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Abstract. Let G = Aut(T ) be the group of all automorphisms
of a homogeneous tree T of degree q + 1 ≥ 3 and (X, m) a com-
pact metrizable measure space with a probability measure m. We
assume that µ has no atoms. The group G = Aut(T )X = GX

of bounded measurable currents is the completion of the group of
step functions f : X → Aut(T ) with respect to a suitable metric.
Continuos functions form a dense subgroup of G. Following the
ideas of I.M. Gelfand, M.I. Graev and A.M. Vershik we shall con-
struct an irreducible family of representations of G. The existance
of such representations depends deeply from the nonvanisching of
the first cohomology group H1(Aut(T ), π) for a suitable infinite
dimentional π.

1. Introduction

Let G be a locally compact group, X any compact space and G0 the
space of all locally constant measurable functions f : X → G. The
group structure of G extends in a natural way to G0: for f, g ∈ G0 we
let f · g(x) = f(x)g(x). Consider first G0 as a direct limit of groups
isomophic with G× · · · ×G

︸ ︷︷ ︸

n times

and give it the natural toplogy coming

from this structure.
There are several approaches to the construction of continuous uni-

tary irreducible representations of G0 when G is a Lie group. One
method essentially embeds G0 into the motion group of a Hilbert space
and uses the canonical projective representation of the latter in the
Fock space (see the papers of Araki [A], Guichardet [Gu1][Gu2], Parthasarathy
and Schmidt [P-S1][P-S2] and Streater [St]).
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Another approach is based on the existance of a semigroup of positive
definite functions, called “canonical states” and is due to I.M. Gelfand,
M.I. Graev and A.M. Vershik

A semigroup of canonical states is a family of positive definite func-
tions Ψλ(g) of the form

(1.1) Ψλ(g) = exp(λ(ψ(g))) λ > 0

where the infinitesimal generator ψ(g) is a conditionally positive defi-
nite (briefly a c.p.d.) function on G.

The existance of such a generator depends on the nonvanishing of
the first cohomology group H1(G, π) where π is an irreducible repre-
sentation of G that cannot be separeted from the identity in the Fell
topology. In this case one has ψ(g) = −1

2
‖β(g)‖2 for a suitable cocycle

β ∈ H1(G, π).
It is clear that, in principle, one may apply this latter construction to

all semisimple Lie groups without Kazhdan property T . This has been
done by I.M. Gelfand, M.I. Graev and A.M. Vershik in a first paper
appeared in the english vertion in 1982 [G-G-V1] for PSL(2.R) and,
later, by the same authors, for SO(n, 1) and SU(n, 1) [G-G-V2]. In the
same papers it was also showed that the representations constructed
from the semigroup Ψλ are equivalent to those described in the Fock
model.

In this paper we want to apply I.M. Gelfand, M.I. Graev and A.M.
Vershik construction to obtain an irreducible representation of G, the
group of measurable bounded functions f : X → Aut(T ) taking val-
ues in the group of automorphisms of a homogeneous tree. This ap-
proach allows us to deal also with the p-adic groups of Lie type such
as PGL(2,Qp).

There are strong analogies but also points of difference. The main
difference concerns the semigroup of positive definite functions. In the
case of PSL(2,R) one has Ψλ(g) = cosh−λ(dH(i, g·i)/2) where dH is the
hyperbolic distance in the upper half plane between the two points i and
g · i. In the case of Aut(T ) one should expect that Ψλ(g) = q−λd(o,g·o)

where d(o, g ·o) is tree distance between a choosen point o and g ·o, how-
ever the cocycle that corresponds to the c.p.d. function −d(o, g ·o) does
not take values in an irreducible representation of G and the semigroup
Ψλ is different from what expected. The main analogy is about tensor
products of spherical representatins. In short, take the tensor product
πλ1

⊗ πλ2
of two spherical representations of Aut(T ) and decompose

it into irreducible components, as Aut(T ) is type I (see [F-N]) this
can be done in an essentially unique way. In the decomposition either
the complementary series appears with multiplicity one or it does not
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appear at all. This fact is shared by Aut(T ) with groups as SL(2,R)
and SL(2,Qp) (see [M] and [R]) and inspired the study of semigroups
of canonical states in the case of Aut(T ) (see [KuV1] [KuV2]). In par-
ticular we are happy to thank A. Vershik for helpful conversations and,
first of all, for suggesting us the possibility to apply the construction
of the multiplicative integral given in [G-G-V1] to our case.

2. The group G0

Let G = Aut(T ) be the group of all automorphisms of an homoge-
neous tree T of order q + 1. The topology of pointwise convergence
turns Aut(T ) into a locally compact totally disconnected topological
group. Denote by V the set of vertices of T . Let F be any finite subtree
with vertex set v1 . . . vN , the the sets VF

(2.1) VF = {g ∈ Aut(T ) : g · vi = vi for all vi ∈ F} .
constitute, as F varies among all finite subtrees of T , a basis of neigh-
bourhoods of the group identity e.

Let X be a compact metrizable space with a positive Radon measure
m with no atoms. We shall assume that m is normalized, that is

(2.2) m(X) = 1 m{x} = 0 for all x ∈ X .

For any Borel subset A ⊆ X write Ac for its complement and set
(2.3)
GA = {f : X → G ; f(x) is constant on A and f(x) = e if x ∈ Ac} .
For disjoint Borel subsets A1, A2 . . . An let
(2.4)
GA1

. . . GAn
= {f : X → G ; f(x) = f1(x)f2(x) . . . fn(x) fi ∈ GAi

} .
There is an obvious identification betweenGA1

. . . GAn
andG× · · · ×G

︸ ︷︷ ︸

n times

.

Give GA1
. . . GAn

the product topology of G× · · · ×G.
Throughout this paper we shall identify functions which are equal

almost everywhere [m]. So that GA and GA1
. . . GAn

are in fact sets
of equivalence classes of functions which coincide a.e. [m] for which
we decide, once and for all, to represent any class with a function
everywhere defined and constant on each Ai (1 ≤ i ≤ n).

A finite partition ρ of X into Borel subsets A1, . . . An is called ad-
missible. For any admissible partition ρ denote by Gρ the subgroup of
functions f : X → G which are constant on each Ai. Write ρ1 < ρ2 if ρ2

is a refinement of ρ1. There is a natural embedding Jρ2,ρ1 : Gρ1 → Gρ2 .
The group of step functions G0 is the direct limit

(2.5) G0 = lim
→
Gρ
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.
An element of G0 may be identified with a function f0 : X → Aut(T )

satisfying the following properties: there exist a finite number of dis-
joint measurable sets Ai and different constants g0

i ∈ Aut(T ) (i =
1 . . . n) such that f0(x) = g0

i for x ∈ Ai and ∪ni=1Ai = X. A neigh-
bourhood of f0 is given by all locally constant functions f such that
f(x) ∈ Ui(g0

i ) for all x ∈ Ai (i = 1 . . . n) where Ui(g0
i ) are choosen

neighbourhoods of g0
i in Aut(T ). More references about direct limits

of topological groups and representations may be found in the appen-
dices of the paper [N-RC-W].

3. Representations of G0 coming from tensor products

3.1. Tensor products of spherical representations. A classifica-
tion of the irreducible continuous unitary representations of Aut(T )
was given by Ol’shanskii [Ol1] [Ol2], and is described in [F-N], the
notation of which we shall basically be following.

Fix a vertex o of V and fix, once and for all, a maximal compact
subgroup K:

(3.1) K = {g ∈ Aut(T ) ; g · o = o} .
An irreducible unitary representation πz is called spherical if it ad-

mits a nonzero K-invariant vector.

3.1.1. The boundary of T and the spherical series. Denote by d(x, y)
the usual tree distance between vertices x, y of T . The boundary Ω
of T can be identified with the set of semi-infinite geodesics start-
ing at o. One thinks of each element ω ∈ Ω as an infinite chain
ω = [o = a0, a1, a2, a3 . . . ) where d(aj, aj+1) = 1 and aj 6= aj+2∀j.

Give Ω the natural topology as a subspace of the power space
Map(N, vertices of T ). This makes Ω compact and totally discon-

nected, isomorphic to the Cantor set.
A simple set of generators for this topology may be obtained as

follows: fix a vertex v ∈ T . Define Ω(v) as the set of all half infinite
geodesics ω = [o, a1, a2, a3 . . . ) such that v is a vertex of ω.

Denote by ν the unique K-invariant probability measure on Ω which
assigns the measure q

q+1
q−d(o,v) to each of sets Ω(v).

Let ω = [o, b1, b2 . . . bn . . . ) and ω′ = [o, a1, a2 . . . an . . . ) be two dis-
tinct elements of Ω. Assume that bj = aj for all j between 1 and k and
bk+1 6= ak+1: so that the first k+1 vertices of ω and ω′ are all equal but
the k + 2 are distinct. The last point of the common starting (finite!)
geodesic [o, a1, a2, . . . ak] will be denoted by ω ∧ ω′ (ω ∧ ω′ = o when
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a1 6= b1). Analogously, if v is a vertex of T , let [o, a1, a2, . . . , v] denote
the unique geodesic from o to v and define

(3.2) ω ∧ v =

{
o if v is not a vertex of ω

ak if aj = bj for 1 ≤ j ≤ k but ak+1 6= bk+1.

Finally, for g ∈ Aut(T ) and ω ∈ Ω let N(g · o, ω) denote the length
of the geodesic from o to ω∧ g · o. Hence N(g · o, ω) denotes the length
of the maximum common geodesic between [o, g · o] and ω. We shall
simply write N(g, ω) for N(g · o, ω). The Poisson kernel is

dν(g−1ω)

dν(ω)
= P (g, ω) = q2N(g,ω)−d(o,g·o)

and the spherical representations are defined as

(πz(g)f)(ω) = P z(g, ω)f(g−1 · ω)

in the space K(Ω) of locally constant complex functions on Ω.
When z = 1

2
+ it the representation πz is unitary with respect to the

scalar product

〈f g〉 =

∫

Ω

f(ω)g(ω)dν(ω).

and the principal spherical series act on L2(Ω, dν), the completion of
K(Ω) with respect to this norm.

When z is real and 0 < z < 1 the representation πz is unitarizable
and the complementary spherical series act on Hz, the completion of
K(Ω) with respect to another suitable inner product.

The spherical functions φz are obtained, as usual, as matrix coeffi-
cients with respect to the unique K-invariant vector in K(Ω). So that

(3.3) φz(g) = 〈πz(g)1, 1〉 =

∫

Ω

P z(g, ω)dν

where 1 is the function identically 1 on Ω. A direct computation gives

(3.4) φz(g) = c(z)q−zd(o,g·o) + c(1 − z)q(z−1)d(o,g·o) if z 6= 1

2
+

2kπi

log q

where c(z) is the Harish-Chandra c-function:

(3.5) c(z) =
1

(q + 1)

q1−z − qz−1

q−z − qz−1

and

(3.6) φz(g) = (1 +
q − 1

q + 1
· d(o, g · o))q−zd(o,g·o) if z =

1

2
+

2kπi

log q
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The endpoints of the principal series are obtained when z = 1
2

+
kπi/ log q while the endpoints of the complementary series correspond
to the cases z = 1 and z = 0.

In particular when

z = 1 or z = 0

the spherical function becomes identically one and the endpoint repre-
sentation obtained by letting z → 0 (or z → 1) splits into the sum of
sp−, one of the two so called ”special” representations of Aut(T ) and
the trivial representation (see [Ol2]).

We recall here some basic properties of spherical functions that will
be needed later:

Proposition 3.1. Assume that the spherical series are realized in the
completion of K(Ω) and either 0 < z < 1

2
or z = 1

2
+ it. Let γn be

any element of Aut(T ) such that d(o, γn · o) = n. Since the spherical
function φz(g) is bi-K invariant the value φz(γn) = φz(n) depends only
on n and we have

(3.7)

∫

KγnK

|φz(g)|2dg = (q + 1)qn−1|φz(n)|2 .

Morover

|φz(n)|2 ≃ q−2nz if 0 < z < 1
2

(3.8)

|φ 1

2
+it(n)| ≤ |φ 1

2

(n)| Herz’s majorization principle(3.9)

|φ 1

2

(n)|2 ≃ (n + 1)2q−n(3.10)

In particular, let (π,H) be any representation of Aut(T ) weakly con-
tained in the regular representation and let v be any K-invariant vector
in H. Then v admits the following decomposition

(3.11) v =

∫ ⊕

v(t)1dλ(t)

where 1 = 1t is the function identically one on Ω. Moreover one has

(3.12) |〈π(γn)v, v〉|2 ≤ ‖v‖4(n + 1)2q−n .

Proof. The proof of (3.8) and (3.9) can be found in Chapter II of [F-N]
while (3.10) is obvious from (3.6). Let us turn to (3.12). Assume that
π is weakly contained in the regular representation and decompose it
into irreducibles. The only representations of Aut(T ) that may ap-
pear in the decomposition are those of the discrete series and of the
spherical principal series. Choose the realization of the principal series
on L2(Ω, dν). Since no representation of the discrete series admits a



TOTALLY DISCONNECTED CURRENTS 7

nonzero K-invariant vector, we may assume that v =
∫

J
vtdλ(t) with

J ⊆ [0, 2π]. Let k ∈ K. Since π(k)v = v we have

(3.13) ‖π(k)v − v‖2 =

∫

J

‖πt(k)vt − vt‖2dλ(t) = 0

and hence πt(k)vt = vt a.e. [λ]. Since the subspace of K-invariant
vectors is one dimentional for all t, it must be vt = v(k, t)1 for some
scalar valued integrable function v(k, t). Letting k = k1k2 we see that
v(k1k2, t) = v(k2, t) showing that v(k, t) is independent on k. Let now
v =

∫

J
v(t)1dλ(t) and γn such that d(o, g · o) = n. One has

(3.14) |〈π(γn)v, v〉| ≤
∫

J

|v(t)|2|φt(γn)|dλ(t) .

Herz’s majorization principle (3.9) will give the desired result:

(3.15) |〈π(γn)v, v〉| ≤
∫

J

|v(t)|2|φ 1

2

(γn)|dλ(t) ≤ ‖v‖2(n+ 1)q−
1

2
n

�

Denote by T = [0, 2π) the complex torus and by dt its Haar measure.
The first realization of our representation Π is based on the following
Theorem, which follows from Propositions 2.1–2.5 of [C-K-S]:

Theorem 3.2. Let π1,2 = πz1⊗πz2 be the tensor product of πz1 πz2, two
spherical representations of Aut(T ). The representations are assumed
to act on Hz1 ⊗Hz2, Hz1, Hz2 respectively. Assume, for simplicity, that
both z1 and z2 are between 0 and 1/2 and let

λ = z1 + z2 .

• If λ ≥ 1
2

the representation π1,2 decomposes by means of the
principal and the discrete series only.

• If λ < 1
2

the representation π1,2 splits into the sum of exactly one
complementary series representation πλ plus a direct integral
over all the principal series plus a sum of (not all) the discrete
series. In particular the Aut(T ) modulo Hz1 ⊗ Hz2 splits into
the orthogonal sum of three pieces:

(3.16) Hz1 ⊗Hz2 = Hλ ⊕
∫ ⊕

L2(Ω, dν)dσ(t) ⊕H3

where H3 does not contain any nonzero K- invariant vector
and dσ(t) is absolutely continuous with respect to the Plancherel
measure

dµ(t) =
q

(q + 1)

1

|c(1
2

+ it)|2 dt
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given by the Harish-Chandra c-function (3.5).
• The following multiplication formula for spherical functions holds:

(3.17)

φz1(g)φz2(g) =
c(z1)c(z2)

c(z1 + z2)
φz1+z2(g) +

∫ 2π

0

K(z1, z2, t)φ 1

2
+it(g)dµ(t)

where K(z1, z2, t) is a positive integrable kernel.

Remark 3.3. Assume now that z1 = m(X1), z2 = m(X2) and z1 + z2 < 1
2
.

The above Theorem ensures that there exists a K-invariant vector v1,2

in Hz1 ⊗Hz2, such that

1 ⊗ 1 = v1,2 ⊕
∫ 2π

0

v(t)1dm(t) .

Letting g = e in (3.17) we have

(3.18) 1 =
c(z1)c(z2)

c(z1 + z2)
+

∫ 2π

0

K(z1, z2, t)dµ(t)

So that the map

1 → v1,2

√

c(z1 + z2)

c(z1)c(z2)

extends to an isometric embedding of πz1+z2 into πz1 ⊗πz2 . Since Hz is
a space of functions defined on Ω, we may identify v1,2 with a function
on Ω × Ω. In particular, because the subspace of K-invariant vectors
in Hz is one dimentional for every spherical representation πz, there
exists a unique v1,2 such that

• v1,2 is a nonnegative function
•

(πz1 ⊗ πz2)(g)(v1,2) =

√

c(z1)c(z2)

c(z1 + z2)
πz1+z2(g)1

In the sequel, we shall always assume that the vector corresponding
to the embedding of Hz1+z2 into Hz1 ⊗Hz2 is chosen in this way. Any
other such embedding will map the vector 1 into c v1,2 where c is a
scalar of absolute value one.

Proposition 3.4. Let A be the disjoint union of measurable sets A1 . . . An
with m(A) = z < 1

2
and m(Ai) = zi. Let πz, respectively πzi

, denote
the complementary series representations of Aut(T ) acting on Hz, re-
spectively on Hzi

. The representation πz1 ⊗ · · · ⊗ πzn
of Aut(T ) splits

into of the orthogonal sum of two pieces:

(3.19) πz1 ⊗ · · · ⊗ πzn
= πz ⊕ π′



TOTALLY DISCONNECTED CURRENTS 9

where πz is the complementary series representation corrsponding to the
parameter z and π′ decomposes by means of the principal and discrete
series only. In particular there exists an isometric embedding of Hz

into Hz1 ⊗ · · · ⊗Hzn
that commutes with the action of Aut(T ).

Proof. The statement is true for n = 2 by the previous Theorem (3.2).
Assume that z = z1 + z2 + z3, multiply both sides of (3.17) by φz3(g)
and apply again Theorem (3.2):
(3.20)

φz1(g)φz2(g)φz3(g) =
c(z1)c(z2)

c(z1 + z2)

c(z1 + z2)c(z3)

c(z1 + z2 + z3)
φz1+z2+z3(g) + λ(g)

Where

(3.21) λ(g) =

∫

J

K(z1, z2, t)φ 1

2
+it(g)φz3(g)dµ(t) +

c(z1)c(z2)

c(z1 + z2)

∫

J

K(z1 + z2, z3, t)φ 1

2
+it(g)dµ(t)

Since the representations that are weakly contained in the regular rep-
resentation are characterized by the decay of their matrix coefficents
(see [Ol1] or [F-N]), the tensor product of a uniformly bounded repre-
sentation and a representation weakly contained in the regular is still
weakly contained in the regular and we may conclude that no comple-
mentary series appears in the decomposition of λ. In particular there
exists a unique positive function v1,2,3 on Ω×Ω×Ω such that the map

(3.22) 1 →
√

c(z1 + z2 + z3)

c(z1)c(z2)c(z3)
v1,2,3

extends to an isometric embedding of Hz into Hz1 ⊗ Hz2 ⊗ Hz3 . A
repeated application of the above arguments concludes the proof. �

3.2. The Irreducible Representation Π. Let ρ be an admissible
partition of X into Borel subsets A1, . . . An. Fix, once and for all,
M ∈ (0, 1

2
) and let

(3.23) zi = M ·m(Ai) .

Let πzi
be the complementary series representation of Aut(T ) corre-

spondig to zi acting on Hzi
.

Define an irreducible representation πρ of the group Gρ = GA1
· · ·GAn

by the rule

(3.24) πρ(g1, . . . , gn) = πz1(g1) ⊗ · · · ⊗ πzn
(gn)
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acting on Hρ = Hz1 ⊗ · · · ⊗Hzn
. Proposition (3.4) above tells how to

construct maps from Hρ1 to Hρ2 every time that ρ1 < ρ2 (that is when
ρ2 is a refinement of ρ1).

Proceeding as in [G-G-V1] one can prove the following

Theorem 3.5. Let Hρ1 and Hρ2 as above. There exist morphisms of
Hilbert spaces

jρ2,ρ1 : Hρ1 → Hρ2

defined for each pair of admissible partitions ρ1 < ρ2 satisfying the
following conditions:

(1) jρ2,ρ1 commutes with the action of Gρ1 on Hρ1 and Hρ2.
(2) each jρ2,ρ1 is an isometry.
(3) jρ3,ρ2 · jρ2,ρ1 = jρ3,ρ1 for any ρ1 < ρ2 < ρ3.

These morphisms are determined uniquely to within factors cρi,ρj
of

absolute value one.

3.3. The representation space for G0. For any admissible partition
ρ construct the Hilbert space Hρ. Theorem (3.5) above ensures that
for any pair ρ1 < ρ2 there exist morphisms jρ2,ρ1 : Hρ1 → Hρ2 which
commute with the Gρi

action and also satisfy the compatibility condi-
tion jρ3,ρ2 · jρ2,ρ1 = jρ3,ρ1 for any ρ1 < ρ2 < ρ3. We can now define H0

to be the inductive limit of Hilbert spaces:

(3.25) H0 = lim
→

Hρ .

We recall that an element v of H0 is an equivalence class of vectors
[vρ] with vρ ∈ Hρ and with the following property: there exists ρ0

(depending on v) such that for every admissible partition ρ > ρ0 one
has vρ = jρ,ρ0vρ0 . One can take

‖v‖H0 = ‖v‖Hρ0

.

Let H be the completion of H0 with respect to this norm. Let now
ξ ∈ G0 and v ∈ H0. In order to define Π(ξ)v observe that there exist
an adimissible partition ρ such that ξ ∈ Gρ and v ∈ Hρ. Define

(3.26) Π(ξ)v = πρ(ξ)v

and extend it to the whole H by continuity . Again more details about
unitariy of Π can be found in [N-RC-W].

The next Theorem says that different measures m on X will give
inequivalent representations.

Theorem 3.6. Let m1 and m2 be two normalized Radon measures and
let Π1 and Π2 be the corresponding representations of G0 acting on H1
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and H2 respectively. Assume that there exists a measurable set A such
that m1(A) 6= m2(A). Then Π1 and Π2 are inequivalent.

Proof. Assume, by way of contraddiction, that there exists a G0 unitary
map U that intertwines Π1 to Π2. A fortiori U intertwines the restric-
tion of Π1 to the subgroup GA × GAc to the restriction of Π2 to the
same subgroup. Let ρ be the partition corresponding to X = A ∪ Ac.
Set λ1 = Mm1(A), µ1 = M(1 −m1(A1)) = M − λ1 and, respectively
λ2 = Mm2(A), µ2 = M − λ2. We know that Π1 acts as πλ1

⊗ πµ1

on H1
ρ = Hλ1

⊗ Hµ1
when restricted to GA × GAc . Choose h ∈ H1

ρ,
ξ ∈ GA ×GAc and set z = Uh.

By definition of H2 there exists a sequence zn ∈ H2
ρn

converging to
z and

(3.27) Π2(ξ)z = lim
n→∞

Π2(ξ)zn .

By passing to a subsequence we may assume that ρn is a refinement
of the initial partition ρ, so that A = ∪ni=1Ai, A

c = ∪mi=1Bi. Let
Mm2(Ai) = zi and Mm2(Bi) = ti. By definition Π2(ξ)zn belongs to
H2
ρn

= Hz1 ⊗ · · · ⊗ Htm . According to Proposition (3.4) H2
ρn

, as a
GA ×GAc modulo, splits into the orthogonal sum of two parts:

(3.28) Hz1⊗· · ·⊗Htm = Hz1+···+zn
⊗Ht1+···+tm ⊕H ′

n ≃ Hλ2
⊗Hµ2

⊕H ′
n

where, for every n,

(3.29) H ′
n = Ln ⊗Hµ2

⊕Hλ2
⊗ L′

n

and both Ln and L′
n correspond to representations of Aut(T ) that are

weakly contained in the regular representation. Write Π2(ξ)zn = vn+v
′
n

where vn ∈ Hλ2
⊗ Hµ2

and v′n ∈ H ′
n. Passing to the limit as n goes

to infinity, since Hλ2
⊗ Hµ2

is closed in Hρn
for every n the limit of

vn will belog to it while the limit of v′n will belong to same space H ′.
Hence U(Hλ1

⊗Hµ1
) = Hλ2

⊗Hµ2
⊕H ′. We shall see that H ′ cannot

contain any copy of Hλ1
⊗Hµ1

. Denote by KA ×KAc the subgroup of
GA × GAc consisting of all locally constant functions taking values in
K. The vector 1⊗ 1 is invariant under the action of KA×KAc and so
is its immage U(1 ⊗ 1). Write U(1 ⊗ 1) = v ⊕ v′ where v and v′ are
both KA ×KAc invariant (v ∈ Hλ2

⊗Hµ2
, v′ ∈ H ′). H ′ will contain a

copy of Hλ2
⊗Hµ2

if and only if v′ 6= 0. Normalizing v′ if necessary, we
may write

〈Π2(ξ)v′, v′〉 = 〈Π1(ξ)1 ⊗ 1, 1 ⊗ 1〉
for every ξ ∈ GA ×GAc .

Consider now H ′ as an Aut(T ) modulo via the diagonal action: since
H ′
n, as Aut(T ) representation, is weakly contained in the regular rep-

resentation, the same will be true for H ′. Denote by γn any element
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of Aut(T ) such that d(o, γn · o) = n and by g the function identically
equal to g on X. One has

(3.30) 〈Π2(g)v′, v′〉 = 〈Π1(g)1 ⊗ 1, 1 ⊗ 1〉 = φλ1
(g)φµ1

(g) .

Integrate now over KγnK: according to Proposition (3.1) the left hand
side of (3.30) gives
(3.31)∫

KγnK

|〈Π2(g)v′, v′〉|2dg ≤ (q + 1)qn−1(n+ 1)2q−n‖v′‖4 ≃ C(n+ 1)2

while the right hand side is

(3.32)

∫

KγnK

|φλ1
(g)φµ1

(g)|2dg ≃ (q + 1)qn−1q−2(λ1+µ1)n ≃ q(1−2M)n .

Putting together (3.31) and (3.32) one gets
∫

KγnK

|φλ1
(g)φµ1

(g)|2dg ≃ q(1−2M)n ≤ C(n+ 1)2

which is impossible since M < 1
2
. Hence U(1⊗1) belongs to Hλ1

⊗Hµ1

and this is a contraddiction since Hλi
⊗ Hµi

(i = 1, 2) are irreducible
GA ×GAc modulos with λ2 6= λ1. �

The last Theorem of this section is about irreducibility:

Theorem 3.7. Let Π the representation of G0 constructed from a nor-
malized Radon measure. Then Π is an irreducible representation of
G0.

Proof. Assume that H splits into the sum of two invariant subspaces,
say H = H1 ⊕ H2. Since the restriction of Π to Gρ is an irreducible
representation on Hρ ⊆ H, the subspace Hρ must be contained in one
of the Hi. Suppose that Hρ ⊆ H1. Take now any ν > ρ: for the same
reason Hν must be contained either in H1 or in H2. Since Hρ ⊆ Hν

we must have Hν ⊆ H1 for every ν > ρ. Hence the direct limit H0 is
contained in H1 and also its closure since H1 itself is closed. �

4. The Fock model for Π

4.1. The space EXP(H). Let H be a complex Hilbert space. We
recall here the definition of the Hilbert space EXP(H) (see for example
[J]). Let H0 = C and, for any integer n > 0, let H⊙n denote the
symmetric tensor power of H . For any v ∈ H let

(4.1) EXP(v) = 1 ⊕ v ⊕ 1√
2!
v ⊗ v ⊕ · · · ⊕ 1√

n!
v⊗n ⊕ . . .



TOTALLY DISCONNECTED CURRENTS 13

Set

(4.2) 〈EXP v1,EXP v2〉exp =

∞∑

n=0

1

n!
〈v1, v2〉n = e〈v1,v2〉

The space

(4.3) EXP(H) = H0 ⊕H1 ⊕ · · · ⊕H⊙n ⊕ . . .

is the completion of all finite linear combinations of vectors of the form
EXP(v) with respect to the norm induced by the above inner product
(4.2). The vacuum vector EXP 0 is the vector

(4.4) EXP(0) = 1 ⊕ 0 ⊕ 1√
2!

0 ⊗ 0 ⊕ · · · ⊕ 1√
n!

0⊗n ⊕ . . .

Let G0(H) denote the group of motions of a Hilbert space H , that
is the group of all maps M : H → H of the form M(v) = Av+ b where
A is a unitary operator and b ∈ H . Identify G0(H) with the set of all
pairs (A, b) (A ∈ U(H)), b ∈ H) with multiplication given by

(A1, b1)(A2, b2) = (A1A2, b1 + A1b2) .

A unitary projective representation U of G0(H) in EXP(H) is given by
the formula:

(4.5) U(A, b)(EXP v) = exp(−1

2
‖b‖2 − 〈Av, b〉) EXP(Av + b)

One can check that

(4.6) U(A1, b1)U(A2, b2) = U(A1A2, A1b2 + b1)e
iℑ〈b1,A1b2〉

4.2. Cocycles and representations. Let (π,Hπ) be a unitary rep-
resentation of G. By a cocycle with values in Hπ we mean a 1-cocycle,
that is a continuous function β : G→ Hπ satisfying the condition

(4.7) β(g1g2) = β(g1) + π(g1)β(g2) .

For any closed subspace Y ⊆ Hπ denote by PY the orthogonal pro-
jection of Hπ onto Y . A cocycle is called absolutely nontrivial if, for
every closed nonzero G invariant subspace Y the cocycle βY = PY β is
nontrivial (not of the form π(g)v − v for some vector v ∈ Y ). Every
cocycle β allows us to define a homomorphism θ of G into the group
G0(Hπ) by letting θ(g) = (π(g), β(g)). Composing θ with U we get a
unitary projective representation E(π, β) of G in the space EXP(Hπ):

(4.8) E(π, β)(g) EXP(v) = U(θ(g)) EXP(v) =

exp

(

−1

2
‖β(g)‖2 − 〈π(g)v, β(g)〉

)

EXP(π(g)v + β(g))
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One has

(4.9) E(π, β)(g1)E(π, β)(g2) = E(π, β)(g1g2)e
iℑ〈β(g1),π(g1)β(g2)〉

There are however situations for which the representation constructed
above is a true representation of G. Assume that (π,Hπ) is an orthog-
onal representation of G in a real Hilbert space and that β : G → Hπ

is a cocycle. Form the complexification H of Hπ and consider the rep-
resentation π ⊗ Id acting on H . Since β preserves the subspace of
real elements the function β : G → H is still a cocycle and one has
ℑ〈β(g1), π(g1)β(g2)〉 = 0 for all g1, g2 ∈ G. The situation that we shall
consider will be exactly like this.

4.3. The cocycle of Aut(T ). Assume that β : G → Hπ is a non-
trivial cocycle and that (π,Hπ) is irreducible. In 1982 Karpushev and
Vershik (see [KaV]) proved that such π cannot be separeted from the
identity in the Fell topology. We also know that a converse has been
proved by Y.Shalom in 2000 (see [Sh]). According to the classification
if irreducible representations of Aut(T ) (see [Ol1] or [F-N]), the only
possible π in our case is the special representation.

We recall here some standard facts aboute conditionally positive defi-
nite functions: more references can be found in the papers of P. Delorme
[D1] and [D2] and A. Guichardet [Gu2].

A continuous function ϕ : G→ C is said to be conditionally positive
definite, briefly c.p.d., if

∑

i,j

cicjϕ(g−1
j gi) ≥ 0 whenever

∑

i

ci = 0

A c.p.d. is said to be normalized if it is real and ϕ(e) = 0. To ev-
ery conditionally positive definite normalized function ϕ corresponds a
cocycle β such that ϕ(g) = −1

2
‖β(g)‖2.

Since the spherical functions of the complementary series of Aut(T )
converge to 1 pointwise when z → 0 one may apply the method of
[G-G-V1] to get a conditionally positive definite function, and hence
a cocycle, taking the derivative at the point z = 0 of the spherical
functions. This approach gives the explicit form of the c.p.d. (see
[KuV1]).

(4.10) ϕ0(g) = lim
z→0

φz(g) − 1

z
= −1

2
‖β0(g)‖2 .

To describe the cocycle β0 we need a realization of the special rep-
resentation sp− different from that given in [Ol1] and [F-N]. Here are
the basic steps: more details can be found in [KuV2].
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In K(Ω) consider the inner product

(4.11) 〈F, F 〉− =
q2 − 1

q

∫

Ω

∫

Ω

|F (ω) − F (ω′)|2q2|ω∧ω′|dν(ω)dν(ω′) .

Hsp
−

is the completion of the complement of constant functions with
respect to the above inner product 〈 , 〉−. The representation is simply

sp−(g)F (ω) = F (g−1ω)

and the cocycle is

(4.12) β0(g) = (2N(g, ω)− d(o, g · o)) .
We shall simply write ‖β0(g)‖2 for 〈β0(g), β0(g)〉−.

In 1979 Haagerup [H] proved that the function g → −d(o, g · o) is
c.p.d. by showing that d(o, g·o) = ‖βh(g)‖2 for a suitable cocycle taking
values in the Hilbert space HΛ of oriented edges of T . As a matter of
fact Haagerup’s paper concerned the free group on r generators Fr.
When q+1 is even, Aut(T ) can be viewed as K ·Fr and one can adapt
his proof for K invariant cocycles defined on Aut(T ), the case of the
general tree is treated in [V].

In [KuV2] it was proved that β0 and βh are cohomologous by showing
that HΛ = H1

Λ ⊕H2
Λ where H1

Λ is equivalent to the regular representa-
tion on ℓ2(V) while H2

Λ is equivalent to Hsp
−
. In particular one has

(4.13) d(o, g · o) = ‖βh(g)‖2 =
1

2
‖β0(g)‖2 +

2q

q2 − 1
(1 − q−d(o,g·o))

4.4. The representation Ξ = E(spX− , β
X
0 ). We are now ready to con-

struct an irreducible representation of G0 in the Fock model.
Consider the cocycle β0 : Aut(T ) → Hsp

−
. Since β0(g) is a real

valued function on Ω, the immaginary part of 〈β0(g1), sp−(g1)β0(g2)〉−
is always zero and hence E(sp−, β0) is a representation of Aut(T ) in
EXP(Hsp

−
).

Let Π be the representation of G0 built from the measure m and the
positive constant M as in (3.23). Consider the Hilbert space HM whose
elements are the same as those of Hsp

−
but the norm is given by

(4.14) ‖v‖2
M = M log(q)〈v, v〉−

Let HX =
∫ ⊕

X
Hxdm(x) ≃ L2(X, dm)⊗HM denote the direct integral

of spaces Hx = HM a.e. [m]. So that HX is the completion of locally
constant measurable mappings v : X → Hsp

−
with respect to the norm

(4.15) ‖v‖2 = M log(q)

∫

X

〈v(x), v(x)〉− dm(x) .
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Define a cocycle βX0 : G0 → HX and a representation spX− : G0 → HX

by the rule

βX0 (ξ)(x) = β0(ξ(x))(4.16)

spX− (ξ)(v)(x) = sp−(ξ(x))v(x)(4.17)

Define an homomorphism of G0 to the motion group ofHX in the ob-
vios way: θ(ξ) = (spX− (ξ), βX0 (ξ)) and hence a representation Ξ = E(spX− , β

X
0 )

of G0 in the space H = EXP(HX) by the rule

(4.18)

Ξ(ξ)(EXP(v)) =

e
(−1

2
‖βX0 (ξ)‖2 − 〈spX− (ξ)v, βX0 (ξ)〉)

· EXP(spX− (ξ)v + βX0 (ξ)) .

Here is an irreducibility criterium for Ξ taken from Ismagilov [I]:

Theorem 4.1. Let Y be a complex Hilbert space and m a probability
measure on X with no atoms. Set Y X = L2(X, dm) ⊗ Y . Assign to
almost every x [m] a unitary representation Ux of G into Y and a
cocycle βx : G→ Y in such a way that

• the functions (x, g) → 〈Ux(g)h1, h2〉 and (x, g) → 〈βx(g), h〉 are
continuous in g for almost all fixed x and measurable in x for
all fixed g ∈ G.

• There exists a continuous positive function w : G → R+ such
that

‖βx(g)‖ ≤ w(g) a.e.[m]

Define a representation UX and a cocycle βX of the group G0 into Y X

by the rule

(4.19) UX(ξ)(v) = Ux(ξ(x))v(x) βX(ξ)(v) = βx(ξ(x))v(x) .

Assume that a.e.[m]

• The representations Ux : G → Y do not contain the trivial
representation .

• The cocycle βx : G→ Y is absolutely nontrivial.

Then the representation E(UX , βX) of G0 in the Fock space EXP(Y X)
is irreducible.

Theorem 4.2. The representation Ξ of G0 is irreducible.

Proof. It is clear from (4.13) that the function g → ‖β0(g)‖ is itself
continuous from Aut(T ) to R. Since sp− is an infinite dimentional
irreducible representation of Aut(T ) we may apply now the Theorem
of Ismagilov taking Y = HM , Ux = sp− and βx = β0 for all x. �
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Remark 4.3. We observe that, while the cocycle β0(g) is absolutely
non trivial, the same is not true for Haagerup’s cocycle βh(g) as it is
showed in [KuV2]: βh(g) is trivial when restricted to ℓ2(V).

5. Equivalence of H and EXP(HX)

We are now given two distinct irreducible representations of G0. The
positive definite function Ψ corresponding to the vacuum vector in
EXP(HX) will play a central role. Taking (4.15) and (4.18) into ac-
count we get get

Ψ(ξ) = 〈Ξ(ξ) EXP0,EXP 0〉exp = q−M
R

X
1

2
‖β0(ξ(x))‖2dm(x)(5.1)

Theorem 5.1. The representation (Π,H) is equivalent to (Ξ,EXP(HX)).

Proof. In order to show that the two representations are equivalent it
is enough to construct a nonzero G0 map from one space to the other.
Choose z with 0 < z < 1

2
and consider the positive definite function on

Aut(T )
(5.2)

ψz(g) = q
−
z

2
‖β0(g)‖2

= q−zd(o, g · o) + 2zq(1 − q−d(o,g·o))/(q2 − 1)

Use (4.13) and (3.4) to get

ψz(g) ≥ q−zd(o, g · o) =
1

c(z)
φz(g) + −c(1 − z)

c(z)
)q(z−1)d(o,g·o)(5.3)

where φz(g) is the spherical function corresponding to the complemen-
tary series representation with parameter z.

Since c(z) is positive while c(1 − z) is negative when 0 < z < 1
2

we
also get

(5.4) ψz(g) ≥ q−zd(o, g · o) ≥ φz(g)

c(z)

Fix a partition ρ of X, say X = A1 ∪ · · · ∪ An. Let Lρ denote
the closed linear span, in EXP(HX), of the vectors Ξ(ξ) EXP(0) with
ξ ∈ Gρ. Write zi = M ·m(Ai) and gi = ξ(xi) for xi ∈ Ai. From (5.4)
and (5.3) we get
(5.5)
φz1(g1) . . . φz1(gn)

c(z1) . . . c(zn)
≤ ψz1(g1) . . . ψzn

(gn) = q−M
1

2

Pn
i=1

m(Ai)‖β0(gi)‖
2

=

q−M
1

2

R

X
‖β0(ξ(x))‖2dm(x) .
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Set

(5.6) 1zi
=

1
√

c(zi)
1 1 ∈ Hzi

and let

(5.7) 1ρ = ⊗n
i=11zi

.

The above inequality (5.5) becomes

(5.8) 〈πρ(ξ)1ρ, 1ρ〉 ≤ 〈Ξ(ξ) EXP(0),EXP(0)〉exp = Ψ(ξ)

So that the state Ψ(ξ) dominates the positive definite function 〈πρ(ξ)1ρ, 1ρ〉
and hence the map Tρ : Lρ → Hρ defined by

(5.9) Tρ(EXP(0)) = (1ρ)

extends by linearity to a unitary equivalence between Hρ and a sub-
representation of Lρ.

Assume now that ρ1 > ρ is obtained from ρ by splitting a set, say A1

into two pieces A1
1 and A2

1. Let z1
1 = M ·m(A1

1) and z2
1 = M ·m(A2

1),
so that z1 = z1

1 + z2
1 . Construct Lρ1 , 1ρ1 and Tρ1 as before. By Remark

2.3 the injection of Hρ into Hρ1 is defined by

(5.10) jρ1,ρ(1z1 ⊗ 1z2 . . .1zn
) =

√

c(z1)

c(z1
1)c(z

2
1)
v1,2 ⊗ 1z2 . . .1zn

where v1,2 is the unique positive vector in Hz1
1
⊗Hz2

1
such that

πz1
1
⊗ πz1

2
(g)(1 ⊗ 1) = πz1(g)

√
c(z1)

c(z1
1
)c(z2

1
)
v1,2.

Let Iρ1,ρ, jρ1,ρ denote respectively the inclusion of Lρ into Lρ1 , of Hρ

into Hρ1 . Consider the Gρ action on all these spaces: by the defini-
tion of Tρ(EXP(0)) and the above properties of the map jρ1,ρ we may
conclude that, for every ξ ∈ Gρ the following diagram is commutative:

(5.11)

Lρ
Iρ1,ρ
−→ Lρ1

↓ Tρ Tρ1 ↓
Hρ

jρ1,ρ
−→ Hρ1

A repeated application of the above argument shows that there is
an inclusion of the direct limit lim→Hρ into EXP(HX). Since both
representations are irreducible for G0 this inclusion is an equivalence.

�
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6. Extensions of Ξ

6.1. The group G of bounded measurable currents. Fix any finite
subtree Y and let

(6.1) KY = {g ∈ Aut(T ) : g · v = v ∀v ∈ Y} .
Let us recall from the second section that compact subgroups of

Aut(T ) are obtained by taking finite unions and intersections of sub-
groups of the type KY as Y varies among all finite subtrees. Moreover,
for any such KY , Aut(T ) is the union of a countable number of KY

cosets. Let

(6.2) XN = {v ∈ T : d(v, o) ≤ N}
and

(6.3) KN = {g ∈ Aut(T ) : g · v = v ∀v ∈ XN} .
A map F : X → Aut(T ) is said to be bounded if there exists

an integer N and a finite number of cosets g0KN . . . grKN such that
F (X) ⊆ ∪ri=0giKN . Measurability for F is defined as usual.

For every g1, g2 ∈ Aut(T ): define

∆(g1, g2) = d(g1 · o, g2 · o) +
∞∑

n=1

∑

d(o,v)=n

d(g1 · v, g2 · v)
(q + 1)n[1 + d(g1 · v, g2 · v)]

where d(v′, v) is the tree distance between the vertices v′ and v. It is
clear that ∆ is a left invariant metric on Aut(T ) generating the topolgy
described in Section 2 .

For ξ1, ξ2 in G0 let

(6.4) δ(ξ1, ξ2) = sup
x∈X

∆(ξ1(x), ξ2(x)) .

The group of bounded measurable currents G is the completion of
G0 with respect to the metric defined by (6.4): this will be clear from
standard arguments concerning uniform convergence and the following

Proposition 6.1. Let F be a measurable bounded Aut(T )-valued func-
tion on X and ǫ > 0. There exists ξ ∈ G0 such that δ(F, ξ) < ǫ.

Proof. Choose N big enough so that 1/2(q + 1)N < ǫ. Since Kj+1 is a
subgroup of finite index in Kj , we may assume that the immage of F
is contained in a finite union of cosets giKN . Set Ai = F−1(giKN ) and
let ξ be the function identically equal to gi on each Ai. One has

(6.5) F (x) · v = gi · v = ξ(x) · v ∀x ∈ Ai and v ∈ XN
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and hence
(6.6)

∆(F (x), ξ(x)) ≤ 1

(q + 1)N

∞∑

n=1

∑

d(o,v)=N+n

d(F (x) · v, ξ(x) · v)
(q + 1)n[1 + d(F (x) · v, ξ(x) · v)] < ǫ

which implies ∆(F (x), ξ(x)) < ǫ. �

Let us denote by log the logaritm in base q. It is convenient to
introduce the following notation:

(6.7) log(ψz(g)) = −z
2
‖β0(g)‖2 = −zd(o, g · o) +

2qz

q2 − 1
(1− q−d(o,g·o))

so that

(6.8) ψ(g) = ψ1(g) = qlog(ψ1(g)) = q−
1

2
‖β0(g)‖2

.

The following Theorem guarantees that Ξ can be extended to all G:

Theorem 6.2. The positive definte function

(6.9) 〈Ξ(ξ) EXP(0),EXP(0)〉exp = q
−M

2

∫

X

‖β0(ξ(x))‖2dm(x)

can be extended to G.

Proof. Fix F ∈ G: since x → ‖β0(F (x))‖2 is a bounded measurable
function on X it is obvious that the integral

∫

X
‖β0(F (x))‖2dm(x) is

convergent. Since the quantity 2q/(q2 − 1) is always less than 4/3 and
d(o, g · o) is an integer, we have
(6.10)

−d(o, g · o) ≤ log(ψ(g)) ≤ −d(o, g · o) +
4

3
≤ d(o, g · o) if g · o 6= o .

Remembering that log(ψ(g)) = 0 when g · o = o we may write

(6.11) | log(ψ(g))| ≤ d(o, g · o) ≤ ∆(g, e)

Assume now that ξn ∈ G0 is a Cauchy sequence and compute

(6.12)

∣
∣
∣
∣

∫

X

‖β0(ξn(x))‖2dm(x) −
∫

X

‖β0(ξm(x))‖2dm(x)

∣
∣
∣
∣
.



TOTALLY DISCONNECTED CURRENTS 21

We may assume that there exists a finite partition X = ∪Jj=1Aj such
that ξn(x) = gnj and ξm(x) = gmj if x ∈ Aj so that (6.12) becomes:
(6.13)
∣
∣
∣
∣
∣

J∑

j=1

m(Aj)(‖β0(g
n
j )‖2 − ‖β0(g

m
j )‖2)

∣
∣
∣
∣
∣
≤

J∑

j=1

m(Aj)2
∣
∣(log(ψ(gnj )) − log(ψ(gmj ))

∣
∣ =

2

J∑

j=1

m(Aj)

∣
∣
∣
∣
log(

ψ(gnj )

ψ(gmj )
)

∣
∣
∣
∣
.

Assume that d(o, gnj · o) = knj < d(o, gmj · o) = kmj and write

(6.14)
ψ(gnj )

ψ(gmj )
= qk

m
j − knj q

2q(q−k
m
j − q−k

n
j )

q2 − 1

Again, since −1 ≤ 2q
q2−1

(q−k
m
j − q−k

n
j ) < 0 one has

(6.15)

| log(
ψ(gnj )

ψ(gmj )
)| ≤ d(o, gmj ·o)−d(o, gnj ·o) ≤ d(gmj ·o, gnj ·o) ≤ ∆(gmj , g

n
j ) ≤ δ(ξm, ξn) .

Adding up all these quatities we get
(6.16)∣

∣
∣
∣

∫

X

‖β0(ξn(x))‖2dm(x) −
∫

X

‖β0(ξm(x))‖2dm(x)

∣
∣
∣
∣
≤ 2δ(ξn, ξm) .

For F ∈ G, let ξn be a sequence in G0 converging to F with respect to
the metric δ. The above inequality (6.16) shows that

(6.17) Ψ(F ) = lim
n→∞

Ψ(ξn)

is well defined. Since EXP(0) is a cyclic vector for Ξ, standard argu-
ments concerning positive definite functions (see for example Lemma
3.5 of [G-G-V1]) give the result. �

7. The case of PGL(2,Qp)

Measurable currents taking values in a Lie group have been studied
by I.M.Gel’fand, M.I.Graev,A.M.Vershik since 1974. The same authors
are now planning to gather all results known hitherto on this subject
in a forthcoming book. Since PGL(2,Qp) is a group of “Lie type”,
this case will be included in the above mentioned book with plenty
of details. Here we shall only outline how to pass from Aut(T ) to
PGL(2,Qp).

It is well known that PGL(2,Qp) can be embedded in Aut(T ) in
such a way that the maximal compact subgroup PGL(2,Op) becomes
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a closed subgroup of K, the stabilizer of o. Using the description of the
spherical series given in [F-N] it is possible to prove that the spher-
ical series of Aut(T ) restrict to the spherical series of PGL(2,Qp):
this depends on the fact that both can be described only by means
of the action of the group in the boundary Ω. Using the description
given in [KuV2], one can see that for the same reason also the special
representation sp− of Aut(T ) restricts to the special representation
of PGL(2,Qp) (see [F-P] and [C-K]). It should be noticed, however,
that notwithstanding the discrete series of Aut(T ) don’t restrict to the
discrete series of PGL(2,Qp) (see [C-K]) they still give rise to represen-
tations weakly contained in the regular representation of PGL(2,Qp)
and the arguments that we used can be transfered to the latter.
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