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Abstract

This paper provides a general game theoretic framework to analyze rep-

utation. The aim of this paper is to show the value added by a game

theoretic approach to informal analysis of reputation. This object is pur-

sued first through an exemplification of the contribution of game theory to

the understanding of reputation, then explaining the formal mathematical

machinery used to understand the way of building reputation. In particu-

lar I will develop an extensive analysis of three simple cases to show how

the game theoretic approach to reputation works and its possible applica-

tion to academic institutions. I conclude comparing the answers provided

by game theory to open question in the analysis of reputation and showing

how game theory stress subtle aspects of the way reputation is built and

works.
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“Until you have lost your reputation, you never realize what a

burden it was or what a freedom really is”

Margaret Mitchell, Gone with the Wind.

“ It takes 20 years to build a reputation and five minutes to ruin it.

If you think about that, you’ll do things differently”

Warren Buffet, The Essays of Warren Buffett : Lessons for

Corporate America.

1 Introduction

“Reputation is the general opinion about the character, qualities,

etc of somebody or something”1. Therefore the crucial aspects of

reputation are:

1. it is an opinion;

2. it is shared by a group of agent;

3. it regards hidden characteristics

4. of a person or a group of people or an organization.

Consequently these aspects can not be analyzed outside a context

of social interaction. Since the role of game theory is to provide an

abstract analysis of the implications of people interacting behaviour

when agents’ personal welfare depends on everyone behaviour, game

theory is the natural mathematical language to analyze reputation.

Indeed, game theory provides a formal model for each of the defining

characteristics of reputation:

1. opinion are modelled as players’ beliefs, i.e. probability mea-

sure on opponents’ characteristics and/or behaviour;

2. in any game theoretic equilibrium players’ beliefs should be

shared;
1Hornby 1987.
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3. players’ hidden characteristics are defined as “types”, i.e. play-

ers’ private information on the defining aspects of the game:

payoffs, players and strategies;

4. persons or organizations are modelled as “players” with their

well defined objective function.

Therefore it is not surprising that reputation is one of the most

developed and interesting field of application of game theory2.

I will not provide a comprehensive survey of the game theoretic

approach to reputation since it would be too long and anyway there

are optimal surveys3 so that it is not necessary to add a further sim-

ilar work to the existing stock. The aim of this paper instead is to

show the value added by a game theoretic approach to an informal

analysis of reputation. This object is pursued first through an exem-

plification of the contribution of game theory to the understanding

of reputation, then explaining the formal mathematical machinery

used to understand the way of building reputation. In particular I

will develop an extensive analysis of three simple cases to show how

the game theoretic approach to reputation works and its possible

application to academic institutions. First I will analyze these sim-

ple games informally, then after the presentation of the necessary

mathematical tools I will fully develop their game theoretic analysis

to enlighten the value added by game theory to informal analysis. I

conclude comparing the answers provided by game theory to open

question in the analysis of reputation and showing how game theory

stress subtle aspects of the way reputation is built and works.

The paper consequently is organized as follows: section 2 is de-

voted to a quick review of the informal analysis of reputation, section

3 provides the exemplification of the game theoretic approach to rep-

utation then providing notations and results, while section 4 applies

these tools to the formal analysis of previous examples. Section
2To mention just few papers: Kreps-Wilson 1982; Kreps et al. 1982; Milgrom-Roberts

1982; Fudenberg-Levine 1989; Fudenberg-Levine 1992; Ely-Valimaki 2003, Ely et al. 2004.
3See in particular Fudenberg 1992 and Mailath-Samuelson 2006.
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5 concludes emphasizing the importance of game theory to under-

stand subtle aspects of the way reputation works in specific social

context. Finally the appendix contains the mathematical details of

the stochastic processes involved in this analysis.

2 The Informal Analysis of Reputation4

As Informal Analysis of Reputation I mean the approach elaborated

by different authors, as exemplified by the previous references, which

stress the social relevance of Reputation, Identity, Trust, all con-

nected concepts that are particular relevant for the dynamic of social

interaction. This approach is developed through empirical analysis,

intuition and general argumentations, but a formal model is never

presented.

According to this approach, reputation refers to an organizing

principle of a socially recognized agent by which actions are linked

into a common assessment. In particular reputation is a collective

representation enacted in social relations. As a consequence repu-

tation is connected to forms of communication and it is tied to a

community.

Reputation operates in several different domains: personal, mass-

mediated, organizational, historical. Usually reputation begin within

circles of personal intimates, then they spread it outward.

Therefore, several aspects of reputation should be stressed.

First, agents build and share reputation of those who are within

their social circle. Personal reputation has immediate consequences

because of the options opened and closed changing possible inter-

action outcomes: those identities that we are given channel those

identities that we can select. Therefore agents engage in form of self-

presentation and impression management to modify their images in

the eyes of others.
4See for example Dasgupta 1988, Good 1988, Kramer 1999, Ritzer 2007, Shenkar-

Yuchtman-Yaar 1997, Strathdee 2009, Zucker 1986.
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Second, the media help to determine who people should know,

how people should care about and the social opinion people should

confront with. The reputation of public agents are consequently

used in formal and informal transactions among strangers.

Obviously, as social agents we mean not only individuals, but

organizations too. In particular organizations strategically develop

reputations that influence (positively or negatively) their effective-

ness: the growth of public relations and of rating agencies are an

important part of this process5. History, constituting narratives of

personal and institutional biographies, may serve a similar role in

a more sedimented way, as an institutionally sanctioned process:

in fact from this point of view history represents settled cultural

discourse about the past, determined by culturally literate experts;

moreover this knowledge too is acquired through social institutions

such as school and media.

From this point of view, reputation attempt to teach how agents

should think about likely behaviours and thus likely social outcomes.

People share memory and opinions because of what they have so-

cially learned, in this way reputational knowledge reduces the com-

plexity of the social world helping agents to focus on specific likely

social outcomes. Therefore, reputation is particularly valuable in

an uncertain world where it helps to focus agents’ individual ex-

pectations on focal points, working as a potential selection device

altering opportunities and constraints. In other words, because of

this role as collector and summary of different opinions, reputation

is the most valuable the highest the social uncertainty on the hid-

den characteristics of an agent. For example, this might explain why

the rise of fashionable dot.com companies in the nineties has been

accompanied by the expansion of rating agencies. In this setting

clearly how to build a reputation is as much important as knowing

how to protect and salvage a lost reputation. Indeed many surveys
5From 1990 to 2008, major U.S. media’s usage of the term reputation has tripled, as shown

in Leslie Gaines-Ross 2008.
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enlighten the fact that agents regard the loss of reputation as the

most dangerous risk for a company, exceeding all others, including

market risk, natural hazards and physical or political security. Actu-

ally, an important aspect of reputation is that it can fallen suddenly

and precipitously, but this does not mean that reputation recovery

is not possible, as many real life examples show. To be more precise,

consider the following facts:

1. only three companies from Fortune’s America’s Top 10 Most

Admired Companies in 2000 were among the Top 10 Most Ad-

mired in 2006;

2. IBM was once ranked first in Fortune’s America’s Top 10 Most

Admired Companies, fell to rank 354 in 1993 and it was again

in the first Top 10 in 2003.

As this quick illustration shows the analysis of reputation is thus

closely linked to the examination of collective memory and social

mnemonic, and therefore it builds on cognitive sociology, on social

movement research, and on sociology of knowledge. What we want

to show in next section, is that all these aspects can be formally and

rigorously studied within the language of mathematical game theory

enlightening subtle aspects in the process of reputation building, loss

and recovery.

From this discussion clearly emerges that the analysis of reputa-

tion building and maintenance, of loss and recovery of reputation

must consider the following issues:

1. How broad is the context where the agent is trying to build a

reputation for? Are we considering single or multitasks situa-

tions, specific or generic actions?

2. What have the agents at stake?

3. How informative is the observations of past outcomes in order

to predict future behaviour?
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4. Can we tie specific actors to observed and future outcomes?

5. Is it possible to measure reputation and, if the answer is posi-

tive, how can we do it?

6. What algorithms can let us make accurate predictions based

on these reputation measures?

After the illustration of the game theoretic approach in sections 3

and 4, the conclusion will listen the precise answers provided by

game theory to each of these open questions.

3 The game Theoretic Approach to Reputation

As the previous section argues, reputation is a tool to predict be-

haviour based on past actions and characteristics and it is based

on linkability, in the sense that reputation should allow to link past

actions to a specific set of possible identities so that future actions

by the same set of possible identities are linked to future behav-

iour. These links are what help to make predictions about the

agents’ future choices. The previous section also shows that rep-

utation involves behaviour that one might not expect in an isolated

interaction. Finally, previous observations show that reputation is

especially valuable in environments in which there is asymmetric

information.

These considerations imply that the branch of game theory that

can help us to build mathematical models of reputation is repeated

game theory with incomplete information, strategic situations

where a bunch of players is called to repeatedly act observing, may

be imperfectly, players’ past behaviour but where these players ig-

nore some hidden characteristics of the interacting agents.

3.1 Example 1

Consider the game shown in figure 1:
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h l

H 2, 3 0, 2

L 3, 0 1, 1

Figure 1

A possible story behind this trivial game is the following: player

raw (1) is a university who can exert either high effort (H) or low

effort (L) in the production of its output. Player column (2) is a

student who can buy either a high-priced education (h) or a low

priced one (l). Payoffs reflect likely players’ preferences. In a si-

multaneous moves game as the one of figure 1, the University can

not observably choose H before student’s choice, the same holds for

player 2. Therefore this game has a unique (rationalizable) solution:

(L,l), which is Pareto inefficient.

To see reputation at work, first suppose that there is a succession

of short-lived player 2, each of whom plays the game only once, but

such that each of them can observe the players’ previous strategic

choices. Clearly short-lived players are concerned only with their

payoffs in the current period. One interpretation is that in each

period, a new short-lived player enters the game, is active for only

that period and then leaves the game. An alternative interpreta-

tion is that each short-lived player represents a continuum of small

anonymous long-lived agents such that each agent’s payoff depends

on its own action, the action of the large player and the average of

the small players’ actions. Moreover observable histories of play are

assumed to include the actions of the large players and only the dis-

tribution of play produced by the small players. Since small players

are negligible, change in the action of a single agent does not affect

7



the distribution of play, and so does not influence future behavior of

any small or large players, generating myopic rational behaviour6.

Then as long as player 1 is sufficiently patient, (H, h) is an equi-

librium of this repeated game where deviation to L in order to boost

payoff is deterred by future punishment trough the playing of the

inefficient equilibrium (L,l). Unfortunately this repeated game has

multiple equilibria, including of course the inefficient one, but the

efficient equilibrium (H, h) can be interpreted as being focal because

of player 1 positive reputation, which in turn is based on the threat

of loosing reputation after bad behaviour. In other words is the ex-

istence of player 1 reputation that justifies the focus of the theorists

on the Pareto efficient equilibrium as the focal one. But then, this

means that this approach can not justify the building, the loss and

the restoration of reputation, it simply shows the consequence of

its existence and of the fear of loosing it. Therefore this approach

based on simple repeated games fails on the analysis of what we in-

dicated as the most relevant aspects of any theory of reputation, it

can simply be used to interpret a repeated game equilibrium strat-

egy profile, but otherwise adding nothing to the formal or informal

analysis.

The second approach, called adverse selection approach and

pioneered by Kreps-Wilson 1982 and Kreps et al. 1982, is based on

the idea that a player might be uncertain about key aspects of its

opponent, in particular its payoffs and consequently its rational be-

haviour. Going back to previous informal analysis, we stressed that

a crucial element of any reputational model should be the focus on

hidden characteristics of the agents, and this is exactly the starting

point of this approach. The crucial role of incomplete informa-

tion is that it introduces an intrinsic connection between

past observations and beliefs on unknown payoff character-

istics, which in turn affect expectation on future outcomes.
6Se Gilli 2002 for a formal treatment of the case of negligible and anonymous long-lived

players in repeated games leading to myopic rational behaviour.
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As we will see incomplete information places constraints on the set

of possible equilibria since small departures from complete informa-

tion can have large effects on the set of equilibrium payoffs, even

coarsening such set.

To show the effectiveness of this approach, suppose that in game 1

students are not entirely certain of the characteristics of the univer-

sity: they attach high probability to the university being “normal”

meaning that it has the payoffs of figure 1, but they entertain some

very small probability that they face a university that has intrinsic

motivation to play H. This kind of player 2 is called a commitment

type.

The introduction of this small uncertainty on players’ character-

istics is enough to generate new interesting results.

First, two periods are enough to destroy the inefficient equilib-

rium; second, as long as the university is sufficiently patient, in any

Nash equilibrium of the infinitely repeated game the university’s

payoff must be arbitrary close to 2, no matter how unlikely is the

commitment type.

The reasons for these results are simply. Consider when the game

is played twice, the payoffs are added over the two periods and sup-

pose that the normal type of player 1 plays L in both periods. Then

player 2 plays l in the first period since the probability of the com-

mitment type is small, but its behaviour in the second period will

depend on its observations: after observing L it will conclude that

it is facing a normal type and will play l in the second period too,

but if it observes H it will conclude that it is playing with a com-

mitment type and it will best response with h; but then playing L

by normal 1 is not an equilibrium since deviating and masquerad-

ing as the commitment type would increase the payoff in the next

period. Therefore this game repeated twice has not a pure strategy

equilibrium but a mixed one. But if the game is repeated infinitely

many times, then there exist a pure strategy pooling equilibrium

where both types play H. In fact in any equilibrium with player 1
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payoff smaller than 2-ǫ, the two types of player 1 should behave dif-

ferently otherwise the students would choose h yielding a payoff of

2 for player 1. Therefore the normal type mimicking the commit-

ment type behaviour over a sufficiently long period of time is able to

convince the students that it is the commitment type inducing their

best response h. Once this happens, the normal university there-

after earns 2, and the initially zero payoffs will not matter since the

university is patient enough and the game is repeated many times.

3.2 Example 2

Now consider the following sequential game with a manipulable out-

come function, i.e. a situation where the outcome actually observed

by the players depends on player 2 behaviour7.

�2

N

A

�

0, 0

��1

H

L

�

2, 3

� 3,−1

Figure 2

A possible story behind this simple dynamic game is a slightly

change in the previous one: player 2 is a student who should decide

whether to apply (A) or not (N) to a university (player 1), which

in turn after the application can decide whether to exert high

effort (H) or low effort (L) in the production of its output. Payoffs

reflect likely players’ preferences. The main effect of the non trivial

sequential structure of this game is that the choice of N by player
7See Gilli 1999 for a complete treatment of signal functions and the role of manipulable

signal functions foe players’ equilibrium behaviour.
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2 implies that the university choice is not publicly observable but

remains 1’s private information. In other words, this is a game with

imperfect public monitoring. Does this characteristic change

the way of working of reputational effects?

Note that this game has a unique (subgame perfect) equilibrium:

(L,N), which is Pareto inefficient.

As before, to see reputation at work suppose that there is a suc-

cession of short-lived player 2, each of whom plays the game only

once, but such that each of them can observe the players’ previous

choices.

Then we can apply both the approaches we saw for game 1.

If game 2 is repeated infinitely many times, then (H,A) is an

equilibrium of this repeated game where deviation to L in order to

boost payoff is deterred by future punishment trough the playing of

N. Of course, as before this repeated game has multiple equilibria,

including the inefficient one.

To apply the adverse selection approach, as before suppose

that the students are not entirely certain of the characteristics of the

university: they attach high probability to the university being “nor-

mal” meaning that it has the payoffs of figure 2, but they entertain

some very small probability that they face a commitment type that

always plays H. In this situation, the reasoning used on game 1 can

not show anymore that repeating the game with short-lived player 2

is enough to destroy the inefficient equilibrium, independently from

players’ patience as long as the commitment type is unlikely enough.

The reason for this dramatic change in the possibility of reputation

building is simply the change in the informative structure: player 2

will observe player 1’s behaviour only playing A, but if prior proba-

bilities are such that the students’ myopic best responses are always

to play N then they will never have any new information on univer-

sity’s type and thus priors will not change. Moreover, the fact that

students are short-lived means that they don’t have any reason to

experiment playing A since they will not have the opportunity to
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exploit such new information. Of course a mistake or a crazy type of

player 1 or a long-lived player 1 would support the efficient equilib-

rium (H, A): after observing L, all future students will conclude that

they are facing a normal type and will play N, but after observing

H they will conclude that they are playing with a commitment type

and will best response with A; but then if given the possibility

playing L by normal 1 is not an equilibrium since deviating and

masquerading as the commitment type would increase the payoff in

the next period. Therefore everything would work as in game 1:

this means that to re-establish previous results on reputation build-

ing and effectiveness in setting with imperfect public monitoring we

need to introduce a crazy short-lived player. In other words, the

existence of “noise” players ensures that the long-lived player can

build a track record and through it a reputation.

3.3 Example 3

Example 2 is particularly important because it might be applied

to any general strategic setting where there is imperfect public or

private monitoring unless the information structure allow to avoid

non informative behavior. This idea of inducing public revelation of

long-lived player action as a consequence of the short-lived player

choice, suggests a possible way out from this impasse: the intro-

duction of a new observable action for the long-lived player that

can costly signal its type inducing the participation of some short-

lived player whose behavior would generate a positive informative

externality allowing that kind of mimicking behavior that generate

positive reputation.

This possibility can be represented in the following picture:
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Figure 3

Finally, it should be stressed that the realistic assumption of

noisy signals significantly complicates the analysis, as it is intuitive.

3.4 Notation and Theory

The previous examples have motivated the importance of model-

ing different monitoring possibilities to study reputation. Therefore

we will use as building block of our formal language the notion of

Imperfect Monitoring Game.

Consider the following generalization of the standard notion of

repeated game with discount and almost perfect information. The

players play a fixed stage game finitely or infinitely many times.

The stage game is described by a finite Imperfect Monitoring

Game with Incomplete Information (IMG)8 defined as follows:

G(η,Ξ) := (N,Si,Ξi, ui, ηi)

where:

• N = {1, · · ·N} is the set of players,
8See Gilli 1995 for a comprehensive analysis of IMGs.
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• Si is the finite set of player i’s pure strategies; moreover S :=

×i∈NSi, Λi := ∆(Si) and Λ := ⊗i∈NΛi, where ∆(·) is the set of

all probability measure on a set · and ⊗i∈N∆(·i) is the set of

all independent probability measure on ×i∈N ·i;

• Ξi is the set of possible player i’s types: formally a player’s

set of type is a random variable with probability distribution

µ−i ∈ ∆(Ξi)
9, its realization ξi is a player’s type representing

the player’s private information, while µ−i is the common prior

beliefs of players j 	= i on i’s private information. In other

words a type ξ is a full description of

— Player’s beliefs on states of nature, e.g. players’ payoffs;

— Beliefs on other players’ beliefs on states of mature and its

own beliefs

— Etc.

Clearly there is a circular element in the definition of type,

which is unavoidable in interactive situations

• ui : ∆(S)×Ξi → R is player i’s utility function, which we sup-

pose represents preferences satisfying von Neumann and Mor-

genstern axioms and therefore such that: ui(α; ξi) = Eα[ui(s; ξi)], α ∈

∆(S);

• ηi : S →Mi is player i’s signal function: ηi(s̄) = mi ∈Mi is the

signal privately received by i as a consequence of the strategy

profile s̄ played. Trivially how mi translates in information on

opponents’ behavior depends on the particular specification of

ηi and on the strategy played by i herself (active learning).

Note that imperfect public monitoring and perfect monitoring are

obtained for specific case of the signal function:
9We assume that Ξi is measurable for all i ∈ N , so that probability measures are well

defined.
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• an IMG G(η) has imperfect public monitoring if and only

if ∀i ∈ N Mi =M

• an IMGG(η) has perfect monitoring if and only if ∀i ∈ N ηi
is bijective.

As usual, when we will omit the index i it means that we consider

a profile belonging to the Cartesian product of the sets considered,

the subscript −i denotes the js different from i and (−i, i) indicates

a complete profile, stressing the i component.

Define as follows the probability distribution ρi(α) ∈ ∆(Mi) in-

duced on Mi by a probability measure α ∈ ∆(S):

∀i ∈ N, ∀mi ∈Mi ρi(mi)[α] :=
∫

{s|ηi(s)=mi}
α(s).

Assumption 1 The signal is defined to contain all of the informa-

tion player i receives about opponents’ choices. Therefore

ρi[si, α−i] = ρi[si, α
′
−i] ⇒ ui(si, α−i) = ui(si, α

′
−i).

This assumption means that each player receives her payoff after

the stage game and that each player knows her own move.

Now suppose that the IMG is played many times, possibly in-

finite, and at the end of each period each player i observes a sto-

chastic outcome mi, which is drawn from a finite set Mi according

to a probability distribution ρi[α], for some α ∈ ∆(S). Therefore

consider the following generalization of the usual notions defined for

repeated games.

The set of (finite) histories for player i, Hi, is defined as fol-

lows:

H0
i := Ξi, ∀t ≥ 1 ht

i := (ξi,m
1
i , · · · ,m

t
i) ∈ H t

i := H0
i×M

(t)
i = Ξi×M

(t)
i

Hi :=
∞⋃

t=0

Ht
i

where mt
i and Ht

i indicate respectively i’s message and set of histo-

ries at time t, and the superscript (t) denotes the t-fold Cartesian
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product of the set. Therefore a history at time t for player i, ht
i, is

the private information received by player i in the periods before t.

The pure superstrategies are defined in the usual way: the only

difference from the traditional case is that the strategic choice are

contingent to the players’ private information: the set of pure

superstrategies for player i, Fi, is defined as follows:

Fi := {fi |fi = {f
t
i (h

t−1
i )}Tt=1 with f t

i : H
t−1
i → Si}

Where T is either finite or infinite.

Let F t
i be the set of player i times t superstrategies: F

t
i := {f

t
i |f

t
i :

Ht−1
i → Si}. Thus Fi = ×t∈NF t

i .

As was first noticed by Aumann 1964, the definition of mixed

and behavior strategies in this context requires some care when

T = ∞, since in this case Fi has the cardinality of the continuum

(see Kolmogorov-Fomin 1975). Hence defining mixed superstrate-

gies as probability distributions on pure superstrategies would not

be straightforward. Following Aumann 1964, we think of a mixed

strategy as a random device for choosing a pure strategy, i.e. as a

random variable. Therefore consider an abstract probability space

(Ωi,Ai, αi) and define a mixed superstrategy for player i as a

sequence φi ∈ Φi of functions φt
i Ai- measurable with

φt
i : Ωi ×Ht−1

i → Si.

In general denote by x ∈ ∆(F ) a probability distribution on F con-

structed in this way and by (F,F , x) a probability space where F

is the Borel σ-algebra on F . Similarly denote by (Fi,Fi, xi) and

(F−i,F−i, x−i) the probability spaces obtained through the oppor-

tune marginalizations.

The set of behavior superstrategies for a player i, Bi, is

similarly defined, asking however for an additional restriction: bi ∈

Bi if and only if bi = (bti)
∞
t=1 with bti : Ω × Ht−1

i → Si where

bti(·, h
t−1
i ) : Ω → Si is measurable and bti(·, h

t−1
i ), bτi (·, h

τ−1
i ) are
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mutually independent random variables ∀t 	= τ, ∀ht
i, hτ

i . Therefore

Bi ⊂ Φi.

To simplify we might denote a mixed superstrategy as φi ∈ ∆(Fi)

and a behaviour superstrategy as bi : Hi → ∆(Si).

The outcome at time t for player i, Ot
i(f), is defined inductively

as a function of the superstrategies chosen:

O0
i (f) := ξi

∀t ≥ 1 Ot
i(f) := ηi[f

t(O0(f), · · · , Ot−1(f))] =

= ηi[f
t
1(O

0
1(f), · · · , O

t−1
1 (f)), · · · , f t

N(O
0
N (f), · · · , O

t−1
N (f))] ∈ Mi.

Then the outcome path of the imperfect monitoring game at time

t for player i, P t
i (f), is defined as follows:

∀t ≥ 0 P t
i (f) := {O

τ
i (f)}

t
τ=0 ∈ Ξi ×M

(t)
i

and the outcome path of the imperfect monitoring game for player

i is

Pi(f) := {O
t
i(f)}

T
t=0 ∈ M (T )

i := Ξi ×M0
i ×M1

i × · · ·

where T is either finite or infinite.

Therefore an outcome path is the sequence of outcomes induced

by the players’ behavior f ∈ F . As usual, when the dependence from

the superstrategy profile f is omitted this should be interpreted as

a “realisation" of the mapping considered, for example Ot
i is the

outcome for player i realised at time t and Pi ∈ M
(∞)
i is a generic

realisation of the outcome path Pi(f).

Previous definition of outcome path implicitly assumes that play-

ers have perfect recall, therefore KuhnŠs theorem10 holds and there-

fore w.l.g. we can restrict players behavior to behavior superstrat-

egy.
10See for example Osborne-Rubinstein 1994.
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Player i’s intertemporal payoff function Ui : ∆(F )×Ξi → R

is so defined:

Ui(b; ξi) := Eb

T∑

t=1

δtiui(f
t(P t(f)); ξi)

where: b ∈ B, ξi ∈ Ξi, δi ∈ [0, 1) and T is either finite or infinite.

Summing up, the repeated strategic situation is modeled bymeans

of aRepeated Imperfect Monitoring Game with Incomplete

Information (RIMG) denoted by

GT (δ, η,Ξ) = (N,Fi,Ξi, Ui, ηi).

In the appendix I provide the formal details of the objective

and subjective strategic environment where the players make their

choices. In particular the discussion on players’ beliefs in the RIMG

can be summmarized in the following assumption:

Assumption 2 In the RIMG every player i ∈ N updates her beliefs

βi according to the following expression:

∀fi ∈ Fi, ∀A ∈ F−i, ∀t ∈ N βt
i [fi](A) = E[χA(f−i)|F

t
−i(fi)].

Remark: note that these beliefs on opponents’ behaviour depend

on players’ beliefs on opponents’ types.

Before applying these tools to the analysis of reputation, I sum

up the notation introduced so far.
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NOTATION

Expression Meaning

N set of players

Si set of player i’s pure strategies

∆(·) set of probability measures on ·

Σi = ∆(Si) player i set of mixed strategies

Ξi set of types of player i

µi(·|ξi) ∈ ∆(Ξ−i) player i beliefs given its type on opponents’ private information

ui : ∆(S)→ R player i’ utility function

ηi : S →Mi player i’ signal function

ρi[α] ∈ ∆(Mi) distribution of signals induced by a α ∈ ∆(S)

Hi = ∪∞t=0H
t
i set of possible histories for player i

Fi = ×t∈NF t
i set of possible superstrategies for player i

Φi, Bi set of i’s mixed, behavioral superstrategies

βi ∈ ∆(F−i) probability evaluations on opponents’ behaviour

Ot
i(f), P t

i (f) outcome, outcome path at time t for player i

Ui : ∆(F )→ R i’s utility function for the repeated game.

4 Building a Reputation: Results and Applica-

tions

To simplify and according to our previous example, I consider two

players games only, where

1. player 1 is the long-lived player, and

2. player 2 is the short-lived player, representing either a succes-

sion of players living one period or a continuum of small and

anonymous infinitely living players.

Moreover we assume that the type of player 2 is common knowledge,

while the type of player 1 is unknown to player 2, therefore w.l.g.

Ξ1 = Ξ, which is assumed to be finite or countable to simplify

technical details. Player 1 set of types is partitioned into
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1. payoff types ΞP and

2. commitment type ΞC = Ξ \ ΞP .

Payoff types are payoffs characteristics such that the player

maximizes U1:

∀b̂1 ∈ B1, ξ(b̂1) ∈ ΞP if and only if

∃b2 ∈ B2 s.t. b̂1 ∈ arg max
b1∈B1

U1(b1, b2; ξ(b̂1)).

A specific payoff type is the normal type: ξN ∈ ΞP if and only

if

u1(s, ξN , t) = u1(s) ∀s ∈ S, ∀t ∈ N,

i.e. the normal type has the standard payoff of the complete infor-

mation stage game and thus U1(b, ξN ) = U1(b) ∀b ∈ B.

Commitment types have payoffs such that a specified super-

strategy is strictly dominant and thus is certainly played by any

rational player:

∀b̂1 ∈ B1, ξ(b̂1) ∈ XiC if and only if

∀b2 ∈ B2 b̂1 ∈ arg max
b1∈B1

U1(b1, b2; ξ(b̂1)).

AReputation Game (RG) is a Repeated Imperfect Monitoring

Game with Incomplete Information GT (δ, η,Ξ) = (N,Fi,Ξi, Ui, ηi)

satisfying the following restrictions:

1. N = {1, 2}

2. Ξ1 = ΞP ∪ ΞC and Ξ2 = ∅

3. U1(b; ξ) = Eb

∑T
t=1 δ

tu1(f
t(P t(f)); ξ) with ξ ∈ ΞP ∪ ΞC

4. U2(b; ξ) = Ebu2(f
t(P t(f))).

The equilibrium concept we are going to use to present the results

of the effect of reputation in strategic situations is the standard Nash

equilibrium.

A strategy profile (b∗1, b
∗
2) is aNash equilibrium of a Reputation

Game GT (δ, η,Ξ) = (N,Fi,Ξi, Ui, ηi) if and only if
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1. ∀ξ ∈ ΞP , b∗1 ∈ argmaxb1∈B1 U1(b1, b
∗
2; ξ)

2. ∀t, ∀ht ∈ H s.t. Pb∗
1
,b∗
2
,µ(h

t) > 0

b∗2(h
t
2) ∈ arg max

b2(ht2)∈∆(S2)
Eβ2[u2(b

∗
1(h

t
1), b2(h

t
2))].

Let denote the set of Nash equilibria of a Reputation Game

GT (δ, η,Ξ) by NE(GT (δ, η,Ξ)).

4.1 Building a Reputation When There is Perfect Moni-

toring

To present the important results of this approach applied to games

with perfect monitoring, we need four further definitions:

1. Player 1’s pure strategy Stackelberg payoff is defined as

follows:

v∗1 := sup
s1∈S1

min
σ2∈Bru(s1)

u1(s1, σ2)

where Bru(s1) := argmaxσ′
2
∈Σ2 u2(s1, σ

′
2) i.e. it the set of player

2 myopic best reply to s1;

Remark: this is the best payoff that player 1 could get through

a precommitment assuming that the opponent would reply ra-

tionally.

2. Player 1’s Stackelberg pure strategy if it exists is defined

as follows:

s∗1 := arg max
s1∈S1

min
σ2∈Bru(s1)

u1(s1, σ2).

Remark: this is a pure strategy to which player 1 would com-

mit, if it had the chance to do so, given that such a commitment

induces a best reply by 2.

3. Player 1’s commitment Stackelberg type is defined as fol-

lows: ξ∗ := ξ(s∗1), i.e. as the type that would always play the

Stackelberg pure strategy.
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4. Normal type of player 1’s lower bound payoff is defined as

follows: v1(ξN , µ, δ) := (1− δ) inf(b1,b2)∈NE(GT (δ,η,Ξ)) U1(b1, b2).

REMARK: it is possible to consider Stackelberg mixed strategy,

which would reinforce reputational effects, but the analysis would

be significantly more complex.

The main result for the case of perfect monitoring is the following.

Theorem 1 Suppose µ ∈ ∆(Ξ) assign positive probability to some

sequence of simple types {ξ(sk1)} such that limk→∞ v∗1(s
k
1) = v∗1, then

∀ǫ > 0, ∃δ′ ∈ (0, 1) s.t. ∀δ ∈ (δ′, 1) v1(ξN , µ, δ) ≥ v∗1 − ǫ.

REMARKS:

1. I will not provide a detailed proof11, but I will show the im-

plications of this theorem and I will illustrate the behavior of

players beliefs in connection with previous examples.

2. If there a Stackelberg strategy and the associate Stackelberg

type has positive probability under µ, then the hypotheses of

theorem 1 are trivially satisfied. In this case, the normal type

of player 1 builds a reputation for playing like the Stackelberg

type. Note that it builds this reputation despite the fact that

there are many other possible commitments types.

3. Theorem 1 does not tell much about equilibrium strategies, in

particular it does not imply that it is optimal for the normal

type of player 1 to choose the Stackeberg strategy in each pe-

riod, which in general is not the case.

4. The discount factor plays two roles in this results:

(a) it makes future payoffs relatively more important, as it

is standard in folk theorem arguments in repeated game

theory
11A complete proof is in Mailath-Samuelson 2006.
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(b) it discounts into insignificance the initial sequence of pe-

riods during which it may be costly for player 1 to mimic

the commitment type, which is a new aspect relevant for

reputation models only.

5. The proof of theorem 1 relies on the behavior of the posterior

probability on player 1’s type and on the probability of next

period choice given today history. The key of the proof is to

show that the observation of a strategy of player 1 increases

the probability of the type committed to this action and conse-

quently the probability of observing this strategy next period.

This does not mean that the posterior probability of facing this

commitment type is going to 1, since it is possible that player

1 is normal but plays like the commitment type, as we saw in

the previous example.

The logic behind this result can be appreciated referring to the

example of figure 1, that is reported here to simplify reading:

h l

H 2, 3 0, 2

L 3, 0 1, 1

Figure 1

Clearly in this game the pure strategy Stackelberg payoff is v∗1 = 2

since

Bru(s1) =





h s1 = H

l s1 = L.
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and thusminσ2∈Bru(s1) u1(s1, σ2) = {2, 1} that implies sups1∈S1{2, 1} =

2. Consequently player 1’s Stackelberg pure strategy is s∗1 = H.

To construct a Reputation game starting from game 1, sup-

pose that there is perfect monitoring, i.e. η is bijective and therefore

the players observe the strategy profile played, and that there is in-

complete information on the type of player 1. In particular suppose

that the set of types is Ξ1 = {ξN , ξ(H), ξ(L)}. Then the following

strategy profile (bNE
1 , bNE

2 ) is a Nash Equilibrium of the Reputation

Game:

bNE
1 (ξ, ht) =






H if ξ = ξ(H) and ht ∈ H1

H if ξ = ξN and mτ = (Hh) ∀τ < t or if t = 1

L otherwise.

bNE
2 (ht) =





h if mτ = (Hh) ∀τ < t or if t = 1

l otherwise.

For δ ≥ 1/2 and µ(ξ(L)) < 1/2 it is easy to show that this is a Nash

equilibrium of the Reputation Game.

First, consider player 2: at t = 1, it will choose h if and only if

Eu2(s1, h) = 3(1−µ(ξ(L))) ≥ Eu2(s1, l) = 2(1−µ(ξ(L))+1µ(ξ(L))

which is satisfied when µ(ξ(L)) < 1/2. Now consider its beliefs

in subsequent periods; these are easily derived by Bayes rules and

satisfy the following conditions:

µt(ξ|ht) =






1 if ξ = ξ(L) and ht = h1 = (L·)

1 if ξ = ξN and mt = (L·) with t > 1
µ(ξ(H))

µ(ξ(H))+µ(ξN )
if ξ = ξ(H) and mt = (H·) with t ≥ 1.

Note that to show that (bNE
1 , bNE

2 ) is a Nash Equilibrium we need

to consider beliefs only on the equilibrium path, therefore the pre-

vious calculation of mu(ξ|ht) is enough. To work on refinements

such as Sequential equilibria we would need to specify also out-of-

equilibrium beliefs where Bayes rules does not apply.

Given these beliefs and player 1’s equilibrium strategy bNE
1 , through

Bayes rule it is possible to derive player 2 beliefs on player 1’s choice
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of H next period:

βt
2({f1(ξ, h

t) = H}|ht) = µt(ξ(H)|ht)×bNE
1 (H|ξ(H), ht)+µt(ξN |h

t)×bNE
1 (H|ξN , ht)

that implies

βt
2({f1(ξ, h

t) = H}|ht) =






µ(ξ(H))
µ(ξ(H))+µ(ξN )

× 1 + µ(ξN )
µ(ξ(H))+µ(ξN )

× 1 = 1 if ht = (Hh)(t)

0 otherwise.

Therefore the Nash equilibrium condition for player 2 is satisfied

since ∀t, ∀ht ∈ H2 such that PbNE
1

,bNE
2

,µ(h
t) > 0, if ht = (Hh)(t)

then Eβ2 [u2(b
NE
1 (ht), h)] = 3 > Eβ2 [u2(b

NE
1 (ht), l)] = 2 while if ht 	=

(Hh)(t) then Eβ2 [u2(b
NE
1 (ht), l)] = 1 > Eβ2 [u2(b

NE
1 (ht), h)] = 0.

Finally, consider the normal type of player 1, since the behaviour

of committed types ξ(H) and ξ(L) is trivial. Player 1 has complete

information and it is long-lived, therefore it easy to see that in equi-

librium it gets U1(bNE
1 , bNE

2 ) = (1−δ)
∑∞

τ=0 δ
τ ×2 = 2, while deviat-

ing at most it gets U1(b1, bNE
2 ) = (1−δ)×3+δ(1−delta)

∑∞
τ=0 δ

τ×1 =

3(1− δ) + δ. Then U1(b
NE
1 , bNE

2 ) ≥ U1(b1, b
NE
2 ) if δ ≥ 1

2
. This shows

that the restriction on the discount factor is needed to ensures that

the normal type of player 1 has sufficient incentives to make H op-

timal mimicking ξ(H).

The two most important aspects of this example regard player

1’s beliefs on opponent’s type and on opponent’s behaviour. The

posterior probability that 2 assigns to the Stackelberg type does not

converge to 1, it is actually bounded away from 1 since it converges

to µ(ξ(H))
µ(ξ(H))+µ(ξN )

if h1 = (Hh) after which is constant unless (L·)

is observed. But this does not forbid the fact that the posterior

probability that 1 assigns to observing H next period is going to 1

as long as ht = (Hh)(t): as I showed before βt
2({f1(ξ, h

t) = H}|ht =

(Hh)(t)) = 1 and this is what drives the result.

A particularly interesting property of the Reputation Game as-

sociated to figure 1 is that playing Ll forever is NOT a Nash equi-

librium, even if it is a(subgame perfect) equilibrium of the repeated

game with complete information. This is exactly the content of the-

orem 1, and I will show how it works in this example. Formally
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suppose that the set of types is Ξ1 = {ξN , ξ(H), ξ(L)} such that

that µ(ξ(H)) < 1/3 and µ(ξ(L)) < 1/3.

Now consider the first period: clearly player 2 best reply is either

l or h depending on the values of beliefs on opponent’s behaviour:

BRu(β12({f1(ξ) = H}|h0) =





h if β12({f1(ξ) = H}|h0) ≥ 1/2

l if β12({f1(ξ) = H}|h0) ≤ 1/2.

Player 2 beliefs can easily be derived:

β12({f1(ξ) = H}|h0) = µ(ξ(H))× 1 + µ(ξN)× b1(H|ξN ).

Therefore player 2 in the first period best responds to b1(H|ξN), i.e.

to the normal type of player 1.

Then consider period 2: applying Bayes rule it easy to derive

that

µ2(ξ|h1) =






µ(ξ(H))
µ(ξ(H))+µ(ξN )

< 1/2 if ξ = ξ(H) and m1 = (Hh)
µ(ξ(L))

µ(ξ(L))+µ(ξN )
< 1/2 if ξ = ξ(L) and m1 = (Ll).

Therefore in the second period the strategic situation of player 2

is very similar to the situation of previous period: whether (Hh)

or (Ll) being observed, player 2 in the second period best responds

to the normal type of player 1. Therefore if player 1 chooses H in

period 1, then player 2 will choose h in all subsequent period, having

concluded that 1 is not type ξ(L) and this implies that for the long-

lived player 1 is worth to pay at most a cost of u1(H, l) in one period

in order to get u(H, h) in all subsequent periods. Consequently in

the Reputation game there is no equilibrium where (L,L) is played

forever: incomplete information reduces the set of possible equilibria

outcomes.

4.2 Building a ReputationWhen There is Imperfect Mon-

itoring

To present the important results of this approach applied to games

with imperfect monitoring, I need two further definitions:
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1. Player 2’s ǫ-confirmed best reply correspondence is de-

fined as follows:

Brǫ : Σ1 ⇒ Σ2 s.t. ∀σ1 ∈ Σ1

Brǫ(σ1) := {σ2 ∈ Σ2 | ∃σ
′
1 such that (a) and (b) are satisfied}

(a) SUPP (σ2) ⊆ argmax
s′
2

u2(σ
′
1, s

′
2)

(b) |ρ2[σ1, σ2]− ρ2[σ
′
1, σ2]| ≤ ǫ

where SUPP (·) denote the support of the probability measure

·. REMARKS:

(a) Note that it is possible to have

σ2 ∈ Brǫ(σ1) and SUPP [σ2] 	⊆ Brǫ(σ1).

To show this possibility consider for example the game of

figure 1 with imperfect public monitoring such that M =

{mL,mH} and with the following probability distribution

ρ(mH |Hh) = ρ(mH |Ll) = 1 and zero otherwise. Then

1

2
[h]⊕

1

2
[l] ∈ Br0(H) but l 	∈ Br0(H);

(b) If there exist two different strategies σ1 and σ′1 such that

ρ[σ1, σ2] = ρ[σ′1, σ2], then it is possible that Bru(σ1) ⊂

Br0(σ1). To show this possibility, consider the game of

figure 2: from the extensive form ρ[L,N ] = ρ[H,N ]; more-

over Bru(H) = {A} ⊂ Br0(H) = {N,A} since N ∈

argmax u2(L, ·) and L imply the same signal distribution

of H.

Define Br∗ǫ (σ1) := {σ2|SUPP (σ2) ⊂ Brǫ(σ1)}.

2. Player 1’s maximum rational payoff is defined as follows:

v∗∗1 := sup
σ1∈Σ1

min
σ2∈Br∗

0
(σ1)

u1(σ1, σ2).
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REMARK: a game with perfect monitoring is a special case

of an imperfect monitoring game when M = s and ρ(m|s) = 1

if and only if m = s. In this case Br∗0 = Br0 = Bru, therefore

v∗∗ ≥ v∗. Thus this section extends the reputation results not

only to imperfect monitoring but also to the case of mixed com-

mitment types with perfect monitoring, obtaining a stronger

bound on payoffs for the perfect monitoring case. More gen-

erally v∗∗ can be greater or smaller than v∗ depending on the

information structure, as we will see.

The main result for the case of imperfect monitoring is the fol-

lowing.

Theorem 2 Suppose µ ∈ ∆(Ξ) assign positive probability to some

sequence of simple types {ξ(σk
1)} such that limk→∞minσ2∈BR∗

0
(σk
1

u∗1(σ
k
1 , σ2) =

v∗∗1 , then

∀ǫ > 0, ∃δ′ ∈ (0, 1) s.t. ∀δ ∈ (δ′, 1) v1(ξN , µ, δ) ≥ v∗∗1 − ǫ.

REMARKS:

1. I will not provide a detailed proof12, but I will show the im-

plications of this theorem and I will illustrate the behavior of

players’ beliefs in connection with previous examples.

2. Similarly to theorem 1, the normal player 1 effectively builds a

reputation for playing like a commitment type, and this occurs

despite the presence of many other possible commitment types.

3. The remarks previously discussed for theorem 1 again can be

applied to this result.

As for theorem 1, even the proof of theorem 2 relies on the behavior

of the posterior probability on player 1’s type and on the probabil-

ity of next period choice given today history. But here we have a

new crucial problem in proving the theorem since we have imperfect
12A complete proof is in Mailath-Samuelson 2006.
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monitoring possible with manipulable signal functions. The root of

the problem can easily be shown referring to the game of figure 2,

which is reported here to simplify reading:

�2

N

A

�

0, 0

��1

H

L

�

2, 3

� 3,−1

Figure 2

Clearly in this game the pure strategy Stackelberg payoff is v∗1 = 2

since

BRu(s1) =





σ2(A) = 1 s1 = H

σ2(A) = 0 s1 = L.

and thusminσ2∈Bru(s1) u1(s1, σ2) = {2, 0} that implies sups1∈S1{2, 0} =

2. Consequently player 1’s Stackelberg pure strategy is s∗1 = H.

To construct aReputation game starting from game 2, suppose

that there is incomplete information on the type of player 1. In

particular suppose that the set of types is Ξ1 = {ξN , ξ(H)}.

Note that Br0(N) = Σ1 since |ρ[σ1, N ] − ρ[σ′1, N ]| = 0 for all

σ1, σ
′
1 ∈ Σ1. Clearly in this game the maximum rational payoff

v∗∗1 = 0 since

∀σ1 ∈ Σ1 BR∗
0(σ1) = Σ2

and thusminσ2∈Br∗
0
(σ1)=Σ2 u1(σ1, σ2) = {0} that implies supσ1∈Σ1{0} =

0. This means that in this case theorem 2 is actually not relevant

since v∗∗1 is equal to the equilibrium payoff of the complete informa-

tion game. Moreover differently from the case of game 1, it is easy to

construct a Nash equilibrium of the reputation game corresponding
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to the equilibrium of the complete information game. Consider the

following strategy profile (bNE
1 , bNE

2 ):

bNE
1 (ξ, ht) =





H if ξ = ξ(H) and ht ∈ H

L otherwise.

bNE
2 (ht) = N ∀ht ∈ H.

For any δ and µ(ξ(H)) < 1/4 it is easy to show that this is a Nash

equilibrium of the Reputation Game.

First, consider player 2: at t = 1, it will choose N if and only

if Eu2(s1, N) = 0 ≥ Eu2(s1, A) = −1(1 − µ(ξ(H)) + 3µ(ξ(H))

which is satisfied when µ(ξ(L)) < 1/4. Now consider its beliefs

in subsequent periods; these are easily derived by Bayes rules and

equal to the prior since no new observation on possible player 1’s

types has been collected. Note that to show that (fNE
1 , fNE

2 ) is a

Nash Equilibrium we need to consider beliefs only on the equilibrium

path, therefore the previous calculation of mu(ξ|ht) is enough. To

work on refinements such as Sequential equilibria we would need to

specify also out-of-equilibrium beliefs where Bayes rules does not

apply.

Given these beliefs and player 1’s equilibrium strategy bNE
1 , through

Bayes rule it is possible to derive player 2 beliefs on player 1’s choice

of H next period:

βt
2({f1(ξ, h

t) = H}|ht) = µt(ξ(H)|ht)× bNE
1 (H|ξ(H), ht)+

+µt(ξN |h
t)× bNE

1 (H|ξN , ht) = µ(ξ(H)).

Therefore the Nash equilibrium condition for player 2 is satisfied

since ∀t, ∀ht ∈ H such thatPbNE
1

,bNE
2

,µ(h
t) > 0 Eβ2[u2(b

NE
1 (ht), N)] =

0 > Eβ2[u2(b
NE
1 (ht), A)] = 3µ(H)− 1(1− µ(H)) < 0 if µ(H) < 1/4.

Finally, consider the normal type of player 1, since the behaviour of

committed type ξ(H) is trivial. Player 1 has complete information

and it is long-lived, therefore it easy to see that in equilibrium it gets

U1(b
NE
1 , bNE

2 ) = (1− δ)
∑∞

τ=0 δ
τ × 0 = 0, while deviating at most it
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gets U1(b1, bNE
2 ) = (1− δ)× 0 + δ(1− delta)

∑∞
τ=0 δ

τ × 0 = 0. Then

U1(b
NE
1 , bNE

2 ) ≥ U1(b1, b
NE
2 ) ∀δ.

The most important aspects of this example is the fact that the

transformation of the complete information game into a reputation

game does not change the properties of the set of Nash Equilibria.

Therefore it is particularly important to understand the root of this

change in the properties of the strategic situation. Clearly the reason

of this new results regard player 1’s beliefs on opponent’s type and

on opponent’s behaviour. The posterior probability that 2 assigns to

the Stackelberg type does not change through time because there

is no collection of new information. But this forbid the possibility

for the normal type of player 1 of mimicking the commitment types,

i.e. to build its reputation. Therefore the posterior probability that

1 assigns to observing H next period is bounded away from 1 as

long as ht = (N)(t) and this is what drives the result.

This suggest that the crucial aspect is the information structure

and its relation with players behavior. To show that this is actu-

ally the case, consider the strategic form game associated to game

assuming that there is perfect monitoring, i.e. η(s) = s:

N A

H 0, 0 2, 3

L 0, 0 3, -1

Figure 4

In this game the pure strategy Stackelberg payoff is v∗1 = 2 since

Bru(s1) =





A s1 = H

N s1 = L.
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and thusminσ2∈Bru(s1) u1(s1, σ2) = {2, 0} that implies sups1∈S1{2, 0} =

2. Consequently player 1’s Stackelberg pure strategy is s∗1 = H.

To construct a Reputation game starting from game 3, sup-

pose that there is perfect monitoring, i.e. η is bijective and therefore

the players observe the strategy profile played, and that there is in-

complete information on the type of player 1. In particular suppose

that the set of types is Ξ1 = {ξN , ξ(H), ξ(L)}.

A particularly interesting property of the Reputation Game as-

sociated to figure 1 is that playing LN forever is NOT a Nash equi-

librium, even if it is a(subgame perfect) equilibrium of the repeated

game with complete information. This is again the content of theo-

rem 1, and it is interesting to show that it works or not depending on

the information structure of the game. Formally suppose that the

set of types is Ξ1 = {ξN , ξ(H), ξ(L)} such that that µ(ξ(H)) < 1/3

and µ(ξ(L)) < 1/3.

Now consider the first period: clearly player 2 best reply is either

N or A depending on the values of beliefs on opponent’s behaviour:

Bru(β12({f1(ξ) = H}|h0) =





N if β12({f1(ξ) = H}|h0) ≤ 1/4

A if β12({f1(ξ) = H}|h0) ≥ 1/4.

Player 2 beliefs can easily be derived:

β12({f1(ξ) = H}|h0) = µ(ξ(H))× 1 + µ(ξN)× b1(H|ξN ).

Therefore player 2 in the first period best responds to b1(H|ξN), i.e.

to the normal type of player 1.

Then consider period 2: applying Bayes rule it easy to derive

that

µ2(ξ|h1) =






µ(ξ(H))
µ(ξ(H))+µ(ξN )

< 1/2 if ξ = ξ(H) and m1 = (HA)
µ(ξ(L))

µ(ξ(L))+µ(ξN )
< 1/2 if ξ = ξ(L) and m1 = (LN).

Therefore in the second period the strategic situation of player 2 is

very similar to the situation of previous period: whether (HA) or

(LN) being observed, player 2 in the second period best responds
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to the normal type of player 1. Therefore if player 1 chooses H

in period 1, then player 2 will choose A in all subsequent period,

having concluded that 1 is not type ξ(L) and this implies that for

the long-lived player 1 is worth to pay at most a cost of u1(H,N)

in one period in order to get u1(H,A) in all subsequent periods.

Consequently in the Reputation game there is no equilibrium where

(L,N) is played forever: incomplete information reduces the set of

possible equilibria outcomes.

Note that this argumentation is the exact replica of the one used

for game 1: this means that it is not the payoff structure that mat-

ters but the information structure. In particular the problem with

imperfect monitoring is the fact that there may exists strategies by

player 2 such that the signal, whether public or private, reveal no

information about player 1’s choice. Therefore if such strategy sNI
2

is a best reply to anything, it belongs to Br0(σ1) for all possible σ1.

To get Bru(σ1) = Br0(σ1) it is necessary to rule out such non infor-

mative strategies, for example introducing some noise. A possible

assumption is the following:

Assumption 3 For all σ2 ∈ Σ2, the collection of probability distri-

butions

{ρ[s1, σ2]|s1 ∈ S1}

is linearly independent.

Then an immediate result is the following:

Theorem 3 If assumption 3 holds, then

Bru(σ1) = Br∗0(σ1) = BR0(σ1)

and v∗∗1 equals the mixed-strategy Stackelberg payoff.

The proof is omitted since it is immediate.
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5 Conclusion

The examples, results and calculations of this paper show the im-

portance of the game theoretic approach to reputation building.

Considering the question posed at the beginning of the paper,

now it is possible to consider the specific rigorous answers provided

by game theory:

1. The context should be such that the choices of the agent that

wish to build a reputation are publicly observable, may be nois-

ily: as we have seen this might be a non trivial request;

2. Using reputation all agents can improve their payoffs, in par-

ticular the agent building its reputation has at stake the pos-

sibility of reaching the best payoff that it could get through a

precommitment when facing a rational opponent;

3. the information players can infer from the observations of past

outcomes to predict future behaviour crucially depend on two

factors:

(a) the structure of strategic interaction (see example 2 and

example 3)

(b) the possibility of facing "commitment" types, the possibil-

ity of existence of incomplete information on hidden char-

acteristics of the long-lived player.

4. to tie actors to observed and future outcomes it is necessary to

have an identity that last through time, i.e. a long lived agent;

5. reputation can be measured in term of likely future behaviour

and players beliefs are exactly this measure;

6. Bayes rule and probability rules are the well defined algorithms

that connect reputation measures and forecasts on future likely

outcomes.
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But the value added by game theory to the rigorous analysis of

reputation is shown by some other new interesting and important

perspectives that are opened by this point of view:

1. Reputation is possible only if in the population of possible types

there exists at least one type committed to "desirable" behav-

iour: it is its simple existence that generates that informational

positive externality that allow the possibility of building repu-

tation;

2. paradoxically enough, reputation is not based on revealing and

learning the players true characteristics, but exactly on the

opposite: on the existence and persistence of pooling equilibria

where the "normal" type can publicly mimic the "good" one.

Therefore there should be enough public information to allow

this mimicking and the consequent reputation building but also

enough lack of information to avoid the possibility of perfectly

learning the players’ types;

3. A player’s reputation can be modelled and measured as beliefs

on its future behaviour not on its type: these beliefs in equi-

librium are shared by all players and are correct, even if the

players usually will never learn precisely opponents types. Ac-

tually, if the players type would be perfectly learned, then their

reputation would disappear since it would be useless to behave

as a commitment type;

4. Reputation works actually as a selection device: among all pos-

sible equilibria of a repeated game, it selects that equilibria that

give rise to the Stackelberg payoff;

5. Reputation helps the player to reach a better payoff reducing

its choice opportunities, it works as a precommitment device:

in example 1 player 1 is able to convince player 2 that it will

play H since otherwise it would loose its reputation in future
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plays of the game and this "promise" is credible because of the

possible loss of reputation;

6. To work as a precommitment device, the loss of reputation

should depend on observable actions: transparency and the

role of media is absolutely crucial to allow a virtuous work of

this machinery, collusion and noise should not be enough to

generate confusion of player 1 behaviour;

7. Reputation to work requires that the agent is afraid of loosing it

in future interactions, therefore it regards long-lived agent: this

is one further justification for the existence of institutions such

as firms or universities besides economies of scale and scope, as

a way of building and transmitting reputation from one period

to the next13

13See Kreps 1990.
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6 Beliefs and Stochastic Outcomes in the Re-

peated Imperfect Monitoring Game with In-

complete Information

Consider a Repeated Imperfect Monitoring Game with Incomplete

Information (RIMG) denoted by

GT (δ, η,Ξ) = (N,Fi,Ξi, Ui, ηi).

Starting from this strategic setting, I would construct the sto-

chastic environment that describes the objective and the subjective

situation.

Let (F,F , x) be a probability space , where F is the set of pure

superstrategies, F the Borel σ-algebra of F and x ∈ ∆(F ) a generic

probability measure on F . Note that in general x will depend on

µ ∈ Delta(Ξ), the probability of players’ type, since the super-

strategies actually played will depend on players’ types. Tychonov

product theorem (see e.g. Kuratowski 1968) imply that F is a

compact metric space in the product topology and thus ∆(F ) is a

compact metric space if endowed with the weak topology and with

the metric being the Prohorov metric (see Billingsley 1968). Then

consider the probability space (M
(∞)
i ,Hi,P

i
x). The construction

of this probability space involves some steps. Let Pi ∈ M
(∞)
i be

a possible outcome path for player i and define for each t ∈ N

a mapping Zt : M
(∞)
i → Mi such that Zt(Pi) := Ot

i,

that is Zt is the projection of Pi on its t element. Consider the

class HC
i consisting of the cylinders, that is of the sets of the form

{Pi ∈ M
(∞)
i |(Zt1(Pi), · · · , Ztk(Pi)) ∈ C}, where k is an integer,

(t1, · · · , tk) is a k-tuple in N and C belongs to the Borel σ-algebra

generated by M
(k)
i . Then it is possible to prove (see e.g. Billingsley

1986) that HC
i is a field such that Hi is the σ-field generated by it.

Therefore, since the Zt are measurable functions on (M
(∞)
i ,Hi), if P

is a probability measure on Hi, then {Zt}t∈N is a stochastic process

on (M (∞)
i ,Hi,P).
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Now consider the probability distribution inductively defined ac-

cording to the following rules: P
i,(0)
x (h0i ) = P

i,(0)
x (ξi) = 1 and

∀t ≥ 1 P
i,(t)
x (ht−1

i ,mi) = P
i,(t−1)
x (ht−1

i )×[
∫

{f |P t

i
(fi,f−i)=ht−1

i
,mi}

x(df)].

It is immediate to check that Pi,(t1)
x , · · · ,Pi,(tk)

x are a system of prob-

ability distributions satisfying the Kolmogorov’s consistency con-

ditions. Therefore there exists a probability measure Pi
x on Hi

such that the stochastic process {Zt}t∈N on (M
(∞)
i ,Hi,P

i
x) has the

P
i,(t1)
x , · · · ,Pi,(tk)

x as its finite-dimensional distributions.

Now, consider the subjective situation of player i, given this

stochastic environment. Player i wish to maximize either Ui or ui

depending on being either long-lived or short-lived. In both situa-

tions player i is uncertain about opponents’ behavior φ−i ∈ Φ−i. To

maximize utility the uncertainty relative to the opponents’ random

behavior φ−i is equivalent to the uncertainty about opponents’ pure

superstrategies14. Therefore from i’s point of view the set of the

states of the word is represented by F−i and thus a Bayesian player

i is endowed with a prior belief βi ∈ ∆(F−i), where the probability

space (F−i,F−i, βi) is constructed deriving the marginal distribu-

tions from (F,F , x). This subjective assessment may exhibit corre-

lation, but this does not contradict the fact that the actual strategy

choices are independent. This correlation is due to i’s uncertainty:

even if i believes that the opponents choose their strategies indepen-

dently, she may feel that they have common characteristics which

partially resolve the strategic uncertainty. Moreover, the correlation

may endogenously develop as the result of correlated observations

and because of imperfect monitoring it can asymptotically persist

even if the agents play independently15.

Consider the information player i collects by playing. Her beliefs

are updated at time t using this information, i.e.

P t
i (f−i, fi). (1)

14See Pearce 1984 lemma 2.
15See Lehrer 1991.
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Note that this information depends on fi, i.e. on i’s behavior. More-

over consider f−i: even the opponents’ strategic choices depend on

player i superstrategy since

f−i = {f t
−i(h

t−1
−i )}

∞
t=1 = {f t

−i(P
t
−i(f−i, fi))}

∞
t=1. (2)

As a consequence of expressions (2) and (3), player i’s beliefs

depend on fi for two different reasons:

1. fi takes part in determining the information that i receives at

each stage, i.e. P t
i is a function of fi, as shown by expression

(2). This aspect regards the “informative links between

periods", that generate the possibility of experimentation, i.e.

of active learning behavior;

2. fi takes part in determining the information that i’s opponents

receive at each stage, i.e. P t
−i is a function of fi, as shown by

expression (3). I will refer to the second aspect using the label

“strategic links between periods" since it is connected to

players’ behavior in repeated games.

During the play, i is refining her information about opponents’

behavior (passive learning), but the actual amount of information

obtained depends on the superstrategy followed (active learning).

For a fixed fi construct the natural filtration of the stochastic process

given by the outcome path:

F t
−i(fi) := σ(P t

i (f−i, fi)),

where σ(X(ω)) denotes the σ-algebra generated by the random vari-

able X(ω). Intuitively F t
−i(fi) represents all the possible informa-

tion about opponents’ superstrategy that i could collect at t fol-

lowing the dynamic superstrategy fi. In fact σ(X(ω)) consists pre-

cisely of those events A for which, for each and every ω, player

i can decide whether or not A has occurred, i.e. whether or not

ω ∈ A, on the basis of the observed value of the random variable

42



X. Formally a filtration {F t
−i} is an increasing sequence of sub-

σ-algebras of F−i, i.e. F1
−i(fi) ⊆ F2−i(fi) ⊆ · · · ⊆ F−i, and

the natural filtration of a stochastic process {Ot
i(fi)}t is the filtra-

tion generated by it in the sense that F t
−i(fi) := σ(O0

i , · · · , O
t
i).

Finally, define F∞−i(fi) := σ(
⋃

t∈NF
t
−i(fi)) ⊆ F−i. Then, for a

fixed fi, Pi(f−i, fi) := {Ot
i(f−i, fi)}t∈N is a stochastic process

adapted to the natural filtration {F t
−i(fi)}, because by definition

Ot
i(f−i, fi) is F t

−i(fi)-measurable. Therefore for every t and for

every A ∈ F−i there exists a version of the conditional expecta-

tion E[χA(f−i)|F t
−i(fi)], where χA is the indicator function for the

set A. Indicate such a version with βt
i [fi](A); then βt

i [fi] ∈ ∆(F−i)

is a regular conditional probability distribution (Theorem 8.1 of

Parthasarathy 1967). As the notation stress, such a probability mea-

sure depends on fi. This probability measure represents the updated

beliefs of player i at time t, given that she is following the super-

strategy fi.

This discussion on players’ beliefs in the RIMG can be summma-

rized in the following assumption:

Assumption 4 In the RIMG every player i ∈ N updates her beliefs

βi according to the following expression:

∀fi ∈ Fi, ∀A ∈ F−i, ∀t ∈ N βt
i [fi](A) = E[χA(f−i)|F

t
−i(fi)].

Remark: this assumption is meaningful because of the existence of

a regular conditional probability.
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