ2) : (Ui, ϕi) is a chart of (Si,Di), i = 1, 2 } .
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Definition A.4. Let M be a manifold and m ∈ M . A curve at m is a C1 map c : I → M
from an interval I ⊆ R into M with 0 ∈ I and c(0) = m. Let c1 and c2 be two curves at m
and (U,ϕ) an admissible chart with m ∈ U . Then we say c1 and c2 are tangent at m with
respect to ϕ if and only if (ϕ ◦ c1)′(0) = (ϕ ◦ c2)′(0).

Proposition A.1. Let c1 and c2 be two curves at m ∈ M . Suppose (Ui, ϕi) are admissible
charts with m ∈ Ui, i = 1, 2. Then c1 and c2 are tangent at m with respect to ϕ1 if and only
if they are tangent at m with respect to ϕ2.

By the previous proposition, tangency at m ∈M is an equivalence relation among curves
at m, and an equivalence class with respect to tangency at m of such curves will be denoted
by [ c ]m, where c is a representative of the class.

Definition A.5. For a manifold M and m ∈M the tangent space to M at m is

TmM := { [ c ]m : c is a curve at m } ;

given A ⊆M we set

TM |A :=
⋃
m∈A

TmM ,

and TM := TM |M is the tangent bundle on M . The mapping τM : TM → M , defined by
τM ([ c ]m) = m, is the tangent bundle projection on M .

Proposition A.2. Let U be an open subset of the Banach space B, and let c be a curve at
u ∈ U . Then there is a unique b ∈ B such that the curve cu,b defined by cu,b(t) = u+ tb (with
t belonging to an interval I such that cu,b(I) ⊂ U) is tangent to c at u.

In particular TU can be identified with U×B, and TuU is isomorphic to B for any u ∈ U .

Proof. By definition, the differential Dc(0) is the unique linear map from R to B such that
the curve g : R → B, given by g(t) = u + tDc(0) is tangent to c at t = 0. If b = Dc(0),
then g = cu,b. Hence, the map i : U × B → TU defined by i(u, b) = [ cu,b ]u, turns out to
be a bijection; moreover, we can induce a manifold structure on TU by means of i, and this
concludes the proof.

I will now define cotangent spaces and bundles in the particular case which is of interest
within the present work.

Definition A.6. Let U be an open subset of the Banach space B. Then, for any u ∈ U , the
topological dual of TuU ∼= B defines the cotangent space at u, denoted by T ∗uU , and

T ∗U :=
⋃
u∈U

T ∗uU

is the cotangent bundle on U .



Appendix B

Differential operators on a surface

Given a smooth surface S embedded in R3, we can define the projection operator P on S,
and its composition with the gradient and the divergence operator. Let n be the unit outer
normal to S; for any vector field a and any tensor field A, we have:

P := I− n⊗ n ,

∇S a := (∇a)P ,

divS a := tr(∇S a) = P · ∇a = div a− n · (∇a)n ,

(divS A)i := Aij,kPkj ,

where tr(A) denotes the trace of the matrix A. Moreover, the normal derivative is defined as

∂a

∂n
:= (∇a)n ;

the curvature tensor C(x) and the mean curvature k(x) of S are defined by

C(x) := −∇S n = −(∇n)P ,

k(x) :=
1

2
tr C = −1

2
divS n .

for any x ∈ S.
With these definitions we have the following important result.

Surface-divergence Theorem B.1. Let τ be a vector field tangent to S, and let U ⊆ S be
a subsurface with ν unit outer normal to ∂U ; then∫

∂U
τ · ν =

∫
U

divS τ . (B.1)

By direct application of the previous theorem to suitable tangential fields, we get the
following corollary.

Corollary B.2. For any tensor field A, any vector field a and any virtual velocity v, we have:

divS(AP) = divS A + 2kAn , (B.2)

divS(A†a) = a · divS A + A · ∇S a , (B.3)∫
S

A · ∇S v = −
∫
S

(divS A + 2kAn) · v . (B.4)
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