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Abstract
It is well known that econometric modelling and statistical inference are considerably

complicated by the possibility of correlation across data data recorded at different lo-

cations in space. A major branch of the spatial econometrics literature has focused on

testing the null hypothesis of spatial independence in Spatial Autoregressions (SAR)

and the asymptotic properties of standard test statistics have been widely considered.

However, finite sample properties of such tests have received relatively little consid-

eration. Indeed, spatial datasets are likely to be small or moderately-sized and thus

the derivation of finite sample corrections appears to be a crucially important task

in order to obtain reliable tests. In this project we consider finite sample corrections

based on formal Edgeworth expansions for the cumulative distribution function of

some relevant test statistics.

In Chapters 1 and 2 we present refined procedures for testing nullity of the spatial

parameter in pure SAR based on ordinary least squares and Gaussian maximum like-

lihood, respectively. In both cases, the Edgeworth-corrected tests are compared with

those obtained by a bootstrap procedure, which is supposed to have similar proper-

ties. The practical performance of new tests is assessed with Monte Carlo simulations

and two empirical examples. In Chapter 3 we propose finite sample corrections for

Lagrange Multiplier statistics, which are computationally particularly convenient as

the estimation of the spatial parameter is not required. Monte Carlo simulations and

the numerical implementation of Imhof’s procedure confirm that the corrected tests

outperform standard ones.
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Introduction
It is well known that econometricians face considerable challenges posed by the

possibility of cross-sectional correlation, with respect to both modelling and statistical

inference. Indeed, starting from the early work by Moran (1950), Cliff and Ord (1968,

1972) and, more recently, Cressie (1993), just to name a few, a large body of literature

known as Spatial Econometrics has addressed issues entailed by potential correlation

across data recorded at different locations in space. For recent reviews and discussions

of the challenges and progresses in the spatial econometric literature, refer to Robinson

(2008a) and Anselin (2010).

Statistical modelling of dependence for spatial data is considerably complicated

by the lack of an obvious natural ordering. On the other hand, it should be stressed

that in this context, “space” should be intended as a network, which includes phys-

ical/geographical space as a very special case, and in turn correlation across obser-

vations may depend on some very general notion of economic distance that does not

necessarily have a geographical interpretation (see e.g. Conley and Ligon (2002) or

Conley and Dupor (2003)). Moreover, further complications are given by the fact that

spatial data are often irregularly-spaced, for instance when observations are recorded

across cities or regions.

Spatial autoregressions (SAR) offer a useful, applicable framework for describing

such data. In SAR models the notion of irregular spacing, applied to general distances,

is embodied in an n×n weight matrix (n being sample size), denoted Wn henceforth,

which needs to be chosen by the practitioner. The matrix Wn has zero diagonal

elements and, in most practical applications, has non negative entries and is row

normalized, so that elements of each row sum to 1. In view of such normalization, the

(i − j)th component of Wn, denoted wij henceforth, can be defined in terms of the

inverse of an economic distance dij between units i and j, i.e.

wij =
dij
n∑
s=1

dis

,

where possibly dij 6= dji.

Let Yn be an n×1 vector of observations, Xn an n×k matrix of exogenous regressors

which does not include a column of ones, and εn an n× 1 vector of independent and

identically distributed (iid) random variables, with mean zero and variance σ2. In

addition, let ln denote a n−dimensional column of ones. We assume that, for some

scalars µ and λ and some k × 1 vector β, the data follow a general SAR model, i.e.

Yn = µln + λWnYn +Xnβ + εn. (0.0.1)

For notational simplicity, in the sequel we drop the n subscript, writing ε = εn, Y = Yn,
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X = Xn, W = Wn, with the same convention for other n−dependent quantities.

Model (0.0.1) is a very parsimonious method of describing spatial dependence, con-

veniently depending only on economic distances rather than actual locations, which

may be unknown or not relevant. For sake of clarity, it should be stressed that often

in the spatial econometric literature “spatial independence” is used as a synonym for

“lack of spatial correlation”, though these concepts are in general identical only under

Gaussianity. Although a major drawback of SAR models is the ex ante specification of

W , to which parameter estimates are sensitive, (0.0.1) has been widely used in practi-

cal applications. Relevant book-length descriptions of SAR model and its applications

include Anselin (1988) and Arbia (2006). Even more importantly, (0.0.1) represents

a convenient, widely-usable class of alternatives in testing the null hypothesis of lack

of spatial correlation which, if true, considerably simplifies statistical inference.

Related literature and motivation of this project

The problem of testing the null hypothesis

H0 : λ = 0 (0.0.2)

in (0.0.1), or in a related model where the spatial correlation potentially affects the

unobservable disturbances, i.e.

Yn = µln +Xnβ + un, un = λWnun + εn, (0.0.3)

is a long lasting issue in the econometric literature and two main classes of tests should

be distinguished.

When the focus of the investigation is both on estimation and testing of λ in models

(0.0.1) or (0.0.3) various tests of (0.0.2) based on different estimates of λ have been

proposed and widely used by practitioners. Procedures based on Gaussian maximum

likelihood estimates (MLE) for λ, β and µ in (0.0.1) and (0.0.3) have been developed

by Cliff and Ord (1975) and broadly considered. For an exhaustive survey about

specification and implementation of tests of (0.0.2) based on the MLE of parameters

in (0.0.1) and (0.0.3), refer to Anselin (1988). Asymptotic properties of MLE and

Pseudo-MLE (PMLE, henceforth) of λ, β and µ in (0.0.1) and relative test statistics

have been derived in Lee (2004).

Although the MLE (or PMLE, more generally) has been extensively used for both

estimation and testing, it is well known that it is computationally very cumbersome

(see e.g. Pace and Berry (1997)). In order to reduce the computational burden,

tests of (0.0.2) based on alternative estimates of λ have been proposed. Instrumental

Variable (IV) estimates of λ, β and µ have been introduced by Kelejian and Prucha

(1998) and subsequently improved by Lee (2003). In particular, Kelejian and Prucha
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(1998) derive asymptotic properties of the IV estimates of parameters in (0.0.1) where,

possibly, also the disturbance term follows a SAR model, i.e.

Yn = µln + λWn,1Yn +Xnβ + un un = ρWn,2un + εn, (0.0.4)

where Wn,1 and Wn,2 are suitable weight matrices and ρ is a scalar parameter. Kele-

jian and Prucha (1998) propose an approximation for the “ideal” instrument, although

relative efficiency issues are not considered. In turn, Lee (2003), improves the asymp-

totic efficiency of the Kelejian and Prucha IV estimator. In a more recent paper,

Kelejian et al. (2004) introduce a series-type IV estimator for model (0.0.4), which

is proved to be asymptotically normal, efficient within the class of IV estimators and

computationally simpler than one proposed in Lee (2003). We should mention that,

although the test of (0.0.2) is generally the main focus, we might be interested in

testing restrictions on β in (0.0.1), (0.0.3) and (0.0.4). However, IV estimates can-

not be obtained in case β = 0 in (0.0.1), (0.0.3) and (0.0.4) and hence tests for the

joint significance of β1, ....βk (βi being the i−th element of β) are not possible in this

framework.

Alternatively, Lee (2002) shows that Ordinary Least Squares (OLS) estimates of

µ, λ and β in (0.0.1) are consistent and asymptotically normal under suitable as-

sumptions on W . Although t-type of tests of (0.0.2) based on OLS estimates are

asymptotically normal and computationally very simple, the aforementioned condi-

tions on W restrict their applicability. Moreover, when β = 0 in (0.0.1) the OLS

estimate of λ is inconsistent unless λ = 0 and hence the joint of significance of β

cannot be tested in the general case λ 6= 0.

On the other hand, when the interest of the practitioner is testing rather than

estimation, a second class of tests based on Langrange Multiplier (LM) statistics has

received considerable attention starting from the early contribution by Moran (1950).

Such tests are computationally very convenient as the estimation of λ in either model

(0.0.1) or (0.0.3) is not required.

Moran (1950) presents a simple correlation test between neighbours in space based

on a normalized quadratic form in the variables that are being tested, without spec-

ifying the alternative hypothesis. Moran’s result has been applied to test (0.0.2) in

(0.0.3) by Cliff and Ord (1972, 1981). In particular, Cliff and Ord (1972) derive the

asymptotic distribution of such statistic under (0.0.2) in case the components of ε in

(0.0.3) are normally distributed. Cliff and Ord (1972) result has been extended by

Sen (1976) to independent and identically distributed (iid) disturbances, under specific

moment conditions. Though Moran test statistic (and its aforementioned extensions)

was not originally derived in a ML framework, Burridge (1980) shows it is indeed

equivalent to a LM statistic for spatially uncorrelated disturbances.

More recently, Kelejian and Robinson (1992) derive an alternative test for spatial

independence against correlation of unspecified form in the disturbance term of regres-
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sion models (possibly nonlinear) based on regression residuals. Kelejian and Robinson

(1992) do not refer explicitly to a weight matrix and the ordering of observations is

based on first order contiguity. Similarly to Moran’s, Kelejian and Robinson test

has a χ2 limiting distribution under (0.0.2) and its asymptotic properties have been

derived without assuming normality of the error terms. However, the small sample

performance of the Kelejian and Robinson test is quite poor, as shown in a number

of Monte Carlo studies (e.g. Anselin and Florax (1995) and Kelejian and Robinson

(1998)).

Anselin (2001) provides an exhaustive survey for derivation and implementation

issues of Moran/LM tests of (0.0.2) when the data follow either (0.0.1) or (0.0.3).

As regarding asymptotic theory of Moran/LM test statistics, Kelejian and Prucha

(2001) derive a central limit theorem for quadratic forms in random variables which

allows to establish the asymptotic distribution of LM statistics for SAR models under

H0 in (0.0.2). Such result is general enough to accommodate non linearity and the

possibility of heteroskedastic error terms. Also, Pinske (1999, 2004) outlines a set

of conditions for asymptotic normality (or asymptotic χ2) of several Moran/LM-type

of test statistics, which include LM statistics for testing (0.0.2) in both (0.0.1) and

(0.0.3).

More generally, Robinson (2008b) derives the asymptotic distribution under the

null hypothesis of lack of correlation of a class of residuals-based test statistics, which

include LM for either (0.0.1) or (0.0.3) as special cases. As expected, by considering

the asymptotic distribution of such residual-based class of statistics under a local

alternative, LM tests are motivated because they are locally optimal within this class.

Finite sample improvements of test statistics under the null hypothesis of lack of

correlation are also suggested.

Although the literature on testing for spatial independence is very broad, deriva-

tion of finite sample corrections for such tests has received little attention, other than

in Robinson (2008b). This issue is of particular concern in spatial econometrics since

datasets are often small/moderately-sized and hence testing procedures based on the

normal (or χ2) approximation for the distribution of test statistics might be seri-

ously unreliable. Small sample performance of estimates of the parameters in (0.0.1),

(0.0.3) and (0.0.4) and corresponding tests have been assessed quite extensively by

Monte Carlo studies, see e.g. Anselin and Rey (1991), Anselin and Florax (1995), Das

et al. (2003) and, more recently, Egger et al. (2009). More specifically, Anselin and

Rey (1991) and Anselin and Florax (1995) report and discuss broad sets of Monte

Carlo results to evaluate the practical performances of various existing tests for spa-

tial independence. Das et al. (2003) perform a Monte Carlo study to assess the finite

sample behaviour of IV-type of estimates of parameters in (0.0.4), while Egger et al.

(2009) propose a similar analysis for Wald-type of tests of (0.0.2) in SAR models based

on MLE and Generalized Method of Moments estimates.

Together with the likely limited sample size, another source of concern for the
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reliability of standard testing procedures in SAR models is given by the possibly slow

rate of convergence of estimates of λ in (??) when none of the exogenous regressors is

relevant (Lee (2004)). When this is the case, the cumulative distribution function (cdf)

of statistics based on such estimates is poorly approximated by a normal and finite

sample corrections are indeed crucial in order to obtain reliable tests. An analytical

procedure that attempts to address a similar issue has been derived by Bao and Ullah

(2007): using a stochastic expansion of the score function, they derive the second

order bias and mean squared error of the MLE of λ in (0.0.1) when β = 0 and µ = 0

a priori (pure SAR). However, Bao and Ullah (2007) do not stress the possible slow

rate of convergence of the MLE of λ in pure SAR and do not consider improved tests.

In this project we derive refined tests for spatial independence in several versions of

(0.0.1) and (0.0.3) based on formal Edgeworth expansions for the cdf of some relevant

test statistics under H0 in (0.0.2). Edgeworth expansions are well known means to

improve upon the approximation offered by the central limit theorem. Specifically,

the first term of the expansion corresponds to the standard normal cdf while later

terms are of increasingly smaller order and improve on the approximation when only

a small/moderately-sized sample is available. If the rate of convergence of the estimate

is slower than the parametric
√
n, as can be the case with (0.0.1) when β = 0 a priori,

the inclusion of higher order terms is even more crucial, such terms being larger than

those appearing in the expansion when the rate of convergence is
√
n. The new tests

are expected to have better finite sample properties than standard procedures.

The literature on Edgeworth expansions and their applications in econometric and

statistic theory is very broad and here we only aim to provide some of the main refer-

ences together with a brief description of existing results that were useful to develop

this project, although we acknowledge that this is not a complete survey. The idea of

(formally) expanding distribution functions was introduced by Edgeworth (1896, 1905)

for sums of independent random variables. Subsequently, starting from the work de-

veloped by Cramér (1946), Sargan (1976) and Bhattacharya and Ghosh (1978), among

others, provided rigorous theory for validity of the formal Edgeworth expansions. A

seminal book-length account of Edgeworth expansions and rigorous results for validity

issues is Bhattacharya and Rao (1976). On the other hand, useful and less technical

surveys which deal with the derivation of formal Edgeworth expansions are given by

Rothenberg (1984) and Barndorff-Nielsen and Cox (1989, Chapter 4).

Several authors have applied Edgeworth expansions to derive refined test statistics

in several context, starting from the work on the inverse of Edgeworth expansions

by Cornish and Fisher (1937, 1960). Among these, Taniguchi (1986, 1988, 1991a,

1991b), derives higher order asymptotic properties of test statistics for time series

data. Other relevant examples of derivation of refined test statistics in time series

contexts include Magee (1989) and Kakizawa (1999). More specifically, Magee (1989)

develops Edgeworth-corrected tests for linear restrictions when the data follow a linear

regression with serially correlated disturbances. Also, Kakizawa (1999), starting from
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the earlier work by Ochi (1983), derives a valid Edgeworth expansion for the cdf of two

different estimates of the correlation parameter in first order autoregressions and hence

provides Edgeworth-corrected confidence intervals. In a different context, Phillips and

Park (1988) derive Edgeworth-corrected Wald tests of nonlinar restictions.

A sightly different perspected is adopted in the monograph by Hall (1992), which

gives an account of the theory on Edgeworth expansions and Edgeworth-corrected tests

in order to explain the performance of bootstrap methods. It is well known, starting

from the work by Singh (1981), that the bootstrap is a numerical technique that

can be used instead of the analytical derivation of Edgeworth expansions to improve

upon the approximation offered by the central limit theorem. Indeed, Singh (1981)

shows that the bootstrap automatically corrects for the first term in an Edgeworth

expansion.

Although we do not aim to show theoretically the equivalence between the first

Edgeworth correction and the bootstrap, in this project we compare by Monte Carlo

the practical performance of finite sample corrections based on Edgeworth expansions

with bootstrap-based procedures and more specific references to the relevant bootstrap

literature will be given in Chapters 1-3.

Some Assumptions and auxiliary lemmas.

We first introduce some notation that will be used throughout. The superscript

prime indicates transposition. We denote Φ(z) and φ(z) the cdf and the probability

density function (pdf) of a standard normal random variable, respectively. 1(.) indi-

cates the indicator function. Let g(i) be the ith derivative of the function g and Hj(x)

the j−th Hermite polynomial (e.g. H1(x) = x, H2(x) = x2− 1 and H3(x) = x3− 3x).

In addition, det(A) denotes the determinant of a generic square matrix A. Moreover,

∼ denotes an exact rate, i.e. a ∼ b means that |a/b| converges to a positive, finite

limit. ||.|| indicates the spectral norm, i.e. for any p× q matrix B

||B||2 = η̄(B′B) where η̄(B′B) = max
i=1,....m

(ηi(B
′B)),

ηi(B
′B), i = 1, ....q, being the eigenvalues of B′B. Also, let A be any p × p matrix.

||A||r denotes the maximum row sum matrix norm, i.e.

||A||r = max
i

p∑
j=1

|aij | ,

aij being the i − jth element of A. Similarly, ||A||c indicates the maximum column

sum matrix norm, i.e.

||A||c = max
j

p∑
i=1

|aij | .
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Moreover, let

ρ(A) = max
i=1,....p

{|ηi(A)|}. (0.0.5)

Finally, for every value of λ in either (0.0.1) or (0.0.3), we denote

S(λ) = I − λnW. (0.0.6)

We introduce some assumptions, which are common to Chapters 1-3, while other

relevant model-specific conditions are left to each chapter.

Assumption 1 The elements of ε are independent and identically distributed

normal random variables with mean zero and unknown variance σ2.

Assumption 2

(i) For all n, wii = 0, Σn
j=1wij = 1, i = 1, ..., n , and ||W || = 1.

(ii) For all n, W is uniformly bounded in row and column sums in absolute value,

i.e.

||W ||r + ||W ||c ≤ K,

where K is a finite generic constant.

(iii) Uniformly in i, j = 1, ..., n, wij = O(1/h), where h = hn is bounded away from

zero for all n and h/n→ 0 as n→∞.

As is common in much higher order literature, Gaussianity is assumed in this

derivation. Assumption 1 can be relaxed at expense of considerable extra complica-

tions in the derivation of Edgeworth expansions.

The normalization in Assumption 2(i) is not strictly necessary for the proofs of the

results presented in Chapters 1-4, but it plays a role in constructing the likelihood.

Furthermore, Assumption 2(i) or some other normalization is required for identifica-

tion when λ 6= 0. Assumption 2(i) requires that W is row normalized so that the

elements in each row sum to one. It also imposes that the maximum eigenvalue of

W ′W equals one. In general, ρ(W ) ≤ ||W || (see Horn and Johnson (1985), page 297)

and, by Assumption 2(i), ||W || = 1. Since 1 is an eigenvalue of W when the latter

is row normalized, we can conclude ρ(W ) = 1. It is also worth mentioning that row

normalization and non negative wij , for all i, j = 1, ...., n, implies ||W ||r = 1.

The sequence h in Assumption 2(iii) can be bounded or divergent, and a condition

on wij is commonly required in asymptotic theory for statistics based on SAR models.

A specification for W , introduced by Case (1991), which satisfies Assumption 2 is

W = Ir ⊗Bm, Bm =
1

m− 1
(lml

′
m − Im), (0.0.7)
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where n = rm, r being the number of districts and m the number of households in each

district. We denote lm an m− dimensional column of ones and Ir the r × r identity

matrix. Henceforth, we retain the subscript to either l or I only when the dimension

is other than n. Under (0.0.7), two households are neighbours if they belong to the

same district and each neighbour is given the same weight. Moreover, W is symmetric

and h = m− 1. It is straightforward to verify that Assumptions 2(i)-(ii) are satisfied

for this choice of W , whether h is bounded or divergent (that is, whether the number

of households in each unit diverges or is bounded as n increases). Assumption 2(iii)

holds provided that r →∞, m being either divergent or bounded.

We introduce here some auxiliary Lemmas which will be used throughout. Both

Lemma 1 and 2 are similar to results reported in Lee (2004).

Lemma 1 If wij = O(1/h), uniformly in i and j,

tr(WA) = O
(n
h

)
,

where A is an n× n matrix so that ||A||r + ||A||c ≤ K.

Proof Let aij be the (i− j)th element of A. The i−th diagonal element of WA has

absolute value given by

|(WA)ii| ≤ max
j
|wij |

n∑
j=1

|aji| = O

(
1

h

)
,

uniformly in i. Therefore

|tr(WA)| ≤
n∑
i=1

|(WA)ii| ≤ nmax
i
|(WA)ii| = O

(n
h

)
.

Lemma 2 Let R and S be n × 1 vectors whose i−th components are denoted by ri

and si, respectively. Let A be an n× n matrix. If, for all n,

max
1≤i≤n

|ri| ≤ K max
1≤i≤n

|si| ≤ K, ||A||r + ||A||c ≤ K,

then |R′AS| = O(n).
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Proof Let aij be the (i− j)th component of A.

|R′AS| = |
n∑
i=1

n∑
j=1

riaijsj | ≤
n∑
i=1

n∑
j=1

|ri||aij ||sj | ≤ max
1≤i,j≤n

|ri||sj |
n∑
i=1

n∑
j=1

|aij |

≤ K
n∑
i=1

n∑
j=1

|aij | ≤ K max
1≤i≤n

n∑
j=1

|aij |
n∑
i=1

1 = O(n).

Lemma 3 Suppose that for all n, each element xij of X is non-stochastic and |xij | <
C, where C denotes a generic, large, constant. Moreover, the smallest eigenvalue of

X ′X/n is bounded away from zero for all sufficiently large n. It follows that

||P ||r + ||P ||c ≤ K,

where P = I −X(X ′X)−1X.

Proof We show that ||X(X ′X)−1X ′||r ≤ K. Let x′i be the ith row of X and c a

generic small constant.

By assumption

0 < c < η
−

(
1

n
X ′X

)
,

for n large enough, η
−

(.) being the smallest eigenvalue. Hence,

||X(X ′X)−1X ′||r = max
1≤i≤n

n∑
j=1

|(X(X ′X)−1X ′)ij | = max
1≤i≤n

n∑
j=1

|(x′i(X ′X)−1xj)|

≤ max
1≤i≤n

n∑
j=1

||x′i||||(X ′X)−1||||xj || ≤ max
1≤i,j≤n

||x′i||||(
1

n
X ′X)−1||||xj || ≤

1

c
kC2 <∞,

since

||( 1

n
X ′X)−1|| = η̄

((
1

n
X ′X

)−1
)

=
1

η
−

(
1
nX
′X
) ≤ 1

c

and

max
0<i≤n

||xi|| = max
0<i≤n

(x′ixi)
1/2 ≤ (kC2)1/2 ≤ K.

By symmetry, ||X(X ′X)−1X ′||c ≤ K. Trivially, the same property holds for

P = I −X(X ′X)−1X ′.
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1 Improved OLS Test Statistics

for Pure SAR
Throughout most of this chapter we assume that for some scalar λ ∈ (−1, 1) the

data follow the pure SAR model, i.e.

Y = λWY + ε, (1.0.8)

which is model (0.0.1) when µ = 0 and β = 0 a priori, i.e. none of the exogenous

regressors (including the intercept) is relevant, and we are interested in testing (0.0.2)

when λ is estimated by OLS. An extension of the proposed procedures to the pure

SAR with intercept term, i.e. β = 0 a priori in (0.0.1), is also considered.

It is known (Lee (2002)) that the OLS estimate of λ in model (1.0.8) is inconsistent

when λ 6= 0. However, it converges to zero in probability under (0.0.2) and although

this case is very limited when the interest is estimation, it is a leading one in testing.

However, under H0, the rate of convergence of the OLS estimate of λ might be slower

than the parametric
√
n, depending on assumptions on W .

When the rate of convergence of the estimate is slower than
√
n, the cdf of the

t-statistic based on the OLS estimate for λ under (0.0.2) is not accurately approx-

imated by a normal. Our new tests are based on refined t-statistics, whose cdf are

closer to the normal than those of the standard statistics and therefore entail better

approximations. Alternatively, we show that inference based on standard statistics

can be improved by considering more accurate approximations for critical values than

ones of the normal cdf.

This chapter is organised as follows. In Sections 1.1 and 1.2 we present refined tests

for (0.0.2) against one-sided and two-sided alternatives, respectively. In Section 1.3,

we show that the results of Sections 1.1 and 1.2 can be easily extended when model

(1.0.8) contains a location parameter. In Section 1.4 we present some results for the

power of the test of (0.0.2) against a local alternative. In Section 1.5 we report and

discuss the results of some Monte Carlo simulations of the tests presented in Sections

1.1-1.4. Relevant proofs are left to appendices.

1.1 Test against a one-sided alternative: Edgeworth-corrected criti-

cal values and corrected statistic

We suppose that model (1.0.8) holds and we are interested in testing (0.0.2) against

a one-sided alternative

H1 : λ > 0 (< 0). (1.1.1)
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The OLS estimate of λ in model (1.0.8) is defined as

λ̂ =
Y ′W ′Y

Y ′W ′WY
.

As previously mentioned, λ̂ converges in probability to zero under H0, as shown by a

straightforward modification of Lemma 1.1 reported in the Appendix.

Let Assumptions 1-2 hold and in addition:

Assumption 3 The limits

lim
n→∞

h

n
tr(W ′W ), lim

n→∞

h

n
tr(WW ′W ), lim

n→∞

h

n
tr((W ′W )2),

lim
n→∞

h

n
tr(W 2), lim

n→∞

h

n
tr(W 3) (1.1.2)

are non-zero.

Under Assumption 2 the limits displayed in (1.1.2) exist and are finite by Lemma

1. Thus, the content of Assumption 3 is that such limits are also non-zero. Let ζ be

any finite real number.

Theorem 1.1 Let model (1.0.8) and Assumptions 1-3 hold. The cdf of λ̂ under H0

in (0.0.2) admits the third order formal Edgeworth expansion

Pr(aλ̂ ≤ ζ|H0) = Φ(ζ) + 2bζ2φ(ζ)− κc3
3!

Φ(3)(ζ)−
(
tr((W ′W )2)

(tr(W ′W ))2
− 6b2

)
ζ3φ(ζ)

+ 2b2ζ4Φ(2)(ζ)− κc3
3
bζ2Φ(4)(ζ) +

κc4
4!

Φ(4)(ζ) +O

((
h

n

)3/2
)
,

(1.1.3)

where

a =
tr(W ′W )

(tr(W ′W +W 2))1/2
, b =

tr(WW ′W )

(tr(W ′W +W 2))1/2tr(W ′W )
, (1.1.4)

κc3 ∼
2tr(W 3) + 6tr(W ′W 2)

(tr(W ′W +W 2))3/2
(1.1.5)

and

κc4 ∼
6tr(W 4) + 24tr(W ′W 3) + 12tr((WW ′)2) + 6tr(W 2W

′2)

(tr(W ′W +W 2))2
. (1.1.6)

The proof of Theorem 1.1 is in the Appendix.
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Under Assumption 3, as n→∞

b ∼
(
h

n

)1/2

,
tr((W ′W )2)

(tr(W ′W ))2
∼ h

n
, κc3 ∼

(
h

n

)1/2

, κc4 ∼
h

n

and therefore

2bζ2φ(ζ)− κc3
3!

Φ(3)(ζ) ∼
(
h

n

)1/2

,

−
(
tr((W ′W )2)

(tr(W ′W ))2
− 6b2

)
ζ3φ(ζ) + 2b2ζ4Φ(2)(ζ)− κc3

3
bζ2Φ(4)(ζ) +

κc4
4!

Φ(4)(ζ) ∼ h

n
.

Since a ∼ (n/h)1/2 from Assumption 3, when the sequence h is divergent the rate of

convergence of Pr(aλ̂ ≤ ζ|H0) to the standard normal cdf is obviously slower than

the usual
√
n. It must be stressed that the expansion in (1.1.3) is formal and hence

the order of the remainder can only be conjectured by the rate of the coefficients.

From the expansion (1.1.3) Edgeworth-corrected critical values can be obtained.

We denote wα and zα the α−quantiles of the null statistic aλ̂ and the standard normal

cdf, respectively. By inversion of (1.1.3) we can obtain an infinite series for wα, i.e.

wα = zα + p1(zα) + p2(zα) + ....., (1.1.7)

where p1(zα) and p2(zα) are polynomials of orders (h/n)1/2 and h/n, respectively.

Both p1(zα) and p2(zα) can be determined using the identity α = Pr(aλ̂ ≤ wα|H0)

and the asymptotic expansion given in Theorem 1.1. Even though the procedure can

be extended to higher orders, for algebraic simplicity we focus on the second order

Edgeworth correction and therefore only p1(zα) has to be determined.

For convenience, we report the second order Edgeworth expansion

Pr(aλ̂ ≤ ζ|H0) = Φ(ζ) + 2bζ2φ(ζ)− κc3
3!

Φ(3)(ζ) +O

(
h

n

)
. (1.1.8)

From (1.1.8) and the property

(−d/dx)jΦ(x) = −Hj−1(x)φ(x), (1.1.9)

we have

α = Pr(aλ̂ ≤ wα|H0) = Φ(wα)− (
κc3
3!
H2(wα)− 2bw2

α)φ(wα) +O

(
h

n

)
.
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Moreover, expanding wα according to (1.1.7) and dropping negligible terms,

α = Pr(aλ̂ ≤ wα|H0)

= Φ(zα) + p1(zα)φ(zα)− (
κc3
3!
H2(zα)− 2bz2

α)φ(zα) +O

(
h

n

)
= α+ p1(zα)φ(zα)− (

κc3
3!
H2(zα)− 2bz2

α)φ(zα) +O

(
h

n

)
, (1.1.10)

where the second equality follows by Taylor expansion of Φ(wα) around zα. The last

displayed identity holds up to order O(h/n) when

p1(zα) =
κc3
3!
H2(zα)− 2bz2

α.

Hence (1.1.7) becomes

wα = zα +
κc3
3!
H2(zα)− 2bz2

α +O

(
h

n

)
. (1.1.11)

The size of the test of (0.0.2) obtained with the usual approximation of wα by zα,

that is

Pr(aλ̂ > zα|H0), (1.1.12)

can be compared with the one obtained using the Edgeworth-corrected quantile as

given in (1.1.11), i.e.

Pr(aλ̂ > zα +
κc3
3!
H2(zα)− 2bz2

α|H0). (1.1.13)

When zα is used to approximate wα, the error has order (h/n)1/2, while it is reduced

to (h/n) when the Edgeworth-corrected critical value is used.

Rather than corrected critical values, an Edgeworth-corrected test statistic can be

derived. By (1.1.9) and since H2(ζ) = ζ2 − 1, (1.1.8) can be written as

Pr(aλ̂ ≤ ζ|H0) = Φ(ζ + 2bζ2 − κc3
3!

(ζ2 − 1)) +O

(
h

n

)
.

When the transformation

v(ζ) = ζ + 2bζ2 − κc3
3!

(ζ2 − 1) = ζ + (2b− κc3
3!

)ζ2 +
κc3
3!

is monotonic, we can write

Pr(aλ̂+ (2b− κc3
3!

)(aλ̂)2 +
κc3
3!
≤ ζ) = Φ(ζ) +O

(
h

n

)
and make inference on λ based on the corrected statistic v(aλ̂). The function v(ζ) is

strictly increasing when ζ > −1/(2(2b − κc3/3!)), however the latter does not hold in
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general and therefore a cubic transormation that does not affect the remainder but

such that the resulting function is strictly increasing over the whole domain should

be considered. A suitable transformation is in Hall (1992) or, in a more general case,

Yanagihara et al (2005):

g(ζ) = v(ζ) +Q(ζ), with Q(ζ) =
1

3

(
2b− κc3

3!

)2

ζ3.

Indeed, it can be shown (Yanagihara et al (2005)) that for a statistic T that admits

the general expansion

Pr(T ≤ x) = Φ(x) + p1(x)φ(x) +O

(
h

n

)
,

where p1(x) ∼
√
h/n, the transformation

g(x) = x+ p1(x) +
1

4
Q(x) with Q(x) =

∫ (
d

dx
p1(x)

)2

dx (1.1.14)

is strictly increasing and does not affect higher order terms, i.e.

Pr(g(T ) ≤ x) = Φ(x) +O

(
h

n

)
.

It is straightforward to verify that in the present case the function g(ζ) is strictly

increasing for every ζ, its first derivative being (1 + (2b− (κc3/3!)ζ))2.

The size of the test of (0.0.2) based on such corrected statistic,

Pr(g(aλ̂) > zα|H0), (1.1.15)

can be compared with the standard (1.1.12). As previously mentioned, the error

when the standard statistic is used has order
√
h/n, while it is reduced to h/n when

considering the corrected variant.

1.2 Test against a two-sided alternative: Edgeworth-corrected criti-

cal values and corrected statistic

In Section 1.1 we focused on testing (0.0.2) against (1.1.1). However, in some

circumstances the practitioner might not have a prior conjecture about the sign of λ

in (1.0.8) and a test of (0.0.2) against a two-sided alternative may be more suitable.

In this section we propose refined tests for (0.0.2) against a two-sided alternative

H1 : λ 6= 0. (1.2.1)
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From Theorem 1.1, (1.1.9) and

φ(−ζ) = φ(ζ), Φ(2)(−ζ) = −Φ(2)(ζ), Φ(3)(−ζ) = Φ(3)(ζ), Φ(4)(−ζ) = −Φ(4)(ζ),

we obtain

Pr(|aλ̂| ≤ ζ|H0) = Pr(aλ̂ ≤ ζ)− Pr(aλ̂ ≤ −ζ)

= Φ(ζ)− Φ(−ζ)− 2

(
tr((W ′W )2)

(tr(W ′W ))2
− 6b2

)
ζ3φ(ζ) + 4b2ζ4Φ(2)(ζ)

− 2
κc3
3
bζ2Φ(4)(ζ) + 2

κc4
4!

Φ(4)(ζ) +O

((
h

n

)2
)

= 2Φ(ζ)− 1 + {−2

(
tr((W ′W )2)

(tr(W ′W ))2
− 6b2

)
ζ3 − 4b2ζ4H1(ζ)

+ 2
κc3
3
bζ2H3(ζ)− κc4

12
H3(ζ)}φ(ζ) +O

((
h

n

)2
)
. (1.2.2)

Under Assumption 3 the terms in braces of the last displayed expansion have order

h/n, while, as previously mentioned, the order of the remainder is conjectured by the

rate of the coefficients and the parity of the expansion.

As discussed in Section 1.1, Edgeworth-corrected critical values and corrected null

statistics can be derived from (1.2.2). Let qα be the α−quantile of the null statistic

|aλ̂|. From (1.2.2),

α = Pr(|aλ̂| ≤ qα|H0)

= 2Φ(qα)− 1− 2

(
tr((W ′W )2)

(tr(W ′W ))2
− 6b2

)
q3
αφ(ζ)− 4b2ζ4H1(qα)φ(qα)

+ 2
κc3
3
bq2
αH3(qα)φ(qα)− κc4

12
H3(qα)φ(qα) +O

((
h

n

)2
)

and therefore

α+ 1

2
= Φ(qα)−

(
tr((W ′W )2)

(tr(W ′W ))2
− 6b2

)
q3
αφ(ζ)− 2b2ζ4H1(qα)φ(qα)

+
κc3
3
bq2
αH3(qα)φ(qα)− κc4

4!
H3(qα)φ(qα) +O

((
h

n

)2
)
. (1.2.3)

Correspondingly, an infinite series for qα in terms of z(α+1)/2 can be written as

qα = zα+1
2

+ p1(zα+1
2

) +O

((
h

n

)2
)
. (1.2.4)

Similarly to the case presented in Section 1.1, the size of the test of (0.0.2) against a

two-sided alternative when qα is approximated by z(α+1)/2 can be compared with that

obtained when qα is approximated by the Edgeworth-corrected quantity z(α+1)/2 +



1. Improved OLS Test Statistics for Pure SAR 26

p1(z(α+1)/2). The error of the latter approximation is reduced to O((h/n)2). The

polynomial p1(z(α+1)/2) can be determined by substituting (1.2.4) into (1.2.3) and

dropping negligible terms, i.e.

α+ 1

2
= Φ(z(α+1)/2 + p1(z(α+1)/2))−

(
tr((W ′W )2)

(tr(W ′W ))2
− 6b2

)
z3

(α+1)/2φ(z(α+1)/2)

− 2b2ζ4H1(z(α+1)/2)φ(z(α+1)/2) +
κc3
3
bz2

(α+1)/2H3(z(α+1)/2)φ(z(α+1)/2)

− κc4
4!
H3(z(α+1)/2)φ(z(α+1)/2) +O

((
h

n

)2
)
.

Hence, by Taylor expansion,

α+ 1

2
= Φ(z(α+1)/2) + p1φ(z(α+1)/2)−

(
tr((W ′W )2)

(tr(W ′W ))2
− 6b2

)
z3

(α+1)/2φ(z(α+1)/2)

− 2b2ζ4H1(z(α+1)/2)φ(z(α+1)/2) +
κc3
3
bz2

(α+1)/2H3(z(α+1)/2)φ(z(α+1)/2)

− κc4
4!
H3(z(α+1)/2)φ(z(α+1)/2) +O

((
h

n

)2
)
.

The last displayed identity holds up to order O(h/n)2 if

p1(z(α+1)/2) =

(
tr((W ′W )2)

(tr(W ′W ))2
− 6b2

)
z3

(α+1)/2 + 2b2ζ4H1(z(α+1)/2)

− κc3
3
bz2

(α+1)/2H3(z(α+1)/2) +
κc4
4!
H3(z(α+1)/2). (1.2.5)

As discussed in Section 1.1, a corrected statistic under H0 can also be derived from

(1.2.2). Indeed, (1.2.2) can be written as

Pr(|aλ̂| ≤ ζ) = 2Φ

(
ζ −

(
tr((W ′W )2)

(tr(W ′W ))2
− 6b2

)
ζ3 − 2b2ζ4H1(ζ) +

κc3
3
bζ2H3(ζ)− κc4

4!
H3(ζ)

)
− 1 +O

((
h

n

)2
)
.

By a straightforward modification of the procedure described in Section 1.1 (Yanagi-

hara et al (2005)), we obtain

Pr(v(|aλ̂|) ≤ ζ|H0) = 2Φ(ζ)− 1 +O

((
h

n

)2
)
,

where

v(x) = x−
(
tr((W ′W )2)

(tr(W ′W ))2
− 6b2

)
x3− 2b2x4H1(x) +

κc3
3
bx2H3(x)− κ

c
4

4!
H3(x). (1.2.6)
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The error when the distribution of the corrected statistic under H0 is approximated by

the standard normal is reduced to O((h/n)2). As pointed out in Section 1.1, the latter

result relies on the monotonicity (at least local) of v(.). Because of the cumbersome

functional form of the correction terms, in this case it is algebraically difficult to obtain

the cubic transformation given in (1.1.14). Hence, we rely on some numerical work to

assess whether v(.) is indeed locally increasing and, eventually, implement numerically

the cubic transformation in (1.1.14).

1.3 Corrected critical values and corrected statistic for pure SAR

with a location parameter

In Sections 1.1 and 1.2 we considered model (1.0.8), which is a particular case of

(0.0.1) where µ = 0 and β = 0 a priori. In this section we extend the results derived

in Section 1.1 to model

Y = µl + λWY + ε, (1.3.1)

which is (0.0.1) where again β = 0 a priori, but now µ 6= 0 a priori. For simplicity we

focus on one-sided test, but extensions of the results derived in Section 1.2 are also

straightforward, at expense of extra algebraical burden.

Specifically, we obtain

Theorem 1.2 Suppose that model (1.3.1) and Assumptions 1-3 hold. The cdf of λ̂

under H0 in (0.0.2) admits the second order formal Edgeworth expansion

Pr(aλ̂ ≤ ζ|H0) = Φ(ζ) +

(
1

(tr(W 2 +W ′W ))1/2
+ 2bζ2

)
φ(ζ)

− κc3
3!

Φ(3)(ζ) +O

(
h

n

)
, (1.3.2)

where a, b and κc3 have been defined in (1.1.4) and (1.1.5).

The proof of Theorem 1.2 is in the Appendix A.

From (1.3.2) corrected critical values and corrected statistics under H0 can be

obtained. The derivation is identical to one presented in Section 1.1 and is therefore

omitted. Let wlα be the true α−quantile of the cdf of aλ̂ under H0. From (1.3.2),

wlα = zα −
(

1

(tr(W 2 +W ′W ))1/2
+ 2bz2

α

)
+
κc3
3!
H2(zα) +O

(
h

n

)
.

Hence, as previously discussed, when zα is used to approximate wlα, the error is

O((h/n)1/2), while it is reduced to O(h/n) when the Edgeworth-corrected critical

value is used.
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Similarly, the corrected statistic under H0 can be derived from (1.3.2). As dis-

cussed in Section 1.1, the transformation defined in (1.1.14) is strictly increasing and

constructed so that the error obtained by approximating the cdf of the null trans-

formed statistic with a normal is reduced to order h/n. In this case, from (1.3.2),

(1.1.14) becomes

g(x) = x+
1

(tr(W 2 +W ′W ))1/2
+ 2bx2 − κc3

3!
(x2 − 1) +

1

3

(
2b− κc3

3!
x3

)
.

1.4 Test against a local alternative

In this section we focus on testing (0.0.2) in model (1.0.8) against a local alternative

hypothesis

H1 : λn = c

(
h

n

)1/2

, c > 0 (< 0). (1.4.1)

Although we previously specified that the subscript n would be omitted, we retain it

in this case to stress the shrinking nature of the class of alternatives. For algebraic

simplicity, the results in this section are derived assuming that W is symmetric. The

extension to the case of non symmetric W is trivial, but algebraically more cumber-

some. Without loss of generality, the following results are developed for c > 0 in

(1.4.1). As already mentioned, when λ 6= 0 the OLS estimate of λ in (1.0.8) is incon-

sistent. However, under H1 as defined in (1.4.1), λ̂n converges in probability to zero,

as shown in Lemma 1.1 reported in the Appendix. More specifically, by Lemma 1.1,

λ̂n = λn +Op((h/n)1/2), i.e. the probability limit of λ̂n − λn vanishes at least at fast

as λn.

Under Assumption 2(ii), when W is symmetric, ||W ||r ≤ K/2 and ||W ||c ≤ K/2.

The series representation

S−1(λn) =
∞∑
t=0

(λnW )t (1.4.2)

holds when |||λnW ||| < 1, |||.||| denoting any matrix norm (see e.g. Horn and Johnson

(1985), page 301), where S(λn) is defined according to (0.0.6). Under H1, using the

spectral norm,

||λnW || = c

(
h

n

)1/2

||W || = c

(
h

n

)1/2

< 1,

for c < 1 or n large enough.

Under H1, S−1(λn) is also uniformly bounded in row sums in absolute value since

||S−1(λn)||r = ||
∞∑
t=0

(λnW )t||r ≤
∞∑
t=0

λtn||W t||r ≤
∞∑
t=0

λtn||W ||tr

≤
∞∑
t=0

(
λn
K

2

)t
=

1

1− λnK2
<∞
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for n large enough that c(h/n)1/2K/2 < 1. Trivially, by symmetry of W , S−1(λn) is

uniformly bounded in column sums in absolute value.

We obtain the following result

Theorem 1.3 Suppose that model (1.0.8) and Assumptions 1-3 hold. The cdf of

λ̂n − λn under H1 as defined in (1.4.1) admits the formal second order Edgeworth

expansion

Pr(a(λ̂n − λn) ≤ ζ|H1) = Φ(ζ − λna)− ω(ζ)φ(ζ − λna)− κc3
3!

Φ(3)(ζ − λna) +O

(
h

n

)
,

(1.4.3)

where a and κc3 have been defined in (1.1.4) and (1.1.5), respectively, and

ω(ζ) =
tr(W 3)

2
(λ2
na
−1 − 2λna

−2ζ) +
tr(W 3)

4
(2λna

−2 − a−3ζ)(ζ − aλn). (1.4.4)

The proof of Theorem 1.3 is in the Appendix.

Since Theorem 1.3 has been proved for a symmetric W , a and κc3 can be simpli-

fied to
√
tr(W 2)/

√
2 and 8tr(W 3)/2

√
2tr(W 2)3/2, respectively. Under Assumption

3, ω(ζ) ∼
√
h/n and aλn has a positive limit. Hence, to a first approximation, un-

der H1, a(λ̂n − λn) is normally distributed with mean λna and unit variance. It is

straightforward to notice that when λn = 0 we recover the expansion given in (1.1.8).

Intuitively, the term aλn is a large sample bias that vanishes only when λn = 0 (or

λn = O((h/n)γ), with γ > 1/2).

A very simple, straightforward result that can be derived using the expansion in

Theorem 1.3 consists in the possibility of providing a better approximation of the

(local) power of the test of (0.0.2) against (1.4.1) based on the statistic aλ̂n than

that given by the usual first order theory. Specifically, suppose H0 is rejected when

aλ̂n > τ . The power of such test (as function of τ), denoted as Π(τ) henceforth, is

defined as

Π(τ) = Pr(aλ̂n > τ |H1) = 1− Pr(aλ̂n ≤ τ |H1) = 1− Pr(a(λ̂n − λ) ≤ τ − aλn|H1).

Obviously, Pr(a(λ̂n − λn) ≤ τ − aλn|H1) is unknown, but Theorem 1.3 can be

used to obtain a more accurate approximation for Π(τ) than that based on the normal

approximation. Indeed, standard first order theory offers the approximation

Π(τ) = 1−Pr(a(λ̂n−λn) ≤ τ −aλn|H1) = 1−Φ(τ −2λna)+O

((
h

n

)1/2
)
, (1.4.5)
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while, by Theorem 1.3,

Π(τ) = 1− Pr(a(λ̂n − λn) ≤ τ − aλn|H1) = 1− Φ(τ − 2λna)

+ ω(τ − aλn)φ(τ − 2λna) +
κc3
3!
H2(τ − 2λna)φ(τ − 2λna) +O

(
h

n

)
.

(1.4.6)

In Section 1.5 we will present some Monte Carlo results to confirm that the inclusion

of the Edgeworth correction terms, as given in the RHS of (1.4.6), entails a closer

approximation for Π(τ) than one based on the normal.

A more interesting result that can be derived starting from Theorem 1.3 is a

“corrected” version of the test statistics under H1. In Section 1.1 we have proposed a

size-corrected statistic for testing (0.0.2) against a one-sided alternative. Now, from

Theorem 1.3, we aim to derive a corrected statistic so that, under H1, the error when

its distribution is approximated by a normal is reduced. The corrected version under

H0 can be recovered when λn = 0 in the derivation that follows.

Similarly to the derivation in Section 1.1, (1.4.3) can be written in the equivalent

form

Pr(aλ̂n ≤ ζ|H1) = Φ((ζ − 2λna)− ω(ζ − λna)− κc3
3!
H2(ζ − 2λna)) +O

(
h

n

)
.

When the function

v(x) = x− ω(x− λna)− κc3
3!
H2(x− 2λna) (1.4.7)

is monotonic,

Pr(v(aλ̂n) ≤ ζ|H1) = Φ(ζ − 2λna) +O

(
h

n

)
. (1.4.8)

The result in (1.4.8) can be derived by a modification of the argument in Yanagi-

hara et al (2005). Specifically, when v is monotonic,

Pr(v(aλ̂n) ≤ ζ|H1) = Pr(aλ̂n ≤ v−1(ζ)|H1)

= Φ(v−1(ζ)− 2λna)− (ω(v−1(ζ)− λna)

− κc3
3!
H2(v−1(ζ)− 2λna))φ(v−1(ζ)− 2λna) +O

(
h

n

)
.

(1.4.9)

From (1.4.7),

ζ = v−1

(
ζ − ω(ζ − λna)− κc3

3!
H2(ζ − 2λna)

)
= v−1(ζ)−

(
ω(ζ − λna) +

κc3
3!
H2(ζ − 2λna)

)
dv−1(ζ)

dζ
+O

(
h

n

)
,(1.4.10)
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where the last equality follows by Taylor expansion. Let y = v−1(ζ). Since v is

monotonic,

dv−1(ζ)

dζ
=

(
dv(y)

dy

)−1

=

(
1− dω(y − λna)

dy
− κc3

3!

dH2(y − 2λna)

dy

)−1

=

(
1 + tr(W 3)

(
λna

−2 +
a−3

4
(y − λna)− 2λna

−2 − a−3y

4

)
− κc3

3
(y − 2λna)

)−1

= 1 +O

(
h

n

)1/2

. (1.4.11)

Therefore, by substituting (1.4.11) into (1.4.10),

v−1(ζ) = ζ +

(
ω(ζ − λna) +

κc3
3!
H2(ζ − 2λna)

)
+O

(
h

n

)
.

Hence, by Taylor expansion,

Φ(v−1(ζ)−2λna) = Φ(ζ−2λna)+

(
ω(ζ − λna) +

κc3
3!
H2(ζ − 2λna)

)
φ(ζ−2λna)+O

(
h

n

)
,

(1.4.12)

φ(v−1(ζ)− 2λna) = φ(ζ − 2λna) +O

(
h

n

)1/2

, (1.4.13)

ω(v−1(ζ)− λna) = ω(ζ − λna) +O

(
h

n

)
(1.4.14)

and

H2(v−1(ζ)− 2λna) = H2(ζ − 2λna) +O

(
h

n

)1/2

. (1.4.15)

The result (1.4.8) follows by substituting (1.4.12), (1.4.13), (1.4.14) and (1.4.15) into

(1.4.9).

A remark on the monotonicity of the function v(.) is necessary at this stage. In

Section 1.1, we explicitly derived the appropriate cubic transformation to guarantee

the monotonicity of v over the whole domain without affecting the order of the remain-

der terms. However, this case is algebraically more complex and the inclusion of the

cubic term in the corrected statistic would increase the computational burden (both

theoretically and in terms of the simulation time) by a significant amount. Therefore,

we rely on some numerical work to state that v(aλ̂n) is indeed locally monotonic under

H1.

Hence, when inference is based on v(aλ̂n) rather than aλ̂n,

Π(τ) = Pr(v(aλ̂n) > τ |H1) = 1− Pr(v(aλ̂n) ≤ τ |H1) = 1− Φ(ζ − 2λna) +O

(
h

n

)
.

By comparison with (1.4.5), it is straightforward to notice that the error of the ap-

proximation is reduced.
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1.5 Bootstrap correction and simulation results

In this section we report and discuss some Monte Carlo simulations to investigate

the finite sample performance of the tests derived in Sections 1.1, 1.2 and 1.4.

In this simulation work, we adopt the Case (1991) specification for W given in

(0.0.7). With this choice, W is symmetric and hence a, b, κc3 and κc4 can be simpli-

fied accordingly. In each of 1000 replications the disturbance terms are N(0, 1), i.e.

according to Assumption 1 with σ2 = 1. We set α = 95%.

A brief remark on W defined in (0.0.7) is necessary. As already mentioned in

the Introduction, it is straightforward to verify that Assumption 2 is satisfied for this

choice of W , whether h is bounded or divergent. It is possible to verify that also

Assumption 3 holds, i.e.

lim
n→∞

h

n
tr(W i) 6= 0 for i = 2, 3, 4,

by observing that

h

n
tr((Ir ⊗Bm)i) =

h

n
tr(Ir)tr(B

i
m) =

h

n
rtr(Bi

m).

By standard linear algebra, Bm has one eigenvalue equal to 1 and the other m − 1

equal to −1/(m− 1). Therefore

tr(Bi
m) = 1 + (m− 1)

(
−1

m− 1

)i
and hence

h

n
tr((Ir ⊗Bm)i) =

h

n
rtr(Bi

m) =
m− 1

rm
r

(
1 +

(−1)i

(m− 1)i−1

)
=

m− 1

m

(
1 +

(−1)i

(m− 1)i−1

)
,

which is non-zero in the limit whether m = h+1 is bounded or not for i = 2, 4. When

i = 3 and m is bounded, we require m > 2 (at least for large n) for the latter quantity

to be non-zero.

In Tables 1.1-1.4 the empirical sizes of the test of (0.0.2) against a one-sided alter-

native (Tables 1.1-1.2) and two-sided alternative (Tables 1.3-1.4) based on the usual

normal approximation are compared with the same quantities obtained with both the

Edgeworth-corrected critical values and corrected test statistics. In addition, we con-

sider the simulated sizes based on bootstrap critical values since it is well established

that these may achieve the first Edgeworth correction and should then be comparable

with the results obtained in Sections 1.1 and 1.2 (see e.g. Hall (1992) or DiCiccio and

Efron (1996)).

Before discussing and comparing the simulation results, the procedure to obtain
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the bootstrap critical values should be outlined. It must be stressed that we focus

on the implementation of the bootstrap procedure, without addressing validity issues.

The bootstrap critical values are obtained by the following algorithm:

Step 1 Given model (1.0.8), under H0, Y = ε.

Step 2 Under Assumption 1, a parametric bootstrap can be used, i.e. we construct B

n−dimensional vectors whose components are independently generated from N(0, σ̂2),

where σ̂2 = ε′ε/n = Y ′Y/n. We denote ε∗j , for j = 1, ....B, each of these vectors.

Hence, we generate B pseudo-samples as Y ∗j = ε∗j for j = 1, ....B. (When the dis-

tribution of the disturbances is known, the parametric bootstrap proved to be more

efficient than the usual procedure based on resampling the residuals with replacement,

see e.g Hall (1992)).

Step 3 We obtain B bootstrap OLS null statistics as

Zj = a
Y ∗
′

j W
′Y ∗j

Y ∗
′

j W
′WY ∗j

, j = 1, .....B.

Step 4 The α−percentile is computed as the value w∗α which solves

1

B

B∑
j=1

1(Zj ≤ w∗α) ≤ α.

Step 5 The size of the test of (0.0.2) when the bootstrap critical value is used is then

Pr(aλ̂ > w∗α|H0). (1.5.1)

The extension of Steps 4-5 in the latter procedure to the test of (0.0.2) against

a two-sided alternative is straightforward, i.e. the α−percentile is computed as the

value q∗α which solves
B∑
j=1

1(|Zj | ≤ q∗α)/B = α and the size based on such critical value

is computed as

Pr(|aλ̂| > q∗α|H0). (1.5.2)

In both cases, we set B = 199.

Regarding Step 1, a remark is needed. When we are interested in testing, the

bootstrap procedure with H0 imposed to obtain the residuals (and then to generate

the pseudo-data) gives results at least as good as the same algorithm without imposing

H0 (see Paparoditis and Politis (2005)).

Tables 1.1 and 1.2 display the simulated values corresponding to (1.1.12), (1.1.13),

(1.1.15) and (1.5.1) when m is increased monotonically and kept fixed, respectively.

The former case is indeed consistent with divergent h, while the latter correspond to

a bounded h. For such reason, henceforth we refer to “divergent” and “bounded” h.
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Moreover, Tables 1.3 and 1.4 display the simulated values corresponding to Pr(|aλ̂| >
z(α+1)/2|H0), Pr(|aλ̂| > z(α+1)/2 + p1(z(α+1)/2)|H0), where p1(.) is defined according

to (1.2.5), Pr(v(|aλ̂|) > z(α+1)/2|H0), with v(.) given by (1.2.6), and (1.5.2) when

h is either “divergent” or “bounded”, respectively. All the values in Tables 1.1-1.4

have to be compared with the nominal 5%. For notational convenience, in the Tables

we denote by “normal”, “Edgeworth”, “transformation” and “bootstrap” the sim-

ulated values corresponding to the size obtained with the standard approximation,

Edgeworth-corrected critical values, Edgeworth-corrected null statistic and bootstrap

critical values, respectively.

m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

normal 0 0 0.001 0.001

Edgeworth 0.125 0.117 0.110 0.099

transformation 0.056 0.055 0.052 0.048

bootstrap 0.039 0.061 0.053 0.054

Table 1.1: Empirical sizes of the tests of H0 in (0.0.2) against H1 in (1.1.1) when λ in model (1.0.8)
is estimated by OLS and the sequence h is “divergent”. The reported values have to be compared
with the nominal 0.05.

m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

normal 0.001 0.001 0.001 0.011

Edgeworth 0.096 0.070 0.057 0.052

transformation 0.055 0.057 0.055 0.051

bootstrap 0.043 0.040 0.057 0.055

Table 1.2: Empirical sizes of the tests of H0 in (0.0.2) against H1 in (1.1.1) when λ in model (1.0.8)is
estimated by OLS and the sequence h is “bounded”. The reported values have to be compared with
the nominal 0.05.

By observing the results in Tables 1.1 and 1.2, it is clear that the usual normal

approximation does not work well in practice, since the simulated values for the size

greatly underestimate the nominal 5% for all sample sizes. On the other hand, the

Edgeworth-corrected results seem to perform reasonably well. However, the results

obtained with the Edgeworth-corrected critical values exceed the target 0.05 for very

small sample sizes, but the convergence to the nominal value appears to be fast.

Indeed, such correction performs already quite well for moderate sample sizes such as

m = 18, r = 14.

More specifically, when h is “divergent” and inference is based on Edgeworth-

corrected critical values, the discrepancy between the simulated values and the nominal

5% appears to be 26% higher than such discrepancy obtained when inference is based

on standard normal critical values, on average across sample sizes. However, we
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also notice that the difference between actual and nominal values only decreases by

about 0.6%, on average, when sample size increases in case of the standard test,

while it decreases by 13% when Edgeworth-corrected critical values are used. On the

other hand, the simulated sizes based on the Edgeworth-corrected statistics are very

satisfactory also for very small sample sizes. Indeed, on average across sample sizes,

when h is “divergent” and inference is based on the Edgeworth-corrected statistic and

bootstrap critical values, the simulated values are 92% and 85%, respectively, closer

to 0.05 than values obtained with the standard t-statistic.

A similar pattern can be observed in Tables 1.2. When h is bounded the cdf of

aλ̂ under (0.0.2) converges faster to the normal. The figures displayed in Table 1.1

and 1.2 are consistent with this theoretical result. Indeed we notice from the first

column of Table 1.2 that, on average, the difference between simulated values and

the nominal 0.05 decreases by 6% as sample size increases when inference is based

on the standard statistic (such value has to be compared with the aforementioned

0.6% decrease in case h is “divergent”). Also, we notice that in Table 1.2, the average

improvements on average across sample sizes offered by Edgeworth-corrected critical

values, Edgeworth-corrected statistic and bootstrap critical values over the standard

OLS t-statistic are about 98%, 87% and 99%, respectively.

Figure 1.1: Simulated pdf of aλ̂ under H0 in (0.0.2)
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Figure 1.2: Simulated pdf of g(aλ̂) under H0 (0.0.2)

In Figures 1.1 and 1.2 we plot the pdf obtained from the Monte Carlo simulation

of the non-corrected OLS null statistic aλ̂ and its corrected version g(aλ̂). The pdf

of the non-corrected statistics is very skewed to the left but most of this skewness is

removed by the corrected version.

m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

normal 0.132 0.130 0.126 0.106

Edgeworth 0.062 0.060 0.056 0.055

transformation 0.130 0.128 0.105 0.098

bootstrap 0.048 0.044 0.045 0.047

Table 1.3: Empirical sizes of the tests of H0 in (0.0.2) against H1 in (??) when λ in model (1.0.8) is
estimated by OLS and the sequence h is “divergent”. The reported values have to be compared with
the nominal 0.05.

m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

normal 0.096 0.078 0.068 0.061

Edgeworth 0.040 0.052 0.047 0.046

transformation 0.063 0.025 0.044 0.052

bootstrap 0.049 0.047 0.051 0.050

Table 1.4: Empirical sizes of the tests of H0 in (0.0.2) against H1 in (1.2.1) when λ in model (1.0.8)is
estimated by OLS and the sequence h is “bounded”. The reported values have to be compared with
the nominal 0.05.

From Tables 1.3 and 1.4 it is clear again that the normal approximation does

not produce satisfactory results, since the nominal 5% is greatly overestimated for
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all sample sizes, whether h is “divergent” or “bounded”. In turn, results obtained

with the Edgeworth-corrected critical values are very close to the nominal for all

sample sizes. Indeed, when inference is based on Edgeworth-corrected critical values,

the discrepancy between the simulated values and the nominal is reduced on average

across sample sizes by 89% when h is “divergent” and by 79% when h is “bounded”.

On the other hand, simulated sizes based on the Edgeworth-corrected statistic seem

still to greatly overestimate the target 5%, especially when h is “divergent” but appear

to decrease to the nominal value quite fast. Specifically the improvement offered by

the Edgeworth-corrected statistic over the standard one is 58% when h is “bounded”,

but only 13% when h is “divergent”. Results based on bootstrap critical values are,

as expected, comparable to the Edgeworth-corrected ones and are very close to 5%

for all sample sizes. Again, the pattern of the results is similar for “divergent” and

“bounded” h.

As mentioned in Section 1.2, a remark on the monotonicity of v(.) in (1.2.6) is

needed. Indeed, some numerical work shows that v(.) cannot be considered locally

strictly increasing unless n is very large. Hence, the corresponding results in Tables

1.3 and 1.4 have been derived by a numerical implementation of the cubic transfor-

mation in (1.1.14). Such numerical implementation can indeed be the reason of the

less satisfactory performance of the Edgeworth-corrected statistic compared to the

corrected critical values.

m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

normal

λ̄

0.1 0

0.5 0

0.8 0.257

λ̄

0.1 0

0.5 0.335

0.8 0.994

λ̄

0.1 0.005

0.5 0.673

0.8 1

λ̄

0.1 0.009

0.5 0.854

0.8 1

Edgeworth

λ̄

0.1 0.561

0.5 0.952

0.8 1

λ̄

0.1 0.610

0.5 0.986

0.8 1

λ̄

0.1 0.663

0.5 0.993

0.8 1

λ̄

0.1 0.693

0.5 1

0.8 1

bootstrap

λ̄

0.1 0.111

0.5 0.725

0.8 0.996

λ̄

0.1 0.119

0.5 0.873

0.8 1

λ̄

0.1 0.155

0.5 0.938

0.8 1

λ̄

0.1 0.164

0.5 0.966

0.8 1

Table 1.5: Empirical powers of the tests of H0 in (0.0.2) against H1 in (1.5.3), with λ̄ = 0.1, 0.5, 0.8,
when λ in model (1.0.8) is estimated by OLS and the sequence h is “divergent”. α is set to 0.95.
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m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

normal

λ̄

0.1 0.010

0.5 0.551

0.8 0.999

λ̄

0.1 0.083

0.5 0.988

0.8 1

λ̄

0.1 0.187

0.5 1

0.8 1

λ̄

0.1 0.363

0.5 1

0.8 1

Edgeworth

λ̄

0.1 0.640

0.5 0.991

0.8 1

λ̄

0.1 0.739

0.5 1

0.8 1

λ̄

0.1 0.852

0.5 1

0.8 1

λ̄

0.1 0.693

0.5 1

0.8 1

bootstrap

λ̄

0.1 0.139

0.5 0.888

0.8 1

λ̄

0.1 0.203

0.5 0.992

0.8 1

λ̄

0.1 0.296

0.5 1

0.8 1

λ̄

0.1 0.451

0.5 1

0.8 1

Table 1.6: Empirical powers of the tests of H0 in (0.0.2) against H1 in (1.5.3), with λ̄ = 0.1, 0.5, 0.8,
when λ in model (1.0.8) is estimated by OLS and the sequence h is “bounded”. α is set to 0.95.

In Tables 1.5 and 1.6 we report some Monte Carlo results to assess the finite sample

behaviour of the power of both standard and corrected tests of (0.0.2) against a fixed

alternative hypothesis, i.e.

H1 : λ = λ̄ > 0. (1.5.3)

Obviously, the same argument can be carried on with very minor modifications in

case λ̄ < 0 . In Tables 1.5 and 1.6 we report the simulated quantities corresponding

to Pr(aλ̂ > zα|H1), Pr(aλ̂ > zα + p1(zα)|H1) and Pr(aλ̂ > w∗α|H1). We choose three

different values of λ̄, specifically λ̄ = 0.1, 0.5, 0.8. The values in Tables 1.5 and 1.6 are

consistent with the empirical sizes reported in Tables 1.1 and 1.2. In particular, we

observe that, when λ̄ = 0.1 for instance, the simulated power when inference is based

on Edgeworth-corrected critical values is (on average across sample sizes) more than

300% higher than the corresponding result based on bootstrap critical values. Such a

huge difference can be explained by the sign of the probability limit of λ̂− λ when W

is chosen according to (0.0.7).

Indeed, as previously mentioned, λ̂ is inconsistent when λ 6= 0. Therefore, in case

plimλ̂ < λ for λ > 0, it might be that under H1, plimλ̂ = 0 (obviously, for λ < 0

the argument would be modified as: in case plimλ̂ > λ as n → ∞ it might be that

under H1, plimλ̂ = 0). In this case, the standard test of (0.0.2) against (1.5.3) would

be inconsistent. Nevertheless, it is quite straightforward to evaluate the sign of the

probability limit of λ̂ for any particular choice of W . Specifically,

Theorem 1.4 Suppose that model (1.0.8) holds. Under Assumption 1 and for W

given by (0.0.7), plim
n→∞

(λ̂− λ) is finite and has the same sign of λ.
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The proof of Theorem 1.4 is in the Appendix. It is worth mentioning that the

sign of the probability limit in Theorem 1.4 can be computed similarly for any other

choices ofW , although it might not always be possible to obtain close form expressions.

Obviously, Assumption 1 could be relaxed. However, Assumption 1 has been assumed

throughout this project and is retained here for algebraic simplicity.

By Theorem 1.4, as n → ∞, plimλ̂ > λ when λ > 0 (or plimλ̂ < λ when λ < 0)

and hence it is straightforward to show that, as n → ∞, Pr(aλ̂ > zα|H1) → 1,

P r(aλ̂ > zα + p1(zα)|H1) → 1 and Pr(g(aλ̂) > zα|H1) → 1, i.e. our new tests

based on OLS estimates for λ are consistent when W chosen according to (0.0.7). As

anticipated, the result of Theorem 1.4 also explains why the simulated values for the

power of a test of (0.0.2) against (1.5.3) based on Edgeworth-corrected critical are so

much higher than the same quantities obtained by bootstrap.

m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

Monte Carlo power 0 0.020 0.046 0.070

1st order approximation 0.304 0.304 0.304 0.304

2nd order approximation 0.054 0.089 0.111 0.127

Table 1.7: Numerical values corresponding to (1.5.5) (second row) and (1.5.6) (third row), compared
with the simulated values for the power of a test of (0.0.2) against (1.4.1) when λn in model (1.0.8)
is estimated by OLS and the sequence h is “divergent”.

m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

Monte Carlo power 0.054 0.171 0.213 0.250

1st order approximation 0.304 0.304 0.304 0.304

2nd order approximation 0.138 0.199 0.229 0.252

Table 1.8: Numerical values corresponding to (1.5.5) (second row) and (1.5.6) (third row), compared
with the simulated values for the power of a test of (0.0.2) against (1.4.1) when λn in model (1.0.8)
is estimated by OLS and the sequence h is “bounded”.

In the first row of Tables 1.7 and 1.8 we report the simulated values corresponding

to

Pr(aλ̂n > zα|H1), (1.5.4)

where H1 is given in (1.4.1). These should be compared with the values obtained by

the normal approximation (reported in second row)

1− 2Φ(zα − 2aλn) (1.5.5)

and with the values obtained by the Edgeworth-corrected approximation (reported in
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the third row), i.e.

1− Φ(τ − 2λna) + ω(τ − aλn)φ(τ − 2λna) +
κc3
3!
H2(τ − 2λna)φ(τ − 2λna), (1.5.6)

where ω(.) is defined in (1.4.4). In Tables 1.7 and 1.8 the sample is increased con-

sistently with a divergent and bounded h, respectively. We choose c = 0.8 in the

expression for λn given in (1.4.1), although a different choice for c does not change

the pattern of the results of the simulations.

As expected, the actual power obtained in the Monte Carlo simulations tends to

the value corresponding to (1.5.5) when the sample size is large. However, the values

obtained by (1.5.6) are 23% and 19% closer, on average across sample sizes, to the

simulated ones when h is “divergent” and “bounded”, respectively. The difference

between the values obtained by (1.5.5) and those obtained by (1.5.6) becomes increas-

ingly smaller as the sample size increases and, as expected, the convergence is faster

in case of “bounded” h. Specifically, when h is “bounded”, such difference decreases

by 32% on average as sample size increases, but only 11% in case h is “divergent”.

m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

Monte Carlo power 0 0.020 0.046 0.070

Monte Carlo power/corrected 0.180 0.231 0.248 0.253

Table 1.9: Simulated values of the power of a test of (0.0.2) against (1.4.1) based on the standard and
corrected statistics when λn in model (1.0.8) is estimated by OLS and the sequence h is “divergent”.
The values should be compared with the target 0.304.

m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

Monte Carlo power 0.054 0.171 0.213 0.250

Monte Carlo power/corrected 0.223 0.275 0.278 0.290

Table 1.10: Simulated values of the power of a test of (0.0.2) against (1.4.1) based on the standard
and corrected statistics when λn in model (1.0.8) is estimated by OLS and the sequence h is bounded.
The values should be compared with the target 0.304.

Finally, in Tables 1.9 and 1.10 we compare the simulated values corresponding to

(1.5.4), reported in the first row, with

Pr(v(aλ̂n) > zα|H1), (1.5.7)

where v(.) is defined in (1.4.7). Tables 1.9 and 1.10 correspond to divergent and

bounded h, respectively. The values in Tables 1.9 and 1.10 should be compared

with (1.5.5), which is 0.304 for this particular setting. From both tables it is clear

that, as expected, the results when inference is based on the corrected statistic are

closer to the target value 0.304 for all sample sizes. In particular, the simulated
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values for the power based on the Edgeworth-corrected statistic are, on average across

sample sizes, 72% and 19% closer to the nominal value than those based on the

standard statistic, when h is “divergent” and “bounded”, respectively. As expected,

when h is “bounded”, the discrepancy between actual and nominal values decreases

faster as sample size increases. Specifically, when inference is based on the standard

statistic, such discrepancy decreases by 8% on average as sample size increases when

h is “divergent” and by 40% when h is “bounded”.



1. Improved OLS Test Statistics for Pure SAR 42

A Appendix

Proof of Theorem 1.1

The OLS estimate of λ in (1.0.8) is defined as

λ̂− λ =
Y ′W ′ε

Y ′W ′WY

and therefore, under H0,

λ̂ =
ε′W ′ε

ε′W ′Wε
.

The cdf of λ̂ under H0 can be written in terms of a quadratic form in ε, i.e.

Pr(λ̂ ≤ x) = Pr(f ≤ 0),

where

f =
1

2
ε′(C + C ′)ε,

C = W ′ − xW ′W (1.A.1)

and x is any real number.

Under Assumption 1, the characteristic function of f can be derived as

E(eit(
1
2 (ε

′(C+C′)ε)) =
1

(2π)n/2σn

∫
<n

eit(
1
2 (ξ

′(C+C′)ξ)e−
ξ′ξ
2σ2 dξ

=
1

(2π)n/2σn

∫
<n

e−
1

2σ2
ξ′(I−itσ2(C+C′))ξdξ

= det(I − itσ2(C + C ′))−1/2 =

n∏
j=1

(1− itσ2ηj(C + C ′))−1/2, (1.A.2)

where ηj(C + C ′) are the eigenvalues of (C + C ′). From (1.A.2) the cumulant generating

function of f is

ψ(t) = −1

2

n∑
j=1

ln(1− itσ2ηj(C + C ′)) =
1

2

n∑
j=1

∞∑
s=1

(itσ2ηj(C + C ′))s

s

=
1

2

∞∑
s=1

(itσ2)s

s

n∑
j=1

ηj(C + C ′)s =
1

2

∞∑
s=1

(itσ2)s

s
tr((C + C ′)s). (1.A.3)

From (1.A.3) the s-th cumulant of f can be derived as

κ1 = σ2tr(C), (1.A.4)

κ2 =
σ4

2
tr((C + C ′)2), (1.A.5)

κs =
σ2ss!

2

tr((C + C ′)s)

s
, s > 2. (1.A.6)
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Let

f c =
f − κ1
κ
1/2
2

,

i.e. the centred and scaled version of f . The cumulant generating function of f c is

ψc(t) = −1

2
t2 +

∞∑
s=3

κcs(it)
s

s!
,

where

κcs =
κs

κ
s/2
2

, (1.A.7)

so the characteristic function of f c is

E(eitf
c

) = e−
1
2 t

2

exp{
∞∑
s=3

κcs(it)
s

s!
} =

= e−
1
2 t

2

{1 +

∞∑
s=3

κcs(it)
s

s!
+

1

2!
(

∞∑
s=3

κcs(it)
s

s!
)2 +

1

3!
(

∞∑
s=3

κcs(it)
s

s!
)3 + .....}

= e−
1
2 t

2

{1 +
κc3(it)3

3!
+
κc4(it)4

4!
+
κc5(it)5

5!
+ {κ

c
6

6!
+

(κc3)2

(3!)2
}(it)6 + .....}.

Thus, by the Fourier inversion formula,

Pr(f c ≤ z) =

z∫
−∞

φ(z)dz +
κc3
3!

z∫
−∞

H3(z)φ(z)dz +
κc4
4!

z∫
−∞

H4(z)φ(z)dz + .....

Collecting the results derived above,

Pr(λ̂ ≤ x) = Pr(f ≤ 0) = Pr(f cκ
1/2
2 + κ1 ≤ 0) = Pr(f c ≤ −κc1)

= Φ(−κc1)− κc3
3!

Φ(3)(−κc1) +
κc4
4!

Φ(4)(−κ′1) + ... (1.A.8)

From (1.A.4), (1.A.5) and (1.A.7),

κc1 =
σ2tr(C)

σ2( 1
2 tr((C + C ′)2))1/2

,

where C is defined according to (1.A.1). The numerator of κc1 is

σ2tr(W )− σ2xtr(W ′W ) = −σ2xtr(W ′W ),

while the denominator of κc1 is σ2 times

(
1

2
tr(C + C ′)2)1/2 = (tr(W 2) + tr(WW ′)− 4xtr(WW ′W ) + 2x2tr((W ′W )2))1/2.



1. Improved OLS Test Statistics for Pure SAR 44

Thus

κc1 =
−xtr(W ′W )

(tr(W 2) + tr(WW ′)− 4xtr(WW ′W ) + 2x2tr((W ′W )2))1/2

=
−xtr(W ′W )

(tr(W 2 +WW ′))1/2(1− 4xtr(WW ′W )+2x2tr((W ′W )2)
(tr(W 2+WW ′)) )1/2

.

We choose x = a−1ζ, where

a =
tr(W ′W )

(tr(W ′W +W 2))1/2
.

Moreover,

b1 =
tr(WW ′W )

tr(W ′W +W 2)

and

b2 =
tr((W ′W )2)

tr(W ′W +W 2)
.

Now,

κc1 =
−xtr(W ′W )

(tr(W ′W +W 2))1/2(1− 4xb1 + 2x2b2)1/2
=

−ζ
(1− 4xb1 + 2x2b2)1/2

= −ζ

(
1 + 2a−1ζb1 − a−2ζ2b2 + 6a−2ζ2b21 +O

((
h

n

)3/2
))

= −ζ − 2a−1ζ2b1 + a−2ζ3b2 − 6a−2b21ζ
3 +O

((
h

n

)3/2
)
,

where the third equality follows by performing a standard Taylor expansion of the term (1−
4xb1 + 2x2b2)−1/2, i.e.

(1− 4xb1 + 2x2b2)−1/2 = 1 + 2xb1 − x2b2 + 6x2b21 +O

((
h

n

)3/2
)
.

Under Assumption 3,

2a−1ζ2b1 ∼
(
h

n

)1/2

, a−2ζ3b2 ∼
h

n
, 6a−2b21ζ

3 ∼ h

n
.

Moreover, by Taylor expansion,

Φ(−κc1) = Φ

(
ζ + 2a−1ζ2b1 − a−2ζ3b2 + 6a−2ζ3b21 +O

((
h

n

)3/2
))

= Φ(ζ) + (2a−1ζ2b1 − a−2ζ3b2 + 6a−2ζ3b21)φ(ζ)

+ 2a−2ζ4b21Φ(2)(ζ) +O

((
h

n

)3/2
)

(1.A.9)

and

Φ(3)(−κc1) = Φ(3)(ζ) + 2a−1ζ2b1Φ(4)(ζ) +O

(
h

n

)
. (1.A.10)

Collecting (1.A.8), (1.A.9) and (1.A.10), the third order Edgeworth expansion of the cdf
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of aλ̂ under Assumptions 1-3, becomes

Pr(aλ̂ ≤ ζ|H0) = Φ(ζ) + 2a−1b1ζ
2φ(ζ)− κc3

3!
Φ(3)(ζ)

− (a−2b2 − 6a−2b21)ζ3φ(ζ) + 2a−2b21ζ
4Φ(2)(ζ)

− κc3
3
a−1b1ζ

2Φ(4)(ζ) +
κc4
4!

Φ(4)(ζ) +O

((
h

n

)3/2
)
,

where, from (1.A.5), (1.A.6) and (1.A.7),

κc3 =
σ6tr((C + C ′)3)

σ6( 1
2 tr((C + C ′)2))3/2

∼ 2tr(W 3) + 6tr(W ′W 2)

(tr(W ′W +W 2))3/2

and

κc4 =
3σ8tr((C + C ′)4)

σ8( 1
2 tr((C + C ′)2))2

∼ 6tr(W 4) + 24tr(W ′W 3) + 12tr((WW ′)2) + 6tr(W 2W
′2)

(tr(W ′W +W 2))2
.

Setting b = b1a
−1 and substituting the expression for a and b2 into a−2b2, the expansion

stated in Theorem 1.1 follows.

Proof of Theorem 1.2

The OLS estimate of λ in (1.3.1) is defined as

λ̂− λ =
Y ′W ′Pε

Y ′W ′PWY
,

where P = I − l(l′l)−1l′. Since W is row normalized, Wl = l. Hence, under H0,

λ̂ =
ε′W ′Pε

ε′W ′PWε
.

Similarly to the proof of Theorem 1.1, the cdf of λ̂ under H0 can be written in terms of a

quadratic form in ε, i.e.

Pr(λ̂ ≤ x) = Pr(f ≤ 0),

where

f =
1

2
ε′(C + C ′)ε

and

C = W ′P (I − xW ). (1.A.11)

The derivation of the cumulants is similar to one in the proof of Theorem 1.1 with C

defined according to (1.A.11) and is therefore omitted. Given (1.A.11),

κ1 = σ2tr(C) = −σ2
(

1 + xtr(W ′W )− x

n
(l′WW ′l)

)
,
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since

tr(C) = tr(W ′P (I − xW )) = tr(W )− tr(W ′l(l′l)−1l′)− xtr(W ′W ) + xtr(W ′l(l′l)−1l′W )

= − 1

n
l′W ′l − xtr(W ′W ) +

x

n
(l′WW ′l)

= −1− xtr(W ′W ) +
x

n
(l′WW ′l).

Similarly, by straightforward algebra,

1

2
tr((C + C ′)2) =

1

2
tr((W ′P + PW − 2xW ′PW )2)

= tr(W 2) + tr(W ′W ) + 1− 2

n
l′Wl − 1

n
(l′WW ′l)− 4xtr(W ′PW ′PW ) + 2x2tr((W ′PW )2)

and hence

κ2 =
σ4

2
tr((C + C ′)2)

= σ4

(
tr(W 2) + tr(W ′W ) + 1− 2

n
l′Wl − 1

n
(l′WW ′l)− 4xtr(W ′PW ′PW ) + 2x2tr((W ′PW )2)

)
.

Proceeding as in the proof of Theorem 1.1, we obtain the first centred cumulant as

κc1 =
−
(
xtr(W ′W ) + 1− x

n
l′WW ′l

)
γ1/2

(
1 +

1− 2
n
l′Wl − 1

n
(l′WW ′l)− 4xtr(W ′PW ′PW ) + 2x2tr((W ′PW )2)

γ

)−1/2

,

where γ = tr(W 2 + W ′W ). From Lemma 2, l′Wl and (l′WW ′l) are O(n), tr(W ′PW ′PW ) and

tr((W ′PW )2) are O(n/h) by Lemma 1 (since P is uniformly bounded in row and column sums in

absolute value and the product of matrices which are uniformly bounded in row and column sums

retains the same property) and γ ∼ n/h under Assumption 3.

By setting x = a−1ζ where a has been defined in (1.1.4) and by standard Taylor expansion,

κc1 = −
(
ζ +

1

γ1/2
+O

(
h

n

))(
1 +

2a−1tr(W ′PW ′PW )

γ
ζ +O

(
h

n

))
= −ζ − 1

γ1/2
− 2a−1tr(W ′PW ′PW )

γ
ζ2 +O

(
h

n

)
= −ζ − 1

γ1/2
− 2tr(W ′PW ′PW )

γ1/2tr(W 2)
ζ2 +O

(
h

n

)
= −ζ − 1

γ1/2
− 2tr(W ′WW ′)

γ1/2tr(W 2)
ζ2 +O

(
h

n

)
,

where the last equality follows since tr(W ′PW ′PW ) = tr(W ′WW ′) +O(1).

Proceeding as in the proof of Theorem 1,

Pr(aλ̂ ≤ ζ|H0) = Φ(ζ) +

(
1

γ1/2
+

2tr(W ′WW ′)

γ1/2tr(W 2)
ζ2
)
φ(ζ)− κc3

3!
Φ(3)(ζ) +O

(
h

n

)
,

where

κc3 ∼
σ6tr(C + C′)3

σ6
(
1
2
tr(C + C′)2

)3/2 ∼ 2tr((W ′P )3) + 6tr((W ′P )2PW )

(tr(W 2 +W ′W ))3/2
∼
√
h

n
.

The last displayed rate holds since the leading terms of tr((W ′P )3) and 6tr((W ′P )2PW ) are tr(W 3)

and tr(W ′WW ′), respectively, which have exactly order n/h under Assumption 3.

The expansion in Theorem 1.2 follows by observing that tr(W ′WW ′)/γ1/2tr(W 2) = b, where b

is defined according to (1.1.4).
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Proof of Theorem 1.3

The general structure of the proof is similar to ones of Theorems 1.1 and 1.2 and hence

several details will be omitted.

Since Y = S−1(λn)ε,

λ̂n − λn =
Y ′Wε

Y ′W 2Y
=

ε′S−1(λn)Wε

ε′S−1(λn)W 2S−1(λn)ε
.

It is straightforward to see that, given (1.4.2), ifW is symmetric so are S−1(λn) and S−1(λn)W .

By standard manipulation, the cdf of λ̂n−λn under H1 can be written in terms of a quadratic

form in ε, i.e.

Pr(λ̂n − λn ≤ x) = Pr(f ≤ 0),

where f = ε′Cε,

C = S−1(λn)W − xS−1(λn)W 2S−1(λn)

and x is any real number.

Similarly to the proofs of Theorems 1.1 and 1.2, the first cumulant of f is

κ1 = σ2tr(C) = σ2(tr(S−1(λn)W )− xtr(S−1(λn)W 2S−1(λn)))

= σ2

(
tr

( ∞∑
t=0

(λnW )tW

)
− xtr

( ∞∑
t=0

(λnW )tW 2
∞∑
s=0

(λnW )s

))

= σ2

( ∞∑
t=1

λtntr(W
t+1)− xtr(W 2)− 2xλntr(W

3)− xtr(
∞∑
t=1

(λnW )tW 2
∞∑
s=1

(λnW )s)

)

= σ2(λntr(W
2) + λ2ntr(W

3) +

∞∑
t=3

λtntr(W
t+1)− xtr(W 2)− 2xλntr(W

3)

− x
∞∑

t,s=1

λtnλ
s
ntr(W

t+1W s+1)), (1.A.12)

where the third equality follows by (1.4.2). By Lemma 1,

tr(W t+1) = O
(n
h

)
and tr(W t+1W s+1) = O

(n
h

)
,

for every t and s. Hence, under H1,

∞∑
t,s=1

λtnλ
s
ntr(W

t+1W s+1) = O
(n
h

)( ∞∑
t=1

λtn

)2

= O
(n
h

)( λn
1− λn

)2

= O(1)

and
∞∑
t=3

λtntr(W
t+1) = O

(n
h

) ∞∑
t=3

λtn = O
(n
h

)( λ3n
1− λn

)
= O

(√
h

n

)
.
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By a similar argument,

κ2 = 2σ4tr(C2) = 2σ2(tr((S−1(λn)W )2) + x2tr((S−1(λn)W 2S−1(λn))2)

−2xtr(S−1(λn)WS−1(λn)W 2S−1(λn)))

= 2σ4((tr(W 2) + 2λntr(W
3) +

∞∑
t,s=1

λtnλ
s
ntr(W

t+1W s+1)) + x2tr((S−1(λn)W 2S−1(λn))2)

− 2xtr(W 3)− 6xλntr(W
4)− 6xλ2ntr(W

5)− 2x

∞∑
t,s,v=1

λtnλ
s
nλ

v
ntr(W

t+1W s+1W v+1)).

(1.A.13)

By choosing x = a−1ζ, where a = tr(W 2)/
√

2tr(W 2) =
√

2tr(W 2)/2 (which is (1.1.4)

when W is symmetric), (1.A.12) and (1.A.13) become

κ1 = σ2(−a−1ζtr(W 2) + λntr(W
2) + λ2ntr(W

3)− 2a−1ζλntr(W
3)) +O

(√
h

n

)

and

κ2 = 2σ4(tr(W 2) + 2λntr(W
3)− 2a−1ζtr(W 3) +O(1))

= 2σ4tr(W 2)

(
1 + 2λn

tr(W 3)

tr(W 2)
− 2a−1ζ

tr(W 3)

tr(W 2)
+O

(
h

n

))
= 2σ4tr(W 2)

(
1 + 2λn

tr(W 3)

tr(W 2)
− 2
√

2
tr(W 3)

(tr(W 2))3/2
ζ +O

(
h

n

))
.

Hence, by standard algebra,

κc1 =

−a−1tr(W 2)ζ + λntr(W
2) + λ2ntr(W

3)− 2a−1ζλntr(W
3) +O

(√
h
n

)
√

2tr(W 2)
(

1 + 2λn
tr(W 3)
tr(W 2) − 2

√
2 tr(W 3)
(tr(W 2))3/2

ζ +O
(
h
n

))1/2
=

(
−ζ + aλn + tr(W 3)

(
λ2na

−1

2
− λna−2ζ

)
+O

(
h

n

))(
1− tr(W 3)

4

(
2λna

−2 − a−3ζ
)

+O

(
h

n

))
= −ζ + aλn +

tr(W 3)

2
(λ2na

−1 − 2λna
−2ζ) +

tr(W 3)

4
(2λna

−2 − a−3ζ)(ζ − aλn) +O

(
h

n

)
.

(1.A.14)

For notational simplicity, let

ω(ζ) =
tr(W 3)

2
(λ2na

−1 − 2λna
−2ζ) +

tr(W 3)

4
(2λna

−2 − a−3ζ)(ζ − aλn).

Given (1.A.14) and proceeding as described in the proofs of Theorems 1.1 and 1.2, the

expansion for the cdf of λ̂n − λn under H1 becomes

Pr(a(λ̂n − λn) ≤ ζ) = Φ(−κc1)− κc3
3!

Φ(3)(−κc1) + .....

= Φ(ζ − λna)− ω(ζ)φ(ζ − λna)− κc3
3!

Φ(3)(ζ − λna) +O

(
h

n

)
= Φ(ζ − λna)− ω(ζ)φ(ζ − λna)− κc3

3!
H2(ζ − λna)φ(ζ − λna) +O

(
h

n

)
,
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where

κc3 =
8σ6tr(C3)

23/2σ6tr(C2)
∼ 23/2tr(W 3)

(tr(W 2))3/2
∼
(
h

n

)3/2

.

Proof of Theorem 1.4

The OLS estimate of λ is

λ̂− λ =
h
nY
′Wε

h
nY
′W 2Y

=
h
nε
′S−1(λ)Wε

h
nε
′S−1(λ)W 2S−1(λ)ε

, (1.A.15)

since W in (0.0.7) is symmetric and Y = S−1(λ)ε.

As regarding the numerator of the RHS of (1.A.15), by an argument similar to that in the

proof of Lemma 1.1, we have(
h

n

)2

E(ε′S−1(λ)Wε− σ2tr(S−1(λ)W ))2 =

(
h

n

)2

E(ε′S−1(λ)Wε)2 − σ4(tr(S−1(λ)W ))2

= 2σ4

(
h

n

)2

tr((S−1(λ)W )2)→ 0

as n→∞, since tr((S−1(λ)W )2) = O(n/h) by Lemma 1. Hence

h

n
(ε′S−1(λ)Wε− σ2tr(S−1(λ)W ))→ 0

in second mean, implying

plim
n→∞

h

n
ε′S−1(λ)Wε = lim

n→∞
σ2 h

n
tr(S−1(λ)W ). (1.A.16)

Similarly,

plim
n→∞

h

n
ε′S−1(λ)W 2S−1(λ)ε = lim

n→∞
σ2 h

n
tr((S−1(λ)W )2). (1.A.17)

From (1.A.16) and (1.A.17),

λ̂− λ p→ lim
n→∞

h
n tr(S

−1(λ)W )
h
n tr((S

−1(λ)W )2)
. (1.A.18)

First, we show that the RHS of (1.A.18) is finite. Lemma 1 implies

h

n
tr(S−1(λ)W ) = O(1).

The denominator in the RHS of (1.A.18) is non-negative and, by (1.4.2),

h

n
tr((S−1(λ)W )2) ∼ h

n
tr(W 2),

which is non-zero for W given in (0.0.7), as shown in Section 1.5. Hence, the RHS of (1.A.18)

is finite and its sign depends on its numerator.
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From (0.0.7) and the series representation in (1.4.2),

tr(S−1(λ)W ) = tr(

∞∑
i=0

λitr(W i+1)) = r

∞∑
i=0

λitr(Bi+1
m ).

Since Bm has one eigenvalue equal to 1 and the other (m− 1) equal to −1/(m− 1), we have

tr(Bi+1
m ) = 1 + (m− 1)

(
−1

m− 1

)i+1

and hence, since |λ| < 1,

tr(S−1(λ)W ) = r

∞∑
i=0

λi

(
1−

(
−1

m− 1

)i)

=
r

1− λ
− r

1 + λ
m−1

=
λ

1− λ
rm

m− 1 + λ
. (1.A.19)

By substituting h = m− 1 and n = mr into (1.A.19),

h

n
tr(S−1(λ)W ) =

m− 1

mr

λ

1− λ
rm

m− 1 + λ
=

λ

1− λ
m− 1

m− 1 + λ
,

which has the same sign of λ, whether m is divergent or bounded, provided that m > 1.

Lemma 1.1 Suppose model (1.0.8) and Assumptions 1-3 hold. For λn = c(h/n)γ with 0 <

γ ≤ 1/2, λ̂n = Op(λn), while with γ > 1/2, λ̂n = Op((h/n)1/2).

Proof We should stress that Assumption 1 could be relaxed. However, Gaussianity is assumed

throughout this work and hence is retained. Here, Assumption 1 simplifies the derivation of

the expectations of quadratic forms in ε in the following argument.

By the OLS formula,

λ̂n − λn =
h
nY
′W ′ε

h
nY
′W ′Wε

=
h
nε
′S−1(λn)′W ′ε

h
nε
′S−1(λn)′W ′WS−1(λn)ε

.

Therefore, when γ ≤ 1/2, we need to show that

h
nε
′S−1(λn)′W ′ε

h
nε
′S−1(λn)′W ′WS−1(λn)ε

= Op

((
h

n

)γ)
. (1.A.20)

Similarly, when γ > 1/2, it suffices to show

h
nε
′S−1(λn)′W ′ε

h
nε
′S−1(λn)′W ′WS−1(λn)ε

= Op

((
h

n

)1/2
)

(1.A.21)

and conclude the claim by observing that O((h/n)1/2) dominates λn = O((h/n)γ) when

γ > 1/2.

Under Assumptions 1-3, the denominator in (1.A.20) (and (1.A.21)) has a finite and

positive probability limit. Indeed, let

Vn =
h

n
ε′S−1(λn)′W ′WS−1(λn)ε− h

n
E
(
ε′S−1(λn)′W ′WS−1(λn)ε

)
.
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Then,

E(V 2
n ) =

(
h

n

)2

E((ε′S−1(λn)′W ′WS−1(λn)ε)2)−
(
h

n

)2

(E(ε′S−1(λn)′W ′WS−1(λn)ε))2

=

(
h

n

)2

σ4(tr(S−1(λn)′W ′WS−1(λn)))2 + 2

(
h

n

)2

σ4tr((S−1(λn)′W ′WS−1(λn))2)

−
(
h

n

)2

σ4(tr(S−1(λn)′W ′WS−1(λn)))2

= 2

(
h

n

)2

σ4tr((S−1(λn)′W ′WS−1(λn))2) = O

(
h

n

)
,

where the last equality follows by Lemma 1, after observing that ||S−1(λn)||r + ||S−1(λn)||c ≤
K, as shown in Section 1.4. Hence, as n→∞, E(V 2

n )→ 0 and therefore Vn
p→ 0, i.e.

plim
n→∞

h

n
ε′S−1(λn)′W ′WS−1(λn)ε = lim

n→∞

h

n
E(ε′S−1(λn)′W ′WS−1(λn)ε). (1.A.22)

Let

Q = lim
n→∞

h

n
tr(W ′W ).

Under Assumption 3 Q > 0. Moreover,

h

n
E(ε′S−1(λn)′W ′WS−1(λn)ε) =

h

n
σ2tr(W ′W ) +O

((
h

n

)γ)
.

The last displayed expression has been obtained by observing that

h

n
E(ε′S−1(λn)′W ′WS−1(λn)ε) =

h

n
σ2tr(S−1(λn)′W ′WS−1(λn))

= σ2 h

n

tr(W ′W ) + 2λntr((W
′)2W ) + tr

 ∞∑
i=1

(λnW
′)iW ′W

∞∑
j=1

(λnW )j


= σ2 h

n

tr(W ′W ) + 2λntr((W
′)2W ) + tr

 ∞∑
i=1

∞∑
j=1

λinλ
j
nW

′i+1W j+1


= σ2 h

n

tr(W ′W ) + 2λntr((W
′)2W ) +

∞∑
i=1

∞∑
j=1

λinλ
j
ntr(W

′i+1W j+1)


= σ2 h

n

tr(W ′W ) + 2λntr((W
′)2W ) +

∞∑
i=1

∞∑
j=1

λinλ
j
nO
(n
h

)
= σ2 h

n

(
tr(W ′W ) + 2λntr((W

′)2W ) +

(
λn

1− λn

)2

O
(n
h

))
,

where the fifth equality holds since tr(W
′i+1W j+1) = O(n/h) for every i, j by Lemma 1. The

last equality is obtained by
∞∑
i=1

λin =
λn

1− λn
,
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since |λn| < 1 for n sufficiently large. Hence, from (1.A.22),

plim
n→∞

h

n
ε′S−1(λn)′W ′WS−1(λn)ε = Q > 0. (1.A.23)

On the other hand, the numerator in (1.A.20) isOp((h/n)γ), when γ ≤ 1/2, andOp((h/n)1/2),

when γ > 1/2, since(
h

n

)2

E((ε′S−1(λn)′W ′ε)2) = σ4

(
h

n

)2 (
(tr(WS−1(λn)))2 + 2tr((WS−1(λn))2)

)
= σ4

(
h

n

)2
(

(0 + tr(

∞∑
i=1

λinW
i+1))2 +O

(n
h

))
, (1.A.24)

while

tr(

∞∑
i=1

λinW
i+1) =

∞∑
i=1

λintr(W
i+1) =

∞∑
i=1

λinO
(n
h

)
=

λn
1− λn

O
(n
h

)
= O

((n
h

)1−γ)
.

(1.A.25)

Therefore, collecting (1.A.24) and (1.A.25),

(
h

n

)2

E((ε′S−1(λn)′W ′ε)2) = O

((
h

n

)2γ
)
,

when γ ≤ 1/2, and (
h

n

)2

E((ε′S−1(λn)′W ′ε)2) = O

(
h

n

)
,

when γ > 1/2. By Markov’s inequality,

h

n
ε′S−1(λn)′W ′ε = Op

((
h

n

)γ)
, (1.A.26)

when γ ≤ 1/2, and

h

n
ε′S−1(λn)′W ′ε = Op

((
h

n

)1/2
)
, (1.A.27)

when γ > 1/2.

Collecting (1.A.23), (1.A.26) and (1.A.27) the claims in (1.A.20) and (1.A.21) follow triv-

ially.
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2 Improved Test Statistics based

on MLE for Pure SAR
In Chapter 1 we focused on the test of H0 in (0.0.2) when λ in model (1.0.8) is

estimated by OLS. As outlined, the OLS estimate of λ in (1.0.8) is inconsistent when

λ 6= 0 and hence the results of Chapter 1 cannot be extended to test the more general

null hypothesis

H0 : λ = λ0 (2.0.1)

against the alternative

H1 : λ > λ0 (< λ0) (2.0.2)

for any fixed λ0. More importantly, as discussed in Section 1.5, a test of H0 in (0.0.2)

might be inconsistent for some choices of W .

In this chapter we derive new tests of (0.0.2) based on the MLE of λ when again

the data follow model (1.0.8), i.e. (0.0.1) when µ = 0 and β = 0 a priori. The MLE for

λ, denoted λ̃ henceforth, is consistent for every value of λ ∈ (−1, 1) in model (1.0.8),

as shown in Lee (2004). Hence, in principle we could extend the results presented in

this section to test (2.0.1) against (2.0.2). Although the procedure would be identical,

when λ0 6= 0 the algebraic burden would increase dramatically. In addition, in most

of practical application, λ = 0 is probably the most interesting value one wishes to

test, as discussed in the Introduction. Therefore, it seems reasonable to focus only on

the test of H0 as specified in (0.0.2).

Similarly to what discussed in Chapter 1, the rate of convergence of λ̃ can be slower

than the parametric rate
√
n, depending on the choice of W . When this is the case,

the normal cdf might not be an accurate approximation for the cdf of the t-statistic

based on λ̃ under H0. Thus, inference based on standard first order asymptotic theory

can be unreliable and this provides motivation for employing instead refined statistics,

based on formal Edgeworth expansions, which entail closer approximations.

In Section (2.1) we present refined tests based on both Edgeworth-corrected critical

values and corrected t-statistics under H0 in (0.0.2). In Section 2.2 we report the

results of Monte Carlo simulations to assess the finite sample performance of the new

tests. Finally, in Sections 2.3 and 2.4 the new tests based on both MLE and OLS

estimates of λ in model (1.0.8) are applied in two empirical examples. It should be

stressed that these examples are intended for illustrative purpose only and do not aim

to be exhaustive analyses of the issues involved. Proofs are reported in the appendices.

2.1 Test against a one-sided alternative: Edgeworth-corrected criti-

cal values and corrected statistic

We suppose that model (1.0.8) holds and we are interested in testing (0.0.2) against



2. Improved Test Statistics based on MLE for Pure SAR 54

(1.1.1). Extensions of the following results to testing (0.0.2) against a two-sided alter-

native are straightforward in principle, but algebraically very cumbersome, since the

derivation or a third order Edgeworth expansion, rather than the second order one,

would be necessary (similarly to what was discussed in Section 1.2). The Gaussian

log-likelihood function for model (1.0.8) is given by

l(λ, σ2) = −n
2
ln(2π)− n

2
lnσ2 + ln(det(S(λ)))− 1

2σ2
Y ′S(λ)′S(λ)Y, (2.1.1)

where S(λ) is defined according to (0.0.6). Given λ, the MLE of σ2 is

σ̃2(λ) =
1

n
Y ′S(λ)′S(λ)Y (2.1.2)

and hence

λ̃ = arg max
λ∈Λ

l(λ, σ̃2(λ)),

where Λ ∈ (−1, 1) and here λ denotes any admissible value.

When Λ ∈ (−1, 1), det(S(λ)) in (2.1.1) is positive for every λ ∈ Λ. Indeed,

det(S(λ)) = det(I − λW ) is positive when |λ| < 1/ρ(W ), where ρ(W ) is defined in

(0.0.5). On the other hand under Assumption 2(i) ρ(W ) = 1, as discussed in the

Introduction. Furthermore, under Assumption 2(i), existence of S−1(λ) is guaranteed

from (1.4.2) provided that |λ| < 1.

We have the following result

Theorem 2.1 Let model (1.0.8) and Assumptions 1-3 hold. The cdf of λ̃ under H0

in (0.0.2) admits the second order formal Edgeworth expansion

Pr(ãλ̃ ≤ ζ|H0) = Φ(ζ) +

(
2
tr(WW ′W )

ã3
+
tr(W 3)

ã3

)
φ(ζ)− κ̃c3

3!
Φ(3)(ζ) + o

(√
h

n

)
,

or equivalently

Pr(ãλ̃ ≤ ζ|H0) = Φ(ζ) +

(
2
tr(WW ′W )

ã3
+
tr(W 3)

ã3

)
φ(ζ)− κ̃c3

3!
H2(ζ)φ(ζ) + o

(√
h

n

)
,

(2.1.3)

where

ã =
√
tr(W 2 +W ′W ) (2.1.4)

and

κ̃c3 ∼ −4tr(W 3) + 6tr(WW ′W )

ã3
∼
√
h

n
.
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The proof of Theorem 2.1 is in Appendix A.1.

Under Assumption 3,(
2
tr(WW ′W )

ã3
+
tr(W 3)

ã3

)
φ(ζ)− κ̃c3

3!
Φ(3)(ζ) ∼

√
h

n
.

It should again be stressed that the expansion in (2.1.3) is formal and hence the order

of the remainder can only be conjectured by the rate of the coefficients. Without

considering validity issues, the error order o(
√
h/n) is the sharpest one can conjec-

ture since several approximations are used to obtain (2.1.3), as explained in detail in

Appendices A.1 and A.2

Under Assumption 3 ã is finite and strictly positive for large n and hence the rate

of convergence of Pr(ãλ̃ ≤ ζ|H0) to the standard normal cdf is slower than the usual
√
n when the sequence h is divergent.

From expansion (2.1.3), Edgeworth-corrected critical values and the corrected null

statistic can be obtained. The derivation is very similar to that reported in Chapter

1, Section 1.1, for the cdf of aλ̂ and is omitted here. The size of the test of (0.0.2)

obtained with the usual standard normal approximation

Pr(ãλ̃ > zα|H0) (2.1.5)

can be compared with that for the Edgeworth-corrected critical value, that is

Pr(ãλ̃ > t̃Ed|H0), (2.1.6)

where

t̃Ed = zα −
(

2
tr(WW ′W )

ã3
+
tr(W 3)

ã3

)
+
κ̃c3
3!
H2(zα).

As discussed in Chapter 1, when zα is used to approximate the true quantile, we have

an error of order
√
h/n, while the error is decreased to o(

√
h/n) when the Edgeworth-

corrected critical value is used.

Finally, (2.1.5) can be compared with the size based on the corrected statistic, i.e.

Pr(g̃(ãλ̃) > zα|H0), (2.1.7)

where

g̃(x) = x+ 2
tr(WW ′W )

ã3
+
tr(W 3)

ã3
− κ̃c3

3!
H2(x) + Q̃(x),
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and

Q̃(x) =

(
κ̃c3
3!

)2 x3

3
.

As discussed in detail in Section 1.1, Q̃(x) can be derived from (1.1.14) and is cubic

so that g̃(x) is strictly increasing over the whole domain, but does not affect the order

of the remainder.

2.2 Bootstrap correction and Monte Carlo results

In this section we report and discuss some Monte Carlo simulations to investigate

the finite sample performance of the tests derived in Section 2.1. As in Chapter 1,

we adopt the Case (1991) specification for W , specified in (0.0.7). The setting of the

Monte Carlo study is identical to that described in Section 1.5.

The empirical sizes of the test of (0.0.2) based on the usual normal approximation

are compared with the same quantities obtained with both the Edgeworth-corrected

critical values and corrected test statistics. In addition, we consider the simulated sizes

based on bootstrap critical values. The bootstrap algorithm to obtain the critical

values is similar to that outlined in Section 1.5. Once B pseudo-samples Y ∗j , j =

1, ....B, are obtained from N(0, Y ′Y/n), we obtain B bootstrap MLE null statistics

Z̃j = ãλ̃∗j , j = 1, .....B,

where

λ̃∗j = arg max
λ∈Λ

l∗j (λ)

and

l∗j (λ) = −n
2

(ln(2π) + 1)− n

2
ln(

1

n
Y ∗
′

j S(λ)′S(λ)Y ∗j ) + ln(det(S(λ))).

The α−percentile is computed as the value w̃∗α which solves

1

B

B∑
j=1

1(Z̃j ≤ w̃∗α) = α.

The size of the test of (0.0.2) when the bootstrap critical value is used is then

Pr(ãλ̃ > w̃∗α|H0). (2.2.1)

Similarly to Section 1.5, in the Tables we denote by “normal”, “Edgeworth”,

“transformation” and “bootstrap” the simulated values corresponding to the size ob-

tained with the standard approximation, Edgeworth-corrected critical values, Edgeworth-

corrected null statistic and bootstrap critical values, respectively. Also, similarly to

Section 1.5, we denote by “divergent” and “bounded” h the cases where m is mono-

tonically increased and kept fixed, respectively.
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m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

normal 0.005 0.006 0.004 0.013

Edgeworth 0.118 0.091 0.074 0.060

transformation 0.056 0.052 0.052 0.045

bootstrap 0.058 0.052 0.054 0.046

Table 2.1: Empirical sizes of the tests of H0 in (0.0.2) when λ in (1.0.8) is estimated by MLE and
the sequence h is “divergent”. The reported values have to be compared with the nominal 0.05.

m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

normal 0.012 0.025 0.032 0.038

Edgeworth 0.090 0.075 0.068 0.049

transformation 0.057 0.055 0.049 0.051

bootstrap 0.062 0.056 0.058 0.052

Table 2.2: Empirical sizes of the tests of H0 in (0.0.2) when λ in (1.0.8) is estimated by MLE and
the sequence h is “bounded”. The reported values have to be compared with the nominal 0.05.

Tables 2.1 and 2.2 display the simulated values corresponding to (2.1.5), (2.1.6),

(2.1.7) and (2.2.1) when h is “divergent” and “bounded”, respectively. All the values

in Tables 2.1 and 2.2 have to be compared with the nominal 5%.

For both “divergent” and “bounded” h, it is clear that the usual normal ap-

proximation does not work well in practice, since the simulated values for the size

greatly underestimate the nominal 5% for all sample sizes. On the other hand, the

Edgeworth-corrected results seem to perform reasonably well. Similarly to what dis-

cussed in Section 1.5, the results obtained with the Edgeworth-corrected critical values

exceed the target 0.05 for very small sample sizes, but the convergence to the nominal

value appears to be fast. Specifically, on average across sample sizes, the difference

between the values obtained with Edgeworth-corrected critical values and the nom-

inal 0.05 is only 19% and 21% smaller than the same quantity obtained with the

standard t-statistic, h being “divergent” and “bounded”, respectively. However, as

sample size increases, such difference decreases at a faster rate when inference is based

on corrected critical values. Indeed, the difference between actual and nominal values

decreases by 46% and 53% when inference is based on Edgeworth-corrected critical

values, and only by 6% and 32% when we rely on the standard statistic, h being

“divergent” or “bounded”, respectively. The simulated sizes based on the corrected

statistics, instead, are very satisfactory also for very small sample sizes, whether h is

“divergent” or “bounded”. Finally, for all sample sizes, the bootstrap results appear

to be very similar to ones based on the Edgeworth-corrected statistic, whether h is

“divergent” or “bounded”. Specifically, when h is “divergent”, the values obtained by

Edgeworth-corrected statistic and by bootstrap critical values are 91% and 89% closer
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to 0.05 than values obtained by the standard statistic. Such improvements become

87% and 71% when h is “bounded”.

As expected, by comparing Tables 2.1 and 2.2 with Tables 1.1 and 1.2 (reported

in Section 1.5), we notice that the results are similar whether λ is estimated by OLS

or MLE. However, for “divergent” h and when considering the Edgeworth-corrected

critical values, the results obtained when λ is estimated by MLE slightly outperform

those based on the OLS estimate. Other than this case, the values appear to be

comparable.

Figure 2.1: Simulated pdf of ãλ̃ under H0

Figure 2.2: Simulated pdf of g̃(ãλ̃) under H0

In Figures 2.1 and 2.2 we plot the pdf obtained from the Monte Carlo simulation

of the non-corrected MLE null statistic ãλ̃ and its corrected version g̃(ãλ̃), respec-
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tively. We notice that the non-corrected statistic is skewed to the left but most of this

skewness is removed when we consider the corrected version.

m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

normal

λ̄

0.1 0.0100

0.5 0.4740

0.8 0.9850

λ̄

0.1 0.0370

0.5 0.7270

0.8 0.9990

λ̄

0.1 0.0380

0.5 0.8640

0.8 1

λ̄

0.1 0.0560

0.5 0.8930

0.8 1

Edgeworth

λ̄

0.1 0.1270

0.5 0.7600

0.8 0.9900

λ̄

0.1 0.1300

0.5 0.8710

0.8 1

λ̄

0.1 0.1410

0.5 0.9270

0.8 1

λ̄

0.1 0.1740

0.5 0.9750

0.8 1

bootstrap

λ̄

0.1 0.0940

0.5 0.7480

0.8 0.9980

λ̄

0.1 0.1220

0.5 0.8560

0.8 1

λ̄

0.1 0.1300

0.5 0.9180

0.8 1

λ̄

0.1 0.1450

0.5 0.9990

0.8 1

Table 2.3: Empirical powers of the tests of H0 in (0.0.2) against H1 in (1.5.3) with λ̄ = 0.1, 0.5, 0.8
when λ in (1.0.8) is estimated by MLE and the sequence h is “divergent”. α is set to 0.95.

m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

normal

λ̄

0.1 0.0510

0.5 0.7910

0.8 1

λ̄

0.1 0.1260

0.5 0.9890

0.8 1

λ̄

0.1 0.2070

0.5 0.9980

0.8 1

λ̄

0.1 0.4000

0.5 1

0.8 1

Edgeworth

λ̄

0.1 0.1260

0.5 0.8820

0.8 1

λ̄

0.1 0.1920

0.5 0.9950

0.8 1

λ̄

0.1 0.2720

0.5 1

0.8 1

λ̄

0.1 0.4530

0.5 1

0.8 1

bootstrap

λ̄

0.1 0.1140

0.5 0.8920

0.8 .

λ̄

0.1 0.1940

0.5 1

0.8 1

λ̄

0.1 0.3020

0.5 1

0.8 1

λ̄

0.1 0.5220

0.5 1

0.8 1

Table 2.4: Empirical powers of the tests of H0 in (0.0.2) against (1.5.3) with λ̄ = 0.1, 0.5, 0.8 when
λ in (1.0.8) is estimated by MLE and the sequence h is “bounded”. α is set to 0.95.

In Tables 2.3 and 2.4 we report some Monte Carlo results to assess the finite

sample value of the power of both standard and corrected tests of (0.0.2) against a

fixed alternative hypothesis, as specified in (1.5.3). In Tables 2.3 and 2.4 we report

the simulated quantities corresponding to Pr(ãλ̃ > zα|H1), Pr(ãλ̃ > t̃Ed|H1) and

Pr(ãλ̃ > w̃∗α|H1). As in Section 1.5, we choose three different values of λ̄, specifically

λ̄ = 0.1, 0.5, 0.8. The values in Tables 2.3 and 2.4 are consistent with the empirical
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sizes reported in Tables 1.1-1.4. By comparison of the results in Tables 2.3 and 2.4

with Tables 2.1 and 2.2, we notice that the simulated values for the power obtained

with Edgeworth-corrected critical values when λ is estimated by MLE are significantly

smaller than the corresponding ones when λ is estimated by OLS. This is due to the

sign of the probability limit of (λ̂− λ) (Theorem 1.4) when W is chosen as in (0.0.7)

and does not necessarily extend to other choices of W .

2.3 Empirical evidence: the geography of happiness

In this section the corrected tests presented in Sections 1.1 and 2.1 are applied

to a small empirical example based on Stanca (2009). We first shortly describe the

methodology and main results in Stanca (2009) and then outline the purpose and

results of our analysis. The main goal of the empirical work in Stanca (2009) is to

investigate the spatial distribution of the effects of both income and unemployment

on well-being for a sample of n = 81 countries. For the purpose of our analysis we

only focus on income effects. Several specifications are considered in Stanca (2009),

the three main ones being

P = λWP +Xγ + ε, (2.3.1)

P = λWP + ε, (2.3.2)

P = Xγ + ε, (2.3.3)

where ε ∼ N(0, σ2I). P is the n− dimensional vector of sensitivities of well-being to

income in each country, X is a n × k matrix, k = 10, containing exogenous macroe-

conomic conditions, which include GDP per capita, unemployment rate, government

size and trade openness. W is the usual matrix of spatial weights and more details

about the choice of W will be given below.

The components of P are clearly unobservable. Stanca (2009) provides a proxy for

each component of P by estimating n country-specific, micro-level linear models where

well-being (denoted W b, henceforth) is regressed on income (denoted In, henceforth)

as well as unemployment status, demographic factors, social conditions, personality

traits and environmental characteristics. For notational convenience we denote Zj , for

j = 1, ....81, the n1 × k1 matrix of all the regressors other than income, k1 = 19. The

sample sizes n1 of each country-specific analysis varies country by country, on average

n1 = 2300. Specifically, for each country j = 1, .....81,

W b
j = β1,jInj + β2,jZj + uj , (2.3.4)

where uj is a normally distributed error term. Stanca (2009) chooses the OLS estimate
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of β1,j , denoted β̂1,j , for j = 1, ....81, as proxy for each component of P .

For each individual in the sample, W b (intended as life satisfaction) is a self re-

ported number from 1 to 10 while income is measured by self reported deciles in the

national distribution of income. The data source for the analyses in (2.3.1), (2.3.2)

and (2.3.3) is the database “World Development Indicators” (World Bank (2005)).

The data source for the country-specific regressions in (2.3.4) is the “World Values

Survey”.

The results in Stanca (2009) indicate that by estimating λ by MLE in model (2.3.2)

the presence of spatial correlation is detected. However, when the macroeconomic

conditions are included among the regressors, such as in specification (2.3.1), the

estimate of λ becomes insignificant, suggesting that the geographical correlation is

mainly explained by similar underlying macroeconomic conditions in neighbouring

countries. Therefore, either specification (2.3.2) or (2.3.3) can be appropriate, as the

estimate of λ in model (2.3.2) should reflect the macroeconomic similarities among

countries.

By a closer inspection of the results in Stanca (2009), we notice that the estimates

of the relevant components of γ in (2.3.3) are strongly significant (1% or 0.5% level),

while the estimate of λ in specification (2.3.2) is barely significant at 5%. Given that

specifications (2.3.2) and (2.3.3) should both be appropriate, in principle we would

expect the estimates of the relevant coefficients of the two specifications to be equally

significant (at least roughly). Therefore, it can be useful to investigate whether an

Edgeworth-corrected test gives a different result.

We only consider a sub-sample of the 43 European countries, rather than the 81

worldwide ones considered in Stanca (2009). Since P in specification (2.3.2) is a vector

of estimates and not actual data, some heterogeneity issues might be eliminated by

considering only European countries. Indeed, we expect that the micro-level analysis

to obtain β̂1,j , j = 1, ....43, does not exhibit strong structural differences across a

sample of 43 European countries. On the other hand, when considering a broader

sample, some systematic differences in the relationship among the country-specific

variables might occur. In practice, (2.3.4) might not be the correct specification

for all countries, when such countries are very heterogeneous. In turn, when such

differences occur, the reliability of β̂1,j as proxies for the components of P is not clear.

This problem might be reduced by considering only a sub-sample of less heterogeneous

countries.

Since the dependent variable in (2.3.2) is a vector of proxies and not actual data, we

acknowledge that the corrections derived in Sections 1.1 and 2.1 do not fully hold. In

principle, we might be neglecting some relevant term arising from the approximation

of the components of P by β̂1,j , j = 1, ....43, in the Edgeworth expansions of the cdf

of the OLS and MLE statistics under H0 in (0.0.2). However, at least for illustrative

purpose, we think that a preliminary investigation of the effects of the inclusion of the

small sample corrections derived in Sections 1.1 and 2.1 is worthwhile.
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The choice of W is not described in Stanca (2009). We construct W based on a

contiguity criterion, i.e. wij = 1 if country i and country j share a border and wij = 0

otherwise.

Rejection rule α = 0.95 α = 0.99

aλ̂ > zα reject H0 (1.713 > 1.645) fail to reject H0 (1.713 < 2.326)

aλ̂ > tEd reject H0 (1.713 > 1.287) reject H0 (1.713 > 1.666)

Table 2.5: Outcomes of the tests of H0 in (0.0.2) when λ in model (2.3.2) is estimated by OLS

Rejection rule α = 0.95 α = 0.99

ãλ̃ > zα reject H0 (2.869 > 1.645) reject H0 (2.869 > 2.326)

ãλ̃ > t̃Ed reject H0 (2.869 > 1.429) reject H0 (2.869 > 1.922)

Table 2.6: Outcomes of the tests of H0 in (0.0.2) when λ in model (2.3.2) is estimated by MLE

In Tables 2.5 and 2.6, we report the outcome of the tests of (0.0.2) when λ is

estimated by OLS and MLE, respectively. The actual values of statistics and critical

values are reported in brackets. When λ is estimated by OLS, λ̂ is only (barely)

significant at 5%, while it becomes significant at 1% when corrected critical values

are used. We notice that in case λ is estimated by MLE, the outcome of the test

does not change when corrected critical values are used. This is a result that could

be expected, to some extent. From the simulation work, the non-corrected results for

the MLE appear to be slightly better than OLS in very small samples.

2.4 Empirical evidence: the distribution of crimes in Italian provinces

The second example we consider to assess the practical performance of the new

tests derived in Sections 1.1 and 2.1 is based on a paper by Buonanno et al. (2009) and

deals with crime rates in Italian provinces. In particular, Buonanno et al. (2009) aim

to investigate whether social capital, intended as civic norms and associational net-

works, affects the property crime rate at a provincial level. The 103 Italian provinces

are especially suitable for this purpose since Italy displays significant provincial dis-

parities despite being politically, ethically and religiously quite homogeneous. The

literature about the influence of social capital on crime rate is broad and a survey

is beyond the scope of this example. Similarly, for a discussion about the peculiar

contribution of Buonanno et al. (2009), we refer to the paper.

For the purpose of our investigation, we consider the following three models

Y = λWY + ε, (2.4.1)

Y = λWY + β1SC + β2X + δD + ε, (2.4.2)

and

Y = β1SC + β2X + δD + ε, (2.4.3)
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where ε ∼ N(0, σ2I). Y is the n−dimensional vector of crime rates in each province,

where n = 103. Each component of Y is obtained by dividing the reported crime

rate at provincial level by the corresponding overall report rate at regional level. The

dataset, originally constructed by Buonanno et al. and mainly based on ISTAT (“Is-

tituto Nazionale di Statistica”) records, contains three sets of observations, regarding

car thefts, robberies and general thefts rates. SC is the vector of social capital ob-

servations. Buonanno et al. (2009) proposes four different measures of social capital,

which are used separately, namely the number of recreational associations, voluntary

associations, referenda turnout and blood donation. X is a n×k matrix of exogenous

regressors, with k = 8, containing deterrence (such as the average length of judicial

process and the crime specific clear up rate), demographic and socio-economic vari-

ables. In addition, X contains a measure of criminal association at provincial level.

Finally, D is a matrix of geographical dummies to control for heterogeneity among the

north, centre and south of the country. Our analysis is conducted with and without

the inclusion of the geographical dummies and the results do not appear to vary sig-

nificantly. The data pertain to 2002 or, when an average is considered, to the period

2000-2002.

In Buonanno et al. (2009) the parameters in model (2.4.2) are estimated for each

crime type, with different variants of W and measures of social capital. Details of the

estimation methods used are not provided in the paper. The results in Buonanno et

al. (2009) indicate that the estimate of λ in model (2.4.2) is insignificant in each of

the regressions considered (or only barely significant at 10%, in few cases). However,

we observe that when we estimate λ in model (2.4.1) we detect spatial correlation,

suggesting that the effect of geographical contiguity is mostly taken into account by

the regressors included in model (2.4.2). Hence, both models (2.4.1) and (2.4.3) seem

to be appropriate and we expect the estimate of λ in model (2.4.1) to reflect the overall

similarities across neighbouring provinces.

For the purpose of out analysis, in order to investigate more specifically which

are the main determinants of Y , we perform an OLS estimation of the parameters

in model (2.4.3) and observe that Y is strongly affected by the measure of criminal

association (denoted CA, henceforth). Indeed, the estimate of the coefficient of CA is

significant at 0.5% level. In turn, we expect that CA displays significant correlation

across provinces and to confirm our conjecture we estimate the spatial parameter µ

of the additional model

CA = µWCA+ ε. (2.4.4)

As expected, the estimate of µ is strongly significant (0.5% level) when inference is

based on the normal approximation.

When regressors are not included, such as in (2.4.1), we would expect to detect a

similarly strong spatial correlation in the dependent variable. However, the estimate

of λ in (2.4.1) is only significant at 5% level, when inference is based on the normal
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approximation.

As discussed for the previous example, we investigate whether we obtain a different

outcome of the test of (0.0.2) by including the small sample corrections derived in

Sections 1.1 and 2.1. We report the results obtained for the robberies rates, W defined

by a contiguity criterion as described in Section 2.3 (the same choice of W is adopted in

Buonanno et al. (2009)), and blood donation as a measure of social capital, although

similar results can be derived for the other crime rates and alternative measures of

social capital.

Rejection rule α = 0.95 α = 0.99 α = 0.995

aλ̂ > zα reject H0 (1.9998 > 1.645) fail to reject H0 (1.9998 < 2.326) fail to reject H0 (1.9998 < 2.5776)

aλ̂ > tEd reject H0 (1.9998 > 1.4042) reject H0 (1.9998 > 1.8821) fail to reject H0 (1.9998 < 2.0410)

Table 2.7: Outcomes of the tests of H0 in (0.0.2) when λ in model (2.4.1) is estimated by OLS

Rejection rule α = 0.95 α = 0.99 α = 0.995

ãλ̃ > zα reject H0 (2.2934 > 1.645) fail to reject H0 (2.2934 < 2.326) fail to reject H0 (2.2934 < 2.5776)

ãλ̃ > t̃ed reject H0 (2.2934 > 1.5227) reject H0 (2.2934 > 2.0767) reject H0 (2.2934 > 2.2704)

Table 2.8: Outcomes of the tests of H0 in (0.0.2) when λ in model (2.4.1) is estimated by MLE

The outcomes of the tests of H0 in (0.0.2) when λ is estimated by OLS and MLE

are reported in Tables 2.7 and 2.8, respectively. We notice that when the usual normal

approximation is adopted, we are able to reject H0 only at 5% level, λ being estimated

by either OLS or MLE. Instead, when the Edgeworth correction is included, we are

able to reject H0 at 1% level when λ is estimated by OLS and at 0.5% level when λ is

estimated by MLE. As is the case in the previous example, these results confirm those

of the simulation work, i.e. for small/moderate sample sizes, the results obtained

when λ is estimated by MLE slightly outperform those obtained by OLS estimation.

A Appendix

A.1 Proof of Theorem 2.1

We first introduce some notation that will be used throughout the proof. We write

l(λ) = l(λ, σ̃2(λ)),

where l(λ, σ2) and σ̃2(λ) are defined in (2.1.1) and (2.1.2), respectively. Define also

Z(1)(λ) =

√
h

n

∂l(λ)

∂λ
, Z(2)(λ) =

√
h

n

(
∂2l(λ)

∂λ2
− E

(
∂2l(λ)

∂λ2

))
,

J(λ) =
h

n

∂3l(λ)

∂λ3
, K(λ) = −h

n
E

(
∂2l(λ)

∂λ2

)
,

∂l(0)

∂λ
=
∂l(λ)

∂λ
|λ=0.

Finally, Oe(.) indicates an exact rate (in probability). In order to establish whether the orders
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of the coefficients appearing in Theorem 2.1 hold as exact rates, it is relevant here to distinguish

Oe(.) from Op(.).

By (2.1.1),
∂l(λ)

∂λ
= n

(Y ′WY − λY ′W ′WY )

Y ′S(λ)′S(λ)Y
− tr(S−1(λ)W ) (2.A.1)

and

∂2l(λ)

∂λ2
= −n Y ′W ′WY

Y ′S(λ)′S(λ)Y
+ 2n

(λY ′W ′WY − Y ′WY )2

(Y ′S(λ)′S(λ)Y )2
− tr(S−1(λ)WS−1(λ)W ). (2.A.2)

Therefore, under H0,

Z(1)(0) =
√
hn
ε′Wε

ε′ε
(2.A.3)

and

Z(2)(0) =

√
h

n
{−nε

′W ′Wε

ε′ε
+ 2n

(
ε′Wε

ε′ε

)2

− tr(W 2) + nE

(
ε′W ′Wε

ε′ε

)
− 2nE

(
ε′Wε

ε′ε

)2

+ tr(W 2)}

=

√
h

n
{−nε

′W ′Wε

ε′ε
+ 2n

(
ε′Wε

ε′ε

)2

− tr(W 2) + n
E(ε′W ′Wε)

E(ε′ε)
− 2n

E
(
1
2ε
′(W +W ′)ε

)2
E(ε′ε)2

+ tr(W 2)}

=

√
h

n
{−nε

′W ′Wε

ε′ε
+ 2n

(ε′Wε)2

(ε′ε)2
+ tr(W ′W )− 1

n
tr((W +W ′)2)(1 +

2

n
)−1},

(2.A.4)

since

E(ε′W ′Wε) = σ2tr(W ′W ), (2.A.5)

E((ε′(W +W ′)ε)2) = 2σ4tr((W +W ′)2) (2.A.6)

and

E((ε′ε)2) = σ4(n2 + 2n). (2.A.7)

The second equality in (2.A.4) follows because both the ratios

ε′Wε

ε′ε
=

1
2ε
′(W +W ′)ε

ε′ε
and

ε′W ′Wε

ε′ε

are independent of their own denominator and therefore the expectation of the ratio is equal

to the ratio of the expectations (Pitman (1937)). Similarly,

J(0) =
h

n

(
−6nε′Wεε′W ′Wε

(ε′ε)2
+

8n(ε′Wε)3

(ε′ε)3
− 2tr(W 3)

)
(2.A.8)

and, using (2.A.5), (2.A.6), (2.A.7),

K(0) = −h
n

(
−nE(ε′W ′Wε)

E(ε′ε)
+ 2n

E
(
ε′ 12 (W +W ′)ε

)2
E(ε′ε)2

)
+
h

n
tr(W 2)

=
h

n
tr(W 2) +

h

n
tr(W ′W )− h

n2
tr((W +W ′)2)

(
1 +

2

n

)−1
. (2.A.9)

By Lemmas 2.1, 2.2 and 2.3 (reported in Appendix A.2) Z(1)(0) = Oe(1), Z(2)(0) = Op(1)

and J(0) = Op(1), respectively. In addition, under Assumption 3, K(0) is finite and positive

for large n.
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By the Mean Value Theorem,

0 =
h

n

∂l(λ̃)

∂λ
=
h

n

∂l(0)

∂λ
+
h

n

∂2l(0)

∂λ2
λ̃+

1

2

h

n

∂3l(0)

∂λ3
λ̃2 +

h

6n

∂4l(
−
λ)

∂λ2
λ̃3,

where
−
λ is an intermediate point between λ̃ and 0. Therefore,

0 =

√
h

n
Z(1)(0) +

√
h

n
Z(2)(0)λ̃−K(0)λ̃+

1

2
J(0)λ̃2 +

h

6n

∂4l(
−
λ)

∂λ4
λ̃3

and rearranging,

√
n

h
λ̃ =

Z(1)(0)

K(0)
+
Z(2)(0)

K(0)
λ̃+

1

2

√
n

h

J(0)

K(0)
λ̃2 +

1

6

√
h

n

∂4l(
−
λ)

∂λ4
λ̃3. (2.A.10)

The first term of the RHS of (2.A.10) is Oe(1), the second and the third are Op(
√
h/n),

since it is known that λ̃ = Oe(
√
h/n) (see Lee (2004)) while Z(2)(0) and J(0) are Op(1),

by Lemma 2.2 and Lemma 2.3, respectively. The last term is op(
√
h/n) since

−
λ

p→ 0 and

∂4l(0)/∂λ4 ∼ tr(W 4) ∼ (n/h). Hence,√
n

h
λ̃ =

Z1(0)

K(0)
+

√
h

n

Z(2)(0)Z(1)(0)

K(0)2
+

1

2

√
h

n

J(0)(Z(1)(0))2

K(0)3
+ op

(√
h

n

)
,

where the last displayed expression has been obtained by substituting into (2.A.10) the ap-

proximation for λ̃ implicit in (2.A.10), i.e.

λ̃ ∼
√
h

n

Z(1)(0)

K(0)
.

Let x be any finite real number. We have

Pr(

√
n

h
λ̃ ≤ x)

= Pr(
Z1(0)

K(0)
+

√
h

n

Z(2)(0)Z(1)(0)

K(0)2
+

1

2

√
h

n

J(0)(Z(1)(0))2

K(0)3
+ op

(√
h

n

)
≤ x)

= Pr(
1

K(0)

√
h

n

ε′Wε
1
nε
′ε

+

√
h

n

Z(2)(0)Z(1)(0)

K(0)2
+

1

2

√
h

n

J(0)(Z(1)(0))2

K(0)3
+ op

(√
h

n

)
≤ x),

where the last equality is obtained by substituting (2.A.3) and multiplying both numerator

and denominator of the first term by 1/n. We write

f̃ =

√
h

n
ε′Wε− xK(0)

n
ε′ε+

√
h

n

Z(2)(0)Z(1)(0)

K(0)

1

n
ε′ε+

1

2

√
h

n

J(0)(Z(1)(0))2

K(0)2
1

n
ε′ε+ op

(√
h

n

)

=
1

2
ε′(C̃ + C̃ ′)ε+

√
h

n

Z(2)(0)Z(1)(0)

K(0)

1

n
ε′ε+

1

2

√
h

n

J(0)(Z(1)(0))2

K(0)2
1

n
ε′ε+ op

(√
h

n

)
,

(2.A.11)
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where

C̃ =

√
h

n
W − xK(0)

n
I. (2.A.12)

Therefore, by standard algebraic manipulation,

Pr(

√
n

h
λ̃ ≤ x) = Pr(f̃ ≤ 0).

Under Assumption 3 and by a slight modification of the argument in Lemma 2.1 the first

term of the RHS of (2.A.11) is Oe(1). The second and the third terms are both Op(
√
h/n) by

Lemmas 2.1, 2.2 2.3, and since K(0) is finite and positive in the limit.

Under Assumption 1 the characteristic function of f̃ can be written as

E(eitf̃ ) =
1√

2πσ2

∫
<n

eitf̃e−
u′u
2σ2 du

=
1√

2πσ2

∫
<n

e
1
2 itu

′(C̃+C̃′)u{1 + it

√
h

n

Z(2)(0)Z(1)(0)

K(0)

1

n
u′u

+
1

2
it

√
h

n

J(0)(Z(1)(0))2

K(0)2
1

n
u′u+ op

(√
h

n

)
} × e−

u′u
2σ2 du,

where, from (2.A.3), (2.A.4) and (2.A.8), it is clear than in Z(1)(0), Z(2)(0) and J(0) appearing

in the integrand function of the last displayed expression, are functions of u. Next,

E(eitf̃ ) =
1√

2πσ2

∫
<n

e−
1

2σ2
u′(I−itσ2(C̃+C̃′))udu

+ it

√
h

n

1√
2πσ2

1

K(0)

∫
<n

e−
1

2σ2
u′(I−itσ2(C̃+C̃′))uZ

(1)(0)Z(2)(0)u′u

n
du

+
1

2
it

√
h

n

1√
2πσ2

1

K(0)2

∫
<n

e−
1

2σ2
u′(I−itσ2(C̃+C̃′))u (Z(1)(0))2J(0)u′u

n
du+ o

(√
h

n

)
.

Let

Σ = (I − itσ2(C̃ + C̃ ′)). (2.A.13)

By the change of variable

u→ v = Σ1/2u, (2.A.14)

E(eitf̃ ) = det(I − itσ2(C̃ + C̃′))−1/2 1√
2πσ2

×

∫
<n

e
− v

′v
2σ2

(
1 + it

√
h

n

1

K(0)

Z(1)(0)Z(2)(0)v′Σ−1v

n
dv +

1

2
it

√
h

n

1

K(0)2
(Z(1)(0))2J(0)v′Σ−1v

n

)
dv

+ o

(√
h

n

)

=

n∏
j=1

(1− itσ2ηj(C̃ + C̃′))−1/2{1 + it

√
h

n

1

K(0)
E

(
Z(1)(0)Z(2)(0)ε′Σ−1ε

n

)

+
1

2
it

√
h

n

1

K(0)2
E

(
(Z(1)(0))2J(0)ε′Σ−1ε

n

)
}+ o

(√
h

n

)
, (2.A.15)



2. Improved Test Statistics based on MLE for Pure SAR 68

where det(I − itσ2(C̃ + C̃ ′))−1/2 is the Jacobian of the transformation in (2.A.14) and ηj(C̃ +

C̃ ′), j = 1....n, are the eigenvalues of (C̃ + C̃ ′). It should be stressed that, after the trans-

formation in (2.A.14), Z(1)(0), Z(2)(0) and J(0) in the expectations displayed in (2.A.15) are

functions of V = Σ−1/2ε instead of ε only.

For notational simplicity, let

Q = Q1 +Q2 + o

(√
h

n

)
,

where

Q1 = it

√
h

n

1

K(0)
E

(
Z(1)(0)Z(2)(0)ε′Σ−1ε

n

)
and

Q2 =
1

2
it

√
h

n

1

K(0)2
E

(
(Z(1)(0))2J(0)ε′Σ−1ε

n

)
.

From (2.A.15) the cumulant generating function for f̃ , denoted ψ̃(t), can be written as

ψ̃(t) = −1

2

n∑
j=1

ln(1− itσ2ηj(C̃ + C̃ ′)) + ln(1 +Q)

=
1

2

∞∑
s=1

(itσ2)s

s
tr((C̃ + C̃ ′)s) +

∞∑
s=1

(−1)s+1

s
Qs. (2.A.16)

Let κ̃s be the sth cumulant of f . The contributions of the first term of the RHS of (2.A.16)

to κ̃1, κ̃2 and κ̃3 are given by

σ2tr(C̃) = −σ2xK(0), (2.A.17)

σ4

2
tr((C̃ + C̃ ′)2)) =

h

n
σ4(tr(W 2 +W ′W )) +O

(
1

n

)
(2.A.18)

and

σ6tr(C̃ + C̃ ′)3 = σ6

(
h

n

)3/2 (
2tr(W 3) + 6tr(W 2W ′)

)
+ o

(√
h

n

)
, (2.A.19)

respectively. The contribution to κ̃1, κ̃2 and κ̃3 of the second term of the RHS of (2.A.16)

are evaluated in Appendix A.2. Collecting (2.A.17), (2.A.18), (2.A.19) and the results in

Appendix A.2,

κ̃1 = −σ2xK(0)− 2σ2

(
h

n

)3/2
tr(WW ′W )

K(0)
− σ2

(
h

n

)3/2
tr(W 3)

K(0)
+ o

(√
h

n

)
, (2.A.20)

κ̃2 = σ4 h

n
(tr(W 2 +W ′W )) + o

(√
h

n

)
(2.A.21)

and

κ̃3 = −4σ6

(
h

n

)3/2

tr(W 3)− 6σ6

(
h

n

)3/2

tr(WW ′W ) + o

(√
h

n

)
. (2.A.22)

By centring and scaling the statistic f̃ ,

f̃ c =
f̃ − κ̃1
κ̃
1/2
2

,
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the cumulant generating function of f̃ c can be written as

ψ̃c(t) = −1

2
t2 +

∞∑
s=3

κ̃cs(it)
s

s!
, (2.A.23)

where κ̃cs = κ̃s/κ̃
s/2
2 . From (2.A.23), the characteristic function of f̃ c becomes

E(eitf̃
c

) = e−
1
2 t

2

exp{
∞∑
s=3

κ̃cs(it)
s

s!
} =

= e−
1
2 t

2

{1 +

∞∑
s=3

κ̃cs(it)
s

s!
+

1

2!
(

∞∑
s=3

κ̃cs(it)
s

s!
)2 +

1

3!
(

∞∑
s=3

κ̃cs(it)
s

s!
)3 + .....}

= e−
1
2 t

2

{1 +
κ̃c3(it)3

3!
+
κ̃c4(it)4

4!
+
κ̃c5(it)5

5!
+ { κ̃

c
6

6!
+

(κ̃c3)2

(3!)2
}(it)6 + .....}.

Thus, by the Fourier inversion formula,

Pr(f̃ c ≤ z) =

z∫
−∞

φ(z)dz +
κ̃c3
3!

z∫
−∞

H3(z)φ(z)dz +
κ̃c4
4!

z∫
−∞

H4(z)φ(z)dz + ....

Collecting the results derived above,

Pr(

√
n

h
λ̃ ≤ x) = Pr(f̃ ≤ 0) = Pr(f̃ cκ̃

1/2
2 + κ̃1 ≤ 0) = Pr(f̃ c ≤ −κ̃c1)

= Φ(−κ̃c1)− κ̃c3
3!

Φ(3)(−κ̃c1) +
κ̃c4
4!

Φ(4)(−κ̃c1) + .... (2.A.24)

Now, from (2.A.20) and (2.A.21),

κ̃c1 =
−σ2xK(0)− 2σ2

(
h
n

)3/2 tr(WW ′W )
K(0) − σ2

(
h
n

)3/2 tr(W 3)
K(0)

σ2(hn (tr(W 2 +W ′W )))1/2
+ o

(√
h

n

)

=
−xhn (tr(W 2 +W ′W ))− 2

√
h
n

tr(WW ′W )
(tr(W 2+W ′W )) −

√
h
n

tr(W 3)
(tr(W 2+W ′W ))

(hn (tr(W 2 +W ′W )))1/2

+ o

(√
h

n

)
,

where the second equality has been obtained by substituting

K(0) =
h

n
(tr(W 2 +W ′W )) +O

(
1

n

)
,

according to (2.A.9). We set x =
√
n/hã−1ζ, where

ã =
√
tr(W 2 +W ′W ).

Therefore

κ̃c1 = −ζ − 2
tr(WW ′W )

ã3
− tr(W 3)

ã3
+ o

(√
h

n

)



2. Improved Test Statistics based on MLE for Pure SAR 70

and, from (2.A.21) and (2.A.22),

κ̃c3 ∼ −4tr(W 3)− 6tr(WW ′W )

(tr(W 2 +W ′W ))3/2
= −4tr(W 3) + 6tr(WW ′W )

ã3
∼
√
h

n
.

By Taylor expansion of the function Φ(−κ̃c1) in (2.A.24),

Pr(ãλ̃ ≤ ζ) = Φ(ζ) +

(
2
tr(WW ′W )

ã3
+
tr(W 3)

ã3

)
φ(ζ)− κ̃c3

3!
Φ(3)(ζ) + o

(√
h

n

)
.

A.2 Auxiliary results

In this appendix we will present and prove some of the auxiliary results used in the proof

of Theorem 2.1. As already stressed, the expansion in Theorem 2.1 is formal, so we do not deal

with convergence issues in some of the results that follow. Moreover, it must be mentioned

that for notational simplicity, we prove Lemmas 2, 3 and 4 for a symmetric W . When W is

not symmetric the same results hold simply by substituting (W +W ′)/2 instead of W where

necessary.

Lemma 2.1 Under Assumptions 1-3

Z(1)(0) =
√
hn
ε′Wε

ε′ε
= Oe(1).

Proof We have

E

(
ε′Wε

ε′ε

)2

=
E(ε′Wε)2

E(ε′ε)2
=

2tr(W 2)

n2 + 2n
∼ 1

nh
,

under Assumptions 1-3. Hence, by Markov’s inequality,

√
hn
ε′Wε

ε′ε
= Oe(1).

Lemma 2.2 Under Assumptions 1-3

Z(2)(0) = Op(1),

where Z(2)(.) is defined according to (2.A.4).

Proof By rearranging terms in the first two lines of (2.A.4),

Z(2)(0) = −
√
h

n

(
n
ε′W ′Wε

ε′ε
− nE

(
ε′W ′Wε

ε′ε

))
+

√
h

n

(
2n

(
ε′Wε

ε′ε

)2

− 2nE

(
ε′Wε

ε′ε

)2
)
.
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By the Cr inequality,

E(Z(2)(0))2 ≤ 2
h

n
E

(
n
ε′W ′Wε

ε′ε
− nE

(
ε′W ′Wε

ε′ε

))2

+2
h

n
E

(
2n

(
ε′Wε

ε′ε

)2

− 2nE

(
ε′Wε

ε′ε

)2
)2

.

(2.A.25)

Now,

E

(
n
ε′W ′Wε

ε′ε
− nE

(
ε′W ′Wε

ε′ε

))2

= E

(
n
ε′W ′Wε

ε′ε
− tr(W ′W )

)2

=n2
E(ε′W ′Wε)2

E(ε′ε)2
+ (tr(W ′W ))2 − 2ntr(W ′W )

E(ε′W ′Wε)

E(ε′ε)

=((tr(W ′W ))2 + 2tr((W ′W )2))

(
1 +

2

n

)−1
+ (tr(W ′W ))2 − 2(tr(W ′W ))2

=((tr(W ′W ))2 + 2tr((W ′W )2))

(
1− 2

n
+O

(
1

n2

))
− (tr(W ′W ))2

=2tr((W ′W )2)

(
1− 2

n
+O

(
1

n2

))
− (tr(W ′W ))2

(
2

n
+O

(
1

n2

))
(2.A.26)

and hence,

E

(
n
ε′W ′Wε

ε′ε
− nE

(
ε′W ′Wε

ε′ε

))2

∼ 2tr((W ′W )2) ∼ n

h
, (2.A.27)

under Assumption 3. In case the sequence h is bounded, the latter result would be modified

as

E

(
n
ε′W ′Wε

ε′ε
− nE

(
ε′W ′Wε

ε′ε

))2

∼ 2tr((W ′W )2)− 2

n
(tr(W ′W ))2 ∼ n.

It is worth stressing that, despite we are not attempting to provide an exact rate, we could

not use the inequality

E (X − E(X))
2 ≤ E(X2)

instead of (2.A.26), as it would neglect relevant terms. Moreover,

4n2E

((
ε′Wε

ε′ε

)2

− E
(
ε′Wε

ε′ε

)2
)2

≤ 4n2E

(
ε′Wε

ε′ε

)4

=4n2
E(ε′Wε)4

E(ε′ε)4
∼ 4n2

12(tr(W 2))2 + 48tr(W 4)

n4
∼ 1

h2
. (2.A.28)

Collecting (2.A.25), (2.A.27), (2.A.28) and by Markov’s inequality, we conclude Z(2)(0) =

Op(1).

Lemma 2.3 Under Assumptions 1-3

J(0) = Op(1),

where J(0) is defined according to (2.A.8).
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Proof By the Cr inequality (applied twice),

E(J(0))2 ≤2
h2

n2

(
E

(
6nε′Wεε′W ′Wε

(ε′ε)2

)2

+ E

(
8n(ε′Wε)3

(ε′ε)3
− 2tr(W 3)

)2
)

≤2
h2

n2
E

(
6nε′Wεε′W ′Wε

(ε′ε)2

)2

+ 4
h2

n2
E

(
8n(ε′Wε)3

(ε′ε)3

)2

+4
h2

n2
(2tr(W 3))2. (2.A.29)

In order to evaluate the rate of the first term in (2.A.29), we use E(A/B) ∼ E(A)/E(B),

without deriving the exact order of the remainder. As previously mentioned, E(A/B) =

E(A)/E(B) when A/B is independent of B. When the latter fails, we are able to justify

E(A/B) ∼ E(A)/E(B) as an approximation using an argument similar to Lieberman (1994).

Using standard results on the expectations of quadratic forms,

E

(
6nε′Wεε′W ′Wε

(ε′ε)2

)2

∼ 36n2
E(ε′Wεε′W ′Wε)2

E(ε′ε)4
∼ 36n2

2tr(W 2)(tr(W ′W ))2

n4
∼ n

h3
.

(2.A.30)

Moreover, by a recursive formula (Ghazal (1996)),

E(ε′Wε)n =

n−1∑
i=0

giE(ε′Wε)n−1−i, (2.A.31)

where

gi =

(
n− 1

i

)
i!2iσ2i+2tr((W )i+1),

we have

E

(
8n(ε′Wε)3

(ε′ε)3

)2

=
64n2E(ε′Wε)6

E(ε′ε)6
∼ 64n2

120(tr(W 2))3

n6
∼ 1

nh3
. (2.A.32)

Hence, the term

4(tr(W 3)2) ∼ n2

h2

in (2.A.29) dominates both (2.A.30) and (2.A.32), whether h is divergent or bounded. There-

fore,

E(J(0))2 = O(
h2

n2
n2

h2
) = O(1),

implying J(0) = Op(1).

Evaluation of cumulants

Here we evaluate the contribution to κ̃1, κ̃2 and κ̃3 of the term

Q1 = it

√
h

n

1

K(0)

1

n
E(Z(1)(0)Z(2)(0)ε′Σ−1ε)

appearing in (2.A.15). Since the expansion in Theorem 2.1 is formal, E(A/B) ∼ E(A)/E(B)

is used without proving the exact order of the remainder terms. Substituting (2.A.3) and
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(2.A.4),

Q1 = Q11 +Q12 +Q13,

where

Q11 = −it
√
h

n

1

K(0)
hE

(
ε′Σ−1/2WΣ−1/2εε′Σ−1/2W ′WΣ−1/2ε

ε′Σ−1ε

)
,

Q12 = 2it

√
h

n

1

K(0)
hE

(
(ε′Σ−1/2WΣ−1/2ε)3

(ε′Σ−1ε)2

)
and

Q13 = it

√
h

n

1

K(0)

h

n

(
tr(W ′W )− 1

n
tr((W +W ′)2)

(
1 +

2

n

)−1)
E(ε′Σ−1/2WΣ−1/2ε).

Contribution from term Q11

By standard results on the expectations of quadratic forms in normal random variables,

we have

Q11 ∼ −it
√
h

n

1

K(0)
h
E
(
1
2ε
′Σ−1/2(W +W ′)Σ−1/2εε′Σ−1/2W ′WΣ−1/2ε

)
E(ε′Σ−1ε)

= −it
√
h

n

1

K(0)
h
σ4
(
1
2 tr((W +W ′)Σ−1)tr(W ′WΣ−1) + tr(Σ−1(W +W ′)Σ−1W ′W )

)
σ2tr(Σ−1)

.

Since

Σ−1 = (I − itσ2(C̃ + C̃ ′))−1 =

∞∑
s=0

(itσ2(C̃ + C̃ ′))s

by (1.4.2), it is straightforward to show that tr(Σ−1) ∼ n.

The contribution from Q11 to κ̃1 is then

−2

√
h

n

1

K(0)

h

n
σ2tr(WW ′W ) + o

(√
h

n

)
= −2σ2

√
h

n

tr(WW ′W )

tr(W 2) + tr(W ′W )
+ o

(√
h

n

)
,

(2.A.33)

since

K(0) =
h

n
(trW 2 +W ′W )) +O(

1

n
),

according to (2.A.9).

The contribution to κ̃2 comes from the term

−(it)2σ4(
h

n
)3/2

1

K(0)
{1

2
tr((W +W ′)(C̃ + C̃ ′))tr(W ′W )

+ tr((C̃ + C̃ ′)(W +W ′)W ′W ) + tr((W +W ′)(C̃ + C̃ ′)W ′W )},

with C̃ given by (2.A.12). The contribution to κ̃2 is given by

−σ4(
h

n
)2

1

K(0)
(tr((W +W ′)2)tr(W ′W ) + op

(√
h

n

)
, (2.A.34)
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since

tr((W +W ′)(C̃ + C̃ ′)) = (tr(W +W ′)2)

√
h

n
∼
(√

n

h

)
, (2.A.35)

tr((C̃ + C̃ ′)(W +W ′)W ′W ) ∼
(√

n

h

)
(2.A.36)

and

tr((W +W ′)(C̃ + C̃ ′)W ′W ) ∼
(√

n

h

)
. (2.A.37)

Similarly, the contribution to κ̃3 comes from the term

−(it)3(
h

n
)3/2

1

K(0)

1

σ2
σ8(

1

2
tr((W +W ′)(C̃ + C̃ ′))tr(W ′W (C̃ + C̃ ′))

+
1

2
tr((W +W ′)(C̃ + C̃ ′)2)tr(W ′W ) + tr((C̃ + C̃ ′)2(W +W ′)W ′W )

+ tr((W +W ′)(C̃ + C̃ ′)2W ′W ) + tr((C̃ + C̃ ′)(W +W ′)(C̃ + C̃ ′)W ′W )).

Now,

tr(W ′W (C̃ + C̃ ′)) ∼
√
h

n
2tr(WW ′W ), (2.A.38)

tr(W (C̃ + C̃ ′)2) ∼ h

n
tr((W +W ′)3), (2.A.39)

tr((C̃ + C̃ ′)2(W +W ′)W ′W ) = o

(√
n

h

)
, (2.A.40)

tr((W +W ′)(C̃ + C̃ ′)2W ′W ) = o

(√
n

h

)
(2.A.41)

and

tr((C̃ + C̃ ′)(W +W ′)(C̃ + C̃ ′)W ′W ) = o

(√
n

h

)
. (2.A.42)

Using (2.A.35), (2.A.36), (2.A.38)-(2.A.42), and after some tedious but straightforward algebra

we conclude that the contribution to κ̃3 is

− 6

(
h

n

)5/2
1

K(0)
σ6(2tr(W 2)tr(WW ′W ) + 5tr(W ′W )tr(WW ′W )

+tr(W ′W )tr(W 3)) + o

(√
h

n

)
. (2.A.43)

When W is symmetric (e.g. W given in (0.0.7)), the latter expression simplifies to

−24

(
h

n

)3/2

σ6tr(W 3) + o

(√
h

n

)
,

as

K(0) = 2
h

n
trW 2 +O

(
1

n

)
,

according to (2.A.9).

Contribution from term Q12
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When Σ−1 is positive definite, 1/2(ε′Σ−1/2(W + W ′)Σ−1/2ε)/ε′Σ−1ε and ε′Σ−1ε are in-

dependent. (see e.g. Heijmans (1999), who provides sufficient conditions for Pitman (1937)

general result to hold). Without considering validity issues for (1.4.2), Σ−1 in (2.A.13) is

indeed positive definite, since Σ−1 ∼ σ2I. Hence,

Q12 = 2it

√
h

n

1

K(0)
hE

((
ε′Σ−1/2WΣ−1/2ε

ε′Σ−1ε

)3

ε′Σ−1ε

)
= 2it

√
h

n

1

K(0)
hE

(
ε′Σ−1/2WΣ−1/2ε

ε′Σ−1ε

)3

E(ε′Σ−1ε)

= 2it

√
h

n

1

K(0)
h
E
(

1
2
ε′Σ−1/2(W +W ′)Σ−1/2ε

)3
E(ε′Σ−1ε)3

E(ε′Σ−1ε)

= 2it

√
h

n

1

K(0)
hσ6{(1

2
tr((W +W ′)Σ−1))3 + 6tr

(
1

2
(W +W ′)Σ−1

)
tr

((
1

2
(W +W ′)Σ−1

)2
)

+ 8tr

((
1

2
Σ−1(W +W ′)

)3
)
} σ2tr(Σ−1)

σ6 ((trΣ−1)3 + 6tr(Σ−1)tr(Σ−2) + 8tr(Σ−3))
.

We have

(trΣ−1)3 + 6tr(Σ−1)tr(Σ−2) + 8tr(Σ−3) ∼ n3

and tr(Σ−1) ∼ n.

The contribution from Q12 to κ̃1 is then

2σ2

√
h

n

1

K(0)

h

n2
tr((W +W ′)3) = o

(√
h

n

)
, (2.A.44)

A similar argument holds also for the contribution from Q12 to both κ̃2 and κ̃3.

Contribution from term Q13

We have

Q13 = it

(
h

n

)3/2
1

K(0)
(tr(W ′W )− 1

n
tr((W +W ′)2)(1 +

2

n
)−1)σ2tr(

1

2
(W +W ′)Σ−1).

It is straightforward to see that there are no contributions to κ̃1, since

σ2

(
h

n

)3/2
1

K(0)
(tr(W ′W )− 1

n
tr(W 2)(1 +

2

n
)−1)tr(W ) = 0. (2.A.45)

The contribution to κ̃2 comes from

(it)2σ4

(
h

n

)3/2
1

K(0)
(tr(W ′W )− 4

n
tr(W 2)(1 +

2

n
)−1)

1

2
tr((W +W ′)(C̃ + C̃ ′))

and by (2.A.35) we conclude that Q13 contributes to κ2 with

σ4

(
h

n

)2
1

K(0)
tr((W +W ′)2)tr(W ′W ) + op

(√
h

n

)
. (2.A.46)

The contribution to κ̃3 comes from

(it)3σ6

(
h

n

)3/2
1

K(0)
(tr(W ′W )− 1

n
tr(W 2)(1 +

2

n
)−1)

1

2
tr((W +W ′)(C̃ + C̃ ′)2)
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and hence, from (2.A.39), we conclude that Q13 contributes to κ3 with

6σ6

(
h

n

)5/2
1

K(0)
tr(W ′W )(tr(W 3) + 3tr(W (W ′)2)) + o

(√
h

n

)
. (2.A.47)

When W is symmetric, the latter simplifies to

12σ6(
h

n
)3/2tr(W 3) + o

(√
h

n

)
.

From (2.A.33), (2.A.44) and (2.A.45) we conclude that Q1 contributes to κ̃1 with the term

−2σ2

(
h

n

)3/2
1

K(0)
tr(WW ′W ) + o

(√
h

n

)
. (2.A.48)

From (2.A.34) and (2.A.46) we conclude that any contribution to κ̃2 from Q1 is neglegible,

while collecting (2.A.43) and (2.A.47) we have that the contribution to κ̃3 from Q1 is

− 12σ6

(
h

n

)5/2
1

K(0)
tr(WW ′W )(tr(W 2) + tr(W ′W )) + o

(√
h

n

)

=− 12σ6

(
h

n

)3/2

tr(WW ′W ) + o

(√
h

n

)
. (2.A.49)

Finally, we report the main steps for the evaluation of the contribution to κ̃1, κ̃2 and κ̃3

from

Q2 =
1

2
it

√
h

n

1

K(0)2
1

n
E((Z(1)(0))2J(0)ε′Σ−1ε).

Substituting (2.A.3) and (2.A.8), we write

Q2 = Q21 +Q22 +Q23,

where, by independence between 1/2(ε′Σ−1/2(W +W ′)Σ−1/2ε)/ε′Σ−1ε and ε′Σ−1ε,

Q21 ∼ −3it

√
h

n

1

K(0)2
h2
E((ε′Σ−1/2WΣ−1/2ε)3ε′Σ−1/2W ′WΣ−1/2ε)

E(ε′Σ−1ε)3
,

Q22 = 4it

√
h

n

1

K(0)2
h2E

((
ε′Σ−1/2WΣ−1/2ε

ε′Σ−1ε

)5

ε′Σ−1ε

)

= 4it

√
h

n

1

K(0)2
h2
E(ε′Σ−1/2WΣ−1/2ε)5

E(ε′Σ−1ε)5
E(ε′Σ−1ε)
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and

Q23 = −it
√
h

n

1

K(0)2
h2

n
tr(W 3)E

((
ε′Σ−1/2WΣ−1/2ε

ε′Σ−1ε

)2

ε′Σ−1ε

)

= −it
√
h

n

1

K(0)2
h2

n
tr(W 3)

E(ε′Σ−1/2WΣ−1/2ε)2

E(ε′Σ−1ε)2
E(ε′Σ−1ε).

Contribution from term Q21

Using some standard results on the expectations of quadratic forms in normal random

variables,

E((
1

2
ε′Σ−1/2(W +W ′)Σ−1/2ε)3ε′Σ−1/2W ′WΣ−1/2ε) = σ8((tr(Σ−1 1

2
(W +W ′)))3tr(Σ−1W ′W )

+ 6(tr(Σ−1 1

2
(W +W ′)))2tr(Σ−1 1

2
(W +W ′)Σ−1W ′W ) + 6tr((Σ−1 1

2
(W +W ′))2)tr(Σ−1 1

2
(W +W ′))tr(Σ−1W ′W )

+ 8tr(Σ−1 1

2
(W +W ′))tr((Σ−1 1

2
(W +W ′))2Σ−1W ′W ) + 12tr(Σ−1 1

2
(W +W ′)Σ−1W ′W )tr((Σ−1 1

2
(W +W ′))2)

+ 48tr((Σ−1 1

2
(W +W ′))3Σ−1W ′W ))

and E(ε′Σ−1ε)3 ∼ σ6n3. Therefore, the contribution to κ̃1 is

−3σ2

√
h

n

1

(K(0))2
h2

n3
(
3

2
tr((W +W ′)2)tr((W +W ′)WW ′)

+ 6tr((W +W ′)3W ′W )) = o

(√
h

n

)
.

A similar argument holds for the contribution to both κ̃2 and κ̃3.

Contribution from term Q22

We have
E(ε′Σ−1ε)

E(ε′Σ−1ε)5
∼ σ2n

σ10n5
=

1

σ8n4
.

Also, we can evaluate the fifth moment of ε′Σ−1/2WΣ−1/2ε by the recursive formula given in

(2.A.31). By tedious, but straightforward algebra, it is possible to show that the contribution

to κ̃1, κ̃2 and κ̃3 are o(
√
h/n). Intuitively, this is because no term in E((ε′Σ−1/2WΣ−1/2ε)5)

is large enough to offset the factor h2/n4.

Contribution from term Q23

We have

E((ε′Σ−1/2WΣ−1/2ε)2) =
1

4
E(ε′Σ−1/2(W+W ′)Σ−1/2ε)2 = σ4

(
1

4
(tr(Σ−1(W +W ′)))2 +

1

2
tr((Σ−1(W +W ′))2)

)
and

E(ε′Σ−1ε)

E(ε′Σ−1ε)2
∼ nσ2

n2σ4
=

1

nσ2
.
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Therefore, the contribution to κ̃1 is

− σ2

√
h

n

1

K(0)2
h2

n2
(tr(W 2) + tr(W ′W ))tr(W 3)

=− σ2

√
h

n

tr(W 3)

(tr(W 2 +W ′W ))
+ o

(√
h

n

)
. (2.A.50)

Similarly, the contribution to κ̃2 comes from the term

−(it)2σ4

√
h

n

1

K(0)2
h2

n2
tr(W 3)tr((W +W ′)2(C̃ + C̃ ′))

and, by (2.A.36), is o(
√
h/n).

Finally, the contribution to κ̃3 comes from the term

−1

4
(it)3σ6

(
h

n

)7/2
1

K(0)2
tr(W 3)(tr((W +W ′)2))2

and hence the actual contribution to κ̃3 is

−6σ6

(
h

n

)7/2
1

K(0)2
tr(W 3)(tr(W 2) + tr(W ′W ))2 + o

(√
h

n

)

=− 6σ6

(
h

n

)3/2

tr(W 3) + o

(√
h

n

)
. (2.A.51)

Collecting (2.A.48) and (2.A.50), we conclude that the contribution to κ̃1 from Q1 +Q2 is

−2σ2

(
h

n

)3/2
tr(WW ′W )

K(0)
− σ2

(
h

n

)3/2
tr(W 3)

K(0)
+ o(

√
h

n
).

The overall contribution to κ̃2 from Q1 +Q2 is neglegible, while that to κ̃3 is

−12σ6

(
h

n

)3/2

tr(WW ′W )− 6σ6

(
h

n

)3/2

tr(W 3) + o

(√
h

n

)
,

by collecting (2.A.49) and (2.A.51).
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3 Finite Sample Corrections for

the LM Test in SAR Models
As already outlined in the Introduction, LM testing is especially computationally

convenient because it depends on the null model, and thus does not require estimating

the spatial coefficient. An LM test can be expected to be efficient against local SAR

alternatives, and to have an asymptotic null χ2 distribution under the null. However,

the χ2 approximation may not be accurate in modest samples, so a test based on it

may be badly sized. Thus we develop tests with improved finite-sample properties.

The main contribution of this chapter is to develop tests based on the Edgeworth

expansion of the cdf of the LM statistic. Specifically, in Section 3.1 we derive a refined

test for H0 in (0.0.2) against a (1.2.1) when the data follow model (1.0.8). We focus

here on a two-sided test because in some circumstances the practitioner might not

have an ex ante evidence regarding the sign of λ. We then provide corresponding tests

of (0.0.2) in linear regression models with SAR disturbances, that is model (0.0.3).

In both cases the proofs of the theorems are left to an Appendix. In Section 3.3 we

describe the finite sample corrections of Robinson (2008b), so that the finite sample

performance of the latter can be compared with that of the Edgeworth-corrected

tests. In Section 3.4 we compare the corrected tests presented in Sections 3.1-3.3 with

bootstrap-based ones in a Monte Carlo study of finite sample. Section 3.5 compares

the Edgeworth approximation with the the exact distribution of the LM statistic.

3.1 Edgeworth-corrected LM tests for independence in pure SAR

We suppose that model (1.0.8) holds and we focus on testing (0.0.2) against (1.2.1).

For any admissible values of λ and σ2, the Gaussian log-likelihood for Y in model

(1.0.8) is given by (2.1.1). As discussed in Section 2.1, any λ ∈ Λ where Λ is any

closed subset of (−1, 1) is admissible.

By standard linear algebra,

∂l(λ, σ2)

∂λ
= −tr(S−1(λ)W ) +

1

σ2
Y ′S(λ)W ′Y,

∂2l(λ, σ2)

∂λ2
= −tr((S−1(λ)W )2)− 1

σ2
Y ′W ′WY.

Hence, given the MLE for σ2 displayed in (2.1.2)

∂l(λ, σ2)

∂λ
|H0 =

Y ′WY
1
nY
′Y

,
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and

−E
(
∂2l(λ, σ2)

∂λ2

)
|H0 = tr(W ′W +W 2).

Therefore, a version of the LM statistic is

LM =
n2

tr(W 2 +W ′W )

(
Y ′WY

Y ′Y

)2

(3.1.1)

so, under H0,

LM =
n2

tr(W 2 +W ′W )

(
ε′Wε

ε′ε

)2

. (3.1.2)

This statistic was derived by Burridge (1980) who noted that it is equivalent to

the test statistic of Cliff and Ord (1972), which in turn is related to one of Moran

(1950); see also Anselin(1988, 2001) for extensions to more general models, and Pinkse

(2004). As noted by Burridge (1980), (3.1.2) is also the LM statistic for testing (0.0.2)

against the spatial moving average model

Y = ε+ λWε

(a corresponding equivalence to that found with time series models).

The derivation of (3.1.2) is based on a Gaussian likelihood but as is common the

same first order limit distribution obtains more generally. Under suitable conditions

we have

P (LM ≤ η) = F (η) + o(1) (3.1.3)

for any η > 0, where F denotes the cdf of a χ2
1 random variable. Thus (0.0.2) is rejected

in favour of (1.2.1) if LM exceeds the appropriate percentile of the χ2
1 distribution.

We can likewise test (0.0.2) against (1.1.1) by comparing
√
LM with the appropriate

upper or lower percentiles of the standard normal distribution. However, except in

Section 3.5, we focus throughout on a two-sided tests.

We do not describe sufficient conditions for (3.1.3), because we wish to consider

statistics with better finite-sample properties and we can only justify these under the

precise distributional assumption.

Throughout this chapter f denotes the χ2 pdf.

Theorem 3.1 Suppose that model (1.0.8) and Assumptions 1-3 hold. Under H0 in

(0.0.2), the cdf of LM admits the formal Edgeworth expansion

Pr(LM ≤ η|H0) = F (η) +
κ

4
ηf(η)− κ

12
η2f(η) + o

(
h

n

)
(3.1.4)

in case h is divergent, and

Pr(LM ≤ η) = F (η) +
κ

4
ηf(η)− κ

12
η2f(η)− 2

n
η2f(η) + o

(
1

n

)
(3.1.5)
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when h is bounded, where

κ =
3tr(W ′ +W )4

ã4
∼ h

n
(3.1.6)

and ã defined according to (2.1.4)

The proof of Theorem 3.1 is in the Appendix. Again, it must be stressed that

both expansions in Theorem 3.1 are formal.

Clearly, (3.1.4) and (3.1.5) entail better approximations than (3.1.3). The leading

terms in (3.1.4) and (3.1.5) depend on known quantities, so they can be used directly

for approximating the cdf. The two outcomes in Theorem 3.1 create a dilemma for

the practitioner because it cannot be determined from a finite data set whether to

treat h as divergent or bounded. However, (3.1.5) is justified also when h is divergent

because the extra term in the expansion, −2η2f(η)/n, is o(h/n).

Theorem 3.1 can be used to derive Edgeworth-corrected critical values. Let wLMα

be the α-quantile of LM . By inverting either expansion, we can expand wLMα as an

infinite series

wLMα = z2
(1+α)/2 + p1(z2

(1+α)/2) + ......, (3.1.7)

where p1(z2
(1+α)/2) is a polynomial whose coefficients have order h/n, and that can

be determined using the identity α = Pr(LM ≤ wLMα ) and the expansions given in

Theorem 3.1. It is worth recalling that, consistently with the notation used in Chapters

1 and 2, zα denoted the α−quantile of the standard normal variate. Specifically, when

h is divergent, we have

α = Pr(LM ≤ wLMα ) = F (wLMα ) +
(κ

4
wLMα − κ

12
(wLMα )2

)
f((wLMα )2) + o

(
h

n

)
.

By substituting (3.1.7), the leading terms of the LHS are

F (z2
(1+α)/2) + p1(z2

(1+α)/2)f(z2
(1+α)/2)

+
(κ

4
z2

(1+α)/2 −
κ

12
z4

(1+α)/2

)
f(z2

(1+α)/2) + o

(
h

n

)
= α+ p1(z2

(1+α)/2)f(z2
(1+α)/2)

+
(κ

4
z2

(1+α)/2 −
κ

12
z4

(1+α)/2

)
f(z2

(1+α)/2) + o

(
h

n

)
.

The latter is α+ o(h/n) (rather than α+O(h/n)), when we take

p1(x) = −
(κ

4
x− κ

12
x2
)
∼ h

n
. (3.1.8)



3. Finite Sample Corrections for the LM Test in SAR Models 82

Similarly, when h is bounded, we take

p1(x) = −
(
κ

4
x− κ

12
x2 − 2

n
x2

)
∼ 1

n
. (3.1.9)

If wLMα were known, the size of a test of H0 in (0.0.2) would obviously be Pr(LM >

wLMα |H0) = 1−α. We can compare the size of the test of (0.0.2) against (1.2.1) based

on the usual first order approximation, i.e.

Pr(LM > z2
(α+1)/2|H0) (3.1.10)

with

Pr(LM > z2
(α+1)/2 + p1(z2

(α+1)/2)|H0), (3.1.11)

where p1(.) is defined according to (3.1.8) if h is divergent and (3.1.9) if h is bounded.

Thus, the error of the approximation of (3.1.10) is O(h/n), while that of (3.1.11)

is o(h/n) when the sequence h is divergent, or o(1/n) when it is bounded.

As an alternative to using corrected critical values, we can also apply Theorem 3.1

to construct a transformation of LM whose distribution better approximates χ2 than

LM itself. Starting from the expansion in (3.1.4), we consider the cubic transformation

g(x) = x+
κ

4
x− κ

12
x2 +

1

4
Q(x), Q(x) =

(κ
4

)2
(

4

27
x3 − 2

3
x2 + x

)
, (3.1.12)

such that

Pr(g(LM) ≤ η) = F (η) + o

(
h

n

)
.

Similarly, from (3.1.5), we can write

g(x) = x+
κ

4
x− κ

12
x2 − 2

n
x2 +

1

4
Q(x),

Q(x) =
(κ

4

)2
x+

1

3

(
κ

6
+

4

n

)2

x3 − κ

4

(
κ

6
+

4

n

)
x2, (3.1.13)

such that

Pr(g(LM) ≤ η) = F (η) + o

(
1

n

)
.

As already outlined in Section 1.1, the transformations (3.1.12) and (3.1.13) were

proposed in case of a standard normal limiting distribution by Hall (1992), or, in a

slightly more general setting, Yanagihara et al. (2005). In Lemma 3.1 (reported in

the Appendix) we show that such result extends to χ2 limiting distributions.

Therefore, we can compare

Pr(g(LM) > z2
(α+1)/2|H0), (3.1.14)

where g(.) is defined according to (3.1.12) or (3.1.13) depending on h, with (3.1.10).
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Again, (3.1.14) has error o(h/n) compared to the O(h/n) error of (3.1.10).

3.2 Improved LM tests in regressions where the disturbances are

spatially correlated

In this section we extend the results derived in Section 3.1 to to the more general

model

Y = Xβ + u, u = λWu+ ε, (3.2.1)

where X is an n× k matrix of nonstochastic regressors (possibly containing a column

of ones) and β is a k × 1 vector of unknown parameters.

From Burridge (1980), Anselin (1988, 2001), the LM statistic for testing (0.0.2)

against (1.2.1) is

˜LM =
n2

tr(W ′W ) + tr(W 2)

(
û′Wû

û′û

)2

=
n2

ã2

(
Y ′PWPY

Y ′PY

)2

, (3.2.2)

where

P = I −X(X ′X)−1X ′. (3.2.3)

Indeed, when data are driven by (3.2.1) and for any admissible values of λ, σ and β,

the Gaussian log-likelihood for Y is given by

l(λ, σ2, β) = −n
2
ln(2π)− n

2
ln(σ2) + ln(det(S(λ)))− 1

2σ2
(Y −Xβ)′S(λ)S(λ)′(Y −Xβ).

Thus, given λ, the MLE for β and σ2 are

β̂(λ) = (X ′S(λ)S(λ)′X)−1X ′S(λ)S(λ)′Y

and

σ̂2(λ) =
1

n
(Y −Xβ)′S(λ)S(λ)′(Y −Xβ).

It is straightforward to notice that β̂(0) is the OLS estimate of β. We denote û =

Y −Xβ̂(0), which is the vector of OLS residuals. By standard linear algebra,

∂l(λ, σ2, β)

∂λ
|H0 =

1

σ̂2(0)
(Y −Xβ̂(0))′W (Y −Xβ̂(0)) = n

û′Wû

û′û

and

−E
(
∂2l(λ, σ2)

∂λ2

)
|H0= tr(W ′W ) + tr(W 2).

Hence, ˜LM is given by (3.2.2).

We impose the following condition on X

Assumption 4 For all n, each element xij of X is predetermined and |xi,j | ≤ K.

Moreover, the smallest eigenvalue of X ′X/n is bounded away from zero for all suf-
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ficiently large n and the limits of at least one element of each X ′WX/n, X ′W 2X/n

and X ′W ′WX/n are non zero.

Non nullity of the limits of at least one element of each X ′WX/n, X ′W 2X/n and

X ′W ′WX/n is required to ensure that the orders of some of the quantities appearing

in the following Theorem hold as exact rates and not only as upper bounds, as will

be explained below. We have the following results

Theorem 3.2 Suppose that model (3.2.1) and Assumptions 1-4 hold. Under (0.0.2),

the cdf of ˜LM admits the formal Edgeworth expansion

Pr( ˜LM ≤ η|H0) = F (η) +
(κ

4
η − κ

12
η2 + 2ω1η

)
f(η) + o

(
h

n

)
(3.2.4)

with

ω1 =
tr(K3 −K2)

ã2
− 1

2

(tr(K1))2

ã2
∼ h

n
(3.2.5)

if h is divergent, and

Pr( ˜LM ≤ η) = F (η) +

(
κ

4
η − κ

12
η2 + 2ω2η −

2

n
η2

)
f(η) + o

(
1

n

)
(3.2.6)

with

ω2 =
tr(K3 −K2)

ã2
− 1

2

(tr(K1))2

ã2
− k

n
∼ 1

n
(3.2.7)

if h is bounded, where κ is given in (3.1.6),

K1 = (X ′X)−1X ′WX, (3.2.8)

K2 =
1

2
X ′(W +W ′)X(X ′X)−1X ′(W ′ +W )X(X ′X)−1 (3.2.9)

and

K3 = X ′(W +W ′)2X(X ′X)−1. (3.2.10)

The components of (X ′X)−1 have order 1/n by Assumption 4. On the other hand,

the absolute values of the components of X ′WX, X ′(W +W ′)X and X ′(W +W ′)2X

are O(n) by Lemma 2. Assumption 4 imposes that for at least one component of each

matrix the latter holds as an exact rate. It follows that tr(K1), tr(K2) and tr(K3) are

bounded and non zero. Since ã2 ∼ n/h under Assumption 3, ω1 and ω2 have exactly

order h/n and 1/n, respectively.

The proof of Theorem 3.2 is the Appendix. Again, both the expansions are formal.

From (3.2.4) and (3.2.6), we can obtain Edgeworth-corrected critical values. Pro-
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ceeding as described in Section 3.1, the size based on χ2 critical value is

Pr( ˜LM > z2
(α+1)/2|H0) (3.2.11)

while the Edgeworth-corrected critical value is

Pr( ˜LM > z2
(α+1)/2 + p̃1(z2

(α+1)/2)|H0), (3.2.12)

where

p̃1(z2
(α+1)/2) = −

(κ
4
z2

(α+1)/2 −
κ

12
z4

(α+1)/2 + 2ω1z
2
(α+1)/2

)
if h is divergent and

p̃1(z(α+1)/2) = −
(
κ

4
z2

(α+1)/2 −
κ

12
z4

(α+1)/2 + 2ω2z
2
(α+1)/2 −

2

n
z4

(α+1)/2

)
if h is bounded. As before, (3.2.11) has error of order h/n, while (3.2.12) has error

o(h/n).

As in Section 3.1, we can also consider Edgeworth-corrected test statistics. The

size of test of (0.0.2) based on ˜LM is compared with that based on a corrected statistic,

i.e.

Pr(g( ˜LM) > z2
(α+1)/2|H0). (3.2.13)

The choice of the function g is motivated by Lemma 3.1 and in this case is given by

g(x) = x+
κ

4
x− κ

12
x2 + 2ω1x+

1

4
Q(x),

where

Q(x) =

((κ
4

)2
+ 4ω2

1 + κω1

)
x− 1

2

(
2

3
κω1 +

κ2

12

)
x2 +

1

3

(κ
6

)2
x3

in case h is divergent and

g(x) = x+
κ

4
x− κ

12
x2 + 2ω2x−

2

n
x2 +

1

4
Q(x),

with

Q(x) =
(κ

4
+ 2ω2

)2
x−

(κ
4

+ 2ω2

)(κ
6

+
4

n

)
x2 +

1

3

(
κ

6
+

4

n

)2

x3

if h is bounded. Similarly Section 3.1, when ˜LM is used the error of the approximation

has order h/n while it is reduced to o(h/n) when the test is based on the Edgeworth-

corrected variant.
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3.3 Alternative correction

The results derived in Sections 3.1 and 3.2 can be compared with two alternative

corrections derived for asymptotically χ2 statistics in Robinson (2008b). The class of

statistics considered in Robinson (2008b) include the LM for testing (0.0.2) in either

(1.0.8) or (3.2.1) as special cases. In particular, Robinson (2008b) proposes both mean-

adjusted and mean and variance-adjusted variants of (3.1.1) and (3.2.2), which prove

to be asymptotically distributed as a χ2 random variable with one degree of freedom.

Such corrected statistics are expected to have better finite sample properties than

either (3.1.1) or (3.2.2), even though the magnitude of the gain in accuracy is not

explicitly shown. In finite sample the corrected statistic based on mean adjustment

might have a larger variance than the non-corrected version, resulting in a partial (or

total) offset of the gain in accuracy from the mean standardisation. In such case, a

mean and variance standardisation should be performed instead.

It should be stressed that such corrected statistics might be convenient in the

present case since the ratios ε′Wε/ε′ε and ε′PWPε/ε′Pε are independent of their

own denominator and therefore the expectation of the ratio is equal to the ratio of

expectations (Pitman (1937)). If the latter condition failed, a correction based on

mean and variance standardisation be much less feasible, since the evaluation of mean

and variance would require some approximation.

We suppose that Assumptions 1-4 hold and focus on the simpler case first, i.e.

the statistic given in (3.1.1). Specifically, Robinson (2008b) proposes a mean and

variance-adjusted statistic under H0 as(
2

V ar(LM)

)1/2

(LM − E(LM)) + 1, (3.3.1)

where V ar(LM) denotes the variance of LM . In order to compare the performance of

such corrected statistics with that based on the results presented in Section 3.1, the

leading terms of (3.3.1) have to be derived.

As presented in Robinson (2008b),

E(LM) =

(
1 +

2

n

)−1

, (3.3.2)

while

V ar(LM) =
n4

ã4

E(ε′Wε)4

E(ε′ε)4
−
(

1 +
2

n

)−2

.

By standard formulae for moments of quadratic forms in normal random variables
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(see e.g. Ghazal (1996)),

E(ε′Wε)4 = E

(
1

2
ε′(W +W ′)ε

)4

=
1

16
σ8(6tr((W +W ′)2)E(ε′(W +W ′)ε)2 + 48tr((W +W ′)4))

= 3σ8(ã4 + tr((W +W ′)4)

and

E(ε′ε)4 = σ8(n4 + 12n3 + 44n2 + 48n) = σ8n4

(
1 +

12

n
+

44

n2
+

48

n3

)
.

Hence,

V ar(LM) =
n4

ã4

3ã4 + 3tr((W +W ′)4)

n4
(
1 + 12

n + 44
n2 + 48

n3

) − (1 +
2

n

)−2

= 2 +
3tr((W +W ′)4)

ã4
− 32

n
+ o

(
1

n

)
, (3.3.3)

where the second equality follows by standard Taylor expansion.

Collecting (3.3.2) and (3.3.3), (3.3.1) becomes

(
1 +

3tr((W +W ′)4)

2ã4
− 16

n
+ o

(
1

n

))−1/2
(
LM −

(
1 +

2

n

)−1
)

+ 1

=

(
1− 3

4

tr((W +W ′)4)

ã4
+

8

n
+ o

(
1

n

))(
LM − 1 +

2

n
+ o

(
1

n

))
+ 1,

where the second equality follows by Taylor expansion. Hence, when h is divergent,

we define

¯LM = LM − 3

4

tr((W +W ′)4)

ã4
(LM − 1), (3.3.4)

while

¯LM = LM − 3

4

tr((W +W ′)4)

ã4
(LM − 1) +

8

n
LM − 6

n
(3.3.5)

when h is bounded.

For both divergent and bounded h, we consider the size of the test of (0.0.2) against

(1.2.1) based on ¯LM , i.e.

Pr( ¯LM > z2
(α+1)/2|H0). (3.3.6)

We expect that when inference is based on ¯LM rather than on LM , the error of the

approximation is reduced by one order. To this extent, the finite sample performance

of ¯LM should be similar to that of g(LM), with g defined in (3.1.12) or (3.1.13).

Finally, we consider the mean-adjusted null statistic corresponding to (3.2.2).

Since the algebraic burden is larger relative to the previous case, the derivation of

the mean and variance-adjusted variant is omitted. At the beginning of this section,
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we stressed that mean and mean and variance adjustments might be algebraically more

convenient than Edgeworth corrections. However, the mean and variance standardi-

sation of (3.2.2) does not entail significant computational advantage and is therefore

omitted.

Given (3.2.2), Robinson (2008b) proposes the mean-adjusted null statistic

˜LM

E( ˜LM)
. (3.3.7)

Using standard formulae, we describe the results of Robinson (2008b) as

E( ˜LM) =
n2

ã2

E
(

1
2ε
′P (W +W ′)Pε

)2
E(ε′Pε)2

= 1 +
(tr(K1))2

ã2
+
tr(K2 −K3)

ã2
− 2(1− k)

n
+O

(
1

n2

)
,

where K1, K2 and K3 are defined according to (3.2.8), (3.2.9) and (3.2.10), respec-

tively. The second equality follows by a standard Taylor expansion of the denominator.

Hence, (3.3.7) becomes

˜LM

(
1− (tr(K1))2

ã2
− tr(K2 −K3)

ã2

)
+ o

(
h

n

)
in case h is divergent, and

˜LM

(
1− (tr(K1))2

ã2
− tr(K2 −K3)

ã2
+

2(1− k)

n

)
+ o

(
1

n

)
if h is bounded. We define

¯̃LM = ˜LM

(
1− (tr(K1))2

ã2
− tr(K2 −K3)

ã2

)
(3.3.8)

in case hn is divergent, and

¯̃LM = ˜LM

(
1− (tr(K1))2

ã2
− tr(K2 −K3)

ã2
+

2(1− k)

n

)
(3.3.9)

when hn is bounded.

We consider the size of the test of (0.0.2) against (1.2.1) based on ˜̄LM , i.e.

Pr( ˜̄LM > z2
(α+1)/2|H0). (3.3.10)

As previously mentioned, the finite sample variance of the mean-adjusted statistic

can be larger than that of the non corrected one. From (3.3.8) and (3.3.9), it is

straightforward to notice that this might be the case, depending on the choice of

W . By Monte Carlo simulations we can assess whether the mean standardisation
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correction is worthwhile for any particular choice of W and its performance is therefore

comparable with that based on Edgeworth corrections.

3.4 Bootstrap correction and simulation results

In this section we report some Monte Carlo simulations to investigate the finite

sample performance of the refined tests derived in Sections 3.1, 3.2 and 3.3. The

general setting of the Monte Carlo simulation is identical to that described in Section

1.5. In addition, we construct X as an n × 3 matrix (that is, we set k = 3) whose

first column is a column of ones, while each component of the remaining two columns

are generated independently from a uniform distribution with support [0, 1] and kept

fixed over replications.

For both models (1.0.8) and (3.2.1), the empirical sizes of the test of H0 in (0.0.2)

against (1.2.1) based on the usual normal approximation are compared with the same

quantities obtained with both the Edgeworth-corrected critical values and Edgeworth-

corrected test statistics. Such values are compared also with the empirical size based

on the corrected statistics derived according to the procedure described in Section 3.3.

In addition, we consider the simulated sizes based on bootstrap critical values.

Before discussing and comparing the simulation results, we outline how the boot-

strap critical values have been obtained in this case. Again, we focus on the implemen-

tation of the bootstrap procedure, without addressing validity issues. As described in

both Sections 1.5 and 2.2, we generate B pseudo-samples Y ∗j , j = 1, ....B, and hence

B bootstrap statistics

LM∗j =
n2

ã2

(
Y ∗
′

j WY ∗j

Y ∗
′

j Y
∗
j

)2

j = 1, .....B.

The bootstrap quantile w∗α is defined such that the proportion of LM∗j that does not

exceed w∗α is α. The bootstrap test rejects H0 when LM > w∗α. Hence, the size of the

test of (0.0.2) based on bootstrap is

Pr(LM > w∗α|H0). (3.4.1)

When dealing with (3.2.2), we modify the previous algorithm accordingly, i.e. we

define

˜LM
∗
j =

n2

a

(
u∗
′
j PWPu∗j

u∗
′
j Pu

∗
j

)2

, j = 1, ....B,

where u∗j is a vector of independent observations from the N(0, Y ′PY/n) distribution.

In this case, we denote w̄∗α the bootstrap α−quantile. The size of the test of (0.0.2)

based on the bootstrap procedure is then

Pr( ˜LM > w̄∗α|H0). (3.4.2)



3. Finite Sample Corrections for the LM Test in SAR Models 90

Tables 3.1 and 3.2 display the simulated values corresponding to (3.1.10), (3.1.11),

(3.1.14), (3.3.6) and (3.4.1) when m is increased monotonically and kept fixed (i.e.

when h is “divergent” and “bounded”), respectively. Moreover, Tables 3.3 and 3.4

display the simulated values corresponding to (3.2.11), (3.2.12), (3.2.13), (3.3.10)

and (3.4.2) when h is either “divergent” or “bounded”, respectively. All the values

in Tables 3.1-3.4 have to be compared with the nominal 5%. Similarly to Chap-

ters 1 and 2, in the Tables we denote by “chi square”, “Edgeworth”, “transfor-

mation”, “mean-variance correction” and “bootstrap” the simulated values corre-

sponding to (3.1.10)/(3.2.11),(3.1.11)/(3.2.12), (3.1.14)/(3.2.13), (3.3.6)/(3.3.10) and

(3.4.1)/(3.4.2), respectively.

m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

chi square 0.032 0.036 0.038 0.037

Edgeworth 0.040 0.039 0.041 0.042

transformation 0.045 0.048 0.046 0.048

mean-variance correction 0.035 0.037 0.041 0.042

bootstrap 0.054 0.046 0.047 0.053

Table 3.1: Empirical sizes of the tests of (0.0.2) against (1.2.1) for model (1.0.8) when the sequence
h is “divergent”. The reported values have to be compared with the nominal 0.05.

m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

chi square 0.034 0.036 0.037 0.037

Edgeworth 0.041 0.042 0.047 0.048

transformation 0.034 0.045 0.048 0.050

mean-variance correction 0.041 0.043 0.046 0.052

bootstrap 0.063 0.052 0.051 0.052

Table 3.2: Empirical sizes of the tests of (0.0.2) against (1.2.1) for model (1.0.8) when the sequence
h is “bounded”. The reported values have to be compared with the nominal 0.05.

From Tables 3.1 and 3.2 we notice that the approximation entailed by the first

order asymptotic theory does not work well in practice. Indeed, the nominal 5% is

underestimated for all sample sizes and whether h is “divergent” or “bounded”, al-

though in the latter case the convergence to the nominal value appears to be faster, as

expected. On the other hand, all the corrections we consider improve upon the approx-

imation. In particular, when h is “divergent” (Table 3.1) the corrections based on the

Edgeworth-corrected test statistic and bootstrap critical values appear to outperform

the others, at least for the sample sizes considered here. On average across sample

sizes, the simulated sizes based on Edgeworth-corrected statistic and bootstrap criti-

cal values are 77% and 75%, respectively, closer to the nominal 0.05 than the values
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based on standard LM statistic. Improvements entailed by Edgeworth-corrected criti-

cal values and mean-variance correction, instead, are only 32% and 21%, respectively.

A similar pattern holds in case h is “bounded” (Table 3.2), although the discrepancy

among the performance of the different corrections is less glaring. The difference

between the nominal 0.05 and simulated sizes based on Edgeworth-corrected critical

values, Edgeworth-corrected statistics, mean-variance corrections and bootstrap criti-

cal values are, on average across sample sizes, 62%, 62%, 61% and 70% lower than the

difference between the nominal 0.05 and the simulated sizes based on the standard

LM statistic. The latter result was expected since, as previously mentioned, the rate

of convergence of the cdf of LM to the χ2 cdf is faster in this case.

m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

chi square 0.023 0.027 0.036 0.027

Edgeworth 0.044 0.048 0.046 0.047

transformation 0.055 0.049 0.047 0.049

mean-variance correction 0.030 0.034 0.032 0.038

bootstrap 0.045 0.052 0.056 0.051

Table 3.3: Empirical sizes of the tests of (0.0.2) against (1.2.1) for model (3.2.1) when the sequence
h is “divergent”. The reported values have to be compared with the nominal 0.05.

m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

chi square 0.025 0.035 0.038 0.036

Edgeworth 0.031 0.044 0.047 0.052

transformation 0.033 0.042 0.047 0.052

mean-variance correction 0.027 0.044 0.046 0.052

bootstrap 0.043 0.047 0.048 0.048

Table 3.4: Empirical sizes of the tests of (0.0.2) against (1.2.1) for model (3.2.1) when the sequence
h is “bounded”. The reported values have to be compared with the nominal 0.05.

From Tables 3.3 and 3.4 we see that the usual test based on first order asymp-

totic theory performs even worse than in the previous case. Indeed, when inference

is based on the standard χ2 approximation, on average the difference between the

simulated sizes and the nominal 0.05 is 52% larger than in the previous case when

h is “divergent”, and 16% when h is “bounded”. However, the corrections give very

satisfactory results. In particular, when h is “divergent”, both the test based on

Edgeworth-corrected critical values and Edgeworth-corrected statistics appear to per-

form very well, giving results that are comparable to the bootstrap-based procedure.

Specifically, when h is “divergent, the improvements entailed by Edgeworth-corrected

critical values, Edgeworth-corrected statistics and bootstrap critical values over the
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standard LM statistic are 82%, 88% and 81%, respectively (on average across sample

sizes). The simulated values corresponding to (3.3.6) are closer to the nominal than

ones of the standard test for all sample sizes, but not as satisfactory as the Edgeworth-

based results (the improvement over the standard LM is only 18% ). This might be

due to the variance inflation discussed in Section 3.3. Again, when the sequence h is

“bounded”, the pattern of the results appears to be very similar: on average across

sample sizes, the values for the simulated sizes based on Edgeworth-corrected critical

values, Edgeworth-corrected statistics, mean-variance standardization and bootstrap

critical values are, respectively, 61%, 60%, 55% and 80% closer to 0.05 than those

based on the standard LM statistic.

3.5 The exact distribution

In Sections 3.1 and 3.2 we developed refined procedures for testing (0.0.2) against

(1.2.1) based on LM statistics, as given in (3.1.1) and (3.2.2), respectively. It must be

mentioned that, since λ is a scalar parameter, we could have focused on the square

root of the statistics in (3.1.1) and (3.2.2) and test H0 against a one-sided alternative.

We chose to develop the corrected procedure based on (3.1.1) and (3.2.2), and compare

its performance in finite samples with that derived in Robinson (2008b), because in

several circumstances we might not have any preliminary evidence about the sign of λ

and therefore the standard two-sided LM test might be preferred instead. However, it

should be stressed that in case a test against a one-sided alternative is justified, suitable

Edgeworth-corrections can be derived by a relatively straightforward modification of

the proofs of either Theorems 3.1 or 3.2.

In this section we investigate numerically the properties of the distribution under

H0 of the square root of both (3.1.1) and (3.2.2), denoted by T and T̃ respectively,

by means of Imhof’s procedure and compare the results with those obtained using

Edgeworth correction terms. The numerical evaluation of the cdf of T and T̃ and

the corresponding quantiles, despite the obvious limitations of numerical algorithms,

provides some information about the true distribution of the statistics and, to some

extent, confirms the accuracy of Edgeworth corrections.

Since the numerical procedure is implemented using W given in (0.0.7), we describe

the algorithm for a symmetric weight matrix, although it can be easily generalised to

any choice of W . Moreover, we will describe the numerical procedure for evaluating

the cdf of T , but the same argument with minor, obvious, modifications holds for T̃ .

As discussed in the proof of Theorem 3.1, we can write Pr(T ≤ ζ) = Pr(ε′Cε ≤ 0),

where C = W − Iζã/n (that is (3.A.2) with x = ãζ).

When the cdf can be written in terms of a quadratic form in normal random

variables, as is the case in the last displayed expression, a procedure to evaluate it by

numerical inversion of the characteristic function has been developed by Imhof (1961)

and then improved and extended to different contexts by several authors. For the



3. Finite Sample Corrections for the LM Test in SAR Models 93

purpose of our implementation, we rely on the work by Imhof (1961), Davies (1973),

Davies (1980), Ansley et al. (1992) and on the survey of Lu and King (2002).

Let s be the number of distinct eigenvalues of σ2C, which are denoted by µj for

j = 1, .., s, while nj for j = 1, ..., s is their order of algebraic multiplicity. Staring from

the inversion formula of Gil-Pelaez (1951), Imhof (1961) suggests to evaluate the cdf

of ε′Cε as

Pr(ε′Cε ≤ 0) =
1

2
− 1

π

∞∫
0

sinθ(u)

uγ(u)
du, (3.5.1)

where

θ(u) =

s∑
j=0

(nj
2
tg−1(2uµj)

)
and γ(u) =

s∏
j=1

(1 + 4u2µ2
j )
nj/4.

The integral on the RHS of (3.5.1) cannot be evaluated using standard analytical

methods because of the oscillatory nature of the integrand function and numerical

procedures should be employed instead.

As suggested in Lu and King (2002), we rely on the discretisation rule provided

by Davies (1973), which is based on a trapezoidal approximation for the integral on

the RHS of (3.5.1), i.e.

Pr(ε′Cε ≤ 0) =
1

2
−

M∑
m=0

sinθ((m+ 1
2)∆)

π(m+ 1
2)γ((m+ 1

2)∆)
, (3.5.2)

where ∆ is the step interval and M is related to the truncation point, denoted by U

henceforth, by the relationship U = (M+1/2)∆. Both ∆ and U need to be determined

numerically.

We denote by MGF (t) the moment generating function of ε′Cε. In order to

evaluate ∆, we solve numerically the equation

MGF (t)− tMGF (1)(t)− ln(EI) = 0, (3.5.3)

where MGF (1)(t) = dMGF (t)/dt and EI is the maximum allowable integration error.

It can be shown (see e.g. Ansley et al.(1992)) that the last displayed equation has

always two solutions t1 > 0 and t2 < 0, both satisfying the constraint (1 − 2tiµj) >

0, ∀j = 1, ....s, and i = 1, 2. For i = 1, 2, we define

∆i = sign(ti)
2π

MGF (1)(t)|t = ti
.

We choose ∆ appearing in the RHS of (3.5.2) as the minimum value of ∆i, for i = 1, 2.

We briefly mention the algorithm to determine U , for more details we see Lu

and King(2002). It is possible to show that the function uγ(u) in (3.5.1) is strictly
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increasing, while |sinθ(u)| is bounded. Hence, there exists a function ξ(U) such that

| 1
π

∞∫
U

sinθ(u)

uγ(u)
du| ≤ ξ(U) ≤ ET ,

where ET is the maximum allowable truncation error. U is then derived as the nu-

merical solution of

lnξ(U)− lnET = 0. (3.5.4)

Several functional forms for ξ(U) have been proposed in the literature. In the present

case, we implement the procedure using Imhof’s truncation bound, that is

ξ(U) =
2

πn

m∏
j=1

|µj |−fj/2(2U)−n/2.

Our results seem to be insensitive to the choice of ξ(U).

Once both ∆ and U are obtained, the cdf of ε′Cε using (3.5.2) can be evaluated.

As suggested in Davies(1973), we set tolerance E = 10−6 and choose EI = 0.1E and

ET = 0.9E.

In order to calculate the α-quantile of the cdf of T , we need to find ζ so that

Pr(T ≤ ζ) = α,

where the LHS of the last displayed expression can be obtained, as a function of ζ, by

the algorithm described above. However, in the present case, the numerical solution

to calculate ζ is particularly troublesome since the approximated cdf of T is almost

flat as ζ varies.

Although Imhof’s framework to obtain the cdf and its quantiles is useful to some

extent, it obviously relies heavily on several numerical solutions of highly non-linear

equations, such as (3.5.3) and (3.5.4). Hence it cannot be preferred to analytical pro-

cedures that improve upon the approximation given by the central limit theorem, such

as those based on Edgeworth expansions or on mean and variance standardization.

However, despite being not fully reliable, quantiles obtained with Imhof’s procedure

can be compared with Edgeworth-corrected ones, to provide further evidence that the

latter are closer to the true values than those of the normal cdf.

Edgeworth-corrected quantiles of the cdf of T can be obtained from intermediate

results reported in the proof of Theorem 3.1 and a procedure similar to that described

in Section 3.1. Specifically, in the Appendix we derive the Edgeworth expansion for

the cdf of T as

Pr (T ≤ ζ) = Φ(ζ)− κ̄

3!
H2(ζ)φ(ζ) + o

(√
h

n

)
,
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where κ̄ = tr(W ′ + W )3/ã3. From the last displayed expression we can derive a

corresponding expansion for the α−quantile by a straightforward modification of the

argument presented in Section 3.1. We denote the true α−quantile of the cdf of T by

wTα and write

wTα = zα +
κ̄

3!
H2(ζ) + o

(√
h

n

)
,

whether h is either divergent or bounded.

α = 95% α = 97.5% α = 99%

m = 8

r = 5

Edgeworth

Imhof

1.9334

1.8620

2.4403

2.3250

3.0715

2.9000

m = 12

r = 8

Edgeworth

Imhof

1.8925

1.8430

2.3722

2.3100

2.9658

2.8850

m = 18

r = 11

Edgeworth

Imhof

1.8668

1.8310

2.3294

2.2880

2.8994

2.8550

m = 28

r = 14

Edgeworth

Imhof

1.8482

1.8200

2.2985

2.2700

2.8514

2.8250

Table 3.5: Edgeworth-corrected and Imhof’s α-quantiles of the cdf of T in when h is “divergent”.

α = 95% α = 97.5% α = 99%

m = 5

r = 8

Edgeworth

Imhof

1.8357

1.7840

2.2777

2.1920

2.8191

2.6800

m = 5

r = 20

Edgeworth

Imhof

1.7656

1.7450

2.1609

2.1280

2.6379

2.5850

m = 5

r = 40

Edgeworth

Imhof

1.7303

1.7200

2.1021

2.0860

2.5465

2.5200

m = 5

r = 80

Edgeworth

Imhof

1.7053

1.7010

2.0605

2.0530

2.4819

2.4730

Table 3.6: Edgeworth-corrected and Imhof’s α-quantiles of the cdf of T when h is “bounded”.

As expected, from Tables 3.5 and 3.6 we notice that for all sample sizes and

for h being either divergent or bounded, the Edgeworth-corrected quantiles for α =

0.95, 0.975, 0.99 are closer to those obtained by Imhof’s procedure than ones of the

standard normal cdf. Indeed, the standard normal quantiles are significantly lower

than Imhof’s ones for all sample sizes. To some extent, this confirms that tests based

on Edgeworth-corrected critical values should be more reliable than those based on

the standard normal approximation.

Imhof’s algorithm was also implemented to obtain the cdf of T̃ . Unfortunately,

in this case, the numerical procedure does not work well and it appears to be too

sensitive to both the choice of the initial values for the numerical solution of non-

linear equations and the choice of X. This give strong motivation to the practitioner
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to rely on the analytical corrections based on Edgeworth expansions, rather than on

numerical procedures to evaluate the exact cdf.

A Appendix

Proof of Theorem 3.1

Given (3.1.2), we start by deriving the formal Edgeworth expansion of the cdf of

n
ε′Wε

ε′ε
. (3.A.1)

The development is standard and similar to that presented for the proofs of Theorems 1.1, 1.2

and 1.3. Hence, some of the details are omitted. The cdf of (3.A.1) can be written in terms

of a quadratic form in ε, i.e.

Pr(n
ε′Wε

ε′ε
≤ x) = Pr(ε′Cε ≤ 0),

where

C =
1

2
(W +W ′)− x

n
I (3.A.2)

and x is any real number.

Proceeding as described in detail in the proof of Theorem 1.1, under Assumption 1, we

derive the s-th cumulant, κs, of ε′Cε as

κ1 = σ2tr(C), (3.A.3)

κ2 = 2σ4tr(C2), (3.A.4)

κs =
σ2ss!2s−1tr(Cs)

s
, s > 2. (3.A.5)

From (3.A.3), (3.A.4) and given (3.A.2),

κ1 = −σ2x, κ2 = σ4

(
tr(W 2 +W ′W ) +

2

n
x2
)

= σ4

(
ã2 +

2

n
x2
)

and hence the first centred cumulant, denoted κc1, becomes

κc1 =
−x

ã
(
1 + 2

nã2x
2
)1/2 . (3.A.6)

We set

x = ãζ, (3.A.7)

where ζ, as usual, denotes any real number. Under Assumption 3, x ∼
√
n/h. By Taylor

expansion of the denominator of (3.A.6) we obtain

κc1 = −ζ
(

1− 1

n
ζ2
)

+ o

(
1

n

)
.
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Moreover, under Assumption 3,

κc3 =
8σ6tr(C3)

κ
3/2
2

∼ tr(W ′ +W )3

ã3
∼
√
h

n

and

κc4 =
48σ8tr(C4)

(κ2)2
∼ 3tr(W ′ +W )4

ã4
∼ h

n
. (3.A.8)

By Taylor expansion we have

Φ(−κc1) = Φ(ζ) +O

(
1

n

)
= Φ(ζ) + o

(
hn
n

)
when h is divergent and

Φ(−κc1) = Φ(ζ)− 1

n
ζ3φ(ζ) + o

(
1

n

)
when h is bounded.

Proceeding as in the proof of Theorem 1.1, for x given in (3.A.7) and when h is divergent,

the Edgeworth expansion of the cdf of (3.A.1) under H0 is

Pr

(
nã−1

ε′Wε

ε′ε
≤ ζ
)

=Φ(ζ)− κc3
3!

Φ(3)(ζ) +
κc4
4!

Φ(4)(ζ) + o

(
h

n

)
=Φ(ζ)− κc3

3!
H2(ζ)φ(ζ)− κc4

4!
H3(ζ)φ(ζ) + o

(
h

n

)
, (3.A.9)

where the last equality follows by (1.1.9). Similarly, when h is bounded,

Pr

(
nã−1

ε′Wε

ε′ε
≤ ζ
)

=Φ(ζ)− ζ3

n
φ(ζ)− κc3

3!
Φ(3)(ζ) +

κc4
4!

Φ(4)(ζ) + o

(
1

n

)
=Φ(ζ)− κc3

3!
H2(ζ)φ(ζ)−

(
ζ3

n
+
κc4
4!
H3(ζ)

)
φ(ζ) + o

(
1

n

)
. (3.A.10)

For notational simplicity, let T = nã−1ε′Wε/ε′ε, so that LM = T 2. Term by term

differentiation of (3.A.9) and (3.A.10) gives the corresponding expressions for the pdf of T ,

fT (ζ), i.e.

fT (ζ) = φ(ζ)− κc3
3!

(−ζ3 + 3ζ)φ(ζ)− κc4
4!

(−ζ4 + 6ζ2 − 3)φ(ζ) + o

(
h

n

)
(3.A.11)

and

fT (ζ) =φ(ζ) +
1

n
(ζ4 − 3ζ2)φ(ζ)− κc3

3!
(−ζ3 + 3ζ)φ(ζ)− κc4

4!
(−ζ4 + 6ζ2 − 3)φ(ζ) + o(

1

n
),

(3.A.12)

respectively.

For divergent h, using (3.A.11), we can derive an approximate expression for the charac-
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teristic function of T 2 as

1√
2π

∫
<

eitv
2

e−
v2

2 (1− κc3
3!

(−v3 + 3v)− κc4
4!

(−v4 + 6v2 − 3))dv

=
1√
2π

∫
<

e−
v2

2 (1−2it)(1− κc3
3!

(−v3 + 3v)− κc4
4!

(−v4 + 6v2 − 3))dv. (3.A.13)

We notice that the first term of the last displayed integral is

1√
2π

∫
<

e−
v2

2 (1−2it)dv = (1− 2it)−1/2,

which is the χ2 characteristic function. By Gaussian integration, the second and third terms

are, respectively,
1√
2π

∫
<

e−
v2

2 (1−2it)κ
c
3

3!
v3dv = 0

and
1√
2π

∫
<

e−
v2

2 (1−2it)κ
c
3

3!
3vdv = 0,

while

1√
2π

∫
<

e−
v2

2 (1−2it)v4dv =
3

(1− 2it)5/2
,

1√
2π

∫
<

e−
v2

2 (1−2it)v2dv =
1

(1− 2it)3/2
.

Collecting the previously displayed results, (3.A.13) becomes

1√
1− 2it

+
κc4
8

1√
1− 2it

− κc4
4

1

(1− 2it)3/2
+
κc4
8

1

(1− 2it)5/2
. (3.A.14)

Term by term Fourier inversion of (3.A.14) gives

Pr(LM ≤ η) =F (η) +
κc4
8
F (η)− κc4

4
F3(η) +

κc4
8
F5(η) + o

(
h

n

)
=F (η) +

κc4
4
ηf(η)− κc4

12
η2f(η) + o

(
h

n

)
. (3.A.15)

The last displayed equality follows from the recursions (see e.g. Harris (1985))

fk+2(x) = xk−1fk(x),

Fk+2(x) = Fk(x)− 2xk−1fk(x), (3.A.16)

where fk and Fk denote the χ2 pdf and cdf with k degrees of freedom, respectively. When no

subscript is specified, k = 1.

Similarly, for bounded h, from (3.A.12) we obtain an approximation for the characteristic

function as

1√
1− 2it

+
κc4
8

1√
1− 2it

− κc4
4

1

(1− 2it)3/2
+
κc4
8

1

(1− 2it)5/2
+

1

n

3

(1− 2it)5/2
− 3

n

1

(1− 2it)3/2
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and thus, term by term Fourier inversion gives

Pr(LM ≤ η) =F (η) +
κc4
8
F (η)− κc4

4
F3(η) +

κc4
8
F5(η) +

3

n
(−F3(η) + F5(η)) + o

(
1

n

)
=F (η) +

κc4
4
ηf(η)− κc4

12
η2f(η)− 2

n
η2f(η) + o

(
1

n

)
. (3.A.17)

The claim in Theorem 3.1 follows from (3.A.15) and (3.A.17) by letting κ = 3tr(W ′+W )4/ã4,

which is the leading term of κc4, as given in (3.A.8).

Proof of Theorem 3.2

Parts of the proof of Theorem 3.2 are similar to Theorem 3.1 and are omitted. We derive

the third order Edgeworth expansion of the cdf of

n
ε′PWPε

ε′Pε
, (3.A.18)

where P is defined according to (3.2.3). The cdf of (3.A.18) can be written in terms of a

quadratic form in ε, i.e.

Pr(
ε′PWPε

1
nε
′Pε

≤ z) = Pr(ε′Cε ≤ 0),

where

C =
1

2
P (W +W ′)P − 1

n
Pz (3.A.19)

and z is any real number.

The same argument presented in the proof of Theorem 3.1 for the evaluation of both char-

acteristic and cumulant generating functions holds here with C defined according to (3.A.19)

instead of (3.A.2). From (3.A.19),

κ1 = σ2tr(PW )− σ2 1

n
tr(P )z = −σ2(tr((X ′X)−1X ′WX)− n− k

n
z).

Also, by straightforward algebra,

κ2 = σ4(tr(WPWP ) + tr(W ′PWP ) + 2
n− k
n

z2 − 4

n
tr(PW )z)

= σ4(tr((W +W ′)PWP ) + 2
n− k
n2

z2 − 4

n
tr(PW )z)

= σ4(tr(W 2) + tr(W ′W ) +
1

2
tr(X ′(W +W ′)X(X ′X)−1X ′(W ′ +W )X(X ′X)−1)

− tr(X ′(W +W ′)2X(X ′X)−1) + 2
n− k
n2

z2 +
4

n
tr((X ′X)−1X ′WX)z).

By (3.2.8), (3.2.9), and (3.2.10), we write

κ1 = −σ2tr(K1)− σ2z + σ2 k

n
z (3.A.20)

and

κ2 = σ4(ã2 + tr(K2 −K3) + 2
n− k
n2

z2 +
4

n
tr(K1)z). (3.A.21)

Similarly to the proof of Theorem 3.1, we define f c = (ε′Cε − κ1)/κ
1/2
2 and derive the
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centred cumulants as κcs = κs/κ
s/2
2 . From (3.A.20) and (3.A.21),

κc1 =
−σ2tr(K1)− σ2z + σ2 k

nz

σ2ã
(

1 + tr(K2)
ã2 − tr(K3)

ã2 + 2
ã2

n−k
n2 z2 + 4

n
tr(K1)z
ã2

)1/2 . (3.A.22)

We choose z = ãζ. Under Assumptions 3 and 4, we have ã ∼
√
n/h and

z ∼
√
n

h
,

tr(K1)

ã2
∼ h

n
,

tr(K2)

ã2
∼ h

n
,
tr(K3)

ã2
∼ h

n
.

Hence, substituting the expression for z in (3.A.22) and performing a standard Taylor expan-

sion of the denominator we obtain

κc1 = −
(
ζ +

tr(K1)

ã

)(
1 +

tr(K3 −K2)

2ã2
+ o

(
h

n

))
= −ζ − tr(K1)

ã
− tr(K3 −K2)

2ã2
ζ + o

(
h

n

)
in case h is divergent, and

κc1 = −
(
ζ +

tr(K1)

ã
− k

n
ζ

)(
1 +

tr(K3 −K2)

2ã2
− 1

n
ζ2 + o

(
1

n

))
= −ζ − tr(K1)

ã
+
k

n
ζ − tr(K3 −K2)

2ã2
ζ +

1

n
ζ3 + o

(
1

n

)
if h is bounded.

Moreover,

κc3 =
8σ6tr(C3)

κ
3/2
2

∼ tr(((W +W ′)P )3)

ã3
∼
√
h

n

and

κc4 =
48σ8tr(C4)

κ̃22
∼ 3tr(((W +W ′)P )4)

ã4
∼ h

n
.

Therefore,

Pr(nã−1
ε′PWPε

ε′Pε
≤ ζ|H0) = Pr(ε′Cε ≤ 0|H0) = Pr(f cκ

1/2
2 + κ1 ≤ 0|H0) = Pr(f c ≤ −κc1)

= Φ(−κc1)− κc3
3!

Φ(3)(−κc1) +
κc4
4!

Φ(4)(−κc1) + .... (3.A.23)

By Taylor expansion we have

Φ(−κc1) = Φ(ζ) +
tr(K1)

ã
φ(ζ) +

tr(K3 −K2)

ã2
ζφ(ζ) +

1

2

(
tr(K1)

ã

)2

Φ(2)(ζ) + o

(
h

n

)
when h is divergent and

Φ(−κc1) = Φ(ζ) +
tr(K1)

ã
φ(ζ) +

tr(K3 −K2)

ã2
ζφ(ζ)

− k

n
ζφ(ζ)− 1

n
ζ3φ(ζ) +

1

2

(
tr(K1)

ã

)2

Φ(2)(ζ) + o

(
1

n

)
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when h is bounded. Therefore, (3.A.23) becomes

Pr(nã−1
ε′PWPε

ε′Pε
≤ ζ|H0) =Φ(ζ) +

tr(K1)

ã
φ(ζ)− κc3

3!
Φ(3)(ζ) +

tr(K3 −K2)

ã2
ζφ(ζ)

+
1

2

(
tr(K1)

ã

)2

Φ(2)(ζ) +
κc4
4!

Φ(4)(ζ) + o

(
h

n

)
=Φ(ζ) +

tr(K1)

ã
φ(ζ)− κc3

3!
H2(ζ)φ(ζ) +

tr(K3 −K2)

ã2
ζφ(ζ)

−1

2

(
tr(K1)

ã

)2

H1(ζ)φ(ζ)− κc4
4!
H3(ζ)φ(ζ) + o

(
h

n

)
, (3.A.24)

where the last equality follows by (1.1.9). Similarly, when h is bounded,

Pr(nã−1
ε′PWPε

ε′Pε
≤ ζ|H0) =Φ(ζ) +

tr(K1)

ã
φ(ζ)− κc3

3!
Φ(3)(ζ) +

tr(K3 −K2)

ã2
ζφ(ζ)

+
1

2

(
tr(K1)

ã

)2

Φ(2)(ζ)− k

n
ζφ(ζ)− 1

n
ζ3φ(ζ) +

κc4
4!

Φ(4)(ζ) + o

(
h

n

)
=Φ(ζ) +

tr(K1)

ã
φ(ζ)− κc3

3!
H2(ζ)φ(ζ) +

tr(K3 −K2)

ã2
ζφ(ζ)

−1

2

(
tr(K1)

ã

)2

H1(ζ)φ(ζ)− k

n
ζφ(ζ)− 1

n
ζ3φ(ζ)

−κ
c
4

4!
H3(ζ)φ(ζ) + o

(
1

n

)
. (3.A.25)

For notational convenience, we write T̃ = nã−1ε′PWPε/ε′Pε, so that ˜LM = T̃ 2. More-

over, we recall that H1(ζ) = ζ, H2(ζ) = ζ2 − 1 and H3(ζ) = ζ3 − 3ζ.

As discussed in detail in the proof of Theorem 3.1, term by term differentiation of (3.A.24)

and (3.A.25) gives

fT̃ (ζ) =φ(ζ)− tr(K1)

ã
ζφ(ζ)− κc3

3!
(−ζ3 + 3ζ)φ(ζ) +

tr(K3 −K2)

ã2
(1− ζ2)φ(ζ)− 1

2

(tr(K1))2

ã2
(1− ζ2)φ(ζ)

−κ
c
4

4!
(−ζ4 + 6ζ2 − 3)φ(ζ) + o

(
h

n

)
(3.A.26)

and

fT̃ (ζ) =φ(ζ)− tr(K1)

ã
ζφ(ζ)− κc3

3!
(−ζ3 + 3ζ)φ(ζ) +

tr(K3 −K2)

ã2
(1− ζ2)φ(ζ)− 1

2

(tr(K1))2

ã2
(1− ζ2)φ(ζ)

−k
n

(1− ζ2)φ(ζ)− 1

n
(3ζ2 − ζ4)φ(ζ)− κc4

4!
(−ζ4 + 6ζ2 − 3)φ(ζ) + o

(
1

n

)
, (3.A.27)

respectively.

In order to simplify the notation, we define

ω1 =
tr(K3 −K2)

ã2
− 1

2

(tr(K1))2

ã2
, ω2 =

tr(K3 −K2)

ã2
− 1

2

(tr(K1))2

ã2
− k

n

and

ω3 =
tr(K1)

ã
+
κc3
2
.

Proceeding as described in the proof of Theorem 3.1, when h is divergent we approximate
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the characteristic function of T̃ as

1√
2π

∫
<

eitv
2

e−
v2

2 (1− ω3v +
κc3
3!
v3 + ω1(1− v2)− κc4

4!
(−v4 + 6v2 − 3))dv

=
1√
2π

∫
<

e−
v2

2 (1−2it)(1− ω3v +
κc3
3!
v3 + ω1(1− v2)− κc4

4!
(−v4 + 6v2 − 3))dv

=
1√

1− 2it

(
1 + ω1 −

ω1

1− 2it
+
κc4
8

1

(1− 2it)2
− κc4

4

1

1− 2it
+
κc4
8

)
. (3.A.28)

By term by term Fourier inversion of (3.A.28) and some standard algebraic manipulation,

Pr( ˜LM ≤ η|H0) =F (η) +

(
κc4
8

+ ω1

)
F (η)−

(
ω1 +

κc4
4

)
F3(η) +

κc4
8
F5(η) + o

(
h

n

)
=F (η) +

(
κc4
4
η − κc4

12
η2 + 2ω1η

)
f(η) + o

(
h

n

)
. (3.A.29)

Similarly, when h is bounded, we have

Pr( ˜LM ≤ η|H0) =F (η) +

(
κc4
8

+ ω2

)
F (η)−

(
ω2 +

κc4
4

+
3

n

)
F3(η) +

(
κc4
8

+
3

n

)
F5(η) + o

(
1

n

)
=F (η) +

(
κc4
4
η − κc4

12
η2 + 2ω2η −

2

n
η2
)
f(η) + o

(
1

n

)
. (3.A.30)

The claim in Theorem 3.2 follows from (3.A.29) and (3.A.30) by observing that the lead-

ing term of κc4 is κ = 3tr(W ′ + W )4/ã4. Indeed, each term in (tr(W + W ′)4P ) other than

tr((W +W ′)4) ∼ n/h is O(1) by Assumption 4 and Lemma 2, and is therefore o(n/h).
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Lemma 3.1 Let ξ be a statistic whose cdf admits the expansion

Pr(ξ ≤ η) = F (η) +
h

n
s(η)f(η) + o

(
h

n

)
, (3.A.31)

where h can be either divergent or bounded and s(η) is a polynomial in η, whose leading

coefficients are finite and non-zero as n→∞. We define the function g(.) as

g(x) = x+
h

n
s(x) +

(
h

n

)2

Q(x), with Q(x) =
1

4

∫ (
d

dx
s(x)

)2

dx. (3.A.32)

We have

Pr(g(ξ) ≤ η) = o

(
h

n

)
.

Proof It is straightforward to verify that g(x) is strictly increasing, its first derivative being

1 +
h

n

ds(x)

dx
+

1

4

(
h

n

)2(
ds(x)

dx

)2

=

(
1 +

1

2

h

n

ds(x)

dx

)2

.

Since g(.) is monotonic,

Pr(g(ξ) ≤ η) = Pr(ξ ≤ g−1(η)) = F1(g−1(η)) +
h

n
s(g−1(η))f1(g−1(η)) + o

(
h

n

)
. (3.A.33)

Now, by (3.A.32),

η = g−1

(
η +

h

n
s(η) +

(
h

n

)2

Q(η)

)
= g−1(η) +

h

n

dg−1(x)

dx
||x=ηs(η) + o

(
h

n

)
, (3.A.34)

where the second equality follows by a standard Taylor expansion. We define q = g−1(x).

Therefore,

dg−1(x)

dx
|x=η =

(
dg(q)

dq

)−1
|x=η = 1 +O

(
h

n

)
, (3.A.35)

where the last equality follows by total differentiation of the function g(.) and Taylor expansion.

Collecting (3.A.34) and (3.A.35),

η = g−1(η) +
h

n
s(η) + o

(
h

n

)
and hence

g−1(η) = η − h

n
s(η) + o

(
h

n

)
. (3.A.36)

Finally, by substitution of (3.A.36) into (3.A.33) and using

F (g−1(η)) = F (η)− h

n
s(η)f(η) + o

(
h

n

)
,

f(g−1(η)) = f(η) +O

(
h

n

)
, s(g−1(η)) = s(η) +O

(
h

n

)
,
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we obtain

Pr(g(ξ) ≤ η) = F (η)− h

n
s(η)f(η) +

h

n
s(η)f(η) + o

(
h

n

)
= F (η) + o

(
h

n

)
.
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