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Abstract

After a brief survey of the literature about the existence of a Nash
Equilibrium in the class of the nonatomic games, we prove the exis-
tence of an equilibrium in the class of the nonatomic games where the
players’ payoff depends over the average strategy of finitely many con-
vex and disjoint subsets of players. Finally, several applications are
shown, in the context of the economics of science and namely about
the problem of the topic choice made by the set of the researchers,
represented as a continuum.
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1 Introduction

Game theory studies the multipersonal decision problems, where a player’s
action has an effect on the other player’s payoff and viceversa, and a player’s
action influences the other’s decision. This framework seems intuitively well
working in all the cases where the number of players is not too large, such
as in the oligopoly, in the war games, in the bargaining games and so on.
What happens with many players, that is in large games? For instance, as
the number of firms in the Cournot game increases, the equilibrium tends,
under very general conditions, to the competitive one (at the limit). What
has to be remarked is that the typical outcome features of the Cournot game
progressively disappear, that is the aggregate and individual productions
are less and less restricted and the price converges to its competitive level:
indeed, we obtain (at the limit) the competitive equilibrium. Thus, when the
number of players increases (however, we have only countably many players),
the strategic interaction effect decreases and, always at the limit, it becomes
negligible. Nevertheless, it remains true that the aggregate behavior of a
subset of players large enough (at the limit, an infinite subset) has an effect
on the others’ choice, at equilibrium. This is particularly evident, in a game
with positive externalities (resp. with partial rivalry) like in Konishi, Le
Breton and Weber (1997a, 1997b), i.e. a game where the payoff of player i
depends positively (resp. negatively) on the number of players that plays in
the same manner of i. A typical example of a game with partial rivalry is
the problem of the city traffic: when one has to decide what road to intake
with her car, she takes into account how much traffic is present over any
alternative. Traffic is the distribution of all other drivers on the road network
at the same time. Many other examples can be found in the context of the
use of a congestioned good, such as internet, roads, electricity networks, when
agents take into account congestion. Congestion, as traffic, can be measured
by the agents’ distribution on the networks at a given instant.

With countably many players, we can define a sequence of n-players
games. At any point of the sequence, the strategic interaction effect exists
and it is non negligeable. Only at the limit it disappear, as previously said.
Even for a very large but finite n, any rational player is able to distinguish
and to evaluate it, playing accordingly. Therefore, in a sense, at the limit
(and only here), the game becomes "odd”. Nevertheless, there are situations
in the real world where the number of players is naturally very high and
each player knows that she has no effect on the others. In this case it seems



me not conceptually correct to model a n-player game and then computing
the limit of the finite game outcome to approach the real world situation we
are studying. What I wish to underline is that the game is naturally ”odd”.
Examples can be the voting decision, the determination of an equilibrium
price in a market, the topic choice for the whole set of young researchers
in economics. In all these cases, the player’s choice effect on the others is
negligible if taken isolately.

When the situation we wish to model is such that the strategic interaction
between individuals is extremely poor because of the great number of players,
we can use the so called nonatomic games. The class of the nonatomic games
allows to deal with problems where there is a continuum (i.e. uncountably
many) of players. More precisely, a nonatomic game is a game where the
set of players is endowed with a nonatomic measure. Indeed, the nonatomic
games allows us to model several situations where individual weight in the
”competition” is almost nil, but where the aggregate choice of a ”large num-
ber”, a mass, of players is relevant. In an election a single vote is normally
not relevant to determine the winner, and so the voters’ utility. On the con-
trary, the vote of the subset of young voters or that of the old voters may
have a great impact on the voting result.

In the General Economic Equilibrium literature there are several papers
that model the price formation and the trading in a large economy as a non
atomic game. In particular, Dubey and Shapley (1994) give some interesting
extensions in the non atomic framework of the finite market game proposed
by Shapley and Shubik (1977), considering two different ways of payment (by
paper money and by a valuable commodity). The fundamental feature of this
approach is that players do not take the prices as given. They have an initial
endowments of goods, they place it on the goods markets receiving the right
to an amount of money when the prices will be fixed. Then they demand an
amount of each commodity (this is the players’ strategy), depending on their
preferences, bidding an amount of money. Prices are formed in such a way
that clear all the markets, i.e. the price of each good equals the ratio between
the aggregate bid for that good and the aggregate endowment of it. Since
the obtained bundle will depend on the formed prices, the players’ utility,
i.e. the players’ payoff, will depend on the others’ aggregate behavior. Under
fairly weak conditions, Dubey and Shapley find that the Walrasian equilibria
class and their strategic equilibria class are equivalent.

Also, Godognato and Ghosal (2001) extend in the non atomic game frame-
work the Forges and Minelli (1997) paper ”Self-Fulfilling Mechanisms and
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Rational Expectation” in an exchange economy with private information.

The proof of the equilibrium existence for the nonatomic games (general
and in pure strategies), came only in 1973 with the paper of Schmeidler.
Thereafter, other authors gave proofs of the existence in pure strategies,
following different approaches, such as Rath (1992) and Mas Colell (1984).

The existence in pure strategies depends on the property of anonymity.
Roughly speaking anonymity means that every player (or agent) is symmet-
ric to all the others. The single player’s characteristics are not relevant in
determining his impact. Therefore every player is interchangeable. Such a
property has to be differently formalized in different contexts. Here are two
examples. In the already mentioned finite games with positive externalities
considered by Konishi, Le Breton and Weber (1997a), the strategic interac-
tion is captured only by the fact that the player i’s payoff is a (increasing)
function of the number of players that play the alternative chosen by i; con-
sidering the number of players is a way to formalize the idea of anonymity:
what matters is not who is the player that chooses a certain alternative, but
only how many players choose it.

The second example comes from the social choice theory. We are inter-
ested in finding a good aggregator of preferences, a social welfare functional.
Consider the majority voting rule: it is anonymous since if you permute in
any possible way the preference profile, the result does not change because,
again, what matters is the number of people that prefers a particular alter-
native and not the characteristics of such people.

In the nonatomic games the anonymity property (necessary to prove to
existence in pure strategies) is formalized making the payoff functions depen-
dent on the players’ distribution over the alternatives. More precisely, the
payoff functions depend on the Lebesgue integral of the strategy profile over
the players’ set. It is clear that in this way, we are interested only on the
aggregate behavior i.e. on the measure of the players’ set which chooses a
particular alternative.

A further interest of the nonatomic games is that the existence of a Nash
equilibrium, even in pure strategies, does not require strong hypothesis on
the payoff functions. Only continuity with respect to the Lebesgue integral
of the strategy profile is required.

In this paper I wish to briefly make a review or a little survey over the
mentioned three different approaches. After, starting for a remark of Schmei-
dler (1973), following the Rath’s approach, I extend the existence result (in
pure strategies) to the class of games where payoffs depend on the average
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strategy of a finite number of convex and disjoint subsets of players, defined
a priori. This generalization allows to greatly extend the domain of appli-
cability of the nonatomic games to a quite large set of situations at little
mathematical cost. This depends on the fact that it allows to reduce the
anonymity in these games: belonging to a particular subset may be a feature
that gives a different relative weight to different players. One may imagine
several examples: for instance the ”common” researcher’s topic choice may
depend on the distribution of the ”stars” and on the distribution of the other
”common” researchers; still, the driver’s route choice may depend on the dis-
tribution of several groups that are moving on the same road network, such
as car drivers and heavy truck drivers.

Since the partition of the players’ set, unique for all the players, has to be
defined a priori, we cannot deal, for instance, with games where the player’s
choice depends primarily on the choices of the players close to him!, i.e.,
where the player t’s choice depends on the actions of the players belonging
to a neighborhood of .

In the following, I will refer to the nonatomic games belonging to the gen-
eralized class defined above, as nonatomic games with ”limited anonymity”.

Finally, I will present three examples of nonatomic games with ”limited
anonymity” that may help to evaluate some features of the equilibria arising.

2 Three proofs of existence

In this section I present the three approaches to prove the existence of a
Nash equilibrium in a normal form nonatomic game. The first will be the
Schmeidler’s proof, followed by that of Rath and that of Mas Colell. T will
simply present quite informally the framework and the results, whereas I will
present a formal proof in the next section to derive the extension described
in the introduction.

The common framework and notation for the three proofs is the following.
Specifications and particularities will be remarked for each one.

T = [0,1] is, without loss of generality, the set of players endowed with
the Lebesgue measure .

There are n possible alternatives (actions) each of them represented by
a unit vectors in R”, that is, the vector e; is the unit vector with 1 as ¢-th

IWe think to a sort of influence with a limited extent of diffusion.



coordinate and zero otherwise and it is associated with the i-th alternative.
Therefore the set of alternatives is E = {ey, ..., e, }.

The convex hull E = conv({eq,...,e,}) is the set of the all possible mixed
strategies. Therefore the pure strategy e; is a particular mixed strategy, as
usual. R R

A mixed strategy profile is a measurable function f : T" — E that asso-
ciates to each player ¢t € T an element of £ denoted as the n-vector (f!, ..., /™)
where fl is the real valued component from 7T to [0, 1]. In other words, we
associate to each t the probability of playing each alternative. F is the set
of all possible strategy profiles.

A pure strategy profile is a measurable function f : T — FE that associates
to each t € T an element of F denoted as the n-vector (f1, ..., f) where f*
is the integer valued component from T to {0,1}. F is the set of all possible
strategy profiles.

We denote S = { [, f(t)dA|f € F} the set of all Lebesgue integrals of
the strategy profile defined as ([, f1(¢)dA, ..., [ f*(t)d)), or, in words, the
Lebesgue integral of the vector f is the integral of all its coordinates. Finally,
we denote with s an element of S. It is important to remark that S can be
identified by the simplex in R”.

2.1 Schmeidler (1973)

Schmeidler proves two results: the existence of a Nash equilibrium and the
existence of a Nash equilibrium in pure strategies for the nonatomic games.

The set F', the set of all mixed strategy profiles, is endowed with the I,
weak topology. This set is a compact, convex subset of a locally convex linear
topological space. R

Now, we define an auxiliary function v(-,-) : T'x F' — R". Its component
v'(t, f) describes the utility of player ¢ € T playing e; when almost every
player chooses f, i.e. each player plays his mixed strategy, and player ¢
chooses the pure strategy e;. So the payoff of player ¢ is defined as

~ ~

w(f) = F(t) - o(t, f)

or the inner product in R"™. Thus, the payoff, playing the mixed strategy, is
simply an expected payoff obtained using the probability distribution repre-
sented by the mixed strategy.



By now we have described the normal form of the game.
We need two assumptions.

1. For all t € T, v(t,-) is continuous on F.

2. For all fin F and 4,j = 1,...,n the set {t € T|v'(t, f) > vi(t, f)} is
measurable. In words, this is the set of all those players that prefer the
pure strategy e; to the pure strategy e;, given f.

Definition 1 A strategy proﬁle/f 1s a Nash Equilibrium iff
VmeE w(f)>m-o(t, f) ae

Definition 2 A strategy profile p € F is called pure if and only if almost
each player chooses a pure strategy.

Now we can state the two results of Schmeidler.

Theorem 3 A nonatomic game in normal form fulfilling conditions (1) and

(2) has a Nash Equilibrium.

~

Theorem 4 If, in addition to the conditions of Theorem 3, a.e., v(t, f) de-
pends only on fT f, then there is a Nash equilibrium in pure strategies.

The proof of the Theorem 3 is, as usual, based on a fixed point argument.
Schmeidler first defines the best reply correspondence for the player ¢ and
given the strategy profile f as

Bt,fy={me ENm € E:m-v(t,f)>m vt [)}

The best reply correspondence is convex valued and, since v(-,-) is con-
tinuous on F, it is non empty and has closed graph. The main interest of
the proof lies in the following correspondence « : F' — F' defined as:

a(f) = {g € F| ae. §(t) € B(t, f)}

Such a function associates to each mixed strategy profile the set of the mixed
strategy profiles with the property that for almost every player, the mixed
strategy played by player ¢ belongs to the best reply correspondence of ¢,
given the strategy profile f. That is a(f) is the set of the best responses
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profile of all agents facing the profile f, or in other words, the set of the
best deviation profiles given f. It is clear from now that if the best deviation
profile to f is f, then f is a Nash equilibrium. Hence, we want the function
a(f) having a fixed point. Indeed Schmeidler shows that «(f) is non empty,
convex and it has closed graph. Therefore, by the Fan-Glicksberg fixed point
theorem a fixed point exists and the proof is done.

Theorem 4 is a corollary of Theorem 3.

We have to show that there exists a pure strategy profile p that has the
same Lebesgue integral of the mixed strategy profile of equilibrium f* and
such a pure strategy profile belongs for almost all players to the respective
best reply correspondence, given f*. In other words, we need that the effect
on the payoff of the two strategies is the same, since we assumed that the
payoffs depend on fT f, and that the player is indifferent between playing

the pure strategy or the mixed strategy of equilibrium, since both p and fA*
belong to B(t, f*). Roughly speaking, p is an ”alternative” as good as f* for
almost all players.

Since B(t, f*) is convex valued, if more than one pure strategy belongs
to B(,-) therefore all the mixed strategies (=convex combinations) that as-
sign positive probabilities only to these alternatives, belong to B(-,-). More
formally,

B(t, f*) = conv({e;|e; € B(t, f*)})

To show this, we use an intuitive argument. Suppose that B(t, f*) =
{e1,e2}. By the definition of integration of correspondence, we know that
Jr{er,e2}dX = {(a,1 —a,0,...,0) for all @ € [0,1]}. This is noting else that
the convex hull of {e;,es}. Now, if we integrate the set {(a,1 — a,0,...,0)
for all @ € [0,1]} we obtain the same set, because a linear combination
of two elements of another linear combination belongs to this last linear
combination.

Indeed we have:

/TB(t,f*) :/T{ei|ei e B(t, ")}

By definition, the Lebesgue integral of a correspondence is the set of
Lebesgue integrals of all integrable selections belonging to the correspon-



dence. Therefore we have that:
/B(t, f*) = {/p | pe F and a.e. p(t) € B(t,f*)}
T T

/T{ei]ei € B(t, )} = {/Tp | pe Fand ac. p(t) € {eile; € B(t,fk)}}

Clearly a selectlon of the set {e;e; €B (, f )} is a profile of pure strategy.
Recall that [, Fre J B( ) since f* is a selection of B (¢, 7 ). Combining

the two equalities above, we have that [, fre {pr | pe Fandaec. p(t) € {ele; € B, ]?*)}}

and therefore there exists a pure strategy profile with the same integral of
f* that also belongs to B(t, f*) for almost all ¢.
The measurability condition (2) ensures that everything is integrable.

The main result is surely the existence in pure strategies. Notice that it
is ensured when the payoff function depends on the average strategy played
by the other players, i.e., on their distribution over the alternatives. An
interpretation of mixed strategies in the finite game is simply obtainable by
this feature. Hence, we can imagine a mixed strategy of a finite game as the
distribution of a continuum of players over the alternatives in a nonatomic
game.

2.2 Rath (1992)

Rath proves directly the existence of a pure strategy Nash equilibrium, as-
suming that the payoff functions depend on the average response of the other
players. This simply means, as in Schmeidler, that the payoff functions de-
pend on the Lebesgue integral of the strategy profile. What differs from the
Schmeidler’s proof is the fact that here the existence in pure strategies is
proved directly, i.e., without passing through the mixed strategies profile .
Not only, the proof is much simpler, is based on the best reply correspon-
dences and simply applies the Kakutani’s fixed point theorem.

Since we consider only the pure strategy existence, we consider only the
class of anonymous nonatomic games, i.e., as in Theorem 4, the class of
nonatomic games whose payoff functions depend only on the Lebesgue in-
tegral of the (pure) strategy profile. Indeed, we consider the class of payoff
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function U = {u : T x E x S — R}, real valued and continuous on E x S.
This restriction is the assumption 1 in the Schmeidler framework.

Notice that, as in Theorem 4, the Rath’s payoff functions are defined
on S, the set of the Lebesgue integrals of the strategy profiles’. Moreover,
here we have to make apparent the dependance from the chosen alternative,
while with the Schmeidler framework in mixed strategies this dependance
was implicit on the definition of the payoff function as a inner product, or as
an expected payoff function.

Definition 5 A Nash equilibrium of a game is a pure strategy profile f € F
such that for almost every t, u(t, f(t), [, f) > u(t, e, [, f) Ve; € E.

We need the following assumption, completely parallel to the assumption

For any s € S and e;,e; € E, the set {t € T|u(t,e;,s) > u(t,e;,s)} is
measurable.

Given this framework, the main result is:

Theorem 6 Under the assumption above, every nonatomic game with payoff
function belonging to the class U, has a Nash Equilibrium in pure strategies.

As mentioned above, the proof is based on a fixed point argument and
namely calls for the Kakutani’s fixed point theorem. Since from the beginning
only the anonymous nonatomic games are considered, the proof is greatly
simplified. The identification of S with the simplex in ™ allows us to consider
only a finite dimension Euclidean space.

The first step is to define the best reply correspondence B : T'x S — E
by

B(t,s) = {a € Elu(t,a,s) > u(t,e; s) Ve; € E}

Notice that s, representing the Lebesgue integral of a strategy profile, is
the distribution of the players over the alternatives. Given such a distribu-
tion, B(t,s) is the set of the best responses for ¢.

2Notice also that the set of Lebesgue integrals of mixed strategy profiles coincide with
the set of Lebesgue integrals of pure strategy profiles.
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Given the continuity of the utility function, this correspondence is non
empty and has closed graph.

The second and interesting step of the proof is to define the correspon-
dence I' : § — S by

F(s):/TB(t,s)d)\

If the correspondence I' had a fixed point, then it would exist a pure
strategy profile f* such that [.f*d\ = s* € [.B(t,s*)d\. This would
mean that f*is a selection of B(t,s*) or that for almost all ¢, the strategy
f*(t) belongs to the best reply of t. Then the profile f* would be a Nash
Equilibrium. In fact, Rath shows that I'(s) is non empty and convex and has
closed graph. Therefore, by the Kakutani’s theorem, I'(s) has a fixed point.

We will use this kind of proof to show the extension mentioned in the
introduction and discussed in the next section.Mas-Colell (1984).

2.3 Mas-Colell (1984)

The Mas-Colell’s work is quite different from the previous two because he
directly considers the (probability) distribution of the players rather than
the Lebesgue integral of the strategy profile as an argument of the payoff
functions. Therefore the kind of proof is quite different and it is not based
on the properties of the Lebesgue integration.

As Rath, he shows the existence of an equilibrium in pure strategies.

Let us present the framework.

F is always the set of actions®. We consider the set of all possible proba-
bility distribution on E. Clearly, such a set is the simplex in ", i.e. the set
S,

A player is completely characterized by a continuous utility function

u:ExS—R

3 Actually, Mas-Colell is much more general, allowing for any non empty and compact
metric space.

4 Again, the author is much more general and considers the set of the Borel probability
measures on the action space, endowed with the weak convergence topology. Here we
make this simplification to unify our presentation of the three approaches to prove the
Nash Equilibrium existence in the nonatomic games.
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This is another way to allow each player have a possible different utility
function. In the following we name a player by his utility function. In
particular, given an action e; € E and a distribution s € S, u(e;, s) is the
utility enjoyed by the player. Notice that using the concept of distribution,
we consider anonymous nonatomic games, exactly as in Schmeidler (Theorem
4) and in Rath.

Ug is the space of all continuous utility function u(-, -) endowed with the
supremum norm. This represent also the space of players characteristics.

A game with a continuum of players is then characterized by a Borel
measure p on Ug. Notice that here the "number” of players does not matter.
The probability distribution is normalized and works for all set of players.
What matters are the characteristics of the players or their heterogeneity.

Definition 7 Given a game p, a Borel measure 7 on Ug X E is a Nash
Equilibrium distribution if, denoting Ty, Tg the marginals of 7 on Ug and E
respectively, we have

(i) Tu = p

(11) T({(u,a)|u(a, 7g) > u(a’,7p) Ve, € E}) =1

Let us discuss on this definition.

The point (i) requires simply that all player characteristics be taken into
account in the equilibrium distribution. The point (ii) requires that for al-
most each characteristic, there is a best reply alternative a € F given the
marginal distribution of the players over the alternative set. We can also
read such a condition as ”the probability of the set of the pairs (u,a) such
that u(a,75) > u(e;, 7p) Ve; € E is one”.

The main result is:

Theorem 8 Given a game p on Ug there exists a Nash Equilibrium distri-
bution.

The proof is an application of the Ky Fan fixed point theorem.

Let us denote by €2 the set of probability measures on Ug x E with the
property that 7, = pu, i.e., the set of all the distribution that verifies the
condition (i).

Given 7 € Q, B; = {(u,a)lu(a,7g) > u(e;, 7g) Ye; € E} is the set of
all the pairs (u,a) considered above. Now a correspondence ® : Q@ — () is
defined by

O(r)={r" e Q7 (B,) =1}
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Such a correspondence draws all the joint distributions that verify the
condition (i) and (ii) given the joint distribution 7. It is the equivalent in this
context of the «a(-) function of Schmeidler: it associates to each distribution
7 the (set of the) best deviation distribution from 7. Clearly, if a fixed point
exists, the distribution 7 is a Nash Equilibrium distribution. In fact, such a
correspondence in shown convex valued, upper hemicontinuous and compact
valued. Therefore there exists a fixed point by the Ky Fan theorem.

Notice how such framework is very general and relatively low demanding
to show the existence of a Nash Equilibrium in pure strategies. What is de-
terminant is the way to define the Nash Equilibrium distribution. Thereafter
the procedure is quite usual.

3 An extension

It is apparent in what precedes that the existence of a pure strategy equi-
librium is a consequence of the payoft function dependence over the average
strategy of the players, i.e., over the distribution of the players on the alter-
natives. In other words, the equilibrium existence in pure strategies depends
on the anonymity assumption.

Nevertheless, anonymity is not always a good requirement if we are inter-
ested in modelling settings where there are different groups of players that
have different impacts on the payoff function and so on the choice of a given
player. One may imagine several examples: for instance the researcher’s topic
choice may depend on the distribution of the stars and on the distribution
of the other researchers (a situation examined in the next section); still, the
driver’s route choice may depend of the distribution of several groups that
are moving at his same time, such as students, workers, employees etc.

Inside each group there is no reason to give up anonymity, but, between
the groups, having complete anonymity impedes to model correctly the set-
ting. A way to introduce a ”limited anonymity” is to consider that the
payoff functions depend over several average responses, one for each group.
In this way is possible to consider the different weight that a particular group
decision has on the choice of a given player.

It is worth to remark that the group definition has to be a fixed partition,
i.e. it cannot be player-dependent. For instance, it is not possible, in the
context of this extension, to consider situations where the player t’s payoft
depends mainly on the strategies adopted by the players close to him, i.e.
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belonging to a symmetric neighborhood N; C T of £. In this case, we would
have a binary partition { Ny, T\ N;}, for each t.

In the following I will state the framework and prove the existence of a
such equilibrium in pure strategies. The proof is an extension of the Rath’s
proof.

Consider a set T' = [0, 1] that represents the set of all players in the game.
Such a set is endowed with the atomless Lebesgue measure A. Consider k
real numbers in 7', denoted as 71 < ... < 7. Let 7¢ be 0 and 74 be 1 (the
boundaries of the T" interval).

Denote 17 = [0, 71] and T}, the subset |7,_1, 73]. By construction, we have

k

that |J T3, = T. Therefore, the T}, subsets represent the groups of players
h=1

discussed above.

The set of alternatives is the set of the unit vectors in " where the vector
e; has one at the i-th coordinate.

A pure strategy profile is a measurable function f : T"— E which asso-
ciates an alternative to each player.

Since, if a function is integrable on 7', then it is integrable on any T}, we
denote with S}, = {fTh fd\|f € F} for h = 1,...,k the set of the Lebesgue
integrals for any possible strategy profile f. We denote an element of S}, as
s,. Notice that S; x ... x S; is a compact and convex subset of R**" and

that S, = {(s}, ..., s%) € RT| >_ st =714 — 7,1} or the (1, — 75_1)—simplex
i=1
in R".
We define the payoft function as
u:TxXEXS; X...xS,—R

and we require that it is continuous on £ X S7 X ... X Sg.
We assume that {t € T'|u(t,e;,s1,...,s6) > ul(t,e;,s1,...,5,)} is measur-
able for any sy, ..., s; and for any e;,e; € E.

Definition 9 A pure strategy profile f € F is a Nash Equilibrium if for
almost all't € T, u(t, f(t), [;, [, ...,ka ) > ult e, [4, f, ...,ka f) Ve; € E.

The result of this extension is:

Theorem 10 The normal form game {T, (71, ...,7x), E,u} has a Nash Equi-
librium in pure strategies.
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Proof. Define the best reply correspondence B : T' X §1 X ... X Sy — E
as

B(ta 81, "'ask) = {a\u(t,a,sl, "'ask) > u(taeivsla "'7Sl€) vei € E}

For any (t,s1,...,sk), B(t,s1,...,5;) is non empty because of the finite
number of alternatives and because of the continuity of the utility function.
For any t € T, B(t,-) has closed graph. Indeed, for any pair of sequences
{s?",...,sp'} — (s1,...,8x) and {a™} — a such that a™ € B(t,s]", ..., sj*) Ym
we have that u(t,a™, s, ..., s7) > u(t,e;, s7, ..., s7) Ve; € E. Since u(t, -) is
continuous on F x S; X ... X Sg at the limit we have that u(t, a, s1, ..., sx) >
u(t, e;, 51, ..., Sx) Ve; € E and thus the graph is closed.

Let us define the correspondence I' : S; X ... X Sy — 51 X ... X S} as

T(s1,..., s1) :ﬁ UT B(t, s, ...,sk)]

e [ is non empty for all s1, ..., sg.

Fix a profile (s, ..., ) € S1 X ... X Sk. For any e;,e; € E define the set
Vij ={t € T|u(t,e;, 51, ..., S) > u(t,e;, 51, ..., 55)} or the set of all those
players that prefer e; to e; when facing the profile (sq, ..., s;). Because
of the assumption of measurability, such a set is measurable. Now we

construct a partition of 7" starting from the family of set V;;. Vi = (] V;;
J#i

is the set of players that prefer e; to any other alternative. Such a set
is measurable. Let V] = V; and V/ = V; N (U;, V) for i =2,...,n. By
construction {V/,...,V/'} is a partition of 7" of measurable subsets.

Let us define the function g : T — E as ¢(t) = e; if t € V. Therefore
g(+) is measurable by definition and ¢(¢) € B(t, s1,...,s;) for all t € T,
since g(t) represents the best response for ¢, by construction. Therefore
for any (sq, ..., si) there exists a measurable selection of B(, s1, ..., Sk)
represented by ¢(¢). Thus I'(sy, ..., k) is non empty for any (s1, ..., sg).

e I'(+) is convex valued.

Since A is atomless I'(+) is convex valued (this comes from the definition
of Lebesgue integral of a correspondence)

e I'(:) has closed graph (and therefore it is upper hemicontinuous since
the image set is compact).
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Let the function H : T'— R defined as h(t) = (1,...,1) = eVt € T.
Clearly h(-) is bounded as well as [, h(t)dX. Therefore the strategy
profile f(t) < h(t) Vt € T and Vf € F, since f(t) is a unit vector for all
t. Given that we showed B(t, -) having closed graph, I" has closed graph
since any possible selection is bounded (Aumann’s theorem (1976) or
"integration preserves upper hemicontinuity”).

By the Kakutani’s fixed point theorem, I' has a fixed point (s7, ..., s}).
k

Therefore it exists a pure strategy profile f* € F such that [] fTh frd\ =
h=1

(s7,..,85) € I'(s7, ..., s;) and thus f* € B(t,s],...,s;) for almost all ¢ € T
or, equivalently, f*(¢) is a selection of B(t, s7, ..., s;) for almost all t € T', or,
again, f* is a pure strategy Nash Equilibrium. m

This proof closely follows the procedure found by Rath. The main exten-
sion is represented by the definition of the I' correspondence as a Cartesian
product of Lebesgue integrals, rather than a simple Lebesgue integral of the
best reply correspondence.

4 Three applications.

As mentioned in the introductory section, the following three applications
concern about how the researchers distribute themselves over the possible
alternative studies. Many ideas contained here are usual in the economics of
science, as intended by P.E. Stephan (1996) and by P. Dasgupta and P.A.
David (1994). In each subsection I briefly describe the ”economics of science”
phenomenon underlying the game structure. For more details you can refer
to L. Rocco (2000).

4.1 Xenophobia in research.

We consider two groups of researchers, the stars and the ”common” re-
searchers. Empirical studies showed that the 6% of all researchers produces
half of the papers (the so called "Lotka law”). We suppose that the re-
searchers compete between them to maximize an index of reputation, say
the index of citation. Since this index is an index of impact of the individual
scientific production, the researchers are interested in exercising a consider-
able effort in "marketing activities” to make their work known. Such activ-
ities can be workshop organization or on-line publication of the papers, or
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participation to several and different meetings. Such activity increases the
natural positive externalities between researchers which work on the same
topic, making research and so publication easier and more probable respec-
tively. Publication is more probable because a topic dealt by a large mass
of researchers has also a large audience. Also the possibility of coauthorship
is increased, being coauthorship either a way to formalize a cooperation or a
good strategy to increase the individual scientific production.

However it is apparent in many fields of research that there is a clusteri-
zation in the research community: it is easier to benefit from the externalities
or from the cooperation of members belonging to the same group. Indeed,
stars cooperate with other stars or participate to meetings where other stars
are present more often than they do with ”common” researchers. In a sense,
stars fear the possibility that ”common” researchers act as free riders on
them and benefit almost for free of the star’s reputation. Being a star or not
is a tag on which basis the other stars discriminate you when they have to
decide with whom to cooperate.

Let us now try to formalize heuristically these ideas.

The framework is that considered in the section 3 and the notation is the
same.

Consider a set of players 7' = [0,y]U]y, 1] where the former interval rep-
resent the ”common” researchers (group 1) and the latter the stars (group
2).

The set of topics is binary or E = {ej1, e5} defined as usual by the set of
the unit vectors.

The payoff functions are uq(e;, s1,$2) = ay81; + [F152 for the ”common”
researchers and us(e;, 51, S2) = Q981; + [F989; for the stars, where oy, 3; € [0, 1]
and a; > 3, and ay < 3,. Such a formulation capture the idea that working
on the same topic of others is more valuable and that such externalities are
more easily enjoyable if they come from the same group.

The best reply function has the following form for both groups j = {1, 2}

ep if ajsyy + Bsa1 = as12 + 5522
€9 otherwise

B;(s1,82) = {

In other words, group j prefers e; for all the pairs (sq,s2) above the
straight line

7(aj - ﬂ]) + ﬁj

_ J
S11 = ——=891 +
Q;
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This is a family of lines centered on (*5%,2) and with negative slope
belonging to the interval [0, —o0), given the possible values of a; and ;. It
is clear that all the lines associated with the group 2 are more sloped, in
absolute value, than those associated with the group 1.

Consider the following picture and notice that each point can be thought

as a 4—tuple (811, 512, 821, 822) where S12 =79 — S11 and S99 = (1 — ")/) — 8911

A

S11

D @02 G\ 1 1 Son

All the pairs (s1, $2) in the area EOFB are such that both groups prefer
the alternative e;. Therefore the unique fixed point for this region is the
point B. Indeed the best response to the point B is B.

Symmetrically, all the pairs (s1, s2) in the area HOGD lead both groups
to chose the alternative e, and the unique fixed point is D.

In the region HOEA, group 1 prefers e; but group 2 prefers e;. The
only possible fixed point is A and this represent the separation equilibrium.
Nonetheless, such equilibrium exists only under some conditions that I wish
discuss briefly below.

The last region is GOFC and here the unique fixed point is C that also
exists under the same condition for A.

The existence of the fixed points C and A depends on the parameters.
If v > § we need that y(az + ;) < B, or that for a star is much more
valuable working with other stars that with common researchers (3, >>
). Symmetrically, if v < 3, we need that v(a; + 8;) > ; or that for
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a common researcher is much more valuable working with others common
researches (a; >> (3;). Thus the separation equilibria exist if the stars’
”xenophobia” is high enough.

Obviously, this conclusion is very weak, since the pooling equilibria always
exist, independently of the degree of ”"xenophobia”. However a sufficiently
high degree of "xenophobia” may lead to segregation equilibria.

4.2 Willingness of separation.

Quite usually, one may observe that there are communities of researchers
that avoid the comparison with others, especially with the stars and orga-
nize an autoreferential circle, impermeable enough, that allows them to make
research and publish on topics that we may say reserved. Such a practice
allows a researcher to get a certain reputation (an so a certain utility) rec-
ognized inside the circle, also if in absolute value the quality or the interest
is low. The circle may also edit a journal that formalize its activities.

Such a system may survive if the stars do not write on the reserved topic
and do not publish on the circle’s journal.

Let us formalize such ideas.

The set of players is T' = [0,7]U]v, 1], with the same interpretation of
the previous subsection, the alternatives are E = {ej, ez} and the payoff
function are w;(e;, $1,52) = m;i(S11, 822) Pi(S1i, S2;) where the subscript j is
for the groups and the subscript ¢ for the alternatives. m;;(-) represents the
probability to publish on the journal specialized on the topic i, for the group
j. Pi(-) represents the reputation of the journal ¢ (and so the reputation a
researcher obtains by publishing on it). The journal reputation is a function
of the number of common researchers and stars that publish on its pages.
We make the following specifications:

o m1(511,522) = m11(s11) increasing on sy
o T12(S11, S92) = T1a(S22) decreasing on sgo

o T9;(811, S22) = mo; constant

o mi1(s11) > m12(S22) V11,820 and ma(1 —7) =0

® To1 > T2

® o > 7'('11(811) VSH and o9 > 7T12(822) VSQQ

19



L4 Pl(ovo) = PQ(Ov 0)
o Pi(s1i, $9;) decreases on sp; and increases on sg;
o Pi(s1,52) > 0 Vi, 51, 59

The meaning of all these assumptions is that the probability to publish is
always higher for the stars than for the common researchers. The probability
to publish a paper on the topic 1 is higher than the probability to publish
on topic 2 for both groups, or topic 1 is "easier” than topic 2. However,
group 1 faces a probability to publish on topic 1 increasing in the number
of members of the same group that writes on topic 1, while the probability
to publish on topic 2 is decreasing on the number of members of group 2
that writes on topic 2. There are two journals that publish only one topic.
The reputation of the journal depends negatively on the number of common
researchers that publish on that topic and depends positively on the number
of stars that publish on that topic. The payoff of each researcher depends on
the expected reputation he receives from publishing on a journal.

Let us now find the equilibrium set of the game.

First we simply show that there not exist equilibria where both groups
are distributed on the two topics. Indeed the condition would be

{7711(811)P1(5117 821) = 7T12(822)P2(512, 522)
7T211D1($117 821) = 7T221D2($127 522)

Given the conditions on 7;; the two equalities above can never be verified
simultaneously. Neither it can be possible that one group is distributed on
the two topics in equilibrium.

The unique possibilities are the separation equilibria. Only the case where
all commons researchers write on topic 1 (the easiest) and all the stars write
on topic 2 is possible. Indeed the corresponding condition

{Wll(V)Pl(%O) > ma(1 =) 20,1 —7)
To1 Pi(7,0) < maaPy(0,1 — )

is verified.

Thus the common researchers close themselves into a circle that deals
only with topic 1 and publish on the journal 1. Stars find not convenient to
deal with topic 1, even if easier, because the low standing of journal 1.
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4.3 The planet of the Gods.

Here we consider a setting where the payoff of the group 1 depends nega-
tively on the number of common researchers that write on the same topic
and positively on the number of the stars. This stays for the fact that an
higher competition reduces the possibility of publishing, but the presence
of stars on a topic increases its interest. On the other hand, the stars are
interested only on their own distribution and do not care on the common
researchers’ decision. Indeed the stars influence but they are not touched by
the common researchers’ decision. We also imagine that the alternatives are
ordered by their degree of difficulty and interest represented by the proba-
bility to discover something (a low probability stays for an higher interest of
the discovery).

The formal setting is:

T = [0,7]U]v, 1] is the set of the players

E ={ey,...,e,} is the set of the alternatives or of the topics.

The payoff functions are wuq(e;, s1,82) = w1 P(s14,82) Vt € [0,7] and
us(eg, 81, 82) = moR(s9;) Vt €]y,1]. We assume that Py, < 0, P;,, > 0
and R,, > 0. The probabilities 7; are such that m;; < ... < m, and
o1 < ... < T, and finally 7y; < my; Vi € {1,...,n}. Indeed, as in the previ-
ous example, the group 2 has an advantage in terms of probability to discover
something or it has more talent.

Moreover we assume that 71;P(0, s9;) > m1;P(814, S2;) V], 815, S2;. This
assumption means that for a common researcher is always preferable a topic
where no other common researchers work.

Therefore the only equilibrium distribution is a distribution where all
topics are covered. Indeed, the equilibrium condition is

7T11P(5117521) = .= 7T1nP(81n752n)

On the other hand, the group of stars is unaffected by group 1 and a
necessary condition for an equilibrium is either sy; > s9; for any j > ¢ or
S9; = 0.

Let us now specify the functions to find a closed form equilibrium.

Let P(s14,89;) = {552% Bor; Ogljl?;;z and R(sy;) = s9;. I is large enough to
satisfy the condition on 71; P(0, s9;). Moreover we impose that mo; = (146)7y;
with 6 > 0. We consider only the equilibria were the stars’ group allocates
itself over the first m topics and, following the necessary condition, in a de-

creasing way. Notice that, contrary to the requirements of the theorem of
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existence, P(-,-) is not always continuous. However, the considered discon-
tinuity is very special and it does not prejudge the equilibrium existence.
The equilibrium condition, given the distribution of the stars, is

7711(04821 - 5811) = .= 7T1m(a52m - ﬁé’lm) = 7Tlm+1(_/651m+1) = .= Wln(—ﬁsln)

Rearranging, for i € {1, m — 1} the chain of equalities gives

S1i+1 = S14 (—521‘ - 32i+1)
T1i+4 ﬁ T 1i44
For i € {m + 1,n} we have:
14
S1i+1 = S14
T4
and for ¢ = m + 1 we have:
o T1m QT
51 = Sim — 3, Som
14 B T

Now we compute the distribution of the group 2, the stars.
The equilibrium condition is

(1 4+ 6)s9; = 14 1(1 4 6)sgi41 for all ¢ € {1, m — 1}

By the chain of equalities we obtain simply

11

S9; = S921 for ¢ € {1,m}

14

and

sy =0fori e {m+1,n}

This distribution is a part of an equilibrium if so; > 0 and if > s9; = 1—7.
i=1

Therefore we obtain that

|
S91 = >0
2=
where A = )’ % and all conditions are verified.
i=1" "
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Now, come back to the group 1 distribution.
Substituting for s9;,summing all the different s;; and imposing the equal-
ity to ~, we obtain

v+ 51 -7%

= >0
1 11 (A -+ B)

n

where B = ) ﬁ We have only to check that sj,,.1 > 0, i.e., the
i=m+1 "
number of researchers in the first alternative without stars is positive: this

is sufficient to guarantee the positivity of all the sy; for ¢ € {m +2,n}. Such
condition is verified for v > a%‘ﬁﬁ or if the dimension of the group 1 is large
enough. To conclude, the equilibrium of this game that we have considered
can be represented as in the following picture.

SjiA
AN
\\ Si1i
~N
\\l
\\ S; i\
2i 1
\\ i \ﬁ-
= === 5
1 m n

The distribution of both groups over the alternatives is decreasing, with
a higher concentration over the more difficult or interesting topics. This
feature is completely explained by the stars’ distribution effect that more than
compensates the competition effect, summarized in the condition P, , < 0.

23



5 Conclusions.

This paper mainly analyzes the existence of a Nash Equilibrium in pure
strategies of the class of normal form nonatomic games. It presents three
different approaches to the problem and the corresponding proofs of exis-
tence. Following the Rath’s approach, this paper proves the existence of a
Nash Equilibrium in pure strategies for the class of nonatomic games whose
payoff functions depend over the distribution, or the Lebesgue integral, of
a finite number of players’ subsets. This extension allows to model a much
larger set of problems, given the fact that it allows to differentiate the play-
ers in groups, avoiding the limitation implied by a complete anonymity (or
symmetry) among players.

Three application based on the economics of science findings are presented
as an illustration of some possibilities opened by the nonatomic games with
limited anonymity.
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