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On the parameters of Zenga distribution∗

Francesco Porro, Alberto Arcagni

Abstract

In 2010 Zenga introduced a new three-parameter model for distribu-
tions by size which can be used to represent income, wealth, �nancial
and actuarial variables. In this paper a summary of its main properties
is proposed. After that the article focuses on the interpretation of the
parameters in term of inequality. The scale parameter µ is equal to the
expectation, and it does not a�ect the inequality, while the two shape
parameters α and θ are an inverse and a direct inequality indicators re-
spectively. This result is obtained through stochastic orders based on
inequality curves. A procedure to generate random sample from Zenga
distribution is also proposed. The second part of the article is about the
parameter estimation. Analytical solution of method of moments esti-
mators is obtained. This result is used as starting point of numerical
procedures to obtain maximum likelihood estimates both on ungrouped
and grouped data. In the application, three empirical income distributions
are considered and the aforementioned estimates are evaluated.

keywords: mixture, inequality, inequality I(p) curve, income distribution

1 Introduction

Pareto, in 1895 [11], 1896 [12] and 1897 [13], proposed his models for income
distributions, and he considered inequality as a major theme. Since then a dis-
cussion about inequality in income distributions had origin and di�erent Ital-
ian scholars were involved, such as Benini (1897) [4], Amoroso (1925) [1] and
D'Addario (1949) [7].

Pareto's �rst law has a good �tting only for high values of income distributions,
therefore several alternative models have been proposed. Gamma and lognor-
mal distributions provide a suitable description of the centre of the income
distribution but for the upper and the lower tails are not satisfactory. The
aforementioned models are two-parameter depending. Obviously, the greater
the number of parameters, more �exible the model can be. Dagum type I [6]

∗Although this paper arises from a collaboration between the two authors, the sections 2,

3 and the subsection 4.1 have to be attribuited to F. Porro, while the sections 1, 5 and the

subsection 4.2 to A. Arcagni
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and Singh - Maddala [18] are examples of three-parameter models for income
distributions and they are special cases of the four-parameter GB2 model [10].
It is clear that a high number of parameters creates di�culties in estimation
and interpretation, and a number of parameters greater than three could be
considered too large. For a complete review of all these models is recommended
to refer to Chotikapanich [5] and Kleiber and Kotz [9].

In this paper a new three-parameter model for distributions by size proposed
by Zenga [23] is analyzed. It is a mixture of particular truncated Pareto distri-
butions and it has the non-negative real numbers as support.

Dagum [6], introducing his model of income distribution, grouped the existing
functional forms by the method used to obtain them:

• functional forms obtained by means of a stochastic process;

• functional forms used to describe income distributions solely by their sati-
sfactory goodness of �t to empirical data, such as the Gamma model and
the Weibull model;

• functional forms obtained solving systems of di�erential equations that
de�ne characteristics of regularity and performance observed in the em-
pirical distributions of income, such as Pareto, Singh-Maddala and Dagum
itself.

Zenga model does not belong to this classi�cation, as it was not obtained by
stochastic processes and di�erential equations, but it takes its origin by an
inequality measure.

As mentioned, Zenga model is a mixture. The conditional densities were derived
by Polisicchio [14] as the unique distribution model with expected value �nite
and positive and with uniform inequality curve I(p) (Zenga, [22]). De�ning the
lower mean as the mean of the values lower or equal to the p-th quantile, and the
upper mean as the mean of the values higher than the p-th quantile, the condition
of uniformity on the I(p) curve implies that the ratio between the lower mean
and the upper mean is constant for every p ∈]0, 1[. The obtained distribution is
a truncated Pareto distribution with traditional inequality parameter equal to
0.5. The parameters are the scale parameter µ (that can be proved to be the
expectation) and the ratio between lower mean and upper mean denoted with
k. The support of the Polisicchio distribution depends on the parameters and
it is the interval [µk, µ/k].

Zenga distribution is obtained as mixture of Polisicchio distributions with µ
constant and k ∈]0, 1[ with mixing function given by the Beta density. The
resulting model has useful properties to describe income, wealth, �nancial and
actuarial distributions. In fact, it has positive asymmetry and paretian right-
tail but expected value always �nite. In literature, it is well-known that income
distribution has heavy right-tail but the income of the whole population, and
consequentially the average income, is �nite. Therefore, if the expected value
of a �tted model is not �nite, it has not economic interpretation. This are the
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cases of Pareto distribution with α ≤ 1, Dagum distribution with δ ≤ 1, Singh -
Maddala, and more in general GB2 distribution, with aq ≤ 1 [9]. In these cases
one of the main measures of location is not de�ned.

To describe distributions by size, location and inequality measures are the most
relevant. The new model has three parameters: µ is the scale parameter and
is equal to the expected value, α and θ are shape parameters which in�uence
the inequality. Thus Zenga model allows to examine separately location and
inequality. This has also implications in parameter estimation, because the
restrictions on the expected value and on inequality measure (which are invari-
ant to scale transformations) can be imposed separately. This property can be
used to estimate parameters, through D'Addario's invariants method [8] or by
imposinge restrictions to numerical procedures of optimization, such as mini-
mization of goodness of �t indexes or likelihood maximization. This methods
have been applied by Zenga et. al. [24] and Arcagni [2] to estimate the pa-
rameters of Zenga ditribution, and through several applications and simulations
they observed a good �tting of the model on the whole range of the empirical
distribution.

The paretian right-tail allows the model to �t the income distributions for large
values. Zenga distribution can assume several shapes and it can be zero-modal
and unimodal: this feature allows a good �tting also for small income.

By this short introduction on the properties of Zenga distribution, it can be
observed that it meets the requirements proposed by Dagum [6], in particular:

• parsimony, since the distribution function depends only on three parame-
ters;

• economic interpretation of parameters;

• simple and e�cient method of parameter estimation;

• model �exibility;

• good �t on the whole range of the distribution.

The paper is organized as follows. Zenga model is presented in section 2 pro-
viding conditional densities, mixing function, probability density function, dis-
tribution function and some other main features. Section 3 focuses on other
features which allow to point out the roles of the shape parameters in terms
of inequality, in particular the stochastic orders based on inequality curves are
showed. In the same section how to generate random values from Zenga distri-
bution is proposed. In section 4 the estimation methods considered in this paper
are described, the analytical solution of the method of moments is obtained and
maximum likelihood functions on ungrouped and grouped data are de�ned. The
applications are shown in section 5 with the de�nition of the intervals and the
de�nition of the goodness of �t indexes. Section 6 is devoted to conclusions and
�nal remarks.
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2 De�nition and some initial features

Zenga distribution is obtained as a mixture of Polisicchio's truncated Pareto dis-
tributions with Beta weights. The conditional densities have probability density
function given by:

v(x;µ, k) =


√
µk

2
(1− k)−1x−3/2 x ∈ [µk, µ/k]

0 otherwise
(1)

where µ is the non-negative expectation and k ∈]0, 1[. These densities have
the peculiarity that the corresponding inequality I(p) curve is uniform with
inequality level equal to 1− k, and they have been introduced and analyzed by
Polisicchio [14].

The mixing function on k ∈]0, 1[ is a Beta distribution (depending on the two
positive parameters α and θ) with probability density function given by

g(k;α, θ) =


kα−1(1− k)θ−1

B(α, θ)
k ∈]0, 1[

0 otherwise
(2)

where B(a, b) is the Beta function:

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt a > 0, b > 0.

By de�nition, therefore, the probability density function of Zenga distribution
is

f(x;µ, α, θ) =

∫ 1

0

v(x;µ, k)g(k;α, θ) dk

=


1

2µB(α; θ)

(
x

µ

)−3/2 ∫ x
µ

0

kα−1/2(1− k)θ−2 dk if 0 < x < µ

1

2µB(α; θ)

(µ
x

)3/2
∫ µ

x

0

kα−1/2(1− k)θ−2 dk if x > µ

(3)

and the distribution function is

F (x;µ, α, θ) =



∫ x
µ

0

[
1−

√
µk

x

]
kα−1(1− k)θ−2

B(α, θ)
dk if 0 < x ≤ µ

1−
∫ µ

x

0

[√
µ

xk
− 1

]
kα(1− k)θ−2

B(α, θ)
dk if x > µ.

(4)

In the following some basic properties of Zenga distribution are brie�y presented:
further details and more explications can be found in [23], [25] and [24].

4



The �rst feature of Zenga distribution is that, since it is a mixture of continuous
random variables (each of them with �nite expectation µ), it has always �nite
expected value equal to µ, for any admissible choice of the parameters.

The behaviour of the probability density function in a neighbourhood of 0 and
in a neighbourhood of µ needs to be described. It holds that

lim
x→0+

f(x;µ, α, θ) =


+∞ if 0 < α < 1
θ

3µ
if α = 1

0 if α > 1

and that

lim
x→µ

f(x;µ, α, θ) =


B(α+ 1/2; θ − 1)

2µB(α, θ)
if θ > 1

+∞ if 0 < θ ≤ 1.

It is very interesting to note that the parameter α governs the behaviour of the
density function as x tends to 0, while the value of the parameter θ regulates
the �nitess (or not) of the function in a neighbourhood of µ. As it will be shown
later, the value of α also controls the �nitess of the moments: in other words
therefore it can be stated that α a�ects the tails, while θ a�ects the behaviour
around the mean µ.

Another interesting property of Zenga distribution is the capability to model
very di�erent distributions: it is easy to see how many behaviours can have,
changing the values of the parameters. In Figures 1 and 2 some probability
density functions are showed: in both of them, the value of µ is set to 1, but in
the �rst one, θ is �xed and equal to 4 and 0.5, while in the second one θ changes
and α equals 2 and 0.5.

An analysis about the moments of the distribution is important. It has been
proved that if X denotes a random variable with Zenga distribution with pa-
rameters µ, α and θ, then

E(Xr) =
µr

(2r − 1)B(α, θ)

2r−1∑
i=1

B(α− r + i, θ) for r < α+ 1.

In other words, it is guaranteed the �niteness of the moments of order less then
α+ 1. In particular, if α > 1, then

E(X) = µ

and

E(X2) =
µ2

3

(
θ

α− 1
+

α

α+ θ
+ 2

)
,

therefore the variance is:

E(X − µ)2 =
µ2θ(θ + 1)

3(α− 1)(α+ θ)
. (5)
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Figure 1: The density functions of Zenga distribution with µ = 1 and θ = 4 (on the
left) and θ = 0.5 (on the right)
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Figure 2: The density functions of Zenga distribution with µ = 1 and α = 2 (on the
left) and α = 0.5 (on the right)

In general, the rth central moment of Zenga distribution is

E(X − µ)r =

∫ +∞

0

(x− µ)rf(x;µ, α, θ) dx

=

∫ +∞

0

[
(x− µ)r

∫ 1

0

v(x;µ, k)g(k;α, θ) dk

]
dx.
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Whenever E(X − µ)r is �nite, by Fubini theorem:

E(X − µ)r =

∫ 1

0

[∫ +∞

0

(x− µ)rv(x;µ, k)g(k;α, θ) dx

]
dk

=

∫ 1

0

[
g(k;α, θ)

∫ +∞

0

(x− µ)rv(x;µ, k) dx

]
dk.

As the conditional densities have the same expectation µ, the integral∫ +∞

0

(x− µ)rv(x;µ, k) dx = µr,k

coincides with the rth central moment of the conditional density with parameter
k. Then:

E(X − µ)r =

∫ 1

0

µr,kg(k;α, θ) dk,

that is, the rth central moment of Zenga distribution can be calculated via the
rth central moments of the conditional densities and the mixing function of the
mixture. Because of the third central moment of the conditional density equals
µ3(1 − k)4/5k2 (see [14]), it follows that the third central moment of Zenga
distribution is:

E(X − µ)3 =
µ3

5
· θ(θ + 1)(θ + 2)(θ + 3)

(α− 1)(α− 2)(α+ θ + 1)(α+ θ)
. (6)

3 Other further features

In this section further properties of Zenga distribution are reported: after an
examination on the roles of the parameters, two important indexes are calcu-
lated. After that, a remark on the asymmetry is provided. Then a recognition
about stochastic orders is approached with particular attention on how the pa-
rameters modify the inequality. The �nal part is devoted to the description of
a procedure to obtain samples from a variable with Zenga distribution.

In [23] it is proved that µ is a scale parameter. Starting from this, the parameters
can be grouped by their role: µ controls the scale, but it has no in�uence on
inequality, while the remaining two parameters α and θ govern the shape and
the inequality. As mentioned in the introduction, this characteristic can be
useful also in estimation of the parameters.

For Zenga distribution, the value of Pietra index is

P =
E(|X − µ|)

2µ
= 2F (µ;µ, α, θ)− 1,

while, Zenga point inequality measure evaluated in µ coincides with

A(µ) = 1− E(X|X ≤ µ)

E(X|X ≤ µ)
= 1−

[
1− F (µ;µ, α, θ)

F (µ;µ, α, θ)

]2
,
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where

F (µ;µ, α, θ) =
1

θ − 1

[
(α+ θ − 1)− (α+ θ − 1/2)Γ(α+ 1/2)Γ(α+ θ)

Γ(α+ θ + 1/2)Γ(α)

]
.

See [22] for further details about Zenga inequality measure. It can be proved
that for Zenga distribution F (µ;µ, α, θ) ≥ 1/2: this implies that the mean is
greater than the median and therefore the distribution has positive asymmetry.
This characteristic has remarkable importance in the applicative �eld, since
the empirical evidence shows that income distributions usually own positive
asymmetry.

About stochastic orders, two results, proved in [16], are summarized in the next
theorems: they deal with the convex order, the order based on Lorenz curve
and the order based on inequality I(p) curve. It is useful to recall the de�nition
of these three orderings: further details can be found in [17] and [16].

De�nition 1. Let X1 and X2 be two continuous non-negative random variables
with �nite expectations. X1 is said to be larger (or more unequal) than X2 in
the Lorenz ordering (and it is denoted by X1 ≥L X2), if

LX1(p) ≤ LX2(p) ∀p ∈ (0, 1)

where LXi(p) , i = 1, 2, is the value assumed by the Lorenz curve of Xi in p
(with i = 1, 2).

In analogy to the order based on Lorenz curve, Porro in [15] introduced the
order based on I(p) curve by the following de�nition.

De�nition 2. Let X1 and X2 be two continuous non-negative random variables
with �nite expectations. X1 is said to be larger (or more unequal) than X2 in
the ordering based on I(p) curve (and it is denoted by X1 ≥I X2), if

IX1(p) ≥ IX2(p) ∀p ∈ (0, 1)

where IXi(p) , i = 1, 2, is the value assumed by the inequality I(p) curve of Xi

in p (with i = 1, 2).

De�nition 3. Let X1 and X2 be two continuous non-negative random variables
with �nite expectations. X1 is said to be larger than X2 in the convex order (and
it is denoted by X1 ≥CX X2), if

E[φ(X1)] ≥ E[φ(X2)]

for all the convex functions φ : R → R, such that the expectations exist.

Now, the two ordering theorems for Zenga distribution can be stated.

Theorem 1. Let X1 and X2 be two continuous random variables such that
Xi ∼ Zenga (µ, αi, θ) i = 1, 2, where θ > 1, 0 < α1 < α2 and µ > 0. Then it
holds that: X2 ≤L X1, X2 ≤I X1, and X2 ≤CX X1.
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Theorem 2. Let X1 and X2 be two continuous random variables, such that
Xi ∼ Zenga (µ, α, θi) i = 1, 2 where 1 < θ1 < θ2, α > 0 and µ > 0. Then it
holds that: X1 ≤L X2, X1 ≤I X2, and X1 ≤CX X2.

The previous results point out that if one parameter is �xed, the other one is
an inequality indicator for Lorenz curve and for inequality I(p) curve: more in
detail, the theorems state that α is an inverse inequality indicator (the bigger
α, the smaller inequality), while θ is a direct inequality indicator (the bigger
θ, the higher inequality). Geometrically, this means that as one parameter
changes, Lorenz curves of Zenga distribution are nested. The same holds for
the corresponding inequality I(p) curves. It is clear that the parameters α and θ
have the same roles for the two inequality indexes related to the two considered
cuves: Gini concentration ratio and Zenga inequality index I.
The last issue is about sampling. In Zenga model, the distribution function
cannot be inverted analytically. Nevertheless, in order to provide simulations
to evaluate the behaviour of the estimation methods, Arcagni [2] proposed to
generate random values from such distribution through a two-step sampling.
The sampling procedure can be described as follows. First, a value of the pa-
rameter k is generated from a Beta distribution with parameters α and θ, then
the sampling value is obtained by generating a random value from a variable
following a Polisicchio distribution with parameters µ and k.

4 Estimation of the parameters

The subject of the estimation of the parameters of a distribution is fundamental:
in this paper two well-known methods are provided. The �rst one is the classical
method of moments, the second one is the maximun likelihood method.

4.1 Method of moments

Because of the features of Zenga distribution, one moment and two central
moments will be used in the method of moments: this allows to obtain the
estimators in a more manageable analytical form.
Let (x1, ..., xn) be a random sample from a Zenga distribution. Let

x̄ =
1

n

n∑
i=1

xi, m2 =
1

n

n∑
i=1

(xi − x̄)2, m3 =
1

n

n∑
i=1

(xi − x̄)3

be the mean, the variance and the third central moment of the sample, respec-
tively. The �rst three moments of Zenga distribution are (see (5) and (6)):

E(X) = µ

E(X − µ)2 =
µ2

3
· θ(θ + 1)

(α− 1)(α+ θ)

E(X − µ)3 =
µ3

5
· θ(θ + 1)(θ + 2)(θ + 3)

(α− 1)(α− 2)(α+ θ + 1)(α+ θ)
.
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Because of the particular form of the central moments of such distribution, the
second central moment can be replaced in the third central moment, therefore
it holds that 

E(X) = µ

E(X − µ)2 =
µ2

3
· θ(θ + 1)

(α− 1)(α+ θ)

E(X − µ)3 = E(X − µ)2 · 3µ(θ + 2)(θ + 3)

5(α− 2)(α+ θ + 1)
.

Then, according to the method of moments,
x̄ = µ

m2 =
µ2

3
· θ(θ + 1)

(α− 1)(α+ θ)

m3 =
µ3

5
· θ(θ + 1)(θ + 2)(θ + 3)

(α− 1)(α− 2)(α+ θ + 1)(α+ θ)
,

and equivalently 
x̄ = µ

m2 =
x̄2

3
· θ(θ + 1)

(α− 1)(α+ θ)

m3 = m2 ·
3x̄(θ + 2)(θ + 3)

5(α− 2)(α+ θ + 1)
.

After some algebra, it follows that:
x̄ = µ

α2 + α(θ − 1)− θ − x̄2θ

3m2
(θ − 1) = 0

θ2
[

x̄2

3m2
− 3x̄m2

5m3

]
+ θ

[
x̄2

3m2
− 3x̄m2

m3
− 1

]
−

[
18x̄m2

5m3
+ 2

]
= 0.

It is important to note that thus the third equation becomes a second-degree
equation in θ instead of the original fourth-degree one: this largely simpli�es
the procedure to obtain the solution of the system.

Then the following estimates of the parameters can be achieved:

µ̂ = x̄

θ̂ =

−

1
3

x̄2

m2
− 3

x̄m2

m3
− 1

+

√√√√√[
1

3

x̄2

m2
− 3

x̄m2

m3
− 1

]2
+ 4

[
1

3

x̄2

m2
− 3

5
x̄
m2

m3

] [
18

5

x̄m2

m3
+ 2

]
2

[
1

3

x̄2

m2
− 3

5
x̄
m2

m3

]

α̂ =

−(θ̂ − 1) +

√(
θ̂ − 1

)2

+ 4

[
1

3

x̄2

m2
θ̂
(
θ̂ + 1

)
+ θ̂

]
2

.
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An important remark is that the analytical solution makes sense only under the
restrictions α̂ > 2, and θ̂ > 0 and hence the sample statistics x̄, m2 and m3

must satisfy the following condition:

m3 >
9m2

2

5x̄
.

4.2 Maximun likelihood

The maximum likelihood estimates of the parameters are obtained by numerical
optimization. Since the procedure on ungrouped data is time consuming, the
estimation on grouped data is proposed too. Therefore the de�nitions of the
objective functions are listed here.

Let (x1, . . . , xn) be a random sample from Zenga distribution, then the likeli-
hood function is

L(µ, α, θ;x1, . . . , xn) =
n∏

i=1

f(xi;µ, α, θ)

and the log-likelihood function is

logL(µ, α, θ;x1, . . . , xn) =
n∑

i=1

log f(xi;µ, α, θ). (7)

For large values of n it can be time consuming to evaluate the density function for
each observation, consequentially it is proposed to group the n observations into
s intervals ]x′

0 = 0, x′
1[, [x

′
j−1, xj [, for j = 2, . . . , s− 1, and [xk−1, x

′
s = ∞[, such

that to cover the entire support of the variable. Let nj be the empirical frequency
of the j−th interval, with j = 1, . . . , s. Therefore the maximum likelihood
function for grouped data is obtained through the multinomial distribution of
parameters n and

pj(µ, α, θ) = F (x′
j ;µ, α, θ)− F (x′

j−1;µ, α, θ), j = 1, . . . , s.

Likelihood and log-likelihood functions for grouped data are here de�ned

LG(µ, α, θ;n1, . . . , ns) =
n!∏s

j=1 nj !

s∏
j=1

pj(µ, α, θ)
nj

logLG(µ, α, θ;n1, . . . , ns) = log
n!∏s

j=1 nj !
+

s∑
j=1

nj log pj(µ, α, θ) (8)

which are functions of the Zenga distribution parameters through the theoretical
probabilities of inclusion of each interval.

Numerical procedures maximize the log-likelihood objective function through
the Nelder and Mead method with starting point set equal to the method of
moments estimates.
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5 Application to real data

In this section the applications of Zenga distribution on three income distribu-
tions are presented. They are selected from those used by Zenga et. al. [24],
who provided the estimates of the parameters with the numerical solution of the
method of moments, D'Addario's invariants method [8] and through minimiza-
tion of measures of goodness of �t with and without restrictions. The estimates
provided in this paper are obtained through analytical solution of method of
moments and maximum likelihood method. Maximum likelihood estimates are
obtained for ungrouped and grouped data.

5.1 Goodness of �t indexes

To compare the �tting of di�erent estimation methods three indexes are pro-
vided.

Assume that the n observations are grouped into s intervals ]x′
j−1, x

′
j ], for j =

1, . . . , s. Let be nj the empirical frequency and

n̂j = n
[
F (x′

j ; µ̂, α̂, θ̂)− F (x′
j−1; µ̂, α̂, θ̂)

]
the estimated frequency of the jth interval. Therefore the Mortara index A1,
the quadratic K. Pearson index A2 and the modi�ed quadratic index A′

2 are
de�ned as follow to evaluate the goodness of �t

A1 =
1

n

s∑
j=1

|nj − n̂j |
n̂j

n̂j =
1

n

s∑
j=1

|nj − n̂j |
nj

nj =
1

n

s∑
j=1

|nj − n̂j |

A2 =

 1

n

s∑
j=1

∣∣∣∣nj − n̂j

n̂j

∣∣∣∣2 n̂j


1/2

=

 1

n

s∑
j=1

|nj − n̂j |2

n̂j


1/2

A′
2 =

 1

n

s∑
j=1

∣∣∣∣nj − n̂j

nj

∣∣∣∣2 nj


1/2

=

 1

n

s∑
j=1

|nj − n̂j |2

nj


1/2

.

De�ning the absolute relative frequency deviations

aj =
|nj − n̂j |

n̂j

a′j =
|nj − n̂j |

nj

it can be observed that

A1 = M1(aj ; n̂j) = M1(a
′
j ;nj)

A2 = M2(aj ; n̂j)

A′
2 = M2(a

′
j ;nj)
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that is, Mortara index A1 is both the arithmetic mean of aj with weights n̂j

and the arithmetic mean of a′j with weights nj , A2 index is the quadratic mean
of aj with weights n̂j and A′

2 index is the quadratic mean of a′j with weights
nj . Therefore the variance of aj with weights n̂j and the variance of a′j with
weights nj can be obtained as follow

V ar(aj ; n̂j) = A2
2 −A1

2

V ar(a′j ;nj) = A′
2
2 −A1

2

and small di�erences between A1 index and quadratic indexes (A2 or A′
2) mean

low variability of absolute relative frequency deviations, and a uniform �tting
of the model on the whole range of the empirical distribution.

5.2 Intervals

The same intervals used to evaluate the A1, A2 and A′
2 indexes are used for

maximum likelihood estimation on grouped data. As in [24] the n observations
are grouped into s = 25 intervals starting from pre�xed values of the cumulative
relative frequencies p′j :

j 1 2 3 4 5
p′j 0.010 0.020 0.035 0.050 0.100

j 6 7 8 9 10
p′j 0.150 0.200 0.250 0.300 0.400

j 11 12 13 14 15
p′j 0.500 0.600 0.700 0.750 0.800

j 16 17 18 19 20
p′j 0.850 0.900 0.920 0.935 0.950

j 21 22 23 24 25
p′j 0.960 0.970 0.980 0.990 1.000

Then each np′j is approximated with its nearest integer npj . Consequentially
the (integer) frequencies nj are given by

nj = n(pj − pj−1); j = 1, . . . , s; p0 = 0.

The upper bounds of the s intervals are:

x′
j = x(npj); j = 1, . . . , s− 1; x′

s = ∞

where x(npj) is the npthj order statistic of n empirical individual observation.
Since x′

s is not �nite the last interval is open on both sides.
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5.3 Empirical distributions and parameter estimation

The empirical distribution used in this paper are:

• Italy 2006 Household income [3], 7,762 observations;

• Swiss 2005 Household income [19], 3,071 observations;

• USA 2008 Household income [21], 2,899,458 observations.

In �gures 3, 4 and 5 �tted models overlapping the histogram are reported.

Table 1 shows the results obtained with di�erent estimation methods.

estimates goodness of �t indexes

µ̂ α̂ θ̂ A1 A2 A′
2

method of moments

Italy 2006 31918.93 2.4447 4.0653 0.1233 0.1657 0.2025
Swiss 2005 6783.75 4.0210 4.8195 0.1359 0.1702 0.1658
USA 2008 82460.21 3.9922 10.7071 0.2677 0.5930 0.3232

max. likelihood

Italy 2006 31701.73 2.9090 4.2534 0.0781 0.0893 0.0892
Swiss 2005 6921.68 2.9383 3.4698 0.1068 0.1403 0.1506
USA 2008 84674.75 1.5255 3.1434 0.0454 0.0654 0.0690

max. likelihood on grouped data

Italy 2006 31453.77 3.3967 4.9909 0.0639 0.0715 0.0723
Swiss 2005 6915.71 3.0915 3.6654 0.1080 0.1392 0.1489
USA 2008 84278.03 1.5702 3.2413 0.0462 0.0645 0.0670

Table 1: results of the estimation methods: estimates and goodness of �t mea-
sures

By rows are reported estimation methods and empirical distributions.

From �rst to third column there are the parameters estimates. Method of
moments estimates obtained with analytical solutions are close to ones obtained
with the numerical procedure by Zenga et. al. [24]. It is important to note that
maximum likelihood estimate of parameter α, on ungrouped and grouped data
from USA distribution, is lower than 2. This result cannot be obtained with
the method of moments, because the third central moment is not �nite and the
third equation is not de�ned.

Last three columns provide values of goodness of �t indexes. The fourth column
shows values of Mortara A1 index. The highest index value is obtained with
method of moments on USA distribution and it can be attributed to the restric-
tion on the parametric space. Maximum likelihood method, both on ungrouped
and grouped data, provides good results on Italy and USA distributions. For
instance, in case of maximum likelihood on USA ungrouped data, the empirical
frequencies, nj , di�er on average from estimated ones, n̂j , by 4.54%. Consid-
ering only the maximum likelihood method, indexes of goodness of �t do not
change signi�cantly if the �tted model is evaluated on ungrouped or grouped
data. The same considerations can be done for the other goodness of �t indexes
too.
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Italy 2006
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Figure 3: Zenga densities �tted to empirical Italy 2006 Household income dis-
tribution

The comparison between A1 index and quadratic indexes allows to evaluate
the �tting uniformity. For instance, it has been observed that the model with
parameters estimated by method of moments does not �t good on USA dis-
tribution. Note that, in this case, there are also wide di�erences between A1

index and quadratic indexes, which mean an irregular �tting. In Figure 5 it
can be observed that the �tted model with method of moments overestimates
the empirical distribution for low and high income values, and underestimates
the middle of the distribution. In the other hand maximum likelihood methods
provide estimated models with a uniform �tting to USA income distribution,
that can be observed in the same �gure and it is con�rmed by small di�erences
between index A1 and quadratic indexes.

By goodness of �t indexes and graphs it can be observed that the method of
moments estimated model sometimes does not �t good, but the analytical solu-
tion obtained in this paper is an important result because it is an easy way to
obtain parameter estimates and thay can be used as starting point for numerical
procedures. By the small di�erences of the goodness of �t index between max-
imum likelihood estimates obtained on ungrouped data and grouped data, the
second ones could be preferred because numerical procedures are much faster.
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Swiss 2005
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Figure 4: Zenga densities �tted to empirical Swiss 2005 Household income dis-
tribution

6 Conclusions and �nal remarks

In this paper Zenga distribution and the role of its parameters are presented.
This model has positive asymmetry, it has paretian right tail, and it can be
used to describe economic distributions by size. It can assume several shapes;
it can be zero modal or unimodal and it seems to have a good �tting for income
distributions either at low and high values. The distribution depends on three
parameters: in particular µ is a scale parameter, α is an inverse inequality
indicator and it controls the tails of the distribution, while θ is a direct inequality
indicator and it controls the distribution around the expected value µ.

The estimation of the parameters is also presented in the paper. Several esti-
mation methods are presented by Zenga et al. [24], here method of moments
and maximum likelihood method were presented and applied. The �tting to the
data of the estimated distribution with method of moments it not so good, this
may be due to the restriction on parametric space required for the existence
of the third moment. However the estimates achieved by the method of mo-
ments can be used as starting point of numerical procedures to obtain maximum
likelihood estimates. Maximum likelihood method is applied on ungrouped and
grouped data. Since the values of Mortara goodness of �t index for grouped and
ungrouped data are not very di�erent, it seems to be preferable the maximum
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USA 2008
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Figure 5: Zenga densities �tted to empirical USA 2008 Household income dis-
tribution

likelihood estimation for grouped data because of the smaller computational
time.

References

[1] Amoroso, L., Ricerche intorno alla curva dei redditi, Annali di Matematica
Pura ed Applicata, Serie 4-21, II, 123-157 (1925)

[2] Arcagni, A., La determinazione dei parametri di un nuovo modello distribu-
tivo per variabili non negative: aspetti metodologici e applicazioni, PhD the-
sis: Università degli Studi di Milano Bicocca (2011)

[3] Banca d'Italia, The 2006 Bank of Italy sample Survey on Household in-
come and wealth, Supplements to the Statistical Bulletin Sample Surveys,
XVIII(7), Available at http://www.bancaditalia.it (2008)

[4] Benini, R. Di alcune curve descritte da fenomeni economici aventi relazione
colla curve del reddito o con quella del patrimonio, Giornale degli Economisti,
14, 177-214 (1897)

17



[5] Chotikapanich, D., Modeling income distributions and Lorenz curves,
Springer Verlag (2008)

[6] Dagum, C., A new model of personal income distribution: speci�cation and
estimation, Economie Appliquee (1977)

[7] D'Addario, R., Ricerche sulla curva dei redditi, Giornale degli Economisti e
Annali di Economia, 8, 91-114 (1949)

[8] D'Addario, R., La curva dei redditi: sulla determinazione numerica dei
parametri della seconda equazione paretiana, Annali dell'Istituto di Statis-
tica dell'UniversitÃ di Bari, XII (1939)

[9] Kleiber, C. and Kotz, S., Statistical size distributions in economics and
actuarial sciences, (381), Wiley-Interscience (2003)

[10] McDonald, J., Some generalized functions for the size distribution of in-
come, Econometrica (1984)

[11] Pareto, V., La legge della domanda, Giornale degli economisti, (10), 59�68
(1895)

[12] Pareto, V., Escrits sur la coubre de la répartition de la richesse, in G. Busino
(Ed.), Complete works of V. Pareto, Librarie Droz, Genève, 1965 (1896)

[13] Pareto, V., Cours d'economie politique, new edition by G. H. and G.
Busino, Librarie Droz, Genève (1897)

[14] Polisicchio, M., The continuous random variable with uniform point in-
equality measure I(p), Statistica & Applicazioni, VI(2), 137-151 (2008)

[15] Porro, F., Equivalence between partial order based on curve L(p) and par-
tial order based on curve I(p), Proceedings of SIS 2008, CLUEP, Padova
(2008)

[16] Porro, F., Inequality order for Zenga distribution, Technical Report 215,
Dipartimento di Metodi Quantitativi per le Scienze Economiche ed Aziendali,
Università degli Studi di Milano-Bicocca, Available at http://boa.unimib.it
(2011)

[17] Shaked, M. and Shanthikumar, J.G., Stochastic orders and their applica-
tions,Springer New York, NY (2007)

[18] Singh, S. K. and Maddala, G. S., A Function for Size Distribution of In-
comes, Econometrica: Journal of the Econometric Society (1976)

[19] Swiss Federal Statistical O�ce, Income and Consumption Survey (2005)

[20] Thisted, R. A., Elements of statistical computing: numerical computation,
Chapman & Hall London (1988)

18



[21] U.S. Census Bureau, Current Population Survey (2008)

[22] Zenga, M. M., Inequality curve and inequality index based on the ratios
between lower and upper arithmetic means, Statistica & Applicazioni, V(1),
3�27 (2007)

[23] Zenga, M. M., Mixture of Polisicchio's truncated Pareto distributions with
beta weights, Statistica & Applicazioni, VIII(1), 3-25 (2010)

[24] Zenga, M. M., Pasquazzi, L., Zenga, Ma., First Applications of a New Three
Parameter Distribution for Non-Negative Variables, Technical Report 187,
Dipartimento di Metodi Quantitativi per le Scienze Economiche ed Aziendali,
Università degli Studi di Milano-Bicocca, Available at http://boa.unimib.it
(2010)

[25] Zenga, M. M., Polisicchio, M., Zenga, Ma., Pasquazzi, L., More on M. M.
Zenga's new three-parameter distribution for non-negative variables, Statis-
tica & Applicazioni, IX(1), 5�33 (2011)

19


	copertina_220.pdf
	On Zenga distribution(quaderno) (1)

