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Abstract. Let X be a complex projective variety and consider the morphism

ψk :

k∧
H0(X, Ω1

X) −→ H0(X, Ωk
X).

We use Galois closures of finite rational maps to introduce a new method for producing varieties

such that ψk has non-trivial kernel. We then apply our result to the two-dimensional case and

we construct a new family of surfaces which are Lagrangian in their Albanese variety. Moreover,

we analyze these surfaces computing their Chern invariants, and proving that they are not fibred

over curves of genus g ≥ 2. The topological index of these surfaces is negative and this provides a

counterexample to a conjecture on Lagrangian surfaces formulated in [3].

Introduction

Let X be a smooth complex projective variety of dimension n and let
H∗(X,C) =

⊕
k≥0 Hk(X,C) be its complex cohomology. Since the fundamental paper [14],

it has been known that the algebra structure, induced by the cup product, determines the rational
homotopy of X. We consider the exterior algebra

∧∗H1(X,C) =
⊕

k≥0

∧k H1(X,C) and the
natural homomorphism

ρ :
∗∧

H1(X,C) ≡ H∗(Alb(X),C) −→ H∗(X,C),

which can be seen as the algebra homomorphism induced from the Albanese map a : X −→ Alb(X).
It follows that H∗(X,C) is a graded

∧∗H1(X,C)-module. This structure also provides important
information on the topology of X. A basic result in this direction (see [26], [21] , [9] and [1]) is that
the nilpotent completion of the fundamental group π1(X) is determined by H1(X,Q) and by the
homomorphism

ρ2 :
2∧

H1(X,C) −→ H2(X,C).

In particular if ker ρ2 is not trivial, then π1(X) is not abelian. Examples of varieties with
non-trivial nilpotent towers were found by Sommese-Van de Ven [34] and by Campana [9]. In
these examples the non-trivial elements in ker ρ2 all come from the (1, 1)-part of ρ2 in the Hodge
decomposition ρ1,1

2 : H1,0(X)⊗H0,1(X) −→ H1,1(X).

In this paper we focus instead on the holomorphic part of ρ. Consider the algebra of holomorphic
forms on X

H∗,0(X) =
⊕

k≥0

Hk,0(X) =
⊕

k≥0

H0(X, Ωk
X),
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3) FAR 2008 (PV) “Varietà algebriche, calcolo algebrico, grafi orientati e topologici”.

1



2 F. BASTIANELLI, G. P. PIROLA, AND L. STOPPINO

and on the Albanese variety Alb(X)

H∗,0(Alb(X)) =
∗∧

H1,0(X) =
⊕

k≥0

k∧
H1,0(X) =

⊕

k≥0

k∧
H0(X, Ω1

X).

The holomorphic part of ρ

ψ := ρ∗,0 :
∗∧

H1,0(X) −→ H∗,0(X) (0.1)

provides H∗,0(X) of a structure of
∧∗H1,0(X)-module.

The importance of these structures has been emphasized recently by Lazarsfeld and Popa in
[22], where generic vanishing is applied to the setting of the BGG correspondence.

A classical result relating the kernel of

ψ2 :
2∧

H1,0(X) −→ H2,0(X)

to the topology of X is the Castelnuovo-de Franchis Theorem (cf. [6, Proposition X.9]). It states
that the existence of w1, w2 ∈ H0(X, Ω1

X) such that 0 6= w1 ∧ w2 ∈ kerψ2 is equivalent to the
existence of a surjective morphism from X to a curve of genus ≥ 2. We note that in this case
the fundamental group of X surjects onto the fundamental group of the base curve; hence it has
an infinite nilpotent tower, in line with the above mentioned results. The Castelnuovo-de Franchis
Theorem has been generalized to the case of decomposable elements in kerψk for arbitrary k by
Catanese [10].

Apart from the decomposable case, the most important setting where non-trivial elements
appear in kerψ2 is when X has a Lagrangian structure. We will say that an n-dimensional variety
X is Lagrangian if there exists a map of degree one α : X −→ α(X) ⊂ A, where A is an abelian
variety of dimension 2n, and a (2, 0)-form w of rank 2n on A such that α∗w = 0. Clearly, a
Lagrangian subvariety of an abelian variety is Lagrangian. One expects that the existence of a
Lagrangian form gives strong restrictions on the geometry and the topology of a variety; however,
it turned out that even to construct examples of such varieties is a difficult task.

In [8] Bogomolov and Tschinkel provide examples of surfaces which are Lagrangian in their
Albanese variety, using dominant maps between K3 surfaces. In some cases they prove that these
surfaces are not fibred over curves of genus g ≥ 2.

In [3] a new topological consequence of the existence of a Lagrangian form is proved; namely, if
X is a Lagrangian surface, under some assumption on the branch locus of the Albanese map, the
topological index τ(X) = 1

3(K2
X − 2c2(X)) is showed to be non-negative. Moreover, the authors

give another example of a surface with a Lagrangian (2, 0)-form not coming from a fibration ([3,
Example 6.6]) based on a previous article of the third author [31].

In this paper we investigate the map ψ for a variety X constructed as Galois closure of a
generically finite morphism γ : Z −→ Y (or else a finite degree dominant rational map). We study
the vector spaces Hp,0(X) and

∧p H1,0(X) as representations of the Galois group of γ. Recall that
such a group is isomorphic to the monodromy group of γ. We suppose that Z is irregular - i.e.
h1,0(Z) > 0 - and that h1,0(Y ) = hp,0(Y ) = 0 for some p. By using representation theory we then
detect a subspace of large dimension contained in kerψp.
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Although the Galois closures have been thoroughly studied by several authors (see for instance
the important papers [24] and [25]), this very simple and general application of the theory of Galois
covers is - to our knowledge - new.

We can summarize our result as follows (see Theorem 1.6 for a stronger statement).

Theorem 0.1. Let γ : Z 99K Y be a finite degree d map between smooth varieties of dimension n

and let g : X 99K Y be the Galois closure of γ. Suppose that

(i) the monodromy group M(γ) is isomorphic to the full symmetric group Sd,
(ii) the irregularity of Z is q = h1,0(Z) ≥ 2,
(iii) h1,0(Y ) = 0 and there exists an integer 2 ≤ p ≤ q such that hp,0(Y ) = 0.

Then the kernel of ψp :
∧p H1,0(X) −→ Hp,0(X) has dimension grater or equal than

(
q
p

)
.

The main point is to describe the representation of the group Sd given by H1,0(X) to find a
trivial sub-representation in the decomposition of

∧p H1,0(X). Therefore this subspace has to lie
into kerψp, because of assumption (iii).

We note further that - under the assumption of the theorem - we are able to exhibit explicitly(
q
p

)
independent elements of the kernel of ψp (cf. Proposition 1.10).
In [9, Section 3] Campana underlines the importance of producing examples of varieties such

that the holomorphic (2, 0)-part of ρ has non-trivial kernel. Observe that the above theorem allows
to construct many varieties with such a property. In particular, the fundamental groups of these
varieties have non-trivial nilpotent tower.

In the second part of the paper we construct and study in detail a family of Lagrangian surfaces
of general type, which we call LG surfaces (cf. Definition 6.1). These surfaces are Galois covers of
a triple covering of an abelian surface on a rational one, so the existence of a non-trivial element in
kerψ2 is guaranteed by Theorem 0.2. On the other hand, the study of the geometry of LG surfaces
requires a lot of effort and the use of several different techniques. Besides classical tools (such as
linear systems on curves, fibrations and double coverings on surfaces), we exploit the theory of
abelian surfaces and their moduli, and the monodromy of the torsion points.

The starting point of our construction is an abelian surface S provided of a line bundle L
inducing a polarization of type (1, 2). Using the fine analysis of (1, 2)-polarized abelian surfaces
contained in [4], we investigate the geometry of the linear pencil |L| and of the induced fibration
on P1 relating the behavior of the special fibers to certain subsets of the torsion points of S. We
then define a degree three rational covering γ : S 99K F3 of the Hirzebruch surface F3. We would
like to note that the induced fibration has been studied also by Xiao [36] and by Chen and Tan in
[12], whereas the map γ has been presented by Tokunaga and Yoshihara [35] in order to provide
examples of abelian surfaces with minimal degree of irrationality.

We give an explicit geometric description of the Galois closure of γ, and we define the LG

surface X to be its minimal desingularization. Even though this construction could be carried on a
birational setting, in order to control the geometry of X and to compute its invariants, we need to
resolve explicitly the indeterminacy locus of γ: it is then crucial the knowledge of the geometry of
|L|.

We investigate the geometry of LG surfaces. The main results we obtain can be summarized
as follows.
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Theorem 0.2. Let S be an abelian surface with a line bundle L of type (1, 2) such that all the
curves in the pencil |L| are irreducible. Then there exists a rational triple covering γ : S 99K F3 of
the Hirzebruch surface F3. The minimal desingularization X of the Galois closure of γ is a surface
of general type with invariants

K2
X = 198, c2(X) = 102, χ(OX) = 25, q = 4, pg = 28 and τ(X) = −2.

Moreover, X is Lagrangian with Albanese variety Alb(X) = S×S, and it does not have any fibration
over curves of genus ≥ 2.

We prove further that for a general choice of S in the moduli space W(1, 2) of (1, 2)-polarized
abelian surfaces, the Galois closure of the covering γ is smooth and minimal, hence it is the LG

surface itself. A crucial point here is the study of the monodromy of the points of order 3 in S.

In view of Castelnuovo-de Franchis Theorem the LG surfaces are particularly interesting because
the Lagrangian structure does not come from a fibration over a curve of genus greater or equal to 2.
Our proof of this fact is indirect and uses heavily the knowledge of special curves on the LG surface
and the theory of complex abelian surfaces.

It is worth noticing that the LG surfaces are so far the only examples of Lagrangian surfaces
non-fibred over curves of genus greater than 1 whose invariants are explicitly computed.

We see from Theorem 0.2 that the LG surfaces have negative topological index τ(X) = −2.
This shows that the positivity of the index is not a property of Lagrangian surface, thus disproving
a conjecture stated in [3]. The assumptions on the branch locus of the Albanese map made in that
paper, and in particular the connectedness, are then proved to be necessary. In Section 9 we make
a detailed discussion on this topic.

From the non-triviality of ker ρ2 it follows straightforwardly that the nilpotent tower of the LG

surfaces is not trivial up to the second step. The examples of Campana and Sommese-Van der Ven
have precisely two steps. In [2] (the last paper of a series) Amram, Teicher and Vishne study the
Galois closures of the generic projections from the product of two elliptic curves to P2. Among
other results, they prove that the nilpotent tower of the fundamental groups of these surfaces are
non-trivial up to step 3. It would be interesting to compute the class of nilpotency of the LG

surfaces.. We determine the dimension of ker ρ2 (see Proposition 7.6) which is 7. This is a first step
towards the computation of the nilpotent tower of π1(X), which is one of our next purposes.

Plan of the paper. In the first section we prove the general result described in Theorem 0.1. The
rest of the paper is devoted to the construction and study of the LG surfaces. In the second section
we recall some results on (1, 2)-polarized abelian surfaces, and we establish a correspondence between
bielliptic curves and these surfaces (via generalized Prym varieties). In Section 3 we consider the
pencil defined by the polarization on one of these abelian surfaces S, and we relate the geometry of
special members to some subsets of torsion points on S. We define in Section 4 a triple covering from
a blow up S of S to the Hirzebruch surface F3, whose Galois closure π1 : X −→ S is constructed in
Section 5. Moreover, we prove that the branch locus Bα1 is reduced with simple double singularities
and we compute its numerical class. In Section 6 we then define LG surfaces and we compute their
Chern invariants. We determine their Albanese varieties and prove that they are Lagrangian. The
seventh section is devoted to prove that the LG surfaces do not admit a fibration over curves of
genus g ≥ 2, and we study ker ρ2. In Section 8, via the monodromy of points of order 3, we prove
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that the Galois closures associated to general abelian surfaces are smooth. This result is crucial
for the study of the branch locus of the Albanese map carried on in Section 9. Here we relate our
results to the ones of [3].

Notation. We work over the field C of complex numbers. By variety we shall mean a complex
complete irreducible algebraic variety, unless otherwise stated.

Given a smooth variety X, we denote by Ω1
X the cotangent bundle of X, by Ωp

X =
∧p Ω1

X the
sheaf of holomorphic p-forms and by hp,q(X) = dimHq(X, Ωp) the Hodge numbers, where p and
q are non-negative integers; in particular q(X) = h1,0(X) is the irregularity of X. We recall that
hp,0(X) are birational invariants. We denote by ωX the canonical sheaf of X, which is the line
bundle ωX =

∧n Ω1
X of holomorphic n-forms, with n = dimX. Moreover, we denote by KX any

divisor such that OX(KX) ∼= ωX .
The Albanese variety of X is the abelian variety Alb(X) = H0(X, Ω1

X)∨/H1(X,Z). Given a
point x ∈ X we can define the Albanese map ax : X −→ Alb(X) by x 7→ ∫ x

x −. Changing the base
point the Albanese map changes by a translation of Alb(X). We will therefore often omit the base
point.

If D1 and D2 are two Weil divisors on X, the notation D1 ∼X D2 means that D1 and D2

are linearly equivalent, i.e. that there is an isomorphism of line bundles OX(D1) ∼= OX(D2). By
D1 ≡X D2 we mean that the two divisors are numerically equivalent, that is D1 · C = D2 · C for
any curve C ⊂ X.

A fibration f : X −→ Y over a smooth projective variety Y is a flat proper surjective morphism
with connected fibers. We denote by ωf the relative canonical sheaf ωf = ωX ⊗ f∗ω−1

Y .
We say that a property holds for a general point x ∈ X if it holds on an open non-empty subset

of X. Moreover, we say that x ∈ X is a very general - or generic - point if there exists a countable
collection of proper subvarieties of X such that x is not contained in the union of those subvarieties.

Acknowledgments. We would like to thank Jaume Amorós and Frédéric Campana for helpful
suggestions.

1. Galois theory and irregularity

Let Z and Y be two smooth varieties of dimension n and let γ : Z 99K Y be a degree d > 1
rational map. Let K(Y ) and K(Z) denote the fields of rational functions. Then γ induces a field
extension K(Y ) ⊆ K(Z) of degree d. Let L be the Galois closure of this field extension and let W

be the normalization of Z in L (see for instance [23]).

Definition 1.1. With the above notation, the normal variety W provided of the induced map
g : W 99K Y is the Galois closure of the map γ.

Let X be a desingularization of W and, for p ≥ 2, let us consider the homomorphism

ψp :
p∧

H1,0(X) −→ Hp,0(X). (1.1)

In the following we study of the kernel of this map and prove that - under some additional hypothesis
- it is non-trivial. Note that ψp is independent from the desingularization chosen. We can therefore
suppose - by blowing up its indeterminacy locus - that γ is a generically finite morphism of degree d.
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Let M = M(γ) be the monodromy group of γ [19] and let m be its order. Recall that it is
isomorphic to the Galois group of the splitting normal extension L/K(Y ) induced by γ. Moreover,
the Galois group of the extension K(W )/K(Z) is a subgroup M1 ⊂ M .

It is possible to describe geometrically the Galois closure W of γ as follows (cf. [18, Exposé
V.4.g], [25] and [23, Proposition 6.13]). Let W ⊂ Y be a suitable non-empty Zariski open subset of
Y and let U := γ−1(W) ⊂ Z so that the restriction γ|U : U −→ W is an étale morphism of degree d.
Let Zd = Z × . . .× Z be the d-fold ordinary product of Z and let us consider the subset W ◦ ⊂ Zd

given by

W ◦ :=
{

(z1, . . . , zd) ∈ Zd
∣∣∣ {z1, . . . , zd} = γ−1(y) for some y ∈ W

}
.

Clearly W ◦ is a smooth - possibly disconnected - variety and the full symmetric group Sd acts on
W ◦. By lifting arcs it is immediate to see that W ◦ has exactly d!

m irreducible components, that are
all isomorphic. We recall that d divides m and that m = d if and only if γ is a Galois covering.
Furthermore, W ◦ is irreducible if and only if M ∼= Sd.

Let us fix an irreducible component of W ◦ and let W be the normalization of the Zariski closure
in Zd of such a component. Let αi : W −→ Z be the composition of the normalization morphism
with the i-th projection map from Zd to Z, with i = 1, . . . , d. Thus we have the following diagram

W
g

ÃÃA
AA

AA
AA

A

α1

²²
Z

γ // Y

and the normal variety W - provided with the morphism g = γ ◦α1 : X −→ Z - turns out to be the

Galois closure of the covering γ : Z −→ Y . In particular, the monodromy group of the map α1 is
M(α1) = M1 ⊂ M := M(γ).

Remark 1.2. We note that the variety W ◦ can also be defined as the subvariety of Zd−1

W ◦ :=
{

(z1, . . . , zd−1) ∈ Zd−1
∣∣∣ {z1, . . . , zd−1, zd} = γ−1(y) for some y ∈ W

}
.

The morphisms α1, . . . , αd−1 : W −→ Z are defined by composing the normalization map W −→ W ◦

with the projection maps, whereas αd : W −→ Z is obtained sending (z1, . . . , zd−1) ∈ Zd−1 to the
point zd ∈ Z.

Now, let µ : X −→ W be a desingularization of W and, for i = 1 . . . , d, let us consider the maps
πi := αi ◦ µ : X −→ Z. We have the following diagrams

X

ÃÃ@
@@

@@
@@

@

πi

²²
Z

γ // Y

(1.2)

and the monodromy groups are M(π1) = M(α1) = M1 and M(γ ◦ π1) = M(γ) = M . We remark
that M acts birationally on X and hence the vector space Hk,0(X) carries - in a natural way - a
M -representation structure for any k ≥ 0. Moreover, we have the following relations on the spaces
of holomorphic differential forms:

Hk,0(X)M = (γ ◦ π1)∗(Hk,0(Y )) and Hk,0(X)M1 = π∗1(H
k,0(Z)). (1.3)
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We note that the cup product map

Hk,0(X)⊗Hh,0(X) −→ Hk+h,0(X)

is M -equivariant for any k, h ≥ 0. Furthermore, the map ψk :
∧k H1,0(X) −→ Hk,0(X) introduced

in (1.1) is M -equivariant as well.

For the sake of simplicity we assume hereafter that the monodromy group of γ is the full
symmetric group Sd. In particular, it follows that X is the normalization of the Zariski closure of
W ◦ and the monodromy group of π1 is M1

∼= Sd−1.
Recall that the standard representation of Sd is the irreducible representation defined as the

(d − 1)-dimensional C-vector space Γ :=
{
(a1, . . . , ad) ∈ Cd|a1 + . . . + ad = 0

}
, where we fixed the

standard basis {e1, . . . , ed} of Cd and σei = eσ(i) for any σ ∈ Sd, i = 1, . . . , d. Moreover, let U

denote the trivial representation of Sd. Then we have the following.

Theorem 1.3. Suppose that h1,0(Y ) = 0. Then the vector space H1,0(X) contains q := q(Z) copies
of the standard representation Γ of Sd. In particular,

h1,0(X) ≥ q(d− 1). (1.4)

Proof. Let us consider the canonical identification H1,0(Zd) ∼= H1,0(Z)d. Let ω ∈ H1,0(Z) be a
non-zero holomorphic 1-form and let us set ωi := π∗i (ω) ∈ H1,0(X) for any i = 1, . . . , d. We note
that the ωi’s are distinct non-zero forms on X. Indeed, if it were ωi = ωj for some i 6= j, then ωj

would be invariant with respect to both M(πi) ∼= Sd−1 and M(πj) ∼= Sd−1. Hence the non-zero form
ωj would be invariant under the action of the whole Sd, but this is impossible because Y = X/Sd

does not posses holomorphic 1-forms.
Moreover, as the 1-form

∑
i ω

i is invariant under the action of Sd and h1,0(Y ) = 0, we have
that ω1 + . . . + ωd = 0. Thus the vector space 〈ω1, . . . , ωd〉 - carrying a Sd-representation structure
- consists of a copy Γω of the standard representation Γ of Sd. Let

η : H1,0(Z)⊗ Γ −→ H1,0(X)

be the homomorphism sending an element ω⊗a, with ω ∈ H1,0(Z) and a = (a1, . . . , ad) ∈ Γ, to the
corresponding element ωa =

∑
i aiω

i.
To conclude the proof it remains to show that the homomorphism η is injective. Note that η

is M -equivariant, where the action of M = Sd on H1,0(Z) is the trivial one. Thus the kernel of η

is a sub-representation of H1,0(Z) ⊗ Γ and hence ker(η) = Σ ⊗ Γ, where Σ ⊂ H1,0(Z) is a trivial
sub-representation. Furthermore, we have that

(H1,0(Z)⊗ Γ)M1 = (H1,0(Z)⊗ Γ)Sd−1 ∼= H1,0(Z)⊗ ΓSd−1 ∼= H1,0(Z)

and then ker(η)M1 = Σ. Since ηM1 : (H1,0(Z) ⊗ Γ)M1 −→ H1,0(X)M1 coincides with the injective
homomorphism π∗1 : H1,0(Z) −→ H1,0(X), we deduce that Σ = ker(η)M1 = ker(ηM1) = {0}. We
conclude that ker(η) = {0}. ¤

Remark 1.4. We note that inequality (1.4) can be strict. For instance, let us consider the case
of curves. As is well known, a smooth curve C of genus g admits a degree d covering γ : C −→ P1

with monodromy group M(γ) = Sd for d ≥ g+2
2 . Let X be the Galois closure of such a covering and
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assume that d ≥ 6. Then X admits a covering X −→ C of degree (d−1)! and by Riemann-Hurwitz
formula we have

h1,0(X) ≥ (d− 1)! (g − 1) + 1 > (d− 1)! (q − 1) ≥ (d− 1)q.

Thanks to Theorem 1.3 we have that H1,0(X) contains Γ⊕q as a sub-representation. Hence
if q ≥ 2 and p is an integer such that 2 ≤ p ≤ q, the Sd-representation

∧p H1,0(X) admits a
decomposition of the form

p∧
H1,0(X) ∼= (⊗p Γ)⊕r ⊕K,

where r :=
(
q
p

)
and K is some sub-representation. It follows that

(Symp Γ)⊕r ⊂
p∧

H1,0(X) (1.5)

is a sub-representation. In order to study the kernel of the map ψp defined in (1.1), we shall discuss
the existence of trivial representations of Sd into

∧p H1,0(X). Then we are going to focus on the
trivial representations contained in Symp Γ.

Letting V = U ⊕ Γ, the graded algebra ⊕kSymk V can be naturally identified with the algebra
of polynomials over C in the variables x1, . . . , xd, that is

S(x1, . . . , xd) ∼= ⊕kSymk V.

The ring of the Sd-invariant polynomials of S(x1, . . . , xd) is generated by the elementary symmetric
functions

ξh(x1, . . . , xd) :=
∑

1≤i1<i2<...<ih≤d

xi1xi2 ...xih , (1.6)

with 1 ≤ h ≤ d. Therefore

S(x1, . . . , xd) = I(ξ1)⊕
(
⊕kSymk Γ

)
,

where I(ξ1) is the principal ideal generated by ξ1. Then the sub-algebra of the Sd-invariant elements
of ⊕kSymk Γ can be identified with the C-algebra generated by the functions ξ2, . . . , ξd, i.e. we have
the isomorphism of graded algebras given by

(
⊕kSymk Γ

)Sd ∼= C[ξ2, . . . , ξd]. (1.7)

Summing up, we proved the following.

Lemma 1.5. Let Γ be the standard representation of Sd and let ξ1, . . . , ξd be the elementary sym-
metric polynomials defined in (1.6). Then the vector space

Ak := C[ξ2, . . . , ξd]k (1.8)

is isomorphic to the space of the Sd-invariant elements of Symk Γ for any k ≥ 0.

In particular, every Ak
∼=

(
Symk Γ

)Sd is a sum of copies of the trivial representation of Sd.
Moreover, by (1.5) we have

(Ap)⊕r ⊂
(

p∧
H1,0(X)

)Sd

, (1.9)
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where 2 ≤ p ≤ q and r =
(
q
p

)
, i.e.

∧p H1,0(X) contains r copies of Ap as trivial sub-representations.
We are now ready to state the main result of this section.

Theorem 1.6. Let γ : Z 99K Y be a finite map of degree d between smooth varieties of dimension
n and let g : X 99K Y be the Galois closure of γ. Suppose that

(i) the monodromy group M(γ) is isomorphic to the full symmetric group Sd,
(ii) q = q(Z) ≥ 2,
(iii) h1,0(Y ) = 0 and there exists an integer 2 ≤ p ≤ q such that hp,0(Y ) = 0.

Then the cup-product map

ψp :
p∧

H1,0(X) −→ Hp,0(X)

has non-trivial kernel and moreover

(Ap)⊕r ⊂ kerψp , (1.10)

where r =
(
q
p

)
and Ap is the vector space defined in (1.8). In particular,

dimkerψp ≥
(

q

p

)
.

Proof. As Hp,0(Y ) = {0}, by (1.3) we have that {0} = g∗(Hp,0(Y )) = Hp,0(X)Sd . Clearly,
ψp

(∧p H1,0(X)
)Sd ⊂ Hp,0(X)Sd because ψp is Sd-equivariant. Hence (Ap)⊕r ⊂ kerψp by (1.9).

In particular, we deduce that dim kerψp ≥
(
q
p

)
dimAp ≥

(
q
p

)
. ¤

Remark 1.7. In order to construct non-trivial elements in the kernel of ψp, the assumptions (i)
and (iii) can be weakened. On one hand, it is not necessary to suppose that the monodromy group
is the full symmetric group and it suffices to assume that γ is not a Galois covering (for instance
one could consider the case of the alternating group Ad with d ≥ 4). On the other hand, if we drop
the assumption q(Y ) = 0, we have that kerψp contains

(
a
p

)
copies of Ap with a := q(Z)− q(Y ).

Remark 1.8. It is worth noticing that Theorem 1.6 is more significant when p ≤ dim a(Z). Indeed,
for p strictly grater than the Albanese dimension of Z it is easy to construct subspaces of kerψp.
Consider the Albanese maps of X and Z, and let h : Alb(Z) −→ Alb(X) be the morphism induced
from g : X −→ Z. We have the commutative diagram induced in cohomology

∧p H1,0(X) = Hp,0(Alb(X))
ψX

p // Hp,0(X)

∧p H1,0(Z) = Hp,0(Alb(Z))
ψZ

p //

h∗
OO

Hp,0(Z)

g∗
OO

Note that he vertical arrows are injective. From this diagram we see that if p > dim a(Z) then
∧p H1,0(Z) ⊆ kerψp.

Remark 1.9. When hp,0(Y ) = 0 for all p ≥ 0 - as happens for instance if Y is rational - it is then
possible to produce, via our method, elements in the kernel of ψp for any 0 ≤ p ≤ q. More generally,
our method can be used to produce varieties X with non-trivial elements in the kernel of the cup
product map Hh,0(X)⊗Hk,0(X) −→ Hh+k,0(X).
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We end this section by giving an explicit construction of r =
(
q
p

)
independent p-forms on X

contained in kerψp. The idea is to present p-forms invariant under the action of the monodromy
group Sd. Let us fix a basis η1, . . . , ηq ∈ H1,0(Z) and let

ωi
j := π∗i (ηj) ∈ H1,0(X)

with i = 1, . . . , d and j = 1, . . . , q. Then the following holds.

Proposition 1.10. Under the assumption of Theorem 1.6, for any choice of p one-forms
ηj1 , . . . , ηjp ∈ H1,0(Z) of the basis,

ω :=
d∑

i=1

ωi
j1 ∧ ωi

j2 ∧ . . . ∧ ωi
jp
∈

p∧
H1,0(X) (1.11)

is an element of a copy of Ap ⊂ kerψp. Moreover, when p = 2, the rank of ω is 2(d− 1).

Proof. As in the proof of Theorem 1.3, for any j = 1, . . . , q, we can define a copy Γηj ⊂ H1,0(X)
of the standard representation of Sd associated to ηj , by pulling back ηj via the πi’s. So, let us
consider the standard representations Γηj1

, . . . , Γηjp
and the corresponding vector space Ap. Clearly,

the p-form ω is invariant under the action of Sd and it is contained in Ap ∈ kerψp.
Now, let p = 2 and let ω =

∑d
i=1 ωi

j1
∧ ωi

j2
∈ ∧2 H1,0(X). By the equations defining Γηj1

and Γηj2

we have
ωd

j1 = −ω1
j1 − . . .− ωd−1

j1
and ωd

j2 = −ω1
j2 − . . .− ωd−1

j2
.

and hence

ω = 2
d−1∑

i=1

ωi
j1 ∧ ωi

j2 +
∑

i 6=k

ωi
j1 ∧ ωk

j2 .

To conclude, notice that ω1
j1

, . . . , ωd−1
j1

, ω1
j2

, . . . , ωd−1
j2

are independent forms on X and the rank of
ω is equal to the rank of the associated matrix of dimension 2(d− 1)× 2(d− 1)

Aω =
[

0 Bω

−Bω 0

]
, where Bω =




1 1
2 . . . 1

2
1
2 1 . . . 1

2
. . .

1
2

1
2 . . . 1


 .

¤

Note that when p = 2, the form ω ∈ Ap is the element corresponding to the elementary
symmetric function −ξ2, under the identification (1.7).

2. Abelian surfaces of type (1, 2)

Let us consider a couple (S,L), where S is a smooth complex abelian surface and L a line bundle
over S of degree 4. The line bundle L defines a (1, 2)-polarization on S, which we will denote [L].
In [4], Barth gives a detailed treatment of these surfaces, and we here recall the results we need.

There is a natural isogeny associated to L - sometimes called itself the polarization - λL : S −→
Pic0(S) = S∨ defined by associating to t ∈ S the invertible sheaf L−1 ⊗ t∗L, where t∗ is the
translation by t. We recall that [27]

T (L) := kerλL ∼= Z/2Z× Z/2Z. (2.1)
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It follows that T (L) = {x0, x1, x2, x3}, where x0 is the origin of S, and x1, x2, x3 are three points of
order 2. As h0(S,L) = 1

2c1(L)2 = 2, the linear system |L| induces a linear pencil on S.
Let W(1, 2) the moduli space of abelian surfaces with a polarization of type (1, 2). Given a

couple (S, [L]) ∈ W(1, 2), there exists an irreducible curve C ∈ |L| if and only if L is not of the
form OS(E + 2F ) where E and F are elliptic curves in S such that E·2 = F ·2 = 0 and E · F = 1.
Moreover, if there exists an irreducible element in |L|, then the general member is smooth, and the
linear pencil |L| has precisely T (L) = {x0, x1, x2, x3} as base points.

Let us suppose that there exists such an irreducible curve C ∈ |L|. In this case C is either
smooth of genus 3, or an irreducible curve of geometric genus 2 with one double point, which is
easily seen to be a node.

Another important result in [4] is that the (−1)-involution on S restricts to an involution on
any curve C ∈ |L|. In the following we shall denote the induced involution on C as ι, and as π the
quotient morphism C −→ C/〈ι〉.

The surface S can be recovered from the data of the morphism π. Indeed S is the generalized
Prym variety P (π) associated to this morphism (see [7], Section 12.3). In order to fix the notation,
we briefly define P (π) in our cases. Let us distinguish the smooth and singular case.

Suppose that C ∈ |L| is a smooth curve. By the Riemann-Hurwitz formula, the quotient C/〈ι〉
is a smooth elliptic curve E. Consider the embedding of E in the second symmetric product C(2)

E ∼= {p + ι(p), p ∈ C} ⊂ C(2),

and compose this map with the Abel map C(2) ↪→ J(C). This is just the inclusion given by pullback
on the Picard varieties

π∗ : Pic0(E) ∼= E ↪→ Pic0(C) ∼= J(C).

Then, by composing the Jacobian embedding with the quotient map, we have a well defined mor-
phism η : C −→ J(C)/π∗E, which is an embedding satisfying η(C)·2 = 4 [4, Proposition (1.8)]. The
abelian surface J(C)/π∗E is the generalized Prym variety P (π) associated to π; this notation is
dual to the one used by Barth in section (1.4) of [4], see in particular the Duality Theorem (1.2).

Proposition 2.1 (Barth). Let C ∈ |L| a smooth curve. Then there exists a degree 2 morphism to
an elliptic curve π : C −→ E such that S is naturally identified with P (π) = J(C)/π∗E. Conversely,
any smooth bielliptic genus 3 curve π : C −→ E is embedded in P (π) as a curve of self-intersection
4.

Let us consider the case when C ∈ |L| is a singular irreducible curve. As recalled above, C has
geometric genus 2 with one node q ∈ C. Let us call q1, q2 ∈ C̃ the preimages of q.

The (−1)-involution on S extends to an involution ι : C −→ C that fixes x0, . . . x3. Clearly, also
q is fixed by ι and the quotient C/〈ι〉 is an irreducible curve of arithmetic genus 1 with one node.
It is clear that the points {ν−1(x0), . . . , ν−1(x3), q1, q2} are the Weierstrass points of C̃.

The isogeny ϕ : J(C̃) −→ S has degree 2. Indeed, the curve C̃ has self-intersection 2 in J(C̃),
while ν∗C̃ ·2 = C ·2 = 4 in S. Hence there exists a torsion point ε ∈ J(C̃) such that ϕ is the quotient
map induced by the involution z 7→ z + ε. Let us identify as usual J(C̃) with Pic0(C̃). Clearly
ε ∼ q1 − q2 in C̃. Indeed, q1 − q2 is 2-torsion because the qi’s are Weierstrass points, and these two
points are identified in S.
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Let us call G ∼= Z/2Z the order 2 subgroup of J(C̃) generated by q1 − q2. We shall call the
quotient J(C̃)/G the generalized Prym variety P (π) associated to π. We have then the following.

Lemma 2.2. Let (S,L) be such that there exists an irreducible singular curve C ∈ |L|. Then S is
naturally identified with P (π) = J(C̃)/G.

3. Torsion points and geometry of the pencil |L|
Let (S,L) be such that there exists an irreducible C ∈ |L|. As recalled above, the general

element in |L| is smooth; moreover, it is non-hyperelliptic ([35, Claim 2.5], [30]).
We shall suppose that any element of |L| is irreducible. This amounts to asking that there are

no curves of the form E1 + E2, where E1 and E2 are smooth elliptic curves contained in S meeting
in two nodes. This is a general condition in W(1, 2). Note that the above conditions would follow
from the requirement that S be a simple abelian surface, but this last assumption is much stronger,
being generic in W(1, 2) [30].

Under this assumption, we shall see that |L| has exactly 12 singular members, corresponding
to the order two points of S different from the xi’s. (Proposition 3.1). The linear system contains
exactly 6 smooth hyperelliptic elements that are related to a particular subset of the points of order
4 (Lemma 2.1 and Proposition 3.3). In Proposition 3.5 we give a characterization of the triple points
of S in terms of the canonical images of the corresponding curves of the linear pencil.

To fix the notation, let S̃ be the blow up of S in the base points {x0, . . . , x3} and let f : S̃ −→ P1

denote the fibration induced by the pencil. We denote by E0, . . . , E3 the four exceptional curves of
the blow up, that are sections of f .

Proposition 3.1. Let (S,L) be such that any element of |L| is irreducible. The linear pencil has 12
singular elements that are all irreducible curves of geometric genus 2 with one node. These nodes
are the points of S of order 2 different from the xi’s.

Proof. The first part of the proposition has already been established in Section 2. We saw also that
the singular points of the curves in |L| are points of order 2 in S. As S has 16 points of order two, 4
of which are the base points xi’s, it remains only to prove is that there are 12 singular curves in the
linear pencil. This derives from the following formula on the invariants of the fibration f : S̃ −→ P1

[6, Lemma VI.4]
c2(S̃) = e(P1)e(F ) +

∑
(e(N)− e(F )),

where F is a smooth fiber, and the sum is taken on all the singular fibers N of f . As any N is
irreducible with one node, we have that its topological characteristic is e(N) = e(F ) + 1. Hence, if
n is the number of singular fibers, the formula becomes 4 = −8+n, and the proof is concluded. ¤

The other special elements of the linear pencil |L| are smooth hyperelliptic curves. Let us
consider the sets of points of S defined as follows

Pi := {x ∈ S | 2x = xi} , for i = 1, 2, 3.

Any of the Pi’s is a set of 16 particular order 4 points in S.

Lemma 3.2. Let x ∈ Pi, and D be the element of |L| passing through x. Then D is smooth.
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Proof. Suppose by contradiction that D is a singular curve. Let ν : D̃ −→ D be its normalization,
and q1, q2 ∈ D̃ be the inverse images of the node. By abuse of notation, let us still call xi’s the
inverse images ν−1(xi)’s, and x the inverse image of x in D̃. Recall that {x0, x1, x2, x3, q1, q2}, are
the Weierstrass points of the genus 2 curve D̃. Recall from Lemma 2.2 that S is naturally identified
with J(D̃)/G where G is the order two subgroup of J(D̃) generated by q1−q2. The equality 2x = xi

in S, means in terms of this identification that

2x ∼
D̃

x0 + xi, or 2x ∼
D̃

x0 + xi + q1 − q2.

The first formula is impossible because x0 + xi (for i 6= 0) does not belong to the g1
2. Applying

the hyperelliptic involution σ to the second linear equivalence, we would obtain 2x ∼
D̃

2σ(x). This
would imply that x is a Weiestrass point of D̃, which is a contradiction. ¤

Proposition 3.3. Let (S,L) be such that any element of |L| is irreducible. The linear pencil has 6
smooth hyperelliptic elements such that any Pi consists of the Weierstrass points of two of them.

Proof. Let C be a smooth hyperelliptic curve belonging to |L|. By Barth’s construction such a curve
has a bielliptic involution ι : C −→ C. As ι and j commute, j induces a permutation on the fixed
points of ι, which are exactly the xi’s that does not fix any of them. Let now x ∈ C be a Weierstrass
point. By what observed above, 2x ∼C x0 + j(x0) = x0 + xi for some i ∈ {1, 2, 3}. Hence x belongs
to the set Pi.

On the other hand, let x be a point in P1, and D ∈ |L| be the curve passing through x. We
proved in Lemma 2.1 that D is smooth. In particular we can identify S with J(D)/π∗E, where E

is the quotient of D by the bielliptic involution. Using the above identification, we have that there
exists s ∈ D such that

2x− 2x0 ∼D x1 + s + ι(s)− 3x0

in D. This implies that 2x ∼D 2ι(x); as x is not fixed by the bielliptic involution ι, 2x induces a
g1
2 on D. Hence D is hyperelliptic, and x is one of its Weierstrass points. Moreover, the other 7

Weierstrass points necessarily satisfy 2y = x1 in S, so they also lie in P1.
Choosing one point x′ ∈ P1 \ D ∩ P1, we obtain another hyperelliptic curve D′ ∈ |L|, whose

Weierstrass points are precisely P1 \D ∩ P1.
Making the same construction for x2 and x3, we obtain the other 4 hyperelliptic curves, and

the statement is verified. ¤

Remark 3.4. Recall that f : S̃ −→ P1 is the fibration obtained blowing up the base points of the
pencil |L|. Consider the morphism of sheaves

Sym2f∗ωf
δ−→ f∗ω2

f .

The fiber of δ over p ∈ P1 is the multiplication morphism

Sym2H0(f−1(p), ωf−1(p)) −→ H0(f−1(p), ω2
f−1(p)).

The cokernel of δ is a torsion sheaf T supported over the points corresponding to the smooth
hyperelliptic fibers of f . As Reid proves in [32, Sections 3.2 and 3.3], the following relation holds

K2
S̃

= 3χ(O
S̃
)− 10 + deg T ,

hence in our case the degree of T is 6. In [32] it is also proved that the contribution of any
hyperelliptic smooth fiber to the degree of T , which is usually called Horikawa number, is greater
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or equal to one. We can therefore conclude that these fibers have Horikawa numbers equal to 1, i.e.
that the modular image of the base P1 in M3 intersects the hyperelliptic locus transversally in the
points corresponding to these fibers.

With the following result we give a geometric description - in terms of the linear pencil - of
the points of order 3 of S. Before stating the result, let us fix a notation. Let C be an irreducible
curve of arithmetic genus 3 with one node q. Let ν : C̃ −→ C be the normalization, and q1, q2

be the preimages of the node. The canonical embedding of C in P2 is associated to its dualizing
sheaf ν∗(ωC̃

(q1 + q2)), and corresponds on C̃ to the birational morphism induced by the divisor
K

C̃
+ q1 + q2.

Proposition 3.5. Let p 6= x0 be a point of S and let C ∈ |L| be the curve passing through p. The
following are equivalent:

(i) p is a point of order 3 of S;
(ii) C is not a smooth and hyperelliptic curve and, when its image via the canonical embedding

ϕ : C ↪→ P2 has an inflection point of order 3 at ϕ(p) with tangent line ϕ(p0)ϕ(p).

Proof. (i) ⇒ (ii). Suppose that C is the element of the pencil passing through a point p of
order three. If C is smooth, let E = C/〈ι〉 be its bielliptic quotient. Using the identification
S = J(C)/π∗E, the assumption implies that there exists a point s ∈ C such that

3(p− x0) ∼C s + ι(s)− 2x0,

that is 3p ∼C s+ ι(s)+x0 and this induces a base point free g1
3 on C. So, in particular, assumption

(i) implies that C is not a smooth hyperelliptic curve. Let us distinguish between the smooth and
the singular case.

Assume that C is smooth and non-hyperelliptic. As observed above, there exists a point s ∈ C

such that 3p ∼C x0 + s + ι(s). As C is non-hyperelliptic, there exists r ∈ C such that

3p + r ∼C x0 + s + ι(s) + r ∼C KC .

The latter equivalence proves that ϕ(p) is an inflection points of order 3 for the canonical image of
C in P2 with tangent line ϕ(r)ϕ(p). To complete the first part of the proof we need to show that
r = x0. Observe that

x0 + ι(s) + s + r ∼C KC ∼ ιKC ∼C x0 + s + ι(s) + ι(r).

So, r = ι(r) and hence r is one of the xi’s. On the other hand KC ∼C x0 + x1 + x2 + x3, then the
only possibility is r = x0.

Let us now suppose that C is nodal. As usual, we identify S with J(C̃)/G. As p has order 3 in
S, we have that 3p ∼

C̃
3x0 + q1 − q2 in C̃. Now note that q2 ∼C̃

2x0 − q2, because both x0 and q2

are Weierstrass points. Hence,

3p + x0 ∼C̃
2x0 + q1 + q2 ∼C̃

K
C̃

+ q1 + q2, (3.1)

as wanted.
(ii) ⇒ (i). Suppose C is not simultaneously smooth and hyperelliptic, and that its canonical

image has an inflection point of order 3 at ϕ(p) with tangent line ϕ(x0)ϕ(p).
If C is smooth, we have that 3p + x0 ∼C KC . For some points a, b ∈ C, let 2x0 + a + b ∼C KC

be the divisor cut out by the tangent line to C at x0. Notice that 2x0 + a + b ∼C KC ∼C ιKC ∼C
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2x0 + ι(a) + ι(b). Therefore either a = ι(b) with a 6= b or a = ι(a). In any case, the relation
3(p− x0) ∼C s + ι(s)− 2x0 holds for some s ∈ C, so 3p = 0 in S.

In the singular case, we have 3p+x0 ∼C̃
K

C̃
+ q1 + q2, which implies the statement by equation

(3.1). ¤

4. The triple covering construction

Recall that S̃ is the blow up of S in {x0, x1, x2, x3}, and f : S̃ −→ P1 the induced fibration. We
denote by E0, . . . , E3 the exceptional divisors, which are sections of f . Given a fiber F of f we shall
always denote by pi the point of intersection between Ei and F ; so, when we identify the fiber F

with the corresponding element of the linear pencil |L|, the pi’s correspond to the base points xi’s.
The homomorphism of sheaves f∗f∗ωf (−E0) −→ ωf (−E0), induces a relative rational map

S̃
γ //_______

f

ÂÂ?
??

??
??

? Y

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

P1

Where Y := P(f∗ωf (−E0)) is the relative projective bundle on P1 associated to the rank 2 vector
bundle f∗ωf (−E0). Hence Y is a rational surface.

We note that γ is a generically finite 3 to 1 map. Indeed, on a smooth non-hyperelliptic fiber
F of f , the restriction γ|F : F −→ P1 corresponds to the composition of the canonical immersion
ϕ : C ↪→ P2 with the projection from ϕ(p0).

Proposition 4.1. With the same notation as above, the vector bundle f∗ωf (−E0) is isomorphic to
OP1(2)⊕OP1(−1). Hence Y is isomorphic to the minimal rational surface F3 = P(OP1(3)⊕OP1)

Proof. Observe firstly that we have the following decomposition (see for instance [16]).

f∗ωf = OP1(α)⊕O⊕2
P1 ,

where α = deg f∗ωf = χ(O
S̃
)−χ(OF )χ(OP1) = 2. By Grauert’s Theorem [20, Chapter III Corollary

12.9] the sheaf R1f∗OS̃
(E0) is locally free, hence by relative duality

R1f∗OS̃
(E0) ∼= (f∗ωf (−E0))

∨ .

Let us consider the short exact sequence of sheaves

0 −→ O
S̃
−→ O

S̃
(E0) −→ OE0(E0) −→ 0

and the long exact sequence induced by the pushforward

0 −→ f∗OS̃
−→ f∗OS̃

(E0) −→ f∗OE0(E0) −→ R1f∗OS̃
−→ R1f∗OS̃

(E0) −→ 0. (4.1)

Observe that f∗OS̃
∼= OP1 and that f∗OE0(E0) ∼= OP1(−1). Moreover, by relative duality again, we

have that
R1f∗OS̃

∼= (f∗ωf )∨ = OP1 ⊕OP1 ⊕OP1(−2).

Hence, from (4.1) we deduce the exact sequence

0 −→ OP1(−1) −→ OP1 ⊕OP1 ⊕OP1(−2) −→ R1f∗OS̃
(E0) −→ 0.
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We deduce that the image of the morphism OP1(−1) −→ OP1 ⊕ OP1 ⊕ OP1(−2) is contained
in OP1 ⊕ OP1 . Hence OP1(−2) injects into R1f∗OS̃

(E0) and R1f∗OS̃
(E0) = OP1(−2) ⊕ OP1(β) for

some β. Finally, by computing the degrees of these sheaves, we see that β = 1. ¤

The rational map γ : S̃ 99K Y is not a morphism. Indeed, a point b ∈ S̃ is an indeterminacy
point for γ if and only if the associated morphism of sheaves f∗f∗ωf (−E0) −→ ωf (−E0) is not
surjective at b [20, Chapter II, Section 7]. By Nakayama’s lemma, the morphism is surjective if and
only if its restrictions to the fiber of f are. For a fiber F this restriction is the evaluation morphism

H0(F, ωF (−p0))⊗OF −→ ωF (−p0),

which is surjective if and only if the line bundle ωF (−p0) is globally generated. On the smooth
non-hyperelliptic fibers, as well as on the singular ones, it is easy to check that this is the case.
Let D be a smooth hyperelliptic fiber. By Proposition 3.3 we have that the hyperelliptic involution
maps p0 in one of the pk for some 1 ≤ k ≤ 3, and pk is a base point for the linear system
|ωD(−p0)| ∼= ωf (−E0)|D. Recalling that by Proposition 3.3 there are 6 hyperelliptic fibers of f , we
have proven the following

Proposition 4.2. The rational map γ has 6 indeterminacy points, one on any hyperelliptic fiber
of f . Moreover, any section Ek contains two of them.

Notation 4.3. For j = 1, 2 and 1 ≤ k ≤ 3, let us denote each of these indeterminacy points by bjk,
with the convention that b1k, b2k ∈ Ek. Let

S //

f̄ ÂÂ?
??

??
??

? S̃

fÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

P1

be the blow up of S̃ at the bjk’s, together with the induced fibration f̄ . We denote by Gjk be the
exceptional divisor corresponding to the point bjk. Moreover, by abuse of notation let E0, . . . , E3 ⊂ S

be the strict transforms of the sections E0, . . . , E3 ⊂ S̃ and let D ⊂ S be the strict transform of any
hyperelliptic fiber D ⊂ S̃.

Remark 4.4. Summing up, we have proved above that any fiber of f : S −→ Y is one of the
following:

- a smooth irreducible curve of genus 3;
- a nodal irreducible curve of geometric genus 2 as in Proposition 3.1;
- a reducible nodal curve F = D∪Gjk, where D is a smooth hyperelliptic curve and Gjk

∼= P1

(see Proposition 3.3 and Notation 4.3).

Proposition 4.5. The sheaf f̄∗OS(E1 + E2 + E3) induces a finite degree 3 morphism γ

S
γ //

f̄ ÂÂ?
??

??
??

? Y

ÄÄ~~
~~

~~
~~

P1

resolving the indeterminacy of γ.
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Proof. Recall that γ is induced by the sheaf f∗ωf (−E0) = f∗OS̃
(E1 + E2 + E3). We just have to

show that γ restricts to a well defined morphism on any fiber. Away from the Gjk’s γ coincides with
γ. Let G = Gjk and let D be the hyperelliptic fiber passing through bjk. Without loss of generality,
let k = 1. Let us consider the total transform of D ⊂ S̃, which is given by D ∪ G ⊂ S. The sheaf
defining the restriction of γ to G is OS(E1 + E2 + E3)|G ∼= OG(1), and hence γ|G : G −→ P1 is an
isomorphism. On the other hand, the restriction of the map γ to D is given by the sheaf

OS(E1 + E2 + E3)|D = OD ((E2 ∩D) + (E3 ∩D)) = OD(p2 + p3).

By Proposition 3.3, p2 and p3 are conjugate under the hyperelliptic involution of D. Hence the
linear system |p2 + p3| on D is the g1

2. Therefore γ|D∪G has no base points and turns out to be a
degree three morphism to P1, as in Figure 1 below, where p0 denotes the intersection of the fiber
with E0, bjk = Gjk ∩ Ek and b̄jk = Gjk ∩D. To conclude, as γ does not contract any curve, it is a
finite morphism of degree 3.

Gjk

2 : 1

1 : 1

D
P1

p0
bjk

b̄jk

Figure 1

¤

We now compute the numerical equivalence class of the ramification divisor of γ.

Proposition 4.6. The ramification divisor Rγ ⊂ S is numerically equivalent to the divisor

E0 + 3
3∑

k=1

Ek + 2
3∑

k=1

(G1k + G2k) + 5F,

where F is a fiber of f .

Proof. The Néron-Severi group of Y is generated by the class of a fiber Γ and by the class of the
section with minimal self-intersection C0. Moreover, KY ≡ −5Γ − 2C0. By the formula for blow
ups, we have

KS ≡
3∑

i=0

Ei + 2
3∑

k=1

(G1k + G2k). (4.2)

We remark that γ∗C0 = E1 + E2 + E3. To see this, notice that the sections Ek’s for k 6= 0 are
−3-curves in S. Moreover, they do not intersect the ramification locus Rγ , because the Ek’s are
disjoint curves and for any fiber F , the points pk = Ek ∩ F map on the same point of Y . As the
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images of the Ek’s are −3-curves in Y , they are C0. Finally, KS ≡ Rγ +γ∗KY by Riemann-Hurwitz
formula, and the assertion follows. ¤

5. The Galois closure of γ

In this section we deal with the Galois closure of the degree three covering γ : S −→ Y (see
Definition 1.1). We note first that the monodromy group M(γ) of the covering is the full symmetric
group S3. Indeed, if M(γ) were isomorphic to Z/3Z, the covering would have only total ramification
points, but this is not the case (see for instance Figure 1). Therefore the Galois closure of γ is the
normalization of the Zariski closure W of the variety (cf. Remark 1.2)

W ◦ :=
{
(p, q) ∈ S × S | p 6= q and γ(p) = γ(q)

} ⊂ S × S. (5.1)

In other words, the Zariski closure of W ◦ is the divisor of the fibred product S×Y S residual to the
diagonal ∆ of S × S. In the following we shall prove that the Zariski closure W of W ◦ is a normal
surface itself and hence it is the Galois closure of γ (cf Proposition 5.4).

Let us denote by α1, α2 : W ⊂ S × S −→ S the natural projection maps and let α3 : W −→ S

be the morphism sending a point (p, q) ∈ W to the point r ∈ S such that γ−1(γ(p)) = {p, q, r}. We
note that the αi’s are generically finite morphisms of degree 2. Given a general point p ∈ S, the
inverse image of γ(p) consists of three distinct points {p, q, r} and hence α−1

1 (p) = {(p, q), (p, r)}.
Furthermore, since the αi’s do not contract any curve on W , we conclude that they are double
coverings. Now, let us consider the following commutative diagram

W

ÃÃ@
@@

@@
@@

@

α1

²²
S

f
²²

γ // Y

ÄÄ~~
~~

~~
~~

P1

and let Bα1 ⊂ S denote the branch divisor of α1. We shall compute its numerical equivalence class
and we shall prove that Bα1 is a reduced curve with at most simple singularities.

Let F ⊂ S be a fiber of the morphism f̄ : S −→ P1 and consider the restriction γ|F : F −→ P1 of
the morphism γ to F . As usual, for i = 0, . . . , 3, let pi = Ei∩F . We recall that when F is irreducible,
the map γ|F is the projection of the canonical image of F in P2 from the point corresponding to p0.
For the sake of simplicity, hereafter we identify F and its canonical image in P2. Let us define the
subsets of F

A := {p ∈ F r {p0} | ∃ q ∈ F r {p, p0} : p0p is tangent at q}
and

B := {p ∈ F r {p0} | p is an inflection point of order 3 with tangent line p0p} .

The points of A and B correspond to the configurations (a) and (b) in Figure 2 below.
On the other hand, let F = D ∪ Gjk where D is a smooth hyperelliptic curve of genus 3.

Then the restriction of γ to F is described in Proposition 4.5 (see also Figure 1). In particular,
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γ|D : D −→ P1 is the hyperelliptic map and γ|Gjk
: Gjk −→ P1 is an isomorphism. So, we define the

subset T of F given by

T :=
{

p ∈ Gj,k | ∃ q ∈ D : q is a Weierstrass point and γ|F (p) = γ|F (q)
}

.

The following proposition describes the intersection of the branch curve with each fiber.

Proposition 5.1. Let F ⊂ S be a fiber of the morphism f̄ : S −→ P1. With the above notation, the
intersection divisor Bα1|F induced on F by the branch divisor Bα1 is given by one of the following.

(i) If F is a smooth fiber, then Bα1|F =
∑

p∈A p + 2
∑

p∈B p + 2p0 when p0 = F ∩ E0 is an
inflection point of order 4 on F , and Bα1|F =

∑
p∈A p + 2

∑
p∈B p otherwise.

(ii) If F = N is a nodal irreducible fiber, then Bα1|F =
∑

p∈A p + 2
∑

p∈B p + 2p0. In particular,
the tangent line to F at p0 meets the node transversally.

(iii) If F = D ∪Gjk with D hyperelliptic, then Bα1|F =
∑

p∈T p + 2p0.

Before proving the above result, let us state the following preliminary lemma.

Lemma 5.2. Let p ∈ F ∩Bα1 for some fiber F and let (p, q) = α−1
1 (p) ∈ W . Then the multiplicity

mp(Bα1 |F ) of Bα1 |F at p is equal to the multiplicity mq(Rγ |F ) of Rγ |F at q.

Proof. To prove the assertion, it suffices to give a local description of Bα1 in a neighborhood of a
total ramification point p ∈ Rγ∩Bα1 of γ. So, let (x, t) be local coordinates of S centered at p, where
t = constant is the local equation of a fiber of f , and x defines the coordinate along the fibers. The
morphism γ is locally given by (x, t) 7→ (

x3 + tr1(t)x2 + tr2(t)x + r3(t), t
)
, where r1, r2, r3 ∈ C[t].

By (5.1) it is immediate to check that W ◦ ⊂ S × S is locally described by
{
((x, t), (y, s)) ∈ C2 × C2|t = s, x2 + xy + y2 + t (p1(t)(x + y) + p2(t)) = 0

}
.

Therefore a point (x, t) lies on Bα1 if and only if the latter equation admits a unique solution with
respect to y. Thus the local equation of Bα1 ⊂ S is 3x2 + 2tp1(t)x − t2(p1(t))2 + 4tp2(t) = 0. We
conclude that around a total ramification point p ∈ Bα1 , the multiplicity of Bα1 at p is 2, whereas
it is 1 at any other point of the neighborhood. ¤

Proof of Proposition 5.1. We study separately the three situations listed in the proposition.
(i) Let F be a smooth fiber and let γ|F : F −→ P1 be the projection of the canonical image

of F ⊂ P2 from the point corresponding to p0. Let p ∈ Bα1 ∩ F for some fiber F and let (p, q) =
α−1

1 (p) ∈ W . Then the canonical divisor Kp ∈ Div F cut out by the line p0p is one of the following
(cf. Figure 2 below):

(a) p0 + p + 2q (b) p0 + 3p (c) 4p0 (d) 2p0 + 2q (e) 3p0 + p

Firstly we show that cases (d) and (e) cannot occur. Recall that the points p0, . . . , p3 are
collinear and they are the only fixed points under the action of the bielliptic involution ι on F .
Moreover, such an involution is induced by a projectivity. So, if p0p were a bi-tangent line as in (d)
- that is Kp = 2p0 + 2q with p = p0 and q 6= p0 - we would have that ι∗Kp = 2p0 + 2ι(q). As the
tangent line to F at p0 is tangent at q, we deduce that q is fixed by ι. Hence q = pi for some i 6= 0,
but this is impossible because the pi’s are collinear.
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(a)

p
p0

p0

p0

qp

(e)(d)

(c)

p0

q

(f)

qp0

p0
q

(b)

Figure 2

Analogously, suppose that p0 is a flex point for F as in case (e), that is Kp = 3p0 + p with
q = p0 and p 6= p0. Thus ι∗Kp = 3p0 + ι(p) and p = ι(p) = pi for some i 6= 0, a contradiction.

When Kp = p0 + p + 2q as in (a), then p ∈ A and q is a ramification point of index 2. Hence
mp(Bα1 |F ) = 1.

Case (b) happens if and only if F has an inflection point of order 3 at p with tangent line p0p,
that is p ∈ B. In this case p is a total ramification point of γ and hence mp(Bα1 |F ) = 2 by Lemma
5.2.

(ii) Let F = N ⊂ S be a nodal irreducible fiber and let p ∈ N ∩ Bα1 . As the restriction
γ|F : F −→ P1 is the projection from p0 ∈ F ∩ E0, we deduce that away from the node, two
configurations analogous to (a) and (b) above are still possible. On the other hand, the cases (c),
(d) and (e) cannot occur, whereas there is the following additional case: the tangent line at p0 meets
the node transversally (see (f) in Figure 2).

To see this fact, denote by q the node of N and let L = p0q be the line through p0 and q. We
recall from Proposition 3.1 that q 6= pi for all i. Consider the points {p0, p, q} = L ∩N . As p0 and
q are fixed by the action of the involution ι on N , we have that also p must be. Hence either p = q

or p = p0. The same argument works for the line Li through q and pi, with i = 1, 2, 3. We now
prove that p = p0. Suppose by contradiction that p = q. Hence L is one of the two tangent lines
at q. Notice that the four lines L, L1, L2, L3 must be distinct because p0, . . . , p3 are collinear. Thus
there exist two of those lines that are tangent in the corresponding pi. Without loss of generality,
let L1 and L2 be these lines. Let ν : P̃2 −→ P2 be the blow up of P2 at q and let Ñ ⊂ P̃2 be the
strict transform of N ⊂ P2. As in Proposition 3.1, let ri = ν−1(pi) and {q1, q2} = ν∗q. Therefore
ν∗(L ∩N) = r0 + q1 + 2q2, ν∗(L1 ∩N) = 2r1 + q1 + q2 and ν∗(L2 ∩N) = 2r2 + q1 + q2 are linear
equivalent divisors on Ñ . Thus r0 + q1 is equivalent to 2r1, but this is impossible because |2r1| is
the g1

2 on Ñ (see Proposition 3.1).
Then we conclude that p = p0, which is equivalent to configuration (f). Hence the section E0

meet N transversally at p0 and the node q ∈ Rγ with mp(Bα1 |N ) = 2. Moreover, this implies that
cases (c), (d) and (e) are not possible.
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(iii) Let F = D ∪Gjk, where D is a smooth hyperelliptic curve of genus 3. Let w1, . . . , w8 ∈ D

be the Weierstrass point and let g1, . . . , g8 ∈ Gjk such that γ(wt) = γ(gt) for any t. Hence the gt’s
lie on Bα1 and for any t we have that wt ∈ Rγ with mwt(Rγ |F ) = 1.

The last branch point on this fiber is the point p0. Indeed, the hyperelliptic involution maps
p0 into the point b̄jk := D ∩ Gjk (cf. Proposition 3.3 and Figure 1). Hence b̄jk ∈ Rγ and it is a
singular point of F . Thus mb̄jk

(Rγ |F ) = 2 and we are done. ¤

We can now compute the numerical equivalence class of the branch locus Bα1 . We use Notation
4.3.

Proposition 5.3. The branch divisor Bα1 ⊂ S is numerically equivalent to the divisor

−2E0 + 4
3∑

k=1

Ek + 20F − 4
3∑

k=1

(G1k + G2k). (5.2)

Proof. Let F be a general fiber of f̄ : S −→ P1. We prove first that the restriction of Bα1 + 2Rγ to
a fiber is numerically equivalent to 10(E1 +E2 +E3)|F . The curve F does not possess flex points by
Proposition 3.5. Hence the ramification divisor Rγ ⊂ S meets F at 10 points of ramification index
2. Let q ∈ Rγ ∩ F and p ∈ Bα1 ∩ F such that p0 + p + 2q is the canonical divisor on F cut out
by the line L = p0q. As (Bα1 + 2Rγ)|F∩L = p + 2q ∈ |KF (−p0)|, we have that (Bα1 + 2Rγ)|F is 10
times the g1

3 defining γ|F , that is (Bα1 + 2Rγ)|F ≡ 10(E1 + E2 + E3)|F .
Since F ·Gjk = F · F = 0 for any j = 1, 2 and k = 1, 2, 3, there exist some integers m, njk such

that

Bα1 ≡ −2Rγ + 10(E1 + E2 + E3) + mF +
3∑

k=1

(n1kG1k + n2kG2k)

≡ −2E0 + 4
3∑

k=1

Ek + (m− 10)F +
3∑

k=1

((n1k − 4)G1k + (n2k − 4)G2k).

Then Bα1 · F = 10 and from the description of Proposition 5.1, we have that Bα1 · Gjk = 8 and
Bα1 · Ek = 0. Thus we deduce m = 30 and njk = 0 for any j and k. ¤

Proposition 5.4. The branch divisor Bα1 is reduced and has at most simple singularities, that is
W is normal with only rational double points as singularities. Hence W is the Galois closure of γ.

Proof. Thanks to Proposition 3.5, the general fiber F does not contain any inflection point. More-
over, Bα1 ·F = 10 and by Proposition 5.1 we know scheme-theoretically the intersection. Hence the
divisor Bα1 |F consists of ten distinct points. Observe moreover that, as Bα1 · Ek = 0, it does not
contain any vertical component with respect to f . We can thus conclude that Bα1 is reduced. This
is equivalent to W being a normal surface (see [29, Proposition 1.1]).

From Proposition 5.1, we see that locally Bα1 has intersection multiplicity at most 2 with any
fiber. This implies that it can have at most double points, i.e. all the possible singularities of Bα1

are simple points of type An. These singularities of the branch locus give rise to rational double
points of W (see [28]).

As the Galois closure of γ is by definition a normalization of W , the last statement is straight-
forward. ¤
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6. The LG surfaces and their invariants

Definition 6.1. Let (S, [L]) ∈ W(1, 2) be such that any element of |L| is irreducible. Let X be the
minimal model of the Galois closure W of γ : S 99K Y . We shall call this surface the LG surface
associated to (S,L).

This section is devoted to compute the Chern invariants of an LG surface X (Theorem 6.2 and
Theorem 6.6). Furthermore, we shall prove that the Albanese variety of X is the product S × S

and that X is a Lagrangian surface (see Theorem 6.8).
By abuse of notation, let E0, Gjk, F ⊂ W be the pullbacks of E0, Gjk, F ⊂ S via α1. For

1 ≤ k ≤ 3, the curve Ek does not meet the branch locus Bα1 , hence its pullback consists of two
curves E′

k and E′′
k . By Proposition 5.4, we are able to compute explicitly the invariants of X, as

follows.

Theorem 6.2. The LG surfaces are of general type, with invariants

K2
X = 198 c2(X) = 102 χ(OX) = 25

Proof. Let us suppose that Bα1 - and hence W - is smooth. The surface W is minimal. Indeed
the −1-curves on W come either from the −1-curves L ⊂ S such that Bα1 ∩ L = ∅, or from the
−2-curves on S entirely contained in the branch divisor Bα1 . The only −1-curves on S are E0 and
the Gjk’s, but they intersect Bα1 . On the other hand, S does not contain any −2-curve.

Setting X = W , the formulas to compute the invariants of X are the following [28]:

K2
X = 2

(
K2

S
+ 2pa(Bα1)− 2

)− 3
2
B·2

α1

c2(X) = 2c2(S) + 2pa(Bα1)− 2

χ(OX) = 2χ(OS) +
pa(Bα1)− 1

2
− B·2

α1

8
,

where pa(Bα1) denotes the arithmetic genus of the branch curve. We note that S is obtained by
blowing up ten times the abelian surface S, hence c2(S) = 10 and χ(OS) = 0. Moreover, by the
adjunction formula and (5.2) we have

2pa(Bα1)− 2 = (KS + Bα1 ·Bα1) = 82,

that is pa(Bα1) = 42. Applying equations (4.2) and (5.2) to the above formulas we compute the
invariants. By the Enriques-Kodaira classification, X is a surface of general type.

Now, let us assume that Bα1 is singular. By Proposition 5.4 it has only simple singularities.
Consider the canonical resolution of the double covering α1 : W −→ S [5, Section III.7]. We have
the following diagram

X ′ //

²²

W

α1

²²

S ′ // S,

where S ′ is obtained by blowing up S in order to perform the embedded resolution of Bα1 ⊂ S and
X ′ is the smooth surface obtained as a double covering of the strict transform of Bα1 . Following
the study in [5, Section III.7] we see that X ′ does not contain −1-curves, thus X ′ is the minimal
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desingularization of W . Finally, the formulas to compute the Chern invariants of X are the same
we used above [5, Theorem III.7.2 and Section V.22]. ¤

Remark 6.3. We can develop our construction of the Galois closure W from (S, [L]) in families,
thus obtaining a flat three-dimensional family of surfaces of general type with at most canonical
singularities over a Zariski open subset of W(1, 2), contained in the moduli space of surfaces of
general type with the above invariants. It would be interesting to understand whether these surfaces
form a connected component of this moduli space or not.

Remark 6.4. To make our description more complete, let us spend a few words about the surface
Σ obtained as the quotient of X by the alternating subgroup A3 ⊂ S3. It can be easily proved that
the action of A3 on X has only isolated fixed points. These points correspond to the 80 points of
order three in S, and to the points p ∈ S such that the canonical image of the corresponding curve
in |L| has an inflection point of order 4 in p. The surface Σ is thus a normal surface with rational
double points of type A2. It can be seen as a double covering δ : Σ −→ Y with branch divisor
Bδ = γ∗Rγ . The numerical class of this branch is 4C0 + 30f . By arguing as above we can compute
the invariants of its canonical resolution Σ̃, which are the following

K2
Σ̃

= 66, c2(Σ̃) = 258, χ(O
Σ̃
) = 27.

Hence Σ̃ is a surface of general type with an induced stable genus 4 fibration over l : Σ̃ −→ P1,
whose slope sl = (K2

Σ̃
+ 24)/(χ(O

Σ̃
) + 27) = 3 reaches the minimum in the slope inequality [13].

Moreover, the irregularity of Σ - and hence of Σ̃ - is 0. Indeed, by the theory of cyclic coverings,
δ∗OΣ = OY ⊕D−1, whereD ∼= 2C0+15f is the line bundle associated to the double cover δ : Σ −→ Y .
From the Leray spectral sequence we have that

H1(OΣ) = H1(δ∗OΣ) = H1(OY )⊕H1(D−1).

As D is ample, Kodaira vanishing Theorem implies that H1(D−1) = {0}.

We now want to study the space of holomorphic 1-forms H0(X, Ω1
X). It carries a natural S3-

representation structure, because the monodromy group M(γ) ∼= S3 acts on X. We recall that the
irreducible representations of S3 are the trivial, the anti-invariant, and the standard one [17, Section
1.3], that we denote U , U ′ and Γ respectively.

As in (1.2), let us denote by πi : X −→ S the composition of the desingularization map X −→ W

with the morphisms αi : W −→ S, for 1 ≤ i ≤ 3. Thus we have the following diagram

X

ÂÂ@
@@

@@
@@

@

πi

²²
S

γ // Y

. (6.1)

Let {η1, η2} be a basis of H0(S, Ω1
S
) and for 1 ≤ i ≤ 3 and j = 1, 2, let us define the 1-forms

ωi
j := π∗i (ηj) ∈ H0(X, Ω1

X).

Notice that the action of S3 on the ωi
j ’s is given by σωi

j = ω
σ(i)
j for any σ ∈ S3. The following result

is a consequence of Proposition 1.10.
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Lemma 6.5. The form ω ∈ ∧2 H0(X, Ω1
X) given by

ω := ω1
1 ∧ ω1

2 + ω2
1 ∧ ω2

2 + ω3
1 ∧ ω3

2 =
3
2

ω3
1 ∧ ω3

2 +
1
2

(ω1
1 − ω2

1) ∧ (ω1
2 − ω2

2) (6.2)

has rank 4 and it belongs to the kernel of ψ2 :
∧2 H0(X, Ω1

X) −→ H0(X, Ω2
X). Moreover, the

decomposable forms ω3
1 ∧ ω3

2 and (ω1
1 − ω2

1) ∧ (ω1
2 − ω2

2) are non-zero in H0(X, Ω2
X).

Proof. Note that the 1-form ω1
j + ω2

j + ω3
j is S3-invariant for any j = 1, 2. Since the quotient

X/S3 is the rational surface Y = F3 - which does not admit non-trivial 1-forms - we deduce that
ω1

j + ω2
j + ω3

j = 0 on X and hence ω3
j = −ω1

j − ω2
j . Thus it is easy to check the equality in (6.2).

Then by Proposition 1.10, we have that ω has rank 4 and ω ∈ kerψ2.
The form ω3

1∧ω3
2 is the pullback via π3 of the 2-form η1∧η2 on S. Since η1∧η2 is a generator of

the one-dimensional vector space H0(S, Ω2
S
), we have that ω3

1 ∧ω3
2 provides a non-zero holomorphic

2-form on X, that is ω3
1 ∧ ω3

2 6∈ kerψ2. Therefore (ω1
1 − ω2

1) ∧ (ω1
2 − ω2

2) 6∈ kerψ2 as well, because
ω ∈ kerψ2. ¤

Theorem 6.6. Let X be a LG surface. The space of holomorphic 1-forms on X is H0(X, Ω1
X) ∼=

Γ⊕ Γ and hence q(X) = 4 and pg(X) = 28.

Proof. The vector space H0(X, Ω1
X) admits a decomposition into the direct sum of the irreducible

representations of S3 (see [17, Proposition 1.8 p. 7]), that is

H0(X, Ω1
X) = U⊕a ⊕ U ′⊕b ⊕ Γ⊕c for some a, b, c ∈ N. (6.3)

We want to prove that a = b = 0 and c = 2. Since Y = X/S3 is a rational surface, h0(Y, Ω1
Y ) = 0

and hence H0(X, Ω1
X) does not contain any invariant element. Thus we have a = 0.

By Theorem 1.3 the space H0(X, Ω1
X) contains 2 copies of the standard representation, Γηj :=

〈ω1
j , ω

2
j , ω

3
j 〉 (following the notation of the Theorem). This implies that c ≥ 2. Notice that each Γηj

splits with respect to the action of (12) ∈ S3 in an invariant space 〈ω1
j + ω2

j 〉 and an anti-invariant
one, generated by the one form νj := ω1

j − ω2
j . From this we see that dimH0(X, Ω1

X)(12) = c. From
the identification H0(X, Ω1

X)(12) = H0(S, Ω1
S
) = 〈η1, η2〉 we conclude that c = 2.

Let us prove that b = 0. Suppose by contradiction that there exists a 1-form ν3 ∈ H0(X,Ω1
X)

belonging to the anti-invariant representation U ′ of S3. Let us consider the vector space R :=
〈ν1, ν2, ν3〉. Since ν1, ν2, ν3 are all anti-invariant under the action of (12), we have that ν1 ∧ ν3,
ν2 ∧ ν3 and ν1 ∧ ν2 are 〈(12)〉-invariant. We recall that X/〈(12)〉 = S and h0(S, Ω2

S
) = 1. Moreover,

ν1 ∧ ν2 6∈ kerψ2 by Lemma 6.5. Thus the image of the map

ψ := ψ2|∧2R : ∧2 R −→ H0(X, Ω2
X)

is one-dimensional. Therefore kerψ has dimension 2. We then consider the subspaces
〈ν1 ∧ ν2, ν1 ∧ ν3〉 and 〈ν2∧ν1, ν2∧ν3〉 of

∧2 H0(X, Ω1
X). Their intersection with kerψ has necessarily

dimension one. So, there exist s, t, w, z ∈ C such that ν1 ∧ (sν3 + tν2), ν2 ∧ (wν3 + zν1) ∈ ker ψ.
In particular, there exists a rational function h on X such that ν1 = h(sν3 + tν2) and hence
ν2 ∧ (wν3 + zν1) = ν2 ∧ (w + h zs)ν3 ∈ kerψ. Then we have that ν2 = h2ν3 for some rational
function h2 on X. Analogously, there exists h1 ∈ K(X) such that ν1 = h1ν3. Thus ν1 ∧ ν2 ∈ kerψ,
a contradiction. Therefore we have b = 0.

Thus V = H0(X, Ω1
X) = Γη1 ⊕ Γη2 . In particular, we deduce q(X) = h0(X, Ω1

X) = 4 and
pg(X) = χ(OX) + q(X)− 1 = 28. ¤
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We now study the Albanese variety of X. We need to analyze some special fibers of the induced
fibration h := f ◦ α1 : W −→ P1. Let D ⊂ S be a hyperelliptic smooth element of |L|. With the
same notation of Proposition 4.5, let F = D ∪G be the corresponding fiber of f : S −→ P1. So, G

is a copy of P1 attached to D in one node. Let H ⊂ W denote the pullback of F ⊂ S via α1.

Lemma 6.7. The fiber H has three irreducible components D1, D2, D3, that are all copies of D

attached two by two in one node as in Figure 3 below. Moreover, for a suitable choice of the indices,
αi|Di

: Di −→ G is the hyperelliptic map, whereas for i 6= j, αj |Di
: Di −→ D is either the identity

map or the hyperelliptic involution.

Proof. The first part of the statement follows from the description of Bα1|F given in Proposition 5.1.
Indeed, Bα1|G consist of the 8 Weierstrass points of the hyperelliptic map D −→ G ∼= P1, whereas
Bα1|D is the point p0 with multiplicity 2. Thus the inverse image D1 of G is a copy of D, whereas
the inverse image of D is given by two copies of D attached in one node.

The second statement follows from the definition of W ⊂ S×S and of the αi’s. Indeed, observe
that, given a general point q ∈ G ∼= P1, its preimages via γ are q ∈ G itself, and q1, q2 ∈ D (the
two preimages of the hyperelliptic involution). The corresponding fibers of α1 are a = (q, q1) and
b = (q, q2). So, α2(a) = q1, α2(b) = q2, and α3(a) = q2, α3(b) = q1, as claimed. ¤

α1|D2

D

p0

D2

D3

G

D1

2 : 1α1|D1α1|D3

Figure 3

Theorem 6.8. Let X be a LG surface associated to (S,L). The Albanese variety of X is Alb(X) =
S × S. Furthermore, X is a Lagrangian surface.

Proof. The universal property of the Albanese morphism induces a morphism of abelian varieties
θ : Alb(X) −→ S × S which is an isogeny because dim Alb(X) = q(X) = 4 by Theorem 6.6. Thus
we have an induced inclusion in singular homology

θ∗ : H1(X,Z) = H1(Alb(X),Z) −→ H1(S × S,Z) = H1(S,Z)×H1(S,Z).

We want to prove that θ∗ is surjective, i.e. that θ is an isomorphism of abelian varieties. Let us
consider one of the fibers of h := f ◦ α1 inspected in Lemma 6.7, H = D1 ∪D2 ∪D3 ⊂ W , and
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let H̃ ⊂ X be its pullback via the normalization morphism. By Proposition 5.4, the only possible
singularities of W are rational double points. Hence H̃ may differ from H only for some −2-curves,
that are contracted by the Albanese morphism a : X −→ Alb(X). So, let H̃ = D1 ∪D2 ∪D3 ∪R,
where the Di’s are the strict transforms on X of the components of H, and R is the - possibly null
- divisor given by the −2-curves.

Thanks to Lemma 6.7, we have α1(D2) = D ⊂ S, whereas α2(D2) = G ∼= P1 ⊂ S. Thus the
image of D2 in S×S is D×{0}. By Proposition 2.1, for any smooth member C ∈ |L|, S is naturally
identified with J(C)/π∗E, where π : C −→ E is the bielliptic involution. So, S fits in the following
diagram of abelian varieties

1 −→ E −→ J(D)
ζ−→ S −→ 1. (6.4)

The image of the composition

H1(D2,Z) −→ H1(X,Z) θ∗−→ H1(S,Z)×H1(S,Z)

is H1(S,Z)×{0}. Indeed, it can be naturally identified with the homomorphism induced in homology
by the sequence (6.4):

H1(D,Z) = H1(J(D),Z) −→ H1(S,Z),

which is surjective because the map ζ in (6.4) has connected fibers. The same argument applied to
D1 proves that the image of θ∗ contains {0} ×H1(S,Z) as well. Thus θ∗ is surjective as wanted.

In particular, X admits a generically finite morphism of degree one into the four-
dimensional abelian variety S × S and by Lemma 6.5 there exists a holomorphic 2-form
ω ∈ ∧2 H0(X, Ω1

X) = H2,0(Alb(X)) of rank 4 such that ω ∈ kerψ2. Thus X is a Lagrangian sur-
face. ¤

7. The Galois closure of γ is non-fibred

We are going to prove that for a general choice of the abelian surface S with the (1, 2)-
polarization, the associated LG surface X does not admit fibrations on curves of genus ≥ 2.

Proposition 7.1. Let (S, [L]) ∈ W(1, 2) be such that |L| contains only irreducible elements. Then
the associated LG surface does not admit fibrations on curves of genus ≥ 3.

Proof. Let X be the LG surface associated to (S, [L]). Suppose by contradiction that µ : X −→ T

is a fibration over a smooth curve of genus g ≥ 3. Clearly g is at most equal to the irregularity
q(X) = 4. As X has finite Albanese morphism, it cannot be g = 4.

Suppose that g = 3. Let τ1 : X −→ X the involution associated to the double covering
α1 : X −→ S, and consider the fibration ν = µ ◦ τ1 : X −→ T . Consider the images of the in-
duced pushforward maps

W = µ∗(H1,0(T )) ⊆ H1,0(X), V = ν∗(H1,0(T )) ⊆ H1,0(X)

The spaces V and W are 3-dimensional and do not coincide, because ν and µ are different fibrations.
Hence, the intersection V ∩W has dimension 2. Let u1, u2 be a basis of V ∩W . As ui ∈ V , we have
that ui ∧ v = 0 for any v ∈ V , and similarly ui ∧w = 0 for any w ∈ W . But V +W = H1,0(X), and
so that the cup homomorphism ψ2 :

∧2 H1,0(X) −→ H2,0(X) should be trivial, which is absurd. ¤
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It remains to exclude the case of a fibration over a genus 2 curve. The argument we develop for
this case is less straightforward and it is based on the properties of the six hyperelliptic elements
of the linear pencil |L|. We will need the following simple result. Let M3 be the moduli space of
smooth genus 3 curves; and let Y3 and B3 be the hyperelliptic and the bielliptic locus respectively.

Lemma 7.2. If (S, [L]) is general in W(1, 2), then the hyperelliptic elements in |L| are general in
Y3 ∩ B3.

Proof. Let [C] ∈ Y3 ∩B3 be a curve with a unique bielliptic involution, and consider the associated
double covering π : C −→ E. Recall that the generalized Prym variety P (π) = J(C)/π∗E is an
abelian surface with a (1, 2)-polarization. By associating P (π) to C, we construct a map

Φ: Y3 ∩ B3−99K W(1, 2).

For any general (S, [L]) ∈ W(1, 2), the linear series |L| possesses exactly six smooth hyperelliptic
curves. Moreover, dimY3 ∩ B3 = 3 = dimW(1, 2), hence Φ is generically finite dominant map and
the assertion follows. ¤

Proposition 7.3. For a general choice of (S, [L]) ∈ W(1, 2), the associated LG surface is not fibred
over curves of genus 2.

Proof. Let us suppose by contradiction that µ : X −→ T is a fibration over a smooth curve of genus
2. Let us consider again the “triangular” fibers of Lemma 6.7. Recall that for any hyperelliptic
element D ∈ |L| there is one of these fibers H = D1 ∪D2 ∪D3 ⊂ X, whose irreducible components
are all smooth hyperelliptic and bielliptic curves of genus 3 isomorphic to D. At least one of
the components is not contracted by µ, otherwise the map µ should factor through the fibration
h : X −→ P1, which is of course impossible. So, there is a finite morphism D −→ T . By the Hurwitz
formula, this morphism has to be étale of degree 2. Consider the hyperelliptic involution ι and the
bielliptic one j over D. The composition σ = ι ◦ j is a fixed-point-free involution, and - by Hurwitz
formula again - the quotient D/〈σ〉 is smooth of genus two.

A general curve in Y3 ∩ B3 has automorphism group isomorphic to Z/2Z × Z/2Z, generated
by the hyperelliptic and the bielliptic involutions. By Lemma 7.2, under our assumptions we can
suppose that D is general in Y3 ∩ B3, and hence that the curve T coincides with D/〈σ〉. So, for a
general choice of (S, [L]), the morphism µ : D −→ T coincides with the quotient map D −→ D/〈σ〉.
Let us consider the induced map on the Jacobians

ϑ : J(D) −→ J(T ).

Let E = D/〈j〉. We shall now prove that π∗E ⊆ kerϑ. Recall that the hyperelliptic involution ι

induces a permutation of {x0, . . . , x3}, which are the fixed points of the bielliptic involution j (cf.
Proposition 3.3). Let e be an element of π∗E ⊂ J(D). Then by Proposition 2.1

e ∼D s + j(s)− 2x0

for some s ∈ D. Observe that s + ι(s) ∼D x0 + ι(x0), so we have

e ∼D s + j(s)− 2x0 − s− ι(s) + x0 + ι(x0)
∼D j(s)− ι(s) + ι(x0)− x0

∼D σ(ι(s))− ι(s) + σ(x0)− x0.

(7.1)
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Hence, π∗E ⊆ kerϑ, as wanted. Moreover, note that π∗E = (kerϑ)◦, because of the connectedness
of π∗E, and –from the above equation– we have that π∗E has index two in kerϑ. We thus obtain
the following diagram

0

²²
kerϑ

²²
0 // π∗E

;;wwwwwwwww
// J(D) //

ϑ
²²

S

θ}}{{
{{

{{
{{

// 0

J(T )

²²
0

where θ : S −→ J(T ) is a degree 2 isogeny of abelian variety with kernel Z/2Z ∼= 〈x0 − σ(x0)〉 ⊂ S.
For any hyperelliptic element D ∈ |L|, we can carry on the above construction. Recall that

for any i = 1, 2, 3, there exists an hyperelliptic element in |L| whose hyperelliptic involution maps
x0 to xi. Hence, for any i, we have an isomorphism of principally polarized abelian varieties from
S/〈xi − x0〉 to J(T ). In the next lemma, we prove that this is impossible. We have thus reached a
contradiction and the proof is concluded. ¤

Lemma 7.4. For a general (S, [L]) ∈ W(1, 2) and for i 6= j, the principally polarized abelian
surfaces S/〈xi − x0〉 and S/〈xj − x0〉 are not isomorphic.

Proof. Let W(1, 1) be the moduli space of principally polarized abelian surfaces. Given (S, [L]) ∈
W(1, 2), by (2.1) we have that T (L) = {x0, . . . , x3}. Hence there exists a well defined morphism

Ψ: W(1, 2) −→ Sym3W(1, 1)

defined as Ψ((S, [L])) = (S/〈x1 − x0〉, [L1]) + (S/〈x2 − x0〉, [L2]) + (S/〈x3 − x0〉, [L3]), where [Li] is
the induced polarization. Therefore it suffices to show that there exist a couple (S0, [L0]) ∈ W(1, 2)
whose image under Ψ does not belong to the diagonal.

Let us construct such a polarized surface. Let E,F be two elliptic curves, and consider the
abelian surface S = E × F together with the product polarization given by the line bundle L =
OS(2E + F ). Note that these are the very same surfaces of W(1, 2) that we excluded in our
construction at the beginning of Section 2; however, as the map Ψ is everywhere defined over
W(1, 2), there is no contradiction in considering these surfaces in this context. In this case T (L)
is {x0 = (e0, 0), . . . , x3 = (e3, 0)} ⊂ E × F , where e0, . . . , e3 are the four points of order two on E.
Hence S/〈xi−x0〉 ∼= E/〈ei− e0〉×F . It is now sufficient to choose E such that its quotients by the
2-torsion points are not isomorphic. Let us consider for instance the elliptic curve E = C/Γ, where
Γ = 2iZ⊕ Z. Then, setting e1 = i, e2 = 1/2, e3 = 1/2 + i, we have

E

〈e1 − e0〉 =
C

iZ⊕ Z ,
E

〈e2 − e0〉 =
C

2iZ⊕ 1/2Z
∼= C

4iZ⊕ Z ,
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E

〈e3 − e0〉 =
C

(1/2 + i)Z⊕ 1/2Z
∼= C

(1 + 2i)Z⊕ Z .

It is immediate to check that there is no integer matrix
(

a b

c d

)
∈ SL2(Z) such that ai+b

ci+d = 4i,

hence the first two curves are not isomorphic. ¤

The existence of a fibration with base curve of genus ≥ 2 on a surface is a topological condition,
as proved by Siu [33], Beauville and Catanese [10]. Thus, from Proposition 7.1 and 7.3 we can
derive the following conclusion.

Theorem 7.5. For any choice of (S, [L]) ∈ W(1, 2), the associated LG surface is not fibred over a
curve of genus ≥ 2.

As mentioned in the introduction, the knowledge of the cup product homomorphism

ρ2 : H1(X,C) ∧H1(X,C) −→ H2(X,C)

for a LG surface X would allow to compute completely the nilpotent tower of π1(X). As a first
step we compute the dimension and the decomposition as S3-representation of ker ρ2.

Proposition 7.6. For any LG surface X we have that ker ρ2 = Γ⊕ U⊕5 as an S3-representation.

Proof. Recall the Hodge decomposition of ρ2 = ρ2,0
2 ⊕ ρ1,1

2 ⊕ ρ0,2
2 , where ρ2,0

2 = ψ2, and ρ0,2
2 is its

conjugate. By Theorem 7.5 and the Castelnuovo-de Franchis Theorem, we have that kerψ2 = U .
Le us study ker ρ1,1

2 : H1,0(X) ⊗ H0,1(X) −→ H1,1(X). From Theorem 6.6, we deduce that, as a
representation,

H1,0(X)⊗H0,1(X) = Γ⊕4 ⊕ U ′⊕4 ⊕ U⊕4.

Let g : X −→ F3 be the quotient map via the action of S3. The space g∗H1,1(F3) ⊂ H1,1(X) has
dimension 2 and it is generated by the class of a fiber [g∗f ] and by the class of the negative section
[g∗C0]. Note that ρ1,1

2 coincides with the pushforward map induced by the Albanese morphism
a : X −→ Alb(X)

a∗ : H1,1(Alb(X)) −→ H1,1(X).

Note that g∗C0 consists of −3-curves, so it is contracted by a. Hence we have that Imρ
(1,1)
2 ∩

g∗H1,1(Y ) is 1-dimensional. We can therefore conclude that there is an invariant 3-dimensional
space U⊕3 contained in the kernel.

Consider now the part of ρ
(1,1)
2 invariant by a transposition, e.g. (12) ∈ S3

U⊕4 ⊕ V =
(
H1,0(X)⊗H0,1(X)

)(12) −→ (
H1,1(X)

)(12) = H1,1(S),

where V is a 4-dimensional (12)-invariant space coming from the copies of the standard representa-
tion Γ⊕4 ⊂ H1,0(X)⊗H0,1(X). The image of this morphism has dimension h1,1(S) = 4; as only 3
copies of U are contained in the kernel, it follows that ker ρ1,1

2 has non-trivial intersection with V ,
and we conclude that there is at least one Γ contained in it. In [11, Theorem 1], it is proved that
dimker ρ2 ≤ 7, hence the statement follows. ¤

Note that the above result proves that the estimate in [11] is sharp.
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8. Monodromy of 3-torsion points of S and smoothness of the Galois closure

In this section we are going to prove that the Galois closure W ⊂ S × S constructed over a
general point (S, [L]) ∈ W(1, 2) is smooth. This fact will be important to determine the branch
locus of the Albanese map for the LG surfaces.

To start, we recall some basic facts about moduli of (1, 2)-polarized abelian surfaces following [7,
Chapter 8]. Let H2 denote the Siegel upper half space, which provides a moduli space for polarized

abelian surfaces of type (1, 2), together with a symplectic basis. Let D =
(

1 0
0 2

)
be the matrix

associated to the polarization and let us consider the symplectic group of matrices preserving the
intersection form, that is

ΓD := Sp
(1,2)
4 (Z) =

{
R ∈ M4(Z) | R

(
0 D

−D 0

)
Rt =

(
0 D

−D 0

)}
.

The group ΓD acts on H2 and the moduli space W(1, 2) is the quotient H2/ΓD parametrizing
the isomorphism classes of (1, 2)-polarized abelian surfaces. In particular, given a (1, 2)-polarized
abelian surface A = C2/Λ with a basis {λ1, λ2, µ1, µ2} of the lattice Λ for D, any element of ΓD can
correspond to an isomorphism ϕ : (A; λ1, λ2, µ1, µ2) −→ (A′; λ′1, λ

′
2, µ

′
1, µ

′
2), consisting of a change

of the basis on Λ.
We recall that for any point (A; λ1, λ2, µ1, µ2) ∈ H2, the set

{
1
3λ1,

1
3λ2,

1
3µ1,

1
3µ2

}
is a basis of

the group of 3-torsion points of A, where the bar means that we are taking the equivalence classes
modulo Λ. Let Γ′D ⊂ ΓD be the subgroup of the matrices representing the isomorphisms of (1, 2)-
polarized abelian surfaces ϕ : (A; λ1, λ2, µ1, µ2) −→ (A′;λ′1, λ

′
2, µ

′
1, µ

′
2) such that ϕ(1

3λ1) = 1
3λ′1.

Therefore we can define the quotient F := H2/Γ′D and we have the following diagram

H2

δ

²²

δ1

##GGGGGGGGG

F

δ2{{ww
ww

ww
ww

w

W(1, 2)

where the map δ2 is finite (cf. [7, Theorem 8.3.1]). We would like to note that the points of F are
isomorphism classes of (1, 2)-polarized abelian surfaces together with a torsion point of order 3, that
is the point of coordinates

(
1
3 , 0, 0, 0

)
with respect to the basis {λ1, λ2, µ1, µ2} of the lattice. The

following result is probably well known, but we were not able to find adequate references, hence we
give a sketch of the proof.

Theorem 8.1. Let (S, [L]) ∈ W(1, 2) be a general point. Then there is a one-to-one correspondence
between the set of the 3-torsion points on S and the fiber of δ2 : F −→ W(1, 2) over (S, [L]) ∈
W(1, 2). Moreover, the monodromy group of δ2 acts transitively on such a fiber.

Proof. Let (A; λ1, λ2, µ1, µ2) ∈ H2 be such that δ (A;λ1, λ2, µ1, µ2) = (S,L) and let
δ1 (A; λ1, λ2, µ1, µ2) =

[
A; 1

3λ1

]
∈ F . By the construction of F , the degree of δ2 is at most 80.

Moreover, as H2 is connected, the quotient F is connected as well. Therefore the action of the
monodromy group of δ2 is transitive. To conclude the proof, we have then to show that (S, [L])
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admits exactly 80 preimages on F , each corresponding to a different 3-torsion point. Hence we
have to prove that for any 3-torsion point p ∈ A, there exists an isomorphism of (1, 2)-polarized
abelian surface ϕ : (A; λ1, λ2, µ1, µ2) −→ (A′;λ′1, λ

′
2, µ

′
1, µ

′
2) such that ϕ(p) = 1

3λ′1. By fixing a sym-
plectic basis {λ1, λ2, µ1, µ2} for the lattice Λ, we can identify the group of 3-torsion points on A

with the group 1
3 (Z/3Z)4. Then notice that proving the thesis is equivalent to see that for any

non-zero 4-tuple (a1, a2, b1, b2) ∈ 1
3 (Z/3Z)4, there exists a transformation τ of the symplectic basis

{λ1, λ2, µ1, µ2} preserving the intersection form such that τ
(

1
3 , 0, 0, 0

)
= (a1, a2, b1, b2). Then it is

easy to see that the group of transformation generated by the following changes of basis

τ1

λ1 7→ −λ1

λ2 7→ −λ2

µ1 7→ −µ1

µ2 7→ −µ2

τ2

λ1 7→ λ2

λ2 7→ −λ1

µ1 7→ µ1

µ2 7→ µ2

τ3

λ1 7→ λ1

λ2 7→ λ2

µ1 7→ µ2

µ2 7→ −µ1

τ4

λ1 7→ λ1 + λ2

λ2 7→ λ2

µ1 7→ µ1

µ2 7→ µ2

τ5

λ1 7→ λ1

λ2 7→ λ2

µ1 7→ µ1 + µ2

µ2 7→ µ2

τ6

λ1 7→ 3λ1 − µ1

λ2 7→ λ2 + µ2

µ1 7→ µ1 − 2λ1

µ2 7→ 3µ2 + 2λ2

acts on
(

1
3 , 0, 0, 0

)
as wanted, and the proof ends. ¤

Remark 8.2. Note that the above result is essentially due to the fact that the quotient by Z/3Z of
the (1, 2)-polarization coincides - up to sign - with the quotient of the principal polarization (1, 1). If
we consider torsion points of another order, the situation may be completely different. For instance
it is easy to see that the action of ΓD on the 15 points of order 2 separates the three order 2 base
points of |L| from the other 12.

We are now ready to prove the following

Theorem 8.3. For a general (S, [L]) ∈ W(1, 2), the branch locus Bα1 is smooth. Therefore the
Galois closure W of γ is smooth and it is the LG surface itself.

Proof. We recall that Bα1 is reduced with at most double points as singularities by Proposition 5.4.
From the study of the intersections of Bα1 with the fibers we made in Proposition 5.1, we deduce
that the possible singular points of Bα1 may only lie on Bα1 ∩ E0 and on the set

B =
{
p ∈ S \ E0 | the fiber F through p is smooth non-hyperelliptic and 3p + p0 ∼F KF

}
.

A point p ∈ B is an order 3 inflection point for the canonical image of the fiber F passing through p,
with tangent line p0p. Note that by Proposition 3.5, B consists of the inverse images of the points
of order 3 in S. Hence the cardinality of B is 80. From the monodromy result of Theorem 8.1, we
know that for a general choice of (S, [L]) ∈ W(1, 2) the curve Bα1 is either smooth or singular at
every point of B. The arithmetic genus of Bα1 is pa(Bα1) = 42 by adjunction formula. We note
that the restriction of f to Bα1 provides a 10 : 1 finite morphism Bα1 −→ P1. As Bα1 does not
have vertical components, it follows that its irreducible components are at most ten. If Bα1 were
singular at any point of B, as any double point increases the arithmetic genus by at least one, the
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geometric genus would be at most pa(Bα1)− 80 ≤ −38, which gives a contradiction. Hence Bα1 is
smooth at B.

Let us now consider the set E0∩Bα1 . It can be naturally divided in the following three subsets.

C1 = {p ∈ E0 ∩Bα1 | the fiber F throught p is singular and irreducible}

C2 = {p ∈ E0 ∩Bα1 | the fiber F throught p is reducible}
C3 = (E0 ∩Bα1) \ (C1 ∪ C2).

Note that the cardinality of C1 is ]C1 = 12, whereas ]C2 = 6. By Proposition 5.3, we obtain that
Bα1 · E0 = 22, therefore

22 = Bα1 · E0 ≥ ]C1 + ]C2 + ]C3 ≥ 18 + ]C3

Hence, for any (S, [L]), the cardinality of C3 is at most 4. We recall that the points in this set
correspond to the inflection points of order 4 lying on the canonical plane image of the fibers.
Notice that if C3 consists of exactly 4 points, then Bα1 turns out to be smooth on E0, because in
this case it necessarily has local intersection multiplicity 1 with E0 on C1 and C2. The following
provides an example of this situation.

Example 8.4. Let us consider the plane Fermat curve C ⊂ P2 given by the equation C : x4 + y4−
z4 = 0. It is a smooth curve of genus 3. The involution (x : y : z) 7→ (−x : y : z) of P2 restricts to a
bielliptic involution on C, with four fixed points: c0 = (0 : 1 : 1), c1 = (0 : −1 : 1), c2 = (0 : i : 1)
and c3 = (0 : −i : 1). Of course the quotient of C by this involution is a plane elliptic curve E, with
affine equation x2 + y4 − 1 = 0.

Let π : C −→ E be the bielliptic quotient map. It is immediate to check that C has inflection
points of order 4 at all the ci’s. Let us consider the abelian surface S = Pic0(C)/π∗E associated
to C, where we fix the origin at the image of c0. Then the (1, 2)-polarization is L ∼= OS(C). Call
Ci := C + (ci − c0) ⊂ S the translation of C by ci. As {c0, . . . , c3} = T (L) by the very definition of
T (L) (cf. (2.1)), we have O(Ci) ∼= L. So, the Ci’s are four distinct elements of |L|, each having an
inflection point of order 4 at c0.

Thus we exhibit a surface (S,L) such that Bα1 is smooth on E0. Hence there exists a non-empty
Zariski open subset of W(1, 2) such that for any (S, [L]) lying on it, the branch curve Bα1 is smooth
on E0, and the proof is concluded. ¤

9. On a conjecture on the topological index

Suppose that kerψ2 is non-trivial and let w ∈ kerψ2 be a non-zero element. Let V ⊂ H0(X,Ω1
X)

be the subspace of minimal dimension such that w ∈ ∧2 V . Following [3] we say that X is generalized
Lagrangian if there exists w ∈ kerψ2 of rank 2n such that V generically generates Ω1

X . Clearly, a
Lagrangian variety is in particular generalized Lagrangian.

Consider the homomorphism ψ2 restricted to
∧2 V , and let V = ψ2(

∧2 V ) ∈ H0(X, ωX).
Definite FV as the divisorial part of the base scheme of the linear system V . In other words,
consider the evaluation morphism V ⊗OX −→ ωX and tensor it with ω−1

X

V ⊗ ω−1
X −→ I ⊆ OX .
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The ideal defining FV is the double dual I∗∗. Let a : X −→ Alb(X) be the Albanese map of X.
Observe that any reduced divisor contracted by a is necessarily contained in the base locus of FV ,
but not vice versa. We recall from [3] that FV is said to be contracted by V if it is reduced and the
restriction of the evaluation morphism

V ⊗OX −→ Ω1
X −→ Ω1

X|FV
= ωFV

,

vanishes. One of the main results in [3] is the following.

Theorem 9.1. [3, Theorem 1.2] Assume that FV = 0 or FV is a reduced connected divisor with
normal crossings and contracted by V . Then the topological index τ(X) of X is non-negative.

The condition on FV of being contracted by V has been shown to be necessary, whereas the
authors wonder whether the other assumptions can be dropped. The argument can be extended to
reduced non-connected FV , giving a lower bound on the index that can be negative. The authors
prove that the index is non-negative provided that FV has at most one connected component of
arithmetic genus 0. As for the general cases, they conjecture the following.

Conjecture 9.2. [3, Conjecture 1] Let X be a minimal generalized Lagrangian surface of general
type, with FV contracted by V . Then τ(X) ≥ 0.

Conjecture 9.3. [3, Conjecture 2] Let X be a Lagrangian surface. Then τ(X) ≥ 0.

In this section we shall see that LG surfaces provide counterexamples to both conjectures. As
usual, let (S, [L]) ∈ W(1, 2), and let X be the LG surface assoviated. By Theorems 6.2 and 6.8 we
have that X is a Lagrangian surface with negative topological index, hence it disproves Conjecture
9.3.

In particular, X is a generalized Lagrangian surface with V = H0(X, Ω1
X) by Lemma 6.5 and

Theorem 6.6. We shall prove that for a general choice of (S, [L]) ∈ W(1, 2), the divisor FV associated
to X is smooth, reduced and contracted by V , with 6 connected rational components (see Theorem
9.5). Being τ(X) = −2, this fact disproves Conjecture 9.2, thus showing that the assumption of
connectedness of FV in Theorem 9.1 is necessary.

The estimate on the topological index in [3] is obtained via a fine analysis of the image sheaf
of the evaluation morphism V ⊗ OX −→ Ω1

X . The authors prove the following inequality (see the
proof of [3, Theorem 5.4])

τ(X) ≥ 2
3
KX · FV +

1
3
F 2

V . (9.1)

Thanks to the computation of FV in our examples, we shall see that this inequality is sharp. Indeed
in our case the lower limit is negative, and it is achieved for a general choice of the abelian surface
(see Remark 9.6 below).

For (S, [L]) ∈ W(1, 2), let us consider the corresponding LG surface X together with the degree
two morphisms αi : X −→ S, with 1 ≤ i ≤ 3. We set V = H0(X,Ω1

X) and we want to investigate
the divisor FV .

Remark 9.4. Let a : X −→ Alb(X) the Albanese map, which in this case is a morphism. Consider
the dual of the differential of a: da∗ : H0(X, Ω1

X) −→ Ω1
X , and its determinant

∧2da∗ :
2∧

H0(X, Ω1
X) −→ ωX .
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The divisor FV is the divisorial part of the locus where ∧2da∗ has not maximal rank. Note that
even in this particular situation there could be curves not contracted by a nevertheless belonging
to FV .

Let us state the main result of the section. Let V,U ⊂ W(1, 2) be the Zariski open subsets

V = {(S, [L]) ∈ W(1, 2) | Bα1 is smooth },
U = {(S, [L]) ∈ W(1, 2) | Bα1 is smooth at Bα1 ∩ E0}.

From Section 8 we know that these subsets are non-empty.
For 1 ≤ k ≤ 3, let us consider the rational curves Ek ⊂ S (cf. Notation 4.3). We recall that any

Ek does not intersect the branch locus Bα1 , hence its pullback consists of two curves E′
k and E′′

k .

Theorem 9.5. If (S, [L]) ∈ V, then the divisor FV is reduced and consists of the 6 smooth rational
connected components E′

1, E
′′
1 , . . . , E′′

3 , which are all −3-curves in X.
If (S, [L]) ∈ U , then the divisor FV is reduced; its connected components are the 6 smooth

rational −3-curves E′
1, E

′′
1 , . . . , E′′

3 , and possibly some smooth −2-curve.

Proof. Let us suppose that Bα1 is smooth and prove the first part of the statement. Under this
assumption the Galois closure W is smooth as well, and it coincides with X. Let β : S −→ S be
the morphism constructed by blowing up the four base points of the linear system, x0, . . . , x3, and
then by blowing up the 6 indeterminacy points bjk of the map γ, with 1 ≤ k ≤ 3 and j = 1, 2. As
usual, we denote by Gjk the exceptional divisor obtained by blowing up bjk.

Let u ∈ H0(S, ωS) be the 2-form on S. As α∗i β
∗u ∈ H0(X, ωX)S3 for any 1 ≤ i ≤ 3, the support

of FV is contained in the intersection of the zero loci Z(α∗i β
∗u). By the formula for blow ups,

KS = β∗KS + E0 +
3∑

k=1

Ek + 2
3∑

k=1

(G1k + G2k).

Hence β∗u ∈ H0(S,Ω2
S
) is such that Z(β∗u) = E0 +

∑3
k=1 Ek + 2

∑3
k=1(G1k + G2k). The zero

locus of α∗i β
∗u is α∗i (Z(β∗u))+Rαi , where Rαi denotes the ramification locus of αi. Looking at the

definition of the αi’s, we have that

α∗1(E1 + E2 + E3) = α∗2(E1 + E2 + E3) = α∗3(E1 + E2 + E3). (9.2)

To see this fact, let us consider a point p1 ∈ E1 and let F be the fiber of f passing through p1.
Then γ−1(γ(p1) = {p1, p2, p3}, where p2 = E2 ∩ F and p3 = E3 ∩ F . Therefore

α∗i (p1 + p2 + p3) = {(p1, p2), (p1, p3), (p2, p1), (p2, p3), (p3, p1), (p3, p2)}
for all 1 ≤ i ≤ 3 and (9.2) follows. Analogously, by Lemma 6.7 and by the definition of the
αi’s it is easy to check that the curves α∗i

(
E0 + 2

∑3
k=1(G1k + G2k)

)
+ Rαi do not have common

components. Thus we have that

FV ⊂
3⋂

i=1

Z (α∗i β
∗u) = α∗1(E1 + E2 + E3) = E′

1 + . . . + E′′
3 .

On the other hand, the pullbacks of the Ek’s are all contracted by the Albanese morphism a, because
they are −3-curves of X. Thus FV = E′

1 + . . . + E′′
3 as claimed.

Suppose now that W is singular. By Proposition 5.4 it can only possess rational double points
and - by the discussion in the previous section - these singularities can only lie either over E0 ∩
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Bα1 ∩ Bα2 ∩ Bα3 , or over the images of the 80 points of order three in S. In these cases, we can
obtain the minimal desingularization of W by resolving the singularities of the branch divisor Bα1 ,
and by taking a suitable double cover, the so-called canonical resolution (see [5, Section III.7]). It
is easy to check that the −2-curves arising in X can appear as double components of FV only in
the first case. The −2-curves corresponding to blowing up the order 3 points are instead reduced
in FV . Hence, the statement is proved when (S, [L]) ∈ U . ¤

Remark 9.6. Suppose that (S, [L]) ∈ V, that is the Galois closure W of γ is smooth and W = X.
By the latter theorem we have that FV =

∑3
k=1 E′

k + E′′
k . Let us now consider the inequality (9.1).

By the adjunction formula, (KX + FV ) · FV = 2pa(FV )− 2 = −12, whereas F ·2
V = −18. Hence the

inequality (9.1) gives τ(X) ≥ −2, which is actually an equality. On the other hand, if (S, [L]) ∈ U ,
the LG surface is obtained from W by blowing up the singular points and thus generating −2-curves.
Let n be the number of the −2-strings in the LG surface X. Inequality (9.1) becomes in this case
τ(X) ≥ −2− n.
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