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Abstract. We discuss essential dimension of group schemes, with particular
attention to infinitesimal group schemes. We prove that the essential dimen-

sion of a group scheme of finite type over a field k is greater than or equal
to the difference between the dimension of its Lie algebra and its dimension.
Furthermore, we show that the essential dimension of a trigonalizable group

scheme of length pn over a field of characteristic p > 0 is at most n. We give
several examples.

1. Introduction

The notion of essential dimension of a finite group over a field k was introduced
by Buhler and Reichstein ([BR97]). It was later extended to various contexts. First
Reichstein generalized it to linear algebraic groups ([Rei00]) in characteristic zero;
afterwards Merkurjev gave a general definition for covariant functors from the cate-
gory of extension fields of the base field k to the category of sets ([BF03]). Brosnan,
Reichstein and Vistoli ([BRV09]) studied the essential dimension of algebraic stacks,
a general class which includes almost all the examples of interest.

Important results on the essential dimension of finite groups in characteristic 0
have been proved by Florence ([Flo07]) and Karpenko and Merkurjev ([KM08]).
The essential dimension of finite groups in positive characteristic has been studied
by Ledet [Led04]. As to higher dimensional groups, there are works of Reichstein
and Youssin ([RY00]), Chernousov and Serre ([CS06]), Gille and Reichstein [GR09],
Brosnan, Reichstein and Vistoli [BRV10] on algebraic groups, Brosnan [Bro07] on
abelian varieties over C, and Brosnan and Shreekantan [BS08] on abelian varieties
over number fields. The case of non-smooth group schemes (necessarily in positive
characteristic) has not been investigated.

Let k be a field of characteristic p > 0. For any scheme X over k let X(p) denote
the schemeX×Spec kSpec k, where Spec k is endowed with the structure of k-scheme
via the absolute Frobenius, which at the level of algebras is given by a 7→ ap. We
will endow X(p) with the structure of a k-scheme given by the projection on the
second factor. Moreover we consider the relative Frobenius F : X 7→ X(p), which is
the k-morphism induced by the absolute Frobenius on X. We observe that if the
k-scheme X is in fact defined over Fp then X(p) is isomorphic to X. When this is

the case we replace X(p) with X.
If m is a positive integer, we denote as usual by αpm the kernel of the m-th

power of the relative Frobenius Fm : Ga → Ga over k, while µpm is the kernel of

the pmth-power homomorphism Gm → Gm. It is certainly known to experts that
the essential dimensions of αpm and µpm are 1, and that the essential dimension
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of µn
pm is n. To the authors’ knowledge nothing else was known. The purpose of

this paper is to throw some light on this subject. In particular we will focus on the
essential dimension of infinitesimal (i.e. connected and finite) group schemes. This
could give, for instance, some information about the essential dimension of Abelian
varieties over a field k of characteristic p > 0 with p-rank equal to zero. The p-rank
f of an Abelian variety A is defined by A[p](k̄) ≃ (Z/pZ)f , where A[p] is the group
scheme of p-torsion points and k̄ is an algebraic closure of k. If an Abelian variety A
has positive p-rank, its essential dimension is conjecturally infinite, since for any
n > 0, A contains, over k̄, the group scheme Z/pnZ, whose essential dimension is
conjecturally equal to n (see Lemma 2.1 and Example 4.9).

If G is a group scheme of finite type over a field k, its essential dimension edk G
is the essential dimension of the stack BkG. Let us recall the definition. Let k
be a field, and G be a group scheme of finite type over k. If X is a an algebraic
space, over k, a G-torsor on X is an algebraic space P over k with a right action of
G, with a G-invariant morphism P → X, such that fppf locally on X the scheme
P is G-equivariantly isomorphic to X ×Spec k G. We recall that if X is a scheme
and G is affine then any G-torsor over X is in fact a scheme ([Mil80, Theorem III
4.3]). Isomorphism classes of G-torsors on X form a pointed set H1(X,G); if G is
commutative, then H1(X,G) is a group, and coincides with the cohomology group
of G in the fppf topology.

Definition 1.1. Let G be a group scheme of finite type over a field k. Let k ⊆ K
be an extension field and [ξ] ∈ H1(Spec(K), G) the class of a G-torsor ξ. Then the
essential dimension of ξ over k, which we denote by edk ξ, is the smallest nonnegative
integer n such that there exists a subfield L of K containing k, with tr deg(L/k) ≤ n
such that [ξ] is in the image of the morphism H1(Spec(L), G) → H1(Spec(K), G).

The essential dimension of G over k, which we denote by edk G, is the supremum
of edk ξ, where K/k ranges through all the extension of K, and ξ ranges through
all the G-torsors over Spec(K).

The essential dimension of ξ at a prime integer p, which we denote by edk(ξ; p),
is the minimal value of edk(ξK′), as K ′ ranges over all finite field extensions K ′/K
such that p does not divide the degree [K ′:K] and [ξK′ ] is the image of [ξ] in
H1(Spec(K ′), G). Finally the essential dimension edk(G; p) is defined as the supre-
mum value of edk(ξ; p), as K ranges over all field extensions of k and ξ ranges over
H1(Spec(K), G).

It is clear from definition that edk G ≥ edk(G; p) for any integer p. IfG is smooth,
then G-torsors are locally trivial in the étale topology, and our definition coincides
with that of Berhuy and Favi ([BF03]); in the general case, to get meaningful
results one needs to use the fppf topology. For example, if G is an infinitesimal
group scheme, the G-torsors over a reduced scheme that are locally trivial in the
étale topology are in fact trivial.

Our first result is a general lower bound for the essential dimension.

Theorem 1.2. Let G be a group scheme of finite type over a field k of characteristic
p ≥ 0. Then

edk(G; p) ≥ dimk LieG− dimG .

We also have a fairly general upper bound. Let us recall the definition of a
trigonalizable group scheme.
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Definition 1.3. Let G be an affine group scheme of finite type over a field k. We
say that G is trigonalizable if it has a normal unipotent subgroup scheme U such
that G/U is diagonalizable.

The name is justified by the fact that, every trigonalizable group scheme over k,
is a subgroup scheme of the group scheme of upper triangular n× n matrices over
k, for some n. Any affine commutative group scheme over an algebraically closed
field is trigonalizable (see [DG70, Theorem IV §3 ,1.1]).

Theorem 1.4. Let G be a finite trigonalizable group scheme over a field of char-
acteristic p > 0, of order pn. Then edk G ≤ n.

For constant p-group schemes (which are unipotent) the above result has already
been proved by Ledet ([Led04]).

The second and the third sections are devoted to the proofs of these two theorems.
In the last section, combining the lower and upper bounds above, we calculate the
essential dimension of some classes of infinitesimal group schemes. In particular we
prove that the essential dimension of a trigonalizable group scheme of height ≤ 1,
i.e. such that the Frobenius F is trivial on it, is equal to the dimension of its Lie
algebra (Corollary 4.5). Example 4.1, due to R. Lötscher, M. MacDonald, A. Meyer
and Z. Reichstein, shows that there exist infinitesimal group schemes with essential
dimension strictly larger than the dimension of its Lie algebra. However, we don’t
have similar examples over an algebraically closed field. In Example 4.8 we propose
a class of a commutative unipotent group scheme whose essential dimensions we are
unable to determine, which should be an important test case to determine whether
it is reasonable to conjecture that equality holds for trigonalizable group schemes.

Acknowledgements. We would like to thank P. Brosnan, F. Oort and Z. Reich-
stein for useful comments and corrections to the first version of this paper. We are
also in debt with the referee for his very detailed and useful report.

2. The proof of Theorem 1.2

First we first state a well known fact.

Lemma 2.1 ([Mer09, Corollary 4.3]). If G is a subgroup scheme of a group scheme
H, then

(a) edk G+ dimG ≤ edk H + dimH, and
(b) edk(G; p) + dimG ≤ edk(H; p) + dimH for any prime p.

Now we prove the Theorem. If the characteristic of k is 0, then G is smooth and
there is nothing to prove. Suppose that the characteristic of k is p > 0. Since the
essential dimension does not increase after a base change ([BF03, Proposition 1.5]),
we may assume that k is algebraically closed.

Let G1 be the kernel of the relative Frobenius map F : G → G(p); then G1

is an infinitesimal group scheme, and LieG1 = LieG. Since by Lemma 2.1 we
have edk(G1; p) ≤ edk(G; p) + dimG, it is sufficient to show that edk(G1; p) ≥
dimk LieG1; in other words, we may assume that G = G1, i.e., by definition, G has
height at most 1.

Let G act freely on an open subscheme X of a representation of G. If K is the
function field of the quotient X/G and E is the function field of X, then we have

a G-torsor SpecE → SpecK. Set n
def
= dimk LieG. Let K ′/K be any extension
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of degree coprime to p. We need to prove that for any such K ′ then the essential
dimension of the G-torsor Spec(E ⊗K K ′) → SpecK ′ is at least dimk LieG. Since
the extension K ′/K is separable, while E/K is purely inseparable, we have that
E⊗KK ′ is again a field. Suppose that the G-torsor is defined over an extension L of
k contained in K ′; we need to show that the transcendence degree of L over k is at
least n. Let SpecR → SpecL be the G-torsor yielding Spec(E ⊗K K ′) → SpecK ′

by base change. Clearly R is a field. By the definition of the Frobenius we have
that the diagram

G× Spec(R)

F×F

��

µ
// Spec(R)

F
��

G(p) × Spec(R)(p)
µ

// Spec(R)(p)

commutes, where µ is the action of G on Spec(R). Since F is trivial on G it
follows, by the above diagram, that the Frobenius F : Spec(R) → Spec(R)(p) is
G-equivariant, where we consider the trivial action on the target. Therefore F :
Spec(R) 7→ Spec(R)(p) factorizes through Spec(R) → Spec(R)/G = Spec(L). But
the degree of the Frobenius F : Spec(R) → Spec(R)(p) is equal, by the next lemma,

to pd, where d
def
= tr degk R. While the degree of Spec(R) → Spec(L) is equal to

the order of G, which is pn with n = dimk(LieG). Hence we have tr degk R =
tr degk L ≥ dimk(LieG), as wanted.

Lemma 2.2. [Liu02, Corollary 3.2.27] Let R be a finitely generated extension of
transcendence degree d of a perfect field k of characteristic p > 0. Then the relative
Frobenius F : Spec(R) → Spec(R)(p) is a finite morphism of degree pd.

3. The proof of Theorem 1.4

Let us start with stating a few Lemmas that we will use in the proof. The first
two are well known.

Lemma 3.1. [DG70, Proosition IV §2, 2.5] Let G be a commutative unipotent
group scheme over a field K. Then there exists a central decomposition series

1 = G0 ⊆ G1 ⊆ · · · ⊆ Gr = G

of G, such that each successive quotient Gi/Gi−1 is a subgroup scheme of Ga.

Lemma 3.2. [DG70, Corollary IV §2, 2.6] If G is a group scheme over a field K
and E is an extension of K, then SpecE ×SpecK G → SpecE is unipotent if and
only if G is unipotent. In particular, any twisted form of a unipotent group scheme
is unipotent.

Lemma 3.3. Let G be a commutative unipotent group scheme over a field K. Then
Hi(K,G) = 0, for i ≥ 2.

Proof. By Lemma 3.1, we may assume that G is a subgroup of Ga. The quotient
Ga/G is isomorphic to Ga ([DG70, Proposition IV §2, 1.1]); then the result follows
from the fact that Hi(K,Ga) = 0 for i ≥ 1. ♠

Now we prove the key Lemma.
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Lemma 3.4. Suppose that we have an extension

1 −→ G1 −→ G −→ G2 −→ 1

of group schemes over k, where G1 is a commutative unipotent normal group sub-
scheme of a group scheme G. Let P → SpecK be a G-torsor over an extension K
of k. Then there exists an intermediate extension k ⊆ F ⊆ K and a twisted form

G̃1 → SpecF of G1 over F , such that P is defined over an intermediate extension

of transcendence degree at most edk G2 + edF G̃1 over k.

Furthermore, if G1 is central in G, then G̃1 = SpecF ×Spec k G1.

Proof. Consider the induced G2-torsor Q
def
= P/G1 → SpecK. There exists an

intermediate extension k ⊆ E ⊆ K with tr degk E ≤ edG2, such that Q comes by
base change from a G2-torsor QE → SpecE. I claim that QE lifts to a G-torsor
PE → SpecE.

To see this, consider the fppf gerbe of liftings L → (Sch/E). It is a fibered
category over the category (Sch/E) of E-schemes, whose objects over an E-scheme
T → SpecE are G-torsors PT → T , together with isomorphisms of G2-torsors
PT /G1 ≃ T ×SpecE QE , or, equivalently, G-equivariant morphisms of T -schemes
PT → T ×SpecE QE . The arrows from PT → T ×SpecE QE to P ′

T ′ → T ′ ×SpecE QE

are defined in the obvious way, as diagrams

PT

F

��

// T ×SpecE QE

pr1 //

f×id

��

T

f

��

PT ′ // T ′ ×SpecE QE

pr1 // T ′

in which F is G-equivariant. We need to show that L has a global section over
SpecE.

The action of G on G1 by conjugation descends to an action of G2 on G1,

since G1 is commutative. Denote by G̃1 the twisted form of the group scheme

SpecE ×Spec k G1 coming from the G2-torsor QE → SpecE; in other words, G̃1

is the quotient (QE ×Spec k G1)/G2, where G2 acts on the right on QE , and on

G1 by left conjugation. We claim that the gerbe L is banded by G̃1; that is, if
PT → T ×SpecE QE is an object of L(T ), the automorphism group Aut(PT ) is

isomorphic to G̃1(T ), and this isomorphism is functorial in T . In fact, the twisted

form G̃ of G obtained as the quotient PT ×Spec k G by the diagonal action of G
(where G acts on itself by conjugation) is the automorphism group scheme of the

G-torsor PT → T , and it contains G̃1 as the subgroup scheme of automorphisms

inducing the identity on T×SpecEQE . Hence G̃1 is the automorphism group scheme
of the object PT → T ×SpecE QE , and this proves the claim.

By [Gir71, Section IV 3.4], the equivalence classes of gerbes banded by G̃1 are

parametrized by the group H2(K, G̃1); a gerbe corresponds to 0, i.e., it is equivalent

to the classifying stack BEG̃1, if and only if it has a section. Now, by Lemma 3.2,

G̃1 is unipotent; hence by Lemma 3.3 H2(E, G̃1) = 0, so L has a section, and the
G2-torsor QE → SpecE lifts to a G-torsor PE → QE → SpecE.

There is no reason why SpecK ×SpecE PE should be isomorphic to P → SpecK
as a G-torsor. However, by construction, we have P/G1 ≃ SpecK×SpecEQE . Since

as we just saw L is a trivial gerbe banded by G̃1, we have that L is equivalent to the
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classifying stack BEG̃1, in such a way that the lifting PE → QE corresponds to the

trivial torsor G̃1 → SpecE. Then P → Q gives an object of L(SpecK); this will
be defined over a intermediate extension E ⊆ F ⊆ K of transcendence degree at

most edE G̃1 over E. So over F there will exist an object PF → SpecF ×SpecE QE

which is isomorphic to P → Q when pulled back to K. Hence P is defined over F ,

and, since the transcendence degree of F is at most equal to edk G2 + edE G̃1, the
result follows. ♠

Now we are ready to prove the theorem.
First of all, suppose that G is a diagonalizable group of order pn; then G is a

product µpd1×· · ·×µpdr for certain positive integers d1, . . . , dr with d1+· · ·+dr = n.
Then G is a subgroup scheme of Gr

m, hence by the Lemma 2.1 we have edG ≤ r ≤ n.
Now, assume that G is commutative unipotent of order pn, with n > 0. Suppose

that G is a subgroup of Ga; then again by Lemma 2.1 we have edk G ≤ dimGa =
1 ≤ n, and we are done.

If G is not a subgroup scheme of Ga, we proceed by induction on n. Assume
that the result holds for all commutative unipotent subgroup schemes of order pm

with m < n. Let G1 be a nontrivial subgroup scheme that is a subgroup scheme
of Ga and call pm its order. The group scheme G1 exists by Lemma 3.1. Then by
Lemma 3.4 we have

edk G ≤ edk(G/G1) + edF G1F ≤ (n−m) +m = n;

so the result holds for G.
Let G be a trigonalizable infinitesimal group scheme of order pn. Once again,

we proceed by induction on n. Let us suppose that the result is true for all trigo-
nalizable groups of order pm with m < n. By definition, G is an extension

1 −→ Gu −→ G −→ Gd −→ 1 ,

where Gu is unipotent and Gd is diagonalizable. We may assume that Gu is non-
trivial, otherwise G is diagonalizable and we are done. If G1 denotes the center
of Gu, then G1 is a nontrivial commutative unipotent normal subgroup of G; set

G2
def
= G/G1. Call p

m the order ofG2; by induction hypothesis we have edk G2 ≤ m.

Once again using Lemma 3.4, we have that edk G ≤ edk G2 + edF G̃1 for some

twisted form of G1; but by Lemma 3.2 the group scheme G̃1 is still commutative

unipotent, hence by the previous case edF G̃1 ≤ n−m, and we are done.

4. The essential dimension of some group schemes

The inequality of Theorem 1.2 is not an equality in general, even for infinitesimal
group schemes. Furthermore, the inequality of Theorem 1.4 does not hold in general
for finite non-trigonalizable group schemes.

Example 4.1. The following is due to R. Lötscher, M. MacDonald, A. Meyer and
Z. Reichstein [LMMR09, Example 6.3]. Suppose that ℓ/k is a cyclic extension of
degree p of fields of characteristic p > 0; call σ a generator for the Galois group
Gal(ℓ/k). The automorphism group of µp2 is a cyclic group of order p(p − 1);
choosing an element of order p in this automorphism group gives an action of
Gal(ℓ/k) on µp2,ℓ, which defines, by Galois descent, a form G of µp2 over k. This

is an infinitesimal group scheme over k of order p2, and dimk LieG = 1; however,
its essential dimension is p.
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This example gives a strict inequality in Theorem 1.2, and shows how the in-
equality of Theorem 1.4 does not hold in general. However, we don’t know any
examples of either phenomenon over an algebraically closed field.

In order to investigate this question, let us give the following definition.

Definition 4.2. Let G be an affine group scheme of finite type over a field k. If

edk G = dimk Lie(G)− dimG

then G is called almost special.

If G is a linear smooth group scheme over a field k, then it is almost-special if
and only if it has essential dimension 0. The term “almost-special” is justified by
the following fact.

Recall that a linear group scheme G over a field k is called special if every G-
torsor defined over an extension of k is trivial. Special groups were introduced by
J.-P. Serre in [Ser58] and studied by A. Grothendieck in [Gro58], and by many other
authors since then.

Proposition 4.3. A smooth affine group scheme of finite type over a field is almost-
special if and only if it is special.

This is immediate over an algebraically closed field, but seems to be new in this
generality; we are grateful to the referee and to Z. Reichstein (who also helped with
the proof) for pointing this out.

Proof. Let G be a smooth affine group of finite type over a field k. It is obvious
that if G is special, then it is almost-special.

Assume that G is almost-special. Let V be a generically free finite-dimensional
representation of G; by definition, there exists an non-empty open subscheme U
on which the action is free. Let U/G be the quotient, which exist as an integral
algebraic space of finite type over k; then the projection U → U/G is a G-torsor.
Let SpecK be the generic point of U/G, and let E → SpecK the pullback of
the G-torsor U → U/G. Since edk G = 0, then E → SpecK is defined over an
intermediate extension k ⊆ ℓ ⊆ K that is finite over k. Since U/G is geometrically
integral over k we have that k is algebraically closed in K, so ℓ = k, and the torsor
E → SpecK is defined over k. We have a cartesian diagram

E //

��

P

��

SpecK // Spec k

where P → Spec k is G-torsor, and the morphism in the top row is G-equivariant.
Let us show that G is connected. Let G0 be the connected component of the

identity in G. The scheme P/G0 is integral, since P is integral, and is finite over k;
hence it is the spectrum of a finite extension of k contained inK. So P/G0 = Spec k,
and G = G0, as claimed.

If k is finite, then it follows from a famous theorem of Steinberg [Ste65, Theo-
rem 1.9] that every G-torsor over a finite field is trivial. Since edk G = 0 we see
that every G-torsor over an extension of k descends to a finite field, and so it is
trivial.

Next, assume that k is infinite. The torsor E → SpecK is versal (see [GMS03,
Example 5.3]), hence if we show that it is trivial, then every other torsor over



8 DAJANO TOSSICI AND ANGELO VISTOLI

an extension of k will be trivial. The G-equivariant morphism E → P gives a
G-equivariant rational map U 99K P . After restricting U , we may assume that
U 99K P is defined everywhere. Since U is a non-empty open subset of an affine
space over an infinite field, we have U(k) ̸= ∅ and thus P (k) ̸= ∅. So the torsor
P → Spec k is trivial, and hence so is E → SpecK. ♠

We observe that if G is almost special then edk G = edk(G; p), where p is the
characteristic of k. In the following we give several examples of almost special group
schemes. Most of them are connected and trigonalizable. We do not know whether
all connected trigonalizable group scheme are almost special. For diagonalizable
group scheme this is true (see Example 4.4). In the unipotent case this is open: in
4.9 we discuss what we consider to be a key example to clarify this question.

It is easy to give examples of infinitesimal almost special group schemes that are
not trigonalizable: for example, if G is a special non-trigonalizable smooth group
scheme (e.g. G = Gln), the kernel of its Frobenius FG is almost special, as it follows
from Theorem 1.2 and Lemma 2.1.

Finally we remark that if G and H are almost special then the product G ×H
is also almost special, and edk(G×H) = edk G+ edk H.

The following strategy allows us to find some almost special group schemes. If an
infinitesimal group scheme G can be embedded in a special algebraic group scheme

of dimension n
def
= dimk Lie(G) then, using Theorem 1.2 and Lemma 2.1, we can

conclude that the essential dimension is exactly n, i.e. G is almost special. Here is
an example when this happens. Later in 4.8 we will see another example in which
this argument can not be applied.

Example 4.4. If n is a positive integer, we denote by Wn the group scheme of
truncated Witt vectors of length n (see [Ser79, Chapter 2, § 6], [Haz78, Chapter 3,
§ 1] and [DG70, Chapter 5, § 1]). Let G be the group scheme

t∏
j=1

FmjWnj ×
s∏

i=1

µpli ,

where FmWn is the kernel of the iterated Frobenius Fm : Wn → Wn. Then G is
almost special, i.e.

(4.1) edk G = s+
t∑

j=1

nj = dimk LieG.

Indeed, by the remark above, it is enough to remark that G is a closed subgroup of∏t
j=1 Wnj ×Gs

m, which is special.

Another class of examples is given by the following Corollary.

Corollary 4.5. Any trigonalizable group scheme G of height ≤ 1 and of finite type
over k is almost special.

Proof. If G has order pn then, since G has height ≤ 1, the dimension of its Lie
algebra is n. Therefore the result follows from Theorems 1.2 and 1.4. ♠

As a consequence of Theorem 1.4 and Lemma 3.4 we prove the following result.

Corollary 4.6. Let

1 −→ G1 −→ G −→ G2 −→ 1
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be an extension of group schemes over a field k of characteristic p > 0, with G1

unipotent commutative of order pn, then

edk G ≤ n+ edk G2.

Proof. Let P → SpecK be a G-torsor over an extension K of k. Then, from
Lemma 3.4, there exists an intermediate extension k ⊆ E ⊆ K and a twisted form

G̃1 → SpecE of G1 over E, such that

edk P ≤ edE G̃1 + edk G2.

By Lemma 3.2, G̃1 is unipotent. Hence by Theorem 1.4 we have edE G̃1 ≤ n, and
the result follows. ♠

Example 4.7. In addition to the hypotheses of Corollary 4.6, let us suppose that
G1 is of height ≤ 1, G2 is almost special and

dimk Lie(G) = dimk Lie(G1) + dimk Lie(G2).

From Corollary 4.6 and Theorem 1.2 it follows that

edk G = edk G1 + edk G2.

The hypothesis on the dimension of the Lie algebra of G is satisfied, for instance,
if the extension is split.

Example 4.8. We do not have examples of trigonalizable group schemes that are
not almost special. If such an example exists a candidate should be the following.

Let us consider the kernel Gr,m,n of the morphism Fm +V r : Wn → Wn, where
V is the Verschiebung (called “shift” in [Ser79] and “décalage” in [DG70]), m > 0
and 0 < r < n. This is a group scheme of order pmn. The dimension of its Lie
algebra is r, and it is embedded in a special group scheme of dimension n, therefore
r ≤ edk Gr,m,n ≤ n.

Now consider the case r = 1. Then we will prove that G1,m,n can not be
embedded in any special algebraic group scheme G of dimension 1, so we can not
use an argument as in the Example 4.4 to conclude that edk G1,m,n = 1. To prove
this fact we can clearly suppose that k is algebraically closed. Now let us suppose
that such a group G exists. First of all we can suppose it is connected. Secondly
we observe that it should be unipotent. Indeed, since it is special it should be
smooth (see Theorem 1.2) and affine ([Ser58, Theorem 1]); therefore, if it was not
unipotent, from [DG70, Proposition IV §2, 3.11] we conclude that it contains a
subgroup scheme isomorphic to Gm. This implies that the kernel of Frobenius, FG,
is not unipotent, since it contains a subgroup scheme isomorphic to µp. But since
the Lie algebra of G1,m,n is equal to the Lie algebra of G we have that FG = FG1,m,n,
which is a contradiction since G1,m,n is unipotent. But any unipotent smooth and
connected group scheme of dimension 1 over a perfect field is isomorphic to Ga

([DG70, Corollary IV §2, 2.10]). And G1,m,n is not a subgroup scheme of Ga.
This example is also interesting since, if k is perfect, the group scheme G1,1,2 is

the p-torsion group scheme of a supersingular elliptic curve (i.e., an elliptic curve
with p-rank equal to zero). The pn-torsion group scheme of the same curve has a
decomposition series with quotients isomorphic to G1,1,2.

Example 4.9. In [Led04], Ledet conjectured that the essential dimension of Z/pnZ
over a field k of characteristic p is n. The conjecture has been proved (easily) for
n ≤ 2. Since Z/pnZ is contained in the group scheme of Witt vectors of dimension
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n, Wn, and this group is special then edk(Z/pnZ) ≤ n. The same result also follows
from Theorem 1.4, which for constant p-group schemes was already known. The
open problem (for n > 2) is to prove the opposite inequality. We remark that if
this conjecture is true over an algebraic closure k̄ of k then edk G is equal to n for
any twisted form G of Z/pnZ. Indeed such a group scheme would be unipotent (see
Lemma 3.1) so, by the Theorem 1.4, its essential dimension is smaller or equal to n.
On the other hand it is at least n, since the essential dimension does not increase
by base change (see [BF03, Proposition 1.5]).
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Séminaire Claude Chevalley, 1958, exposé n. 1.
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