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Abstract

The terrestrial biosphere represents a large pool of carbon, whose cycle is governed
by the opposed processes of CO2 uptake (photosynthesis) and release (respiration)
from and to the atmosphere. Considering the role of carbon dioxide in the ob-
served global warming, monitoring, understanding and modeling carbon exchange
of ecosystems is a critical issue in climate change researches. Moreover because
of the multiple implications of vegetation structure dynamics on ecosystem carbon
fluxes, monitoring and modeling plant phenology is also of increasing scientific
interest.

Among terrestrial ecosystem grasslands cover almost 40% of ice-free land sur-
face, nevertheless their role as sources/sinks of atmospheric CO2 is not well clari-
fied.

In this study the eddy covariance method was used to assess CO2 exchange at
an high elevation unmanaged grassland in the North-Western Italian Alps (Aosta
Valley - Torgnon), during three years (2008-2010) of measurements and to evaluate
how environmental factors affect photosynthetic processes.

The seasonal and inter-annual course of net ecosystem CO2 exchange (NEE),
ecosystem respiration (Reco), gross primary production (GPP) and the main meteo-
rological variables was analysed. The three growing seasons had a similar seasonal
dynamic, characterised by a fast rise of photosynthetic activity after snow-melt fol-
lowed by a gradual autumnal decline. Regarding the meteorological variables, only
precipitation, soil water content and snow depth differed markedly among two of
the studied years (2009-2010) compared to other factors which showed only small
differences in restricted time-periods.

To better interpret how weather variables modulate ecosystem processes at mul-
tiple time-scales (day, week, month, year), a quantitative analysis was performed

ix



applying wavelet coherence between time-series of GPP and time-series of different
meteorological factors (air and soil temperature, soil water content and photosyn-
thetically active radiation).

Eddy covariance and meteorological data were combined with proximal sens-
ing measurements to identify links between optical indices, canopy development
and fluxes. In particular a colour index derived from continuous digital imagery
(i.e. Greenness Index, (GI), based on RGB channels) and indices derived from an
HyperSpectral System (Hyperspectral Irradiometer, HSI) were used as input to sim-
ulate GPP, based on a light use efficiency (LUE) model. Results showed that a LUE
model driven by optical indices and meteorological variables is able to describe the
GPP trend in the two years of study. In particular the use of different model formu-
lations provided insights on the role of the main meteorological factors controlling
grassland photosynthesis. The comprehension of these relationships at stand level
is essential for extrapolating such information at different spatial scales.
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1 Introduction

1.1 Framework

Terrestrial ecosystems and the climate system are closely coupled, particularly by
cycling of carbon between vegetation, soils and the atmosphere. (Cao and Wood-
ward, 1998). Photosynthesis is the mechanism by which terrestrial ecosystems gain
carbon dioxide (CO2) from the atmosphere, contributing in this way to the terres-
trial annual uptake of 120 GtC per year (Solomon, 2007). A fraction of carbon
fixed by gross primary production (GPP) of vegetated terrestrial surface is released
via ecosystem respiration (Reco) back to the atmosphere. The small imbalance
between these two large processes is termed net ecosystem exchange (NEE) and
shows a strong diurnal, seasonal and annual variability (Valentini et al., 2000).

Human activities make a significant contribution to the global carbon cycle (e.g.
fossil fuels combustion, cement production, land use changes, ...) and cause at-
mospheric CO2 concentration to increase exponentially since the beginning of the
Industrial Revolution (Chapin et al., 2002). Since CO2 is one of the major re-
sponsible of the observed global warming (Solomon, 2007), particular attention of
the scientific community has been recently addressed to assess the role of different
ecosystems on the global carbon and water cycles (Baldocchi, 2008) and how com-
ponent fluxes are controlled by biotic, abiotic and management factors (Wohlfahrt
et al., 2008a). In this framework a better understanding of the processes that reg-
ulate the interactions between environment and organisms, at multiple spatial and
temporal scale, is the basis to increase confidence in predictions of ecosystem re-
sponses and feedbacks to recent and future global changes.

In the past years substantial attention has been addressed to the carbon seques-

1



1. Introduction

tration of forests (Valentini et al., 2000; Misson et al., 2007), while data on carbon
exchanges of non-forest ecosystems and in particular on natural (or semi natural)
grasslands remained generally poor represented (Cernusca et al., 2008). As grass-
lands represent about 40% of the global terrestrial ice-free surface (White et al.,
2000) an increasing number of research are currently focusing on the carbon ex-
change related processes of grassland ecosystems (e.g. Flanagan et al. 2002; Xu
and Baldocchi 2004; Soussana et al. 2007). In particular the assessment of carbon
exchange in mountain grasslands has recently received more attention (Wohlfahrt
et al., 2003; Rogiers et al., 2005; Wohlfahrt et al., 2008a; Zeeman et al., 2010), but
a complete understanding of ecosystem processes in high elevation alpine sites is
still lacking.

Moreover, physiological activities of plants are strictly related to their phenol-
ogy (i.e. the timing of recurrent biological events and the causes of their temporal
change, Lieth 1974). As a consequence, since the state of canopy development has
a great control on spatial and temporal patterns of the vegetation/atmosphere ex-
change of carbon and water (Richardson et al., 2007b), monitoring and modeling
vegetation phenological cycle became a key issue in the analysis of the interactions
between climate and ecosystems (Baldocchi and Wilson, 2001).

Mountain regions are expected to be particularly influenced by future climate
change with increasing temperature, change in precipitation patterns and duration
of snow cover. Environmental drivers that affect ecosystem processes are numer-
ous and occur over a wide range of temporal and spatial scales. As a consequence
the evaluation of the impact of climate change on ecosystems requires long-term
series of data and the integration of a variety of observations. The wide distribution
of alpine ecosystems at all latitudes makes these cold environments important re-
sources for monitoring and understanding climate change effects on a global scale
and long-term alpine research sites represent invaluable reference points for global
change researches. (Körner, 2003).

2



1. Introduction

1.1.1 Current approaches in carbon cycle studies

1.1.1.1 Micrometeorological flux measurements

Carbon dioxide exchange between the ecosystem and the atmosphere can be reli-
ably quantified using the eddy covariance method (Baldocchi et al., 1988; Aubinet
et al., 2000; Baldocchi, 2003). Eddy covariance is a micrometeorological technique
that assesses gas exchanges across the biosphere/atmosphere interface by measuring
the covariance between vertical wind velocity and gas mixing ratio. This technique
provides accurate and continuous measurements of CO2 net ecosystem exchange
(NEE) at an appropriate (ecosystem) spatial scale. From these measurements, the
other flux components of the carbon cycle, GPP and Reco can be derived through
modeling approaches (Reichstein et al., 2005; Wohlfahrt et al., 2005b,a; Lasslop
et al., 2010). A worldwide network of micrometeorological stations (FluxNet) has
been recently established (Baldocchi et al., 2001a) in order to evaluate carbon ex-
change (water vapour and energy) dynamics in different ecosystems and create an
integrated database for synthesis and modeling. A wider description of the method
is given in chapter 2.

1.1.1.2 Remote sensing

A current interest of the scientific community is focused on the creation of a con-
sistent global dataset of primary production estimates (Heinsch et al., 2006). Eddy
covariance measurements have greatly improved our understanding of carbon cy-
cle over the past decades but tower-based estimates of primary production are re-
stricted to spatially discrete observations. Remote Sensing techniques can be used
to provide spatially-distributed, estimates of carbon cycle related processes. Current
strategies based on optical Remote Sensing mainly rely on spectral reflectance prop-
erties of the vegetated terrestrial surface. Data offered by several Earth observing
systems provide informations on structural or biochemical vegetation properties,
that can be used to derive estimates of vegetation structure, phenology and potential
photosynthetic rates. Moreover photosynthesis, expressed as Gross Primary Pro-
duction, can be estimated by means of Remote Sensing based GPP models (chapter
2).
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1. Introduction

1.1.1.3 Monitoring phenology

Phenology is defined as the study of the timing of periodic events in organism life-
cycle and the causes of their temporal change (Lieth, 1974). Several aspects of vege-
tation phenology are considered important indicator of biological impacts of climate
change (Menzel et al., 2006; Solomon, 2007). Inter-annual variations in the dates of
bud-burst, leaf unfolding, leaf yellowing and growing season length are correlated
with fluctuations in meteorological variables. Furthermore, phenology has multiple
implications on the ecosystem carbon, water and energy fluxes. For these reasons,
different methods to observe and model vegetation phenology and to quantify the
effect that phenological changes could have on carbon sequestration have been de-
veloped. Phenological events can be observed on ground or extracted from remotely
sensed data. Traditional field observations of specific phases of plant development
can provide detailed information, especially to characterize species specific pheno-
logical response to inter-annual changes in temperature. Nevertheless this kind of
data is affected by a poor temporal and spatial resolution and by the subjectivity of
the observer. In this context, remote sensing data can allow the estimation of phe-
nological variables from local to global scale. In the last two decades many studies
have demonstrated the potential of multi-temporal satellite remote sensing data to
characterize seasonal patterns of vegetation dynamics at a medium or coarse spatial
and temporal resolution (White et al., 2009). Recent studies (Sims et al., 2006) high-
lighted the potential of proximal remote sensing methods to quantify seasonal pat-
terns of vegetation development at ecosystem level with high temporal resolution.
In the last years, the use of repeated digital images collected by commercial webcam
has been demonstrated useful for phenological monitoring because it allows the col-
lection of automated observations of canopy structure at high temporal frequency
in a very simple and low cost way (Richardson et al., 2007b, 2009a; Migliavacca
et al., 2011a). An important step towards the standardisation of this approach is rep-
resented by the north-american webcam network, PhenoCam, that has been initiated
in order to provide automated and continued proximal sensing of canopy phenology
across different ecosystems and climate zones. Collected data also contribute to ef-
forts in which remote sensing is used to scale up intensively monitored sites to more
extensive spatial domains (http://klima.sr.unh.edu/index.html). Moreover informa-
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1. Introduction

tion on vegetation development and functioning, at the scale of ecosystem, can
be obtained with automatic tower-based spectral reflectance measurements (Hilker
et al., 2008) through the evaluation of indices related to the vegetation greenness
(e.g. NDVI, Rouse et al. 1974, MTCI, Dash and Curran 2004). The simultaneous
acquisition of vegetation indices and eddy covariance measurements is a valuable
approach to a better understanding of the relation between phenology, carbon se-
questration and optical signals. The use of remote as opposed to proximal spectral
sensors for photosynthesis estimation may become a powerful tool in better under-
standing the spatio-temporal variations of productivity on a broader scale and scale
up local carbon estimates to regional and global level.
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1.2 Motivation and Objectives

This study aims at measuring CO2 exchange dynamics and canopy development
of an unmanaged subalpine grassland, by means of eddy covariance measurements
integrated with proximal sensing observations and models.

This research is motivated by the recent attention of the scientific community on
the role of diverse ecosystems on global carbon cycle and on the understanding of
their feedbacks to recent and future climate changes.

The research is carried out in Aosta Valley, a small mountain region of North-
west Italy, characterized by an alpine climate (i.e. cold winter, mild summer, long
snow season). Managed, grazed, abandoned and unmanaged grasslands cover an
high percentage ( 30-40%) of the regional land surface, however no studies have
never been accomplished on carbon exchange dynamics of these ecosystems at the
time of this study and are quite rare in the European Alps.

Specific objectives concern:

1. the investigation of the magnitude, direction and variability of NEE and its
components GPP and Reco, during three years of eddy covariance measure-
ments in a poorly investigated ecosystem;

2. the use of a digital camera as a proximal sensing approach to monitor canopy
phenology in a continuous and automated way in order to evaluate the rela-
tionship between ecosystem function and structure;

3. the assessment of the role of environmental factors on carbon fluxes at multi-
ple temporal scales;

4. the application of remote sensing based models to evaluate the use of optical
vegetation indices in the estimation of seasonal GPP dynamics.

Structure of the dissertation

• The dissertation begins in chapter 2: some theoretical topics on plant physiol-
ogy and on the techniques used in this study are briefly described to introduce
issues discussed in the specific sections.
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1. Introduction

• In chapter 3 general informations on the study site are given, followed by
the description of instruments installation and set-up. The methods for eddy
covariance and digital camera data processing are then described in detail.

• In chapter 4 results of this research are presented, organised in three major
parts: the assessment of the carbon balance dynamics and phenology of the
grassland, the evaluation of the timing of environmental influences over car-
bon exchange and the modeling of GPP at ecosystem level on the basis of
optical vegetation indices.

• In chapter 5 results presented in chapter 4, are discussed.
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This work was supported by the PhenoALP project, an Interreg project co-funded
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2 SCIENTIFIC BACKGROUND

2.1 Ecosystem Carbon Balance

By definition, the carbon balance of an ecosystem at any point in time is the differ-
ence between its carbon gains and losses (Heimann and Reichstein, 2008). Carbon
enters the ecosystem through photosynthesis, the processes by which autotrophs
(plants and photosynthetic bacteria) produce their own organic compounds; most
of this carbon returns in the atmosphere by autotrophic and heterotrophic (animals,
fungi and microorgnanism) respiration (others losses of carbon could be as volatile
organic compounds, methane or dissolved carbon).

The metabolic processes of organisms hence constitute the engine that drives the
global carbon cycle on time scales of seconds (e.g., photosynthetic rates, stomatal
conductanece) to centuries (large-scale climatic changes) (Chapin et al., 2002). The
majors pools of carbon are: the atmosphere, oceans, vegetation and soil, sediments
and rocks. Within these, while the atmosphere, mainly composed of CO2, is the
smallest (but most dynamic) pool, the terrestrial biosphere is the largest biological
reservoir of carbon (Chapin et al., 2002).

Particular attention of ecosystem science studies is on the the interactions be-
tween organisms and the environment and on the resulting feedbacks. For conven-
tion, a positive feedbacks is when an interaction trigger to an increase of the envi-
ronmental change, and a negative feedbacks is when interactions reduce changes.

A better knowledge of controls over the interaction and feedbacks between ter-
restrial ecosystem processes and the atmosphere is important to understand how the
Earth System will respond to current trends of increasing temperature and atmo-
spheric CO2.

9
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Following some topics on photosynthesis and respiration are briefly described to
introduce issues discussed in the specific sections.

2.1.1 Photosynthesis

Photosynthesis is the physiological process by which plants (and other autotrophs)
synthesize complex molecules as carbohydrates and produce oxygen (O2), starting
from simple molecules as carbon dioxide (CO2) and water and using light as source
of energy. The description of photosynthesis reactions presented in this section is
mainly based on the textbook of Taiz and Zeiger (2010). The overall reaction of
photosynthesis can be summarized as:

CO2 +H2O
light−−→ (CH2O)+O2 (2.1)

The wide and complex series of photosynthesis reactions that ends with the reduc-
tion of CO2 to organic compound, is traditionally divided into two parts: the reac-
tions that require the utilization of light and the reactions of carbon fixation (light
reactions and carbon reactions, respectively, in figure 2.1) .

1. The light-dependent reactions are the first stage of photosynthesis and in-
volve photosynthetic pigments, chlorophylls and carotenoids to capture and
store energy from sunlight. During this process, light energy is converted into
chemical energy, in the form of molecules of ATP and NADPH and water
is oxidized with production of O2. Solar radiation active in photochemical
processes (Photosynthetically Active Radiation, PAR) includes wavelengths
of visible region of the solar spectrum, approximately between 400 and 700
nm. In higher plants, light-dependent reactions take place on the internal
membranes (thylakoid) inside the photosynthetic organelles, the chloroplasts,
where specialized molecular complexes (photosystems) catalyze the light-
dependent reactions through a series of redox reactions, called on the whole,
electron transport chain (ETC).

2. Strictly coupled with the production of energy in the form of ATP and NADPH
is the next process of photosynthesis, Calvin cycle, during which CO2 is fixed
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into organic compounds and reduced into carbohydrates. This step of photo-
synthesis is finely regulated by different cell enzymes in order that energy
and all the intermediates needed for carbon fixation are available and that the
mechanism is turned off in the dark. The chemical reactions involved, that
take place in the stroma of the chloroplast outside of the internal membranes,
can be considered as divided into three phases collectively: carboxylation,
reduction reactions, and regeneration. Temporal and spatial differences in
the metabolic path of this process exist among species and will be briefly
described hereinafter, nevertheless the basic mechanism is the same.

Figure 2.1: Light reactions and carbon reactions of photosynthesis (from Taiz and Zeiger
(2010) modified).

In plants with a C3 metabolism,

• carbon dioxide coming from the atmosphere is enzymatically attached
to a 5-carbon acceptor molecule, the ribulose-1,5-bisphosphate (RuBP),
by the enzyme RuBP carboxylase/oxygenase (Rubisco); two of 3-carbon
intermediates (3-phosphoglyceric acid, PGA) are generated;

• the molecules of PGA are reduced to form molecules of the carbohy-
drate glyceraldehyde 3-phosphate (G3P), a triose phosphate. This reac-
tion uses the energy from ATP and NADPH generated photochemically.
A portion of the triose phosphates generated is converted into storage
forms of energy and carbon: sucrose and amide, while a part is used in
the reaction of regeneration;

• in order for the process of carbon fixation to continue (and so new CO2
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molecules entering the chloroplasts to be continuously fixed), the cycle
closes with the regeneration of the first acceptor RuBP, from molecules
of G3P.

The enzyme Rubisco has double activity of carboxylase/oxygenase, that is it
has an alternatively affinity for CO2 or O2 within the same active site, de-
pending on the relative cell concentrations of the two gases. In the case that
oxygenation of the first acceptor of the cycle(RuBP) take place, carbon diox-
ide is released from the cell, rather than fixed, and photosynthetic efficiency
is reduced; This process is called photorespiration. In optimal environmen-
tal conditions, CO2 concentration in the cell is higher than O2 and Rubisco
shows a greater affinity for CO2 molecules. As temperature rises, CO2 con-
centration in the cell declines quicker than O2, and photorespiration prevails
on photosynthesis. In some species, commonly typical of arid and hot en-
vironments, different paths in the carbon fixation reactions protect the plant
from an excessive photorespiration,

• in C4 species, the location of CO2 absorption and carbon-fixation is spa-
tially split. Carbon dioxide is temporary fixed to form a 4-carbon inter-
mediate and transferred into particular cells (bundle sheath) where it is
released and enters in the calvin cycle; the possibility to highly concen-
trate the CO2 into these cells favours photosynthesis against photorespi-
ration;

• in CAM (Crassulacean Acid Metabolism) species, the location of CO2

absorption and carbon-fixation is temporally split. CAM plants open
stomata during the night, when air temperature is lower and relative
humidity is higher; CO2 absorbed is accumulated into the vacuole of
the cell. During the day, when stomata are closed, CO2 in the form
of 4-carbon intermediate is transferred in the chloroplast end enters the
Calvin cycle.

In summary, leaf photosynthesis depends on the capacity of light utilization, the
diffusion of CO2 from the atmosphere to the site of carboxilation, the formation of
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assimilates and the regeneration of photosynthetic substrates. These steps in turn
depend on the tissue developmental stage, the availability of water and nutrients
and environmental factors, which finally influence the overall plant (or canopy)
photosynthetic rate.

2.1.2 Respiration

Plant respiration is the process by which energy stored in the form of carbohydrates
trough photosynthesis is released and used for maintenance and development of
metabolic activities. During respiration carbon compounds are oxidized with the
liberation of CO2 and the production of ATP. The general reaction of respiration
can be summarized as:

(CH2O)+O2 −→ CO2 +H2O+ energy (2.2)

Respiration reactions are divided in three main steps: glycolysis, citric acid cycle,
and oxidative phosphorylation.

• During glycolysis, in the cytoplasm of the cell, a 6-carbon molecule is broken
into pyruvic acid, a 3-carbon molecule, with production of a small amount of
energy (ATP) and reducing power (NADH);

• pyruvate is subsequently oxidized trough the citric acid cycle that takes place
in the matrix of the mitochondrion, in the process molecules of NADH and
FADH2 are produced;

• during the oxidative phosphorylation process electrons are transferred along
an electron transport chain, in the inner of the two mitochondrial membranes.
This system transfers electrons from NADH to oxygen, releasing a large
amount of free energy in the form of ATP.

At the ecosystem scale, respiration consists of both plant respiration and heterotrophic
respiration from non-photosynthetic organisms (microorganisms and animals). More-
over ecosystem respiration can be partitioned into aboveground respiration and be-
lowground, i.e. soil, respiration. The latter constitutes one of the major flux of
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carbon between terrestrial ecosystems and the atmosphere (Bahn et al., 2008) and
is composed by microbial decomposition of soil organic matter and by plant below-
ground (root) respiration.

Both respiration components (autotrophic and heterotrophic) are strictly related
to the respective substrate availability (photosynthates, litter and soil organic mat-
ter), providing a direct link between respiration and photosynthesis (Chapin et al.,
2002; Wohlfahrt et al., 2008a; Migliavacca et al., 2011b).

2.1.3 Definition of ecosystem carbon exchange terms

When the processes of carbon gain and loss are considered at the ecosystem scale
the following terms are used:
Gross Primary Production (GPP): is the gross uptake of carbon by photosynthe-
sis of all plants of the ecosystem
Ecosystem Respiration (Reco): is the combined autotrophic respiration by plants
(Ra), and heterotrophic respiration by animals and microorganisms (Rh).
Net Ecosystem Exchange (NEE): is the net exchange of CO2 between the ecosys-
tem and the atmosphere, resulting from the balance between the assimilatory and
respiratory processes.

NEE is the small net difference between two larger fluxes: GPP and Reco. Un-
der favourable conditions, the net ecosystem flux is dominated by photosynthesis
during daytime, and by respiration at night and, at temperate and high latitude (or
in deciduous ecosystems) in non-vegetative periods. In detail, during the growing
season (the period when vegetation is photosynthetically active), NEE is negative
indicating that photosynthesis exceeds respiration, while during period of inactivity
of vegetation, photosynthesis is low or absent, and NEE has positive values indicat-
ing net loss of carbon due to respiratory processes (mainly heterotrophic).

As ecosystems continuously absorb and release CO2 by and to the atmosphere,
the analysis and modelling of the CO2 quantities described above are used to define
whether a system is a net source or sink of carbon at different temporal scales and to
understand the effects that biological and physical controls have on CO2 absorption,
sequestration, and release activities.
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2.1.4 Environmental controls

In natural condition, plants continuously respond to different environmental drivers
that can in turn regulate their metabolic activities (mainly photosynthesis and respi-
ration). When one of these abiotic factors assumes values out of the optimal range
for plant life and as a consequence it exerts a disadvantageous influence on the
whole plant functioning, it becomes a stress factor.

Environmental factors that can limit or stress vegetation are numerous and have
different influences on different metabolic paths; among these, light, temperature,
water availability, nutrient availability and atmospheric gas concentration generally
exert the greatest role. Considering the alpine and subalpine vegetation, winter snow
cover depth and duration are of great importance; the presence of snow on ground
fully limits the length of the growing season in herbaceous species and has a great
influence on photosynthetic activity for both deciduous and evergreen tree species
(Monson et al., 2005). Despite its adverse effects, snow has an important protec-
tive role for example from exposure to low air and soil temperature extremes and
from winter dessication (Körner, 2003). Furthermore, during spring recovery, when
others environmental conditions are favourable for plant development (temperature,
photoperiod..) snow melt is also a great source of water and nutrients accumulated
over the winter.

Several studies are focused to understand the role of environmental factors on
photosynthesis and respiration, and on the whole carbon exchange of ecosystems.
Nevertheless, because this investigation involves the consideration of complex mech-
anisms as the functioning of photosynthetic light-harvesting system, carbon fixation
and allocation, substrate availability for respiration, biotic interactions...the distinc-
tion of the role of a single driver, is often complex. In particular, complications
arise because of several controlling mechanisms that interact over multiple tempo-
ral scales from second to years (Stoy et al., 2009), and act on different and complex
biological processes (photosynthesis, autotrophic and heterotrophic respiration..)
(Vargas et al., 2011). Fast changes in sunlight influence short-term (less than 1 h)
variations in photosynthesis, stomatal conductance, and respiration. Diel rhythms in
PAR, air and soil temperature lead the daily carbon and water exchanges. At weekly
scale changes in weather and precipitation pulses induce fluctuations in photosyn-
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thesis and respiration. On monthly to seasonal times scales, changes in phenology,
photoperiod, soil water balance and temperature influence the ecosystem processes.
Climatic changes act on inter-annual, switching the timing of phenological events
(Baldocchi et al., 2001b).

2.2 Eddy Covariance method

In this section a brief introduction to the method employed to evaluate gas exchange
of the ecosystem, i. e. the eddy covariance technique, is given. For a more com-
plete and detailed review of eddy covariance theory, refer to the wide available
literature (e.g., Baldocchi et al. 1988; Goulden et al. 1996; Aubinet et al. 2000;
Massman and Lee 2002; Baldocchi 2003; Foken 2008) The eddy covariance tech-
nique is a micrometeorological method used to evaluate gas exchange across the
interface between the atmosphere and the biosphere by measuring the covariance
between vertical wind velocity and gas mixing ratio (Baldocchi et al., 1988).

During past decades the eddy covariance method has emerged as one of the most
direct and reliable way to measure fluxes of heat, water, CO2 and other trace gases in
different ecosystems. It is considered a suitable method for plant physiology stud-
ies at the whole-ecosystem scale and for the analysis of the role of environmental
drivers on ecosystem functioning. (Baldocchi, 2003).

In the past years, regional, national and international networks (e.g., FluxNet,
AmeriFlux, ICOS, CarboEurope...), are born and collect flux data measured with
eddy covariance coming from different ecosystems. Flux networks allow important
activities as data synthesis and modelling, intercomparison between sites, evalua-
tion of ecological topics and are involved to unify the procedures of eddy covariance
flux calculations. Currently, over 500 eddy covariance sites are present worldwide
(http://www.fluxnet.ornl.gov/).

Despite other methods exist, as cuvette and chambers, to measure carbon dioxide
exchange of vegetation, eddy covariance presents remarkable advantages, overall
on temporal and spatial basis: the system can perform direct estimates of the net ex-
change of CO2 at a very high temporal resolution and permits the integration over
a wide range of time scales from hours to years; it is a scale-appropriate method
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because it considers the whole ecosystem and the measured flux represents the in-
tegrated value of the fluxes between the atmosphere and the ecosystem of an area
from few meters to several kilometres; the instrumentation employed does not alter
the environment analysed (Baldocchi, 2003).

Nevertheless eddy covariance method requires some specific assumptions to be
applied correctly: the terrain is flat and uniform, measurements at a point represent
an upwind area, flux is fully turbulent, air density fluctuations, flow divergence are
negligible, the environmental conditions are steady and the vegetation type under
study extends uniform upwind for a wide area. The non-complete respect of these
assumptions and/or different kind of instrumental problems introduce errors, more-
over many of the eddy covariance measurements sites are on undulating or gently
sloping terrain, as this is where native vegetation exists (Baldocchi et al., 2001a).
Despite the disadvantages, a number of standardised procedures applied at different
steps of the workflow of eddy covariance measurements serve to minimize or avoid
errors (Burba and Anderson, 2010).

2.2.1 Eddy covariance theory

Eddy covariance assesses the turbulent fluxes in the lowest part of the atmosphere,
i.e. within the planet boundary layer (PBL), at the interface between the biosphere
and the atmosphere. PBL contains turbulent motions of upward and downward
moving air called eddies, each characterised by a specific temperature, concentra-
tion of water vapour and gases such as CO2. The eddy covariance instrumentation
samples these motions to determine the difference between the amount of mass and
energy that move downwards to the biosphere and upwards to the atmosphere, i.e.
the net flux. (figure 2.2).
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Figure 2.2: Exemplification of eddy flux at a single point (from Burba and Anderson (2010)
modified). At a given instant (time 1), eddy number 1 moves air parcel c1 downward with
the speed w1. At the next instant (time 2) at the same point, eddy number 2 moves air parcel
c2 upward with speed w2. Each air parcel has its own characteristics, such as gas con-
centration, temperature,humidity, etc. the eddy covariance samples how many molecules of
gas go down to the biosphere with downward wind at time 1 and how many go up to the
atmosphere with upward wind in time 2.

In mathematical terms eddy flux is computed as the covariance between the in-
stantaneous deviation in vertical wind speed (w’) from its mean value (w) and the
instantaneous deviation in gas mixing ratio (c’), from its mean value (c) and multi-
plied by mean air density; the vertical flux can be expressed by the following general
equation (Baldocchi, 2003):

F = ρa′ w′c′ (2.3)

where overbar denotes temporal averaging (e.g. half-hour or hour), the prime de-
notes the deviation from the mean, ρa, the air density, w and c vertical wind speed
and gas concentration respectively. Behind this final equation of flux, several math-
ematical computations (including Reynolds decomposition) and assumptions (air
density fluctuations, divergence/convergence of turbulence flux are considered neg-
ligible) are involved (see Burba and Anderson 2010).

When the focus of the study is to assess the carbon exchange of ecosystem the
measured gas is CO2 and the turbulent measured flux coincides with term NEE that
represents the net difference between the photosynthetic CO2 assimilation by plants
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and respiratory CO2 release by both autotrophs and heterotrophs. For convention
when the net flux is towards the vegetation, indicating net uptake of CO2 by plants,
NEE has negative sign, when the net flux is away from the surface, indicating release
to the atmosphere, NEE has positive sign.

The net CO2 flux can also be expressed as:

−NEE = GPP−Reco (2.4)

As eddy covariance system computes the net flux of CO2, the other components
of the carbon cycle, i.e. GPP and Reco, could be derived trough modelling tech-
niques. At present different flux partitioning approach exist (Reichstein et al., 2005;
Wohlfahrt et al., 2005b,a) and will be described in the Matherials and Methods
chapter (3).

2.2.2 Eddy covariance instrumentation

Common eddy covariance instrumentation is composed by a 3-dimensional (3-D)
sonic anemometer for the measurement of wind speed in the three components (w,
u, v) and an infra-red gas-analyser (IRGA) to evaluate atmospheric mixing ratios
of CO2 and H2O (or another gas of interest). Instruments are mounted on a tower
above the vegetation, at an height that depends on site characteristics (height of the
vegetation, extent of the fetch, range of wind velocity and frequency response of
the instruments). The turbulent up and down motions occur in part at very small
temporal scales and in part at larger ones, for this reason eddy covariance requires
sophisticated instrumentation to capture these fluctuations. In the last years several
instrument models to perform measurements with very high frequencies such as 10
or 20 Hz have been developed, and are employed worldwide. An example of eddy
covariance typical configuration is presented in figure 2.3.

While differences in the main functioning of 3-D sonic anemometers are not sub-
stantial, two different functional modalities exist for IRGA: closed-path system and
open-path system. In closed-path systems air is actively pumped to the sample cell
through a tube, while open-path gas-analyser assesses “in situ” free air. Both have
advantages and disadvantages, and are generally more or less suitable to different
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Figure 2.3: Example of an Eddy Covariance installation, composed by a 3-D sonic
anemometer (CSAT3, Campbell Scientific, Inc.) and an open-path IRGA (LI-7500, LI-COR
, Inc., Lincoln, NE, USA)

environmental conditions.
Open-path sensors require low power supply, don’t have pump and tube and are

suitable for harsh environments, on the other hand, they suffer of loss of data when
some environmental conditions such as precipitation and snow, cover or make dirty
the sensor window. Open-path sensors do not measure directly CO2 and H2O mix-
ing ratios but their densities; as atmospheric gas densities could be influenced by
fluctuations in pressure, temperature and humidity that generate expansion and con-
traction of air volume, corrections (Webb et al. 1980, WPL) to compensate these
effects on measured fluxes are required.

Closed-path analysers can output directly gas mixing ratios, making density cor-
rections (WPL) less important, they don’t suffer of data loss due to precipitation
and icing but have an high power requirement and are affected by CO2/H2O signal
tubing attenuation.

2.3 GPP modeling

Photosynthesis can be estimated by different modelling approaches (Collatz et al.,
1991; Cox et al., 1998; Running and Hunt, 1993; Veroustraete et al., 2002). One
of the most widely applied approach for modeling GPP is based on the light use
efficiency (LUE) concept, which represents the ratio of carbon biomass production
per unit of absorbed light (Monteith, 1972; Horn and Schulz, 2011). Since some
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studies have assessed that light use efficiency is quite stable during a day (Ruimy
et al., 1995), it can be used in modelling GPP dynamics at a daily time-step.

This approach stated that GPP is a function of the incident Absorbed Photosyn-
thetically Active Radiation (APAR) and of a light use efficiency (ε) factor (Monteith,
1972).

GPP = ε ·APAR (2.5)

where APAR is the product of the incident photosynthetically active radiation (PAR)
and the fraction of photosynthetically active radiation absorbed by vegetation (fA-
PAR). The magnitude of fAPAR depends on size, density, phenological stage and
chemical composition of the canopy. The determination of fAPAR from remote
sensing data has matured over a number of years supported by the close relationship
between absorbed solar energy and spectral vegetation indices exploiting the visible
and near-infrared regions such as the well-known normalized difference vegetation
index (NDVI) (Rouse et al., 1974). Since only PAR absorbed by photosynthetic
pigments enables photosynthetic processes, whereas the PAR absorbed by photo-
synthetically inactive elements (e.g., branches, stems and dead leaves) is not used
for CO2 fixation, several recent studies (Xiao et al., 2004; Zhang et al., 2005, 2009)
indicate that the use of vegetation indices (e.g. MTCI, Dash and Curran 2004) re-
lated to canopy chlorophyll content may improve the accuracy of GPP estimation.

Since ε is related to the capacity of a canopy to use light, this parameter is related
to the availability of resources for the photosynthetic reactions during the first stage
of photosynthesis (see section 2.1.1). ε estimation is one of the most challenging
components of the Monteith model; for this reason ε is generally considered as a
biome-specific parameter. However, photosynthetic efficiency is known to be also
influenced by many factors and thus varies in space and time. Widely used ap-
proaches (Nouvellon et al., 2000; Veroustraete et al., 2002; Heinsch et al., 2006)
estimate ε as a potential maximum ε, adjusted for unfavourable environmental con-
ditions (e.g. limitations of temperature and humidity).
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3.1 Site Description

The study was carried out in a subalpine grassland, in the North-Western Italian
Alps, from June 2008 to December 2010. The site is an abandoned pasture lo-
cated at few kilometres from the village of Torgnon in the Aosta Valley region at an
elevation of 2160 m asl (45◦50’40” N, 7◦34’41” E), (figure 3.1, table 3.1).

Figure 3.1: Location of the study site. Red highlighted region is Aosta Valley and red circle
on the map indicates the location of the grassland.

Dominant vegetation of the grassland is composed by Nardus stricta L., 35%,
Festuca nigrescens All. 11%, Arnica montana L. 8%, Carex sempervirens Vill.
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5%, Geum montanum L. 5%, Anthoxanthum alpinum L.L. 4%, Potentilla aurea L.
4%, Trifolium alpinum L. 4%. Maximum seasonal Leaf Area Index (LAI) found
at the site is near 2.8 (m2m−2) whereas the soil is classified as Cambisol (WRB
classification)

Location Elevation Lat./long. Exposition Slope LAI max Vegetation Soil Mean ann.
temperature

Torgnon 2160 m asl 45◦50’40” N, 180◦ 4 ◦ 2.8 Nardus stricta Cambisol 3.1 ◦C
(Italy) 7◦34’41” E 35%

Table 3.1: Study site’s main characteristics

The site is characterised as intra-alpine area with semi-continental climate with
an annual mean temperature of 3.1◦C and mean annual precipitation of about 920
mm (Mercalli et al., 2003). During the study period, the growing season (from June
to the end of October) cumulative precipitation varied from a minimum of 172 mm,
during 2009 to a maximum of 362 mm during 2010.

Approximately from the end of October or early November to late May the site
is snow covered, thus the snow-free period has an average duration of four to five
months.

The extent of the homogeneous fetch is approximately 300 m x 300 m around the
eddy covariance tower. In a delimited plot of about 15 x 15 m different instruments
are installed.

3.2 Data collection

In this section, instruments and their set up are described (Figure 3.2). The instru-
mental system used during the study was composed by the eddy covariance tower,
a weather station that measures additional meteorological variables and a digital
camera for monitoring phenology. In the framework of another study, (Cogliati,
2011) an automatic hyperspectral system sampling canopy spectral properties was
developed and used; here, this system is briefly described, as some of the obtained
indices were used in data analysis. Power for the instruments is completely supplied
by a set of solar panels. A summary of instruments used is given at the end of this
section, in table 3.2.
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3.2.1 Eddy Covariance

Eddy covariance method was used to measure the flux of CO2 and H2O between
the ecosystem and the atmosphere; instrumentation was installed in June 2008 the
20th and measurements continue at present. In this manuscript data from the date
of installation to December 2010 are presented.

Instruments were placed at 2.5 m above the ground. The height of the sensors
depends on the height of the vegetation, the extent of fetch, the range of wind ve-
locity and the frequency response of the instruments. The higher is the instrument
displacement (zm) of the lower is the sample frequency needed, as eddies dimension
gradually increases moving away from the canopy and their frequency decreases;
on the other hand the higher is zm, the bigger is the upwind area influencing the
fluxes (footprint), a factor that must be accounted for, to not include the fluxes from
other ecosystems in the measurements (Manca, 2003; Burba and Anderson, 2010).

Measurement of wind speed in the three components (w, u, v) was performed by
a CSAT3 three-dimensional sonic anemometer (Campbell Scientific, Inc., USA),
while CO2 and H2O vapour air densities were measured by a LI-7500 open-path
infra-red gas analyser (LI-COR, Inc., Lincoln, NE, USA). Raw data from both the
anemometer and the IRGA were measured at 10 Hz and recorded by a CR3000
datalogger (Campbell Scientific, Inc.). It is recognized that sampling rates between
10 and 20 Hz ensure complete sampling of the high frequency portion of the flux
co-spectrum (Baldocchi et al., 2001a).

The choice of an open-path analyser has been lead by some considerations: elec-
tric current is not available at the site, precipitations are not abundant, the instru-
mentation is kept functioning during the winter season.

Calibration of the IRGA was carried out periodically following manual instruc-
tions.

3.2.2 Meteorological data

A weather station was installed near the eddy covariance tower to continuously
measure meteorological variables useful to compute eddy fluxes and to evaluate the
influences of the environmental drivers on the carbon cycle components.
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To measure air temperature (Ta) and humidity (RH) we used a HMP45 (Vaisala
Inc., Helsinki, Finland), while soil temperature (Ts) was measured with tempera-
ture probes type therm107 (Campbell Scientific, Inc.) at four soil depths: 2 cm,
10 cm, 25 cm and 35 cm. Soil water content (SWC) was assessed at two depths,
5 and 30 cm, with soil water reflectometers model CS616 (Campbell Scientific,
Inc.), and soil heat flux (G) was measured by HFP01 plates (Hukseflux, Delft, Hol-
land). Net radiation (Rn) was measured with a CNR4 (Kipp and Zonen Corp.,
Delft, The Netherlands) net radiometer, photosynthetically active radiation (PAR)
was assessed by four LI-190 (LI-COR, Inc.) sensors, one above and three below the
canopy. Precipitation (PPT) was assessed by an aerodynamic rain gauge ARG100
(Environmental measurements, Ltd, UK), and snow height (HS) was measured with
a sonic ranging sensor SR50A (Campbell Scientific, Inc.), finally surface temper-
ature (Tsur) was measured with an infra-red temperature sensor SI-111 (Apogee
Instruments, Inc.).

All the instruments register data with half-hourly frequency and data were trans-
mitted every day via GPRS modem.

Figure 3.2: Instrumental system
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3.2.3 Proximal Sensing Measurements

We used a digital camera, model CC640 (Campbell Scientific, Inc.), to remotely
track changes in grassland phenology, during the study period starting from May
2009. The digital camera was installed in a weatherproof enclosure at 2.5 m above
the ground. The camera was pointed north, and set at an angle of about 20◦below
horizontal plane following Richardson et al. (2007b). Camera focal length was 3.5
mm and the field of view was approximately 79.8 degrees. The scene in the picture
takes a great portion (two-thirds) of the vegetation and a little portion (one-thirds)
of the background (trees and sky). Desiccant was placed and changed periodically
to avoid condensation on box window to form.

The camera was connected to a CR1000 datalogger (Campbell Scientific, Inc.)
and provided JPEG images of the same scene (resolution 640 x 480, 0.3 megapixels,
with three channels of 8-bit RGB colour information) every hour from 10 am to 4
pm. The camera-JPEG compression mode was set to “None”, in order to produce
the best quality JPEG files with no artefacts from lossy compression algorithms.

The camera operated with automatic exposure and aperture mode, responding to
ambient light levels using the entire image to adjust the exposure settings. Thus,
the brightness of any individual pixel was not a direct measure of surface radiance
per se. The camera did not record the exposure setting along with the image, thus
preventing the conversion of the images into digital numbers (DN) proportional to
radiance. An example of digital camera images taken is presented in figure 3.3.

Every day images were transmitted via GPRS modem to ftp. The processing of
digital camera images, continuously taken trough the growing seasons, allowed the
computation of indices related to the grassland structural seasonal development, as
described in the data processing section (3.3.4).

Furthermore in the instrumental plot, an automatic HyperSpectral Irradiome-
ter (HSI) was installed. It is a custom designed instrument (Meroni et al., 2011;
Cogliati, 2011) developed in collaboration with the Italian National Research Coun-
cil (IFAC-CNR, Florence). HSI employs a rotating arm to observe alternately the
sky and the canopy. A cosine-response optic is used to continuously sample the
solar incident irradiance and the irradiance upwelling from the surface. The instru-
ment uses two spectrometers (HR4000, OceanOptics, USA) one operating in the
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Figure 3.3: Examples of JPEG images collected by the CC640 Campbell digital camera
during the 2009 growing season.

visible and near-infrared region of the solar spectrum VNIR (range 400-1000 nm)
with a spectral resolution of 1 nm, and the other operating within a narrower spectral
interval (700-800 nm) with higher spectral resolution (0.1 nm FWHM, full width at
half maximum). Data collected by the first spectrometer allowed the computation
of the Vegetation Indices (VIs) as NDVI and MTCI used in the present study, while
the second one permit the estimation of Sun-Induced Fluorescence. The HSI was
installed in the site from the beginning of June to the end of October in both years.
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Variable Sensor

Eddy covariance
CO2 and H2O LI-7500 (LI-COR, Inc.)
wind speed/direction CSAT3 (CampbellScientific, Inc.)
Weather station
air temperature and humidity Ta and RH HMP45 (Vaisala, Inc.)
soil temperature Ts therm107 (Campbell Scientific, Inc.)
soil water content SWC CS616 (Campbell Scientific, Inc.)
soil heat flux G HFP01 plates (Hukseflux)
net ratiation Rn CNR4 (Kipp and Zonen)
photosynthetically active radiation PAR LI-190 (LI-COR, Inc.)
precipitation PPT ARG100 (Environmental measur., Ltd)
snow height HS SR50A (Campbell Scientific, Inc.)
surface temperature Tsur SI-111 (Apogee Instruments, Inc.)
Proximal sensing
colour index GI CC640 (Campbell Scientific, Inc.)
spectral indices NDVI and MTCI HSI (Meroni et al., 2011)

Table 3.2: Instruments summary
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3.2.4 Ancillary data

Various information were available on the structure of the canopy over all the study
period.

Vegetative and reproductive phenology of some species (e.g. Nardus stricta, Ar-
nica montana, Carex sempervirens, Rhododendron ferrugineum, Trifolium alpinum)
was observed weekly following an ad hoc phenological protocol developed in the
framework of the PhenoALP project (http://www.phenoalp.eu/).

Phytomass was collected every two weeks during 2009 and 2010 at 12 plots of
40x40 cm and Leaf Area Index (LAI), and green and total aboveground biomass
were determined.

In the same 12 plots, visual observations of canopy percentage of greenness
(GVE) and canopy height were collected every week.

Pigment concentrations of the predominant grass (Nardus stricta) were deter-
mined by extraction in N,N-dimethylformamide (DMF) from plants collected in 4
of the 12 plots, every week during 2010. The absorbance of the extracted material
was measured at 663.8, 646.8 and 480 nm by a Cary100 UV-Vis spectrophotometer
(Varian, Inc) and chlorophyll a (Chla), b (Chlb) and carotenoid (Car) concentrations
were calculated using the extinction coefficients derived by Porra et al. (1989).

3.3 Data Processing

3.3.1 Eddy covariance processing

Eddy fluxes were obtained by computing the mean covariance between fluctuations
in vertical wind velocity and in CO2 and H2O densities, with an half-hour time
step. A 30 minutes (or even 60 minutes) averaging period is recognised to be ad-
equate to capture low frequency contributions to flux covariances, but not too long
to be affected by diurnal changes in the measured variables. By convention, nega-
tive fluxes represent mass and energy movement from the atmosphere to the surface
and positive values denote transfer towards the atmosphere and away from the bio-
sphere. Final flux of CO2 is expressed in µmolm−2s−1 and final flux of H2O in
mmolm−2s−1.
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Raw 10 Hz data from the eddy covariance system were recorded in a binary
data format on a memory card of the CR3000 datalogger. The stored records were
processed by using a software (Manca, 2003) that calculates half-hour eddy fluxes
according to the EUROFLUX methodology (Aubinet et al., 2000).

In particular, some steps are carried out to obtain the final fluxes:

• Linear de-trending: during the averaging period T (30 minutes) a measured
variable can show a non-stationary behaviour (i.e., a trend). To eliminate
this trend, a linear de-trending is applied based on Gash and Culf (1996).
This method removes from each i-instantaneous record of a measured variable
the i-value (instantaneous mean) obtained by computing a linear regression
trough each half-hour time-series;

• computation of the averages of all measured variables and of the covariance
between the turbulent fluctuations of the vertical wind speed and the scalar
densities with a half-hour time step;

• three-axis co-ordinate rotation: for each averaging interval of 30 minutes,
this algebric operation is computed to align instrumental coordinate system
to the mean streamlines of the wind and so that the vertical w axis is exactly
perpendicular to the mean flow. Moreover a third rotation is computed to
eliminate the covariance between w and v wind components, if the angle is
lower than 10 ◦(McMillen, 1988).

This operation has the aim to reduce errors due a non-perfect levelled anemome-
ter that can cause a contamination of the vertical component of wind speed
by the other two horizontal components (Kaimal and Finnigan, 1994; Manca,
2003; Foken, 2008);

• application of WPL correction: since in this study an open-path gas analyser
was used to measure CO2 and H2O, this kind of correction is needed (see
chapter 2) to correct the fluxes from errors due to temperature and humidity
fluctuations. The calculations were made according to Webb et al. (1980) and
the final CO2 (Fc), H2O (E) and sensible and latent heat (H, LE) fluxes were
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computed. Additionally the storage term is computed. The storage is impor-
tant when the thermal stratification of the atmosphere is stable and turbulent
mixing is weak, and fluxes from the surface may reach the instrumental sys-
tem at height zm slowly, in a time greater than the averaging period T. Under
such conditions the storage term becomes non-zero, so it must be added to the
eddy covariance measurements. This term considers the time variation of the
scalar concentration in the air column under zm. Nevertheless, generally the
storage term is small or even negligible over short crops compared to forests
(Baldocchi et al., 2001a).

• calculation of data quality checks: the software calculates quality flags de-
scribed in the following section.

3.3.2 Data quality and filtering

3.3.2.1 Data quality tests

Quality flags were calculated based on turbulence steady-state criteria and integral
turbulence test (Foken and Wichura, 1996). In the first case, each calculated 30-min
flux is compared to the average of 5 minute flux values of the same half-hour; in-
tegral turbulence test characterises whether or not the turbulence is well developed
according to Monin-Obukhov’ similarity theory (Aubinet et al., 2001), and in prac-
tice compares how measured integral turbulence characteristics differ from mod-
elled characteristics. The overall quality level depends on the test that has the worst
result: for differences less than 30%, the measurement is flagged as high quality
(class 0), if differences are between 30 and 60%, data are considered as good (class
1), whereas more than 60% deviation is flagged as very low quality data (class 2).
Furthermore a control is done to exclude data measured with high window dirtiness
of the LI-7500 gas analyser (AGC diagnostic >70%).

3.3.2.2 Energy balance closure

The evaluation of the energy balance closure is a good method to assess eddy co-
variance estimates (Wilson et al., 2002).
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This test allows a comparison of turbulent energy fluxes measured with the eddy
covariance system (the sensible heat flux, H and the latent heat flux, LE) with energy
fluxes obtained by independent methods (net radiation, Rn, ground heat flux, G and
energy storage in different ecosystem compartments, S)

In this study the energy balance was firstly assessed by statistical regression of
the turbulent fluxes H and LE against the available energy, that can be approximated
by the difference between net radiation (Rn) and ground heat flux (G) (Oke, 1987),
by the following equation:

H+LE = Rn−G−S (3.1)

where Rn is net radiation measured by the weather station, G is the ground heat
flux measured by soil sensors, and H and LE represent sensible and latent heat
flux measured by eddy covariance (for all terms units are expressed in Wm−2).
The smaller is the difference between the two terms, the higher is the quality of
the data used. By passing a linear regression through the data, one can evaluate
the percentage of the balance closure by the value of the regression slope. Energy
storage (S) values were not considered both in this and the following analysis.

As an alternative method to evaluate the energy balance closure we also applied
the energy balance ratio (EBR, (Wilson et al., 2002)) expressed as follow:

EBR =
∑(H+LE)

∑(Rn−G−S)
(3.2)

Since this method does not compare half-hour data but cumulative energy terms
over a large time scale, small scale changes in energy storage tend to become null
by summation of any S values over the considered period.

3.3.2.3 Footprint

Footprint analysis allows the definition of the extension of the source area that is
actually represented by each flux measurement, i.e.“the field of view” of the eddy
instruments. In particular the footprint function provides a measure of the fraction
of the measured flux that is influenced by a unit point of the upwind surface. Vari-
ous methods are available to model footprint, in this study the analytical model of
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Schuepp et al. (1990) was used. Considering a measurement height zm, for each
horizontal direction (x,y) a footprint function defining the fraction of the measured
flux at height zm generated by the source upwind area at a certain distance (x or y),
is computed. The maximum of the footprint function, Xmax, allows to identify the
part of the source area that mainly influences the measured fluxes.

3.3.2.4 Filtering

Beyond the above described data quality checks, spikes or errors due to unfavourable
micro-meteorological conditions and to instrument malfunctioning can occur in the
half-hour dataset. A filtering procedure was applied to data step by step.

In a first step, data flagged as low quality class (class 2) were excluded from the
dataset.

In a second step, an outlier detection technique based on Papale et al. (2006) was
applied on half-hour flux dataset obtained after a coarse removal of big spikes in the
measured variables (i.e. NEE, H, LE or friction velocity) obtained by imposing reli-
able above and below thresholds. By following Papale et al. (2006) the flux dataset
was then separated into 13-days blocks and separated for daytime and night-time
data. Night-time data were selected as all data below a global radiation threshold
of 20 Wm−2. For each block the outlier detection was performed comparing each
half-hour value (NEEi) with the value just before (NEEi−1) and after (NEEi+1).
This comparison was based on the median of absolute deviation from the median
(MAD).
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MAD is defined as
MAD = median(|di −Md|) (3.3)

where di is derived from:

di = (NEEi −NEEi−1)− (NEEi+1 −NEEi) (3.4)

and Md is the median of these differences. A certain value is flagged as spike if

di < Md− (
z ·MAD
0.6745

) (3.5)

or
di > Md+(

z ·MAD
0.6745

) (3.6)

where z is a threshold value, imposed at 4, as in Papale et al. (2006).
When a gap is encountered the outlier detection technique can fail identifying

a correct value as a spike or not removing an actual spike. In this study the gap
treatment was performed as follows:
if NEE in position (i) is a non-valid data (NaN), it remains a gap.
if NEE in position (i-1) or/and (i+1) is a gap, (NEEi) is compared with the median
value of the preceding or subsequent 96 half-hour data.

In the last step, night-time data measured under a certain friction velocity thresh-
old (u∗ ms−1) were filtered. This filtering procedure is necessary because during
night when photosynthetic uptake of CO2 is inactive and the net ecosystem ex-
change represents exclusively respiratory processes, low turbulence condition and
limited air mixing can occur. In such condition, the assumptions underlying the
eddy covariance theory are not met and the fluxes from the surface may not reach the
instruments system (Goulden et al., 1996). As a consequence ecosystem respiration
is underestimated and the further cumulative carbon sequestration overestimated.

A current solution to this problem is to filter data using u∗, computed from the
eddy measurements, as an indicator of atmospheric turbulence conditions. The fil-
tering technique consists in removing measurements taken under a certain u∗ thresh-
old; the generated gaps are replaced with the filling procedure described in the
following section. The assumption of this approach is that the night-time flux is ex-
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clusively determined by biological activity of the ecosystem and shouldn’t depend
on turbulence regimes. As it was found that the measured NEE becomes very low
as u∗ gets close to zero (Massman and Lee, 2002), the threshold is identified as that
value above which the flux of CO2 is independent from changes in u∗ (3.4).

Figure 3.4: Artificial dataset representing the relationship between night-time NEE versus
u∗, from Gu et al. (2005). The vertical line represent the u∗ under which data are removed.
%R are the percentage of night-time data conserved after filtering

Literature values of the u∗ threshold vary from 0.0 to 0.6 ms−1 (Massman and
Lee, 2002; Gu et al., 2005), and are generally higher for tall vegetation compared to
grasslands and croplands (Papale et al., 2006), nevertheless u∗ is a site-specific vari-
able and thus threshold should be properly estimated. In this study a u∗ procedure
is applied based on Reichstein et al. (2005) and Papale et al. (2006). In summary,
the night-time flux dataset is split into six temperature classes of equal sample size
(according to quantiles) and for each temperature class, the set is dived into 20 u∗
classes. In the original procedure for each temperature class the threshold is iden-
tified as the u∗-class where the average night-time flux reaches more than 99% of
the average flux at the higher u∗-classes. As an alternative method, in this study
we used the Student’s t-test to evaluate differences between the average flux of a
class and the average fluxes at the higher u∗-classes: the threshold is identified as
the first class for which differences from higher u∗-classes are statistically signifi-
cant (significance level 0.05). Furthermore the threshold is accepted for a particular
class if temperature and u∗ are not correlated (|r| < 0.4). The final threshold is given
by the median of the thresholds of the six temperature classes. As u∗ distribution
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slightly varies as a function of the seasonal period and year considered, the proce-
dure has been tested on different time aggregations, but always considering years
separately. The time aggregations tested were: the entire dataset, summer and win-
ter periods separately (i.e. the growing season from June to the end of October,
and winter from November to the end of May), periods with similar LAI (e.g. June
with September and October and July with August). The average threshold of the
different aggregations tested in this study was 0.035 ± 0.025 ms−1). The u∗ fil-
tering was finally performed using the summer (growing season) threshold, that is
generally the highest found. A minimum threshold was then imposed to 0.05 ms−1,
to be more conservative. The threshold was set to 0.052 ms−1 for 2008 and and
0.05 ms−1 for 2009 and 2010. These values are similar to those used in another
mountain grassland (Hiller et al., 2008).

3.3.3 Gap-filling and partitioning

Together with original gaps in the eddy measurements, artificial gaps due to fil-
tering procedures affect the flux dataset. As a consequence, a gap-filling proce-
dure is necessary to produce daily, seasonal and annual sums of CO2 exchange.
To this aim different methods have been developed. In this study the gap-filling
procedure described in (Reichstein et al., 2005) and implemented in the online
tool (http://gaia.agraria.unitus.it/database/eddyproc/ ) was used. We selected this
method because it is one of the standardized methods adopted by the Carboeurope-
IP project and FluxNet. The gap-filling method is based on both the co-variation of
the fluxes with meteorological variables (air temperature, radiation and vapour of
pressure deficit, VPD) and the temporal auto-correlation of the fluxes. Therefore,
on the basis of the gap type (length, available meteorological variables), missing
data were substituted by values obtained on the basis of data measured in similar
meteorological conditions (Look Up Tables, LUT) within a time window of ± 7-14
days, or with values obtained on the basis of data measured in the same time of the
day (Mean Diurnal Variation, MDV).

The on-line tool was also used to partition the measured NEE flux into gross
primary productivity (GPP) and ecosystem respiration (Reco) by a modelling ap-
proach. Flux-partitioning uses only original data (not gap-filled) to derive the con-
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stituent flux Reco from the relation between temperature and nocturnal NEE, rep-
resentative of solely the respiratory process. In this procedure a Lloyd and Taylor
(1994) regression model is fitted to night-time NEE data (data below the global
radiation threshold of 20 Wm−2):

Reco(T) = Reco,ref · e
E0·{ 1

Tref−T0
− 1

T−T0
} (3.7)

where Reco,re f indicates the respiration at reference temperature, Tre f , set to 10◦C,
E0 is the activation-energy, T is either air or soil temperature and T0 is a parameter
kept constant to -46.02◦C. This function is applied over small window periods of
valid data. For each period, the regression parameters and statistics are kept in
memory and the best values are used to estimate missing Reco values and day-time
Reco. In a next step, half-hour GPP data are derived from the relation

GPP = Reco−NEE (3.8)

3.3.4 Vegetation Indices

Different vegetation indices derived from the proximal sensing sensors (webcam
and HSI) installed at the study site were used in the present study.

3.3.4.1 Digital images VIs

Vegetation indices (VIs) were derived from the processing of 1940 digital images
taken from the date of installation in 2009 (DOY 141) to the end of 2010. The
images were not selectively edit or artificially enhanced before the analysis; main-
taining this level of objectivity could be important because it ensures the repeata-
bility of the methodology at other sites. In order to minimize the angular effect of
the canopy hemispherical directional reflectance function (Chen et al., 2000) only
the images taken from 11 am to 1 pm were used. A custom R script (R Develop-
ment Core Team, 2011) was used to process and analyse the archived digital image
files. Analysis was conducted on one specific “Regions Of Interest” (ROI) of the
grassland canopy spanned from the left border of the picture to a reference panel as
illustrated in Figure 3.5. The dimension of the ROI was selected to provide a reason-
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ably extended spatial sampling of foreground canopy while avoiding the inclusion
of the area in the background that might be affected by heterogeneous incident light
conditions because of the frequent presence of scattered low clouds and fog in the
background.

Figure 3.5: Digital image collected by the CC640 Campbell camera the 16th of July 2009.
Blue box denotes the static Region Of Interest (ROI) selected for the study.

The VIs proposed by Richardson et al. (2009a) were computed on each image.
In detail, the overall brightness of the ROI (TotalDN) was calculated as:

TotalDN = RDN +GDN +BDN (3.9)

and was then used to calculate the percent relative brightness of each channel RI
(Red), GI (Green) and BI (Blue):

RI =
RDN

TotalDN
(3.10)

GI =
GDN

TotalDN
(3.11)

BI =
BDN

TotalDN
(3.12)

Where RDN , GDN , BDN are the digital number (DN) values of the red, green and
blue channel, respectively. The computation of such indices allows to normalize
against variations in overall image brightness caused by changes in clouds and so-
lar illumination, as well as image exposure and internal digital camera processing.
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Finally, the mean from the three images recorded between 11 am and 1 pm in each
day was computed to get a mean daily value of the indices.

Image quality was sometimes adversely affected by rain, snow, low clouds, aerosols,
fog, uneven patterns of illumination due to the presence of small clouds (e.g. a part
of the image can be overexposed and the target ROI may look darker resulting in a
lower value of VI, or vice versa). The result is that smooth trajectories of the digi-
tal camera VIs related to canopy greenness were sometimes interrupted by a sharp
increase or decrease of the VI values, lasting for one or few days. Therefore, the
time series were filtered to suppress unusual high or low values with a recursive
outlier removal filtering. In a first step outliers were removed on the basis of MAD
(eq. from 3.3 to 3.6); in a second step a cubic smoothing spline was fitted to data
and the residuals between the value of each daily VI and the corresponding value of
the smoothing spline were calculated (Bradley et al., 2007). A particular day i was
considered as “good”, and then retained for further analysis, if

|residual(VIi − splinei)|< µ+3σ (3.13)

where µ is the mean of the residuals and σ is their standard deviation. The algorithm
described above was recursively applied at the digital camera VIs time series until
no outliers were detected (with a maximum of 10 loops).

3.3.4.2 HyperSpectral Irradiometer VIs

The vegetation indices computed from HSI reflectances and used in this study are
the Normalised Difference Vegetation Index (NDVI) (Rouse et al., 1974), that gives
a measure of the greenness of the vegetation and the Meris Terrestrial Chlorophyll
vegetation Index (MTCI), (Dash and Curran, 2004) that is related to the canopy
chlorophyll content. NDVI is calculated as

NDVI =
r800 − r680

r800 + r680
(3.14)

where r800 and r680 are the reflectance values at the specified wavelength (nm),
and MTCI is calculated as:

39



3. MATERIALS AND METHODS

MTCI =
r753.75 − r708.75

r708.75 + r681.25
(3.15)

where r753.75, r708.75 and r681.25 are the reflectance values at the specified wave-
length (nm).

3.4 Data Analysis

3.4.1 Extraction of phenophases from ecosystem processes and
canopy greenness

Information on grassland phenology were extracted with different methods starting
from the seasonal time-series of both the flux components NEE and GPP, repre-
senting phenology of ecosystem processes, and the digital camera GI, representing
phenology of the canopy greenness.

The extraction of the phenophases from the NEE time-series was based on the
carbon uptake period (CUP). This approach defines the beginning (BGS) and the
end of the growing season (EGS) as the date when the ecosystem switched from a
source to a sink and the reverse. Different literature methods were used to identify
these dates: in the first approach we identify BGS and EGS as the zero-crossing
dates after which NEE turns definitively from daily negative values to positive ones
in spring and from negative to positive values in autumn (Piao et al., 2008); in
the second approach zero-crossing dates are defined as above but using a moving
average with a 5-day window (Richardson et al., 2009b); in the last approach a
regression line is passed between NEE and DOYs using a subset of spring and
autumn data (15 days for each period). The BGS or EGS date is identified by the
DOY for which the predicted NEE has value 0 (Baldocchi et al., 2005).

For GPP, BGS and EGS dates were defined as the DOY at which the GPP time
series reaches the 10% of the spring development and the 90% of the autumn de-
crease; the curve was previously smoothed with a cubic spline.

This last method was also applied to the seasonal time-series of GI, to extract
BGS and EGS of the structural development.
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In summary while NEE thresholds are physiologically defined, GPP and GI phe-
nological dates represent development stages of the considered variables and are
thus comparable.

3.4.2 Light-response curves

Because photosynthesis is driven by light, but the way NEE responds to changes in
photosynthetic photon flux density (PPFD) could changes within vegetation types
and seasons, the light-response curve was analysed to describe the relation between
NEE and PPFD at Torgnon grassland in different periods of the growing season.
Various functions describing this relation exist; in this study we used a rectangu-
lar hyperbolic light-response function (on the basis of Michaelis-Menten equation,
Falge et al., 2001):

NEE =
FMAX α PPFD

α PPFD+FMAX
+Reco (3.16)

where FMAX (µmolCO2 m−2s−1) is the maximum CO2 flux at infinite light (also
referred as maximum assimilation, AMAX ), PPFD (µmolm−2s−1) is photosynthetic
photon flux density, α the apparent quantum yield and Reco the ecosystem respira-
tion.

As PPFD increases, photosynthetic CO2 assimilation increases: NEE values change
from positive values of night respiration towards negative ones, passing through a
point where CO2 uptake exactly balances CO2 release. This value is called the light
compensation point. Above the light compensation point photosynthetic assimila-
tion increases linearly with PPFD and the velocity of this rise (i.e. the slope of the
linear relation between NEE and PPFD) is the maximum quantum yield of photo-
synthesis. Quantum yields vary from 0, where no PPFD is used, to 1, where all
the absorbed light is used for photosynthesis. In the intact leaf, measured quan-
tum yields for CO2 fixation vary around 0.04 and 0.06 (Taiz and Zeiger, 2010). At
higher PPFD, the photosynthetic response to light reaches a saturation, and CO2

assimilation assumes its maximum value, FMAX . Further increases in incident light
don’t affect the photosynthetic rate (see Taiz and Zeiger 2010).

Light-response curves were calculated by fitting day-time (data above a global
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radiation threshold of 20 Wm−2), half-hour NEE data, measured during the grow-
ing season from June to October, to the equation 3.16; Model parameters were
estimated using the simulated annealing algorithm implemented by the function
optim() (Stats package) of the statistics software R (R Development Core Team,
2011). Because the structure and function of the vegetation vary over the season,
the fitting was performed dividing the dataset in five time periods for each year,
characterized by different LAI values. According to Ruimy et al. (1995) the flux of
CO2 at a PAR value of 2000 µmolm−2s−1 was assumed as a proxy of FMAX .

3.4.3 Multi-scale analysis of environmental controls over carbon
exchange

In the analysis of the relations between environmental drivers and CO2 fluxes, the
spectral approach of wavelet coherence analysis was applied. This method is widely
employed in climatology (Torrence and Compo, 1998), but poorly represented in
carbon fluxes studies (Vargas et al., 2010). As ecosystem processes are influenced
by weather and climatic fluctuations at multiple temporal scales, linear relationships
between meteorological variables and flux components are often weakly able to
reveal the underlying controls. The analysis in the time-frequency domain has been
demonstrated useful for the evaluation of the correlation between the periodicities
of time-series of environmental factors and those of carbon cycle processes (Vargas
et al., 2011).

In the context of spectral analysis, the advantage of wavelets, compared to Fourier
transform method, is the ability to capture the frequency content of a time series as
a function of time and to discern discontinuous non-stationary events present in the
signal, such as rain pulses or heat waves. By using wavelets the spectral properties
of the time-series of interest are analysed as divided into several parts trough a fully
scalable modulated window that is shifted along the signal, and for every position
the spectrum is calculated. This process is over-repeated with windows of different
sizes: the final result is a collection of time-frequency representations of the signal,
with different time resolutions.

The method described is the continuous wavelet transform (cwt), that is expressed
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by:

Wn(s) =
(

δt
s

)N−1

∑
ni=0

xnψ∗
0

(
n−ni

s/δt

)
(3.17)

where xn is a discrete signal of length N, sampled at δt interval, ψ∗
0 is the complex

conjugate of the scaled and translated mother wavelet (or basic wavelet), and s is
the scale at which the transform is applied. The mother wavelet is the base function
from which transformations are computed. Different type of mother wavelet exist,
one of the most used is the Morlet wavelet (Grinsted et al., 2004).

Based on the continuous wavelet transform, the wavelet coherence analysis (wco)
allows to identify regions of local correlations between two time-series as a function
of frequency.

In this study wavelet coherence analysis was applied to investigate coherencies
between the periodicities of eddy CO2 fluxes with air temperature, soil temperature,
SWC, and PAR, the key environmental variables of the ecosystem studied, at the
hourly, daily, weekly, monthly and seasonal time scales. The half-hour time series
of carbon flux and environmental drivers measured from June 2008 to December
2010 were used.

The wavelet coherence analysis was computed using the function wco() of the R
package Sowas (SOftware for Wavelet analysis and Synthesis, http://tocsy.agnld.uni-
potsdam.de/wavelets/). This function uses time-series data as input to estimate the
wavelet coherence of two variables, based on the Morlet mother wavelet. This ap-
plication evaluates correlations between the two processes with respect to time and
scale. Correlations varied between 0 (absence on coherence) and one (full coher-
ence).

3.4.4 GPP modelling

A LUE modelling approach (Monteith and Unsworth, 2008) was used to simulate
GPP at site level.

LUE models assume that carbon fixation is a linear function of the incident pho-
tosynthetically active radiation absorbed by a canopy (APAR) and the Light Use
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Efficiency (LUE), which represents the conversion efficiency of absorbed energy to
fixed carbon, following the relation firstly proposed by Monteith (1972):

GPP = ε ·APAR (3.18)

This approach requires an estimate of APAR that can be derived from the relation:

APAR = fAPAR ·PAR (3.19)

where fAPAR is the fraction of absorbed photosynthetically active radiation used
by the vegetation for photosynthesis.

In this study, the widely known LUE model MOD17 (Heinsch et al., 2006), which
is the algorithm of the MODIS daily photosynthesis product (MOD17), was used:

APAR = fAPAR ·PAR · f (meteo) (3.20)

To estimate fAPAR, GI derived from digital images was tested, while PAR was
derived from measurements at the meteorological station. In particular fAPAR was
estimated as a linear function of GI:

fAPAR = a0 +a1 ·GI (3.21)

As in MOD17, ε term was estimated as εmax, the maximum conversion efficiency
for the ecosystem, adjusted for weather conditions which are expressed by linear
ramp functions of limiting factors: minimum air temperature TaMin and VPD. These
functions vary linearly (Jolly et al., 2005) between 0, (when daily variable value is
lower than a minimum threshold under which photosynthesis is assumed as fully
constrained), and to 1 (when daily variable value is above an upper threshold indi-
cating that photosynthesis is completely unconstrained) as a consequence of subop-
timal temperatures and water availability for photosynthesis.

As an example, the function used to describe the influence of TaMin is expressed
as (figure 3.6):
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Figure 3.6: Example of the function used to describe the influence of minimum air temper-
ature, f(TaMin) on photosynthesis. TaMMin and TaMMax indicate thresholds between which
the constrain is assumed to vary linearly from 0 (total constrain) to 1 (no constrain).

f (TaMin) =






0, if TaMin ≤ TaMMin

TaMin−TaMMin
TaMMax−TaMMin

, if TaMMax > TaMin > TaMMin

1, if TaMin ≥ TaMMax

(3.22)

where f(TaMin) is the daily indicator for minimum temperature, bounded between
0 and 1, TaMin is the observed daily minimum temperature, TaMMin and TaMMax

indicate thresholds between which the constrain varies linearly.
For VPD, the daily indicator function f(VPD) assumes the value of 1 when the

daily VPD is lower than the minimum threshold (VPDMin), and assumes the value
of 0 when daily VPD is greater than the maximum threshold (VPDMax) over which
VPD forces stomatal closure.

In this study, different model formulations were tested to investigate the impor-
tance of other environmental controls, i.e. snow, TsMin and SWC in limiting photo-
synthesis in this ecosystem. In particular, in separated steps, we tested: the applica-
tion of a snow presence/absence threshold,

GPP = εmax · f (TaMin) · f (VPD) · (a0 +a1 ·GI) ·PAR · snow(1,0) (3.23)
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and the use of f (T sMin) in place of f (TaMin) and f (SWC) in place of f (V PD). For
each model formulation, model parameters were estimated against the daily GPP
derived from eddy covariance measurements during the 2009 growing seasons and
the best-fit model parameters were then used in the simulation of 2010 GPP to eval-
uate the applicability of the method. In table 3.3 estimated parameters for different
model formulations are summarized.

formulation MOD17original MOD17snow MOD17T s MOD17SWC MOD17T s,SWC
parameter set

εmax
TaMMin
TaMMax
VPDMin
VPDMax
TsMMin
TsMMax
SWCMin
SWCMax

a0
a1

Table 3.3: Parameter sets for different model formulations

Model parameters were estimated using simulated annealing algorithm, imple-
mented with the R function optim(). First guess parameters for the optimization on
2009 dataset were derived from MOD17 biome-specific values for grassland (Hein-
sch et al., 2003). Root mean square error (RMSE) between observed and modelled
data was used as cost function. 300 loops (over 20000 simulating annealing iter-
ations) for each model formulation were performed and the main fitting statistics
(r2, RMSE, and the modelling efficiency, EF) were computed to extract the best pa-
rameter set for 2010 simulation. The same statistics were then used to evaluate the
overall accuracy of different models formulation (Janssen and Heuberger, 1995).

To evaluate the parameter uncertainty of MOD17 driven by GI, a chi-square (χ2)
test was performed comparing the sum of squared error (SSE) of the best-fit param-
eter set with SSEs of each 300 parameter set (deriving from the 300 loops). The
test excludes the parameter sets significantly different from the best-fit one. The
effect of parameter uncertainty on modelled GPP was evaluated comparing GPP
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estimates obtained with all parameter sets not excluded by the χ2-test (Richardson
et al., 2010).

Finally, to evaluate the use of GI as a proxy of fAPAR in GPP modelling at
ecosystem level, we compared MOD17original driven by GI with the same formu-
lation of the model driven by traditional radiometric VIs computed from HSI data,
NDVI and MTCI, as substitute of GI.
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4.1 Eddy covariance data

4.1.1 Data coverage

Eddy covariance system provided continuous measurements of CO2 Net Ecosys-
tem Exchange (NEE) starting from 2008 June the 20th to the end of 2010. Together
with gaps, caused by instrumental failure occurred during the study period, the ex-
clusion of low quality data and the filtering procedure, described in section 3.3.2,
also introduced gaps in the flux dataset.

Data coverage during the three growing seasons was always in the range reported
by other studies in similar ecosystem (Wohlfahrt et al., 2008b; Zeeman et al., 2010):
61% in 2008, 51% in 2009 and 58% in 2010. During 2009 data coverage was
slightly lower because of a gap of several days occurred in June, caused by a break-
down. In table 4.1 data coverage for the whole year, and the winter and growing
season periods are reported. As expected, data coverage during winter was infe-
rior compared to summer because of more frequent instrument malfunctions (e.g
snow cumulated on LI-7500 window) and because of the higher occurrence of low
quality data on the basis of turbulence steady-state criteria and integral turbulence
test (see chapter 2). The filtering techniques described in section 3.3.2.4 excluded
data flagged as low quality (class Qc 2), spikes detected on the basis of MAD and
night-time data below a given u∗ threshold (0.052 ms−1 in 2008 and 0.05 ms−1in
2009 and 2010); the relative contribution of each of the above mentioned steps on
the total amount of gaps is showed in figure 4.1.

During the growing season, on average, original gaps were lower than 15% (ex-
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Year Growing Season Winter
(data %) (data %) (data %)

2008 61
2009 46 51 43
2010 45 58 35

Table 4.1: Data coverage (% of valid data) for different periods. In 2008 the system was
installed on June the 20th so data coverage referred to the whole year and winter period is
not reported

Figure 4.1: Data coverage for different periods: from left to right, the complete dataset
(Year), the growing season period and the winter period. Original gaps and those generated
by the different filtering procedures are outlined by the colour palette. Grey area indicates
the percentage of valid data.

cept for 2009), quality test rejected nearly 10.6% of the data and 11.3% was ex-
cluded by the u∗ threshold, while the outliers represented a low portion of rejected
data (<1%).

4.1.2 Energy balance closure

The energy balance closure is an indicator of the quality of eddy covariance data.
Figure 4.2 shows the scatter plot between the available energy (Rn-G) against the
turbulent energy fluxes (H + LE) for the entire study period, from June 2008 to
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December 2010. The coefficient of determination (r2) and the slope of the regres-
sion line were considered separately for the growing season and the snow-covered
period.

Figure 4.2: Energy balance closure in the observation period (2008-2010). Green points
represent the growing season measurements, points in blue indicate measurements during
the snow covered period; The r2 and slope (closure) of the regression lines are also reported.

Green points represent snow-free period measurements and showed an r2 of 0.84
with an overall balance closure of 68%. Points in blue belong to the snow covered
period, for which the regression line has an r2 of 0.24 and a slope of 0.15. Energy
balance closure during the growing season was good and fell within values found
in other grasslands (Hiller et al., 2008) and was similar to that reported for 22
FLUXNET sites (Wilson et al., 2002) on an annual basis. On the contrary energy
balance closure during winter was poor, since the energy balance concept is hardly
applicable to a snow covered surface (Armstrong and Brun, 2008).

Results from EBR (equation 3.2) computed on growing season data showed an
overall closure of 0.80. This results further outlined a good accuracy of the mea-
sured turbulent fluxes.
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4.1.3 Flux footprint

In figure 4.3 the footprint calculated considering all data belonging to the quality
class 0 and 1 and above the critical u∗ threshold is presented. In the polar plot the
the distribution of the peak flux footprint Xmax was computed by 11.25◦sectors for
the growing seasons 2009 and 2010, and divided into percentiles for each particular
sector.

Figure 4.3: a) Airborne image of the site with the polar plot of the distribution of the peak
flux footprint (Xmax) computed by 11.25◦sectors for the growing seasons 2009 and 2010.
The isolines and different colours represent the percentiles of the distribution of Xmax in
a particular sector. (b) Wind rose: wind frequencies are expressed in percentages and
computed by 11.5◦wind sectors for the growing seasons 2009 and 2010. The colours in
each sector indicate the wind speed class.

The overall median of Xmax was 17.8 m. During daytime the median Xmax was
lower (14.23 m). These values are in agreement with other analysis conducted with
a similar experimental set-up over alpine grasslands (Marcolla and Cescatti, 2005).
Considering daytime fluxes, about 90% of the fluxes was emitted by an area within
40 m around the eddy covariance system.

Since wind direction, its daily cycle and velocity influence the flux footprint
(Hiller, 2007), the mean diurnal variation of wind field and Xmax was analysed

51



4. RESULTS

and showed in figure 4.4.
During day-time hours, the wind blew up-valley from south-east sector and Xmax

represented a small source area. During night-time, wind direction changed in some
cases to down-valley from north-northwest sector and source area was wider. Over-
all, during the growing season winds mainly came from the south-eastern quadrants,
while in winter,the north-northwest directions occurred most frequently. In all the
study period during the transition from day-time to night-time (and vice-versa) wind
speed (figure 4.4 c) was slower compared to that of central hours of the day. Gen-
erally higher velocities were found during the growing season compared to winter
period.
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Figure 4.4: Mean diurnal variation of wind direction, wind speed and Xmax during the study
period. a) Colours indicate 45◦sectors of wind directions; b) Colours indicate wind speeds
c) Colours indicate distances of the peak flux footprint from the eddy covariance system.
White areas are generated from gaps in the dataset.
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4.2 Seasonal and interannual variability in weather,
carbon fluxes and vegetation indices

4.2.1 Meteorological variables time-courses

Figure 4.5 shows the time course of the majors meteorological variables during the
study period. As measures started June 20th in 2008, analysis and comparisons
involving the winter period do not include 2008 data.

Snow covered the grassland for approximately seven months each year (figure 4.5
a); considering hydrological years, snow covered period lasted 210 days (from 28
October 2008 to 26 May 2009), in winter 2008-2009 and 202 days (from 02 Novem-
ber 2009 to 23 May 2010) in winter 2009-2010. Snow height differed markedly
between the two hydrological years: maximum height measured in 2008-2009 was
1.74 m, while was 0.95 m in 2009-2010. The first year was particularly snowy com-
pared to the average (1.10 m) of the period 1927-2005 in the same area (Mercalli
et al., 2003). Moreover maximum Snow Water Equivalent (i.e. the amount of water
contained within the snowpack computed multiplying snow density [Kg/m3] and
snow depth [m]), was 708 we (water equivalent, mm) in 2008-2009 and 378 we
(mm) in 2009-2010.

The seasonal pattern of mean diurnal values of incident PAR (figure 4.5 b) was
similar between the different years.

As expected for an alpine environment, air temperature (figure 4.5 c) showed
wide fluctuations from winter to summer and varied from a minimum of -16.8 ±
0.65◦C (two years averages) in December to a maximum of 20.8 ± 0.37 (three years
averages) in August.

Soil temperature (figure 4.5 d) varied from a minimum of to 0.5 ± 0.9◦C reached
in January to 16.5 ± 2.0◦C, in August. During winter under the snow cover Ts had
more mild and stable values and remained constantly decoupled from air temper-
ature. Just after the snow melt soil temperature exhibited a strong rise from mean
values of nearly 1.4 ± 1.1 ◦C (three days before snow-melt average) to 6.4 ± 0.7
◦C, (three days after snow-melt average), reaching in few days values similar to
those of air temperature. Considering both air or soil temperature, no remarkable
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Figure 4.5: Meteorological variables time-courses in three years of measurements, from
June 2008 to the end of 2010. a) snow height (m); b) PAR (µmolm−2s−1); c) air temperature
(◦C); d) soil temperature (◦C); e) SWC (mm3mm−3) and precipitation (mm).

differences were found among years.
With snow, precipitation (figure 4.5 e) during the snow-free period, was the me-

teorological factor that markedly differed among the three years in terms of total
amount; in 2008 (from June 20th) growing season total precipitation amounted to
229 mm, in 2009 to 172 mm, while 2010 was the year with highest total precipita-
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tion, that amounted to 362 mm. 2010 precipitation regime was the most similar to
long term average (400 mm, 1927-2001) in the same area (Mercalli et al., 2003),
while 2009 was particularly below average. Overall, the seasonal pattern of PPT
distribution was quite similar among years.

SWC varied with precipitation inputs during the growing season and had constant
values under snowpack in winter (figure 4.5 e). Seasonal SWC was generally higher
in 2010, the year with more precipitation, with a mean value of 24.6 mm3mm−3,
compared to a mean of 16.0 mm3mm−3 and 15.0 mm3mm−3 in 2008 and 2009,
respectively. SWC exhibited a typical peak around the day of snow melt when it
reached the highest value (59.4 mm3mm−3) in 2009, the year with the highest snow
height and SWE. In summary, considering the whole growing season, SWC was
higher in 2010, while 2009 was the year with the greatest input of water, coming
from snow melt, at the beginning of the growing season.

4.2.2 Temporal dynamics of carbon fluxes

In figure 4.6, time-courses of daily gap-filled NEE and the derived flux components
Reco and GPP are presented.

The three growing seasons were clearly characterised by the net uptake of CO2

(negative NEE values) and by high values of GPP. Winter periods were charac-
terised by low and constant respiratory fluxes.

The ecosystem started to be a net sink on average on DOY 153-154 (June 2nd-
3rd) and turned to a source meanly on DOY 285-290 (October 12th-17th). An
accurate description of the dates representative of different phases in the carbon
flux courses, are given in section 4.3.

The three growing seasons showed quite similar peak values of daily GPP, NEE
and Reco (8.2 ± 0.3 gCm−2d−1, -4.7 ± 0.3 gCm−2d−1, 4.43 ± 0.2 gCm−2d−1 for
GPP, NEE and Reco respectively).

The seasonal variations of fluxes were also similar within years. NEE and GPP
showed fast increases in spring, just after snow-melt (May 26th and 23th in 2009 and
2010 respectively, figure 4.5), rapidly reaching the peak in early July (13th-14th)
and thus indicating an intense carbon uptake at the beginning of the season. On
the contrary during the second part of the season (i.e. from the middle of July) the
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decreasing rate of both GPP and NEE was clearly slower compared to the increasing
one. Reco had a more gradual course, similar in both the beginning and the end of
the growing season and reached peak value meanly in the middle of July.

Little differences in this general course occurred in the three years. In 2009,
during the second part of the season, GPP showed some episodes of flattening of
the decreasing trend and recovery (around DOY 270, September 27th). Moreover
at the end of the growing season higher amount of positive pulses of NEE (also
verified through independent measurements of ecosystem respiration with chamber
method, data not shown) appeared in 2008 and 2010 compared to 2009.

Figure 4.6: Carbon flux components time-course from June 2008 to December 2010. The
green line represents daily Net Ecosystem Exchange (NEE), while red and blue line rep-
resent, ecosystem respiration (Reco) and Gross Primary Production (GPP), respectively.
Values are expressed as daily sums(gCm−2d−1).

This differences can be more easily detected in the seasonal cumulative values of
GPP, NEE and Reco and resulted in a higher carbon sequestration during growing
season 2009, compared to other years.

Cumulative values computed on a monthly aggregation, from June to October,
are presented in figure 4.7. As mentioned above, 2009 growing season had gener-
ally higher measured NEE, higher GPP and lower Reco, a difference that appeared
almost for each considered month (not in September). Seasonal integrated values
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(snow-free period) of NEE, Reco and GPP were respectively: -195.6, 343.8 and
539.5 gCm−2 in 2008, -221.78, 343.8, 565.6 gCm−2 in 2009 and -182.14, 355.3,
537.4 gCm−2 in 2010.

Figure 4.7: Monthly Carbon flux components; The total height of the bar represents the
monthly GPP, the dashed portion the monthly Reco, and the colour filled portion is the net
difference of the two, i.e. NEP (Net Ecosystem Production). The term NEP is here the
opposite of NEE and is introduced to facilitate graphical reading.

Annual cumulative NEE, GPP, and Reco for the years 2009 and 2010 are pre-
sented in figure 4.8. As previously described, GPP and NEE increasing rates were
high at the beginning of the growing season just after snow-melt (SM dates are indi-
cated as vertical lines in figure and 4.8 and 4.9), and became slower after the middle
of July. Considering inter-annual variability, despite differences in final cumulative
values, the rate of CO2 sequestration and release in the first part of the growing sea-
son is fairly constant within years. In figure 4.9, which focuses only on NEE, 2008
data are added to outline the similar shape of cumulative curves in the three years.
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Figure 4.8: Annual cumulative NEE, Reco, and GPP (in green, red and blue respectively),
from January to December. Vertical lines indicate the dates of snow-melt: May 26th and
23th in 2009 and 2010 respectively.

Figure 4.9: Annual cumulative NEE in three measurements years from January (June in the
case of 2008) to December. Vertical lines indicate date of snow-melt: May 26th and 23th
in 2009 and 2010 respectively. The shift towards lower values for 2008 data is caused by
the absence of measures in the period form January to June that results in a lack of positive
cumulative values (i.e. cumulative winter respiration)
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From the comparison between meteorological and flux data (figure 4.5 and 4.6)
it is clear that the snow cover duration was a constraint for the period available for
photosynthesis; nevertheless, while in spring photosynthetic activity is physically
limited by the snowpack, in autumn GPP and NEE reached minimum values be-
fore the first snow fall. Furthermore, from this comparison emerged that the year
2009, with lower precipitation and SWC during the growing season but higher snow
height in the preceding winter and thus an higher water input in the beginning of
the growing season, had higher GPP, NEE, and lower Reco, compared to 2010, the
year with more precipitation and SWC.

Moreover the recover of carbon sequestration observed during late summer-autumn
2009, was associated with favourable values of some meteorological factors (rain
pulses after a dry period and warmer temperature); in the other years, during the
same period, weather conditions (PPT, temperature, PAR) were generally more lim-
iting.

A more exhaustive analysis of the environmental controls over carbon exchange
is given in section 4.4.

4.2.2.1 Light-response curves

Light-response curves analysed by means of the rectangular hyperbolic light-response
function (see section 3.4.2) allowed the characterisation of seasonal changes of NEE
in the response to PPFD (Photosynthetic Photon Flux Density). Figure 4.10 presents
light-response curves calculated for the three growing seasons and divided for dif-
ferent months, characterised by different LAI values (1.3 in June, 2.5 in July, 2.1 in
August, 1.2 in September, no LAI data for October). The light-response curve for
June 2009 was not reported as for this month the available data were not sufficient
to obtain a good fit (see section 4.1).

The response of measured NEE to PPFD, has a clear course from June to October
which remains constant within years. During the early part of the growing season,
FMAX (considered at 2000 µmolm−2s−1, FMAX 2000) reached its maximum value in
July (-12.45, -12.2 and -11.45 µmolm−2s−1, in 2008, 2009 and 2010 respectively)
and decreased gradually from August to October (minimum values -2.45, -1.13, -
1.49 µmolm−2s−1 for 2008, 2009 and 2010 respectively). During the senescence
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period (September-October) light saturation was reached at very low PPFD values
(below 200 µmolm−2s−1).

The quantum yield, α (molmol−1), found in July, the month with the highest
FMAX , was 0.03, 0.076, 0.078 in 2008, 2009 and 2010 respectively. The val-
ues found for both FMAX and α were similar to those reported in other studies
in C3 grasslands and in particular in mountain grasslands (Flanagan et al., 2002;
Wohlfahrt et al., 2008a)
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Figure 4.10: Examples of light-response curves of NEE plotted for different months from
2008 to 2010. Fitted curves represent the rectangular hyperbolic light-response function as
described in section 3.16.
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4.2.3 Colour and spectral Vegetation Indices time-courses

Time-series of midday GI derived from the analysis of digital camera images (sec-
tion 3.3.4), computed for the growing season 2009-2010, are reported in figure 4.11,
while NDVI and MTCI obtained from HSI data are showed in figure 4.12. GI began
rising slowly immediately after the snow-melt and at faster rate after DOY 165-170
(June the 14-19th), reaching its maximum in July (around DOY 200, July the 15-
19th) in both years. Over the subsequent weeks, GI showed a steady decline due to
late summer and autumn yellowing. In 2009, from DOY 270 (September the 27th)
a pronounced localised increases in GI was observed. Spectral VIs (i.e. NDVI,

Figure 4.11: Daily time-course of the Greenness Index (GI) computed from continuous
digital camera imagery. 2009 (May-Dec) and 2010 (Jan-Dec) data are plotted in light-
green and dark-green respectively. Lines are cubic smoothing splines fitted to data.

MTCI) and GI were in accordance during spring rise and early summer (DOY 150
to 200); in late summer and autumn 2009 and 2010 (from DOY 200), MTCI and GI
showed similar patterns, while NDVI decreased more slowly than both MTCI and
GI.

In both years, springtime increases in GI were quite synchronous with GPP, but
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afterwards, GPP tended to anticipate changes in canopy greenness (see section 4.3).

Figure 4.12: Summer (Jun-Oct) daily time-course of MTCI and NDVI, derived from con-
tinuous HyperSpectral Irradiometer (HSI) measurements. (left) MTCI: 2009 and 2010 data
are plotted in light-green and dark-green respectively; (right) NDVI: 2009 and 2010 data
are plotted in light-red and dark-red respectively.

The increase in GI occurred in autumn 2009 reflected the weaker but detectable
increase in GPP that occured in correspondence to rain pulses (around DOY 270)
with a subsequent increase in SWC and warm of soil temperature. This autumnal
recovery was detected also by MTCI but not by NDVI.

In order to evaluate the strength of the relations between Vegetation Indexes,
ancillary measurements and GPP, correlation matrix are reported in table 4.2 and
4.3.
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Total Biomass Green Biomass LAI GVE

GI n.s 0.68 0.77 0.72

Table 4.2: Pearson correlation coefficient between GI derived from digital camera imagery,
and ancillary data (Total Biomass, Green Biomass, LAI and GVE (i.e. Greenness Visual
Estimation)); n.s. represents non significant correlation.

GI GPP MTCI NDVI

GI 1 0.79 0.82 0.69
GPP 1 0.95 0.83

MTCI 1 0.87
NDVI 1

Table 4.3: Correlation matrix between GI derived from digital camera imagery, GPP and
VIs computed from spectral signatures collected with the HSI (MTCI, NDVI).

4.3 Phenology of ecosystem processes and canopy
greenness

The methods applied to derive phenological metrics from canopy function and
greenness development, allowed to obtain begin of season (BGS) and end of sea-
son (EGS) dates for each variable and year considered, and consequently gave the
possibility to derive the length of the growing season (GSL) from a functional and
structural point of view. In table 4.4 phenological dates extracted from NEE, GPP
and GI and the date of snow-melt (SM) and snow-in (SI) are presented. The snow
free period lasted approximately 160 days in each season. This number can slightly
change (± 2 days) deriving snow-melt and snow-in events on the basis of the snow
depth sensor measurements (target area with a radus of approximately 50 cm) or
looking at digital camera images (representative of a wider area). The ecosystem
turned to a sink approximately 6 and 11 days after snow-melt in 2009 and 2010
respectively, and the CUP lasted 132 days in 2009 and 137 days in 2010. Regarding
GPP, in 2009 10% of the spring development was reached 3 days after snow-melt
and 4 days in 2010. As previously described, GI dynamic was in agreement with
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GPP, but the increase in GI was slight slower in early spring with a 10% of max-
imum canopy greenness reached 5 and 7 days (2009 and 2010 respectively) after
10% of GPP; while in autumn canopy greenness reached 90% of decrease 13 and 9
days after GPP.

Method CUP 1 CUP 2 CUP 3 GPP 10% GI 10% Snow

BGS 2009 152 152 153.5 149 154 SM 2009 146
2010 154 154 156.9 147 154 2010 143

EGS 2009 284 284 285.4 290 303 SI 2009 306
2010 295 291 292.3 295 304 2010 303

GSL (days) 2009 132 132 131.9 141 149 snow-free (days) 2009 160
2010 141 137 135.9 148 150 2010 160

Table 4.4: Phenological dates extracted from carbon components (NEE and GPP) and
canopy greening (GI) dynamics. BGS is the beginning, EGS the end and GSL the length of
the growing season. Methods used are described in section 3.4.1; CUP refers to Carbon
Uptake Period methods used to derive dates when NEE turns from positive to negative
(BGS) values and the reverse (EGS). For both GPP and GI, 10% of the spring development
and the 90% of the autumn decrease were considered as BGS and EGS. In Snow columns,
dates of snow-melt (SM), snow-in (SI) and days of snow-free period are reported. GSL and
snow free period duration are computed as differences between BGS and EGS and between
SM and SI, respectively.

4.4 Multi-scale analysis of environmental controls
over carbon exchange

Results of the wavelet coherence analysis allowed to identify correlations between
environmental variables and photosynthesis at multiple time scales, along the time
domain (i.e.days of the year) during three years of measurements (from June 2008,
to December 2010). Input data were the half-hourly values and the time-scales
considered varied from daily (1 day) to nearly annual (256 days). Figures from
4.13 to 4.16 showed the results of wavelet coherence analysis between GPP and air
temperature, soil temperature, SWC and PAR. Only GPP was analysed, rather than
NEE, because the latter is governed by factors that control both assimilation and
respiration components.

In plots (from 4.13 to 4.16), Y-axis represents the time scales in days, expressed
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with an exponential annotation; the coloured areas represent regions of similar peri-
odicities of two time-series power spectrum, from values of high coherence in red,
to values of low coherence in blue. The black line on the margins of the plots, de-
limits the cone of influence (i.e. the region not influenced by edge effects), outside
which the results are unreliable and have to be interpreted carefully (Vargas et al.,
2010).

The big blue areas in the plots represent the winter periods, during which GPP
was null. For each plot different coherences at different temporal scales along the
time domain can be identified.

Regarding air temperature (figure 4.13) the highest coherence with GPP was at
the daily scale during the growing season, indicative of a common diel cycle be-
tween temperature and photosynthesis during the period of plant activity. Some lo-
calised coherences at larger scales (16-32 days) can be identified during senescence
period, representing similar decreasing patterns of late summer/autumnal tempera-
ture and GPP. Nevertheless no clear seasonal control of air temperature on photo-
synthesis appears from this analysis.

Figure 4.13: Wavelet coherence analysis between GPP and air temperature from June 2008
to December 2010. On the Y-axis the time-scale is reported. Low to high coherence values
are represented in the color palette from blue to red.

Like air temperature, soil temperature (figure 4.14), within the growing season
exhibited a daily cycle coherence with photosynthesis. Moreover the seasonal and
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inter-seasonal coherences are generally higher compared to air temperature ones,
underlying that soil temperature and GPP time-courses were strictly coupled by
the presence of snow on ground; since snow covered the ground for approximately
seven months during winter (see section 4.2.1), under the snow pack photosynthesis
was inhibited and soil remained isolated from air maintaining mild, constant values
(figure 4.5 d). Just after the snow-melt soil temperature exhibited a fast rise, that
probably positively influenced carbon uptake processes. The coherence related to
snow-melt rise is evident in figure 4.14, in both 2009 and 2010 (while in 2008 mea-
surements started after the snow-melt): a wide (4-32 days) red area was evident just
after the end of the winter period (early June). At the end of the 2009 growing sea-
son a 16-32 days coherence can be identified: this correlation could be explained
by the synchronous recovery of GPP and soil temperature flattening during the de-
creasing trend occurred in late summer/autumn 2009.

Figure 4.14: Wavelet coherence analysis between GPP and soil temperature from June
2008 to December 2010. On the Y-axis the time-scale is reported. Low to high coherence
values are represented in the color palette from blue to red.

Wavelet coherence analysis between SWC and GPP (figure 4.15) showed princi-
pally two kind of relationships: on the seasonal scale and on the weekly (from 2 to
>8 days) scale, while no daily cycle was detected. Seasonal coherence reflected that
also SWC and GPP had similar time-course regulated by the snow period just like
soil temperature. The weekly coherence showed that during the growing season,
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relationships between soil moisture and GPP were evident in specific periods, asso-
ciated with rainfall inputs producing effects on GPP lasting some days. Moreover a
16-32 days weak coherence appeared in spring 2009, the year with the higher input
of water in soil during the snow-melt (see section 4.2.1), but it is not present in the
following year, that had lower water input at the early beginning of the season.

Figure 4.15: Wavelet coherence analysis between GPP and Soil Water Content (SWC) from
June 2008 to December 2010. On the Y-axis the time-scale is reported. Low to high coher-
ence values are represented in the color palette from blue to red.

Finally wavelet coherence between GPP and PAR is showed in figure 4.16. As
expected PAR had a great influence on the daily cycle of photosynthesis, within the
growing season. Nevertheless on the inter-seasonal time scale, the coherence be-
tween GPP and PAR is again limited by the snow presence on ground. Indeed, PAR
started to rise early (around February) while vegetation remained decoupled from
ambient light conditions until the snow-melt in late May: thus when GPP began to
rise PAR had already reached its maximum value. A localised coherence was found
at the end of the 2010 growing season, that was likely due to the simultaneous de-
crease of GPP and PAR (i.e cloudy conditions) in that period (e.g. 91 µmolm−2s−1

around DOY 267).
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Figure 4.16: Wavelet coherence analysis between GPP and Photosynthetically Active Ra-
diation (PAR) from June 2008 to December 2010. On the Y-axis the time-scale is reported.
Low to high coherence values are represented in the color palette from blue to red.

4.5 GPP modelling

The statistics of all model formulations tested in this study are presented in table
4.5 and 4.6.

Results showed that colour indices (i.e. GI), when combined with meteorology
can be successfully used for the description of the dynamics of daily GPP. In figure
from 4.17 to 4.24 the results of 2009 and 2010 simulations are presented, compared
to daily GPP observed data, for different model formulations. As previously de-
scribed, the digital camera was installed in May 2009, and thus model optimisation
was performed starting from this date, while in 2010 GPP was simulated starting
from January.

Good results were obtained in 2009 optimisation (RMSE= 0.981 gCm−2d−1,
EF=0.828, r2=0.829) using the MOD17original formulation 3.4.4 and temporal vari-
ability of daily GPP is quite well represented (figure 4.17 (left)); nevertheless when
applying the optimised parameters to simulate 2010 GPP (figure 4.17 (right)), a
systematic overestimation was observed at the beginning of the season: with this
formulation, the optimised parameters lead to an estimation of the beginning of
photosynthetic activity highly in advance, compared to measured data. Air temper-
ature and PAR used in MOD17original started to increase, when vegetation was still
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covered by snow: the decoupling of vegetation processes from the meteorological
factors considered in this MOD17 formulation, caused the divergence in estimated
and measured early season data. Considering cumulative GPP while in 2009 ob-
served and modeled data were quite in agreement (observed GPP=565.0 gCm−2,
modeled GPP=553 gCm−2) in 2010 the model overestimated GPP by more than
100 gCm−2 (observed GPP=537.4 gCm−2, modeled GPP = 646.4 gCm−2).

Figure 4.17: MOD17original 2009 (left) and 2010 (right) results. Seasonal dynamics of mea-
sured (black) and modelled (red) GPP in 2009 and in 2010 are showed. Model parameters
were optimised in 2009 and the performance of the parametrization was tested using the
2010 data.

The use of the formulation that considers the snow threshold (MOD17snow, figure
4.18) overcame the problem of early season overestimation, and gave better results
in 2010 (RMSE= 0.887 gCm−2d−1, EF=0.854, r2=0.868).
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Figure 4.18: MOD17snow simulation: seasonal dynamics of measured (black) and modelled
(red) GPP in 2010 are showed. Vertical lines indicate DOY of snow-melt and snow-in.
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The formulation MOD17T s (figure 4.19), generally gave better results both in
2009 and 2010 simulation estimates (RMSE= 0.833 and 0.864 gCm−2d−1 , EF=0.876
and 0.863, r2=0.887 and 0.879). In particular this formulation allowed a good es-
timate of the timing of GPP rise in 2010 without the need of a snow threshold.
MOD17T s provided the best estimates of cumulative GPP, highly in accordance
with the observed cumulative both in 2009 (observed GPP=565.0 gCm−2, modeled
GPP = 565.6 gCm−2) and 2010 (observed GPP=537.4 gCm−2, modeled GPP =
538.0 gCm−2).

Figure 4.19: MOD17T s 2009 (left) and 2010 (right) results. Seasonal dynamics of measured
(black) and modelled (red) GPP in 2009 and in 2010 are showed. Model parameters were
optimised in 2009 and the performance of the parametrization was tested using the 2010
data.

MOD17SWC (figure 4.20) that included SWC in place of VPD gave good re-
sults, but however did not differed substantially from those of MOD17original and,
since it was associated with Ta, it required a snow threshold as well. On the other
hand, MOD17T s,SWC, showed in figure 4.21, joined the advantages of the use of
soil temperature with the use of SWC and provided better estimates (RMSE= 0.990
gCm−2d−1, EF=0.824, r2=0.841 in 2009 and RMSE=0.88 gCm−2d−1, EF=0.857,
r2=0.873 in 2010).
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Figure 4.20: MOD17SWC 2009 (left) and 2010 (right) results. Seasonal dynamics of mea-
sured (black) and modelled (red) GPP in 2009 and in 2010 are showed. A snow threshold
is applied in 2010. Model parameters were optimised in 2009 and the performance of the
parametrization was tested using the 2010 data.

Figure 4.21: MOD17T s,SWC 2009 (left) and 2010 (right) results. Seasonal dynamics of mea-
sured (black) and modelled (red) GPP in 2009 and in 2010 are showed. Model parameters
were optimised in 2009 and the performance of the parametrization was tested using the
2010 data.
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2009 2010
Model formulation RMSE EF r2 RMSE EF r2

(gCm−2d−1) (gCm−2d−1)

GI

MOD17original 0.981 0.828 0.829 1.029 0.790 0.816
MOD17snow 0.887 0.854 0.868
MOD17T s 0.833 0.876 0.887 0.864 0.863 0.879
MOD17SWC 1.092 0.795 0.813 0.936 0.835 0.852
MOD17T s,SWC 0.990 0.824 0.841 0.880 0.857 0.873

Table 4.5: Summary of fitting statistics (Root Mean Square Error, RMSE, model efficiency,
EF and determination coefficient, r2) of different model formulations used to simulate daily
GPP. Digital camera Greenness Index (GI) was used as a proxy of fAPAR in combination
with different meteorological drivers: TaMin and VPD, without (MOD17original) and with a
snow threshold (MOD17snow),TsMin and VPD (MOD17T s), TaMin and SWC (MOD17SWC),
TsMin and SWC (MOD17T s,SWC).
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4.5.1 Parameter uncertainty evaluation

In this section results of the analysis on parameter uncertainty are presented. As an
example results obtained with the original formulation of MOD17 constrained by
the snow threshold (i.e, MOD17snow) driven by webcam GI are showed. Following
the method described in section 3.4.4, 60 parameter sets (over 300 tested) consid-
ered “as good as” the best set of model parameters estimated were use to run the
model forward with the aim of propagate the uncertainty of model parameters into
GPP estimates. The uncertainty in modelled GPP due to model parameters uncer-
tainty is represented in figure 4.22: the seasonal course of daily GPP in 2009 and
2010 obtained using the best-fit model parameters is represented in red, while grey
area represents the 90% CI of the modeled daily GPP.

Figure 4.22: Course of daily 2009 and 2010 GPP obtained using the best model fit pa-
rameters of MOD17snow driven by webcam GI (red line) and GPP estimates range due to
parameter uncertainty (grey area)

The results obtained from this analysis is referred only to one source of uncer-
tainty (i.e. model parameter uncertainty) and showed that model parameters can be
constrained quite well using MOD17 driven by meteorology and using GI as proxy
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of the fAPAR. The magnitude of the uncertainty related to model parameters was
similar across model structures (data not shown).

4.5.2 Comparing GI, NDVI and MTCI

We compared the use of GI in simulating GPP daily variability with the use of
spectral indices computed from HSI data. In figure 4.23 results of MOD17original

driven by NDVI is presented. The use of NDVI gave slightly worse results (ta-
ble 4.6) compared to the use of GI, both in optimisation 2009 (RMSE= 1.133
gCm−2d−1, EF=0.724, r2=0.734) and in the evaluation of 2010 simulation (RMSE=
1.103 gCm−2d−1, EF=0.71, r2=0.73). Looking at the seasonal course of modelled
GPP it can be seen that NDVI failed in describing the decreasing phase of late
summer-autumn. On the contrary, the use of MTCI (figure 4.24) provided good
estimates in both years (table 4.6). This is due to the fact that NDVI is less sensitive
to little green variations compared to GI and MTCI and it is by far more related to
structure, LAI and total biomass, while MTCI is based on wavelengths in the red-
edge region which is more sensitive to chlorophyll and green variations (Dash and
Curran, 2004).

2009 2010
Model formulation RMSE EF r2 RMSE EF r2

(gCm−2d−1) (gCm−2d−1)

NDVI MOD17original 1.133 0.724 0.734 1.103 0.710 0.730
MTCI MOD17original 0.896 0.827 0.843 0.970 0.834 0.761

Table 4.6: Summary of fitting statistics (Root Mean Square Error, RMSE, model efficiency,
EF and determination coefficient, r2) MOD17original using NDVI ( Normalized Difference
Vegetation Index) and MTCI (MERIS Terrestrial Chlorophyll Index) as proxy of fAPAR.
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Figure 4.23: MOD17NDV I 2009 (left) and 2010 (right) results. Seasonal dynamics of mea-
sured (black) and modelled (red) GPP in 2009 and in 2010 are showed. Model parameters
were optimised in 2009 and the performance of the parametrization was tested using the
2010 data.

Figure 4.24: MOD17MTCI 2009 (left) and 2010 (right) results. Seasonal dynamics of mea-
sured (black) and modelled (red) GPP in 2009 and in 2010 are showed. Model parameters
were optimised in 2009 and the performance of the parametrization was tested using the
2010 data.
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The aim of this research was to study the CO2 exchange of a mountain grassland
using eddy covariance method integrated with proximal sensing observations and
application of LUE models.

The studied grassland is an important site for CO2 exchange researches, mainly
because it is a poorly investigated ecosystem in carbon cycle studies, located in a
remote area, at high elevation (2160 m asl) and characterised by a long duration of
the snow season. Moreover the fast dynamics of carbon fluxes and canopy green-
ing, and the typical alpine climate, represent an interesting test-case for developing
primary production models.

Eddy covariance was used to continuously measure the CO2 Net Ecosystem Ex-
change (NEE) and derive its major component processes, Gross Primary Production
(GPP) and ecosystem Respiration (Reco) at half-hourly time step, allowing the anal-
ysis of carbon flux dynamics at different time scales. Given theoretical assumptions
(flat terrain, fully turbulent flux, uniform target vegetation, negligible air density
fluctuations and flow divergence) required for the application of the method, and the
general complexity of the application of such measurements in mountain environ-
ments (Hammerle et al., 2007; Hiller et al., 2008), eddy covariance measurements
need an accurate evaluation of the data quality. We found that during the study pe-
riod (from June 2008 to December 2010) the data quality, evaluated on the basis
of well established standard procedures (Wilson et al., 2002; Mauder and Foken,
2004), fell within the range published in recent literature (Marcolla and Cescatti,
2005; Wohlfahrt et al., 2008b). In detail, we found that more data were rejected
during the winter period, while data coverage during the growing season was in the
average reported by other studies (Xu and Baldocchi, 2004; Rogiers et al., 2005;
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Wohlfahrt et al., 2008b).
Regarding energy balance closure, the greatest imbalance occurred during win-

ter period. This can be explained by the definition of energy balance, formulated
in terms of energy exchanges taking place within an interface that is assumed in-
finitesimally thin and having neither mass nor specific heat exchanges. Penetration
of shortwave radiation into the snowpack as well as mass movements and phase
changes within the snowpack make this concept barely applicable to a snow cov-
ered surface (Armstrong and Brun, 2008). During the season of vegetation activ-
ity, energy balance closure assessed with two different methods (linear regression
(slope) and EBR) supported the consistency of flux measurements. In detail, since
the energy storage (e.g. biomass and soil energy storage), one of the component
of the energy balance, was not considered, the method based on linear regression
between half-hourly data of turbulent fluxes (H and LE) and available energy (Rn -
G), could be affected by small scale changes in energy storage. Compared to linear
regression, EBR (described in section 3.3.2.2) gave indication of an higher seasonal
energy balance closure. Even if EBR was thought to potentially overlook biases in
the half-hourly data, (Wilson et al., 2002) (such as underestimated fluxes at night),
using this method energy storage tend to be null by summation of energy balance
terms over a wider time period. As a consequence, comparison of results from the
two methods demonstrated that a certain percentage of summer imbalance could
be explained by neglected energy storage rather than inaccurate eddy covariance
measurements.

Finally the evaluation of the distribution of Xmax and of the wind field confirmed
that during the growing season the measured scalar flux was representative of the
study area and that the contribution of fluxes from the target ecosystem is by far
dominating the overall budget.

Proximal sensing in this study was mainly oriented towards the use of a digital
camera that continuously tracked the phenology of the vegetation and the extrac-
tion of a colour index (Greenness Index, GI) related to canopy greenness. Results
showed that digital camera imagery is well-suited for monitoring phenology (in
terms of canopy greenness) of a mountain grassland. The greenness index derived
from collected images provided reliable information on vegetation status with a
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daily temporal resolution. This achievement offered the possibility of a continu-
ous monitoring of timing and rate of grass development that is not feasible with
traditional phenological observations in such ecosystems, often located in remote
areas. The experience of PhenoALP project, which provided major information on
the monitoring of grassland phenology and defined a field protocol for plant phe-
nology, outlined indeed the complexity to obtain an integrated indicator of canopy
development with traditional field observations, because of the high biodiversity of
(alpine) grassland (Körner, 2003).

Moreover the comparison of well-known spectral indices (NDVI and MTCI) de-
rived from an Hyperpectral Irradiometer (HSI) (Meroni et al., 2011; Cogliati, 2011)
with the colour index (i.e. GI) derived from digital photography further demon-
strated the reliability of the use of GI in following changes in canopy structure and
in LUE models aimed at the description of GPP.

In the following sections results derived from the integration of the described
approaches are discussed.

Analysis of carbon fluxes and Vegetation Indices variations

Through the analysis of NEE, GPP, Reco, GI and meteorology time-courses over
the study period, the carbon flux dynamics and the vegetation development of this
mountain ecosystem were characterised. The study site, located at an elevation of
2160 m slm, undergoes a strong seasonality of the environmental factors that highly
influence ecosystem processes. In particular the snow cover duration regulated the
short period available for the vegetation development and activity, that lasted ap-
proximately 5 months. During the brief growing season carbon fluxes showed a
clear seasonal time-course, similar within the three years of study: photosynthesis
was optimised trough a fast increase of carbon uptake at the beginning of the grow-
ing season until its maximum peak, nearly in the middle of July, while in the second
part of the season a slower decline is observed; ecosystem respiration on the con-
trary showed a fairly constant increasing and decreasing trend. This kind of trend
is likely to be similar to other high elevation grassland (Körner, 2003) but different
from trend found in other cold climate ecosystems (Humphreys and Lafleur, 2011).
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No particular differences were found in the duration of the growing season assessed
by several methods. In particular results confirmed that the photosynthetic activity,
considered both as gross and net uptake, started few days after the snow-melt in
late spring. On the other hand, in autumn the end of the growing season, especially
from a functional point of view, occurred several days (10-15) before the first snow
fall. Considering weather conditions, while at the moment of snow disappearance
developing grass generally faced to non-limitant conditions, in autumn the decreas-
ing trend of meteorological variables likely had a stronger downregulating effect on
photosynthesis. Studies on grassland located at lower elevation (Wohlfahrt et al.,
2008b), where snow-melt occurred earlier in the season reported that ecosystem
turned to a sink several days (on average 25 days) after snow-melt and during this
period the grassland continued to lose carbon on a daily basis.

Different authors underlined (Körner, 2003; Jonas et al., 2008) how snow cover
is, on the one hand, a physical constraint for vegetation development and func-
tioning, but at the same time it has a protective role for plants from the severe
weather stresses typical of cold climate environments. As a consequence, consid-
ering Torgnon grassland, the favourable spring weather occurred after snow-melt
allowed the fast carbon uptake at the beginning of the growing season.

Despite the observed inter-annual similar trends of carbon fluxes and duration
of the growing season, small differences, found in seasonal cumulative NEE, GPP
and Reco among years, seemed to be related to the timing of certain meteorological
events. No particular differences were indeed found in overall meteorological data
within years, except for snow height, SWE and the total amount of summer precipi-
tation in 2009 and 2010. Higher seasonal values of GPP and NEE (and lower Reco)
were found in 2009, the year with an higher water (and probably nutrients) input
at the beginning of the season and more dry conditions (i.e. lower PPT and SWC)
during summer; lower values of carbon uptake (and higher Reco) were found in
2010, the year with a lower snow depth and higher total amount of PPT and SWC
in summer. These results gave an indication of the importance of the timing of wa-
ter availability: water from the snow-melt potentially had a major (or different) role
compared to total seasonal precipitation and SWC. Even if in a different ecosystem
(high elevation subalpine forest), Monson et al. (2002) found that the spring avail-
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ability of liquid soil water after snow melt, combined with warmer temperatures,
constitutes the set of environmental controls causing full recovery of carbon up-
take. In particular Monson et al. (2005) stated that, although the use of the melted
snow water continues for some time after snow melt, the use of winter snow versus
summer rain water is not yet clearly understood and thus it is an interesting issue
to deepen. Moreover the autumnal course of NEE in 2009 did not exhibited those
peaks of localised changes towards a net release, occurring in other years. This fact
was related to particular favourable events (soil temperature and moisture) found
in that specific period compared to other years. Another study (Xu and Baldocchi,
2004) reported, for a Mediterranean grassland, that the timing of rain events had
more impact than the total amount of precipitation on ecosystem GPP and NEE.

As GPP, the time-course of GI during two years of observation confirmed that
in this mountain grassland development of the canopy was strongly controlled by
snow cover duration and in particular by snow-melt date: once snow disappeared the
canopy suddenly started to green-up as outlined also in Jonas et al. (2008). These
observations have been investigated in Migliavacca et al. (2011a), a study aimed at
monitoring and modelling vegetation phenology and physiology at Torgnon grass-
land. With a model data fusion approach combining the Growing Season Index
(GSI) (Jolly et al., 2005) and colour indices derived from digital photography (GI),
authors found that main environmental cues identified for grasslands phenology
were snow-melting in spring, while autumn phenology was the result of the com-
bined effect of cold temperatures and decreasing day length.

Considering BGS dates the lag observed in spring increasing trend between GI
and GPP was mainly related to the pattern of canopy green-up: matgrass (Nardus
stricta L.), which is the dominant graminaceous species at the site, started to green
from the bottom, below the dry and brown dead biomass of the previous year, thus
not completely perceptible by the camera low view angle. GI tracked the increases
in canopy greenness only when green parts started to be more visible from above.
The result of this mechanism was a delay of a few days (5-7 days) between GPP
and GI in BGS dates.

In 2009, during late summer-autumn, when senescence mechanisms were already
active and the canopy was yellowing, a week characterised by favourable weather
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conditions resulted in a rebound of GI that followed the stimulation of photosyn-
thetic activity highlighted by the concomitant observed increase in GPP. This au-
tumnal functional and structural recovery, well detected by GPP and GI, was also
detected by MTCI but not by NDVI. During senescence inactive phytoelements on
the top canopy increased, however, a fraction of green biomass, which maintained
photosynthetic activity as revealed by GPP, was still present. In both years autumn
NDVI reacted slower than MTCI to variations in chlorophyll content and green
biomass due to the fact that NDVI is more related to structure, LAI and total biomass
while the MTCI index is based on wavelengths in the red-edge region which is more
sensitive to chlorophyll and green variations (Dash and Curran, 2004). As GI re-
sponses and fluctuations were similar to the ones of more sophisticated VIs such as
the MTCI, these observations allowed to highlight the potential usefulness of digital
repeat photography in accurately tracking weekly variations in canopy greenness.

Finally EGS dates between GI and GPP differed by 9-13 days: this fact is in part
due to noise in GI curve at the end of the growing season.

For the reasons explained (green-up pattern and noise at the end of the GI curve),
the comparison between GI and GPP curves could be done considering narrower
thresholds (e.g., 75 %, data not shown) both for BGS and EGS. However, if the aim
is to track changes in GSL within years, as result of interannual variation in climate,
the threshold of 10 % better represents BGS and EGS events.

Multi-scale analysis of environmental controls over carbon exchange

Wavelet coherence analysis allowed to discern controls of different environmental
factors on photosynthesis (GPP) at multi-temporal scales, from day to year. Fur-
thermore this analysis clarified some issues emerged from the comparison of car-
bon flux and meteorological time-series. The main findings of wavelet analysis is
that at big time-scale (seasonal and inter-seasonal), GPP was particularly associated
with those factors that are influenced by snowpack presence, i.e. soil temperature
and moisture, while at lower time-scales, during the growing season, photosynthetic
processes depend on daily temperature (both air and soil) and PAR cycles. These
results confirmed that the snow cover has an important action in protecting vege-
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tation from the outside environment, indeed by thermal insulation snow dampens
soil temperature oscillations and generally keep soil far from freezing temperature
(Zhang, 2005). In detail snow limited the influence of meteorological factors such
as PAR and air temperature at seasonal time scale: the increase of temperature and
PAR occurs earlier than the date of snow-melt and the grassland, covered by snow,
can not be influenced by those factors.

Localised coherences proper of each growing season were found, highlighting
how multiple factors influenced photosynthesis differentially within years and in
particular period of the season.

Wavelet analysis between GPP and soil temperature revealed a strong coherence
at multiple time scales and, compared to air, showed a clear inter-seasonal influence.
A localised coherence of several days just after the snow-melt, outlined the role
that the fast rise showed by soil temperature has in driving the concurrent fast rise
described for GPP in spring. Soil temperature kept above zero and stable below
the insulating snow pack, suddenly raised to high values after the snow melt thus
providing good condition for photosynthetic activity.

The role of soil temperature on photosynthetic activity is outlined also by a
weekly coherence evident at the end of growing season 2009 during which the re-
covery of GPP occurred.

As soil temperature, SWC showed an important coherence at inter-seasonal scale,
and a weak coherence just after the snow-melt in 2009, not present in 2010. Consid-
ering that 2009 and 2010 are contrasting years regarding the amount of winter snow
depth and SWC in early spring, this coherence could underline the role of snow wa-
ter storage on subsequent GPP raise. As previously described, other authors Körner
(2003); Monson et al. (2002, 2005) remarked the role of available liquid water on
spring carbon uptake recovery. Beside, also the availability of nutrients is a critical
factor at the beginning of the growing season. Nevertheless the role of the amount of
nutrients stored in the snowpack and their release at snow melt is not well clarified
(Kuhn et al., 1998) and could be an interesting point of development.

Weekly coherences between SWC and GPP were observed along all the study
period revealing the delayed effect of rain pulses on photosynthetic activity that
lasted for several days (2-8 days). These pulses especially when associated with
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warm temperature are known to highly influence the respiration component in other
ecosystems (Vargas et al., 2011), thus resulting in lower NEE. The latter represents
another interesting issue to investigate in the studied grassland.

Wavelet analysis between PAR and GPP, clearly showed the expected daily co-
herence between incident photosynthetically active radiation and photosynthesis,
while at the end of growing season 2010 low values of PAR were in coherence with
the decreasing phase of GPP.

In summary, the wavelet coherence analysis allowed to i) distinguish the time-
scale of influence of diverse meteorological factors over GPP in this grassland; ii)
draw insights on the (small) differences observed in GPP among years on the basis
of localised events, such as an higher input of water at the beginning of 2009, some
days of particular warmer soil temperature at the end of 2009, and some days of
particular unfavourable PAR condition at the end of 2010.

Gross Primary Production modelling

The analysis based on LUE models highlighted that GPP can be efficiently modelled
by combining a color index (GI), derived from the analysis of digital camera images,
with different meteorological drivers. The approach was based on the algorithm
MOD17 (Heinsch et al., 2006) that considers as meteorological limiting factors,
air temperature and VPD. Since, in this mountain ecosystem other meteorological
factors, such as snow, soil temperature and SWC, emerged to exert an important
role, we tested different model formulations considering those factors.

In detail, results demonstrated that the use of the original MOD17 formulation
in this ecosystem, highly influenced by the presence of snow on ground, caused an
overestimation in simulating GPP at the beginning of the season. As previously
described, the physical separation of ground vegetation from the factors considered
in the original model formulation caused a divergence in estimated and measured
early season data. The same problem is not evident at the end of the growing season
because vegetation activity declined before the first snow fall. As observed from
the seasonal courses of carbon components and meteorological factors, the day of
snow-melt had a greater influence on CO2 fluxes compared to the date of snow
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appearance as, while in spring photosynthetic activity is physically limited by the
snowpack, in autumn both photosynthesis and phenology were mainly influenced
by the combined effect of declining meteorological factors. With original MOD17
formulation temporal variability of daily GPP during the growing season is gen-
erally well represented, hence the application of a simple snow presence/absence
threshold overcame the problem of spring overestimation. However the application
of this kind of threshold does not give further insights on the actual functioning of
the ecosystem in this particular period of the season. The use of soil temperature
rather than air temperature allowed to correctly estimate GPP rise at the beginning
of the season even without the use of the snow threshold. This result confirmed
the higher coupling between photosynthesis and soil temperature compared to air
temperature and indicates that in this grassland soil temperature can be a better pre-
dictor of GPP dynamics, rather than air temperature, at least at the beginning of the
growing season.

The model that consider the use of SWC rather than VPD when associated with
air temperature needed the application of the snow threshold as well. On the con-
trary, when SWC was associated with soil temperature, model statistics revealed
overall better estimates and the GPP estimates were able to reproduce the fast spring
increase after snow melt (without the snow threshold).

In this study the role of SWC compared to VPD did not show particular improve-
ments of the results, nevertheless this fact can be in part due the specific linear
function used in the model formulation, not completely able to well represent SWC
limitation on photosynthesis. The use of other functions (e.g. logistic) could im-
prove the description of SWC constraints and thus GPP estimates (Veroustraete
et al., 2002; Richardson et al., 2007a).

The results obtained from the analysis of model parameter uncertainty indicated
that model parameters can be constrained quite well using MOD17 driven by mete-
orology and using GI as proxy of the fAPAR. However, this analysis did not explore
the other sources of uncertainty necessary to describe the overall uncertainty in GPP
estimates such as the model structure uncertainty (i.e. test different model formula-
tions) and the forcing driver uncertainty, that in this case can be considered almost
negligible since the meteorological driver were measured 3.2.2.
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The comparison between models driven by GI with those driven by well known
spectral indices, such as NDVI and MTCI, gave interesting information on the re-
liability of the use of GI in LUE models. In particular, the use of NDVI resulted
in slight worse estimated, since this index is particularly related to canopy struc-
ture and total biomass; while result of GI are more similar to those obtained with
the MTCI, closely related to green biomass which controls the energy absorbed by
photosynthetic pigments and thus effectively used for photosynthetic processes.

In order to provide more robust GI times series, further work is required to over-
come problems related to the image quality issue and data filtering. In fact, while
digital camera imagery are very useful for monitoring the seasonal development of
the canopy greenness, uncertainty still exists concerning the use of color indices for
monitoring the interannual variability of canopy structural parameters and future
efforts should be focused to address this issue (Migliavacca et al., 2011a).

Considering a distributed application of models driven by phenology in similar
ecosystem (e.g. trough webcam network), even if our results highlighted the bet-
ter results are obtained using soil temperature which are data not frequently avail-
able, its feasibility is not precluded: model formulation based on air temperature
and VPD have been demonstrated to be able to well capture overall GPP dynamics
when associated to a snow threshold that can be easily obtained, when a snow depth
measure is not available, from webcam images or remotely sensed data.
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CONCLUSION

The present study used the eddy covariance method to measure carbon dioxide ex-
change of an unmanaged subalpine grassland, a poorly investigated ecosystem, from
June 2008 to the end of 2010. Eddy covariance measurements were integrated with
proximal sensing observations in order to follow the phenology, i.e. the structural
development, of the canopy in a continuous and automated way. This study showed
that a digital camera (a relatively low-cost tool) can provide reliable information for
monitoring canopy development and functioning of subalpine grasslands.

With eddy covariance measurements and a color index (GI) derived from digital
images, we characterised the duration of the growing season and the dynamics of
carbon fluxes and canopy greenness. We derived several insights on the role of
snow-cover duration and date of snow-melt on the subsequent canopy development
and functioning.

Considered that several controlling factors may act on carbon uptake processes in
a non-stationary way and at multiple temporal scales (Baldocchi et al., 2001b; Var-
gas et al., 2011), a spectral approach was used to analyse these relations: wavelet
coherence analysis outlined the periodicities at which different meteorological fac-
tors may control GPP in this grassland. A particularly strong coherence was found
between soil temperature and GPP at several time-scale which indirectly demon-
strate also the influence of the long duration of snowpack in this ecosystem.

This work showed that combining information derived by greenness index (GI)
extracted from a digital camera and meteorological factors in light use efficiency
model it is possible to well describe the temporal variability of Gross Primary Pro-
duction (GPP).

At Torgnon, measurements were made throughout the whole year, hence, more
year-data, associated to a deeper evaluation of wintertime fluxes (for example by
comparison with the CO2 gradient method through the snow pack (Liptzin et al.,
2009)) will allow an assessment of the sink/source strength of an ecosystem for
which this information is still lacking.

As other works have previously suggested (Körner, 2003; Jonas et al., 2008) all
method applied agree in confirming that snow is a major controlling factor in this
kind of ecosystem with a direct influence in determining the beginning of the grow-
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ing season, but also indirectly by limiting the potential influence of other factors
both on carbon uptake and phenology in spring. This study could contribute to re-
cent researches in the field area of carbon cycle that aim at evaluating the effects
of future climate change on diverse terrestrial ecosystems. Nevertheless more years
of measurements are required to understand how this subalpine grassland could re-
spond to differences in snow-melt dates and how carbon uptake could be affected
by earlier snow-melt and/or changes in water and nutrients supply in spring.
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