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Abstract

This paper considers a public good game with incomplete information
affected by extreme free-riding. We overcome this problem through the im-
plementation of a contest in which several prizes can be awarded. For any
possible distribution of wealth we identify the necessary and sufficient condi-
tions for the equilibrium allocations to be interior for all players. At interior
solutions, it is optimal for the social planner to set the last prize equal to zero,
but otherwise the total expected welfare is independent of the distribution of
the total prize sum among the prizes. We prove that private provision via
a contest Pareto-dominates both public provision and private provision via a
lottery.
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1 Introduction

This paper looks at contests as a way to overcome the free-riding problem. It is
well known that the public good provision resulting from individual voluntary con-
tributions is generally sub-optimal, because of the incentive to free-ride associated
with positive externalities (see for examples Bergstrom et al., 1986; Andreoni, 1988).
While fund-raising mechanisms based on tax rewards and penalties can be designed
to solve this problem (e.g. Groves and Ledyard, 1977; Walker, 1981), they are not
available to private organisations with no coercive power, such as charities or civic
groups. Contests as incentive mechanisms are different from the above solutions
because no power to enforce sanctions is required on the part of the institution
conducting the tournament.
Morgan (2000) analyses lotteries, where contributions to the public good entitle

to lottery tickets, as a means to solve the free-riding problem. He considers a model
with quasilinear preferences where all players contribute the same amount. Morgan
and Sefton (2000) provide experimental results in the case where all subjects have
the same endowment, showing that contribution under a lottery is generally higher
than under the voluntary contribution mechanism. Both these papers consider the
case in which one prize is awarded. However, we will prove that a lottery with one
prize performs worse than a contest, either with one or more prizes.
Contests are competitions in which agents spend resources in order to win one

or more prizes. The main characteristic is that, independently of success, all par-
ticipants bear some costs. There exists a large literature which analyses the use of
contests and tournaments as incentive schemes1. However, they have only recently
started to be examined as a means to overcome the free-riding problem and provide
socially desirable public goods2.
The first price all-pay auction with complete information has been utilised ex-

tensively in the literature (Dasgupta, 1986; Hillman and Samet, 1987; Hillman and
Riley, 1989; Ellingsen, 1991; Baye et al., 1993). There exists no pure strategy Nash
equilibrium and a complete characterisation of its equilibria appears in Baye et al.
(1996). Barut and Kovenock (1998) extend the analysis to the case of symmetric
multiple prize all-pay auctions with complete information. They show that, when
players are not constrained, only mixed strategy equilibria exist. Further, expected

1Applications have been made to promotions in labour markets (Lazear and Rosen, 1981), tech-
nological and research races (Wright, 1983; Dasgupta, 1986; Taylor, 1995; Fullerton and McAfee,
1999; Windham, 1999), credit markets (Breocker, 1990), and rent seeking (Tullock, 1980) among
others.

2In an independent study, Orzen (2005) analyses a first price all-pay auction as an incentive-
based funding mechanism for the private provision of public goods. Orzen considers a linear public
good game with complete information where all players have the same endowment. A prize is
awarded to the individual who contributes the most. The author proves that a first price all-pay
auction performs better than a lottery. However, he provides experimental results showing no
statistical difference between the lottery and the auction.
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expenditures are maximised by driving the value of the lowest prize to zero, but are
invariant across all configurations leaving the lowest value fixed and the sum of the
values constant.
In this paper we consider a linear public good game with heterogenous endow-

ments which are private information. Such a game is a modified version of the
game with complete information which is typically employed in public good experi-
ments. Each agent chooses how much of her wealth to allocate to the public good;
this money is multiplied by a parameter, which takes a value between one and the
number of players, and shared equally among all the agents. The unique Nash equi-
librium is to contribute nothing, although it is socially optimum to contribute all the
wealth. We overcome this extreme free-riding via a contest where several prizes may
be awarded. We assume that the social planner has access to a budget, which can be
allocated in form of prizes. The first prize is awarded to the player who contributes
the most, the second prize to the player with the second highest contribution and so
on until all prizes are awarded. The social planner wants to maximise the expected
total welfare net of the value of the total prize sum.
The puzzle with the equilibrium defined in Morgan (2000) is that it predicts

that agents with different endowments contribute the same amount, which does not
seem realistic. In our model, at interior solutions, heterogeneity and incomplete
information allow us to find a monotone equilibrium, in which the contribution is
strictly increasing in the endowment. Such an equilibrium is a purification of the
mixed strategy equilibrium defined by Barut and Kovenock (1998) and seems to
be more plausible than a completely symmetric equilibrium, either in mixed or in
pure strategy. For any possible distribution of wealth we identify the necessary and
sufficient conditions for the equilibrium allocations to be interior for all players. As
we said, we assume the typical utility function that is used in laboratory experiments
on public goods. Although it does not seem plausible that in real life people spend
all their wealth in auctions or lotteries, in the framework we analyse we believe
that wealth constraints may be binding. We find that there exists a critical level
of budget under which wealth constraints are non-binding for all agents. When the
total prize sum is below such a critical value, it is optimal for the social planner
to set the last prize equal to zero, but otherwise the total expected contribution is
independent of the distribution of the total prize sum among the prizes. Further,
provided interior solutions, we prove that private provision via a contest such as the
one considered here Pareto-dominates both public provision and private provision
via a lottery in which one prize is awarded.
In Section 2 we present a linear public good game with complete information.

In Section 3 we present the model and identify the Nash equilibrium. In Section 4
we find necessary and sufficient conditions for interior solutions and we present the
revenue equivalence result. Section 5 compares private provision via a contest with
both public provision and private provision via a lottery. Section 6 concludes.
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2 A Linear Public Good Game with Complete In-
formation

In this section we present the game that is typically used in public good experiments
n subjects take part in the experiment. Each subject is endowed with the same
amount of money z and simultaneously chooses how much of her wealth to allocate
to the public good; this money is multiplied by a parameter α and shared equally
among all the subjects. Agent i’s payoff can be described by

Ui = z − gi + α
G

n
(1)

where gi is i’s contribution to the public good and G =
nX
i=1

gi is the total level

of public good. If α ∈ (1, n) an individual opportunity cost of contributing to the
public good exceeds the marginal return of investing in the public good. Thus, the
unique Nash equilibrium of the game is to contribute nothing, while it is efficient to
contribute z.

3 The Model

Let us consider n players. Each player i is assumed to have endowment zi, which
is private information. Endowments are drawn independently of each other from
the interval [0, 1] according to the distribution function F (z), which is common
knowledge, with mean E[z]. We assume that F (z) has a continuous and bounded
density F

0
(z) > 0. Players play a public good game in which each individual has

to choose how much to contribute to the public good. At the same time they take
part in a contest in which n prizes are awarded such that π1 ≥ · · · ≥ πm−1 >

πm = · · · = πn ≥ 0, 1 < m ≤ n and
nX

j=1

πj = Π. This assumption rules out the

possibility of awarding n equal prizes and will enable us find an equilibrium. We
will call π = (π1, · · · , πn) ∈ Rn the vector of prizes. The player with the highest
contribution wins π1, the player with the second highest contribution wins π2, and
so on until all the prizes are allocated. For each player, a strategy g(z) will be the
contribution to the public good as a function of the player’s endowment and the
action space for player i will be the interval [0, zi]. If player i, who has endowment
zi and contributes gi, wins prize j her payoff is

Ui = zi − gi + α
G

n
+ πj (2)

where α ∈ (1, n).
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Each player i chooses her contribution in order to maximise expected utility
(given the other players’ contributions and given the values of the different prizes).
We will assume that Π is exogenously determined. For a given value of Π, the social
planner determines the number of prizes having positive value and the distribution
of the total prize sum among the different prizes in order to maximise the expected
value of total welfare net of the value of Π (given the players’ equilibrium strategy
functions).
In this section we will focus on the case in which the equilibrium strategy g(z)

is less than z for any type z on the interval [0, 1].
In order to find the equilibrium of the game it is useful to present the function

K(F (z)) =
nX
i=1

πi

µ
n− 1
i− 1

¶
(F (z))n−i(1− F (z))i−1 (3)

Given a vector of prizes π, K(F (z)) is a linear combination of n order statistics
with weights equal to the prizes. If all agents adopt the same strictly increasing
strategy g(z), K(F (z)) represents the expected prize of the player with endowment
z.

Lemma 1 The function K(F (z)) is strictly monotonic increasing in z.

Proof. Let’s consider zi and zj such that 0 ≤ zi < zj ≤ 1. Given that F (zi) < F (zj),
and given the assumption that π1 ≥ · · · ≥ πm−1 > πm = · · · = πn ≥ 0, 1 < m ≤ n,
K(F (zj)) assigns higher weights than K(F (zi)) to higher prizes and lower weights
than K(F (zi)) to lower prizes. Therefore K(F (zi)) < K(F (zj)).
At interior solutions for all players, we are able to characterise a monotone equi-

librium. Later on we will identify the necessary and sufficient conditions for its
existence.

Proposition 1 Given a vector π of prizes, at an interior solution for all players
the game has a symmetric pure strategy equilibrium given by

g(z) =
n

n− α
(K(F (z))− πn)

Proof. The expected utility of a player from a choice g can be calculated as

E[U(z − g, π) | g, g−i] =

z − g + α
G

n
+ (Pr[1 | g, g−i]π1 +Pr[2 | g, g−i]π2 + · · ·+Pr[n | g, g−i]πn)

where Pr[j | g, g−i] is the probability of a choice g being j-th highest conditional
on the other strategies g−i. If all agents adopt the same strictly increasing strategy
g(z), then the probability that a candidate with endowment zi is higher ranked
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than another randomly chosen candidate is Pr[g(zi) > g(z)] = Pr[zi > z] = F (zi).
Therefore

(Pr[1 | g, g−i]π1 +Pr[2 | g, g−i]π2 + ...+Pr[n | g, g−i]πn) =

K(F (z)) =
nX
i=1

πi

µ
n− 1
i− 1

¶
(F (z))n−i(1− F (z))i−1

Now, given the common strategy g(z), we suppose that an individual with endow-
ment z chooses g(ẑ) for some ẑ, then her expected utility will be

z − g(ẑ) + α
G−i + g(ẑ)

n
+K(F (ẑ))

where G−i is the sum of the contributions of all the other players. Differentiating
with respect to ẑ we obtain

α− n

n
g0(ẑ) +K 0(F (ẑ))F 0(ẑ)

In equilibrium the individual with endowment z should choose g(z) so that the above
will be equal to zero when ẑ = z, and we have

g0(z) =
n

n− α
K 0(F (z))F 0(z)

A player with the lowest possible endowment z = 0 does not contribute to the public
good and wins the last prize. This yields the boundary condition g(0) = 0. Hence,
the solution is

g(z) =
n

n− α
(K(F (z))− πn)

From Lemma (1) we know that the candidate equilibrium function g is strictly
monotonic increasing.
Assuming that all players rather than i play according to g, we finally need to

show that, for any type z of player i, the contribution g(z) maximises the expected
utility of that type. Let us consider an individual with endowment z. If she plays
g(z) = n

n−α(K(F (z))− πn) her expected utility is given by

E[U(z, g(z)) | g−i] = z − α

n− α
K(F (z)) +

n

n− α
πn +

α

n
G

If she deviates and plays n
n−α(K(F (ẑ)) − πn) for some ẑ 6= z her expected utility

will be

E[U(z, g(ẑ)) | g−i] =

z − n

n− α
K(F (ẑ)) +

n

n− α
πn +

α

n
(G− n

n− α
K(F (z))

+
n

n− α
πn +

n

n− α
K(F (ẑ))− n

n− α
πn) +K(F (ẑ))

= z − α

n− α
K(F (z)) +

n

n− α
πn +

α

n
G
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Therefore she is indifferent to play any other strategy n
n−α(K(F (ẑ)) − πn). If her

action space [0, z] is a subset of the set g−i this rules out the possibility that she
might be better off deviating from g(z). If z > g(1) it is easy to show that she
would be worse off playing any strategy greater than g(1). In fact, playing g(1)
would already guarantee π1 and any higher contribution would result in a lower
expected utility.

4 Interior Solutions and Revenue Equivalence

In this section we are going to look for conditions that assure that the solution is
interior for all players, given that the social planner wants to maximise the expected
total welfare net of the value of the total prize sum. We will then analyse the
expected total contribution when interior solutions are guaranteed.
First of all, let us present the social planner’s maximisation problem, assuming

that wealth constraints are non-binding for all players. Recall that Π is exogenously
determined and the social planner determines the number of prizes having positive
value and the distribution of the total prize sum among the different prizes in order
to maximise the expected value of total welfare net of the value of Π (given the play-
ers’ equilibrium strategy functions). This means that, to analyse the maximisation
problem we have let the vector of prizes π be variable, maintaining the assumptions

that π1 ≥ · · · ≥ πm−1 > πm = · · · = πn ≥ 0, 1 < m ≤ n and
nX

j=1

πj = Π, and we

now have to study the family of functions

φ(F (z), π |
nX

j=1

πj = Π, π1 ≥ · · · ≥ πm−1 > πm = (4)

· · · = πn ≥ 0, 1 < m ≤ n) =

n

n− α

nX
i=1

πi

µ
n− 1
i− 1

¶
(F (z))n−i(1− F (z))i−1

Notice that, if π were fixed expression (4) would reduce toK(F (z)), as presented
in (3).
Letting the vector of prizes π be variable, at an interior solution for all players,
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the equilibrium strategy is represented by the following3

g(z, π) =
n

n− α
(φ(F (z), π)− πn) =

n

n− α

nX
i=1

πi

µ
n− 1
i− 1

¶
(F (z))n−i(1− F (z))i−1 − n

n− α
πn

And the social planner’s problem is given by

max
π

W = n

1Z
0

(z − g(z, π) +
α

n
G+ φ(F (z), π))F 0(z)dz −Π (5)

Notice first that

n

1Z
0

φ(F (z), π)F 0(z)dz = Π (6)

independently of the distribution of the total prize sum among the different
prizes.
Further, notice that, at interior solutions, we have

G = n

1Z
0

g(z, π)F 0(z)dz =
n

n− α
Π− n2

n− α
πn

This means that the expected total contribution only depends on the total prize
sum and the value of the last prize.
Therefore, we can rearrange expression (5) as

max
π

W = n

1Z
0

(z − g(z, π) +
α

n− α
Π− αn

n− α
πn)F

0(z)dz (7)

and we can state the following result.

Proposition 2 At an interior solution for all players the social planner will set
πn = 0.

3For simplicity of notation, unless differently specified, from now on we will refer to φ(F (z), π |
nX
j=1

πj = Π, π1 ≥ · · · ≥ πm−1 > πm = · · · = πn ≥ 0, 1 < m ≤ n) as φ(F (z), π).
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Proof. Expression (7) can be rewritten as

max
π

W = n

1Z
0

(z − n

n− α
φ(F (z), π) + (8)

n

n− α
πn +

α

n− α
Π−

αn

n− α
πn)F

0(z)dz = nE[z] +
n(α− 1)
n− α

(Π− nπn)

It is obvious that πn = 0 maximises the above expression.
Provided that at an interior solution for all players the social planner will set

the last prize equal to zero, Proposition (9) in Appendix A provides necessary and
sufficient conditions for the value of Π such that g(z) is interior for any z on the
interval [0, 1] for any possible distribution of Π among the first n− 1 prizes. On the
basis of this we can establish the following result.

Proposition 3 Provided that the last prize is equal to zero, there exists Π̄ > 0 such
that g(z) is interior for all players independently of the distribution of the total prize
sum among the first n− 1 prizes if and only if Π ≤ Π̄.

Proof. See Appendix B.
As we noticed the expected total contribution only depends on the value of the

total prize sum and on the last prize. We know, though, that if wealth constraints are
non-binding for all players the social planner maximises the total expected welfare
setting the last prize equal to zero. Therefore, at an interior solution the expected
total contribution will be the same, independently of the distribution of the total
prize sum among the first n− 1 prizes. This result is summarised by the following
proposition.

Proposition 4 If Π ≤ Π̄ the social planner will set the last prize equal to zero and
the expected total contribution will be G = n

n−αΠ, independently of the distribution
of the total prize sum among the first n− 1 prizes.

Further, from the result above it is obvious that

Corollary 1 If Π ≤ Π̄ the expected total contribution is strictly increasing in Π.

5 Contest versus Public Provision and Lottery

In this section, we will compare the result obtained through a contest as the one we
described with both the result generated by public provision and the one obtained
using a lottery.
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When socially desirable public goods are not privately provided the obvious
alternative is to publicly provide them. Let us imagine that the social planner
has access to a budget equal to Π ≤ Π̄. Instead of allocating this sum in form of
prizes the social planner provides an amount of public good equal to Π. We want
to compare the expected total welfare generated by such public provision with the
expected total welfare resulting from the use of a contest, where the social planner
awards up to n− 1 prizes which sum is equal to Π.

Proposition 5 Private provision of public good via a contest, in which the total sum
prize Π ≤ Π̄ is distributed among the n−1 players who contribute the most, Pareto-
dominates public provision. If the social planner uses Π ≤ Π̄ to publicly provide the
public good the expected total welfare net of the value of Π isWP = nE[z]+(α−1)Π.
Proof. If the social planner uses Π ≤ Π̄ to provide the public good the expected
total welfare net of the value of Π is given by

WP = n

1Z
0

(z +
α

n
Π)F 0(z)dz −Π = (9)

nE[z] + (α− 1)Π
From expression (8) we know that, if the last prize is equal to zero, the expected
total welfare generated by a contest is equal to

W = nE[z] +
n(α− 1)
n− α

Π

that is strictly greater than (9).
We now consider the case where the social planner resorts to a lottery to encour-

age contribution to the public good. To be able to compare the use of a lottery with
the use of a contest we will have to restrict the analysis to interior solutions. To
do this let us assume n players whose endowments are drawn independently of each
other from the interval [z

¯
, z̄], with z

¯
strictly positive, according to the distribution

function F (z), which is common knowledge. Assume that the social planner decides
to award the sum Π via a lottery with the following properties. If a player i with
endowment zi contributes gi ∈ [0, zi] and the sum of the contributions of all other
players is equal to G−i she wins Π with probability

gi
gi+G−i

and her expected utility
is given by

E[U(zi − gi,Π) | gi, G−i] = zi − gi + α
G−i + gi

n
+

gi
gi +G−i

Π

Differentiating with respect to g and setting this equal to zero we have

α− n

n
+

G−i
(gi +G−i)2

Π = 0
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Assuming that the total contribution is different from zero4 and rearranging we
obtain player i’s best response function

g∗i = −G−i + 2

r
n

n− α
ΠG−i (10)

From (10) we can write an expression for the total contribution when player i
plays according to her best response

G(g∗i | G−i) = 2

r
n

n− α
ΠG−i

Although the endowment is private information, notice that z does not enter the
first order condition. Each player will have the same best response function and
at interior solutions the contribution in equilibrium will be the same for any z.
Therefore, assuming interior solutions, we know that g∗i will be

G(g∗i |G−i)
n

and we can
write

g∗i =
2
p

n
n−αΠG−i

n
(11)

Setting (10) and (11) equal we obtain an expression for G−i when any player
plays according to her best response function

G∗−i =
(n− 1)2
n(n− α)

Π

Hence we know that in equilibrium, at an interior solution for all players, all
agents will play

g∗ =
n− 1

n(n− α)
Π

And the total contribution in equilibrium, at an interior solution for all players,
will be

G∗ =
n− 1
n− α

Π

It is easy to see that if Π ≤ n(n−α)
n−1 z¯

the solution will be interior for all players
These results are summarised in the following proposition.

Proposition 6 Assume n players whose endowments are drawn independently of
each other from the interval [z

¯
, z̄], with z

¯
strictly positive, according to the distribution

function F (z), which is common knowledge. Assume that z is private information.
If Π ≤ n(n−α)

n−1 z¯
the lottery has a symmetric pure strategy equilibrium in which any

player contributes g∗ = n−1
n(n−α)Π and the total contribution is G∗ = n−1

n−αΠ

4Notice that in equilibrium the total contribution will not be zero. In fact, if any other player
different from i contributes zero, player i will contribute ε strictly positive and arbitrarily close to
zero and win the prize.
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It is interesting to notice that under such a lottery, unlike the contest, all players
contribute the same amount in equilibrium.
Further, notice that in order to prove Proposition (8) in Appendix A we have not

resorted to the support of z and that the same conditions guarantee that the solution
will be interior for all players in the case in which endowments are drawn indepen-
dently of each other from the interval [z

¯
, z̄], with z

¯
strictly positive, according to the

distribution function F (z), which is common knowledge, and which has a continuous
and bounded density F

0
(z) > 0. Under a contest as the one described, provided that

the social planner sets the last prize equal to zero, the total contribution is given by

G = n

z̄Z
z
¯

n

n− α
φ(F (z), π |

nX
j=1

πj = Π, π1 ≥

· · · ≥ πn, πn = 0)F
0(z)dz =

n

n− α
Π

Hence, we can conclude that, for Π that guarantees interior solutions for all
players under both mechanisms, the expected total contribution raised with a contest
is greater than the total contribution under a lottery, for any finite n.

Proposition 7 Assume n players whose endowments are drawn independently of
each other from the interval [z

¯
, z̄], with z

¯
strictly positive, according to the dis-

tribution function F (z), which is common knowledge. Assume that z is private
information and that F (z) has a continuous and bounded density F

0
(z) > 0. If

Π ≤ min[n(n−α)
n−1 z¯

, Π̄], the expected total provision of public good via a contest, in
which the total sum prize is distributed among the n− 1 players who contribute the
most, is greater than the total contribution raised under a lottery.

6 Conclusions

Finding effective ways to fund public goods is an important policy question, given
the role played by public goods in personal and collective well-being. There exists
an extensive literature on fund-raising mechanisms based on taxes and penalties.
However, solutions to the free-riding problem which do not require coercive power
have only recently started to be analysed. In the case of institutions which are
unable to enforce sanctions, such as charities, this difference may be of extreme
importance.
In this paper we analysed the use of contests as incentive schemes to fund public

goods. We considered a linear public goodmodel as it is often employed in laboratory
experiments. The main characteristics of the model are the possibility of awarding
multiple prizes on the one side, and heterogeneity of the endowments and incomplete
information on the other. We assumed that the social planner has access to a
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budget and uses it to implement a contest. The first prize is awarded to the player
who contributes the most, the second prize to the player with the second highest
contribution and so on until all prizes are awarded. The social planner’s objective
function is given by the expected total welfare net of the total sum prize. We found
that there exists a critical level of budget under which wealth constraints are non-
binding for all agents. For any possible distribution of wealth we identified the
necessary and sufficient conditions for the equilibrium allocations to be interior for
all players. When the total prize sum is below such a critical value it is optimal for
the social planner to set the last prize equal to zero, but otherwise the total expected
contribution is invariant to all configurations leaving the lowest value fixed. Provided
interior solutions, we proved that a contest Pareto-dominates public provision of the
public good and performs better than a lottery.
Heterogeneity of the endowments and incomplete information about income lev-

els allowed us to characterise a monotone equilibrium. Such an equilibrium is a
purification of the mixed strategy equilibrium described by Barut and Kovenock
(1998). On the contrary, in the case of a lottery, a symmetric equilibrium arises
(see Morgan, 2000). This is an interesting difference which makes the equilibrium
of a contest looks more realistic than the latter. Indeed it does seem generally more
plausible that richer people bid more than individuals with a lower income.
An interesting extension to the present work would be to test experimentally the

main results of the model. First, an important question would be to check whether
individuals actually contribute more in a contest with these characteristics than in
lottery, and whether the revenue equivalence holds. Further, it would be interesting
to test whether a monotone equilibrium would arise.

Appendix A: Necessary and Sufficient Conditions

We want to find necessary and sufficient conditions for the value of Π such that g(z)
is interior for any z on the interval [0, 1] for any possible allocation of Π among the
first n − 1 prizes. Notice in fact that, assuming interior solutions, Proposition (2)
assures us that the social planner will set πn = 0.
If we let the vector of prizes π be variable, provided that the last prize is equal

to zero and that the sum of the first n− 1 prizes is equal to Π, g(z) is represented
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by the following5

n

n− α
φ(F (z), π |

nX
j=1

πj = Π, π1 ≥ · · · ≥ πn, πn = 0) =

n

n− α

nX
i=1

πi

µ
n− 1
i− 1

¶
(F (z))n−i(1− F (z))i−1

Let us define the following object.

Definition 1 Define the envelope function

V (z) = max
π
{φ(F (z), π) |

nX
j=1

πj = Π, π1 ≥ · · · ≥ πn, πn = 0}

for any z on the interval [0, 1].

If we are able to provide necessary and sufficient conditions for V (z) to be weakly
less than z for any z on the interval [0, 1], it will be easy to extend the result to
g(z). In order to do this we will define some useful concepts that will help us in the
course of our analysis.

Definition 2 For any i such that 1 ≤ i ≤ n− 1:
1) define the set Qi ⊂ Rnsuch that for every π ∈ Qi it holds that π1 ≥ · · · ≥

πi > πi+1 = · · · = πn = 0 and
iX

l=1

πl = Π.

2) call π̄i the vector π ∈ Qi such that π1 = · · · = πi =
Π
i
.

Definition 3 For any i such that 2 ≤ i ≤ n − 1 define the set Q̃i ⊂ Qi such that
for every π ∈ Q̃i it holds that π1 > πi.

Obviously π̄1 ∈ Q1, characterised by π11 = Π, π1l = 0 for 2 ≤ l ≤ n, is the only
element of the set Q1 and φ(F (z), π̄1) = Π(F (z))n−1.
The next Proposition presents necessary and sufficient conditions for V (z) to be

weakly less than z on the interval [0, 1].

Proposition 8 φ(F (z), π̄i) ≤ z on the interval [0, 1] for 1 ≤ i ≤ n−1 are necessary
and sufficient conditions for V (z) ≤ z.

5Notice that, unlike the rest of the paper, both in Appendix A and Appendix B, when writing

φ(F (z), π) we will refer to φ(F (z), π |
nX
j=1

πj = Π, π1 ≥ · · · ≥ πn, πn = 0).
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Proof. The necessity of these conditions is obvious. In order to prove sufficiency
we will have to present some technical results.

Lemma 2 Given a vector πR ∈ Rn such that
nX

j=1

πRj = Π and πR1 ≥ · · · ≥ πRn ,

πRn = 0, consider a redistribution of the type −∆πRi = ∆πRi+1, with 1 ≤ i ≤ n − 1
and ∆πRi > 0, and call the resulting vector πS. Then, φ(F (z), πS) > φ(F (z), πR)
for any z such that F (z) < n−i

n
and φ(F (z), πS) < φ(F (z), πR) for any z such that

F (z) > n−i
n
.

Proof. Notice that ∂φ(F (z),π)
∂πi

=
¡
n−1
i−1
¢
(F (z))n−i(1 − F (z))i−1. To see how a redis-

tribution of the type −∆πi = ∆πi+1 affects φ(F (z), π) we have to study the sign
of

−∂φ(F (z), π)
∂πi

+
∂φ(F (z), π)

∂πi+1
(12)

= (F (z))n−i(1− F (z))1(−
µ
n− 1
i− 1

¶
(F (z))

+

µ
n− 1
i

¶
(1− F (z)))

It is the case that expression (12) > 0 for any z such that F (z) < (n−1i )
(n−1i−1)+(

n−1
i )

and

(12) < 0 for any z such that F (z) > (n−1i )
(n−1i−1)+(

n−1
i )
. Further, it is easy to show that

¡
n−1
i

¢¡
n−1
i−1
¢
+
¡
n−1
i

¢ = (n−1)!
i!(n−1−i)!

(n−1)!
(i−1)!(n−i)! +

(n−1)!
i!(n−1−i)!

=
n− i

n

Lemma 3 Assume 1 ≤ i ≤ n− 2. Consider a vector πB ∈ Q̃i+1. If 2 ≤ i ≤ n− 2
then φ(F (z), π̄i+1) > φ(F (z), πB) for any z such that F (z) ≤ n−i

n
. If i = 1 then

φ(F (z), π̄2) > φ(F (z), πB) for any z such that F (z) < n−1
n
and φ(n−1

n
, π | π ∈ Q2) =

φ(n−1
n
, π̄1) = Π(n−1

n
)n−1.

Proof. Let us first consider the case in which 2 ≤ i ≤ n− 2. The vector π̄i+1 can
be obtained from vector πB applying the following algorithm in i steps.

Algorithm 1 Step 1. From vector πB construct vector πB1 such that πB11 = Π
i+1

, πB12 =

πB2 + πB1 − Π
i+1

, πB1j = πBj , 3 ≤ j ≤ i + 1. Given that πB2 ≥ πB3 it will now be the
case that πB12 > πB13 ≥ · · · ≥ πB1i+1. Therefore

Π
i+1
+ iπB12 > Π. The last inequality

can be rewritten as πB12 > Π
i+1
, therefore we can move to the next step and repeat the

process.
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Step j, with 2 ≤ j ≤ i − 1. From vector πBj−1 construct vector πBj such
that πBjj = Π

i+1
, πBjj+1 = πBj−1j+1 + πBj−1j − Π

i+1
, πBjl = πBj−1l for 1 ≤ l ≤ j − 1

and j + 1 ≤ l ≤ i + 1. Given that πBj−1j+1 ≥ πBj−1j+2 it will now be the case that
πBjj+1 > πBjj+2 ≥ · · · ≥ πBji+1. Therefore it is the case that 2

Π
i+1

+ (i + 1 − j) πBjj+1.
Rearranging the last inequality we obtain πBjj+1 >

Π
i+1
. This means that we can move

to the next step and repeat the process.
Step i. From vector πBi−1 construct vector πBi such that πBii = Π

i+1
, πBii+1 =

πBi−1i+1 + πBi−1i − Π
i+1

, πBil = πBi−1l for 1 ≤ l ≤ i − 1. Notice that πBi−1l = Π
i+1

for
1 ≤ l ≤ i− 1. Therefore πBi = π̄i+1.

Notice that from Lemma 2 we know that φ(F (z), πBj) > φ(F (z), πBj−1) for any
z such that F (z) < n−j

n
for 1 ≤ j ≤ i. Therefore φ(F (z), π̄i+1) > φ(F (z), πB) for

any z such that F (z) ≤ n−i
n
, that contradicts our assumption.

Consider now the case in which i = 1. Notice that π̄21 < πB1 and π̄22 > πB2 .
Applying the same algorithm as above from πB we will obtain π̄22 after the first step.
Applying Lemma 2 we know that φ(F (z), π̄2) > φ(F (z), πB) for any z such that
F (z) < n−1

n
. Further, from Lemma 2 we also know that φ(F (z), π | π ∈ Q2) >

φ(F (z), π̄1) for any z such that F (z) < n−1
n
and φ(F (z), π | π ∈ Q2) < φ(F (z), π̄1)

for any z such that F (z) > n−1
n
. Therefore, by continuity, we can conclude that

φ(n−1
n
, π | π ∈ Q2) = φ(n−1

n
, π̄1) = Π(n−1

n
)n−1.

Lemma 4 Assume 2 ≤ i ≤ n − 2. φ(F (z), π̄i+1) > φ(F (z), π | π ∈ Qj) for any z
such that F (z) ≤ n−i

n
and for 1 ≤ j ≤ i.

Proof. The structure of this proof is in three parts.

First of all, from Lemma 3 we know that φ(F (z), π̄j) > φ(F (z), π | π ∈ Q̃j)
for any z such that F (z) ≤ n−j−1

n
and, given that 1 ≤ j ≤ i, for any z such that

F (z) ≤ n−i
n
.

For the second part of the proof, let us firs assume j = 1. Consider a vector
πB ∈ Q̃i+1. We want to show that φ(F (z), πB) > φ(F (z), π̄1) for any z such that
F (z) ≤ n−i

n
.

If 2 ≤ j ≤ i, consider a vector πB ∈ Q̃i+1 such that πBl = π̄jl for 1 ≤ l ≤ j − 1.
Notice that, obviously, πBj < π̄jl . We want to show that

φ(F (z), πB) > φ(F (z), π̄j) for any z such that F (z) ≤ n−i
n
if 1 ≤ j ≤ i − 1 and

for any z such that F (z) < n−i
n
if j = i.

Vector πB can be obtained from π̄j through the following algorithm in i + 1 − j
steps.

Algorithm 2 Step 1. If j = 1, from vector π̄1 construct vector πA1 ∈ Q̃2 such
that πA11 = πB1 and πA12 = Π − πB1 . If 2 ≤ j ≤ i, from vector π̄j construct vector
πA1 ∈ Q̃j+1 such that πA1l = π̄jl =

Π
j
for 1 ≤ l ≤ j − 1, πA1j = πBj and πA1j+1 =

π̄jj − πBj =
Π
j
− πBj .
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Step k, with 2 ≤ k ≤ i− j. From vector πAk−1 construct vector πAk ∈ Q̃j+k such
that πAkl = πAk−1l for 1 ≤ l ≤ j = k−2, πAkj+k−1 = πBj+k−1 and π

Ak
j+k = πAk−1j+k−1−πBj+k−1.

Step i + 1 − j. From vector πAi−j construct vector πAi+1−j ∈ Q̃i+1 such that
πAi+1−jl = πAi−jl for 1 ≤ l ≤ i− 2, πAi+1−ji = πBi and πAi+1−ji+1 = πAi−ji − πBi . Notice
that πAi+1−ji+1 = πBi+1 and π

Ai+1−j = πB by construction.

From Lemma 2 we know that φ(F (z), πAk) > φ(F (z), πAk−1) for any z such that
F (z) < n+1−k

n
. Therefore if 1 ≤ j ≤ i− 1 then φ(F (z), πB) > φ(F (z), π̄j) for any z

such that F (z) ≤ n−i
n
. If j = i then φ(F (z), πB) > φ(F (z), π̄j) for any z such that

F (z) < n−i
n
and φ(n−i

n
, πB) = φ(n−i

n
, π̄j).

Finally, from Lemma 3 we know that φ(F (z), π̄i+1) > φ(F (z), πB) for any z such
that F (z) ≤ n−i

n
. Therefore φ(F (z), π̄i+1) > φ(F (z), π | π ∈ Q̃j) for any z such that

F (z) ≤ n−1
n
.

Lemma 5 Assume 2 ≤ i ≤ n−2. Consider a vector πB ∈ Q̃i+1 such that πB1 > πBj ,
with 2 ≤ j ≤ i. Assume a vector πC ∈ Q̃i+1 such that πCl = πBl for j+1 ≤ l ≤ i+1

and πC1 = · · · = πCj =

Π−
i+1X

l=j+1

πBl

j
. If 3 ≤ j ≤ n− 2 then φ(F (z), πC) > φ(F (z), πB)

for any z such that F (z) ≤ n−j+1
n
. If j = 2 then φ(F (z), πC) > φ(F (z), πB) for any

z such that F (z) < n−1
n
and φ(n−1

n
, πC) > φ(n−1

n
, πB).

Proof. Notice that πB1 > πC1 and πBj < πCj . Vector π
C can be obtained from vector

πB applying the following algorithm in j − 1 steps.

Algorithm 3 Step 1. From vector πB construct vector πB1 such that πB11 = πC1 , π
B1
2 =

πB2 + πB1 − πC1 , π
B1
l = πBl for 3 ≤ l ≤ i + 1. Given that πB2 ≥ πB3 it will now be the

case that πB12 > πB13 ≥ · · · ≥ πB1i+1. Therefore π
B1
1 +(j−1)πB12 > Π−

i+1X
l=j+1

πBl . Since

πB11 = πC1 =

Π−
i+1X

l=j+1

πBl

j
, the last inequality can be rearranged as πB12 >

Π−
i+1X

l=j+1

πBl

j
.

Therefore we can move to the next step and repeat the process.
Step k, 2 ≤ k ≤ j − 2. From vector πBk−1 construct vector πBk such that

πBkk = πCk , π
Bk
k+1 = πBk−1k+1 + πBk−1k − πCk , π

Bk
l = πBk−1l for 1 ≤ l ≤ k − 1 and

k + 2 ≤ l ≤ i + 1. Notice that, by construction πBkl =

Π−
i+1X

l=j+1

πBl

j
for 1 ≤ l ≤ k and

πBkl = πBl for k+2 ≤ l ≤ i+1. Given that πBk−1k+1 ≥ πBk−1k+2 it will now be the case that

πBkk+1 > πBkk+1 ≥ · · · ≥ πBki+1. Therefore
k
j
(Π−

i+1X
l=j+1

πBl ) + (j − k)πBkk+1 > Π−
i+1X

l=j+1

πBl .
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The last inequality can be rearranged as πBkk+1 >

Π−
i+1X

l=j+1

πBl

j
. Therefore we can move

to the next step and repeat the process.
Step j−1. From vector πBj−2 construct vector πBj−1 such that πBj−1j−1 = πCj−1, π

Bj−1
j =

πBj−2j +πBj−2j−1 −πCj−1, π
Bj−1
l = πBj−2l for 1 ≤ l ≤ j− 2 and j+1 ≤ l ≤ i+1. Notice

that πBj−1 = πC by construction.

From Lemma 2 we know that φ(F (z), πBk) > φ(F (z), πBk−1) for any z such
that F (z) < n−k

n
for 1 ≤ k ≤ j − 1. This means that if 3 ≤ i ≤ n − 3 then, by

construction, we will have φ(F (z), πC) > φ(F (z), πB) for any z such that F (z) ≤
n−j+1

n
. If i = 2 then j will necessarily be equal to 3 and, by construction, we will

have φ(F (z), πC) > φ(F (z), πB) for any z such that F (z) < n−1
n
. Further it will be

the case that φ(n−1
n
, πC) > φ(n−1

n
, πB).

Lemma 6 Consider a vector πC ∈ Q̃i+1 such that πCi+1 = x, πCj =
Π−x
i
with 0 <

x < Π
i+1

for 1 ≤ j ≤ i and 2 ≤ i ≤ n − 2. If φ(F (z), πC) > φ(F (z), π̄i+1) then
φ(F (z), π̄i) > φ(F (z), πC).
Proof. The inequality φ(F (z), πC) > φ(F (z), π̄i+1) can be rewritten as

Π− x

i
((F (z))n−1 + · · ·+µ

n− 1
i− 1

¶
(F (z))n−i(1− F (z))i−1) +

x

µ
n− i

i

¶
(F (z))n−i−1(1− F (z))i −

Π

i+ 1
((F (z))n−1 + · · ·+ (F (z))n−i−1(1− F (z))i) > 0

The above expression can be rearranged as

(
Π− x

i
− Π

i+ 1
)((F (z))n−1 + · · ·+ (13)µ

n− 1
i− 1

¶
(F (z))n−i(1− F (z))i−1) >

(
Π

i+ 1
− x)(F (z))n−i−1(1− F (z))i

Call A the expression ((F (z))n−1 + · · · + ¡n−1
i−1
¢
(F (z))n−i(1 − F (z))i−1) and call B

the expression (F (z))n−i−1(1− F (z))i. Inequality (13) is satisfied for A
B
> i.

The inequality φ(F (z), π̄i) > φ(F (z), πC) can be rewritten as

Π

i
A− Π− x

i
A− xB > 0 (14)

Inequality (14) is satisfied for A
B
> i.

18



From Lemma (4) we know that φ(F (z), π̄i+1) > φ(F (z), π | π ∈ Qj) for any z
such that F (z) ≤ n−i

n
and for 2 ≤ i ≤ n − 2 and 1 ≤ j ≤ i. In particular, this

means that V (z) will be equal to φ(F (z), π̄n−1) for any z such that 0 ≤ F (z) ≤ 2
n
.

For those z such that 2
n
≤ F (z) ≤ 3

n
we will have to check the family of functions

φ(F (z), π | π ∈ Qn−1) and φ(F (z), π̄n−2). In general, assuming 0 ≤ i ≤ n − 3, in
order to find V (z) for those z such that n−i−1

n
≤ F (z) ≤ n−i

n
we will have to check

the families of functions φ(F (z), π | π ∈ Qj) for i+ 2 ≤ j ≤ n− 1 and the function
φ(F (z), π̄i+1).
Consider now a vector πC ∈ Qi+1 such that πC1 = · · · = πCi > πCi+1, for 2 ≤ i ≤

n − 2. From Lemma (5) we know that, for those z such that n−i
n

< F (z) ≤ n−i+1
n
,

the function φ(F (z), πC) is greater than any other function of the family φ(F (z), π |
π ∈ Qi+1) with exclusion of φ(F (z), π̄i+1).
From Lemma (6) though, we know that if φ(F (z), πC) > φ(F (z), π̄i+1) then it is

the case that φ(F (z), π̄i) > φ(F (z), πC).
Therefore, in order to find the envelope function V (z) for those z such that

2
n
≤ F (z) ≤ 3

n
, it will be sufficient to check the two functions φ(F (z), π̄n−1) and

φ(F (z), π̄n−2). In general, assuming 0 ≤ i ≤ n − 3, in order to find V (z) for those
z such that n−i−1

n
≤ F (z) ≤ n−i

n
we will have to check the functions φ(F (z), π̄j) for

i+ 1 ≤ j ≤ n− 1.
From this follows that φ(F (z), π̄i) ≤ z for 1 ≤ i ≤ n− 1 are sufficient conditions

for V (z) ≤ z on the interval [0, 1].
Finally, given Proposition (8), by continuity we can establish the following result.

Proposition 9 Provided that the last prize is equal to zero, g(z) is interior for
any z on the interval [0, 1] independently of the distribution of Π among the first

n− 1 prizes if and only if n
n−αφ(F (z), π̄

i |
nX

j=1

π̄ij = Π) ≤ z on the interval [0, 1] for

1 ≤ i ≤ n− 1.

Appendix B

Proof of Proposition (3). Given a vector πA such that πA1 ≥ · · · ≥ πAn , π
A
n = 0

and
nX

j=1

πAj = ΠA consider πB such that πBi = cπAi for any 1 ≤ i ≤ n, c > 1. Notice

that
nX

j=1

πBj = ΠB = cΠA. Since φ(F (z), πB) = cφ(F (z), πA) we conclude that

φ(F (z), πB) > φ(F (z), πA) for any z ∈ (0, 1].
Consider Π such that n

n−αφ(F (z), π̄
i |

nX
j=1

π̄ij = Π) > z for z ∈ (a, b) with

0 ≤ a < b ≤ 1 for i such that 1 ≤ i ≤ n − 1. Given that F (z) has a continuous
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and bounded density there exists c > 1 such that n
n−αφ(F (z), π̄

i |
nX

j=1

π̄ij =
Π
c
) ≤ z

for any z ∈ [0, 1] and i such that 1 ≤ i ≤ n − 1. Therefore, by continuity there
exists Π̄ > 0 such that n

n−αφ(F (z), π̄
i |

nX
j=1

π̄ij = Π) ≤ z on the interval [0, 1] for

1 ≤ i ≤ n− 1 if and only if Π ≤ Π̄.
Given the result presented in Proposition (8) we can conclude that, provided

that the last prize is equal to zero, Π ≤ Π̄ is a necessary and sufficient condition
for the solution to be interior for all players independently of the distribution of Π
among the first n− 1 prizes.
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