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Abstract

Several authors have shown the ability of the variance gamma model

to correct some biases of the Black-Scholes model. The variance gamma

distribution has two additional parameters that allow to capture the skew-

ness and kurtosis observed in financial data. However its density has not

got a simple form formula and this implies numerical issues for historical

estimation and option pricing.

This paper investigates the possibility of approximating the variance

gamma distribution to a finite mixture of normals. Therefore, we apply

this result to derive a simple historical estimation procedure by means of

the Expectation Maximization algorithm and we obtain a simple formula

to price a European call option.
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1 Introduction

This paper investigates the possibility of approximating the variance gamma
distribution with a finite mixture of normals.

The symmetric variance gamma model was first introduced by Madan and
Seneta [27] in 1990. In 1998 Madan, Carr and Chang [8] proposed a three pa-
rameters version of the model, which allows to control over both skewness and
kurtosis of the returns distribution.
The variance gamma distribution belongs to the class of normal variance mean
mixture and corresponds to a gamma mixing density. Other cases of normal vari-
ance mean mixture are the normal inverse gaussian (Barndorff-Nielsen [4]), the
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hyperbolic and the generalized hyperbolic distribution (see Barndorff-Nielsen
[3]).
For the historical estimation of the parameter values Madan and Seneta [27]
employed the maximum likelihood (ML) method. Seneta [31] and Seneta and
Tjetjep [32] discussed about fitting the variance gamma distribution by method
of moments, while Finlay and Seneta [16] showed how to apply the generalized
method of moments introduced by Hansen [20].
For option pricing purposes, Madan et al. [8] derived a semi-analytical formula
for the price of a European call option while Carr and Madan [9] proposed to
use the Fast Fourier Transform.

Another way to capture the skewness and kurtosis of the return distribution
is through the finite normal mixture model. The normal mixture model has
different economic interpretations such as market periods with different levels
of volatility (see Bertholon et al. [6]) or heterogeneous groups of market partic-
ipants (for example, “bullish” and “bearish” investors could behave differently
see Haas et al. [19]).
After the first attempt made by Pearson in 1894, the problem of parameter es-
timation became easier since the introduction of the Expectation Maximization
(EM) algorithm by Dempster et al. [12], based on the ML method (see McLach-
lan and Peel [28] for a complete survey of estimation problem in finite normal
mixture models). The EM algorithm has also been used in the normal variance
mean mixture (see Protassov [29] for the multivariate generalized hyperbolic
distribution, Kostas [24] for the variance gamma distribution and Karlis [23] for
the normal inverse gaussian distribution).
In 1990 Ritchey [30] introduced normal mixtures for option pricing; the result-
ing formula is a convex combination of Black-Scholes ones. See Bertholon [6]
for recent results.

Empirical studies have shown the better performance for option pricing of
the variance gamma (see Lam et al. [25]) and the normal mixture models (see
Ritchey [30] and Gou [18]) compared to the Black-Scholes one. However the
variance gamma density of returns has not got a simple form formula; this im-
plies numerical issues for historical estimation and option pricing.

Following the idea of approximating the variance gamma distribution with a
finite mixture of normals (see Bellini and Mercuri [5]), we derive a simple histor-
ical estimation procedure and an analytical formula for a European call option
price.

The outline of the paper is as follows. In Section 2 we briefly review the
variance gamma and the finite normal mixture models, and we show how the
latter can be used to approximate the former. In Section 3 we provide a historical
estimation procedure by means of the EM algorithm, and we apply it on different
time series of the SPX index closing prices. In Section 4 we derive a simple
formula to price European call options, and we compare our results with the
prices obtained using Monte Carlo approach and the semi-analytical formula
proposed by Madan et al. [8].
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2 Variance gamma and finite mixture models

Variance gamma is a continuous probability distribution defined as a normal
variance-mean mixture where the mixing density is a gamma distribution, that
is:

Y := µ0 + µV + σ
√
V Z (1)

where µ0, µ ∈ R, σ ∈ [0,+∞) , Z ∼ N (0, 1) and V ∼ Γ (α, β) is independent
from Z. The variance gamma density function can be written as follows:

f(y) =

∫ ∞

0

1

σ
√
2πv

exp

(

− (y − µ0 − µv)2

2σ2v

)

βαvα−1exp (−βv)
Γ (α)

dv. (2)

It has finite moments of all orders which can be easily calculated.
Given the scale property of gamma distribution, all the parameters in (1) are
not identifiable. In literature, the common choice [27] to overcome this problem
is to fix α = 1

ν
and β = 1

ν
for the gamma mixing density. In this case, the σ, µ

and ν parameters control respectively variability, skewness and kurtosis of the
distribution, while µ0 is a position parameter.
Without loss of generality, in this paper we choose β = 1, and the variance
gamma density function assumes the following form:

f (y) =

∫ ∞

0

1

σ
√
2πv

exp

(

− (y − µ0 − µv)2

2σ2v

)

vα−1exp (−v)
Γ (α)

dv

=

√
2

(

|y−µ0|√
µ2+2σ2

)a−0.5

√
πσΓ (a)

exp

(

(y − µ0)µ

σ2

)

Ka−0.5

(

|y − µ0|
√

µ2 + 2σ2

σ2

)

(3)

where Kp (u) is the modified Bessel function of the second type. This choice is
equivalent to that proposed in [27] by imposing ν = 1

a
, σ̃ = σ

√
a and µ̃ = µa.

Another flexible class of distributions is the finite normal mixture one. A
random variable Y is a finite normal mixture if its density is a convex combina-
tion of normal densities:

f(y) =

n
∑

i=1

ϕ(y;µi, σi)pi, (4)

where ϕ(y;µi, σi) is the normal density function with mean µi and standard
deviation σi; pi are the weights satisfying the conditions:

pi ≥ 0 ∧
n
∑

i=1

pi = 1.

As the variance gamma distribution, the finite normal mixture admits all finite
moments.
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In this section we show how to approximate the variance gamma density
with a finite mixture of normals. In order to achieve our goal we use the Gauss-
Laguerre quadrature (see [1]). With this method we have the following approx-
imation:

+∞
∫

0

f (u) e−udu=̃

n
∑

i=1

w (ui) f (ui) (5)

where ui are the ith− zeros of the Laguerre polynomial Ln (ui) and the weights
w (ui) are:

w (ui) =
ui

(n+ 1)
2
L2
n+1 (ui)

.

We begin approximating the gamma function using the result (5) and obtain:

Γ (a) =

∫ +∞

0

e−tta−1dt

=̃

n
∑

i=1

w (ui)u
a−1
i , (6)

Using the same approach, we evaluate the integral in (2) and use the result (6)
to obtain the approximated formula of the variance gamma density:

f (y) =

n
∑

i=1

ϕ (y;µ0 + µui, σ
√
ui) p (ui, a) . (7)

Defining

p (ui, a) =
w (ui)u

a−1
i

∑n
i=1 w (ui)u

a−1
i

, (8)

we recognise that we have approximated the variance gamma density (a con-
tinuous mixture) with a finite normal mixture. The mixing variable U , discrete
and with a finite support, is the following

U :=







u1 p (u1, a)
... ...
un p (un, a)

. (9)

Moreover, for n increasing, a remains the only parameters to be estimated.
We report in Fig. 1, 2 and 3 the behaviour of our approximation for different
values of the parameters µ, σ and a, for n = 15 and n = 50.

Insert here Fig. 1, 2 and 3

In our exercises, the choice of n = 50 seems the most appropriate; for n = 15
we observe some irregularities only for µ = −0.5 that corresponds to strong
negative skewness of log-returns distribution.
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3 Historical estimation procedure

In this Section we use the previous result to provide a simple historical estima-
tion procedure for the vector θ = (σ, µ, µ0, a) by means of the EM algorithm. We
compare our estimation procedure (EM-approx) with two methods: the Method
of Moments (MoM) and the Maximum Likelihood Estimation (MLE).

3.1 Method of Moments

The key idea of the MoM is to match the theoretical moments with their sample
counterparts. In our model the mean, variance, skewness and kurtosis are:























E (y) = µ0 + µa
V ar (y) = a

(

µ2 + σ2
)

skew (y) =
(2µ2+3σ2)µ

√
a
√

(µ2+σ2)3

k (y) = 3
{

1 + 2µ4+σ4+4σ2µ2

a(µ2+σ2)2

}

.

Following [31], we neglect the terms µ2, µ3 and µ4 since they do not have a big
influence on the system solution when the value of µ is close to zero (as usually
observed in real data).

3.2 Maximum Likelihood Estimation

The MLE procedure is based on the maximization of the log-likelihood function
that, in the variance gamma model, is:

L (µ0, µ, σ, a) =
T

2
log

(

2

π

)

+

T
∑

t=1

(y − µ0)µ

σ2
−

T
∑

t=1

log (Γ (a)σ)

+

T
∑

t=1

log

(

Ka−0.5

(

√

2σ2 + µ2 |y − µ0|
σ2

))

+

+

T
∑

t=1

(

a− 1

2

)[

log

(

|y − µ0| −
1

2
log
(

2σ2 + µ2
)

)]

(10)

where Kp (u) is the modified Bessel function of the second type.
As observed in [27], the direct optimization of (10) is computationally expensive
also in the symmetric case. Moreover, the results are strongly influenced by the
initial values of the parameters. In order to overcome this problem a common
choice is to initialize θ to the MoM results.

3.3 EM-based approach

Using our approximated formula (7) , the log-likelihood function (10) becomes:

L (θ) =
T
∑

t=1

ln

(

n
∑

i=1

ϕ (yt;µ0 + µui, σ
√
ui) p (ui, a)

)

. (11)
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Even in this case, the direct optimization of (11) is not trivial. For this reason,
we provide a simple recursive procedure for the historical estimation using the
EM algorithm.
To implement the EM algorithm we consider the complete log-likelihood func-
tion:

l∗(y, u, θ) =
T
∑

t=1

ln (ϕ(yt, µ0 + µut, θ
√
ut)p(ut, a)).

Starting from an initial vector θ0, the EM iterates two steps:

• Expectation-step (E-step henceforth) computes the expected value of
l∗ with respect to the mixing variable, given the observed data and the
vector θh−1 .

• Maximization-step (M-step henceforth) maximizes the quantity obtained
in E-step with respect to θh.

Under fairly mild regularity conditions, the EM algorithm converges to a
local maximum of the mixture likelihood function (see [12] and [35]).
First we compute the conditional distribution of the variable U given the ob-
served data Y ; applying the Bayes’ theorem, we obtain:

P (ui|yt, θ) =
ϕ
(

yt;µ0 + µui, σ
√
ui
)

p (ui, a)
n
∑

i=1

ϕ
(

yt;µ0 + µui, σh
√
ui
)

p (ui, a)

.

The conditional expectation of the complete log-likelihood function l∗, given the
current data and current parameters, is computed as:

E-step =

N
∑

i=1

l∗(y, ui, θh)P (ui|yt, θh−1)

=

N
∑

i=1

T
∑

t=1

[ln(P (yt, ui|θh))]P (ui|yt, θh−1)

where
P (yt, ui|θh) = ϕ(yt, µ0 + µut, θ

√
ut)p(ut, a).

The M-step involves the following optimization problem:

max
µ0,h,µh,σh,ah

n
∑

i=1

T
∑

t=1

P (ui|yt, θh−1) ln (p (ui (t) , ah)ϕ (yt;µ0,h + µhui, σh
√
ui)) ,
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which can be splitted as follows:

max
ah

n
∑

i=1

T
∑

t=1

P (ui|yt, θh−1) ln (p (ui (t) , ah)) (12)

max
µ0,h,µh,σh

n
∑

i=1

T
∑

t=1

P (ui|yt, θh−1) ln (ϕ (yt; r + µhui, σh
√
ui)) . (13)

Once applied the first-order optimality conditions to (12), we obtain the follow-
ing equation:

n
∑

i=1

T
∑

t=1

P (ui|yt, θh−1)













ln (ui)−

n
∑

i=1

w (ui)u
ah−1
i ln (ui)

n
∑

i=1

w (ui)u
ah−1
i













= 0,

which can be re-written in the form:

T
∑

t=1

n
∑

i=1

P (ui|yt, θh−1) ln (ui) = T

n
∑

i=1

w (ui)u
ah−1
i ln (ui)

n
∑

i=1

w (ui)u
ah−1
i

. (14)

The term in the right side of the equation (14) can be approximated by the
digamma function ψ (ah) (see [1])

∑T
t=1

∑n
i=1 P (ui|yt, θh−1) ln (ui)

T
=̃ψ (ah) .

Applying the first-order optimality condition to (13), we obtain the following
system:



















∑n
i=1

∑T
t=1

P (ui|yt,θh−1)

(σh
√
ui)

2 (yt − µ0,h − µhui) = 0
∑n

i=1

∑T
t=1 P (ui|yt, θh−1) (yt − µ0,h − µhui) = 0

∑n
i=1

∑T
t=1 P (ui|yt, θh−1)

[

(

yt−µ0,h−µhui√
ui

)2

− σ2
h

]

= 0.

The parameters are given by



































µ0,h =

(

∑n
i=1

∑T
t=1

P (ui|yt,θh−1)

ui
yt−

T
∑T

t=1 yt
∑T

t=1
∑n

i=1
P (ui|yt,θh−1)ui

)

(

∑

n
i=1

∑

T
t=1

P (ui|yt,θh−1)

ui
− T2

∑T
t=1

∑n
i=1

P (ui|yt,θh−1)ui

)

µh =
∑T

t=1 yt−µ0,hT
∑

T
t=1

∑

n
i=1 P (ui|yt,θh−1)ui

σh =

√

∑

n
i=1

∑

T
t=1 P (ui|yt,θh−1)

(yt−r−µhui)
2

ui

T
.
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We can write






∑n
i=1

P (ui|yt,θh−1)
ui

= E
(

U−1 |ytθh−1

)

∑n
i=1 P (ui|yt, θh−1)ui = E (U |ytθh−1 )

∑n
i=1 P (ui|yt, θh−1) ln (ui) = E (ln (U) |ytθh−1 )

where U is the random variable defined in (9), and we have:







































ψ (ah) =
∑T

t=1 E(ln(U)|ytθh−1 )

T

µ0,h =

(

∑T
t=1 E(U−1|ytθh−1 )yt−

T
∑T

t=1 yt
∑T

t=1 E(U|ytθh−1 )

)

(

∑

T
t=1 E(U−1|ytθh−1 )− T2

∑T
t=1 E(U|ytθh−1 )

)

µh =
∑T

t=1 yt−µ0,hT
∑

T
t=1 E(U |ytθh−1 )

σh =

√

∑

T
t=1(yt−µ0)

2E(U−1|ytθh−1 )+µ2
h

∑

T
t=1 E(U |ytθh−1 )−2µh

∑

T
t=1(yt−µ0)

T

.

We conclude this section with an investigation of our procedure performances
on real data. We provide a comparison with MoM and MLE estimates. We
consider three datasets of the SPX daily closing prices. In table 1, we report the
sample size and the sample estimates of mean, variance, skewness and kurtosis.

Insert here table 1
All procedures are implemented in Matlab. The optimization routine is

performed using the Fmincon Matlab’s function. For MLE, as starting points,
we use the estimates obtained by MoM.

The estimation results are presented in table 2; in Figure 2 we compare the
empirical density with those obtained by the considered procedures.

Insert table 2 and Figure 2

To measure the goodness of fit, we use the root mean square error (RMSE)
and the mean absolute error (MAE) between the empirical and the estimated
cumulative distribution functions:

MAE =
∑

|Femp (x)− Fest (x)|

RMSE =
√

∑

(Femp (x)− Fest (x))
2
.

The best fit is achieved by the MLE procedure followed by the EM-approx.
We remark that the MLE seems to be more sensible to the starting points than
EM-approx. In order to investigate this fact, for the third considered time series,
we repeat the estimation for different initial values of the parameters. In our
study the choice of θ0 seems not to affect the EM-approx results, as can be
noticed in table 3

Insert table 3
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4 Option Pricing

In Sections 2 and 3 we have studied how to approximate the variance gamma
with a finite mixture of normals, and we have obtained a recursive system for
historical estimation by means of the EM algorithm. In this Section we provide
a discrete version of the semi-analytical formula proposed by Madan et al. [8].
The resulting prices will be compared with the ones obtained using Monte Carlo
simulation and the original formula in [8] (MCC formula henceforth).

Using the same specification seen in [8], under the risk neutral measure, the
underlying asset price follows an exponential variance gamma process:

ST = S0 exp (YT )

YT = rT +XT + gT

XT ∼ V G

(

µ, σ,
T

ν
,
1

ν

)

g =
1

ν
ln

(

1− µν − σ2ν

2

)

. (15)

The density function of the random variable XT can be approximated as follows:

f (xT ) =

n
∑

i=1

ϕ (xT ;µνui, σ
√
νui) p

(

ui,
T

ν

)

p

(

ui,
T

ν

)

=
u

T
ν
−1

i w (ui)
n
∑

i=1

w (ui)u
T
ν
−1

i

To ensure the martingale condition of the discounted price, we substitute the
parameter g with

g1 = − 1

T
ln

(

n
∑

i=1

p

(

ui,
T

ν

)

eµνui+
σ2

2 νui

)

.

We are able to compute the expected value of the discounted final pay-off:

C0 = e−rTEQ
[

(ST −K)
+
]

= e−rTS0E
Q

[

(

exp (rT +XT + g1T )−
K

S0

)+
]

.

Defining d = −
(

ln
(

S0

K

)

+ (r + g1)T
)

, we have
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C0 = e−rTS0

∫ +∞

d

(

exp (rT + xT + g1T )−
K

S0

) n
∑

i=1

ϕ (xT ;µνui, σ
√
νui) p

(

ui,
T

ν

)

dxT =

= e−rTS0

n
∑

i=1





∫ +∞

d

(

exp (rT + xT + g1T )− K
S0

)

√
2πσ2νui

exp

(

− (xT − µνui)
2

2σ2νui

)

dxT



 p

(

ui,
T

ν

)

.

Substituting

z =
(xT − µνui)

σ
√
νui

xT = zσ
√
νui + µνui

d2 (ui) =
ln
(

S0

K

)

+ (r + g1)T + µνui

σ
√
νui

,

we obtain

C0 = e−rTS0

n
∑

i=1





∫ +∞

−d2

(

exp
(

rT + zσ
√
νui + µνui + g1T

)

− K
S0

)

√
2π

exp

(

−z
2

2

)

dz



 p

(

ui,
T

ν

)

=

= S0

n
∑

i=1



exp

(

µνui + g1T +
σ2νui

2

)
∫ +∞

−d2(ui)

(

exp
(

− 1
2

(

z − σ
√
νui
)2
))

√
2π

dz



 p

(

ui,
T

ν

)

+

−Ke−rT

n
∑

i=1





∫ +∞

−d2(ui)

exp
(

− z2

2

)

√
2π

dz



 p

(

ui,
T

ν

)

.

Imposing

z1 = z − σ
√
νui

d1(ui) =
ln
(

S0

K

)

+ (r + g1)T +
(

σ2 + µ
)

νui

σ
√
νui

d2 (ui) = d1(ui)− σ
√
νui,

we get

C0 = S0

n
∑

i=1

[

exp

(

µνui + g1T +
σ2νui

2

)

N (d1 (ui)) p

(

ui,
T

ν

)]

−Ke−rT

n
∑

i=1

N (d2 (ui)) p

(

ui,
T

ν

)

,
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where

p

(

ui,
T

ν

)

=
u

T
ν
−1

i w (ui)
n
∑

i=1

w (ui)u
T
ν
−1

i

and N(·) is the normal distribution function.

In order to assess the accuracy of the approximated formula, we compute
European call option prices using the approximated formula with mixtures of
20, 25 and 30 components. Then, we compare the results with Monte Carlo
prices, obtained by means of 50000 resimulations, and the prices given by the
MCC formula, for different maturities (15, 30 and 60 days) and for different
levels of moneyness (K = 100 and S = [90 95 100 105 110]). The parameters
chosen for the simulation are µ0 = 0, ν = 1, σ = 0.0113, µ = −0.000478.
We see that the prices obtained by our approach with 30 components are tipi-
cally close to MCC prices and, in every considered case, belong to the 95%
confidence interval computed according to the methodology of Boyle [7]. The
results are reported in table 4.

Insert here table 4
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Figure 1: Comparison between analytical and approximated densities for differ-
ent values of a
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Figure 2: Comparison between analytical and approximated densities for differ-
ent values of µ
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Table 1: Sample size, mean, variance, skewness and kurtosis of the SPX index

Dataset size mean var skew kurt

02/01/94-30/09/96 696 5.62485e-04 4.05e-05 -4.9e-01 5.30
31/12/01-30/09/04 693 -4.28e-05 1.53e-04 2.69e-01 4.80
31/12/07-30/09/10 694 -3.64e-04 3.94e-04 -1.41e-01 8.20

Table 2: Comparison between historical estimation procedures

I Dataset µ0 µ σ a RMSE MAE Logl

MoM 2.06e-03 -1.07e-03 5.28e-03 1.40 1.07e-02 6.29e-03 2559.28
MLE 9.38e-04 -2.41e-04 4.97e-03 1.56 6.38e-03 4.93e-03 2563.35

EM approx 7.44e-04 -1.63e-04 6.22e-03 1.12 8.10e-03 6.22e-03 2561.30

II Dataset µ0 µ σ a RMSE MAE Logl

MoM -1.89e-03 1.11e-03 9.60e-03 1.67 9.97e-03 6.64e-03 2078.60
MLE 4.34e-04 -3.02e-04 9.86e-03 1.58 6.12e-03 4.28e-03 2081.60

EM approx 5.35e-04 -5.21e-04 1.24e-02 1.13 9.27e-03 7.42e-03 2079.33

III Dataset µ0 µ σ a RMSE MAE Logl

MoM 1.76e-04 -9.32e-04 2.61e-02 5.78e-01 9.57e-03 5.35e-03 1816.67
MLE 1.40e-03 -2.22e-03 2.16e-02 7.92e-01 4.46e-03 3.03e-03 1827.69

EM approx 1.95e-03 -2.52e-03 1.97e-02 9.20e-01 5.56e-03 3.76e-03 1826.67
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Figure 4: Comparison of the estimation procedures

Table 3: Estimated parameters by EM approx with different initial values

µ0(0) µ(0) σ(0) a(0) µ0 µ σ a

0 0 0.20 0.75 1.95e-03 -2.52e-03 1.97e-02 9.20e-01
0 0 0.20 1 1.95e-03 -2.52e-03 1.97e-02 9.20e-01
0 0 0.20 1.5 1.95e-03 -2.52e-03 1.97e-02 9.20e-01
0 0 0.40 1 1.95e-03 -2.52e-03 1.97e-02 9.20e-01
0 0 0.60 1.5 1.95e-03 -2.52e-03 1.97e-02 9.20e-01
0 -0.2 0.40 0.75 1.95e-03 -2.52e-03 1.97e-02 9.20e-01
0 -0.2 0.40 1 1.95e-03 -2.52e-03 1.97e-02 9.20e-01
0 -0.2 0.40 1.5 1.95e-03 -2.52e-03 1.97e-02 9.20e-01
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Table 4: Option prices with the approximation approach, MCC formula and
95% confidence intervals.

S/K T mix20 mix25 mix30 MCC Monte Carlo

0.9 15 0.01355 0.01355 0.01356 0.01608 (0.0132; 0.0158 )
30 0.10824 0.10824 0.10811 0.11570 (0.1080; 0.1172)
60 0.45297 0.45989 0.45919 0.47149 (0.4472; 0.4802)

0.95 15 0.25191 0.25191 0.25201 0.26314 (0.2413; 0.2533)
30 0.68302 0.68301 0.68255 0.69510 (0.6699; 0.6939)
60 1.45292 1.46499 1.46373 1.47621 (1.4398; 1.5003)

1 15 1.73233 1.73233 1.73251 1.73358 (1.7061; 1.7385)
30 2.45990 2.45989 2.45921 2.46167 (2.4606; 2.5073)
60 3.47033 3.48551 3.48398 3.48802 (3.4288; 3.5236)

1.05 15 5.30627 5.30627 5.30639 5.29553 (5.2787; 5.3296)
30 5.78105 5.78105 5.78059 5.77111 (5.7326; 5.7995)
60 6.60654 6.62090 6.61959 6.61376 (6.5635; 6.6895)

1.1 15 10.03079 10.03079 10.03082 10.02694 (9.9957; 10.0544)
30 10.18239 10.18239 10.18223 10.17375 (10.1361; 10.2162)
60 10.63996 10.65059 10.64975 10.64007 (10.5778; 10.7295)
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