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Abstract. Asymptotic behavior of solutions to heat equations with spatially singular inverse-

square potentials is studied. By combining a parabolic Almgren type monotonicity formula
with blow-up methods, we evaluate the exact behavior near the singularity of solutions to linear

and subcritical semilinear parabolic equations with Hardy type potentials. As a remarkable
byproduct, a unique continuation property is obtained.

1. Introduction and statement of the main results

We aim to describe the asymptotic behavior near the singularity of solutions to backward evo-
lution equations with inverse square singular potentials of the form

(1) ut + ∆u+
a(x/|x|)
|x|2

u+ f(x, t, u(x, t)) = 0,

in RN × (0, T ), where T > 0, N > 3, a ∈ L∞(SN−1) and f : RN × (0, T )×R→ R. Inverse square
potentials are related to the well-known classical Hardy’s inequality∫

RN
|∇u(x)|2 dx >

(
N − 2

2

)2 ∫
RN

u2(x)
|x|2

dx, for all u ∈ C∞0 (RN ), N > 3,

see e.g. [18, 20]. Parabolic problems with singular inverse square Hardy potentials arise in the
linearization of standard combustion models, see [24]. The properties of the heat operator are
strongly affected by the presence of the singular inverse square potential, which, having the same
order of homogeneity as the laplacian and failing to belong to the Kato class, cannot be regarded as
a lower order term. Hence, singular problems with inverse square potentials represent a borderline
case with respect to the classical theory of parabolic equations. Such a criticality makes parabolic
equations of type (1) and their elliptic versions quite challenging from the mathematical point of
view, thus motivating a large literature which, starting from the pioneering paper by [6], has been
devoted to their analysis, see e.g. [18, 32] for the parabolic case and [1, 29, 31] for the elliptic
counterpart. In particular, the influence of the Hardy potential in semilinear parabolic problems
has been studied in [2], in the case f(x, t, s) = sp, p > 1, and for a(x/|x|) = λ, λ > 0; the analysis
carried out in [2] highlighted a deep difference with respect to the classical heat equation (λ = 0),
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showing that, if λ > 0, there exists a critical exponent p+(λ) such that for p > p+(λ), there is no
solution even in the weakest sense for any nontrivial initial datum.

The present paper is addressed to the problem of describing the behavior of solutions along
the directions (λx, λ2t) naturally related to the heat operator. Indeed, the unperturbed operator
ut + ∆u + a(x/|x|)

|x|2 u is invariant under the action (x, t) 7→ (λx, λ2t). Then we are interested in
evaluating the asymptotics of

u(
√
tx, t) as t→ 0+

for solutions to (1). Our analysis will show that u(
√
tx, t) behaves as a singular self-similar eigen-

function of the Ornstein-Uhlenbeck operator with inverse square potential, multiplied by a power
of t related to the corresponding eigenvalue, which can be selected by the limit of a frequency type
function associated to the problem.

We consider both linear and subcritical semilinear parabolic equations of type (1). More pre-
cisely, we deal with the case f(x, t, s) = h(x, t)s corresponding to the linear problem

(2) ut + ∆u+
a(x/|x|)
|x|2

u+ h(x, t)u = 0, in RN × (0, T ),

with a perturbing potential h satisfying

(3) h, ht ∈ Lr
(
(0, T ), LN/2(RN )

)
for some r > 1, ht ∈ L∞loc

(
(0, T ), LN/2(RN )

)
,

and negligible with respect to the inverse square potential |x|−2 near the singularity in the sense
that there exists Ch > 0 such that

(4) |h(x, t)| 6 Ch(1 + |x|−2+ε) for all t ∈ (0, T ), a.e. x ∈ RN , and for some ε ∈ (0, 2).

We also treat the semilinear case f(x, t, s) = ϕ(x, t, s), with a nonlinearity ϕ ∈ C1(RN×(0, T )×R)
satisfying the following growth condition

(5)


|ϕ(x, t, s)|+ |x · ∇xϕ(x, t, s)|+ |t∂ϕ∂t (x, t, s)|

|s|
6 Cϕ(1 + |s|p−1)∣∣ϕ(x, t, s)− s∂ϕ∂s (x, t, s)

∣∣ 6 Cϕ|s|q
for all (x, t, s) ∈ RN × (0, T )×R and some 1 < p < 2∗−1 and 2 6 q < p+1, where 2∗ = 2N

N−2 is the
critical exponent for Sobolev’s embedding and Cϕ > 0 is independent of x ∈ RN , t ∈ (0, T ), and
s ∈ R. In particular, we are going to classify the behavior of solutions to the semilinear parabolic
problem

(6) ut + ∆u+
a(x/|x|)
|x|2

u+ ϕ(x, t, u(x, t)) = 0, in RN × (0, T ),

satisfying

(7) u ∈ L∞(0, T, Lp+1(RN ))

and

(8) tut ∈ L∞(0, T, L
p+1
p+1−q (RN )) and sup

t∈(0,T )

tN/2
∫

RN
|x|

2(p+1)
p−1 |u(

√
tx, t)|p+1 dx <∞.
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In order to introduce a suitable notion of solution to (1), for every t > 0 let us define the space
Ht as the completion of C∞c (RN ) with respect to

‖u‖Ht =
(∫

RN

(
t|∇u(x)|2 + |u(x)|2

)
G(x, t) dx

)1/2
,

where

G(x, t) = t−N/2 exp
(
− |x|

2

4t

)
is the heat kernel satisfying

(9) Gt −∆G = 0 and ∇G(x, t) = − x
2t
G(x, t) in RN × (0,+∞).

We denote as
(
Ht
)? the dual space of Ht and by (Ht)?〈·, ·〉Ht the corresponding duality product.

For every t > 0, we also define the space Lt as the completion of C∞c (RN ) with respect to

‖u‖Lt =
(∫

RN
|u(x)|2G(x, t) dx

)1/2
.

Definition 1.1. We say that u ∈ L1
loc(RN × (0, T )) is a weak solution to (1) in RN × (0, T ) if∫ T

τ

‖u(·, t)‖2Ht dt < +∞,
∫ T

τ

∥∥∥ut +
∇u · x

2t

∥∥∥2

(Ht)?
dt < +∞ for all τ ∈ (0, T ),(10)

H?t

〈
ut +

∇u · x
2t

, φ

〉
Ht

(11)

=
∫

RN

(
∇u(x, t) · ∇φ(x)− a(x/|x|)

|x|2
u(x, t)φ(x)− f(x, t, u(x, t))φ(x)

)
G(x, t) dx

for a.e. t ∈ (0, T ) and for each φ ∈ Ht.

It will be clear from the parabolic Hardy type inequality of Lemma 2.1 and the Sobolev weighted
inequality of Corollary 2.8, that the integral

∫
RN f(x, t, u(x, t))φ(x)G(x, t)dx in the above definition

is finite for a.e. t ∈ (0, T ), both in the linear case f(x, t, s) = h(x, t)s under assumptions (3–4) and
in the semilinear case f(x, t, s) = ϕ(x, t, s) under condition (5) and for u satisfying (7).

Remark 1.2. If u ∈ L1
loc(RN × (0, T )) satisfies (10), then the function

v(x, t) := u(
√
tx, t)

satisfies

(12) v ∈ L2(τ, T ;H) and vt ∈ L2(τ, T ; (H)?) for all τ ∈ (0, T ),

where we have set
H := H1,

i.e. H is the completion of C∞c (RN ) with respect to

‖v‖H =
(∫

RN

(
|∇v(x)|2 + |v(x)|2

)
e−|x|

2/4 dx

)1/2
.

We notice that from (12) it follows that

v ∈ C0([τ, T ],L),
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see e.g. [27, Theorem 1.2], where L := L1 is the completion of C∞c (RN ) with respect to the norm
‖v‖L =

( ∫
RN |v(x)|2e−|x|2/4 dx

)1/2. Moreover the function

t ∈ [τ, T ] 7→ ‖v(t)‖2L =
∫

RN
u2(x, t)G(x, t) dx

is absolutely continuous and
1
2

1
dt

∫
RN

u2(x, t)G(x, t) =
1
2

1
dt
‖v(t)‖2L = H?〈vt(·, t), v(·, t)〉H =

H?t

〈
ut +

∇u · x
2t

, u(·, t)
〉
Ht

for a.e. t ∈ (0, T ).

Remark 1.3. If u is a weak solution to (1) in the sense of definition 1.1, then the function
v(x, t) := u(

√
tx, t) defined in Remark 1.2 is a weak solution to

vt +
1
t

(
∆v − x

2
· ∇v +

a(x/|x|)
|x|2

v + tf(
√
tx, t, v(x, t))

)
= 0,

in the sense that, for every φ ∈ H,

(13) H?
〈
vt, φ

〉
H

=
1
t

∫
RN

(
∇v(x, t)·∇φ(x)−

a
(
x
|x|
)

|x|2
v(x, t)φ(x)− t f(

√
tx, t, v(x, t))φ(x)

)
G(x, 1) dx.

In particular, if u is a weak solution to (2), then v(x, t) := u(
√
tx, t) weakly solves

vt +
1
t

(
∆v − x

2
· ∇v +

a(x/|x|)
|x|2

v + th(
√
tx, t)v

)
= 0,

whereas, if u is a weak solution to (6), then v(x, t) := u(
√
tx, t) weakly solves

vt +
1
t

(
∆v − x

2
· ∇v +

a(x/|x|)
|x|2

v + tϕ(
√
tx, t, v)

)
= 0.

We give a precise description of the asymptotic behavior at the singularity of solutions to (2)
and (6) in terms of the eigenvalues and eigenfunctions of the Ornstein-Uhlenbeck operator with
singular inverse square potential

(14) L : H → (H)?, L = −∆ +
x

2
· ∇ − a(x/|x|)

|x|2
,

acting as

H?〈Lv,w〉H =
∫

RN

(
∇v(x) · ∇w(x)− a(x/|x|)

|x|2
v(x)w(x)

)
G(x, 1) dx, for all v, w ∈ H.

In order to describe the spectrum of L, we consider the operator −∆SN−1 − a(θ) on the unit
(N − 1)-dimensional sphere SN−1. For any a ∈ L∞

(
SN−1

)
, −∆SN−1 − a(θ) admits a diverging

sequence of eigenvalues
µ1(a) < µ2(a) 6 · · · 6 µk(a) 6 · · · ,

the first of which is simple and can be characterized as

(15) µ1(a) = min
ψ∈H1(SN−1)\{0}

∫
SN−1 |∇SN−1ψ(θ)|2 dS(θ)−

∫
SN−1 a(θ)ψ2(θ) dS(θ)∫

SN−1 ψ2(θ) dS(θ)
,
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see [16]. Moreover the quadratic form associated to −∆− a(x/|x|)
|x|2 is positive definite if and only if

(16) µ1(a) > − (N − 2)2

4
,

see [16, Lemma 2.5]. To each k ∈ N, k > 1, we associate a L2
(
SN−1

)
-normalized eigenfunction ψk

of the operator −∆SN−1 − a(θ) corresponding to the k-th eigenvalue µk(a), i.e. satisfying

(17)

{
−∆SN−1ψk(θ)− a(θ)ψk(θ) = µk(a)ψk(θ), in SN−1,∫

SN−1 |ψk(θ)|2 dS(θ) = 1.

In the enumeration µ1(a) < µ2(a) 6 · · · 6 µk(a) 6 · · · we repeat each eigenvalue as many times
as its multiplicity; thus exactly one eigenfunction ψk corresponds to each index k ∈ N. We can
choose the functions ψk in such a way that they form an orthonormal basis of L2(SN−1).

The following proposition describes completely the spectrum of the operator L, thus extending
to the anisotropic case the spectral analysis performed in [32, §9.3] in the isotropic case a(θ) ≡ λ;
see also [8, §4.2] and [14, §2] for the non singular case.

Proposition 1.4. The set of the eigenvalues of the operator L is{
γm,k : k,m ∈ N, k > 1

}
where

(18) γm,k = m− αk
2
, αk =

N − 2
2
−

√(
N − 2

2

)2
+ µk(a),

and µk(a) is the k-th eigenvalue of the operator −∆SN−1−a(θ) on the sphere SN−1. Each eigenvalue
γm,k has finite multiplicity equal to

#
{
j ∈ N, j > 1 : γm,k +

αj
2
∈ N

}
and a basis of the corresponding eigenspace is{

Vn,j : j, n ∈ N, j > 1, γm,k = n− αj
2

}
,

where

(19) Vn,j(x) = |x|−αjPj,n
(
|x|2

4

)
ψj

( x
|x|

)
,

ψj is an eigenfunction of the operator −∆SN−1 − a(θ) on the sphere SN−1 associated to the j-th
eigenvalue µj(a) as in (17), and Pj,n is the polynomial of degree n given by

Pj,n(t) =
n∑
i=0

(−n)i(
N
2 − αj

)
i

ti

i!
,

denoting as (s)i, for all s ∈ R, the Pochhammer’s symbol (s)i =
∏i−1
j=0(s+ j), (s)0 = 1.
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The following theorems provide a classification of singularity rating of any solution u to (1)
based on the limit as t→ 0+ of the Almgren type frequency function (see [5, 25]),

(20) Nf,u(t) =
t
∫

RN
(
|∇u(x, t)|2 − a(x/|x|)

|x|2 u2(x, t)− f(x, t, u(x, t))u(x, t)
)
G(x, t) dx∫

RN u
2(x, t)G(x, t) dx

.

In the linear case f(x, t, u) = h(x, t)u, the behavior of weak solutions to (2) is described by the
following theorem.

Theorem 1.5. Let u 6≡ 0 be a weak solution to (2) in the sense of Definition 1.1, with h satisfying
(3) and (4) and a ∈ L∞

(
SN−1

)
satisfying (16). Then there exist m0, k0 ∈ N, k0 > 1, such that

(21) lim
t→0+

Nhu,u(t) = γm0,k0 ,

where Nhu,u is defined in (20) and γm0,k0 is as in (18). Furthermore, denoting as J0 the finite set
of indices

(22) J0 = {(m, k) ∈ N× (N \ {0}) : m− αk
2

= γm0,k0},

for all τ ∈ (0, 1) there holds

(23) lim
λ→0+

∫ 1

τ

∥∥∥∥λ−2γm0,k0u(λx, λ2t)− tγm0,k0

∑
(m,k)∈J0

βm,kṼm,k(x/
√
t)
∥∥∥∥2

Ht
dt = 0

and

(24) lim
λ→0+

sup
t∈[τ,1]

∥∥∥∥λ−2γm0,k0u(λx, λ2t)− tγm0,k0

∑
(m,k)∈J0

βm,kṼm,k(x/
√
t)
∥∥∥∥
Lt

= 0,

where Ṽm,k = Vm,k/‖Vm,k‖L, Vm,k are as in (19),

(25) βm,k = Λ−2γm0,k0

∫
RN

u(Λx,Λ2)Ṽm,k(x)G(x, 1) dx

+ 2
∫ Λ

0

s1−2γm0,k0

(∫
RN

h(sx, s2)u(sx, s2)Ṽm,k(x)G(x, 1) dx
)
ds

for all Λ ∈ (0,Λ0) and for some Λ0 ∈ (0,
√
T ), and βm,k 6= 0 for some (m, k) ∈ J0.

An analogous result holds in the semilinear case for solutions to (6) satisfying the further
conditions (7) and (8).

Theorem 1.6. Let a ∈ L∞
(
SN−1

)
satisfy (16) and ϕ ∈ C1(RN × (0, T )×R) such that (5) holds.

If u 6≡ 0 satisfies (7–8) and is a weak solution to (6) in the sense of Definition 1.1, then there exist
m0, k0 ∈ N, k0 > 1, such that

(26) lim
t→0+

Nϕ,u(t) = γm0,k0 ,
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where Nϕ,u is defined in (20) and γm0,k0 is as in (18). Furthermore, letting J0 the finite set of
indices defined in (22), for all τ ∈ (0, 1) convergences (23) and (24) hold with

(27) βm,k = Λ−2γm0,k0

∫
RN

u(Λx,Λ2)Ṽm,k(x)G(x, 1) dx

+ 2
∫ Λ

0

s1−2γm0,k0

(∫
RN

ϕ(sx, s2, u(sx, s2))Ṽm,k(x)G(x, 1) dx
)
ds

for all Λ ∈ (0,Λ0) and for some Λ0 ∈ (0,
√
T ), and βm,k 6= 0 for some (m, k) ∈ J0.

(25) and (27) can be seen as Cauchy’s integral type formulas for solutions to problems (2) and
(6), since they allow reconstructing, up to the perturbation, the solution at the singularity by the
values it takes at any positive time.

The proofs of theorems 1.5 and 1.6 are based on a parabolic Almgren type monotonicity for-
mula combined with blow-up methods. Almgren type frequency functions associated to parabolic
equations were first introduced by C.-C. Poon in [25], where unique continuation properties are
derived by proving a monotonicity result which is the parabolic counterpart of the monotonicity
formula introduced by Almgren in [5] and extended by Garofalo and Lin in [19] to elliptic operators
with variable coefficients. A further development in the use of Almgren monotonicity methods to
study regularity of solutions to parabolic problems is due to the recent paper [7]. We also mention
that an Almgren type monotonicity method combined with blow-up was used in [15] in an ellip-
tic context to study the behavior of solutions to stationary Schrödinger equations with singular
electromagnetic potentials.

Theorem 1.5 and Theorem 1.6 imply a strong unique continuation property at the singularity,
as the following corollary states.

Corollary 1.7. Suppose that either u is a weak solution to (2) under the assumptions of Theorem
1.5 or u satisfies (7–8) and weakly solves (6) under the assumptions of Theorem 1.6. If

(28) u(x, t) = O
(
(|x|2 + t)k

)
as (x, t)→ (0, 0) for all k ∈ N,

then u ≡ 0 in RN × (0, T ).

As a byproduct of the proof of Theorems 1.5 and 1.6, we also obtain the following result, which
can be regarded as a unique continuation property with respect to time.

Proposition 1.8. Suppose that either u is a weak solution to (2) under the assumptions of Theorem
1.5 or u satisfies (7–8) and weakly solves (6) under the assumptions of Theorem 1.6. If there exists
t0 ∈ (0, T ) such that

u(x, t0) = 0 for a.e. x ∈ RN ,
then u ≡ 0 in RN × (0, T ).

There exists a large literature dealing with strong continuation properties in the parabolic
setting. [21] (see too [22]) studies parabolic operators with L

N+1
2 time-independent coefficients

obtaining a unique continuation property at a fixed time t0: the used technique relies on a repre-
sentation formula for solutions of parabolic equations in terms of eigenvalues of the corresponding
elliptic operator and cannot be applied to more general equations with time-dependant coefficients.
[26] and [30] use parabolic variants of the Carleman weighted inequalities to obtain a unique con-
tinuation property at fixed time t0 for parabolic operators with time-dependant coefficients. In
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this direction, it is worth mentioning the work of Chen [8] which contains not only a unique con-
tinuation result but also some local asymptotic analysis of solutions to parabolic inequalities with
bounded coefficients; the approach is based in recasting equations in terms of parabolic self-similar
variables. We also quote [4, 9, 10, 12, 13, 17] for unique continuation results for parabolic equations
with time-dependent potentials by Carleman inequalities and monotonicity methods.

The present paper is organized as follows. In section 2, we state some parabolic Hardy type
inequalities and weighted Sobolev embeddings related to equations (2) and (6). In section 3,
we completely describe the spectrum of the operator L defined in (14) and prove Proposition
1.4. Section 4 contains an Almgren parabolic monotonicity formula which provides the unique
continuation principle stated in Proposition 1.8 and is used in section 5, together with a blow-up
method, to prove Theorems 1.5 and 1.6.

Notation. We list below some notation used throughout the paper.

- const denotes some positive constant which may vary from formula to formula.
- dS denotes the volume element on the unit (N − 1)-dimensional sphere SN−1.
- ωN−1 denotes the volume of SN−1, i.e. ωN−1 =

∫
SN−1 dS(θ).

- For all s ∈ R, (s)i denotes the Pochhammer’s symbol (s)i =
∏i−1
j=0(s+ j), (s)0 = 1.

2. Parabolic Hardy type inequalities and Weighted Sobolev embeddings

The following lemma provides a Hardy type inequality for parabolic operators. We refer to [25,
Proposition 3.1] for a proof.

Lemma 2.1. For every t > 0 and u ∈ Ht there holds∫
RN

u2(x)
|x|2

G(x, t) dx 6
1

(N − 2)t

∫
RN

u2(x)G(x, t) dx+
4

(N − 2)2

∫
RN
|∇u(x)|2G(x, t) dx.

In the anisotropic version of the above inequality, a crucial role is played by the first eigenvalue
µ1(a) of the angular operator −∆SN−1 − a(θ) on the unit sphere SN−1 defined in (15).

Lemma 2.2. For every a ∈ L∞
(
SN−1

)
, t > 0, and u ∈ Ht, there holds∫

RN

(
|∇u(x)|2 − a(x/|x|)

|x|2
u2(x)

)
G(x, t) dx+

N − 2
4t

∫
RN

u2(x)G(x, t) dx

>

(
µ1(a) +

(N − 2)2

4

)∫
RN

u2(x)
|x|2

G(x, t) dx.

Proof. Let u ∈ C∞c (RN \ {0}). The gradient of u can be written in polar coordinates as

∇u(x) =
(
∂ru(r, θ)

)
θ +

1
r
∇SN−1u(r, θ), r = |x|, θ =

x

|x|
,

hence

|∇u(x)|2 =
∣∣∂ru(r, θ)

∣∣2 +
1
r2

∣∣∇SN−1u(r, θ)
∣∣2
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and

(29)
∫

RN

(
|∇u(x)|2 − a(x/|x|)

|x|2
u2(x)

)
G(x, t) dx

= t−
N
2

∫
SN−1

(∫ +∞

0

rN−1e−
r2
4t |∂ru(r, θ)|2 dr

)
dS(θ)

+ t−
N
2

∫ +∞

0

rN−1e−
r2
4t

r2

(∫
SN−1

[
|∇SN−1u(r, θ)|2 − a(θ)|u(r, θ)|2

]
dS(θ)

)
dr.

For all θ ∈ SN−1, let ϕθ ∈ C∞c ((0,+∞)) be defined by ϕθ(r) = u(r, θ), and ϕ̃θ ∈ C∞c (RN \ {0}) be
the radially symmetric function given by ϕ̃θ(x) = ϕθ(|x|). From Lemma 2.1, it follows that

t−
N
2

∫
SN−1

(∫ +∞

0

rN−1e−
r2
4t |∂ru(r, θ)|2 dr

)
dS(θ)(30)

= t−
N
2

∫
SN−1

(∫ +∞

0

rN−1e−
r2
4t |ϕ′θ(r)|2 dr

)
dS(θ)

=
1

ωN−1

∫
SN−1

(∫
RN
|∇ϕ̃θ(x)|2G(x, t) dx

)
dS(θ)

>
1

ωN−1

(N − 2)2

4

∫
SN−1

(∫
RN

|ϕ̃θ(x)|2

|x|2
G(x, t) dx

)
dS(θ)

− 1
ωN−1

N − 2
4t

∫
SN−1

(∫
RN
|ϕ̃θ(x)|2G(x, t) dx

)
dS(θ)

= t−
N
2

(N − 2)2

4

∫
SN−1

(∫ +∞

0

rN−1e−
r2
4t

r2
|u(r, θ)|2 dr

)
dS(θ)

− t−N2 N − 2
4t

∫
SN−1

(∫ +∞

0

rN−1e−
r2
4t |u(r, θ)|2 dr

)
dS(θ)

=
(N − 2)2

4

∫
RN

u2(x)
|x|2

G(x, t) dx− N − 2
4t

∫
RN

u2(x)G(x, t) dx,

where ωN−1 denotes the volume of the unit sphere SN−1, i.e. ωN−1 =
∫

SN−1 dS(θ). On the other
hand, from the definition of µ1(a) it follows that

(31)
∫

SN−1

[
|∇SN−1u(r, θ)|2− a(θ)|u(r, θ)|2

]
dS(θ) > µ1(a)

∫
SN−1
|u(r, θ)|2dS(θ).

From (29), (30), and (31), we deduce that∫
RN

(
|∇u(x)|2 − a(x/|x|)

|x|2
u2(x)

)
G(x, t) dx+

N − 2
4t

∫
RN

u2(x)G(x, t) dx

>

(
µ1(a) +

(N − 2)2

4

)∫
RN

u2(x)
|x|2

G(x, t) dx,

for all u ∈ C∞c (RN \ {0}), thus yielding the required inequality by density of C∞c (RN \ {0}) in
Ht. �
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The following corollary provides a norm in Ht equivalent to ‖ · ‖Ht and naturally related to the
heat operator with the Hardy potential of equation (1).

Corollary 2.3. Let a ∈ L∞
(
SN−1

)
satisfying (16). Then, for every t > 0,

inf
u∈Ht\{0}

∫
RN
(
|∇u(x)|2 − a(x/|x|)

|x|2 u2(x)
)
G(x, t) dx+ N−2

4t

∫
RN u

2(x)G(x, t) dx∫
RN |∇u(x)|2G(x, t) dx+ N−2

4t

∫
RN u

2(x)G(x, t) dx

= inf
v∈H\{0}

∫
RN
(
|∇v(x)|2 − a(x/|x|)

|x|2 v2(x)
)
G(x, 1) dx+ N−2

4

∫
RN v

2(x)G(x, 1) dx∫
RN |∇v(x)|2G(x, 1) dx+ N−2

4

∫
RN v

2(x)G(x, 1) dx
> 0.

Proof. The equality of the two infimum levels follows by the change of variables u(x) = v(x/
√
t).

To prove that they are strictly positive, we argue by contradiction and assume that for every ε > 0
there exists vε ∈ H \ {0} such that∫

RN

(
|∇vε(x)|2 − a(x/|x|)

|x|2
v2
ε(x)

)
G(x, 1) dx+

N − 2
4

∫
RN

v2
ε(x)G(x, 1) dx

< ε

(∫
RN
|∇vε(x)|2G(x, 1) dx+

N − 2
4

∫
RN

v2
ε(x)G(x, 1) dx

)
,

which, by Lemma 2.2, implies that(
µ1

(
a

1− ε

)
+

(N − 2)2

4

)∫
RN

v2
ε(x)
|x|2

G(x, 1) dx

6
∫

RN

(
|∇vε(x)|2 − a(x/|x|)

(1− ε)|x|2
v2
ε(x)

)
G(x, 1) dx+

N − 2
4

∫
RN

v2
ε(x)G(x, 1) dx < 0

and consequently

µ1

(
a

1− ε

)
+

(N − 2)2

4
< 0.

By continuity of the map a 7→ µ1(a) with respect to the L∞
(
SN−1

)
-norm, letting ε→ 0 the above

inequality yields µ1(a) + (N−2)2

4 6 0, giving rise to a contradiction with (16). �

The above results combined with the negligibility assumption (4) on h allow estimating the
quadratic form associated to the linearly perturbed equation (2) for small times as follows.

Corollary 2.4. Let a ∈ L∞
(
SN−1

)
satisfy (16) and h ∈ L∞loc(RN \ {0}× (0, T )) satisfy (4). Then

there exist C ′1, C2 > 0 and T 1 > 0 such that for every t ∈ (0, T 1), s ∈ (0, T ), and u ∈ Ht there
holds∫

RN

(
|∇u(x)|2 − a(x/|x|)

|x|2
u2(x)− h(x, s)u2(x)

)
G(x, t) dx

> C ′1

∫
RN

u2(x)
|x|2

G(x, t) dx− C2

t

∫
RN

u2(x)G(x, t) dx∫
RN

(
|∇u(x)|2 − a(x/|x|)

|x|2
u2(x)− h(x, s)u2(x)

)
G(x, t) dx+

N − 2
4t

∫
RN

u2(x)G(x, t) dx

> C ′1

(∫
RN
|∇u(x)|2G(x, t) dx+

1
t

∫
RN

u2(x)G(x, t) dx
)
.
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Proof. From (4), we have that, for every u ∈ Ht, there holds∣∣∣∣∫
RN

h(x, s)u2(x)G(x, t) dx
∣∣∣∣ 6 Ch(∫

RN
u2(x)G(x, t) dx+

∫
RN
|x|−2+εu2(x)G(x, t) dx

)
(32)

6 Ch

(∫
RN

u2(x)G(x, t) dx+ tε/2
∫

|x|6
√
t

u2(x)
|x|2

G(x, t) dx+ t−1+ε/2

∫
|x|>
√
t

u2(x)G(x, t) dx
)

=
Ch
t

(t+ tε/2)
∫

RN
u2(x)G(x, t) dx+ Cht

ε/2

∫
RN

u2(x)
|x|2

G(x, t) dx.

The stated inequalities follow from (32), Lemma 2.1, Corollary 2.3, and assumption (16). �

In order to estimate the quadratic form associated to the nonlinearly perturbed equation (6), we
derive a Sobolev type embedding in spaces Ht. To this purpose, we need the following inequality,
whose proof can be found in [11, Lemma 3].

Lemma 2.5. For every u ∈ H, |x|u ∈ L and

1
16

∫
RN
|x|2u2(x)G(x, 1) dx 6

∫
RN
|∇u(x)|2G(x, 1) dx+

N

4

∫
RN

u2(x)G(x, 1) dx.

The change of variables u(x) = v(x/
√
t) in Lemma 2.5, yields the following inequality in Ht.

Corollary 2.6. For every u ∈ Ht, there holds

1
16t2

∫
RN
|x|2u2(x)G(x, t) dx 6

∫
RN
|∇u(x)|2G(x, t) dx+

N

4t

∫
RN

u2(x)G(x, t) dx.

From Lemma 2.5 and classical Sobolev embeddings, we can easily deduce the following weighted
Sobolev inequality (see also [14]).

Lemma 2.7. For all u ∈ H and s ∈ [2, 2∗], there holds u
√
G(·, 1) ∈ Ls(RN ). Moreover, for every

s ∈ [2, 2∗] there exists Cs > 0 such that(∫
RN
|u(x)|sG s

2 (x, 1) dx
)2
s

6 Cs

(∫
RN

(
|∇u(x)|2 + u2(x)

)
G(x, 1) dx

)
for all u ∈ H.

Proof. From Lemma 2.5, it follows that, if u ∈ H, then u
√
G(·, 1) ∈ H1(RN ); hence, by classical

Sobolev embeddings, u
√
G(·, 1) ∈ Ls(RN ) for all s ∈ [2, 2∗]. The stated inequality follows from

classical Sobolev inequalities and Lemma 2.5. �

The change of variables u(x) = v(x/
√
t) in Lemma 2.7, yields the following inequality in Ht.

Corollary 2.8. For every t > 0, u ∈ Ht, and 2 6 s 6 2∗, there holds(∫
RN
|u(x)|sG s

2 (x, t) dx
)2
s

6 Cst
−Ns ( s−2

2 )‖u‖2Ht .

The above Sobolev estimate allows proving the nonlinear counterpart of Corollary 2.4.
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Corollary 2.9. Let a ∈ L∞
(
SN−1

)
satisfy (16) and ϕ ∈ C1(RN × (0, T )×R) satisfy (5) for some

1 6 p < 2∗ − 1. Then there exist C ′′1 > 0 and a function T 2 : (0,+∞) → R such that, for every
R > 0, t ∈ (0, T 2(R)), s ∈ (0, T ), and u ∈ {v ∈ Ht ∩ Lp+1(RN ) : ‖v‖Lp+1(RN ) 6 R}, there holds∫

RN

(
|∇u(x)|2 − a(x/|x|)

|x|2
u2(x)− ϕ(x, s, u(x))u(x)

)
G(x, t) dx+

N − 2
4t

∫
RN

u2(x)G(x, t) dx

> C ′′1

(∫
RN
|∇u(x)|2G(x, t) dx+

1
t

∫
RN

u2(x)G(x, t) dx
)
.

Proof. From (5), Hölder’s inequality, and Corollary 2.8, we have that, for all u ∈ Ht∩Lp+1(RN ),
there holds∣∣∣∣ ∫

RN
ϕ(x, s, u(x))u(x)G(x, t) dx

∣∣∣∣(33)

6 Cϕ

(∫
RN
u2(x)G(x, t) dx+

∫
RN
u2(x)|u(x)|p−1G(x, t) dx

)
6 Cϕ

(∫
RN
u2(x)G(x, t) dx+

(∫
RN
|u(x)|p+1G

p+1
2 (x, t) dx

) 2
p+1

‖u‖p−1
Lp+1(RN )

)
6 Cϕ

(
Cp+1t

(N+2)−p(N−2)
2(p+1) ‖u‖p−1

Lp+1(RN )

∫
RN
|∇u(x)|2G(x, t) dx

+
(
t+ Cp+1t

(N+2)−p(N−2)
2(p+1) ‖u‖p−1

Lp+1(RN )

)1
t

∫
RN

u2(x)G(x, t) dx
)

with Cp+1 as in Corollary 2.8. The stated inequality follows from Corollary 2.3 and (33) by choosing
t sufficiently small depending on ‖u‖Lp+1(RN ). �

3. Spectrum of Ornstein-Uhlenbeck type operators with inverse square
potentials

In this section we describe the spectral properties of the operator L defined in (14), extending
to anisotropic singular potentials the analysis carried out in [32] for a ≡ λ constant. Following
[14], we first prove the following compact embedding.

Lemma 3.1. The space H is compactly embedded in L.

Proof. Let us assume that uk ⇀ u weakly in H. From Rellich’s theorem uk → u in L2
loc(RN ).

For every R > 0 and k ∈ N, we have

(34)
∫

RN
|uk − u|2G(x, 1) dx = Ak(R) +Bk(R)

where

(35) Ak(R) =
∫
{|x|6R}

|uk(x)− u(x)|2e−|x|
2/4 dx→ 0 as k → +∞, for every R > 0

and

Bk(R) =
∫
{|x|>R}

|uk(x)− u(x)|2G(x, 1) dx.
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From Lemma 2.5 and boundedness of uk in H, we deduce that

Bk(R) 6 R−2

∫
{|x|>R}

|x|2|uk(x)− u(x)|2G(x, 1) dx(36)

6
1
R2

(
16
∫

RN
|∇(uk − u)(x)|2G(x, 1) dx+ 4N

∫
RN
|uk(x)− u(x)|2G(x, 1) dx

)
6

const
R2

.

Combining (34), (35), and (36), we obtain that uk → u strongly in L. �

From classical spectral theory we deduce the following abstract description of the spectrum of L.

Lemma 3.2. Let a ∈ L∞
(
SN−1

)
such that (16) holds. Then the spectrum of the operator L defined

in (14) consists of a diverging sequence of real eigenvalues with finite multiplicity. Moreover, there
exists an orthonormal basis of L whose elements belong to H and are eigenfunctions of L.

Proof. By Corollary 2.3 and the Lax-Milgram Theorem, the bounded linear self-adjoint operator

T : L → L, T =
(
L+

N − 2
4

Id
)−1

is well defined. Moreover, by Lemma 3.1, T is compact. The result then follows from the Spectral
Theorem. �

Let us now compute explicitly the eigenvalues of L with the corresponding multiplicities and
eigenfunctions by proving Proposition 1.4.
Proof of Proposition 1.4. Assume that γ is an eigenvalue of L and g ∈ H\{0} is a corresponding
eigenfunction, so that

(37) −∆g(x) +
∇g(x) · x

2
− a(x/|x|)

|x|2
g(x) = γ g(x)

in a weak H-sense. From classical regularity theory for elliptic equations, g ∈ C1,α
loc (RN \ {0}).

Hence g can be expanded as

g(x) = g(rθ) =
∞∑
k=1

φk(r)ψk(θ) in L2(SN−1),

where r = |x| ∈ (0,+∞), θ = x/|x| ∈ SN−1, and

φk(r) =
∫

SN−1
g(rθ)ψk(θ) dS(θ).

Equations (17) and (37) imply that, for every k,

(38) φ′′k +
(
N − 1
r
− r

2

)
φ′k +

(
γ − µk

r2

)
φk = 0 in (0,+∞).

Since g ∈ H, we have that
(39)

∞ >

∫
RN

g2(x)G(x, 1) dx =
∫ ∞

0

(∫
SN−1

g2(rθ) dS(θ)
)
rN−1e−

r2
4 dr >

∫ ∞
0

rN−1e−
r2
4 φ2

k(r) dr

and, by the Hardy type inequality of Lemma 2.1,

(40) ∞ >

∫
RN

g2(x)
|x|2

G(x, 1) dx >
∫ ∞

0

rN−3e−
r2
4 φ2

k(r) dr.
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For all k = 1, 2, . . . and t > 0, we define wk(t) = (4t)
αk
2 φk(

√
4t), with αk = N−2

2 −
√(

N−2
2

)2 + µk(a).
From (38), wk satisfies

tw′′k(t) +
(
N

2
− αk − t

)
w′k(t) +

(αk
2

+ γ
)
wk(t) = 0 in (0,+∞).

Therefore, wk is a solution of the well known Kummer Confluent Hypergeometric Equation (see
[3] and [23]). Then there exist Ak, Bk ∈ R such that

wk(t) = AkM
(
− αk

2
− γ, N

2
− αk, t

)
+BkU

(
− αk

2
− γ, N

2
− αk, t

)
, t ∈ (0,+∞).

Here M(c, b, t) and, respectively, U(c, b, t) denote the Kummer function (or confluent hypergeo-
metric function) and, respectively, the Tricomi function (or confluent hypergeometric function of
the second kind); M(c, b, t) and U(c, b, t) are two linearly independent solutions to the Kummer
Confluent Hypergeometric Equation

tw′′(t) + (b− t)w′(t)− ct = 0, t ∈ (0,+∞).

Since
(
N
2 − αk

)
> 1, from the well-known asymptotics of U at 0 (see e.g. [3]), we have that

U
(
− αk

2
− γ, N

2
− αk, t

)
∼ const t1−

N
2 +αk as t→ 0+,

for some const 6= 0 depending only on N, γ, and αk. On the other hand, M is the sum of the series

M(c, b, t) =
∞∑
n=0

(c)n
(b)n

tn

n!
.

We notice that M has a finite limit at 0+, while its behavior at ∞ is singular and depends on the
value −c = αk

2 +γ. If αk2 +γ = m ∈ N = {0, 1, 2, · · · }, then M
(
− αk

2 −γ,
N
2 −αk, t

)
is a polynomial

of degree m in t, which we will denote as Pk,m, i.e.,

Pk,m(t) = M
(
−m, N2 − αk, t

)
=

m∑
n=0

(−m)n(
N
2 − αk

)
n

tn

n!
.

If
(
αk
2 + γ

)
6∈ N, then from the well-known asymptotics of M at ∞ (see e.g. [3]) we have that

M
(
− αk

2
− γ, N

2
− αk, t

)
∼ const ett−

N
2 +

αk
2 −γ as t→ +∞,

for some const 6= 0 depending only on N, γ, and αk.
Now, let us fix k ∈ N, k > 1. From the above description, we have that

wk(t) ∼ constBkt1−
N
2 +αk as t→ 0+,

for some const 6= 0, and hence

φk(r) = r−αkwk

(r2

4

)
∼ constBkr2−N+αk as r → 0+,

for some const 6= 0. Therefore, condition (40) can be satisfied only for Bk = 0. If αk2 +γ 6∈ N, then

wk(t) ∼ constAkett−
N
2 +

αk
2 −γ as t→ +∞,
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for some const 6= 0, and hence

φk(r) = r−αkwk

(r2

4

)
∼ constAkr−N−2γer

2/4 as r → +∞,

for some const 6= 0. Therefore, condition (39) can be satisfied only for Ak = 0. If αk2 + γ = m ∈ N,
then r−αkPk,m

(
r2

4

)
solves (38); moreover the function

|x|−αkPk,m
( |x|2

4

)
ψk

( x
|x|

)
belongs to H, thus providing an eigenfunction of L.

We can conclude from the above discussion that if αk
2 + γ 6∈ N for all k ∈ N, k > 1, then γ is

not an eigenvalue of L. On the other hand, if there exist k0,m0 ∈ N, k0 > 1, such that

γ = γm0,k0 = m0 −
αk0
2

then γ is an eigenvalue of L with multiplicity

(41) m(γ) = m(γm0,k0) = #
{
j ∈ N, j > 1 : γm0,k0 +

αj
2
∈ N

}
< +∞

and a basis of the corresponding eigenspace is{
|x|−αjPj,γm0,k0+αj/2

(
|x|2

4

)
ψj

( x
|x|

)
: j ∈ N, j > 1, γm0,k0 +

αj
2
∈ N

}
.

The proof is thereby complete. �

Remark 3.3. If a(θ) ≡ 0, then µk(0) = k(N + k− 2), so that αk = (N−2)
2 −

√(
N−2

2 + k
)2 = −k,

and γm,k = k
2 + m. Hence, in this case we recover the well known fact (see e.g. [8] and [14])

that the eigenvalues of the Ornstein-Uhlenbeck operator −∆ + x
2 · ∇ are the positive half-integer

numbers.

Remark 3.4. Due to orthogonality of eigenfunctions {ψk}k in L2(SN−1), it is easy to verify that

if (m1, k1) 6= (m2, k2) then Vm1,k1 and Vm2,k2 are orthogonal in L.

By Lemma 3.2, it follows that {
Ṽn,j =

Vn,j
‖Vn,j‖L

: j, n ∈ N, j > 1
}

is an orthonormal basis of L.

4. The parabolic Almgren monotonicity formula

Throughout this section, we will assume that a ∈ L∞
(
SN−1

)
satisfies (16) and either

u is a weak solution to (2) with h satisfying (3) and (4)(I)

or

u satisfies (7–8) and weakly solves (6) for some ϕ ∈ C1(RN × (0, T )× R) satisfying (5).(II)
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We denote as

f(x, t, s) =

{
h(x, t)s, in case (I),
ϕ(x, t, s), in case (II),

so that, in both cases, u is a weak solution to (1) in RN × (0, T ) in the sense of Definition 1.1. Let

(42) T =

{
T 1, in case (I),
T 2(R0), in case (II),

and C1 =

{
C ′1, in case (I),
C ′′1 , in case (II),

being C ′1, T 1 as in Corollary 2.4 and C ′′1 , T 2(R0) as in Corollary 2.9 with

R0 = sup
t∈(0,T )

‖u(·, t)‖Lp+1(RN )

(notice that R0 is finite by assumption (7)). We denote

α =
T

2
(⌊
T/T

⌋
+ 1
) ,

where b·c denotes the floor function, i.e. bxc := max{j ∈ Z : j 6 x}. Then

(0, T ) =
k⋃
i=1

(ai, bi)

where

k = 2
(⌊
T/T

⌋
+ 1
)
− 1, ai = (i− 1)α, and bi = (i+ 1)α.

We notice that 0 < 2α < T and (ai, bi) ∩ (ai+1, bi+1) = (iα, (i+ 1)α) 6= ∅. For every i, 1 6 i 6 k,
we define

(43) ui(x, t) = u(x, t+ ai), x ∈ RN , t ∈ (0, 2α).

Lemma 4.1. For every i = 1, . . . , k, the function ui defined in (43) is a weak solution to

(44) (ui)t + ∆ui +
a(x/|x|)
|x|2

ui + f(x, t+ ai, ui(x, t)) = 0

in RN × (0, 2α) in the sense of Definition 1.1. Furthermore, the function vi(x, t) := ui(
√
tx, t) is

a weak solution to

(45) (vi)t +
1
t

(
∆vi −

x

2
· ∇vi +

a(x/|x|)
|x|2

vi + tf
(√
tx, t+ ai, vi(x, t)

))
= 0

in RN × (0, 2α) in the sense of Remark 1.3.

Proof. If i = 1, then a1 = 0, u1(x, t) = u(x, t) in RN × (0, 2α), and we immediately conclude.
For every 1 < i 6 k, ai 6= 0, and, being G(x, t) as in (9), the following properties hold for all
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t ∈ (ai, bi):

(i) G
(
x, t(t−ai)ai

)
G(x, t) =

(
t2

ai

)−N/2
G(x, t− ai);

(ii) if φ ∈ Ht−ai , then φG
(
·, t(t−ai)ai

)
∈ Ht;

(iii) if ψ ∈ (Ht)?, then ψ ∈ (Ht−ai)? and

H?t−ai

〈
ψ, φ

〉
Ht−ai

=
(
t2

ai

)N
2

H?t

〈
ψ, φG

(
·, t(t−ai)ai

)〉
Ht
, for all φ ∈ Ht−ai .

Let 1 < i 6 k and φ ∈ Ht−ai . Due to (ii), φG
(
·, t(t−ai)ai

)
∈ Ht and then, since u is a solution to

(1) in the sense of of Definition 1.1, for a.e. t ∈ (ai, bi) we have

(46)
H?t

〈
ut +

∇u · x
2t

, φG
(
x, t(t−ai)ai

)〉
Ht

=
∫

RN
∇u(x, t) · ∇φ(x)G

(
x, t(t−ai)ai

)
G(x, t) dx−

∫
RN

φ(x)
aix · ∇u(x, t)

2(t− ai)t
G
(
x, t(t−ai)ai

)
G(x, t) dx

−
∫

RN

a(x/|x|)
|x|2

u(x, t)φ(x)G
(
x, t(t−ai)ai

)
G(x, t) dx−

∫
RN

f(x, t, u(x, t))φ(x)G
(
x, t(t−ai)ai

)
G(x, t) dx.

Therefore, thanks to (i) and (iii), we obtain

H?t−ai

〈
ut +

∇u(x, t) · x
2(t− ai)

, φ

〉
Ht−ai

=
∫

RN

(
∇u(x, t) · ∇φ(x)− a(x/|x|)

|x|2
u(x, t)φ(x)

)
G(x, t− ai) dx

−
∫

RN
f(x, t, u(x, t))φ(x)G(x, t− ai) dx.

By the change of variables s = t− ai, we conclude that ui(x, t) = u(x, t+ ai) is a weak solution to
(44) in RN×(0, 2α) in the sense of Definition 1.1. By a further change of variables, we easily obtain
that vi(x, t) := ui(

√
tx, t) is a weak solution to (45) in RN×(0, 2α) in the sense of Remark 1.3. �

For every i = 1, . . . , k, we define

(47) Hi(t) =
∫

RN
u2
i (x, t)G(x, t) dx, for every t ∈ (0, 2α),

and

(48) Di(t) =
∫

RN

(
|∇ui(x, t)|2 −

a
(
x
|x|
)

|x|2
u2
i (x, t)− f(x, t+ ai, ui(x, t))ui(x, t)

)
G(x, t) dx

for a.e. t ∈ (0, 2α).

Lemma 4.2. For every 1 6 i 6 k, Hi ∈W 1,1
loc (0, 2α) and

(49) H ′i(t) = 2
H?t

〈
(ui)t +

∇ui · x
2t

, ui(·, t)
〉
Ht

= 2Di(t) for a.e. t ∈ (0, 2α).

Proof. It follows from Lemma 4.1 and Remark 1.2. �
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Lemma 4.3. If C1 is as in (42), then, for every i = 1, . . . , k, the function

t 7→ t−2C1+N−2
2 Hi(t)

is nondecreasing in (0, 2α).

Proof. From Lemma 4.2 and Corollaries 2.4 and 2.9, taking into account that 2α < T , we have
that, for all t ∈ (0, 2α),

H ′i(t) >
1
t

(
2C1 −

N − 2
2

)
Hi(t),

which implies

d

dt

(
t−2C1+N−2

2 Hi(t)
)
> 0.

Hence the function t 7→ t−2C1+N−2
2 Hi(t) is nondecreasing in (0, 2α). �

Lemma 4.4. If 1 6 i 6 k and Hi(t̄) = 0 for some t̄ ∈ (0, 2α), then Hi(t) = 0 for all t ∈ (0, t̄ ].

Proof. From Lemma 4.3, the function t 7→ t−2C1+N−2
2 Hi(t) is nondecreasing in (0, 2α), nonneg-

ative, and vanishing at t̄. It follows that Hi(t) = 0 for all t ∈ (0, t̄]. �

The regularity of Di in (0, 2α) is analyzed in the following lemma.

Lemma 4.5. If 1 6 i 6 k and Ti ∈ (0, 2α) is such that ui(·, Ti) ∈ HTi , then

(i)
∫ Ti

τ

∫
RN

( ∣∣∣∣(ui)t(x, t) +
∇ui(x, t) · x

2t

∣∣∣∣2G(x, t) dx
)
dt < +∞ for all τ ∈ (0, Ti);

(ii) the function

t 7→ tDi(t)

belongs to W 1,1
loc (0, Ti) and its weak derivative is, for a.e. t ∈ (0, Ti), as follows:

in case (I)

d

dt

(
tDi(t)

)
= 2t

∫
RN

∣∣∣∣(ui)t(x, t) +
∇ui(x, t) · x

2t

∣∣∣∣2G(x, t) dx

+
∫

RN
h(x, t+ ai)

(
N − 2

2
u2
i (x, t) + (∇ui(x, t) · x)ui(x, t)−

|x|2

4t
u2
i (x, t)

)
G(x, t) dx

− t
∫

RN
ht(x, t+ ai)u2

i (x, t)G(x, t) dx;
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in case (II)

d

dt

(
tDi(t)

)
= 2t

∫
RN

∣∣∣∣(ui)t(x, t) +
∇ui(x, t) · x

2t

∣∣∣∣2G(x, t) dx

+ t

∫
RN

(
ϕ(x, t+ ai, ui(x, t))−

∂ϕ

∂ui
(x, t+ ai, ui(x, t))ui(x, t)

)
(ui)t(x, t)G(x, t) dx

+
∫

RN

(
N − 2

2
ϕ(x, t+ ai, ui(x, t))ui(x, t)− t

∂ϕ

∂t
(x, t+ ai, ui(x, t))ui(x, t)

−NΦ(x, t+ ai, ui(x, t))−∇xΦ(x, t+ ai, ui(x, t)) · x
)
G(x, t) dx

+
∫

RN

|x|2

4t

(
2Φ(x, t+ ai, ui(x, t))− ϕ(x, t+ ai, ui(x, t))ui(x, t)

)
G(x, t) dx

where

Φ(x, t, s) =
∫ s

0

ϕ(x, t, ξ) dξ.

Proof. Let us first consider case (I), i.e. f(x, t, u) = h(x, t)u, with h(x, t) under conditions
(3–4). We test equation (45) with (vi)t; we notice that this is not an admissible test function for
equation (45) since a priori (vi)t does not take values in H. However the formal testing procedure
can be made rigorous by a suitable approximation. Such a test combined with Corollary 2.4 yields,
for all t ∈ (0, Ti),

∫ Ti

t

s

(∫
RN

(vi)2
t (x, s)G(x, 1) dx

)
ds 6 const

(
‖ui(

√
Ti ·, Ti)‖2H +

∫
RN

v2
i (x, t)G(x, 1) dx

+
∫ Ti

t

(∫
RN
h(
√
sx, s+ ai)

(
|x|2

8
v2
i (x, s)− ∇vi(x, s) · x

2
vi(x, s)−

N − 2
4

v2
i (x, s)

)
G(x, 1) dx

)
ds

+
1
2

∫ Ti

t

s

(∫
RN

hs(
√
sx, s+ ai)v2

i (x, s)G(x, 1) dx
)
ds

)
.

Since, in view of (3–4) and Lemmas 2.1 and 2.5, the integrals in the last two lines of the previous
formula are finite for every t ∈ (0, Ti), we conclude that

(vi)t ∈ L2(τ, Ti;L) for all τ ∈ (0, Ti).
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Testing (45) with (vi)t also yields∫ Ti

t

s

(∫
RN

(vi)2
t (x, s)G(x, 1) dx

)
ds

+
1
2

∫
RN

(
|∇vi(x, t)|2 −

a(x/|x|)
|x|2

v2
i (x, t)− th(

√
tx, t+ ai)v2

i (x, t)
)
G(x, 1) dx

=
1
2

∫
RN

(
|∇v0,i(x)|2 − a(x/|x|)

|x|2
v2

0,i(x)− Tih(
√
Tix, Ti + ai)v2

0,i(x)
)
G(x, 1) dx

+
∫ Ti

t

(∫
RN

h(
√
sx, s+ ai)

(
|x|2

8
v2
i (x, s)− ∇vi(x, s) · x

2
vi(x, s)−

N − 2
4

v2
i (x, s)

)
G(x, 1) dx

)
ds

+
1
2

∫ Ti

t

s

(∫
RN

hs(
√
sx, s+ ai)v2

i (x, s)G(x, 1) dx
)
ds,

for all t ∈ (0, Ti), where v0,i(x) := ui(
√
Tix, Ti) ∈ H. Therefore the function

t 7→
∫

RN

(
|∇vi(x, t)|2 −

a(x/|x|)
|x|2

v2
i (x, t)− th(

√
tx, t+ ai)v2

i (x, t)
)
G(x, 1) dx

is absolutely continuous in (τ, Ti) for all τ ∈ (0, Ti) and

d

dt

∫
RN

(
|∇vi(x, t)|2 −

a(x/|x|)
|x|2

v2
i (x, t)− th(

√
tx, t+ ai)v2

i (x, t)
)
G(x, 1) dx

= 2t
∫

RN
(vi)2

t (x, t)G(x, 1) dx

−
∫

RN
h(
√
tx, t+ ai)

(
|x|2

4
v2
i (x, t)− (∇vi(x, t) · x)vi(x, t)−

N − 2
2

v2
i (x, t)

)
G(x, 1) dx

− t
∫

RN
hs(
√
sx, s+ ai)v2

i (x, s)G(x, 1) dx.

The change of variables ui(x, t) = vi(x/
√
t, t) leads to the conclusion in case (I).

Let us now consider case (II), i.e. f(x, t, u) = ϕ(x, t, u) with ϕ satisfying (5) and u satisfying (7–
8). We test equation (45) with (vi)t (passing through a suitable approximation) and, by Corollary
2.9, we obtain, for all t ∈ (0, Ti),∫ Ti

t

s

(∫
RN

(vi)2
t (x, s)G(x, 1) dx

)
ds 6 const

(
‖ui(

√
Ti ·, Ti)‖2H +

∫
RN

v2
i (x, t)G(x, 1) dx

)
−
∫ Ti

t

s

(∫
RN

ϕ(
√
sx, s+ ai, vi(x, t))(vi)t(x, t)G(x, 1) dx

)
ds

+
1
2

∫ Ti

t

d

ds

(
s

∫
RN

ϕ(
√
sx, s+ ai, vi(x, t))vi(x, s)G(x, 1) dx

)
ds.

Since in view of hypothesis (5) on ϕ, conditions (7) and (8) on u, and Lemma 2.7 the integrals at
the right hand side lines of the previous formula are finite for every t ∈ (0, Ti), we conclude that

(vi)t ∈ L2(τ, Ti;L) for all τ ∈ (0, Ti).
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Testing (45) for vi with (vi)t also yields

∫ Ti

t

s

(∫
RN

(vi)2
t (x, s)G(x, 1) dx

)
ds

+
1
2

∫
RN

(
|∇vi(x, t)|2 −

a(x/|x|)
|x|2

v2
i (x, t)− tϕ(

√
tx, t+ ai, vi(x, t))vi(x, t)

)
G(x, 1) dx

=
1
2

∫
RN

(
|∇v0,i(x)|2 − a(x/|x|)

|x|2
v2

0,i(x)− Tiϕ(
√
Tix, T + ai, v0,i)v0,i(x)

)
G(x, 1) dx

−
∫ Ti

t

s

(∫
RN

ϕ(
√
sx, s+ ai, vi(x, t))(vi)t(x, t)G(x, 1) dx

)
ds

+
1
2

∫ Ti

t

d

ds

(
s

∫
RN

ϕ(
√
sx, s+ ai, vi(x, s))vi(x, s)G(x, 1) dx

)
ds,

for a.e. t ∈ (0, Ti), where v0,i(x) := ui(
√
Tix, Ti) ∈ H. Therefore the function

t 7→
∫

RN

(
|∇vi(x, t)|2 −

a(x/|x|)
|x|2

v2
i (x, t)− tϕ(

√
tx, t+ ai, vi(x, t))vi(x, t)

)
G(x, 1) dx

is absolutely continuous in (0, τ) for all τ ∈ (0, Ti) and

d

dt

∫
RN

(
|∇vi(x, t)|2 −

a(x/|x|)
|x|2

v2
i (x, t)− tϕ(

√
tx, t+ ai, vi(x, t))vi(x, t)

)
G(x, 1) dx

= 2t
∫

RN
(vi)2

t (x, t)G(x, 1) dx+ 2t
∫

RN
ϕ(
√
tx, t+ ai, vi(x, t))(vi)t(x, t)G(x, 1) dx

− d

dt

(
t

∫
RN

ϕ(
√
tx, t+ ai, vi(x, t))vi(x, t)G(x, 1) dx

)
.

The change of variables ui(x, t) = vi(x/
√
t, t) leads to

d

dt
(tDi(t)) = 2t

∫
RN

∣∣∣∣(ui)t(x, t) +
∇ui(x, t) · x

2t

∣∣∣∣2G(x, t) dx

+2t
∫

RN
ϕ(x, t+ ai, ui(x, t))(ui)t(x, t)G(x, t) dx+

∫
RN

ϕ(x, t+ ai, ui(x, t))∇ui(x, t) · xG(x, t) dx

− d

dt

(
t

∫
RN

ϕ(x, t+ ai, ui(x, t))ui(x, t)G(x, t) dx
)
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and hence

d

dt
(tDi(t)) = 2t

∫
RN

∣∣∣∣(ui)t(x, t) +
∇ui(x, t) · x

2t

∣∣∣∣2G(x, t) dx

+2t
∫

RN
ϕ(x, t+ ai, ui(x, t))(ui)t(x, t)G(x, t) dx+

∫
RN

ϕ(x, t+ ai, ui(x, t))∇ui(x, t) · xG(x, t) dx

+
N − 2

2

∫
RN

ϕ(x, t+ ai, ui(x, t))ui(x, t)G(x, t) dx− t
∫

RN

∂ϕ

∂t
(x, t+ ai, ui(x, t))ui(x, t)G(x, t) dx

−t
∫

RN

(
∂ϕ

∂ui
(x, t+ ai, ui(x, t))ui(x, t) + ϕ(x, t+ ai, ui(x, t))

)
(ui)t(x, t)G(x, t) dx

−
∫

RN

|x|2

4t
ϕ(x, t+ ai, ui(x, t))ui(x, t)G(x, t) dx.

Integration by parts yields (these formal computations can be made rigorous through a suitable
approximation)∫

RN
ϕ(x, t+ ai, ui(x, t))∇ui(x, t) · xG(x, t) dx = −N

∫
RN

Φ(x, t+ ai, ui(x, t))G(x, t) dx

+
∫

RN

|x|2

2t
Φ(x, t+ ai, ui(x, t))G(x, t) dx−

∫
RN
∇xΦ(x, t+ ai, ui(x, t)) · xG(x, t) dx

thus yielding the conclusion in case (II). �

For all i = 1, . . . , k, let us introduce the Almgren type frequency function associated to ui

(50) Ni : (0, 2α)→ R ∪ {−∞,+∞}, Ni(t) :=
tDi(t)
Hi(t)

.

Frequency functions associated to unperturbed parabolic equations of type (1) (i.e. in the case
f(x, t, s) ≡ 0) were first studied by C.-C. Poon in [25], where unique continuation properties are
derived by proving monotonicity of the quotient in (50). Due to the presence of the perturbing
function f(x, t + ai, u(x, t)), the functions Ni will not be nondecreasing as in the case treated
by Poon; however in both cases (I) and (II), we can prove that their derivatives are integrable
perturbations of nonnegative functions wherever the Ni’s assume finite values. Moreover our
analysis will show that actually the Ni’s assume finite values all over (0, 2α).

Lemma 4.6. Let i ∈ {1, . . . , k}. If there exist βi, Ti ∈ (0, 2α) such that

(51) βi < Ti, Hi(t) > 0 for all t ∈ (βi, Ti), and ui(·, Ti) ∈ HTi ,

then the function Ni defined in (50) belongs to W 1,1
loc (βi, Ti) and

N ′i(t) = ν1i(t) + ν2i(t)

in a distributional sense and a.e. in (βi, Ti) where

ν1i(t) =
2t

H2
i (t)

((∫
RN

∣∣∣∣(ui)t(x, t) +
∇ui(x, t) · x

2t

∣∣∣∣2G(x, t) dx
)(∫

RN
u2
i (x, t)G(x, t) dx

)

−
(∫

RN

(
(ui)t(x, t) +

∇ui(x, t) · x
2t

)
ui(x, t)G(x, t) dx

)2
)



HEAT EQUATIONS WITH INVERSE-SQUARE POTENTIALS 23

and ν2i is as follows:

in case (I)

ν2i(t) =
1

Hi(t)

∫
RN

h(x, t+ ai)
(
N − 2

2
u2
i (x, t) + (∇ui(x, t) · x)ui(x, t)−

|x|2

4t
u2
i (x, t)

)
G(x, t) dx

− t

Hi(t)

(∫
RN

ht(x, t+ ai)u2
i (x, t)G(x, t) dx

)
,

in case (II)

ν2i(t) =
1

Hi(t)

(
t

∫
RN

(
ϕ(x, t+ ai, ui(x, t))−

∂ϕ

∂ui
(x, t+ ai, ui(x, t))ui(x, t)

)
(ui)t(x, t)G(x, t) dx

+
∫

RN

(N − 2
2

ϕ(x, t+ ai, ui(x, t))ui(x, t)− t
∂ϕ

∂t
(x, t+ ai, ui(x, t))ui(x, t)

−NΦ(x, t+ ai, ui(x, t))−∇xΦ(x, t+ ai, ui(x, t)) · x
)
G(x, t) dx

+
∫

RN

|x|2

4t

(
2Φ(x, t+ ai, ui(x, t))− ϕ(x, t+ ai, ui(x, t))ui(x, t)

)
G(x, t) dx

)
.

Proof. From Lemma 4.2 and 4.5, it follows that Ni ∈W 1,1
loc (βi, Ti). From (49) we deduce that

N ′i(t) =
(tDi(t))′Hi(t)− tDi(t)H ′i(t)

H2
i (t)

=
(tDi(t))′Hi(t)− 2tD2

i (t)
H2
i (t)

,

which yields the conclusion in view of (47), (48), and Lemma 4.5. �

The term ν2i can estimated as follows.

Lemma 4.7. There exists C3 > 0 such that, if i ∈ {1, . . . , k} and βi, Ti ∈ (0, 2α) satisfy (51), then

∣∣∣ν2i(t)
∣∣∣ 6


C3

(
Ni(t) + N−2

4

)(
t−1+ε/2 + ‖ht(·, t+ ai)‖LN/2(RN )

)
, in case (I),

C3

(
Ni(t) + N−2

4

)
t−1+

N+2−p(N−2)
2(p+1) , in case (II) if i = 1,

C3β
−1
i

(
Ni(t) + N−2

4

)
t−1+

N+2−p(N−2)
2(p+1) , in case (II) if i > 1,

for a.e. t ∈ (βi, Ti), where ν2i is as in Lemma 4.6.
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Proof. Let us first consider case (I), i.e. f(x, t, u) = h(x, t)u, with h(x, t) under conditions
(3–4). In order to estimate ν2i we observe that, from (4),

∣∣∣∣ ∫
RN

h(x, t+ ai)(∇ui(x, t) · x)ui(x, t)G(x, t) dx
∣∣∣∣(52)

6 Ch

∫
RN

(1 + |x|−2+ε)|∇ui(x, t)||x||ui(x, t)|G(x, t) dx

6 Cht
∫

RN
|∇ui(x, t)|

|x|
t
|ui(x, t)|G(x, t) dx+ Cht

ε/2

∫
{|x|6

√
t}
|∇ui(x, t)|

|ui(x, t)|
|x|

G(x, t) dx

+ Cht
ε/2

∫
{|x|>

√
t}
|∇ui(x, t)|

|x|
t
|ui(x, t)|G(x, t) dx

6
1
2
Ch(t+ tε/2)

∫
RN
|∇ui(x, t)|2G(x, t) dx+

1
2
Ch(t+ tε/2)

∫
RN

|x|2

t2
u2
i (x, t)G(x, t) dx

+
1
2
Cht

ε/2

∫
RN
|∇ui(x, t)|2G(x, t) dx+

1
2
Cht

ε/2

∫
RN

u2
i (x, t)
|x|2

G(x, t) dx

6
1
2
Cht

ε/2(2 + T
1−ε/2

)
∫

RN
|∇ui(x, t)|2G(x, t) dx

+
1
2
Cht

ε/2(1 + T
1−ε/2

)
∫

RN

|x|2

t2
u2
i (x, t)G(x, t) dx+

1
2
Cht

ε/2

∫
RN

u2
i (x, t)
|x|2

G(x, t) dx,

and

∫
RN
|h(x, t+ ai)||x|2u2

i (x, t)G(x, t) dx 6 Ch
∫

RN
|x|2u2

i (x, t)G(x, t) dx(53)

+ Ch

∫
RN
|x|−2+ε|x|2u2

i (x, t)G(x, t) dx

6 Ch

∫
RN
|x|2u2

i (x, t)G(x, t) dx+ Cht
ε/2

∫
{|x|6

√
t}
u2
i (x, t)G(x, t) dx

+ Cht
−1+ε/2

∫
{|x|>

√
t}
|x|2u2

i (x, t)G(x, t) dx

6 Cht
−1+ε/2(1 + T

1−ε/2
)
∫

RN
|x|2u2

i (x, t)G(x, t) dx+ Cht
ε/2

∫
RN

u2
i (x, t)G(x, t) dx,

for a.e. t ∈ (βi, Ti). Moreover, by Hölder’s inequality and Corollary 2.8,

∫
RN
|ht(x, t+ ai)|u2

i (x, t)G(x, t) dx 6 C2∗t
−1‖ui‖2Ht‖ht(·, t+ ai)‖LN/2(RN )(54)
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for a.e. t ∈ (βi, Ti). Collecting (32), (52), (53) and (54), we obtain that

(55)
∣∣∣ν2i(t)

∣∣∣ 6 const tε/2

Hi(t)

(
1
t

∫
RN

u2
i (x, t)G(x, t) dx+

∫
RN

u2
i (x, t)
|x|2

G(x, t) dx

+
∫

RN
|∇ui(x, t)|2G(x, t) dx+

1
t2

∫
RN
|x|2u2

i (x, t)G(x, t) dx
)

+
C2∗

Hi(t)
‖ui‖2Ht‖ht(·, t+ ai)‖LN/2(RN ).

From inequality (55), Lemma 2.1, Corollary 2.4, and Corollary 2.6, we deduce that there exists
C3 > 0 depending only on Ch, T , and N , such that, for a.e. t ∈ (βi, Ti),∣∣∣ν2i(t)

∣∣∣ 6 C3

Hi(t)

(
tDi(t) + N−2

4 Hi(t)
)(
t−1+ε/2 + ‖ht(·, t+ ai)‖LN/2(RN )

)
= C3

(
Ni(t) + N−2

4

)(
t−1+ε/2 + ‖ht(·, t+ ai)‖LN/2(RN )

)
thus completing the proof in case (I).

Let us now consider case (II), i.e. f(x, t, s) = ϕ(x, t, s) with ϕ under condition (5) and u
satisfying (7) and (8). From (5), we have that∣∣∣ν2i(t)

∣∣∣ 6 const
Hi(t)

(
t

∫
RN
|ui(x, t)|q|(ui)t(x, t)|G(x, t) dx(56)

+
∫

RN

(
|ui(x, t)|2 + |ui(x, t)|p+1

)
G(x, t) dx+

∫
RN

|x|2

t

(
|ui(x, t)|2 + |ui(x, t)|p+1

)
G(x, t) dx

)
.

From Hölder’s inequality, Corollary 2.8, and assumptions (7–8), it follows that

t

∫
RN
|ui(x, t)|q|(ui)t(x, t)|G(x, t) dx(57)

6 t

(∫
RN
|ui(x, t)|p+1G

p+1
2 (x, t) dx

) 2
p+1

‖u(·, t+ ai)‖q−2
Lp+1(RN )

‖ut(·, t+ ai)‖
L

p+1
p+1−q (RN )

6 const t−
N
p+1

p−1
2 ‖ui‖2Ht

and, taking into account also Corollary 2.6,∫
RN

|x|2

t

(
|ui(x, t)|2 + |ui(x, t)|p+1

)
G(x, t) dx 6

∫
RN

|x|2

t
|ui(x, t)|2G(x, t) dx(58)

+
t+ ai
t

(∫
RN
|ui(x, t)|p+1G

p+1
2 (x, t) dx

) 2
p+1
(∫

RN

(
|x|2

t+ ai

)p+1
p−1

|u(x, t+ ai)|p+1 dx

) p−1
p+1

6

const t−
N
p+1

p−1
2 ‖ui‖2Ht , if i = 1,

const biβ−1
i t−

N
p+1

p−1
2 ‖ui‖2Ht , if i > 1.

As in (33) we can estimate∫
RN

(
|ui(x, t)|2 + |ui(x, t)|p+1

)
G(x, t) dx 6 const t−

N
p+1

p−1
2 ‖ui‖2Ht .(59)



26 VERONICA FELLI AND ANA PRIMO

Collecting (56), (57), (58), and (59), and using Corollary 2.9, we obtain that there exists some
positive constant C3 such that, for a.e. t ∈ (βi, Ti),

∣∣∣ν2i(t)
∣∣∣ 6


C3
Hi(t)

t−
N
p+1

p−1
2
(
tDi(t) + N−2

4 Hi(t)
)

= C3

(
Ni(t) + N−2

4

)
t−1+

N+2−p(N−2)
2(p+1) , if i = 1,

C3β
−1
i

Hi(t)
t−

N
p+1

p−1
2
(
tDi(t) + N−2

4 Hi(t)
)

= C3β
−1
i

(
Ni(t) + N−2

4

)
t−1+

N+2−p(N−2)
2(p+1) , if i > 1,

thus completing the proof in case (II). �

Lemma 4.8. There exists C4 > 0 such that, if i ∈ {1, . . . , k} and βi, Ti ∈ (0, 2α) satisfy (51),
then, for every t ∈ (βi, Ti),

Ni(t) 6

−
N−2

4 + C4

(
Ni(Ti) + N−2

4

)
, in case (I) and in case (II) if i = 1,

−N−2
4 + C

1/βi
4

(
Ni(Ti) + N−2

4

)
, in case (II) if i > 1.

Proof. Let ν1i and ν2i as in Lemma 4.6. By Schwarz’s inequality,

(60) ν1i > 0 a.e. in (βi, Ti).

From Lemma 4.6, (60), and Lemma 4.7, we deduce that

d

dt
Ni(t) >


−C3

(
Ni(t) + N−2

4

)(
t−1+ε/2 + ‖ht(·, t+ ai)‖LN/2(RN )

)
, in case (I),

−C3

(
Ni(t) + N−2

4

)
t−1+

N+2−p(N−2)
2(p+1) , in case (II) if i = 1,

−C3β
−1
i

(
Ni(t) + N−2

4

)
t−1+

N+2−p(N−2)
2(p+1) , in case (II) if i > 1,

for a.e. t ∈ (βi, Ti). After integration, it follows that

Ni(t)

6



−N−2
4 +

(
Ni(Ti) + N−2

4

)
exp

(
2C3
ε T

ε/2
i + C3‖ht‖L1((0,T ),LN/2(RN ))

)
, in case (I),

−N−2
4 +

(
Ni(Ti) + N−2

4

)
exp

(
2(p+1)C3

N+2−p(N−2)T
N+2−p(N−2)

2(p+1)
i

)
, in case (II), i = 1,

−N−2
4 +

(
Ni(Ti) + N−2

4

)
exp

(
2(p+1)C3β

−1
i

N+2−p(N−2)T
N+2−p(N−2)

2(p+1)
i

)
, in case (II), i > 1,

for any t ∈ (βi, Ti), thus yielding the conclusion. �

Lemma 4.9. Let i ∈ {1, . . . , k}. If Hi 6≡ 0, then

Hi(t) > 0 for all t ∈ (0, 2α).

Proof. From continuity of Hi, the assumption Hi 6≡ 0, and the fact that ui(·, t) ∈ Ht for a.e.
t ∈ (0, 2α), we deduce that there exists Ti ∈ (0, 2α) such that

(61) Hi(Ti) > 0 and ui(·, Ti) ∈ HTi .

Lemma 4.4 implies that Hi(t) > 0 for all t ∈ [Ti, 2α). We consider

ti := inf{s ∈ (0, Ti) : Hi(t) > 0 for all t ∈ (s, 2α)}.
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Due to Lemma 4.4, either

(62) ti = 0 and Hi(t) > 0 for all t ∈ (0, 2α)

or

(63) 0 < ti < Ti and

{
Hi(t) = 0 if t ∈ (0, ti]
Hi(t) > 0 if t ∈ (ti, 2α)

.

The argument below will exclude alternative (63). Assume by contradiction that (63) holds. From
Lemma 4.8 and (49), it follows

t

2
H ′i(t) 6 ciHi(t)

where

ci =

−
N−2

4 + C4

(
Ni(Ti) + N−2

4

)
in case (I) and in case (II) if i = 1,

−N−2
4 + C

1/ti
4

(
Ni(Ti) + N−2

4

)
in case (II) if i > 1,

for a.e. t ∈ (ti, Ti). By integration, it follows that

(64) Hi(t) >
Hi(Ti)
T 2ci
i

t2ci for all t ∈ [ti, Ti).

By (63) Hi(ti) = 0, giving rise to contradiction with (64) because of (61). Therefore, we exclude
(63) and conclude that (62) holds. �

Lemma 4.10. Let i ∈ {1, . . . , k}. Then

Hi(t) ≡ 0 in (0, 2α) if and only if Hi+1(t) ≡ 0 in (0, 2α).

Proof. First, we prove that Hi(t) ≡ 0 in (0, 2α) implies Hi+1(t) ≡ 0 in (0, 2α). Let’s suppose by
contradiction that Hi+1(t) 6≡ 0. By Lemma 4.9, we conclude that Hi+1(t) > 0 for all t ∈ (0, 2α).
It follows that ui+1(·, t) 6≡ 0 for all t ∈ (0, 2α) and u(·, t) 6≡ 0, for all t ∈ (iα, (i + 1)α). Hence,
ui(·, t) 6≡ 0, for all t ∈ (α, 2α) and thus Hi 6≡ 0 in (0, 2α), a contradiction.

Let us now prove that Hi+1(t) ≡ 0 in (0, 2α) implies Hi(t) ≡ 0 in (0, 2α). Let’s suppose by
contradiction that Hi(t) 6≡ 0, then, by Lemma 4.4, Hi(t) > 0 in (t, 2α) for some t ∈ (α, 2α).
Hence, ui(·, t) 6≡ 0 in (t, 2α) and then ui+1(·, t) 6≡ 0 in (t − α, α), thus implying Hi+1(t) 6≡ 0, a
contradiction. �

Corollary 4.11. If u 6≡ 0 in RN × (0, T ), then

Hi(t) > 0

for all t ∈ (0, 2α) and i = 1, . . . , k. In particular,

(65)
∫

RN
u2(x, t)G(x, t) dx > 0 for all t ∈ (0, T ).

Proof. If u 6≡ 0, then there exists some i0 ∈ {1, . . . , k} such that ui0 6≡ 0 in (0, 2α). Hence,
Hi0(t) 6≡ 0 in (0, 2α) and, thanks to lemma 4.10, Hi(t) 6≡ 0 in (0, 2α) for all i = 1, . . . , k. Applying
Lemma 4.9, we conclude that, for all i = 1, . . . , k, Hi(t) > 0 in (0, 2α), thus implying (65). �

Proof of Proposition 1.8. It follows immediately from Corollary 4.11. �
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Henceforward, we assume u 6≡ 0 and we denote, for all t ∈ (0, 2α),

H(t) = H1(t) =
∫

RN
u2(x, t)G(x, t) dx,

D(t) = D1(t) =
∫

RN

(
|∇u(x, t)|2 −

a
(
x
|x|
)

|x|2
u2(x, t)− f(x, t, u(x, t))u(x, t)

)
G(x, t) dx.

Corollary 4.11 ensures that, if u 6≡ 0 in RN × (0, T ), H(t) > 0 for all t ∈ (0, 2α) and hence the
Almgren type frequency function

N (t) = Nf,u(t) = N1(t) =
tD(t)
H(t)

is well defined over all (0, 2α). Moreover, by Lemma 4.6, N ∈W 1,1
loc (0, 2α) and

N ′(t) = ν1(t) + ν2(t) for a.e. t ∈ (0, 2α),

where

(66) ν1(t) = ν11(t) and ν2(t) = ν21(t),

with ν11, ν21 as in Lemma 4.6. Since, by (10), u(·, t) ∈ Ht for a.e. t ∈ (0, T ), we can fix T0 such
that

(67) T0 ∈ (0, 2α) and u(·, T0) ∈ HT0 .

The following result clarifies the behavior of N (t) as t→ 0+.

Lemma 4.12. The limit
γ := lim

t→0+
N (t)

exists and it is finite.

Proof. We first observe that N (t) is bounded from below in (0, 2α). Indeed from Corollaries
2.4 and 2.9, we obtain that, for all t ∈ (0, 2α),

tD(t) >
(
C1 −

N − 2
4

)
H(t),

and hence

(68) N (t) > C1 −
N − 2

4
.

Let T0 as in (67). By Schwarz’s inequality, ν1(t) > 0 for a.e. t ∈ (0, T0). Furthermore, from
Lemmas 4.7 and 4.8, ν2 belongs to L1(0, T0). In particular, N ′(t) turns out to be the sum of a
nonnegative function and of a L1 function over (0, T0). Therefore,

N (t) = N (T0)−
∫ T0

t

N ′(s) ds

admits a limit as t→ 0+ which is finite in view of (68) and Lemma 4.8. �
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Lemma 4.13. Let γ := limt→0+ N (t) be as in Lemma 4.12. Then there exists a constant K1 > 0
such that

(69) H(t) 6 K1t
2γ for all t ∈ (0, T0).

Furthermore, for any σ > 0, there exists a constant K2(σ) > 0 depending on σ such that

(70) H(t) > K2(σ) t2γ+σ for all t ∈ (0, T0).

Proof. From Lemma 4.6, (60), Lemma 4.7, and Lemma 4.8, we infer that

N (t)− γ =
∫ t

0

(ν1(s) + ν2(s))ds >
∫ t

0

ν2(s)ds

>

−C3C4

(
N (T0) + N−2

4

) ∫ t
0

(
s−1+ε/2 + ‖ht(·, s)‖LN/2(RN )

)
ds, in case (I),

−C3C4

(
N (T0) + N−2

4

) ∫ t
0
s−1+

N+2−p(N−2)
2(p+1) ds, in case (II),

>

−C3C4

(
N (T0) + N−2

4

)(
2
ε t
ε/2 + ‖ht‖Lr((0,T ),LN/2(RN ))t

1−1/r
)
, in case (I),

−C3C4

(
N (T0) + N−2

4

) 2(p+1)
N+2−p(N−2) t

N+2−p(N−2)
2(p+1) , in case (II)

> −C5t
δ

with

(71) δ =

min{ε/2, 1− 1/r}, in case (I),
N+2−p(N−2)

2(p+1) , in case (II),

for some constant C5 > 0 and for all t ∈ (0, T0). From above and (49), we deduce that

(logH(t))′ =
H ′(t)
H(t)

=
2
t
N (t) >

2
t
γ − 2C5t

−1+δ.

Integrating over (t, T0) we obtain

H(t) 6
H(T0)
T 2γ

0

e2C5T
δ
0 t2γ

for all t ∈ (0, T0), thus proving (69).
Let us prove (70). Since γ = limt→0+ N (t), for any σ > 0 there exists tσ > 0 such that

N (t) < γ + σ/2 for any t ∈ (0, tσ) and hence

H ′(t)
H(t)

=
2N (t)
t

<
2γ + σ

t
.

Integrating over the interval (t, tσ) and by continuity of H outside 0, we obtain (70) for some
constant K2(σ) depending on σ. �
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5. The blow-up analysis

If u is a weak solution to (1) in the sense of Definition 1.1, then, for every λ > 0, the function

uλ(x, t) = u(λx, λ2t)

is a weak solution to

(72) (uλ)t + ∆uλ +
a(x/|x|)
|x|2

uλ + λ2f(λx, λ2t, uλ) = 0 in RN × (0, T/λ2),

in the sense that∫ T
λ2

τ

‖uλ(·, t)‖2Ht dt < +∞,
∫ T

λ2

τ

∥∥∥(uλ)t +
∇uλ · x

2t

∥∥∥2

(Ht)?
< +∞ for all τ ∈

(
0,
T

λ2

)
,

H?t

〈
(uλ)t +

∇uλ · x
2t

, w

〉
Ht

=
∫

RN

(
∇uλ(x, t) · ∇w(x)− a(x/|x|)

|x|2
uλ(x, t)w(x)− λ2f(λx, λ2t, uλ(x, t))w(x)

)
G(x, t) dx

for a.e. t ∈
(
0, Tλ2

)
and for each w ∈ Ht. The frequency function associated to the scaled equation

(72) is

(73) Nλ(t) =
tDλ(t)
Hλ(t)

,

where

Dλ(t) =
∫

RN

(
|∇uλ(x, t)|2 − a(x/|x|)

|x|2
u2
λ(x, t)− λ2f(λx, λ2t, uλ(x, t))uλ(x, t)

)
G(x, t) dx,

Hλ(t) =
∫

RN
u2
λ(x, t)G(x, t) dx.

The scaling properties of the operator combined with a suitable change of variables easily imply
that

Dλ(t) = λ2D(λ2t) and Hλ(t) = H(λ2t),(74)

and consequently

Nλ(t) = N (λ2t) for all t ∈
(

0,
2α
λ2

)
.(75)

Lemma 5.1. Let a ∈ L∞
(
SN−1

)
satisfy (16) and u 6≡ 0 be, in the sense of Definition 1.1, either a

weak solution to (2), with h satisfying (3) and (4), or a weak solution to (6) satisfying (7–8) with
ϕ ∈ C1(RN × (0, T )× R) under assumption (5). Let γ := limt→0+ N (t) as in Lemma 4.12. Then

(i) γ is an eigenvalue of the operator L defined in (14);
(ii) for every sequence λn → 0+, there exists a subsequence {λnk}k∈N and an eigenfunction g

of the operator L associated to γ such that, for all τ ∈ (0, 1),

lim
k→+∞

∫ 1

τ

∥∥∥∥u(λnkx, λ
2
nk
t)√

H(λ2
nk

)
− tγg(x/

√
t)
∥∥∥∥2

Ht
dt = 0
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and

lim
k→+∞

sup
t∈[τ,1]

∥∥∥∥u(λnkx, λ
2
nk
t)√

H(λ2
nk

)
− tγg(x/

√
t)
∥∥∥∥
Lt

= 0.

Proof. Let

wλ(x, t) :=
uλ(x, t)√
H(λ2)

,(76)

with λ ∈ (0,
√
T 0), so that 1 < T0/λ

2. From Lemma 4.3 we obtain that, for all t ∈ (0, 1),

(77)
∫

RN
w2
λ(x, t)G(x, t) dx =

H(λ2t)
H(λ2)

6 t2C1−N−2
2 ,

with C1 as in (42). Lemma 4.8, Corollaries 2.4 and 2.9, and (74) imply that

1
t

(
− N − 2

4
+ C4

(
N (T0) +

N − 2
4

))
Hλ(t) > λ2D(λ2t)

>
1
t

(
C1 −

N − 2
4

)
Hλ(t) + C1

∫
RN
|∇uλ(x, t)|2G(x, t) dx

and hence, in view of (77),

t

∫
RN
|∇wλ(x, t)|2G(x, t) dx 6 C−1

1

(
C4

(
N (T0) + N−2

4

)
− C1

) ∫
RN

w2
λ(x, t)G(x, t) dx(78)

6 C−1
1

(
C4

(
N (T0) + N−2

4

)
− C1

)
t2C1−N−2

2 ,

for a.e. t ∈ (0, 1). Let us consider the family of functions

w̃λ(x, t) = wλ(
√
tx, t) =

u(λ
√
tx, λ2t)√
H(λ2)

,

which, by scaling, satisfy

(79)
∫

RN
w̃2
λ(x, t)G(x, 1) dx =

∫
RN

w2
λ(x, t)G(x, t) dx

and

(80)
∫

RN
|∇w̃λ(x, t)|2G(x, 1) dx = t

∫
RN
|∇wλ(x, t)|2G(x, t) dx.

From (77), (78), (79), and (80), we deduce that, for all τ ∈ (0, 1),

(81)
{
w̃λ
}
λ∈(0,

√
T 0)

is bounded in L∞(τ, 1;H)

uniformly with respect to λ ∈ (0,
√
T 0). Since

w̃λ(x, t) =
v(x, λ2t)√
H(λ2)

and (w̃λ)t(x, t) =
λ2√
H(λ2)

vt(x, λ2t)
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with v as in Remark 1.2, from (13) we deduce that, for all φ ∈ H,

(82) H?
〈
(w̃λ)t, φ

〉
H =

1
t

∫
RN

(
∇w̃λ(x, t) · ∇φ(x)−

a
(
x
|x|
)

|x|2
w̃λ(x, t)φ(x)

− λ2t√
H(λ2)

f
(
λ
√
tx, λ2t,

√
H(λ2)w̃λ(x, t)

)
φ(x)

)
G(x, 1) dx.

In case (I), from (4) and Lemma 2.1, we can estimate the last term in the above integral as

λ2

∣∣∣∣∫
RN

h(λ
√
tx, λ2t)w̃λ(x, t)φ(x)G(x, 1) dx

∣∣∣∣(83)

6 Chλ
2

∫
RN
|w̃λ(x, t)||φ(x)|G(x, 1) dx+ Ch

λε

t

∫
RN
|x|−2+ε|w̃λ(x, t)||φ(x)|G(x, 1) dx

6 Chλ
2‖w̃λ(·, t)‖H‖φ‖H + Ch

λε

t

∫
|x|61

|w̃λ(x, t)||φ(x)|
|x|2

G(x, 1) dx

+ Ch
λε

t

∫
|x|>1

|w̃λ(x, t)||φ(x)|G(x, 1) dx

6 Ch
λε

t

(
t λ2−ε +

max{4, N − 2}
(N − 2)2

+ 1
)
‖w̃λ(·, t)‖H‖φ‖H

for all λ ∈ (0,
√
T 0) and a.e. t ∈ (0, 1). From (82), (83), and Lemma 2.1 it follows that, for all

λ ∈ (0,
√
T 0) and a.e. t ∈ (0, 1),∣∣

H?
〈
(w̃λ)t, φ

〉
H

∣∣
6
(

1 + max{4,N−2}
(N−2)2 ‖a‖L∞(SN−1) + ChT

ε/2
0

(
T

1−ε/2
0 + max{4,N−2}

(N−2)2 + 1
))‖w̃λ(·, t)‖H‖φ‖H

t

and hence

(84) ‖(w̃λ)t(·, t)‖H? 6
const
t
‖w̃λ(·, t)‖H.

In case (II), from (5), Hölder’s inequality, and Lemma 2.7, we obtain

(85)
∣∣∣∣ λ2√

H(λ2)

∫
RN

ϕ
(
λ
√
tx, λ2t,

√
H(λ2)w̃λ(x, t)

)
φ(x)G(x, 1) dx

∣∣∣∣
6 Cϕ

λ2√
H(λ2)

∫
RN

(√
H(λ2)|w̃λ(x, t)|+ (

√
H(λ2))p|w̃λ(x, t)|p

)
|φ(x)|G(x, 1) dx

6 Cϕλ
2

∫
RN
|w̃λ(x, t)||φ(x)|G(x, 1) dx+ Cϕλ

2(H(λ2))
p−1
2

∫
RN
|w̃λ(x, t)|p|φ(x)|G(x, 1) dx

6 ‖w̃λ(·, t)‖H‖φ‖H
λ
N+2−p(N−2)

p+1

t

(
Cϕtλ

N(p−1)
p+1 +CϕCp+1t

N+2−p(N−2)
2(p+1)

(∫
RN
|u(x, λ2t)|p+1 dx

)p−1
p+1
)
.

From (82), (85), Lemma 2.1, the fact that p < 2∗ − 1, and (7), it follows that, for all λ ∈ (0,
√
T 0)

and a.e. t ∈ (0, 1), estimate (84) holds also in case (II). Then, in view of (81), estimate (84) yields,
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for all τ ∈ (0, 1),

(86)
{

(w̃λ)t
}
λ∈(0,

√
T 0)

is bounded in L∞(τ, 1;H?)

uniformly with respect to λ ∈ (0,
√
T 0). From (81), (86), and [28, Corollary 8], we deduce that{

w̃λ
}
λ∈(0,

√
T 0)

is relatively compact in C0([τ, 1],L) for all τ ∈ (0, 1). Therefore, for any given
sequence λn → 0+, there exists a subsequence λnk → 0+ such that

(87) w̃λnk → w̃ in C0([τ, 1],L)

for all τ ∈ (0, 1) and for some w̃ ∈
⋂
τ∈(0,1) C

0([τ, 1],L). We notice that a diagonal procedure
allows subtracting a subsequence which does not depend on τ . Since

1 = ‖w̃λnk (·, 1)‖L,

the convergence (87) ensures that

(88) ‖w̃(·, 1)‖L = 1.

In particular w̃ is nontrivial. Furthermore, by (81) and (86), the subsequence can be chosen in
such a way that also

(89) w̃λnk ⇀ w̃ weakly in L2(τ, 1;H) and (w̃λnk )t ⇀ w̃t weakly in L2(τ, 1;H?)

for all τ ∈ (0, 1); in particular w̃ ∈
⋂
τ∈(0,1) L

2(τ, 1;H) and w̃t ∈
⋂
τ∈(0,1) L

2(τ, 1;H?). We now
claim that

(90) w̃λnk → w̃ strongly in L2(τ, 1;H) for all τ ∈ (0, 1).

To prove the claim, we notice that (89) allows passing to the limit in (82). Therefore, in view of
(83) and (84) which ensure the vanishing at the limit of the perturbation term,

(91) H?
〈
w̃t, φ

〉
H =

1
t

∫
RN

(
∇w̃(x, t) · ∇φ(x)−

a
(
x
|x|
)

|x|2
w̃(x, t)φ(x)

)
G(x, 1) dx

for all φ ∈ H and a.e. t ∈ (0, 1), i.e. w̃ is a weak solution to

w̃t +
1
t

(
∆w̃ − x

2
· ∇w̃ +

a(x/|x|)
|x|2

w̃

)
= 0.

Testing the difference between (82) and (91) with (w̃λnk − w̃) and integrating with respect to t
between τ and 1, we obtain∫ 1

τ

(∫
RN

(
|∇(w̃λnk − w̃)(x, t)|2 − a(x/|x|)

|x|2
|(w̃λnk − w̃)(x, t)|2

)
G(x, 1) dx

)
dt

=
1
2
‖w̃λnk (1)− w̃(1)‖2L −

τ

2
‖w̃λnk (τ)− w̃(τ)‖2L −

∫ 1

τ

(∫
RN
|(w̃λnk − w̃)(x, t)|2G(x, 1) dx

)
dt

+
λ2
nk√

H(λ2
nk

)

∫ 1

τ

(∫
RN

tf
(
λnk
√
tx, λ2

nk
t,
√
H(λ2

nk
)w̃λnk (x, t)

)
(w̃λnk − w̃)(x, t)G(x, 1) dx

)
dt.

Then, from (83), (85), and (87), we obtain that, for all τ ∈ (0, 1),

lim
k→+∞

∫ 1

τ

(∫
RN

(
|∇(w̃λnk − w̃)(x, t)|2 − a(x/|x|)

|x|2
|(w̃λnk − w̃)(x, t)|2

)
G(x, 1) dx

)
dt = 0,
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which, by Corollary 2.3 and (87), implies the convergence claimed in (90). Thus, we have obtained
that, for all τ ∈ (0, 1),

(92) lim
k→+∞

∫ 1

τ

‖wλnk (·, t)− w(·, t)‖2Htdt = 0

and
lim

k→+∞
sup
t∈[τ,1]

‖wλnk (·, t)− w(·, t)‖Lt = 0,

where
w(x, t) := w̃

( x√
t
, t
)

is a weak solution (in the sense of Definition 1.1) of

(93) wt + ∆w +
a(x/|x|)
|x|2

w = 0.

We notice that, by (73) and (76),

Nλ(t)

=
t
∫

RN

(
|∇wλ(x, t)|2 − a(x/|x|)

|x|2 w2
λ(x, t)− λ2√

H(λ2)
f
(
λx, λ2t,

√
H(λ2)wλ(x, t)

)
wλ(x, t)

)
G(x, t) dx∫

RN w
2
λ(x, t)G(x, t) dx

for all t ∈ (0, 1). Since, by (92), wλnk (·, t)→ w(·, t) in Ht for a.e. t ∈ (0, 1), and, by (83) and (85),

tλ2
nk√

H(λ2
nk

)

∫
RN

f
(
λnkx, λ

2
nk
t,
√
H(λ2

nk
)wλnk (x, t)

)
wλnk (x, t)G(x, t) dx→ 0

for a.e. t ∈ (0, 1), we obtain that

(94)
∫

RN

(
|∇wλnk (x, t)|2 − a(x/|x|)

|x|2
w2
λnk

(x, t)−

λ2
nk√

H(λ2
nk

)
f
(
λnkx, λ

2t,
√
H(λ2

nk
)wλnk (x, t)

)
wλnk (x, t)

)
G(x, t) dx→ Dw(t)

and

(95)
∫

RN
w2
λnk

(x, t)G(x, t) dx→ Hw(t)

for a.e. t ∈ (0, 1), where

Dw(t) =
∫

RN

(
|∇w(x, t)|2 − a(x/|x|)

|x|2
w2(x, t)

)
G(x, t) dx and Hw(t) =

∫
RN

w2(x, t)G(x, t) dx.

We point out that

(96) Hw(t) > 0 for all t ∈ (0, 1);

indeed, (88) yields

(97)
∫

RN
w2(x, 1)G(x, 1) dx = 1,



HEAT EQUATIONS WITH INVERSE-SQUARE POTENTIALS 35

which, arguing as in Lemma 4.9 or applying directly the Unique Continuation Principle proved by
[25, Theorem 1.2] to equation (93), implies that

∫
RN w

2(x, t)G(x, t) dx > 0 for all t ∈ (0, 1). From
(94) and (95), it follows that

(98) Nλnk (t)→ Nw(t) for a.e. t ∈ (0, 1),

where Nw is the frequency function associated to the limit equation (93), i.e.

(99) Nw(t) =
tDw(t)
Hw(t)

,

which is well defined on (0, 1) by (96).
On the other hand, (75) implies that Nλnk (t) = N (λ2

nk
t) for all t ∈ (0, 1) and k ∈ N. Fixing

t ∈ (0, 1) and passing to the limit as k → +∞, from Lemma 4.12 we obtain

(100) Nλnk (t)→ γ for all t ∈ (0, 1).

Combining (98) and (100), we deduce that

(101) Nw(t) = γ for all t ∈ (0, 1).

Therefore Nw is constant in (0, 1) and hence N ′w(t) = 0 for any t ∈ (0, 1). By (93) and Lemma 4.6
with f ≡ 0, we obtain(∫

RN

∣∣∣wt(x, t) +
∇w(x, t) · x

2t

∣∣∣2G(x, t) dx
)(∫

RN
w2(x, t)G(x, t) dx

)
−
(∫

RN

(
wt(x, t) +

∇w(x, t) · x
2t

)
w(x, t)G(x, t) dx

)2

= 0 for all t ∈ (0, 1),

i.e. (
wt(·, t) +

∇w(·, t) · x
2t

, w(·, t)
)2

Lt
=
∥∥∥∥wt(·, t) +

∇w(·, t) · x
2t

∥∥∥∥2

Lt
‖w(·, t)‖2Lt ,

where (·, ·)Lt denotes the scalar product in Lt. This shows that, for all t ∈ (0, 1), wt(·, t)+ ∇w(·,t)·x
2t

and w(·, t) have the same direction as vectors in Lt and hence there exists a function β : (0, 1)→ R
such that

(102) wt(x, t) +
∇w(x, t) · x

2t
= β(t)w(x, t) for a.e. t ∈ (0, 1) and a.e. x ∈ RN .

Testing (93) with φ = w(·, t) in the sense of (11) and taking into account (102), we find that

Dw(t) =
H?t

〈
wt(·, t) +

∇w(·, t) · x
2t

, w(·, t)
〉
Ht

= β(t)Hw(t),

which, by (99) and (101), implies that

β(t) =
γ

t
for a.e. t ∈ (0, 1).

Hence (102) becomes

(103) wt(x, t)+
∇w(x, t) · x

2t
=
γ

t
w(x, t) for a.e. (x, t) ∈ RN×(0, 1) and in a distributional sense.
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Combining (103) with (93), we obtain

(104) ∆w +
a(x/|x|)
|x|2

w − ∇w(x, t) · x
2t

+
γ

t
w(x, t) = 0

for a.e. (x, t) ∈ RN × (0, 1) and in a weak sense. From (103), it follows that, letting, for all η > 0
and a.e. (x, t) ∈ RN × (0, 1), wη(x, t) := w(ηx, η2t), there holds

dwη

dη
=

2γ
η
wη

a.e. and in a distributional sense. By integration, we obtain that

(105) wη(x, t) = w(ηx, η2t) = η2γw(x, t) for all η > 0 and a.e. (x, t) ∈ RN × (0, 1).

Let
g(x) = w(x, 1);

from (97), we have that g ∈ L, ‖g‖L = 1, and, from (105),

(106) w(x, t) = w
√
t
( x√

t
, 1
)

= tγw
( x√

t
, 1
)

= tγg
( x√

t

)
for a.e. (x, t) ∈ RN × (0, 1).

In particular, from (106), g
(
·/
√
t
)
∈ Ht for a.e. t ∈ (0, 1) and hence, by scaling, g ∈ H. From

(104) and (106), we obtain that g ∈ H \ {0} weakly solves

−∆g(x) +
∇g(x) · x

2
− a(x/|x|)

|x|2
g(x) = γ g(x),

i.e. γ is an eigenvalue of the operator L defined in (14) and g is an eigenfunction of L associated
to γ. The proof is now complete. �

Let us now describe the behavior of H(t) as t→ 0+.

Lemma 5.2. Under the same assumptions as in Lemma 5.1, let γ := limt→0+ N (t) be as in
Lemma 4.12. Then the limit

lim
t→0+

t−2γH(t)

exists and it is finite.

Proof. In view of (69), it is sufficient to prove that the limit exists. By (49), Lemma 4.12, and
Lemma 4.6, we have, for all t ∈ (0, T0),

d

dt

H(t)
t2γ

= −2γt−2γ−1H(t) + t−2γH ′(t) = 2t−2γ−1(tD(t)− γH(t))

= 2t−2γ−1H(t)
∫ t

0

(ν1(s) + ν2(s)) ds,

with ν1, ν2 as in (66). After integration over (t, T0),

(107)
H(T0)
T 2γ

0

−H(t)
t2γ

=
∫ T0

t

2s−2γ−1H(s)
(∫ s

0

ν1(r)dr
)
ds+

∫ T0

t

2s−2γ−1H(s)
(∫ s

0

ν2(r)dr
)
ds.

By (60), ν1(t) > 0 and hence

lim
t→0+

∫ T0

t

2s−2γ−1H(s)
(∫ s

0

ν1(r)dr
)
ds
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exists. On the other hand, by Lemmas 4.7 and 4.8 we have that s−δ
∫ s

0
|ν2(r)|dr is bounded in

(0, T0) with δ defined in (71), while, from Lemma 4.13, we deduce that t−2γH(t) is bounded in
(0, T0). Therefore, for some const > 0, there holds∣∣∣∣2s−2γ−1H(s)

(∫ s

0

ν2(r)dr
)∣∣∣∣ 6 const s−1+δ

for all s ∈ (0, T0), which proves that s−2γ−1H(s)
(∫ s

0
ν2(r)dr

)
∈ L1(0, T0). We conclude that both

terms at the right hand side of (107) admit a limit as t→ 0+ thus completing the proof. �

In the following lemma, we prove that limt→0+ t−2γH(t) is indeed strictly positive.

Lemma 5.3. Under the same assumptions as in Lemma 5.1 and letting γ := limt→0+ N (t) be as
in Lemma 4.12, there holds

lim
t→0+

t−2γH(t) > 0.

Proof. Let us assume by contradiction that limt→0+ t−2γH(t) = 0 and let {Ṽn,j : j, n ∈ N, j > 1}
be the orthonormal basis of L introduced in Remark 3.4. Since uλ(x, 1) = u(λx, λ2) ∈ L for
all λ ∈ (0,

√
T 0), uλ(x, 1) ∈ H for a.e. λ ∈ (0,

√
T 0), and f(λx, λ2, uλ(x, 1)) ∈ H? for a.e.

λ ∈ (0,
√
T 0), we can expand them as

uλ(x, 1) =
∑
m,k∈N
k>1

um,k(λ)Ṽm,k(x) in L,(108)

f(λx, λ2, uλ(x, 1)) =
∑
m,k∈N
k>1

ξm,k(λ)Ṽm,k(x) in H?,

where

(109) um,k(λ) =
∫

RN
uλ(x, 1)Ṽm,k(x)G(x, 1) dx

and

(110) ξm,k(λ) =
H?

〈
f(λ·, λ2, uλ(·, 1)), Ṽm,k

〉
H

=
∫

RN
f(λx, λ2, uλ(x, 1))Ṽm,k(x)G(x, 1) dx.

By orthogonality of the Ṽm,k’s in L, we have that

H(λ2) =
∑
n,j∈N
j>1

(un,j(λ))2 > (um,k(λ))2 for all λ ∈ (0,
√
T0) and m, k ∈ N, k > 1.

Hence, limt→0+ t−2γH(t) = 0 implies that

(111) lim
λ→0+

λ−2γum,k(λ) = 0 for all m, k ∈ N, k > 1.

Moreover, we can show that the function λ 7→ um,k(λ) is absolutely continuous in (0,
√
T0) and

u′m,k(λ) = H?〈
d
dλuλ(x, 1), Ṽm,k(x)〉H. Hence

d

dλ
uλ(x, 1) =

∑
m,k∈N
k>1

u′m,k(λ)Ṽm,k(x) in H?.
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Furthermore,
∆uλ(x, 1) = λ2∆u(λx, λ2) =

∑
m,k∈N
k>1

um,k(λ)∆Ṽm,k(x) in H?.

From (1) and the fact that Ṽm,k(x) is an eigenfuntion of the operator L associated to the eigenvalue
γm,k defined in (18), it follows that

d

dλ
uλ(x, 1) = 2λut(λx, λ2) +∇u(λx, λ2) · x

= 2λ
(
−∆u(λx, λ2)− a(x/|x|)

λ2|x|2
u(λx, λ2)− f(λx, λ2, u(λx, λ2))

)
+∇u(λx, λ2) · x

=
2
λ

∑
m,k∈N
k>1

um,k(λ)
(
−∆Ṽm,k(x)− a(x/|x|)

|x|2
Ṽm,k(x) +

∇Ṽm,k · x
2

)
− 2λ

∑
m,k∈N
k>1

ξm,k(λ)Ṽm,k(x)

=
2
λ

∑
m,k∈N
k>1

γm,kum,k(λ)Ṽm,k(x)− 2λ
∑
m,k∈N
k>1

ξm,k(λ)Ṽm,k(x).

Therefore, we have that

u′m,k(λ) =
2
λ
γm,kum,k(λ)− 2λξm,k(λ) for all m, k ∈ N, k > 1,

a.e. and distributionally in (0,
√
T0). By integration, we obtain, for all λ, λ̄ ∈ (0,

√
T0),

(112) um,k(λ̄) = λ̄2γm,k

(
λ−2γm,kum,k(λ) + 2

∫ λ

λ̄

s1−2γm,kξm,k(s) ds

)
.

From Lemma 5.1, γ is an eigenvalue of the operator L, hence, by Proposition 1.4, there exist
m0, k0 ∈ N, k0 > 1, such that γ = γm0,k0 = m0−

αk0
2 . Let us denote as E0 the associated eigenspace

and by J0 the finite set of indices {(m, k) ∈ N × (N \ {0}) : γ = m − αk
2 }, so that #J0 = m(γ),

with m(γ) as in (41), and an orthonormal basis of E0 is given by {Ṽm,k : (m, k) ∈ J0}. In order to
estimate ξm,k, we distinguish between case (I) and case (II).

Case (I): From (4), for all (m, k) ∈ J0, we can estimate ξm,k as

|ξm,k(λ)| 6 Ch
∫

RN
(1 + λ−2+ε|x|−2+ε)|u(λx, λ2)||Ṽm,k(x)|G(x, 1) dx(113)

6 Ch

(∫
RN

u2(λx, λ2)G(x, 1) dx
)1/2(∫

RN
Ṽ 2
m,k(x)G(x, 1) dx

)1/2
+ Chλ

−2+ε/2

∫
|x|6λ−1/2

|u(λx, λ2)||Ṽm,k(x)|
|x|2

G(x, 1) dx

+ Chλ
−1+ε/2

∫
|x|>λ−1/2

|u(λx, λ2)||Ṽm,k(x)|G(x, 1) dx

6 Ch(1 + λ−1+ ε
2 )
√
H(λ2) + Chλ

−2+ ε
2

(∫
RN

u2(λx,λ2)
|x|2 G(x, 1) dx

)1
2
(∫

RN

eV 2
m,k(x)

|x|2 G(x, 1) dx
)1

2

.
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From Corollary 2.4 and Lemma 4.8, it follows that

(114)
∫

RN

u2(λx, λ2)
|x|2

G(x, 1) dx = λ2

∫
RN

u2(y, λ2)
|y|2

G(y, λ2) dy 6
λ2

C ′1

(
D(λ2) +

C2

λ2
H(λ2)

)
=
H(λ2)
C ′1

(
N (λ2) + C2

)
6
C2 − N−2

4 + C4

(
N (T0) + N−2

4

)
C ′1

H(λ2),

while, from Lemma 2.2, for all (m, k) ∈ J0,

(115)
∫

RN

Ṽ 2
m,k(x)
|x|2

G(x, 1) dx 6
(
µ1(a) +

(N − 2)2

4

)−1(
γ +

N − 2
4

)
.

From (113), (114), (115), and Lemma 4.13, we deduce that

|ξm,k(λ)| 6 C6λ
−2+ ε

2 +2γ , for all λ ∈ (0,
√
T0)(116)

and for some positive constant C6 depending on a,N, γ, h, T0,K1, ε but independent of λ
and (m, k) ∈ J0.

Case (II): From (5) and Lemma 2.7, for all (m, k) ∈ J0, we can estimate ξm,k as

|ξm,k(λ)| 6 Cϕ
∫

RN

(
|u(λx, λ2)|+ |u(λx, λ2)|p

)
|Ṽm,k(x)|G(x, 1) dx(117)

6 Cϕ

(∫
RN

u2(λx, λ2)G(x, 1) dx
)1/2(∫

RN
Ṽ 2
m,k(x)G(x, 1) dx

)1/2
+ Cϕ

(∫
RN
|u(λx, λ2)|p+1|G(x, 1)|

p+1
2 dx

) 1
p+1
(∫

RN
|Ṽm,k(x)|p+1|G(x, 1)|

p+1
2 dx

) 1
p+1

×
(∫

RN
|u(λx, λ2)|p+1 dx

)p−1
p+1

6 Cϕ
√
H(λ2) + CϕCp+1λ

−N p−1
p+1 ‖uλ(·, 1)‖H‖Ṽm,k‖H

(∫
RN
|u(y, λ2)|p+1 dy

)p−1
p+1

.

From Corollary 2.9 and Lemma 4.8, it follows that

(118) ‖uλ(·, 1)‖2H = ‖u(·, λ2)‖2Hλ2
6

λ2

C ′′1

(
D(λ2) +

N − 2
4λ2

H(λ2)
)

=
H(λ2)
C ′′1

(
N (λ2) +

N − 2
4

)
6
C4

(
N (T0) + N−2

4

)
C ′′1

H(λ2),

while, from Corollary 2.3, for all (m, k) ∈ J0,

(119) ‖Ṽm,k‖H 6 const
(
γ +

N − 2
4

)
.

From (117), (118), (119), and Lemma 4.13, we deduce that

|ξm,k(λ)| 6 C7λ
−2+

N+2−p(N−2)
p+1 +2γ , for all λ ∈ (0,

√
T0)(120)

and for some positive constant C7 depending on ‖u‖L∞(0,T,Lp+1(RN )), a, N , γ, ϕ, T0, K1,
p, but independent of λ and (m, k) ∈ J0.
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Collecting (116) and (120), we have that

|ξm,k(λ)| 6 C8λ
−2+δ̃+2γ , for all λ ∈ (0,

√
T0)(121)

for some C8 > 0 which is independent of λ and (m, k) ∈ J0 and

δ̃ =

ε/2, in case (I),
N+2−p(N−2)

p+1 , in case (II).

Estimate (121) implies that the function s 7→ s1−2γξm,k(s) belongs to L1(0,
√
T0). Therefore,

letting λ̄→ 0+ in (112) and using (111), we deduce that, for all λ ∈ (0,
√
T0),

(122) um,k(λ) = −2λ2γ

∫ λ

0

s1−2γξm,k(s) ds.

From (121) and (122), we obtain that, for all (m, k) ∈ J0 and λ ∈ (0,
√
T0),

(123) |um,k(λ)| 6 2C8

δ̃
λ2γ+δ̃.

Let us fix σ ∈
(
0, δ̃); by Lemma 4.13, there exists K2(σ) such that

H(λ2) > K2(σ)λ2(2γ+σ) for λ ∈ (0,
√
T0).

Therefore, in view of (123), for all (m, k) ∈ J0 and λ ∈ (0,
√
T0),

|um,k(λ)|√
H(λ2)

6
2C8

δ̃
√
K2(σ)

λδ̃−σ

and hence

(124)
um,k(λ)√
H(λ2)

→ 0 as λ→ 0+.

On the other hand, by Lemma 5.1, for every sequence λn → 0+, there exists a subsequence
{λnj}j∈N and an eigenfunction g ∈ E0 \ {0} of the operator L associated to γ such that

uλnj (x, 1)√
H(λ2

nj )
→ g in L as j → +∞,

thus implying, for all (m, k) ∈ J0,

(125)
um,k(λnj )√
H(λ2

nj )
=

uλnj (x, 1)√
H(λ2

nj )
, Ṽm,k


L

→ (g, Ṽm,k)L as j → +∞.

From (124) and (125), we deduce that (g, Ṽm,k)L = 0 for all (m, k) ∈ J0. Since g ∈ E0 and
{Ṽm,k : (m, k) ∈ J0} is an orthonormal basis of E0, this implies that g = 0, a contradiction. �

We now complete the description of the asymptotics of solutions by combining Lemmas 5.1 and
5.3 and obtaining some convergence of the blowed-up solution continuously as λ → 0+ and not
only along subsequences, thus proving Theorems 1.5 and 1.6.

Proof of Theorems 1.5 and 1.6. Identities (21) and (26) follow from part (i) of Lemma 5.1 and
Proposition 1.4, which imply that there exists an eigenvalue γm0,k0 = m0 −

αk0
2 of L, m0, k0 ∈ N,
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k0 > 1, such that γ = limt→0+ N (t) = γm0,k0 . Let E0 be the associated eigenspace and J0 the
finite set of indices {(m, k) ∈ N × (N \ {0}) : γm0,k0 = m − αk

2 }, so that {Ṽm,k : (m, k) ∈ J0},
with the Ṽm,k’s as in Remark 3.4, is an orthonormal basis of E0. Let {λn}n∈N ⊂ (0,+∞) such
that limn→+∞ λn = 0. Then, from part (ii) of Lemma 5.1 and Lemmas 5.2 and 5.3, there exist a
subsequence {λnk}k∈N and real numbers {βn,j : (n, j) ∈ J0} such that βn,j 6= 0 for some (n, j) ∈ J0

and, for any τ ∈ (0, 1),

(126) lim
k→+∞

∫ 1

τ

∥∥∥∥λ−2γ
nk

u(λnkx, λ
2
nk
t)− tγ

∑
(n,j)∈J0

βn,j Ṽn,j(x/
√
t)
∥∥∥∥2

Ht
dt = 0

and

(127) lim
k→+∞

sup
t∈[τ,1]

∥∥∥∥λ−2γ
nk

u(λnkx, λ
2
nk
t)− tγ

∑
(n,j)∈J0

βn,j Ṽn,j(x/
√
t)
∥∥∥∥
Lt

= 0.

In particular,

(128) λ−2γ
nk

u(λnkx, λ
2
nk

) −→
k→+∞

∑
(n,j)∈J0

βn,j Ṽn,j(x) in L.

We now prove that the βn,j ’s depend neither on the sequence {λn}n∈N nor on its subsequence
{λnk}k∈N. Let us fix Λ ∈ (0,

√
T0) and define um,i and ξm,i as in (109-110). By expanding

uλ(x, 1) = u(λx, λ2) ∈ L in Fourier series as in (108), from (128) it follows that, for any (m, i) ∈ J0,

(129) λ−2γ
nk

um,i(λnk)→
∑

(n,j)∈J0

βn,j

∫
RN

Ṽn,j(x)Ṽm,i(x)G(x, 1) dx = βm,i

as k → +∞. As deduced in the proof of Lemma 5.3 (see (112)), for any (m, i) ∈ J0 and λ ∈ (0,Λ)
there holds

um,i(λ) = λ2γ

(
Λ−2γum,i(Λ) + 2

∫ Λ

λ

s1−2γξm,i(s) ds

)
.(130)

Furthermore, arguing again as in Lemma 5.3 (see (121)), s 7→ s1−2γξm,i(s) belongs to L1(0,
√
T0).

Hence, combining (129) and (130), we obtain, for every (m, i) ∈ J0,

βm,i = Λ−2γum,i(Λ) + 2
∫ Λ

0

s1−2γξm,i(s) ds

= Λ−2γ

∫
RN

u(Λx,Λ2)Ṽm,i(x)G(x, 1) dx

+ 2
∫ Λ

0

s1−2γ

(∫
RN

f(sx, s2, u(sx, s2))Ṽm,i(x)G(x, 1) dx
)
ds.

In particular the βm,i’s depend neither on the sequence {λn}n∈N nor on its subsequence {λnk}k∈N,
thus implying that the convergences in (126) and (127) actually hold as λ → 0+ and proving the
theorems. �

The strong unique continuation property is a direct consequence of Theorems 1.5 and 1.6.
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Proof of Corollary 1.7. Let us assume by contradiction that u 6≡ 0 in RN × (0, T ) and fix
k ∈ N such that k > γ, with γ = γm0,k0 as in Theorems 1.5 and 1.6. From assumption (28), it
follows that, for a.e. (x, t) ∈ RN × (0, 1),

(131) lim
λ→0+

|λ−2γt−γu(λx, λ2t)| = 0.

On the other hand, from Theorems 1.5 and 1.6, it follows that there exists g ∈ H \ {0} such that
g is an eigenfunction of the operator L associated to γ and, for all t ∈ (0, 1) and a.e. x ∈ RN ,

λ−2γt−γu(λx, λ2t)→ g(x/
√
t),

which, in view of (131), implies g ≡ 0, a contradiction. �
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