Inference for Spatial Data

Francesca Rossi

Dissertation submitted for the degree of Doctor of Philosophy in Economics at

University Milano Bicocca

Declaration

I certify that the thesis I have presented for examination for the PhD degree of University Milano Bicocca is solely my own work other than where I have clearly indicated that it is the work of others.
The copyright of this thesis rests with the author. Quotation from it is permitted, provided that full acknowledgment is made. This thesis may not be reproduced without the prior written consent of the author.
I warrant that this authorization does not, to the best of my belief, infringe the rights of any third party.

Francesca Rossi

Abstract

It is well known that econometric modelling and statistical inference are considerably complicated by the possibility of correlation across data data recorded at different locations in space. A major branch of the spatial econometrics literature has focused on testing the null hypothesis of spatial independence in Spatial Autoregressions (SAR) and the asymptotic properties of standard test statistics have been widely considered. However, finite sample properties of such tests have received relatively little consideration. Indeed, spatial datasets are likely to be small or moderately-sized and thus the derivation of finite sample corrections appears to be a crucially important task in order to obtain reliable tests. In this project we consider finite sample corrections based on formal Edgeworth expansions for the cumulative distribution function of some relevant test statistics.

In Chapters 1 and 2 we present refined procedures for testing nullity of the spatial parameter in pure SAR based on ordinary least squares and Gaussian maximum likelihood, respectively. In both cases, the Edgeworth-corrected tests are compared with those obtained by a bootstrap procedure, which is supposed to have similar properties. The practical performance of new tests is assessed with Monte Carlo simulations and two empirical examples. In Chapter 3 we propose finite sample corrections for Lagrange Multiplier statistics, which are computationally particularly convenient as the estimation of the spatial parameter is not required. Monte Carlo simulations and the numerical implementation of Imhof's procedure confirm that the corrected tests outperform standard ones.

Acknowledgements

I am greatly indebted to my advisor, Professor Luca Stanca, for his support and guidance.

I also thank my fellow researchers at University Milano Bicocca and all the participants of the Ph.D. days of the past three years for discussions and comments on my work.

Contents

Abstract 3
Acknowledgements 5
Contents 6
List of Figures 8
List of Tables 9
Introduction 11
Related literature and motivation of this project 12
Some Assumptions and auxiliary lemmas. 16
1 Improved OLS Test Statistics for Pure SAR 20
1.1 Test against a one-sided alternative: Edgeworth-corrected critical val- ues and corrected statistic 20
1.2 Test against a two-sided alternative: Edgeworth-corrected critical val- ues and corrected statistic 24
1.3 Corrected critical values and corrected statistic for pure SAR with a location parameter 27
1.4 Test against a local alternative 28
1.5 Bootstrap correction and simulation results 32
A Appendix 42
2 Improved Test Statistics based on MLE for Pure SAR 53
2.1 Test against a one-sided alternative: Edgeworth-corrected critical val- ues and corrected statistic 53
2.2 Bootstrap correction and Monte Carlo results 56
2.3 Empirical evidence: the geography of happiness 60
2.4 Empirical evidence: the distribution of crimes in Italian provinces 62
A Appendix 64
A. 1 Proof of Theorem 2.1 64
A. 2 Auxiliary results 70
3 Finite Sample Corrections for the LM Test in SAR Models 79
3.1 Edgeworth-corrected LM tests for independence in pure SAR 79
3.2 Improved LM tests in regressions where the disturbances are spatially correlated 83
3.3 Alternative correction 86
3.4 Bootstrap correction and simulation results 89
CONTENTS
3.5 The exact distribution 92
A Appendix 96
References 105

List of Figures

1.1 Simulated pdf of $a \hat{\lambda}$ under H_{0} in (0.0.2) 35
1.2 Simulated pdf of $g(a \hat{\lambda})$ under H_{0} (0.0.2) 36
2.1 Simulated pdf of $\tilde{a} \tilde{\lambda}$ under H_{0} 58
2.2 Simulated pdf of $\tilde{g}(\tilde{a} \tilde{\lambda})$ under H_{0} 58

List of Tables

1.1 Empirical sizes of the tests of H_{0} in (0.0.2) against H_{1} in (1.1.1) when λ in model (1.0.8) is estimated by OLS and the sequence h is "divergent". The reported values have to be compared with the nominal 0.05 34
1.2 Empirical sizes of the tests of H_{0} in (0.0.2) against H_{1} in (1.1.1) when λ in model (1.0.8)is estimated by OLS and the sequence h is "bounded". The reported values have to be compared with the nominal 0.05 34
1.3 Empirical sizes of the tests of H_{0} in (0.0.2) against H_{1} in (??) when λ in model (1.0.8) is estimated by OLS and the sequence h is "divergent". The reported values have to be compared with the nominal 0.05 36
1.4 Empirical sizes of the tests of H_{0} in (0.0.2) against H_{1} in (1.2.1) when λ in model (1.0.8)is estimated by OLS and the sequence h is "bounded". The reported values have to be compared with the nominal 0.05 36
1.5 Empirical powers of the tests of H_{0} in (0.0.2) against H_{1} in (1.5.3), with $\bar{\lambda}=$ $0.1,0.5,0.8$, when λ in model (1.0.8) is estimated by OLS and the sequence h is "divergent". α is set to 0.95 37
1.6 Empirical powers of the tests of H_{0} in (0.0.2) against H_{1} in (1.5.3), with $\bar{\lambda}=$ $0.1,0.5,0.8$, when λ in model (1.0.8) is estimated by OLS and the sequence h is "bounded". α is set to 0.95 38
1.7 Numerical values corresponding to (1.5.5) (second row) and (1.5.6) (third row), com- pared with the simulated values for the power of a test of (0.0.2) against (1.4.1) when λ_{n} in model (1.0.8) is estimated by OLS and the sequence h is "divergent". 39
1.8 Numerical values corresponding to (1.5.5) (second row) and (1.5.6) (third row), com- pared with the simulated values for the power of a test of (0.0.2) against (1.4.1) when λ_{n} in model (1.0.8) is estimated by OLS and the sequence h is "bounded". 39
1.9 Simulated values of the power of a test of (0.0.2) against (1.4.1) based on the standard and corrected statistics when λ_{n} in model (1.0.8) is estimated by OLS and the sequence h is "divergent". The values should be compared with the target 0.304. 40
1.10 Simulated values of the power of a test of (0.0.2) against (1.4.1) based on the standard and corrected statistics when λ_{n} in model (1.0.8) is estimated by OLS and the sequence h is bounded. The values should be compared with the target 0.304 40
2.1 Empirical sizes of the tests of H_{0} in (0.0.2) when λ in (1.0.8) is estimated by MLE and the sequence h is "divergent". The reported values have to be compared with the nominal 0.05. 57
2.2 Empirical sizes of the tests of H_{0} in (0.0.2) when λ in (1.0.8) is estimated by MLE and the sequence h is "bounded". The reported values have to be compared with the nominal 0.05 57
2.3 Empirical powers of the tests of H_{0} in (0.0.2) against H_{1} in (1.5.3) with $\bar{\lambda}=$$0.1,0.5,0.8$ when λ in (1.0.8) is estimated by MLE and the sequence h is "diver-gent". α is set to 0.95 .59

2.4 Empirical powers of the tests of H_{0} in (0.0.2) against (1.5.3) with $\bar{\lambda}=0.1,0.5,0.8$
when λ in (1.0.8) is estimated by MLE and the sequence h is "bounded". α is set
to 0.95 59
2.5 Outcomes of the tests of H_{0} in (0.0.2) when λ in model (2.3.2) is estimated by OLS 62
2.6 Outcomes of the tests of H_{0} in (0.0.2) when λ in model (2.3.2) is estimated by MLE 62
2.7 Outcomes of the tests of H_{0} in (0.0.2) when λ in model (2.4.1) is estimated by OLS 64
2.8 Outcomes of the tests of H_{0} in (0.0.2) when λ in model (2.4.1) is estimated by MLE 64
3.1 Empirical sizes of the tests of (0.0.2) against (1.2.1) for model (1.0.8) when the sequence h is "divergent". The reported values have to be compared with the nominal 0.05 90
3.2 Empirical sizes of the tests of (0.0.2) against (1.2.1) for model (1.0.8) when the sequence h is "bounded". The reported values have to be compared with the nominal 0.05 90
3.3 Empirical sizes of the tests of (0.0.2) against (1.2.1) for model (3.2.1) when the sequence h is "divergent". The reported values have to be compared with the nominal 0.05 91
3.4 Empirical sizes of the tests of (0.0.2) against (1.2.1) for model (3.2.1) when the sequence h is "bounded". The reported values have to be compared with the nominal 0.05 91
3.5 Edgeworth-corrected and Imhof's α-quantiles of the cdf of T in when h is "divergent". 95
3.6 Edgeworth-corrected and Imhof's α-quantiles of the cdf of T when h is "bounded". 95

Introduction

It is well known that econometricians face considerable challenges posed by the possibility of cross-sectional correlation, with respect to both modelling and statistical inference. Indeed, starting from the early work by Moran (1950), Cliff and Ord (1968, 1972) and, more recently, Cressie (1993), just to name a few, a large body of literature known as Spatial Econometrics has addressed issues entailed by potential correlation across data recorded at different locations in space. For recent reviews and discussions of the challenges and progresses in the spatial econometric literature, refer to Robinson (2008a) and Anselin (2010).

Statistical modelling of dependence for spatial data is considerably complicated by the lack of an obvious natural ordering. On the other hand, it should be stressed that in this context, "space" should be intended as a network, which includes physical/geographical space as a very special case, and in turn correlation across observations may depend on some very general notion of economic distance that does not necessarily have a geographical interpretation (see e.g. Conley and Ligon (2002) or Conley and Dupor (2003)). Moreover, further complications are given by the fact that spatial data are often irregularly-spaced, for instance when observations are recorded across cities or regions.

Spatial autoregressions (SAR) offer a useful, applicable framework for describing such data. In SAR models the notion of irregular spacing, applied to general distances, is embodied in an $n \times n$ weight matrix (n being sample size), denoted W_{n} henceforth, which needs to be chosen by the practitioner. The matrix W_{n} has zero diagonal elements and, in most practical applications, has non negative entries and is row normalized, so that elements of each row sum to 1 . In view of such normalization, the $(i-j)$ th component of W_{n}, denoted $w_{i j}$ henceforth, can be defined in terms of the inverse of an economic distance $d_{i j}$ between units i and j, i.e.

$$
w_{i j}=\frac{d_{i j}}{\sum_{s=1}^{n} d_{i s}}
$$

where possibly $d_{i j} \neq d_{j i}$.
Let Y_{n} be an $n \times 1$ vector of observations, X_{n} an $n \times k$ matrix of exogenous regressors which does not include a column of ones, and ϵ_{n} an $n \times 1$ vector of independent and identically distributed (iid) random variables, with mean zero and variance σ^{2}. In addition, let l_{n} denote a n-dimensional column of ones. We assume that, for some scalars μ and λ and some $k \times 1$ vector β, the data follow a general SAR model, i.e.

$$
\begin{equation*}
Y_{n}=\mu l_{n}+\lambda W_{n} Y_{n}+X_{n} \beta+\epsilon_{n} . \tag{0.0.1}
\end{equation*}
$$

For notational simplicity, in the sequel we drop the n subscript, writing $\epsilon=\epsilon_{n}, Y=Y_{n}$,
$X=X_{n}, W=W_{n}$, with the same convention for other n-dependent quantities.
Model (0.0.1) is a very parsimonious method of describing spatial dependence, conveniently depending only on economic distances rather than actual locations, which may be unknown or not relevant. For sake of clarity, it should be stressed that often in the spatial econometric literature "spatial independence" is used as a synonym for "lack of spatial correlation", though these concepts are in general identical only under Gaussianity. Although a major drawback of SAR models is the ex ante specification of W, to which parameter estimates are sensitive, (0.0.1) has been widely used in practical applications. Relevant book-length descriptions of SAR model and its applications include Anselin (1988) and Arbia (2006). Even more importantly, (0.0.1) represents a convenient, widely-usable class of alternatives in testing the null hypothesis of lack of spatial correlation which, if true, considerably simplifies statistical inference.

Related literature and motivation of this project

The problem of testing the null hypothesis

$$
\begin{equation*}
H_{0}: \lambda=0 \tag{0.0.2}
\end{equation*}
$$

in (0.0.1), or in a related model where the spatial correlation potentially affects the unobservable disturbances, i.e.

$$
\begin{equation*}
Y_{n}=\mu l_{n}+X_{n} \beta+u_{n}, \quad u_{n}=\lambda W_{n} u_{n}+\epsilon_{n} \tag{0.0.3}
\end{equation*}
$$

is a long lasting issue in the econometric literature and two main classes of tests should be distinguished.

When the focus of the investigation is both on estimation and testing of λ in models (0.0.1) or (0.0.3) various tests of (0.0.2) based on different estimates of λ have been proposed and widely used by practitioners. Procedures based on Gaussian maximum likelihood estimates (MLE) for λ, β and μ in (0.0.1) and (0.0.3) have been developed by Cliff and Ord (1975) and broadly considered. For an exhaustive survey about specification and implementation of tests of (0.0.2) based on the MLE of parameters in (0.0.1) and (0.0.3), refer to Anselin (1988). Asymptotic properties of MLE and Pseudo-MLE (PMLE, henceforth) of λ, β and μ in (0.0.1) and relative test statistics have been derived in Lee (2004).

Although the MLE (or PMLE, more generally) has been extensively used for both estimation and testing, it is well known that it is computationally very cumbersome (see e.g. Pace and Berry (1997)). In order to reduce the computational burden, tests of (0.0.2) based on alternative estimates of λ have been proposed. Instrumental Variable (IV) estimates of λ, β and μ have been introduced by Kelejian and Prucha (1998) and subsequently improved by Lee (2003). In particular, Kelejian and Prucha
(1998) derive asymptotic properties of the IV estimates of parameters in (0.0.1) where, possibly, also the disturbance term follows a SAR model, i.e.

$$
\begin{equation*}
Y_{n}=\mu l_{n}+\lambda W_{n, 1} Y_{n}+X_{n} \beta+u_{n} \quad u_{n}=\rho W_{n, 2} u_{n}+\epsilon_{n} \tag{0.0.4}
\end{equation*}
$$

where $W_{n, 1}$ and $W_{n, 2}$ are suitable weight matrices and ρ is a scalar parameter. Kelejian and Prucha (1998) propose an approximation for the "ideal" instrument, although relative efficiency issues are not considered. In turn, Lee (2003), improves the asymptotic efficiency of the Kelejian and Prucha IV estimator. In a more recent paper, Kelejian et al. (2004) introduce a series-type IV estimator for model (0.0.4), which is proved to be asymptotically normal, efficient within the class of IV estimators and computationally simpler than one proposed in Lee (2003). We should mention that, although the test of (0.0.2) is generally the main focus, we might be interested in testing restrictions on β in (0.0.1), (0.0.3) and (0.0.4). However, IV estimates cannot be obtained in case $\beta=0$ in (0.0.1), (0.0.3) and (0.0.4) and hence tests for the joint significance of $\beta_{1}, \ldots . \beta_{k}$ (β_{i} being the i-th element of β) are not possible in this framework.

Alternatively, Lee (2002) shows that Ordinary Least Squares (OLS) estimates of μ, λ and β in (0.0.1) are consistent and asymptotically normal under suitable assumptions on W. Although t-type of tests of (0.0.2) based on OLS estimates are asymptotically normal and computationally very simple, the aforementioned conditions on W restrict their applicability. Moreover, when $\beta=0$ in (0.0.1) the OLS estimate of λ is inconsistent unless $\lambda=0$ and hence the joint of significance of β cannot be tested in the general case $\lambda \neq 0$.

On the other hand, when the interest of the practitioner is testing rather than estimation, a second class of tests based on Langrange Multiplier (LM) statistics has received considerable attention starting from the early contribution by Moran (1950). Such tests are computationally very convenient as the estimation of λ in either model (0.0.1) or (0.0.3) is not required.

Moran (1950) presents a simple correlation test between neighbours in space based on a normalized quadratic form in the variables that are being tested, without specifying the alternative hypothesis. Moran's result has been applied to test (0.0.2) in (0.0.3) by Cliff and Ord (1972, 1981). In particular, Cliff and Ord (1972) derive the asymptotic distribution of such statistic under (0.0.2) in case the components of ϵ in (0.0.3) are normally distributed. Cliff and Ord (1972) result has been extended by Sen (1976) to independent and identically distributed (iid) disturbances, under specific moment conditions. Though Moran test statistic (and its aforementioned extensions) was not originally derived in a ML framework, Burridge (1980) shows it is indeed equivalent to a LM statistic for spatially uncorrelated disturbances.

More recently, Kelejian and Robinson (1992) derive an alternative test for spatial independence against correlation of unspecified form in the disturbance term of regres-
sion models (possibly nonlinear) based on regression residuals. Kelejian and Robinson (1992) do not refer explicitly to a weight matrix and the ordering of observations is based on first order contiguity. Similarly to Moran's, Kelejian and Robinson test has a χ^{2} limiting distribution under (0.0 .2) and its asymptotic properties have been derived without assuming normality of the error terms. However, the small sample performance of the Kelejian and Robinson test is quite poor, as shown in a number of Monte Carlo studies (e.g. Anselin and Florax (1995) and Kelejian and Robinson (1998)).

Anselin (2001) provides an exhaustive survey for derivation and implementation issues of Moran/LM tests of (0.0.2) when the data follow either (0.0.1) or (0.0.3). As regarding asymptotic theory of Moran/LM test statistics, Kelejian and Prucha (2001) derive a central limit theorem for quadratic forms in random variables which allows to establish the asymptotic distribution of LM statistics for SAR models under H_{0} in (0.0.2). Such result is general enough to accommodate non linearity and the possibility of heteroskedastic error terms. Also, Pinske $(1999,2004)$ outlines a set of conditions for asymptotic normality (or asymptotic χ^{2}) of several Moran/LM-type of test statistics, which include LM statistics for testing (0.0.2) in both (0.0.1) and (0.0.3).

More generally, Robinson (2008b) derives the asymptotic distribution under the null hypothesis of lack of correlation of a class of residuals-based test statistics, which include LM for either (0.0.1) or (0.0.3) as special cases. As expected, by considering the asymptotic distribution of such residual-based class of statistics under a local alternative, LM tests are motivated because they are locally optimal within this class. Finite sample improvements of test statistics under the null hypothesis of lack of correlation are also suggested.

Although the literature on testing for spatial independence is very broad, derivation of finite sample corrections for such tests has received little attention, other than in Robinson (2008b). This issue is of particular concern in spatial econometrics since datasets are often small/moderately-sized and hence testing procedures based on the normal (or χ^{2}) approximation for the distribution of test statistics might be seriously unreliable. Small sample performance of estimates of the parameters in (0.0.1), (0.0.3) and (0.0.4) and corresponding tests have been assessed quite extensively by Monte Carlo studies, see e.g. Anselin and Rey (1991), Anselin and Florax (1995), Das et al. (2003) and, more recently, Egger et al. (2009). More specifically, Anselin and Rey (1991) and Anselin and Florax (1995) report and discuss broad sets of Monte Carlo results to evaluate the practical performances of various existing tests for spatial independence. Das et al. (2003) perform a Monte Carlo study to assess the finite sample behaviour of IV-type of estimates of parameters in (0.0.4), while Egger et al. (2009) propose a similar analysis for Wald-type of tests of (0.0.2) in SAR models based on MLE and Generalized Method of Moments estimates.

Together with the likely limited sample size, another source of concern for the
reliability of standard testing procedures in SAR models is given by the possibly slow rate of convergence of estimates of λ in (??) when none of the exogenous regressors is relevant (Lee (2004)). When this is the case, the cumulative distribution function (cdf) of statistics based on such estimates is poorly approximated by a normal and finite sample corrections are indeed crucial in order to obtain reliable tests. An analytical procedure that attempts to address a similar issue has been derived by Bao and Ullah (2007): using a stochastic expansion of the score function, they derive the second order bias and mean squared error of the MLE of λ in (0.0.1) when $\beta=0$ and $\mu=0$ a priori (pure SAR). However, Bao and Ullah (2007) do not stress the possible slow rate of convergence of the MLE of λ in pure SAR and do not consider improved tests.

In this project we derive refined tests for spatial independence in several versions of (0.0.1) and (0.0.3) based on formal Edgeworth expansions for the cdf of some relevant test statistics under H_{0} in (0.0.2). Edgeworth expansions are well known means to improve upon the approximation offered by the central limit theorem. Specifically, the first term of the expansion corresponds to the standard normal cdf while later terms are of increasingly smaller order and improve on the approximation when only a small/moderately-sized sample is available. If the rate of convergence of the estimate is slower than the parametric \sqrt{n}, as can be the case with (0.0.1) when $\beta=0$ a priori, the inclusion of higher order terms is even more crucial, such terms being larger than those appearing in the expansion when the rate of convergence is \sqrt{n}. The new tests are expected to have better finite sample properties than standard procedures.

The literature on Edgeworth expansions and their applications in econometric and statistic theory is very broad and here we only aim to provide some of the main references together with a brief description of existing results that were useful to develop this project, although we acknowledge that this is not a complete survey. The idea of (formally) expanding distribution functions was introduced by Edgeworth $(1896,1905)$ for sums of independent random variables. Subsequently, starting from the work developed by Cramér (1946), Sargan (1976) and Bhattacharya and Ghosh (1978), among others, provided rigorous theory for validity of the formal Edgeworth expansions. A seminal book-length account of Edgeworth expansions and rigorous results for validity issues is Bhattacharya and Rao (1976). On the other hand, useful and less technical surveys which deal with the derivation of formal Edgeworth expansions are given by Rothenberg (1984) and Barndorff-Nielsen and Cox (1989, Chapter 4).

Several authors have applied Edgeworth expansions to derive refined test statistics in several context, starting from the work on the inverse of Edgeworth expansions by Cornish and Fisher (1937, 1960). Among these, Taniguchi (1986, 1988, 1991a, 1991b), derives higher order asymptotic properties of test statistics for time series data. Other relevant examples of derivation of refined test statistics in time series contexts include Magee (1989) and Kakizawa (1999). More specifically, Magee (1989) develops Edgeworth-corrected tests for linear restrictions when the data follow a linear regression with serially correlated disturbances. Also, Kakizawa (1999), starting from
the earlier work by Ochi (1983), derives a valid Edgeworth expansion for the cdf of two different estimates of the correlation parameter in first order autoregressions and hence provides Edgeworth-corrected confidence intervals. In a different context, Phillips and Park (1988) derive Edgeworth-corrected Wald tests of nonlinar restictions.

A sightly different perspected is adopted in the monograph by Hall (1992), which gives an account of the theory on Edgeworth expansions and Edgeworth-corrected tests in order to explain the performance of bootstrap methods. It is well known, starting from the work by Singh (1981), that the bootstrap is a numerical technique that can be used instead of the analytical derivation of Edgeworth expansions to improve upon the approximation offered by the central limit theorem. Indeed, Singh (1981) shows that the bootstrap automatically corrects for the first term in an Edgeworth expansion.

Although we do not aim to show theoretically the equivalence between the first Edgeworth correction and the bootstrap, in this project we compare by Monte Carlo the practical performance of finite sample corrections based on Edgeworth expansions with bootstrap-based procedures and more specific references to the relevant bootstrap literature will be given in Chapters 1-3.

Some Assumptions and auxiliary lemmas.

We first introduce some notation that will be used throughout. The superscript prime indicates transposition. We denote $\Phi(z)$ and $\phi(z)$ the cdf and the probability density function (pdf) of a standard normal random variable, respectively. 1(.) indicates the indicator function. Let $g^{(i)}$ be the i th derivative of the function g and $H_{j}(x)$ the j-th Hermite polynomial (e.g. $H_{1}(x)=x, H_{2}(x)=x^{2}-1$ and $H_{3}(x)=x^{3}-3 x$). In addition, $\operatorname{det}(A)$ denotes the determinant of a generic square matrix A. Moreover, \sim denotes an exact rate, i.e. $a \sim b$ means that $|a / b|$ converges to a positive, finite limit. ||.|| indicates the spectral norm, i.e. for any $p \times q$ matrix B

$$
\|B\|^{2}=\bar{\eta}\left(B^{\prime} B\right) \quad \text { where } \quad \bar{\eta}\left(B^{\prime} B\right)=\max _{i=1, \ldots . m}\left(\eta_{i}\left(B^{\prime} B\right)\right)
$$

$\eta_{i}\left(B^{\prime} B\right), i=1, \ldots q$, being the eigenvalues of $B^{\prime} B$. Also, let A be any $p \times p$ matrix. $\|A\|_{r}$ denotes the maximum row sum matrix norm, i.e.

$$
\|A\|_{r}=\max _{i} \sum_{j=1}^{p}\left|a_{i j}\right|
$$

$a_{i j}$ being the $i-j$ th element of A. Similarly, $\|A\|_{c}$ indicates the maximum column sum matrix norm, i.e.

$$
\|A\|_{c}=\max _{j} \sum_{i=1}^{p}\left|a_{i j}\right| .
$$

Moreover, let

$$
\begin{equation*}
\rho(A)=\max _{i=1, \ldots \ldots p}\left\{\left|\eta_{i}(A)\right|\right\} \tag{0.0.5}
\end{equation*}
$$

Finally, for every value of λ in either (0.0.1) or (0.0.3), we denote

$$
\begin{equation*}
S(\lambda)=I-\lambda_{n} W \tag{0.0.6}
\end{equation*}
$$

We introduce some assumptions, which are common to Chapters 1-3, while other relevant model-specific conditions are left to each chapter.

Assumption 1 The elements of ϵ are independent and identically distributed normal random variables with mean zero and unknown variance σ^{2}.

Assumption 2

(i) For all $n, w_{i i}=0, \Sigma_{j=1}^{n} w_{i j}=1, i=1, \ldots, n$, and $\|W\|=1$.
(ii) For all n, W is uniformly bounded in row and column sums in absolute value, i.e.

$$
\|W\|_{r}+\|W\|_{c} \leq K
$$

where K is a finite generic constant.
(iii) Uniformly in $i, j=1, \ldots, n, w_{i j}=O(1 / h)$, where $h=h_{n}$ is bounded away from zero for all n and $h / n \rightarrow 0$ as $n \rightarrow \infty$.

As is common in much higher order literature, Gaussianity is assumed in this derivation. Assumption 1 can be relaxed at expense of considerable extra complications in the derivation of Edgeworth expansions.

The normalization in Assumption 2(i) is not strictly necessary for the proofs of the results presented in Chapters 1-4, but it plays a role in constructing the likelihood. Furthermore, Assumption 2(i) or some other normalization is required for identification when $\lambda \neq 0$. Assumption 2(i) requires that W is row normalized so that the elements in each row sum to one. It also imposes that the maximum eigenvalue of $W^{\prime} W$ equals one. In general, $\rho(W) \leq\|W\|$ (see Horn and Johnson (1985), page 297) and, by Assumption 2(i), $\|W\|=1$. Since 1 is an eigenvalue of W when the latter is row normalized, we can conclude $\rho(W)=1$. It is also worth mentioning that row normalization and non negative $w_{i j}$, for all $i, j=1, \ldots, n$, implies $\|W\|_{r}=1$.

The sequence h in Assumption 2(iii) can be bounded or divergent, and a condition on $w_{i j}$ is commonly required in asymptotic theory for statistics based on SAR models.

A specification for W, introduced by Case (1991), which satisfies Assumption 2 is

$$
\begin{equation*}
W=I_{r} \otimes B_{m}, \quad B_{m}=\frac{1}{m-1}\left(l_{m} l_{m}^{\prime}-I_{m}\right) \tag{0.0.7}
\end{equation*}
$$

where $n=r m, r$ being the number of districts and m the number of households in each district. We denote l_{m} an m - dimensional column of ones and I_{r} the $r \times r$ identity matrix. Henceforth, we retain the subscript to either l or I only when the dimension is other than n. Under (0.0.7), two households are neighbours if they belong to the same district and each neighbour is given the same weight. Moreover, W is symmetric and $h=m-1$. It is straightforward to verify that Assumptions 2(i)-(ii) are satisfied for this choice of W, whether h is bounded or divergent (that is, whether the number of households in each unit diverges or is bounded as n increases). Assumption 2(iii) holds provided that $r \rightarrow \infty, m$ being either divergent or bounded.

We introduce here some auxiliary Lemmas which will be used throughout. Both Lemma 1 and 2 are similar to results reported in Lee (2004).

Lemma 1 If $w_{i j}=O(1 / h)$, uniformly in i and j,

$$
\operatorname{tr}(W A)=O\left(\frac{n}{h}\right)
$$

where A is an $n \times n$ matrix so that $\|A\|_{r}+\|A\|_{c} \leq K$.

Proof Let $a_{i j}$ be the $(i-j)$ th element of A. The $i-$ th diagonal element of $W A$ has absolute value given by

$$
\left|(W A)_{i i}\right| \leq \max _{j}\left|w_{i j}\right| \sum_{j=1}^{n}\left|a_{j i}\right|=O\left(\frac{1}{h}\right)
$$

uniformly in i. Therefore

$$
|\operatorname{tr}(W A)| \leq \sum_{i=1}^{n}\left|(W A)_{i i}\right| \leq n \max _{i}\left|(W A)_{i i}\right|=O\left(\frac{n}{h}\right)
$$

Lemma 2 Let R and S be $n \times 1$ vectors whose $i-$ th components are denoted by r_{i} and s_{i}, respectively. Let A be an $n \times n$ matrix. If, for all n,

$$
\max _{1 \leq i \leq n}\left|r_{i}\right| \leq K \quad \max _{1 \leq i \leq n}\left|s_{i}\right| \leq K, \quad\|A\|_{r}+\|A\|_{c} \leq K
$$

then $\left|R^{\prime} A S\right|=O(n)$.

Proof Let $a_{i j}$ be the $(i-j)$ th component of A.

$$
\begin{aligned}
&\left|R^{\prime} A S\right|=\left|\sum_{i=1}^{n} \sum_{j=1}^{n} r_{i} a_{i j} s_{j}\right| \leq \sum_{i=1}^{n} \sum_{j=1}^{n}\left|r_{i}\right|\left|a_{i j}\right|\left|s_{j}\right| \leq \max _{1 \leq i, j \leq n}\left|r_{i}\right|\left|s_{j}\right| \sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right| \\
& \leq K \quad \sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right| \leq K \max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| \sum_{i=1}^{n} 1=O(n) .
\end{aligned}
$$

Lemma 3 Suppose that for all n, each element $x_{i j}$ of X is non-stochastic and $\left|x_{i j}\right|<$ C, where C denotes a generic, large, constant. Moreover, the smallest eigenvalue of $X^{\prime} X / n$ is bounded away from zero for all sufficiently large n. It follows that

$$
\|P\|_{r}+\|P\|_{c} \leq K
$$

where $P=I-X\left(X^{\prime} X\right)^{-1} X$.

Proof We show that $\left\|X\left(X^{\prime} X\right)^{-1} X^{\prime}\right\|_{r} \leq K$. Let x_{i}^{\prime} be the i th row of X and c a generic small constant.

By assumption

$$
0<c<\eta\left(\frac{1}{n} X^{\prime} X\right)
$$

for n large enough, $\eta($.$) being the smallest eigenvalue. Hence,$

$$
\begin{aligned}
& \left\|X\left(X^{\prime} X\right)^{-1} X^{\prime}\right\| \|_{r}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)_{i j}\right|=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|\left(x_{i}^{\prime}\left(X^{\prime} X\right)^{-1} x_{j}\right)\right| \\
\leq & \max _{1 \leq i \leq n} \sum_{j=1}^{n}\left\|x_{i}^{\prime}\right\|\| \|\left(X^{\prime} X\right)^{-1}\left|\| \| x_{j}\left\|\leq \max _{1 \leq i, j \leq n}\right\| x_{i}^{\prime}\| \|\left(\frac{1}{n} X^{\prime} X\right)^{-1}\right|\left\|\mid x_{j}\right\| \leq \frac{1}{c} k C^{2}<\infty
\end{aligned}
$$

since

$$
\left\|\left(\frac{1}{n} X^{\prime} X\right)^{-1}\right\|=\bar{\eta}\left(\left(\frac{1}{n} X^{\prime} X\right)^{-1}\right)=\frac{1}{\underline{\eta}\left(\frac{1}{n} X^{\prime} X\right)} \leq \frac{1}{c}
$$

and

$$
\max _{0<i \leq n}\left\|x_{i}\right\|=\max _{0<i \leq n}\left(x_{i}^{\prime} x_{i}\right)^{1 / 2} \leq\left(k C^{2}\right)^{1 / 2} \leq K
$$

By symmetry, $\left\|X\left(X^{\prime} X\right)^{-1} X^{\prime}\right\|_{c} \leq K$. Trivially, the same property holds for $P=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}$.

1 Improved OLS Test Statistics for Pure SAR

Throughout most of this chapter we assume that for some scalar $\lambda \in(-1,1)$ the data follow the pure SAR model, i.e.

$$
\begin{equation*}
Y=\lambda W Y+\epsilon \tag{1.0.8}
\end{equation*}
$$

which is model (0.0.1) when $\mu=0$ and $\beta=0$ a priori, i.e. none of the exogenous regressors (including the intercept) is relevant, and we are interested in testing (0.0.2) when λ is estimated by OLS. An extension of the proposed procedures to the pure SAR with intercept term, i.e. $\beta=0$ a priori in (0.0.1), is also considered.

It is known (Lee (2002)) that the OLS estimate of λ in model (1.0.8) is inconsistent when $\lambda \neq 0$. However, it converges to zero in probability under (0.0.2) and although this case is very limited when the interest is estimation, it is a leading one in testing. However, under H_{0}, the rate of convergence of the OLS estimate of λ might be slower than the parametric \sqrt{n}, depending on assumptions on W.

When the rate of convergence of the estimate is slower than \sqrt{n}, the cdf of the t-statistic based on the OLS estimate for λ under (0.0.2) is not accurately approximated by a normal. Our new tests are based on refined t-statistics, whose cdf are closer to the normal than those of the standard statistics and therefore entail better approximations. Alternatively, we show that inference based on standard statistics can be improved by considering more accurate approximations for critical values than ones of the normal cdf.

This chapter is organised as follows. In Sections 1.1 and 1.2 we present refined tests for (0.0.2) against one-sided and two-sided alternatives, respectively. In Section 1.3, we show that the results of Sections 1.1 and 1.2 can be easily extended when model (1.0.8) contains a location parameter. In Section 1.4 we present some results for the power of the test of (0.0.2) against a local alternative. In Section 1.5 we report and discuss the results of some Monte Carlo simulations of the tests presented in Sections 1.1-1.4. Relevant proofs are left to appendices.

1.1 Test against a one-sided alternative: Edgeworth-corrected critical values and corrected statistic

We suppose that model (1.0.8) holds and we are interested in testing (0.0.2) against a one-sided alternative

$$
\begin{equation*}
H_{1}: \lambda>0 \quad(<0) \tag{1.1.1}
\end{equation*}
$$

The OLS estimate of λ in model (1.0.8) is defined as

$$
\hat{\lambda}=\frac{Y^{\prime} W^{\prime} Y}{Y^{\prime} W^{\prime} W Y}
$$

As previously mentioned, $\hat{\lambda}$ converges in probability to zero under H_{0}, as shown by a straightforward modification of Lemma 1.1 reported in the Appendix.

Let Assumptions 1-2 hold and in addition:

Assumption 3 The limits

$$
\begin{array}{lll}
\lim _{n \rightarrow \infty} \frac{h}{n} \operatorname{tr}\left(W^{\prime} W\right), & \lim _{n \rightarrow \infty} \frac{h}{n} \operatorname{tr}\left(W W^{\prime} W\right), & \lim _{n \rightarrow \infty} \frac{h}{n} \operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right) \\
\lim _{n \rightarrow \infty} \frac{h}{n} \operatorname{tr}\left(W^{2}\right), & \lim _{n \rightarrow \infty} \frac{h}{n} \operatorname{tr}\left(W^{3}\right) & \tag{1.1.2}
\end{array}
$$

are non-zero.

Under Assumption 2 the limits displayed in (1.1.2) exist and are finite by Lemma 1. Thus, the content of Assumption 3 is that such limits are also non-zero. Let ζ be any finite real number.

Theorem 1.1 Let model (1.0.8) and Assumptions 1-3 hold. The cdf of $\hat{\lambda}$ under H_{0} in (0.0.2) admits the third order formal Edgeworth expansion

$$
\begin{align*}
\operatorname{Pr}\left(a \hat{\lambda} \leq \zeta \mid H_{0}\right) & =\Phi(\zeta)+2 b \zeta^{2} \phi(\zeta)-\frac{\kappa_{3}^{c}}{3!} \Phi^{(3)}(\zeta)-\left(\frac{\operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)}{\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}}-6 b^{2}\right) \zeta^{3} \phi(\zeta) \\
& +2 b^{2} \zeta^{4} \Phi^{(2)}(\zeta)-\frac{\kappa_{3}^{c}}{3} b \zeta^{2} \Phi^{(4)}(\zeta)+\frac{\kappa_{4}^{c}}{4!} \Phi^{(4)}(\zeta)+O\left(\left(\frac{h}{n}\right)^{3 / 2}\right) \tag{1.1.3}
\end{align*}
$$

where

$$
\begin{gather*}
a=\frac{\operatorname{tr}\left(W^{\prime} W\right)}{\left(\operatorname{tr}\left(W^{\prime} W+W^{2}\right)\right)^{1 / 2}}, \quad b=\frac{\operatorname{tr}\left(W W^{\prime} W\right)}{\left(\operatorname{tr}\left(W^{\prime} W+W^{2}\right)\right)^{1 / 2} \operatorname{tr}\left(W^{\prime} W\right)} \tag{1.1.4}\\
\kappa_{3}^{c} \sim \frac{2 \operatorname{tr}\left(W^{3}\right)+6 \operatorname{tr}\left(W^{\prime} W^{2}\right)}{\left(\operatorname{tr}\left(W^{\prime} W+W^{2}\right)\right)^{3 / 2}} \tag{1.1.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\kappa_{4}^{c} \sim \frac{6 \operatorname{tr}\left(W^{4}\right)+24 \operatorname{tr}\left(W^{\prime} W^{3}\right)+12 \operatorname{tr}\left(\left(W W^{\prime}\right)^{2}\right)+6 \operatorname{tr}\left(W^{2} W^{\prime 2}\right)}{\left(\operatorname{tr}\left(W^{\prime} W+W^{2}\right)\right)^{2}} \tag{1.1.6}
\end{equation*}
$$

The proof of Theorem 1.1 is in the Appendix.

Under Assumption 3, as $n \rightarrow \infty$

$$
b \sim\left(\frac{h}{n}\right)^{1 / 2}, \quad \frac{\operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)}{\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}} \sim \frac{h}{n}, \quad \kappa_{3}^{c} \sim\left(\frac{h}{n}\right)^{1 / 2}, \quad \kappa_{4}^{c} \sim \frac{h}{n}
$$

and therefore

$$
\begin{gathered}
2 b \zeta^{2} \phi(\zeta)-\frac{\kappa_{3}^{c}}{3!} \Phi^{(3)}(\zeta) \sim\left(\frac{h}{n}\right)^{1 / 2} \\
-\left(\frac{\operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)}{\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}}-6 b^{2}\right) \zeta^{3} \phi(\zeta)+2 b^{2} \zeta^{4} \Phi^{(2)}(\zeta)-\frac{\kappa_{3}^{c}}{3} b \zeta^{2} \Phi^{(4)}(\zeta)+\frac{\kappa_{4}^{c}}{4!} \Phi^{(4)}(\zeta) \sim \frac{h}{n}
\end{gathered}
$$

Since $a \sim(n / h)^{1 / 2}$ from Assumption 3, when the sequence h is divergent the rate of convergence of $\operatorname{Pr}\left(a \hat{\lambda} \leq \zeta \mid H_{0}\right)$ to the standard normal cdf is obviously slower than the usual \sqrt{n}. It must be stressed that the expansion in (1.1.3) is formal and hence the order of the remainder can only be conjectured by the rate of the coefficients.

From the expansion (1.1.3) Edgeworth-corrected critical values can be obtained. We denote w_{α} and z_{α} the α-quantiles of the null statistic $a \hat{\lambda}$ and the standard normal cdf, respectively. By inversion of (1.1.3) we can obtain an infinite series for w_{α}, i.e.

$$
\begin{equation*}
w_{\alpha}=z_{\alpha}+p_{1}\left(z_{\alpha}\right)+p_{2}\left(z_{\alpha}\right)+\ldots \ldots \tag{1.1.7}
\end{equation*}
$$

where $p_{1}\left(z_{\alpha}\right)$ and $p_{2}\left(z_{\alpha}\right)$ are polynomials of orders $(h / n)^{1 / 2}$ and h / n, respectively. Both $p_{1}\left(z_{\alpha}\right)$ and $p_{2}\left(z_{\alpha}\right)$ can be determined using the identity $\alpha=\operatorname{Pr}\left(a \hat{\lambda} \leq w_{\alpha} \mid H_{0}\right)$ and the asymptotic expansion given in Theorem 1.1. Even though the procedure can be extended to higher orders, for algebraic simplicity we focus on the second order Edgeworth correction and therefore only $p_{1}\left(z_{\alpha}\right)$ has to be determined.

For convenience, we report the second order Edgeworth expansion

$$
\begin{equation*}
\operatorname{Pr}\left(a \hat{\lambda} \leq \zeta \mid H_{0}\right)=\Phi(\zeta)+2 b \zeta^{2} \phi(\zeta)-\frac{\kappa_{3}^{c}}{3!} \Phi^{(3)}(\zeta)+O\left(\frac{h}{n}\right) \tag{1.1.8}
\end{equation*}
$$

From (1.1.8) and the property

$$
\begin{equation*}
(-d / d x)^{j} \Phi(x)=-H_{j-1}(x) \phi(x) \tag{1.1.9}
\end{equation*}
$$

we have

$$
\alpha=\operatorname{Pr}\left(a \hat{\lambda} \leq w_{\alpha} \mid H_{0}\right)=\Phi\left(w_{\alpha}\right)-\left(\frac{\kappa_{3}^{c}}{3!} H_{2}\left(w_{\alpha}\right)-2 b w_{\alpha}^{2}\right) \phi\left(w_{\alpha}\right)+O\left(\frac{h}{n}\right) .
$$

Moreover, expanding w_{α} according to (1.1.7) and dropping negligible terms,

$$
\begin{align*}
\alpha & =\operatorname{Pr}\left(a \hat{\lambda} \leq w_{\alpha} \mid H_{0}\right) \\
& =\Phi\left(z_{\alpha}\right)+p_{1}\left(z_{\alpha}\right) \phi\left(z_{\alpha}\right)-\left(\frac{\kappa_{3}^{c}}{3!} H_{2}\left(z_{\alpha}\right)-2 b z_{\alpha}^{2}\right) \phi\left(z_{\alpha}\right)+O\left(\frac{h}{n}\right) \\
& =\alpha+p_{1}\left(z_{\alpha}\right) \phi\left(z_{\alpha}\right)-\left(\frac{\kappa_{3}^{c}}{3!} H_{2}\left(z_{\alpha}\right)-2 b z_{\alpha}^{2}\right) \phi\left(z_{\alpha}\right)+O\left(\frac{h}{n}\right), \tag{1.1.10}
\end{align*}
$$

where the second equality follows by Taylor expansion of $\Phi\left(w_{\alpha}\right)$ around z_{α}. The last displayed identity holds up to order $O(h / n)$ when

$$
p_{1}\left(z_{\alpha}\right)=\frac{\kappa_{3}^{c}}{3!} H_{2}\left(z_{\alpha}\right)-2 b z_{\alpha}^{2} .
$$

Hence (1.1.7) becomes

$$
\begin{equation*}
w_{\alpha}=z_{\alpha}+\frac{\kappa_{3}^{c}}{3!} H_{2}\left(z_{\alpha}\right)-2 b z_{\alpha}^{2}+O\left(\frac{h}{n}\right) . \tag{1.1.11}
\end{equation*}
$$

The size of the test of (0.0.2) obtained with the usual approximation of w_{α} by z_{α}, that is

$$
\begin{equation*}
\operatorname{Pr}\left(a \hat{\lambda}>z_{\alpha} \mid H_{0}\right), \tag{1.1.12}
\end{equation*}
$$

can be compared with the one obtained using the Edgeworth-corrected quantile as given in (1.1.11), i.e.

$$
\begin{equation*}
\operatorname{Pr}\left(\left.a \hat{\lambda}>z_{\alpha}+\frac{\kappa_{3}^{c}}{3!} H_{2}\left(z_{\alpha}\right)-2 b z_{\alpha}^{2} \right\rvert\, H_{0}\right) \tag{1.1.13}
\end{equation*}
$$

When z_{α} is used to approximate w_{α}, the error has order $(h / n)^{1 / 2}$, while it is reduced to (h / n) when the Edgeworth-corrected critical value is used.

Rather than corrected critical values, an Edgeworth-corrected test statistic can be derived. By (1.1.9) and since $H_{2}(\zeta)=\zeta^{2}-1$, (1.1.8) can be written as

$$
\operatorname{Pr}\left(a \hat{\lambda} \leq \zeta \mid H_{0}\right)=\Phi\left(\zeta+2 b \zeta^{2}-\frac{\kappa_{3}^{c}}{3!}\left(\zeta^{2}-1\right)\right)+O\left(\frac{h}{n}\right) .
$$

When the transformation

$$
v(\zeta)=\zeta+2 b \zeta^{2}-\frac{\kappa_{3}^{c}}{3!}\left(\zeta^{2}-1\right)=\zeta+\left(2 b-\frac{\kappa_{3}^{c}}{3!}\right) \zeta^{2}+\frac{\kappa_{3}^{c}}{3!}
$$

is monotonic, we can write

$$
\operatorname{Pr}\left(a \hat{\lambda}+\left(2 b-\frac{\kappa_{3}^{c}}{3!}\right)(a \hat{\lambda})^{2}+\frac{\kappa_{3}^{c}}{3!} \leq \zeta\right)=\Phi(\zeta)+O\left(\frac{h}{n}\right)
$$

and make inference on λ based on the corrected statistic $v(a \hat{\lambda})$. The function $v(\zeta)$ is strictly increasing when $\zeta>-1 /\left(2\left(2 b-\kappa_{3}^{c} / 3!\right)\right)$, however the latter does not hold in
general and therefore a cubic transormation that does not affect the remainder but such that the resulting function is strictly increasing over the whole domain should be considered. A suitable transformation is in Hall (1992) or, in a more general case, Yanagihara et al (2005):

$$
g(\zeta)=v(\zeta)+Q(\zeta), \quad \text { with } \quad Q(\zeta)=\frac{1}{3}\left(2 b-\frac{\kappa_{3}^{c}}{3!}\right)^{2} \zeta^{3}
$$

Indeed, it can be shown (Yanagihara et al (2005)) that for a statistic T that admits the general expansion

$$
\operatorname{Pr}(T \leq x)=\Phi(x)+p_{1}(x) \phi(x)+O\left(\frac{h}{n}\right)
$$

where $p_{1}(x) \sim \sqrt{h / n}$, the transformation

$$
\begin{equation*}
g(x)=x+p_{1}(x)+\frac{1}{4} Q(x) \quad \text { with } \quad Q(x)=\int\left(\frac{d}{d x} p_{1}(x)\right)^{2} d x \tag{1.1.14}
\end{equation*}
$$

is strictly increasing and does not affect higher order terms, i.e.

$$
\operatorname{Pr}(g(T) \leq x)=\Phi(x)+O\left(\frac{h}{n}\right)
$$

It is straightforward to verify that in the present case the function $g(\zeta)$ is strictly increasing for every ζ, its first derivative being $\left(1+\left(2 b-\left(\kappa_{3}^{c} / 3!\right) \zeta\right)\right)^{2}$.

The size of the test of (0.0.2) based on such corrected statistic,

$$
\begin{equation*}
\operatorname{Pr}\left(g(a \hat{\lambda})>z_{\alpha} \mid H_{0}\right) \tag{1.1.15}
\end{equation*}
$$

can be compared with the standard (1.1.12). As previously mentioned, the error when the standard statistic is used has order $\sqrt{h / n}$, while it is reduced to h / n when considering the corrected variant.

1.2 Test against a two-sided alternative: Edgeworth-corrected critical values and corrected statistic

In Section 1.1 we focused on testing (0.0.2) against (1.1.1). However, in some circumstances the practitioner might not have a prior conjecture about the sign of λ in (1.0.8) and a test of (0.0.2) against a two-sided alternative may be more suitable. In this section we propose refined tests for (0.0.2) against a two-sided alternative

$$
\begin{equation*}
H_{1}: \lambda \neq 0 \tag{1.2.1}
\end{equation*}
$$

From Theorem 1.1, (1.1.9) and

$$
\phi(-\zeta)=\phi(\zeta), \quad \Phi^{(2)}(-\zeta)=-\Phi^{(2)}(\zeta), \quad \Phi^{(3)}(-\zeta)=\Phi^{(3)}(\zeta), \quad \Phi^{(4)}(-\zeta)=-\Phi^{(4)}(\zeta)
$$

we obtain

$$
\begin{align*}
\operatorname{Pr}\left(|a \hat{\lambda}| \leq \zeta \mid H_{0}\right) & =\operatorname{Pr}(a \hat{\lambda} \leq \zeta)-\operatorname{Pr}(a \hat{\lambda} \leq-\zeta) \\
& =\Phi(\zeta)-\Phi(-\zeta)-2\left(\frac{\operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)}{\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}}-6 b^{2}\right) \zeta^{3} \phi(\zeta)+4 b^{2} \zeta^{4} \Phi^{(2)}(\zeta) \\
& -2 \frac{\kappa_{3}^{c}}{3} b \zeta^{2} \Phi^{(4)}(\zeta)+2 \frac{\kappa_{4}^{c}}{4!} \Phi^{(4)}(\zeta)+O\left(\left(\frac{h}{n}\right)^{2}\right) \\
& =2 \Phi(\zeta)-1+\left\{-2\left(\frac{\operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)}{\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}}-6 b^{2}\right) \zeta^{3}-4 b^{2} \zeta^{4} H_{1}(\zeta)\right. \\
& \left.+2 \frac{\kappa_{3}^{c}}{3} b \zeta^{2} H_{3}(\zeta)-\frac{\kappa_{4}^{c}}{12} H_{3}(\zeta)\right\} \phi(\zeta)+O\left(\left(\frac{h}{n}\right)^{2}\right) \tag{1.2.2}
\end{align*}
$$

Under Assumption 3 the terms in braces of the last displayed expansion have order h / n, while, as previously mentioned, the order of the remainder is conjectured by the rate of the coefficients and the parity of the expansion.

As discussed in Section 1.1, Edgeworth-corrected critical values and corrected null statistics can be derived from (1.2.2). Let q_{α} be the α-quantile of the null statistic $|a \hat{\lambda}|$. From (1.2.2),

$$
\begin{aligned}
\alpha & =\operatorname{Pr}\left(|a \hat{\lambda}| \leq q_{\alpha} \mid H_{0}\right) \\
& =2 \Phi\left(q_{\alpha}\right)-1-2\left(\frac{\operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)}{\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}}-6 b^{2}\right) q_{\alpha}^{3} \phi(\zeta)-4 b^{2} \zeta^{4} H_{1}\left(q_{\alpha}\right) \phi\left(q_{\alpha}\right) \\
& +2 \frac{\kappa_{3}^{c}}{3} b q_{\alpha}^{2} H_{3}\left(q_{\alpha}\right) \phi\left(q_{\alpha}\right)-\frac{\kappa_{4}^{c}}{12} H_{3}\left(q_{\alpha}\right) \phi\left(q_{\alpha}\right)+O\left(\left(\frac{h}{n}\right)^{2}\right)
\end{aligned}
$$

and therefore

$$
\begin{align*}
\frac{\alpha+1}{2} & =\Phi\left(q_{\alpha}\right)-\left(\frac{\operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)}{\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}}-6 b^{2}\right) q_{\alpha}^{3} \phi(\zeta)-2 b^{2} \zeta^{4} H_{1}\left(q_{\alpha}\right) \phi\left(q_{\alpha}\right) \\
& +\frac{\kappa_{3}^{c}}{3} b q_{\alpha}^{2} H_{3}\left(q_{\alpha}\right) \phi\left(q_{\alpha}\right)-\frac{\kappa_{4}^{c}}{4!} H_{3}\left(q_{\alpha}\right) \phi\left(q_{\alpha}\right)+O\left(\left(\frac{h}{n}\right)^{2}\right) \tag{1.2.3}
\end{align*}
$$

Correspondingly, an infinite series for q_{α} in terms of $z_{(\alpha+1) / 2}$ can be written as

$$
\begin{equation*}
q_{\alpha}=z_{\frac{\alpha+1}{2}}+p_{1}\left(z_{\frac{\alpha+1}{2}}\right)+O\left(\left(\frac{h}{n}\right)^{2}\right) \tag{1.2.4}
\end{equation*}
$$

Similarly to the case presented in Section 1.1, the size of the test of (0.0.2) against a two-sided alternative when q_{α} is approximated by $z_{(\alpha+1) / 2}$ can be compared with that obtained when q_{α} is approximated by the Edgeworth-corrected quantity $z_{(\alpha+1) / 2}+$
$p_{1}\left(z_{(\alpha+1) / 2}\right)$. The error of the latter approximation is reduced to $O\left((h / n)^{2}\right)$. The polynomial $p_{1}\left(z_{(\alpha+1) / 2}\right)$ can be determined by substituting (1.2.4) into (1.2.3) and dropping negligible terms, i.e.

$$
\begin{aligned}
\frac{\alpha+1}{2} & =\Phi\left(z_{(\alpha+1) / 2}+p_{1}\left(z_{(\alpha+1) / 2}\right)\right)-\left(\frac{\operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)}{\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}}-6 b^{2}\right) z_{(\alpha+1) / 2}^{3} \phi\left(z_{(\alpha+1) / 2}\right) \\
& -2 b^{2} \zeta^{4} H_{1}\left(z_{(\alpha+1) / 2}\right) \phi\left(z_{(\alpha+1) / 2}\right)+\frac{\kappa_{3}^{c}}{3} b z_{(\alpha+1) / 2}^{2} H_{3}\left(z_{(\alpha+1) / 2}\right) \phi\left(z_{(\alpha+1) / 2}\right) \\
& -\frac{\kappa_{4}^{c}}{4!} H_{3}\left(z_{(\alpha+1) / 2}\right) \phi\left(z_{(\alpha+1) / 2}\right)+O\left(\left(\frac{h}{n}\right)^{2}\right) .
\end{aligned}
$$

Hence, by Taylor expansion,

$$
\begin{aligned}
\frac{\alpha+1}{2} & =\Phi\left(z_{(\alpha+1) / 2}\right)+p_{1} \phi\left(z_{(\alpha+1) / 2}\right)-\left(\frac{\operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)}{\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}}-6 b^{2}\right) z_{(\alpha+1) / 2}^{3} \phi\left(z_{(\alpha+1) / 2}\right) \\
& -2 b^{2} \zeta^{4} H_{1}\left(z_{(\alpha+1) / 2}\right) \phi\left(z_{(\alpha+1) / 2}\right)+\frac{\kappa_{3}^{c}}{3} b z_{(\alpha+1) / 2}^{2} H_{3}\left(z_{(\alpha+1) / 2}\right) \phi\left(z_{(\alpha+1) / 2}\right) \\
& -\frac{\kappa_{4}^{c}}{4!} H_{3}\left(z_{(\alpha+1) / 2}\right) \phi\left(z_{(\alpha+1) / 2}\right)+O\left(\left(\frac{h}{n}\right)^{2}\right) .
\end{aligned}
$$

The last displayed identity holds up to order $O(h / n)^{2}$ if

$$
\begin{align*}
p_{1}\left(z_{(\alpha+1) / 2}\right) & =\left(\frac{\operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)}{\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}}-6 b^{2}\right) z_{(\alpha+1) / 2}^{3}+2 b^{2} \zeta^{4} H_{1}\left(z_{(\alpha+1) / 2}\right) \\
& -\frac{\kappa_{3}^{c}}{3} b z_{(\alpha+1) / 2}^{2} H_{3}\left(z_{(\alpha+1) / 2}\right)+\frac{\kappa_{4}^{c}}{4!} H_{3}\left(z_{(\alpha+1) / 2}\right) . \tag{1.2.5}
\end{align*}
$$

As discussed in Section 1.1, a corrected statistic under H_{0} can also be derived from (1.2.2). Indeed, (1.2.2) can be written as

$$
\begin{aligned}
\operatorname{Pr}(|a \hat{\lambda}| \leq \zeta) & =2 \Phi\left(\zeta-\left(\frac{\operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)}{\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}}-6 b^{2}\right) \zeta^{3}-2 b^{2} \zeta^{4} H_{1}(\zeta)+\frac{\kappa_{3}^{c}}{3} b \zeta^{2} H_{3}(\zeta)-\frac{\kappa_{4}^{c}}{4!} H_{3}(\zeta)\right) \\
& -1+O\left(\left(\frac{h}{n}\right)^{2}\right)
\end{aligned}
$$

By a straightforward modification of the procedure described in Section 1.1 (Yanagihara et al (2005)), we obtain

$$
\operatorname{Pr}\left(v(|a \hat{\lambda}|) \leq \zeta \mid H_{0}\right)=2 \Phi(\zeta)-1+O\left(\left(\frac{h}{n}\right)^{2}\right)
$$

where

$$
\begin{equation*}
v(x)=x-\left(\frac{\operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)}{\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}}-6 b^{2}\right) x^{3}-2 b^{2} x^{4} H_{1}(x)+\frac{\kappa_{3}^{c}}{3} b x^{2} H_{3}(x)-\frac{\kappa_{4}^{c}}{4!} H_{3}(x) . \tag{1.2.6}
\end{equation*}
$$

The error when the distribution of the corrected statistic under H_{0} is approximated by the standard normal is reduced to $O\left((h / n)^{2}\right)$. As pointed out in Section 1.1, the latter result relies on the monotonicity (at least local) of $v($.$) . Because of the cumbersome$ functional form of the correction terms, in this case it is algebraically difficult to obtain the cubic transformation given in (1.1.14). Hence, we rely on some numerical work to assess whether $v($.$) is indeed locally increasing and, eventually, implement numerically$ the cubic transformation in (1.1.14).

1.3 Corrected critical values and corrected statistic for pure SAR with a location parameter

In Sections 1.1 and 1.2 we considered model (1.0.8), which is a particular case of (0.0.1) where $\mu=0$ and $\beta=0$ a priori. In this section we extend the results derived in Section 1.1 to model

$$
\begin{equation*}
Y=\mu l+\lambda W Y+\epsilon \tag{1.3.1}
\end{equation*}
$$

which is (0.0.1) where again $\beta=0$ a priori, but now $\mu \neq 0$ a priori. For simplicity we focus on one-sided test, but extensions of the results derived in Section 1.2 are also straightforward, at expense of extra algebraical burden.

Specifically, we obtain

Theorem 1.2 Suppose that model (1.3.1) and Assumptions 1-3 hold. The cdf of $\hat{\lambda}$ under H_{0} in (0.0.2) admits the second order formal Edgeworth expansion

$$
\begin{align*}
\operatorname{Pr}\left(a \hat{\lambda} \leq \zeta \mid H_{0}\right) & =\Phi(\zeta)+\left(\frac{1}{\left(\operatorname{tr}\left(W^{2}+W^{\prime} W\right)\right)^{1 / 2}}+2 b \zeta^{2}\right) \phi(\zeta) \\
& -\frac{\kappa_{3}^{c}}{3!} \Phi^{(3)}(\zeta)+O\left(\frac{h}{n}\right) \tag{1.3.2}
\end{align*}
$$

where a, b and κ_{3}^{c} have been defined in (1.1.4) and (1.1.5).

The proof of Theorem 1.2 is in the Appendix A.

From (1.3.2) corrected critical values and corrected statistics under H_{0} can be obtained. The derivation is identical to one presented in Section 1.1 and is therefore omitted. Let w_{α}^{l} be the true α-quantile of the cdf of $a \hat{\lambda}$ under H_{0}. From (1.3.2),

$$
w_{\alpha}^{l}=z_{\alpha}-\left(\frac{1}{\left(\operatorname{tr}\left(W^{2}+W^{\prime} W\right)\right)^{1 / 2}}+2 b z_{\alpha}^{2}\right)+\frac{\kappa_{3}^{c}}{3!} H_{2}\left(z_{\alpha}\right)+O\left(\frac{h}{n}\right)
$$

Hence, as previously discussed, when z_{α} is used to approximate w_{α}^{l}, the error is $O\left((h / n)^{1 / 2}\right)$, while it is reduced to $O(h / n)$ when the Edgeworth-corrected critical value is used.

Similarly, the corrected statistic under H_{0} can be derived from (1.3.2). As discussed in Section 1.1, the transformation defined in (1.1.14) is strictly increasing and constructed so that the error obtained by approximating the cdf of the null transformed statistic with a normal is reduced to order h / n. In this case, from (1.3.2), (1.1.14) becomes

$$
g(x)=x+\frac{1}{\left(\operatorname{tr}\left(W^{2}+W^{\prime} W\right)\right)^{1 / 2}}+2 b x^{2}-\frac{\kappa_{3}^{c}}{3!}\left(x^{2}-1\right)+\frac{1}{3}\left(2 b-\frac{\kappa_{3}^{c}}{3!} x^{3}\right) .
$$

1.4 Test against a local alternative

In this section we focus on testing (0.0.2) in model (1.0.8) against a local alternative hypothesis

$$
\begin{equation*}
H_{1}: \lambda_{n}=c\left(\frac{h}{n}\right)^{1 / 2}, \quad c>0 \quad(<0) \tag{1.4.1}
\end{equation*}
$$

Although we previously specified that the subscript n would be omitted, we retain it in this case to stress the shrinking nature of the class of alternatives. For algebraic simplicity, the results in this section are derived assuming that W is symmetric. The extension to the case of non symmetric W is trivial, but algebraically more cumbersome. Without loss of generality, the following results are developed for $c>0$ in (1.4.1). As already mentioned, when $\lambda \neq 0$ the OLS estimate of λ in (1.0.8) is inconsistent. However, under H_{1} as defined in (1.4.1), $\hat{\lambda}_{n}$ converges in probability to zero, as shown in Lemma 1.1 reported in the Appendix. More specifically, by Lemma 1.1, $\hat{\lambda}_{n}=\lambda_{n}+O_{p}\left((h / n)^{1 / 2}\right)$, i.e. the probability limit of $\hat{\lambda}_{n}-\lambda_{n}$ vanishes at least at fast as λ_{n}.

Under Assumption 2(ii), when W is symmetric, $\|W\|_{r} \leq K / 2$ and $\|W\|_{c} \leq K / 2$. The series representation

$$
\begin{equation*}
S^{-1}\left(\lambda_{n}\right)=\sum_{t=0}^{\infty}\left(\lambda_{n} W\right)^{t} \tag{1.4.2}
\end{equation*}
$$

holds when $\left|\left|\left|\lambda_{n} W\right|\right|\right|<1,|||\cdot|||$ denoting any matrix norm (see e.g. Horn and Johnson (1985), page 301), where $S\left(\lambda_{n}\right)$ is defined according to (0.0.6). Under H_{1}, using the spectral norm,

$$
\left\|\lambda_{n} W\right\|=c\left(\frac{h}{n}\right)^{1 / 2}\|W\|=c\left(\frac{h}{n}\right)^{1 / 2}<1
$$

for $c<1$ or n large enough.
Under $H_{1}, S^{-1}\left(\lambda_{n}\right)$ is also uniformly bounded in row sums in absolute value since

$$
\begin{aligned}
\left\|S^{-1}\left(\lambda_{n}\right)\right\|_{r} & =\left\|\sum_{t=0}^{\infty}\left(\lambda_{n} W\right)^{t}\right\|_{r} \leq \sum_{t=0}^{\infty} \lambda_{n}^{t}\left\|W^{t}\right\|_{r} \leq \sum_{t=0}^{\infty} \lambda_{n}^{t}\|W\|_{r}^{t} \\
& \leq \sum_{t=0}^{\infty}\left(\lambda_{n} \frac{K}{2}\right)^{t}=\frac{1}{1-\lambda_{n} \frac{K}{2}}<\infty
\end{aligned}
$$

for n large enough that $c(h / n)^{1 / 2} K / 2<1$. Trivially, by symmetry of $W, S^{-1}\left(\lambda_{n}\right)$ is uniformly bounded in column sums in absolute value.

We obtain the following result

Theorem 1.3 Suppose that model (1.0.8) and Assumptions 1-3 hold. The cdf of $\hat{\lambda}_{n}-\lambda_{n}$ under H_{1} as defined in (1.4.1) admits the formal second order Edgeworth expansion
$\operatorname{Pr}\left(a\left(\hat{\lambda}_{n}-\lambda_{n}\right) \leq \zeta \mid H_{1}\right)=\Phi\left(\zeta-\lambda_{n} a\right)-\omega(\zeta) \phi\left(\zeta-\lambda_{n} a\right)-\frac{\kappa_{3}^{c}}{3!} \Phi^{(3)}\left(\zeta-\lambda_{n} a\right)+O\left(\frac{h}{n}\right)$,
where a and κ_{3}^{c} have been defined in (1.1.4) and (1.1.5), respectively, and

$$
\begin{equation*}
\omega(\zeta)=\frac{\operatorname{tr}\left(W^{3}\right)}{2}\left(\lambda_{n}^{2} a^{-1}-2 \lambda_{n} a^{-2} \zeta\right)+\frac{\operatorname{tr}\left(W^{3}\right)}{4}\left(2 \lambda_{n} a^{-2}-a^{-3} \zeta\right)\left(\zeta-a \lambda_{n}\right) \tag{1.4.4}
\end{equation*}
$$

The proof of Theorem 1.3 is in the Appendix.
Since Theorem 1.3 has been proved for a symmetric W, a and κ_{3}^{c} can be simplified to $\sqrt{\operatorname{tr}\left(W^{2}\right)} / \sqrt{2}$ and $8 \operatorname{tr}\left(W^{3}\right) / 2 \sqrt{2} \operatorname{tr}\left(W^{2}\right)^{3 / 2}$, respectively. Under Assumption $3, \omega(\zeta) \sim \sqrt{h / n}$ and $a \lambda_{n}$ has a positive limit. Hence, to a first approximation, under $H_{1}, a\left(\hat{\lambda}_{n}-\lambda_{n}\right)$ is normally distributed with mean $\lambda_{n} a$ and unit variance. It is straightforward to notice that when $\lambda_{n}=0$ we recover the expansion given in (1.1.8). Intuitively, the term $a \lambda_{n}$ is a large sample bias that vanishes only when $\lambda_{n}=0$ (or $\lambda_{n}=O\left((h / n)^{\gamma}\right)$, with $\left.\gamma>1 / 2\right)$.

A very simple, straightforward result that can be derived using the expansion in Theorem 1.3 consists in the possibility of providing a better approximation of the (local) power of the test of (0.0.2) against (1.4.1) based on the statistic $a \hat{\lambda}_{n}$ than that given by the usual first order theory. Specifically, suppose H_{0} is rejected when $a \hat{\lambda}_{n}>\tau$. The power of such test (as function of τ), denoted as $\Pi(\tau)$ henceforth, is defined as
$\Pi(\tau)=\operatorname{Pr}\left(a \hat{\lambda}_{n}>\tau \mid H_{1}\right)=1-\operatorname{Pr}\left(a \hat{\lambda}_{n} \leq \tau \mid H_{1}\right)=1-\operatorname{Pr}\left(a\left(\hat{\lambda}_{n}-\lambda\right) \leq \tau-a \lambda_{n} \mid H_{1}\right)$.

Obviously, $\operatorname{Pr}\left(a\left(\hat{\lambda}_{n}-\lambda_{n}\right) \leq \tau-a \lambda_{n} \mid H_{1}\right)$ is unknown, but Theorem 1.3 can be used to obtain a more accurate approximation for $\Pi(\tau)$ than that based on the normal approximation. Indeed, standard first order theory offers the approximation

$$
\begin{equation*}
\Pi(\tau)=1-\operatorname{Pr}\left(a\left(\hat{\lambda}_{n}-\lambda_{n}\right) \leq \tau-a \lambda_{n} \mid H_{1}\right)=1-\Phi(\tau-2 \lambda n a)+O\left(\left(\frac{h}{n}\right)^{1 / 2}\right) \tag{1.4.5}
\end{equation*}
$$

while, by Theorem 1.3,

$$
\begin{align*}
\Pi(\tau) & =1-\operatorname{Pr}\left(a\left(\hat{\lambda}_{n}-\lambda_{n}\right) \leq \tau-a \lambda_{n} \mid H_{1}\right)=1-\Phi\left(\tau-2 \lambda_{n} a\right) \\
& +\omega\left(\tau-a \lambda_{n}\right) \phi\left(\tau-2 \lambda_{n} a\right)+\frac{\kappa_{3}^{c}}{3!} H_{2}\left(\tau-2 \lambda_{n} a\right) \phi\left(\tau-2 \lambda_{n} a\right)+O\left(\frac{h}{n}\right) . \tag{1.4.6}
\end{align*}
$$

In Section 1.5 we will present some Monte Carlo results to confirm that the inclusion of the Edgeworth correction terms, as given in the RHS of (1.4.6), entails a closer approximation for $\Pi(\tau)$ than one based on the normal.

A more interesting result that can be derived starting from Theorem 1.3 is a "corrected" version of the test statistics under H_{1}. In Section 1.1 we have proposed a size-corrected statistic for testing (0.0.2) against a one-sided alternative. Now, from Theorem 1.3, we aim to derive a corrected statistic so that, under H_{1}, the error when its distribution is approximated by a normal is reduced. The corrected version under H_{0} can be recovered when $\lambda_{n}=0$ in the derivation that follows.

Similarly to the derivation in Section $1.1,(1.4 .3)$ can be written in the equivalent form

$$
\operatorname{Pr}\left(a \hat{\lambda}_{n} \leq \zeta \mid H_{1}\right)=\Phi\left(\left(\zeta-2 \lambda_{n} a\right)-\omega\left(\zeta-\lambda_{n} a\right)-\frac{\kappa_{3}^{c}}{3!} H_{2}\left(\zeta-2 \lambda_{n} a\right)\right)+O\left(\frac{h}{n}\right)
$$

When the function

$$
\begin{equation*}
v(x)=x-\omega\left(x-\lambda_{n} a\right)-\frac{\kappa_{3}^{c}}{3!} H_{2}\left(x-2 \lambda_{n} a\right) \tag{1.4.7}
\end{equation*}
$$

is monotonic,

$$
\begin{equation*}
\operatorname{Pr}\left(v\left(a \hat{\lambda}_{n}\right) \leq \zeta \mid H_{1}\right)=\Phi\left(\zeta-2 \lambda_{n} a\right)+O\left(\frac{h}{n}\right) \tag{1.4.8}
\end{equation*}
$$

The result in (1.4.8) can be derived by a modification of the argument in Yanagihara et al (2005). Specifically, when v is monotonic,

$$
\begin{align*}
\operatorname{Pr}\left(v\left(a \hat{\lambda}_{n}\right) \leq \zeta \mid H_{1}\right) & =\operatorname{Pr}\left(a \hat{\lambda}_{n} \leq v^{-1}(\zeta) \mid H_{1}\right) \\
& =\Phi\left(v^{-1}(\zeta)-2 \lambda_{n} a\right)-\left(\omega\left(v^{-1}(\zeta)-\lambda_{n} a\right)\right. \\
& \left.-\frac{\kappa_{3}^{c}}{3!} H_{2}\left(v^{-1}(\zeta)-2 \lambda_{n} a\right)\right) \phi\left(v^{-1}(\zeta)-2 \lambda_{n} a\right)+O\left(\frac{h}{n}\right) \tag{1.4.9}
\end{align*}
$$

From (1.4.7),

$$
\begin{align*}
\zeta & =v^{-1}\left(\zeta-\omega\left(\zeta-\lambda_{n} a\right)-\frac{\kappa_{3}^{c}}{3!} H_{2}\left(\zeta-2 \lambda_{n} a\right)\right) \\
& =v^{-1}(\zeta)-\left(\omega\left(\zeta-\lambda_{n} a\right)+\frac{\kappa_{3}^{c}}{3!} H_{2}\left(\zeta-2 \lambda_{n} a\right)\right) \frac{d v^{-1}(\zeta)}{d \zeta}+O\left(\frac{h}{n}\right), \tag{1.4.10}
\end{align*}
$$

where the last equality follows by Taylor expansion. Let $y=v^{-1}(\zeta)$. Since v is monotonic,

$$
\begin{align*}
\frac{d v^{-1}(\zeta)}{d \zeta} & =\left(\frac{d v(y)}{d y}\right)^{-1}=\left(1-\frac{d \omega\left(y-\lambda_{n} a\right)}{d y}-\frac{\kappa_{3}^{c}}{3!} \frac{d H_{2}\left(y-2 \lambda_{n} a\right)}{d y}\right)^{-1} \\
& =\left(1+\operatorname{tr}\left(W^{3}\right)\left(\lambda_{n} a^{-2}+\frac{a^{-3}}{4}\left(y-\lambda_{n} a\right)-\frac{2 \lambda_{n} a^{-2}-a^{-3} y}{4}\right)-\frac{\kappa_{3}^{c}}{3}\left(y-2 \lambda_{n} a\right)\right)^{-1} \\
& =1+O\left(\frac{h}{n}\right)^{1 / 2} \tag{1.4.11}
\end{align*}
$$

Therefore, by substituting (1.4.11) into (1.4.10),

$$
v^{-1}(\zeta)=\zeta+\left(\omega\left(\zeta-\lambda_{n} a\right)+\frac{\kappa_{3}^{c}}{3!} H_{2}\left(\zeta-2 \lambda_{n} a\right)\right)+O\left(\frac{h}{n}\right)
$$

Hence, by Taylor expansion,

$$
\begin{gather*}
\Phi\left(v^{-1}(\zeta)-2 \lambda_{n} a\right)=\Phi\left(\zeta-2 \lambda_{n} a\right)+\left(\omega\left(\zeta-\lambda_{n} a\right)+\frac{\kappa_{3}^{c}}{3!} H_{2}\left(\zeta-2 \lambda_{n} a\right)\right) \phi\left(\zeta-2 \lambda_{n} a\right)+O\left(\frac{h}{n}\right) \\
\phi\left(v^{-1}(\zeta)-2 \lambda_{n} a\right)=\phi\left(\zeta-2 \lambda_{n} a\right)+O\left(\frac{h}{n}\right)^{1 / 2} \tag{1.4.12}\\
\omega\left(v^{-1}(\zeta)-\lambda_{n} a\right)=\omega\left(\zeta-\lambda_{n} a\right)+O\left(\frac{h}{n}\right) \tag{1.4.14}
\end{gather*}
$$

and

$$
\begin{equation*}
H_{2}\left(v^{-1}(\zeta)-2 \lambda_{n} a\right)=H_{2}\left(\zeta-2 \lambda_{n} a\right)+O\left(\frac{h}{n}\right)^{1 / 2} \tag{1.4.15}
\end{equation*}
$$

The result (1.4.8) follows by substituting (1.4.12), (1.4.13), (1.4.14) and (1.4.15) into (1.4.9).

A remark on the monotonicity of the function $v($.$) is necessary at this stage. In$ Section 1.1, we explicitly derived the appropriate cubic transformation to guarantee the monotonicity of v over the whole domain without affecting the order of the remainder terms. However, this case is algebraically more complex and the inclusion of the cubic term in the corrected statistic would increase the computational burden (both theoretically and in terms of the simulation time) by a significant amount. Therefore, we rely on some numerical work to state that $v\left(a \hat{\lambda}_{n}\right)$ is indeed locally monotonic under H_{1}.

Hence, when inference is based on $v\left(a \hat{\lambda}_{n}\right)$ rather than $a \hat{\lambda}_{n}$,

$$
\Pi(\tau)=\operatorname{Pr}\left(v\left(a \hat{\lambda}_{n}\right)>\tau \mid H_{1}\right)=1-\operatorname{Pr}\left(v\left(a \hat{\lambda}_{n}\right) \leq \tau \mid H_{1}\right)=1-\Phi\left(\zeta-2 \lambda_{n} a\right)+O\left(\frac{h}{n}\right)
$$

By comparison with (1.4.5), it is straightforward to notice that the error of the approximation is reduced.

1.5 Bootstrap correction and simulation results

In this section we report and discuss some Monte Carlo simulations to investigate the finite sample performance of the tests derived in Sections 1.1, 1.2 and 1.4.

In this simulation work, we adopt the Case (1991) specification for W given in (0.0.7). With this choice, W is symmetric and hence a, b, κ_{3}^{c} and κ_{4}^{c} can be simplified accordingly. In each of 1000 replications the disturbance terms are $N(0,1)$, i.e. according to Assumption 1 with $\sigma^{2}=1$. We set $\alpha=95 \%$.

A brief remark on W defined in (0.0.7) is necessary. As already mentioned in the Introduction, it is straightforward to verify that Assumption 2 is satisfied for this choice of W, whether h is bounded or divergent. It is possible to verify that also Assumption 3 holds, i.e.

$$
\lim _{n \rightarrow \infty} \frac{h}{n} \operatorname{tr}\left(W^{i}\right) \neq 0 \quad \text { for } \quad i=2,3,4
$$

by observing that

$$
\frac{h}{n} \operatorname{tr}\left(\left(I_{r} \otimes B_{m}\right)^{i}\right)=\frac{h}{n} \operatorname{tr}\left(I_{r}\right) \operatorname{tr}\left(B_{m}^{i}\right)=\frac{h}{n} \operatorname{rtr}\left(B_{m}^{i}\right) .
$$

By standard linear algebra, B_{m} has one eigenvalue equal to 1 and the other $m-1$ equal to $-1 /(m-1)$. Therefore

$$
\operatorname{tr}\left(B_{m}^{i}\right)=1+(m-1)\left(\frac{-1}{m-1}\right)^{i}
$$

and hence

$$
\begin{aligned}
\frac{h}{n} \operatorname{tr}\left(\left(I_{r} \otimes B_{m}\right)^{i}\right) & =\frac{h}{n} \operatorname{rtr}\left(B_{m}^{i}\right)=\frac{m-1}{r m} r\left(1+\frac{(-1)^{i}}{(m-1)^{i-1}}\right) \\
& =\frac{m-1}{m}\left(1+\frac{(-1)^{i}}{(m-1)^{i-1}}\right),
\end{aligned}
$$

which is non-zero in the limit whether $m=h+1$ is bounded or not for $i=2,4$. When $i=3$ and m is bounded, we require $m>2$ (at least for large n) for the latter quantity to be non-zero.

In Tables 1.1-1.4 the empirical sizes of the test of (0.0.2) against a one-sided alternative (Tables 1.1-1.2) and two-sided alternative (Tables 1.3-1.4) based on the usual normal approximation are compared with the same quantities obtained with both the Edgeworth-corrected critical values and corrected test statistics. In addition, we consider the simulated sizes based on bootstrap critical values since it is well established that these may achieve the first Edgeworth correction and should then be comparable with the results obtained in Sections 1.1 and 1.2 (see e.g. Hall (1992) or DiCiccio and Efron (1996)).

Before discussing and comparing the simulation results, the procedure to obtain
the bootstrap critical values should be outlined. It must be stressed that we focus on the implementation of the bootstrap procedure, without addressing validity issues. The bootstrap critical values are obtained by the following algorithm:

Step 1 Given model (1.0.8), under $H_{0}, Y=\epsilon$.

Step 2 Under Assumption 1, a parametric bootstrap can be used, i.e. we construct B n-dimensional vectors whose components are independently generated from $N\left(0, \hat{\sigma}^{2}\right)$, where $\hat{\sigma}^{2}=\epsilon^{\prime} \epsilon / n=Y^{\prime} Y / n$. We denote ϵ_{j}^{*}, for $j=1, \ldots . B$, each of these vectors. Hence, we generate B pseudo-samples as $Y_{j}^{*}=\epsilon_{j}^{*}$ for $j=1, \ldots . B$. (When the distribution of the disturbances is known, the parametric bootstrap proved to be more efficient than the usual procedure based on resampling the residuals with replacement, see e.g Hall (1992)).
Step 3 We obtain B bootstrap OLS null statistics as

$$
Z_{j}=a \frac{Y_{j}^{*^{\prime}} W^{\prime} Y_{j}^{*}}{Y_{j}^{*^{\prime}} W^{\prime} W Y_{j}^{*}}, \quad j=1, \ldots . . B .
$$

Step 4 The α-percentile is computed as the value w_{α}^{*} which solves

$$
\frac{1}{B} \sum_{j=1}^{B} 1\left(Z_{j} \leq w_{\alpha}^{*}\right) \leq \alpha .
$$

Step 5 The size of the test of (0.0.2) when the bootstrap critical value is used is then

$$
\begin{equation*}
\operatorname{Pr}\left(a \hat{\lambda}>w_{\alpha}^{*} \mid H_{0}\right) . \tag{1.5.1}
\end{equation*}
$$

The extension of Steps $4-5$ in the latter procedure to the test of (0.0.2) against a two-sided alternative is straightforward, i.e. the α-percentile is computed as the value q_{α}^{*} which solves $\sum_{j=1}^{B} 1\left(\left|Z_{j}\right| \leq q_{\alpha}^{*}\right) / B=\alpha$ and the size based on such critical value is computed as

$$
\begin{equation*}
\operatorname{Pr}\left(|a \hat{\lambda}|>q_{\alpha}^{*} \mid H_{0}\right) . \tag{1.5.2}
\end{equation*}
$$

In both cases, we set $B=199$.
Regarding Step 1, a remark is needed. When we are interested in testing, the bootstrap procedure with H_{0} imposed to obtain the residuals (and then to generate the pseudo-data) gives results at least as good as the same algorithm without imposing H_{0} (see Paparoditis and Politis (2005)).

Tables 1.1 and 1.2 display the simulated values corresponding to (1.1.12), (1.1.13), (1.1.15) and (1.5.1) when m is increased monotonically and kept fixed, respectively. The former case is indeed consistent with divergent h, while the latter correspond to a bounded h. For such reason, henceforth we refer to "divergent" and "bounded" h.

Moreover, Tables 1.3 and 1.4 display the simulated values corresponding to $\operatorname{Pr}(|a \hat{\lambda}|>$ $\left.z_{(\alpha+1) / 2} \mid H_{0}\right), \operatorname{Pr}\left(|a \hat{\lambda}|>z_{(\alpha+1) / 2}+p_{1}\left(z_{(\alpha+1) / 2}\right) \mid H_{0}\right)$, where $p_{1}($.$) is defined according$ to (1.2.5), $\operatorname{Pr}\left(v(|a \hat{\lambda}|)>z_{(\alpha+1) / 2} \mid H_{0}\right)$, with $v($.$) given by (1.2.6), and (1.5.2) when$ h is either "divergent" or "bounded", respectively. All the values in Tables 1.1-1.4 have to be compared with the nominal 5%. For notational convenience, in the Tables we denote by "normal", "Edgeworth", "transformation" and "bootstrap" the simulated values corresponding to the size obtained with the standard approximation, Edgeworth-corrected critical values, Edgeworth-corrected null statistic and bootstrap critical values, respectively.

	$m=8$ $r=5$	$m=12$ $r=8$	$m=18$ $r=11$	$m=28$ $r=14$
normal	0	0	0.001	0.001
Edgeworth	0.125	0.117	0.110	0.099
transformation	0.056	0.055	0.052	0.048
bootstrap	0.039	0.061	0.053	0.054

Table 1.1: Empirical sizes of the tests of H_{0} in (0.0.2) against H_{1} in (1.1.1) when λ in model (1.0.8) is estimated by OLS and the sequence h is "divergent". The reported values have to be compared with the nominal 0.05 .

	$m=5$ $r=8$	$m=5$ $r=20$	$m=5$ $r=40$	$m=5$ $r=80$
normal	0.001	0.001	0.001	0.011
Edgeworth	0.096	0.070	0.057	0.052
transformation	0.055	0.057	0.055	0.051
bootstrap	0.043	0.040	0.057	0.055

Table 1.2: Empirical sizes of the tests of H_{0} in (0.0.2) against H_{1} in (1.1.1) when λ in model (1.0.8) is estimated by OLS and the sequence h is "bounded". The reported values have to be compared with the nominal 0.05 .

By observing the results in Tables 1.1 and 1.2, it is clear that the usual normal approximation does not work well in practice, since the simulated values for the size greatly underestimate the nominal 5% for all sample sizes. On the other hand, the Edgeworth-corrected results seem to perform reasonably well. However, the results obtained with the Edgeworth-corrected critical values exceed the target 0.05 for very small sample sizes, but the convergence to the nominal value appears to be fast. Indeed, such correction performs already quite well for moderate sample sizes such as $m=18, r=14$.

More specifically, when h is "divergent" and inference is based on Edgeworthcorrected critical values, the discrepancy between the simulated values and the nominal 5% appears to be 26% higher than such discrepancy obtained when inference is based on standard normal critical values, on average across sample sizes. However, we
also notice that the difference between actual and nominal values only decreases by about 0.6%, on average, when sample size increases in case of the standard test, while it decreases by 13% when Edgeworth-corrected critical values are used. On the other hand, the simulated sizes based on the Edgeworth-corrected statistics are very satisfactory also for very small sample sizes. Indeed, on average across sample sizes, when h is "divergent" and inference is based on the Edgeworth-corrected statistic and bootstrap critical values, the simulated values are 92% and 85%, respectively, closer to 0.05 than values obtained with the standard t-statistic.

A similar pattern can be observed in Tables 1.2. When h is bounded the cdf of $a \hat{\lambda}$ under (0.0 .2) converges faster to the normal. The figures displayed in Table 1.1 and 1.2 are consistent with this theoretical result. Indeed we notice from the first column of Table 1.2 that, on average, the difference between simulated values and the nominal 0.05 decreases by 6% as sample size increases when inference is based on the standard statistic (such value has to be compared with the aforementioned 0.6% decrease in case h is "divergent"). Also, we notice that in Table 1.2, the average improvements on average across sample sizes offered by Edgeworth-corrected critical values, Edgeworth-corrected statistic and bootstrap critical values over the standard OLS t-statistic are about $98 \%, 87 \%$ and 99%, respectively.

Figure 1.1: Simulated pdf of $a \hat{\lambda}$ under H_{0} in (0.0.2)

Figure 1.2: Simulated pdf of $g(a \hat{\lambda})$ under H_{0} (0.0.2)

In Figures 1.1 and 1.2 we plot the pdf obtained from the Monte Carlo simulation of the non-corrected OLS null statistic $a \hat{\lambda}$ and its corrected version $g(a \hat{\lambda})$. The pdf of the non-corrected statistics is very skewed to the left but most of this skewness is removed by the corrected version.

	$m=8$ $r=5$	$m=12$ $r=8$	$m=18$ $r=11$	$m=28$ $r=14$
normal	0.132	0.130	0.126	0.106
Edgeworth	0.062	0.060	0.056	0.055
transformation	0.130	0.128	0.105	0.098
bootstrap	0.048	0.044	0.045	0.047

Table 1.3: Empirical sizes of the tests of H_{0} in (0.0.2) against H_{1} in (??) when λ in model (1.0.8) is estimated by OLS and the sequence h is "divergent". The reported values have to be compared with the nominal 0.05.

	$m=5$ $r=8$	$m=5$ $r=20$	$m=5$ $r=40$	$m=5$ $r=80$
normal	0.096	0.078	0.068	0.061
Edgeworth	0.040	0.052	0.047	0.046
transformation	0.063	0.025	0.044	0.052
bootstrap	0.049	0.047	0.051	0.050

Table 1.4: Empirical sizes of the tests of H_{0} in (0.0.2) against H_{1} in (1.2.1) when λ in model (1.0.8) is estimated by OLS and the sequence h is "bounded". The reported values have to be compared with the nominal 0.05 .

From Tables 1.3 and 1.4 it is clear again that the normal approximation does not produce satisfactory results, since the nominal 5% is greatly overestimated for
all sample sizes, whether h is "divergent" or "bounded". In turn, results obtained with the Edgeworth-corrected critical values are very close to the nominal for all sample sizes. Indeed, when inference is based on Edgeworth-corrected critical values, the discrepancy between the simulated values and the nominal is reduced on average across sample sizes by 89% when h is "divergent" and by 79% when h is "bounded". On the other hand, simulated sizes based on the Edgeworth-corrected statistic seem still to greatly overestimate the target 5%, especially when h is "divergent" but appear to decrease to the nominal value quite fast. Specifically the improvement offered by the Edgeworth-corrected statistic over the standard one is 58% when h is "bounded", but only 13% when h is "divergent". Results based on bootstrap critical values are, as expected, comparable to the Edgeworth-corrected ones and are very close to 5% for all sample sizes. Again, the pattern of the results is similar for "divergent" and "bounded" h.

As mentioned in Section 1.2, a remark on the monotonicity of $v($.$) in (1.2.6) is$ needed. Indeed, some numerical work shows that $v($.) cannot be considered locally strictly increasing unless n is very large. Hence, the corresponding results in Tables 1.3 and 1.4 have been derived by a numerical implementation of the cubic transformation in (1.1.14). Such numerical implementation can indeed be the reason of the less satisfactory performance of the Edgeworth-corrected statistic compared to the corrected critical values.

	$\begin{aligned} & m=8 \\ & r=5 \end{aligned}$	$\begin{aligned} & m=12 \\ & r=8 \end{aligned}$	$\begin{gathered} m=18 \\ r=11 \end{gathered}$	$\begin{aligned} & m=28 \\ & r=14 \end{aligned}$
normal	$\begin{array}{ll} \bar{\lambda} & \\ 0.1 & 0 \\ 0.5 & 0 \\ 0.8 & 0.257 \end{array}$	$\begin{array}{ll} \bar{\lambda} & \\ 0.1 & 0 \\ 0.5 & 0.335 \\ 0.8 & 0.994 \end{array}$	$\begin{array}{ll} \bar{\lambda} & \\ 0.1 & 0.005 \\ 0.5 & 0.673 \\ 0.8 & 1 \end{array}$	$\begin{array}{ll} \bar{\lambda} & \\ 0.1 & 0.009 \\ 0.5 & 0.854 \\ 0.8 & 1 \end{array}$
Edgeworth	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.561 \\ 0.5 & 0.952 \\ 0.8 & 1 \end{array}$	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.610 \\ 0.5 & 0.986 \\ 0.8 & 1 \end{array}$	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.663 \\ 0.5 & 0.993 \\ 0.8 & 1 \end{array}$	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.693 \\ 0.5 & 1 \\ 0.8 & 1 \end{array}$
bootstrap	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.111 \\ 0.5 & 0.725 \\ 0.8 & 0.996 \end{array}$	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.119 \\ 0.5 & 0.873 \\ 0.8 & 1 \end{array}$	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.155 \\ 0.5 & 0.938 \\ 0.8 & 1 \end{array}$	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.164 \\ 0.5 & 0.966 \\ 0.8 & 1 \end{array}$

Table 1.5: Empirical powers of the tests of H_{0} in (0.0.2) against H_{1} in (1.5.3), with $\bar{\lambda}=0.1,0.5,0.8$, when λ in model (1.0.8) is estimated by OLS and the sequence h is "divergent". α is set to 0.95 .

	$\begin{aligned} & m=5 \\ & r=8 \end{aligned}$	$\begin{aligned} & m=5 \\ & r=20 \end{aligned}$	$\begin{aligned} & m=5 \\ & r=40 \end{aligned}$	$\begin{aligned} & m=5 \\ & r=80 \end{aligned}$
normal	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.010 \\ 0.5 & 0.551 \\ 0.8 & 0.999 \end{array}$	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.083 \\ 0.5 & 0.988 \\ 0.8 & 1 \end{array}$	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.187 \\ 0.5 & 1 \\ 0.8 & 1 \end{array}$	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.363 \\ 0.5 & 1 \\ 0.8 & 1 \end{array}$
Edgeworth	$\bar{\lambda}$ 0.1 0.640 0.5 0.991 0.8 1	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.739 \\ 0.5 & 1 \\ 0.8 & 1 \end{array}$	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.852 \\ 0.5 & 1 \\ 0.8 & 1 \end{array}$	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.693 \\ 0.5 & 1 \\ 0.8 & 1 \end{array}$
bootstrap	$\bar{\lambda}$ 0.1 0.139 0.5 0.888 0.8 1	$\bar{\lambda}$ 0.1 0.203 0.5 0.992 0.8 1	$\bar{\lambda}$ 0.1 0.296 0.5 1 0.8 1	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.451 \\ 0.5 & 1 \\ 0.8 & 1 \end{array}$

Table 1.6: Empirical powers of the tests of H_{0} in (0.0.2) against H_{1} in (1.5.3), with $\bar{\lambda}=0.1,0.5,0.8$, when λ in model (1.0.8) is estimated by OLS and the sequence h is "bounded". α is set to 0.95 .

In Tables 1.5 and 1.6 we report some Monte Carlo results to assess the finite sample behaviour of the power of both standard and corrected tests of (0.0.2) against a fixed alternative hypothesis, i.e.

$$
\begin{equation*}
H_{1}: \lambda=\bar{\lambda}>0 \tag{1.5.3}
\end{equation*}
$$

Obviously, the same argument can be carried on with very minor modifications in case $\bar{\lambda}<0$. In Tables 1.5 and 1.6 we report the simulated quantities corresponding to $\operatorname{Pr}\left(a \hat{\lambda}>z_{\alpha} \mid H_{1}\right), \operatorname{Pr}\left(a \hat{\lambda}>z_{\alpha}+p_{1}\left(z_{\alpha}\right) \mid H_{1}\right)$ and $\operatorname{Pr}\left(a \hat{\lambda}>w_{\alpha}^{*} \mid H_{1}\right)$. We choose three different values of $\bar{\lambda}$, specifically $\bar{\lambda}=0.1,0.5,0.8$. The values in Tables 1.5 and 1.6 are consistent with the empirical sizes reported in Tables 1.1 and 1.2. In particular, we observe that, when $\bar{\lambda}=0.1$ for instance, the simulated power when inference is based on Edgeworth-corrected critical values is (on average across sample sizes) more than 300% higher than the corresponding result based on bootstrap critical values. Such a huge difference can be explained by the sign of the probability limit of $\hat{\lambda}-\lambda$ when W is chosen according to (0.0.7).

Indeed, as previously mentioned, $\hat{\lambda}$ is inconsistent when $\lambda \neq 0$. Therefore, in case plim $\hat{\lambda}<\lambda$ for $\lambda>0$, it might be that under $H_{1}, \operatorname{plim} \hat{\lambda}=0$ (obviously, for $\lambda<0$ the argument would be modified as: in case $\operatorname{plim} \hat{\lambda}>\lambda$ as $n \rightarrow \infty$ it might be that under $H_{1}, \operatorname{plim} \hat{\lambda}=0$). In this case, the standard test of (0.0.2) against (1.5.3) would be inconsistent. Nevertheless, it is quite straightforward to evaluate the sign of the probability limit of $\hat{\lambda}$ for any particular choice of W. Specifically,

Theorem 1.4 Suppose that model (1.0.8) holds. Under Assumption 1 and for W given by (0.0.7), $\operatorname{plim}_{n \rightarrow \infty}(\hat{\lambda}-\lambda)$ is finite and has the same sign of λ.

The proof of Theorem 1.4 is in the Appendix. It is worth mentioning that the sign of the probability limit in Theorem 1.4 can be computed similarly for any other choices of W, although it might not always be possible to obtain close form expressions. Obviously, Assumption 1 could be relaxed. However, Assumption 1 has been assumed throughout this project and is retained here for algebraic simplicity.

By Theorem 1.4, as $n \rightarrow \infty, \operatorname{plim} \hat{\lambda}>\lambda$ when $\lambda>0($ or $\operatorname{plim} \hat{\lambda}<\lambda$ when $\lambda<0)$ and hence it is straightforward to show that, as $n \rightarrow \infty, \operatorname{Pr}\left(a \hat{\lambda}>z_{\alpha} \mid H_{1}\right) \rightarrow 1$, $\operatorname{Pr}\left(a \hat{\lambda}>z_{\alpha}+p_{1}\left(z_{\alpha}\right) \mid H_{1}\right) \rightarrow 1$ and $\operatorname{Pr}\left(g(a \hat{\lambda})>z_{\alpha} \mid H_{1}\right) \rightarrow 1$, i.e. our new tests based on OLS estimates for λ are consistent when W chosen according to (0.0.7). As anticipated, the result of Theorem 1.4 also explains why the simulated values for the power of a test of (0.0.2) against (1.5.3) based on Edgeworth-corrected critical are so much higher than the same quantities obtained by bootstrap.

	$m=8$ $r=5$	$m=12$ $r=8$	$m=18$ $r=11$	$m=28$ $r=14$
Monte Carlo power	0	0.020	0.046	0.070
$1^{\text {st }}$ order approximation	0.304	0.304	0.304	0.304
$2^{\text {nd }}$ order approximation	0.054	0.089	0.111	0.127

Table 1.7: Numerical values corresponding to (1.5.5) (second row) and (1.5.6) (third row), compared with the simulated values for the power of a test of (0.0.2) against (1.4.1) when λ_{n} in model (1.0.8) is estimated by OLS and the sequence h is "divergent".

	$m=5$ $r=8$	$m=5$ $r=20$	$m=5$ $r=40$	$m=5$ $r=80$
Monte Carlo power	0.054	0.171	0.213	0.250
$1^{s t}$ order approximation	0.304	0.304	0.304	0.304
$2^{\text {nd }}$ order approximation	0.138	0.199	0.229	0.252

Table 1.8: Numerical values corresponding to (1.5.5) (second row) and (1.5.6) (third row), compared with the simulated values for the power of a test of (0.0.2) against (1.4.1) when λ_{n} in model (1.0.8) is estimated by OLS and the sequence h is "bounded".

In the first row of Tables 1.7 and 1.8 we report the simulated values corresponding to

$$
\begin{equation*}
\operatorname{Pr}\left(a \hat{\lambda}_{n}>z_{\alpha} \mid H_{1}\right) \tag{1.5.4}
\end{equation*}
$$

where H_{1} is given in (1.4.1). These should be compared with the values obtained by the normal approximation (reported in second row)

$$
\begin{equation*}
1-2 \Phi\left(z_{\alpha}-2 a \lambda_{n}\right) \tag{1.5.5}
\end{equation*}
$$

and with the values obtained by the Edgeworth-corrected approximation (reported in
the third row), i.e.

$$
\begin{equation*}
1-\Phi\left(\tau-2 \lambda_{n} a\right)+\omega\left(\tau-a \lambda_{n}\right) \phi\left(\tau-2 \lambda_{n} a\right)+\frac{\kappa_{3}^{c}}{3!} H_{2}\left(\tau-2 \lambda_{n} a\right) \phi\left(\tau-2 \lambda_{n} a\right) \tag{1.5.6}
\end{equation*}
$$

where $\omega($.$) is defined in (1.4.4). In Tables 1.7$ and 1.8 the sample is increased consistently with a divergent and bounded h, respectively. We choose $c=0.8$ in the expression for λ_{n} given in (1.4.1), although a different choice for c does not change the pattern of the results of the simulations.

As expected, the actual power obtained in the Monte Carlo simulations tends to the value corresponding to $(1.5 .5)$ when the sample size is large. However, the values obtained by (1.5.6) are 23% and 19% closer, on average across sample sizes, to the simulated ones when h is "divergent" and "bounded", respectively. The difference between the values obtained by (1.5.5) and those obtained by (1.5.6) becomes increasingly smaller as the sample size increases and, as expected, the convergence is faster in case of "bounded" h. Specifically, when h is "bounded", such difference decreases by 32% on average as sample size increases, but only 11% in case h is "divergent".

	$m=8$ $r=5$	$m=12$ $r=8$	$m=18$ $r=11$	$m=28$ $r=14$
Monte Carlo power	0	0.020	0.046	0.070
Monte Carlo power/corrected	0.180	0.231	0.248	0.253

Table 1.9: Simulated values of the power of a test of (0.0.2) against (1.4.1) based on the standard and corrected statistics when λ_{n} in model (1.0.8) is estimated by OLS and the sequence h is "divergent". The values should be compared with the target 0.304 .

	$m=5$ $r=8$	$m=5$ $r=20$	$m=5$ $r=40$	$m=5$ $r=80$
Monte Carlo power	0.054	0.171	0.213	0.250
Monte Carlo power/corrected	0.223	0.275	0.278	0.290

Table 1.10: Simulated values of the power of a test of (0.0.2) against (1.4.1) based on the standard and corrected statistics when λ_{n} in model (1.0.8) is estimated by OLS and the sequence h is bounded. The values should be compared with the target 0.304.

Finally, in Tables 1.9 and 1.10 we compare the simulated values corresponding to (1.5.4), reported in the first row, with

$$
\begin{equation*}
\operatorname{Pr}\left(v\left(a \hat{\lambda}_{n}\right)>z_{\alpha} \mid H_{1}\right) \tag{1.5.7}
\end{equation*}
$$

where $v($.$) is defined in (1.4.7). Tables 1.9$ and 1.10 correspond to divergent and bounded h, respectively. The values in Tables 1.9 and 1.10 should be compared with (1.5.5), which is 0.304 for this particular setting. From both tables it is clear that, as expected, the results when inference is based on the corrected statistic are closer to the target value 0.304 for all sample sizes. In particular, the simulated
values for the power based on the Edgeworth-corrected statistic are, on average across sample sizes, 72% and 19% closer to the nominal value than those based on the standard statistic, when h is "divergent" and "bounded", respectively. As expected, when h is "bounded", the discrepancy between actual and nominal values decreases faster as sample size increases. Specifically, when inference is based on the standard statistic, such discrepancy decreases by 8% on average as sample size increases when h is "divergent" and by 40% when h is "bounded".

A Appendix

Proof of Theorem 1.1

The OLS estimate of λ in (1.0.8) is defined as

$$
\hat{\lambda}-\lambda=\frac{Y^{\prime} W^{\prime} \epsilon}{Y^{\prime} W^{\prime} W Y}
$$

and therefore, under H_{0},

$$
\hat{\lambda}=\frac{\epsilon^{\prime} W^{\prime} \epsilon}{\epsilon^{\prime} W^{\prime} W \epsilon}
$$

The cdf of $\hat{\lambda}$ under H_{0} can be written in terms of a quadratic form in ϵ, i.e.

$$
\operatorname{Pr}(\hat{\lambda} \leq x)=\operatorname{Pr}(f \leq 0)
$$

where

$$
\begin{align*}
& f=\frac{1}{2} \epsilon^{\prime}\left(C+C^{\prime}\right) \epsilon \\
& C=W^{\prime}-x W^{\prime} W \tag{1.A.1}
\end{align*}
$$

and x is any real number.
Under Assumption 1, the characteristic function of f can be derived as

$$
\begin{align*}
E\left(e^{i t\left(\frac{1}{2}\left(\epsilon^{\prime}\left(C+C^{\prime}\right) \epsilon\right)\right.}\right) & =\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} \int_{\Re^{n}} e^{i t\left(\frac{1}{2}\left(\xi^{\prime}\left(C+C^{\prime}\right) \xi\right)\right.} e^{-\frac{\xi^{\prime} \xi}{2 \sigma^{2}}} d \xi \\
& =\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} \int_{\Re^{n}} e^{-\frac{1}{2 \sigma^{2}} \xi^{\prime}\left(I-i t \sigma^{2}\left(C+C^{\prime}\right)\right) \xi} d \xi \\
& =\operatorname{det}\left(I-i t \sigma^{2}\left(C+C^{\prime}\right)\right)^{-1 / 2}=\prod_{j=1}^{n}\left(1-i t \sigma^{2} \eta_{j}\left(C+C^{\prime}\right)\right)^{-1 / 2} \tag{1.A.2}
\end{align*}
$$

where $\eta_{j}\left(C+C^{\prime}\right)$ are the eigenvalues of $\left(C+C^{\prime}\right)$. From (1.A.2) the cumulant generating function of f is

$$
\begin{align*}
\psi(t) & =-\frac{1}{2} \sum_{j=1}^{n} \ln \left(1-i t \sigma^{2} \eta_{j}\left(C+C^{\prime}\right)\right)=\frac{1}{2} \sum_{j=1}^{n} \sum_{s=1}^{\infty} \frac{\left(i t \sigma^{2} \eta_{j}\left(C+C^{\prime}\right)\right)^{s}}{s} \\
& =\frac{1}{2} \sum_{s=1}^{\infty} \frac{\left(i t \sigma^{2}\right)^{s}}{s} \sum_{j=1}^{n} \eta_{j}\left(C+C^{\prime}\right)^{s}=\frac{1}{2} \sum_{s=1}^{\infty} \frac{\left(i t \sigma^{2}\right)^{s}}{s} \operatorname{tr}\left(\left(C+C^{\prime}\right)^{s}\right) . \tag{1.A.3}
\end{align*}
$$

From (1.A.3) the s-th cumulant of f can be derived as

$$
\begin{gather*}
\kappa_{1}=\sigma^{2} \operatorname{tr}(C) \tag{1.A.4}\\
\kappa_{2}=\frac{\sigma^{4}}{2} \operatorname{tr}\left(\left(C+C^{\prime}\right)^{2}\right), \tag{1.A.5}\\
\kappa_{s}=\frac{\sigma^{2 s} s!}{2} \frac{\operatorname{tr}\left(\left(C+C^{\prime}\right)^{s}\right)}{s}, s>2 . \tag{1.A.6}
\end{gather*}
$$

Let

$$
f^{c}=\frac{f-\kappa_{1}}{\kappa_{2}^{1 / 2}}
$$

i.e. the centred and scaled version of f. The cumulant generating function of f^{c} is

$$
\psi^{c}(t)=-\frac{1}{2} t^{2}+\sum_{s=3}^{\infty} \frac{\kappa_{s}^{c}(i t)^{s}}{s!}
$$

where

$$
\begin{equation*}
\kappa_{s}^{c}=\frac{\kappa_{s}}{\kappa_{2}^{s / 2}} \tag{1.A.7}
\end{equation*}
$$

so the characteristic function of f^{c} is

$$
\begin{aligned}
E\left(e^{i t f^{c}}\right) & =e^{-\frac{1}{2} t^{2}} \exp \left\{\sum_{s=3}^{\infty} \frac{\kappa_{s}^{c}(i t)^{s}}{s!}\right\}= \\
& =e^{-\frac{1}{2} t^{2}}\left\{1+\sum_{s=3}^{\infty} \frac{\kappa_{s}^{c}(i t)^{s}}{s!}+\frac{1}{2!}\left(\sum_{s=3}^{\infty} \frac{\kappa_{s}^{c}(i t)^{s}}{s!}\right)^{2}+\frac{1}{3!}\left(\sum_{s=3}^{\infty} \frac{\kappa_{s}^{c}(i t)^{s}}{s!}\right)^{3}+\ldots . .\right\} \\
& =e^{-\frac{1}{2} t^{2}}\left\{1+\frac{\kappa_{3}^{c}(i t)^{3}}{3!}+\frac{\kappa_{4}^{c}(i t)^{4}}{4!}+\frac{\kappa_{5}^{c}(i t)^{5}}{5!}+\left\{\frac{\kappa_{6}^{c}}{6!}+\frac{\left(\kappa_{3}^{c}\right)^{2}}{(3!)^{2}}\right\}(i t)^{6}+\ldots . .\right\} .
\end{aligned}
$$

Thus, by the Fourier inversion formula,

$$
\operatorname{Pr}\left(f^{c} \leq z\right)=\int_{-\infty}^{z} \phi(z) d z+\frac{\kappa_{3}^{c}}{3!} \int_{-\infty}^{z} H_{3}(z) \phi(z) d z+\frac{\kappa_{4}^{c}}{4!} \int_{-\infty}^{z} H_{4}(z) \phi(z) d z+\ldots \ldots
$$

Collecting the results derived above,

$$
\begin{align*}
\operatorname{Pr}(\hat{\lambda} \leq x) & =\operatorname{Pr}(f \leq 0)=\operatorname{Pr}\left(f^{c} \kappa_{2}^{1 / 2}+\kappa_{1} \leq 0\right)=\operatorname{Pr}\left(f^{c} \leq-\kappa_{1}^{c}\right) \\
& =\Phi\left(-\kappa_{1}^{c}\right)-\frac{\kappa_{3}^{c}}{3!} \Phi^{(3)}\left(-\kappa_{1}^{c}\right)+\frac{\kappa_{4}^{c}}{4!} \Phi^{(4)}\left(-\kappa_{1}^{\prime}\right)+\ldots \tag{1.A.8}
\end{align*}
$$

From (1.A.4), (1.A.5) and (1.A.7),

$$
\kappa_{1}^{c}=\frac{\sigma^{2} \operatorname{tr}(C)}{\sigma^{2}\left(\frac{1}{2} \operatorname{tr}\left(\left(C+C^{\prime}\right)^{2}\right)\right)^{1 / 2}}
$$

where C is defined according to (1.A.1). The numerator of κ_{1}^{c} is

$$
\sigma^{2} \operatorname{tr}(W)-\sigma^{2} x \operatorname{tr}\left(W^{\prime} W\right)=-\sigma^{2} x \operatorname{tr}\left(W^{\prime} W\right)
$$

while the denominator of κ_{1}^{c} is σ^{2} times

$$
\left(\frac{1}{2} \operatorname{tr}\left(C+C^{\prime}\right)^{2}\right)^{1 / 2}=\left(\operatorname{tr}\left(W^{2}\right)+\operatorname{tr}\left(W W^{\prime}\right)-4 x \operatorname{tr}\left(W W^{\prime} W\right)+2 x^{2} \operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)\right)^{1 / 2}
$$

Thus

$$
\begin{aligned}
\kappa_{1}^{c} & =\frac{-x \operatorname{tr}\left(W^{\prime} W\right)}{\left(\operatorname{tr}\left(W^{2}\right)+\operatorname{tr}\left(W W^{\prime}\right)-4 x \operatorname{tr}\left(W W^{\prime} W\right)+2 x^{2} \operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)\right)^{1 / 2}} \\
& =\frac{-x \operatorname{tr}\left(W^{\prime} W\right)}{\left(\operatorname{tr}\left(W^{2}+W W^{\prime}\right)\right)^{1 / 2}\left(1-\frac{4 x \operatorname{tr}\left(W W^{\prime} W\right)+2 x^{2} \operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)}{\left(\operatorname{tr}\left(W^{2}+W W^{\prime}\right)\right)}\right)^{1 / 2}}
\end{aligned}
$$

We choose $x=a^{-1} \zeta$, where

$$
a=\frac{\operatorname{tr}\left(W^{\prime} W\right)}{\left(\operatorname{tr}\left(W^{\prime} W+W^{2}\right)\right)^{1 / 2}}
$$

Moreover,

$$
b_{1}=\frac{\operatorname{tr}\left(W W^{\prime} W\right)}{\operatorname{tr}\left(W^{\prime} W+W^{2}\right)}
$$

and

$$
b_{2}=\frac{\operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)}{\operatorname{tr}\left(W^{\prime} W+W^{2}\right)}
$$

Now,

$$
\begin{aligned}
\kappa_{1}^{c} & =\frac{-x \operatorname{tr}\left(W^{\prime} W\right)}{\left(\operatorname{tr}\left(W^{\prime} W+W^{2}\right)\right)^{1 / 2}\left(1-4 x b_{1}+2 x^{2} b_{2}\right)^{1 / 2}}=\frac{-\zeta}{\left(1-4 x b_{1}+2 x^{2} b_{2}\right)^{1 / 2}} \\
& =-\zeta\left(1+2 a^{-1} \zeta b_{1}-a^{-2} \zeta^{2} b_{2}+6 a^{-2} \zeta^{2} b_{1}^{2}+O\left(\left(\frac{h}{n}\right)^{3 / 2}\right)\right) \\
& =-\zeta-2 a^{-1} \zeta^{2} b_{1}+a^{-2} \zeta^{3} b_{2}-6 a^{-2} b_{1}^{2} \zeta^{3}+O\left(\left(\frac{h}{n}\right)^{3 / 2}\right)
\end{aligned}
$$

where the third equality follows by performing a standard Taylor expansion of the term (1$\left.4 x b_{1}+2 x^{2} b_{2}\right)^{-1 / 2}$, i.e.

$$
\left(1-4 x b_{1}+2 x^{2} b_{2}\right)^{-1 / 2}=1+2 x b_{1}-x^{2} b_{2}+6 x^{2} b_{1}^{2}+O\left(\left(\frac{h}{n}\right)^{3 / 2}\right)
$$

Under Assumption 3,

$$
2 a^{-1} \zeta^{2} b_{1} \sim\left(\frac{h}{n}\right)^{1 / 2}, \quad a^{-2} \zeta^{3} b_{2} \sim \frac{h}{n}, \quad 6 a^{-2} b_{1}^{2} \zeta^{3} \sim \frac{h}{n}
$$

Moreover, by Taylor expansion,

$$
\begin{align*}
\Phi\left(-\kappa_{1}^{c}\right) & =\Phi\left(\zeta+2 a^{-1} \zeta^{2} b_{1}-a^{-2} \zeta^{3} b_{2}+6 a^{-2} \zeta^{3} b_{1}^{2}+O\left(\left(\frac{h}{n}\right)^{3 / 2}\right)\right) \\
& =\Phi(\zeta)+\left(2 a^{-1} \zeta^{2} b_{1}-a^{-2} \zeta^{3} b_{2}+6 a^{-2} \zeta^{3} b_{1}^{2}\right) \phi(\zeta) \\
& +2 a^{-2} \zeta^{4} b_{1}^{2} \Phi^{(2)}(\zeta)+O\left(\left(\frac{h}{n}\right)^{3 / 2}\right) \tag{1.A.9}
\end{align*}
$$

and

$$
\begin{equation*}
\Phi^{(3)}\left(-\kappa_{1}^{c}\right)=\Phi^{(3)}(\zeta)+2 a^{-1} \zeta^{2} b_{1} \Phi^{(4)}(\zeta)+O\left(\frac{h}{n}\right) \tag{1.A.10}
\end{equation*}
$$

Collecting (1.A.8), (1.A.9) and (1.A.10), the third order Edgeworth expansion of the cdf
of $a \hat{\lambda}$ under Assumptions 1-3, becomes

$$
\begin{aligned}
\operatorname{Pr}\left(a \hat{\lambda} \leq \zeta \mid H_{0}\right) & =\Phi(\zeta)+2 a^{-1} b_{1} \zeta^{2} \phi(\zeta)-\frac{\kappa_{3}^{c}}{3!} \Phi^{(3)}(\zeta) \\
& -\left(a^{-2} b_{2}-6 a^{-2} b_{1}^{2}\right) \zeta^{3} \phi(\zeta)+2 a^{-2} b_{1}^{2} \zeta^{4} \Phi^{(2)}(\zeta) \\
& -\frac{\kappa_{3}^{c}}{3} a^{-1} b_{1} \zeta^{2} \Phi^{(4)}(\zeta)+\frac{\kappa_{4}^{c}}{4!} \Phi^{(4)}(\zeta)+O\left(\left(\frac{h}{n}\right)^{3 / 2}\right)
\end{aligned}
$$

where, from (1.A.5), (1.A.6) and (1.A.7),

$$
\kappa_{3}^{c}=\frac{\sigma^{6} \operatorname{tr}\left(\left(C+C^{\prime}\right)^{3}\right)}{\sigma^{6}\left(\frac{1}{2} \operatorname{tr}\left(\left(C+C^{\prime}\right)^{2}\right)\right)^{3 / 2}} \sim \frac{2 \operatorname{tr}\left(W^{3}\right)+6 \operatorname{tr}\left(W^{\prime} W^{2}\right)}{\left(\operatorname{tr}\left(W^{\prime} W+W^{2}\right)\right)^{3 / 2}}
$$

and

$$
\kappa_{4}^{c}=\frac{3 \sigma^{8} \operatorname{tr}\left(\left(C+C^{\prime}\right)^{4}\right)}{\sigma^{8}\left(\frac{1}{2} \operatorname{tr}\left(\left(C+C^{\prime}\right)^{2}\right)\right)^{2}} \sim \frac{6 \operatorname{tr}\left(W^{4}\right)+24 \operatorname{tr}\left(W^{\prime} W^{3}\right)+12 \operatorname{tr}\left(\left(W W^{\prime}\right)^{2}\right)+6 \operatorname{tr}\left(W^{2} W^{\prime 2}\right)}{\left(\operatorname{tr}\left(W^{\prime} W+W^{2}\right)\right)^{2}} .
$$

Setting $b=b_{1} a^{-1}$ and substituting the expression for a and b_{2} into $a^{-2} b_{2}$, the expansion stated in Theorem 1.1 follows.

Proof of Theorem 1.2

The OLS estimate of λ in (1.3.1) is defined as

$$
\hat{\lambda}-\lambda=\frac{Y^{\prime} W^{\prime} P \epsilon}{Y^{\prime} W^{\prime} P W Y}
$$

where $P=I-l\left(l^{\prime} l\right)^{-1} l^{\prime}$. Since W is row normalized, $W l=l$. Hence, under H_{0},

$$
\hat{\lambda}=\frac{\epsilon^{\prime} W^{\prime} P \epsilon}{\epsilon^{\prime} W^{\prime} P W \epsilon} .
$$

Similarly to the proof of Theorem 1.1, the cdf of $\hat{\lambda}$ under H_{0} can be written in terms of a quadratic form in ϵ, i.e.

$$
\operatorname{Pr}(\hat{\lambda} \leq x)=\operatorname{Pr}(f \leq 0)
$$

where

$$
f=\frac{1}{2} \epsilon^{\prime}\left(C+C^{\prime}\right) \epsilon
$$

and

$$
\begin{equation*}
C=W^{\prime} P(I-x W) \tag{1.A.11}
\end{equation*}
$$

The derivation of the cumulants is similar to one in the proof of Theorem 1.1 with C defined according to (1.A.11) and is therefore omitted. Given (1.A.11),

$$
\kappa_{1}=\sigma^{2} \operatorname{tr}(C)=-\sigma^{2}\left(1+x \operatorname{tr}\left(W^{\prime} W\right)-\frac{x}{n}\left(l^{\prime} W W^{\prime} l\right)\right)
$$

since

$$
\begin{aligned}
\operatorname{tr}(C) & =\operatorname{tr}\left(W^{\prime} P(I-x W)\right)=\operatorname{tr}(W)-\operatorname{tr}\left(W^{\prime} l\left(l^{\prime} l\right)^{-1} l^{\prime}\right)-x \operatorname{tr}\left(W^{\prime} W\right)+x \operatorname{tr}\left(W^{\prime} l\left(l^{\prime} l\right)^{-1} l^{\prime} W\right) \\
& =-\frac{1}{n} l^{\prime} W^{\prime} l-x \operatorname{tr}\left(W^{\prime} W\right)+\frac{x}{n}\left(l^{\prime} W W^{\prime} l\right) \\
& =-1-x \operatorname{tr}\left(W^{\prime} W\right)+\frac{x}{n}\left(l^{\prime} W W^{\prime} l\right)
\end{aligned}
$$

Similarly, by straightforward algebra,

$$
\begin{aligned}
\frac{1}{2} \operatorname{tr}\left(\left(C+C^{\prime}\right)^{2}\right) & =\frac{1}{2} \operatorname{tr}\left(\left(W^{\prime} P+P W-2 x W^{\prime} P W\right)^{2}\right) \\
& =\operatorname{tr}\left(W^{2}\right)+\operatorname{tr}\left(W^{\prime} W\right)+1-\frac{2}{n} l^{\prime} W l-\frac{1}{n}\left(l^{\prime} W W^{\prime} l\right)-4 x \operatorname{tr}\left(W^{\prime} P W^{\prime} P W\right)+2 x^{2} \operatorname{tr}\left(\left(W^{\prime} P W\right)^{2}\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
\kappa_{2} & =\frac{\sigma^{4}}{2} \operatorname{tr}\left(\left(C+C^{\prime}\right)^{2}\right) \\
& =\sigma^{4}\left(\operatorname{tr}\left(W^{2}\right)+\operatorname{tr}\left(W^{\prime} W\right)+1-\frac{2}{n} l^{\prime} W l-\frac{1}{n}\left(l^{\prime} W W^{\prime} l\right)-4 x \operatorname{tr}\left(W^{\prime} P W^{\prime} P W\right)+2 x^{2} \operatorname{tr}\left(\left(W^{\prime} P W\right)^{2}\right)\right) .
\end{aligned}
$$

Proceeding as in the proof of Theorem 1.1, we obtain the first centred cumulant as
$\kappa_{1}^{c}=\frac{-\left(x \operatorname{tr}\left(W^{\prime} W\right)+1-\frac{x}{n} l^{\prime} W W^{\prime} l\right)}{\gamma^{1 / 2}}\left(1+\frac{1-\frac{2}{n} l^{\prime} W l-\frac{1}{n}\left(l^{\prime} W W^{\prime} l\right)-4 x \operatorname{tr}\left(W^{\prime} P W^{\prime} P W\right)+2 x^{2} \operatorname{tr}\left(\left(W^{\prime} P W\right)^{2}\right)}{\gamma}\right)^{-1 / 2}$,
where $\gamma=\operatorname{tr}\left(W^{2}+W^{\prime} W\right)$. From Lemma 2, $l^{\prime} W l$ and $\left(l^{\prime} W W^{\prime} l\right)$ are $O(n), \operatorname{tr}\left(W^{\prime} P W^{\prime} P W\right)$ and $\operatorname{tr}\left(\left(W^{\prime} P W\right)^{2}\right)$ are $O(n / h)$ by Lemma 1 (since P is uniformly bounded in row and column sums in absolute value and the product of matrices which are uniformly bounded in row and column sums retains the same property) and $\gamma \sim n / h$ under Assumption 3.

By setting $x=a^{-1} \zeta$ where a has been defined in (1.1.4) and by standard Taylor expansion,

$$
\begin{aligned}
\kappa_{1}^{c} & =-\left(\zeta+\frac{1}{\gamma^{1 / 2}}+O\left(\frac{h}{n}\right)\right)\left(1+\frac{2 a^{-1} \operatorname{tr}\left(W^{\prime} P W^{\prime} P W\right)}{\gamma} \zeta+O\left(\frac{h}{n}\right)\right) \\
& =-\zeta-\frac{1}{\gamma^{1 / 2}}-\frac{2 a^{-1} \operatorname{tr}\left(W^{\prime} P W^{\prime} P W\right)}{\gamma} \zeta^{2}+O\left(\frac{h}{n}\right) \\
& =-\zeta-\frac{1}{\gamma^{1 / 2}}-\frac{2 \operatorname{tr}\left(W^{\prime} P W^{\prime} P W\right)}{\gamma^{1 / 2} \operatorname{tr}\left(W^{2}\right)} \zeta^{2}+O\left(\frac{h}{n}\right) \\
& =-\zeta-\frac{1}{\gamma^{1 / 2}}-\frac{2 \operatorname{tr}\left(W^{\prime} W W^{\prime}\right)}{\gamma^{1 / 2} \operatorname{tr}\left(W^{2}\right)} \zeta^{2}+O\left(\frac{h}{n}\right),
\end{aligned}
$$

where the last equality follows since $\operatorname{tr}\left(W^{\prime} P W^{\prime} P W\right)=\operatorname{tr}\left(W^{\prime} W W^{\prime}\right)+O(1)$.
Proceeding as in the proof of Theorem 1,

$$
\operatorname{Pr}\left(a \hat{\lambda} \leq \zeta \mid H_{0}\right)=\Phi(\zeta)+\left(\frac{1}{\gamma^{1 / 2}}+\frac{2 \operatorname{tr}\left(W^{\prime} W W^{\prime}\right)}{\gamma^{1 / 2} \operatorname{tr}\left(W^{2}\right)} \zeta^{2}\right) \phi(\zeta)-\frac{\kappa_{3}^{c}}{3!} \Phi^{(3)}(\zeta)+O\left(\frac{h}{n}\right),
$$

where

$$
\kappa_{3}^{c} \sim \frac{\sigma^{6} \operatorname{tr}\left(C+C^{\prime}\right)^{3}}{\sigma^{6}\left(\frac{1}{2} \operatorname{tr}\left(C+C^{\prime}\right)^{2}\right)^{3 / 2}} \sim \frac{2 \operatorname{tr}\left(\left(W^{\prime} P\right)^{3}\right)+6 \operatorname{tr}\left(\left(W^{\prime} P\right)^{2} P W\right)}{\left(\operatorname{tr}\left(W^{2}+W^{\prime} W\right)\right)^{3 / 2}} \sim \sqrt{\frac{h}{n}}
$$

The last displayed rate holds since the leading terms of $\operatorname{tr}\left(\left(W^{\prime} P\right)^{3}\right)$ and $6 \operatorname{tr}\left(\left(W^{\prime} P\right)^{2} P W\right)$ are $\operatorname{tr}\left(W^{3}\right)$ and $\operatorname{tr}\left(W^{\prime} W W^{\prime}\right)$, respectively, which have exactly order n / h under Assumption 3.

The expansion in Theorem 1.2 follows by observing that $\operatorname{tr}\left(W^{\prime} W W^{\prime}\right) / \gamma^{1 / 2} \operatorname{tr}\left(W^{2}\right)=b$, where b is defined according to (1.1.4).

Proof of Theorem 1.3

The general structure of the proof is similar to ones of Theorems 1.1 and 1.2 and hence several details will be omitted.

Since $Y=S^{-1}\left(\lambda_{n}\right) \epsilon$,

$$
\hat{\lambda}_{n}-\lambda_{n}=\frac{Y^{\prime} W \epsilon}{Y^{\prime} W^{2} Y}=\frac{\epsilon^{\prime} S^{-1}\left(\lambda_{n}\right) W \epsilon}{\epsilon^{\prime} S^{-1}\left(\lambda_{n}\right) W^{2} S^{-1}\left(\lambda_{n}\right) \epsilon}
$$

It is straightforward to see that, given (1.4.2), if W is symmetric so are $S^{-1}\left(\lambda_{n}\right)$ and $S^{-1}\left(\lambda_{n}\right) W$. By standard manipulation, the cdf of $\hat{\lambda}_{n}-\lambda_{n}$ under H_{1} can be written in terms of a quadratic form in ϵ, i.e.

$$
\operatorname{Pr}\left(\hat{\lambda}_{n}-\lambda_{n} \leq x\right)=\operatorname{Pr}(f \leq 0)
$$

where $f=\epsilon^{\prime} C \epsilon$,

$$
C=S^{-1}\left(\lambda_{n}\right) W-x S^{-1}\left(\lambda_{n}\right) W^{2} S^{-1}\left(\lambda_{n}\right)
$$

and x is any real number.
Similarly to the proofs of Theorems 1.1 and 1.2 , the first cumulant of f is

$$
\begin{align*}
\kappa_{1} & =\sigma^{2} \operatorname{tr}(C)=\sigma^{2}\left(\operatorname{tr}\left(S^{-1}\left(\lambda_{n}\right) W\right)-x \operatorname{tr}\left(S^{-1}\left(\lambda_{n}\right) W^{2} S^{-1}\left(\lambda_{n}\right)\right)\right) \\
& =\sigma^{2}\left(\operatorname{tr}\left(\sum_{t=0}^{\infty}\left(\lambda_{n} W\right)^{t} W\right)-x \operatorname{tr}\left(\sum_{t=0}^{\infty}\left(\lambda_{n} W\right)^{t} W^{2} \sum_{s=0}^{\infty}\left(\lambda_{n} W\right)^{s}\right)\right) \\
& =\sigma^{2}\left(\sum_{t=1}^{\infty} \lambda_{n}^{t} \operatorname{tr}\left(W^{t+1}\right)-x \operatorname{tr}\left(W^{2}\right)-2 x \lambda_{n} \operatorname{tr}\left(W^{3}\right)-x \operatorname{tr}\left(\sum_{t=1}^{\infty}\left(\lambda_{n} W\right)^{t} W^{2} \sum_{s=1}^{\infty}\left(\lambda_{n} W\right)^{s}\right)\right) \\
& =\sigma^{2}\left(\lambda_{n} \operatorname{tr}\left(W^{2}\right)+\lambda_{n}^{2} \operatorname{tr}\left(W^{3}\right)+\sum_{t=3}^{\infty} \lambda_{n}^{t} \operatorname{tr}\left(W^{t+1}\right)-x \operatorname{tr}\left(W^{2}\right)-2 x \lambda_{n} \operatorname{tr}\left(W^{3}\right)\right. \\
& \left.-x \sum_{t, s=1}^{\infty} \lambda_{n}^{t} \lambda_{n}^{s} \operatorname{tr}\left(W^{t+1} W^{s+1}\right)\right) \tag{1.A.12}
\end{align*}
$$

where the third equality follows by (1.4.2). By Lemma 1 ,

$$
\operatorname{tr}\left(W^{t+1}\right)=O\left(\frac{n}{h}\right) \quad \text { and } \quad \operatorname{tr}\left(W^{t+1} W^{s+1}\right)=O\left(\frac{n}{h}\right)
$$

for every t and s. Hence, under H_{1},

$$
\sum_{t, s=1}^{\infty} \lambda_{n}^{t} \lambda_{n}^{s} \operatorname{tr}\left(W^{t+1} W^{s+1}\right)=O\left(\frac{n}{h}\right)\left(\sum_{t=1}^{\infty} \lambda_{n}^{t}\right)^{2}=O\left(\frac{n}{h}\right)\left(\frac{\lambda_{n}}{1-\lambda_{n}}\right)^{2}=O(1)
$$

and

$$
\sum_{t=3}^{\infty} \lambda_{n}^{t} \operatorname{tr}\left(W^{t+1}\right)=O\left(\frac{n}{h}\right) \sum_{t=3}^{\infty} \lambda_{n}^{t}=O\left(\frac{n}{h}\right)\left(\frac{\lambda_{n}^{3}}{1-\lambda_{n}}\right)=O\left(\sqrt{\frac{h}{n}}\right)
$$

By a similar argument,

$$
\begin{align*}
& \kappa_{2}=2 \sigma^{4} \operatorname{tr}\left(C^{2}\right)=2 \sigma^{2}\left(\operatorname{tr}\left(\left(S^{-1}\left(\lambda_{n}\right) W\right)^{2}\right)+x^{2} \operatorname{tr}\left(\left(S^{-1}\left(\lambda_{n}\right) W^{2} S^{-1}\left(\lambda_{n}\right)\right)^{2}\right)\right. \\
& \left.-2 x \operatorname{tr}\left(S^{-1}\left(\lambda_{n}\right) W S^{-1}\left(\lambda_{n}\right) W^{2} S^{-1}\left(\lambda_{n}\right)\right)\right) \\
& \quad=2 \sigma^{4}\left(\left(\operatorname{tr}\left(W^{2}\right)+2 \lambda_{n} \operatorname{tr}\left(W^{3}\right)+\sum_{t, s=1}^{\infty} \lambda_{n}^{t} \lambda_{n}^{s} \operatorname{tr}\left(W^{t+1} W^{s+1}\right)\right)+x^{2} \operatorname{tr}\left(\left(S^{-1}\left(\lambda_{n}\right) W^{2} S^{-1}\left(\lambda_{n}\right)\right)^{2}\right)\right. \\
& \left.\quad-2 x \operatorname{tr}\left(W^{3}\right)-6 x \lambda_{n} \operatorname{tr}\left(W^{4}\right)-6 x \lambda_{n}^{2} \operatorname{tr}\left(W^{5}\right)-2 x \sum_{t, s, v=1}^{\infty} \lambda_{n}^{t} \lambda_{n}^{s} \lambda_{n}^{v} \operatorname{tr}\left(W^{t+1} W^{s+1} W^{v+1}\right)\right) \tag{1.A.13}
\end{align*}
$$

By choosing $x=a^{-1} \zeta$, where $a=\operatorname{tr}\left(W^{2}\right) / \sqrt{2 \operatorname{tr}\left(W^{2}\right)}=\sqrt{2 \operatorname{tr}\left(W^{2}\right)} / 2$ (which is (1.1.4) when W is symmetric), (1.A.12) and (1.A.13) become

$$
\kappa_{1}=\sigma^{2}\left(-a^{-1} \zeta \operatorname{tr}\left(W^{2}\right)+\lambda_{n} \operatorname{tr}\left(W^{2}\right)+\lambda_{n}^{2} \operatorname{tr}\left(W^{3}\right)-2 a^{-1} \zeta \lambda_{n} \operatorname{tr}\left(W^{3}\right)\right)+O\left(\sqrt{\frac{h}{n}}\right)
$$

and

$$
\begin{aligned}
\kappa_{2} & =2 \sigma^{4}\left(\operatorname{tr}\left(W^{2}\right)+2 \lambda_{n} \operatorname{tr}\left(W^{3}\right)-2 a^{-1} \zeta \operatorname{tr}\left(W^{3}\right)+O(1)\right) \\
& =2 \sigma^{4} \operatorname{tr}\left(W^{2}\right)\left(1+2 \lambda_{n} \frac{\operatorname{tr}\left(W^{3}\right)}{\operatorname{tr}\left(W^{2}\right)}-2 a^{-1} \zeta \frac{\operatorname{tr}\left(W^{3}\right)}{\operatorname{tr}\left(W^{2}\right)}+O\left(\frac{h}{n}\right)\right) \\
& =2 \sigma^{4} \operatorname{tr}\left(W^{2}\right)\left(1+2 \lambda_{n} \frac{\operatorname{tr}\left(W^{3}\right)}{\operatorname{tr}\left(W^{2}\right)}-2 \sqrt{2} \frac{\operatorname{tr}\left(W^{3}\right)}{\left(\operatorname{tr}\left(W^{2}\right)\right)^{3 / 2}} \zeta+O\left(\frac{h}{n}\right)\right)
\end{aligned}
$$

Hence, by standard algebra,

$$
\begin{align*}
\kappa_{1}^{c} & =\frac{-a^{-1} \operatorname{tr}\left(W^{2}\right) \zeta+\lambda_{n} \operatorname{tr}\left(W^{2}\right)+\lambda_{n}^{2} \operatorname{tr}\left(W^{3}\right)-2 a^{-1} \zeta \lambda_{n} \operatorname{tr}\left(W^{3}\right)+O\left(\sqrt{\frac{h}{n}}\right)}{\sqrt{2 \operatorname{tr}\left(W^{2}\right)}\left(1+2 \lambda_{n} \frac{\operatorname{tr}\left(W^{3}\right)}{\operatorname{tr}\left(W^{2}\right)}-2 \sqrt{2} \frac{\operatorname{tr}\left(W^{3}\right)}{\left(\operatorname{tr}\left(W^{2}\right)\right)^{3 / 2}} \zeta+O\left(\frac{h}{n}\right)\right)^{1 / 2}} \\
& =\left(-\zeta+a \lambda_{n}+\operatorname{tr}\left(W^{3}\right)\left(\frac{\lambda_{n}^{2} a^{-1}}{2}-\lambda_{n} a^{-2} \zeta\right)+O\left(\frac{h}{n}\right)\right)\left(1-\frac{\operatorname{tr}\left(W^{3}\right)}{4}\left(2 \lambda_{n} a^{-2}-a^{-3} \zeta\right)+O\left(\frac{h}{n}\right)\right) \\
& =-\zeta+a \lambda_{n}+\frac{\operatorname{tr}\left(W^{3}\right)}{2}\left(\lambda_{n}^{2} a^{-1}-2 \lambda_{n} a^{-2} \zeta\right)+\frac{\operatorname{tr}\left(W^{3}\right)}{4}\left(2 \lambda_{n} a^{-2}-a^{-3} \zeta\right)\left(\zeta-a \lambda_{n}\right)+O\left(\frac{h}{n}\right) \tag{1.A.14}
\end{align*}
$$

For notational simplicity, let

$$
\omega(\zeta)=\frac{\operatorname{tr}\left(W^{3}\right)}{2}\left(\lambda_{n}^{2} a^{-1}-2 \lambda_{n} a^{-2} \zeta\right)+\frac{\operatorname{tr}\left(W^{3}\right)}{4}\left(2 \lambda_{n} a^{-2}-a^{-3} \zeta\right)\left(\zeta-a \lambda_{n}\right)
$$

Given (1.A.14) and proceeding as described in the proofs of Theorems 1.1 and 1.2, the expansion for the cdf of $\hat{\lambda}_{n}-\lambda_{n}$ under H_{1} becomes

$$
\begin{aligned}
\operatorname{Pr}\left(a\left(\hat{\lambda}_{n}-\lambda_{n}\right) \leq \zeta\right) & =\Phi\left(-\kappa_{1}^{c}\right)-\frac{\kappa_{3}^{c}}{3!} \Phi^{(3)}\left(-\kappa_{1}^{c}\right)+\ldots . \\
& =\Phi\left(\zeta-\lambda_{n} a\right)-\omega(\zeta) \phi\left(\zeta-\lambda_{n} a\right)-\frac{\kappa_{3}^{c}}{3!} \Phi^{(3)}\left(\zeta-\lambda_{n} a\right)+O\left(\frac{h}{n}\right) \\
& =\Phi\left(\zeta-\lambda_{n} a\right)-\omega(\zeta) \phi\left(\zeta-\lambda_{n} a\right)-\frac{\kappa_{3}^{c}}{3!} H_{2}\left(\zeta-\lambda_{n} a\right) \phi\left(\zeta-\lambda_{n} a\right)+O\left(\frac{h}{n}\right)
\end{aligned}
$$

where

$$
\kappa_{3}^{c}=\frac{8 \sigma^{6} \operatorname{tr}\left(C^{3}\right)}{2^{3 / 2} \sigma^{6} \operatorname{tr}\left(C^{2}\right)} \sim \frac{2^{3 / 2} \operatorname{tr}\left(W^{3}\right)}{\left(\operatorname{tr}\left(W^{2}\right)\right)^{3 / 2}} \sim\left(\frac{h}{n}\right)^{3 / 2} .
$$

Proof of Theorem 1.4

The OLS estimate of λ is

$$
\begin{equation*}
\hat{\lambda}-\lambda=\frac{\frac{h}{n} Y^{\prime} W \epsilon}{\frac{h}{n} Y^{\prime} W^{2} Y}=\frac{\frac{h}{n} \epsilon^{\prime} S^{-1}(\lambda) W \epsilon}{\frac{h}{n} \epsilon^{\prime} S^{-1}(\lambda) W^{2} S^{-1}(\lambda) \epsilon} \tag{1.A.15}
\end{equation*}
$$

since W in (0.0.7) is symmetric and $Y=S^{-1}(\lambda) \epsilon$.
As regarding the numerator of the RHS of (1.A.15), by an argument similar to that in the proof of Lemma 1.1, we have

$$
\begin{aligned}
\left(\frac{h}{n}\right)^{2} E\left(\epsilon^{\prime} S^{-1}(\lambda) W \epsilon-\sigma^{2} \operatorname{tr}\left(S^{-1}(\lambda) W\right)\right)^{2} & =\left(\frac{h}{n}\right)^{2} E\left(\epsilon^{\prime} S^{-1}(\lambda) W \epsilon\right)^{2}-\sigma^{4}\left(\operatorname{tr}\left(S^{-1}(\lambda) W\right)\right)^{2} \\
& =2 \sigma^{4}\left(\frac{h}{n}\right)^{2} \operatorname{tr}\left(\left(S^{-1}(\lambda) W\right)^{2}\right) \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$, since $\operatorname{tr}\left(\left(S^{-1}(\lambda) W\right)^{2}\right)=O(n / h)$ by Lemma 1. Hence

$$
\frac{h}{n}\left(\epsilon^{\prime} S^{-1}(\lambda) W \epsilon-\sigma^{2} \operatorname{tr}\left(S^{-1}(\lambda) W\right)\right) \rightarrow 0
$$

in second mean, implying

$$
\begin{equation*}
\operatorname{plim}_{n \rightarrow \infty} \frac{h}{n} \epsilon^{\prime} S^{-1}(\lambda) W \epsilon=\lim _{n \rightarrow \infty} \sigma^{2} \frac{h}{n} \operatorname{tr}\left(S^{-1}(\lambda) W\right) . \tag{1.A.16}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\operatorname{plim}_{n \rightarrow \infty} \frac{h}{n} \epsilon^{\prime} S^{-1}(\lambda) W^{2} S^{-1}(\lambda) \epsilon=\lim _{n \rightarrow \infty} \sigma^{2} \frac{h}{n} \operatorname{tr}\left(\left(S^{-1}(\lambda) W\right)^{2}\right) . \tag{1.A.17}
\end{equation*}
$$

From (1.A.16) and (1.A.17),

$$
\begin{equation*}
\hat{\lambda}-\lambda \xrightarrow{p} \lim _{n \rightarrow \infty} \frac{\frac{h}{n} \operatorname{tr}\left(S^{-1}(\lambda) W\right)}{\frac{h}{n} \operatorname{tr}\left(\left(S^{-1}(\lambda) W\right)^{2}\right)} . \tag{1.A.18}
\end{equation*}
$$

First, we show that the RHS of (1.A.18) is finite. Lemma 1 implies

$$
\frac{h}{n} \operatorname{tr}\left(S^{-1}(\lambda) W\right)=O(1) .
$$

The denominator in the RHS of (1.A.18) is non-negative and, by (1.4.2),

$$
\frac{h}{n} \operatorname{tr}\left(\left(S^{-1}(\lambda) W\right)^{2}\right) \sim \frac{h}{n} \operatorname{tr}\left(W^{2}\right),
$$

which is non-zero for W given in (0.0.7), as shown in Section 1.5. Hence, the RHS of (1.A.18) is finite and its sign depends on its numerator.

From (0.0.7) and the series representation in (1.4.2),

$$
\operatorname{tr}\left(S^{-1}(\lambda) W\right)=\operatorname{tr}\left(\sum_{i=0}^{\infty} \lambda^{i} \operatorname{tr}\left(W^{i+1}\right)\right)=r \sum_{i=0}^{\infty} \lambda^{i} \operatorname{tr}\left(B_{m}^{i+1}\right)
$$

Since B_{m} has one eigenvalue equal to 1 and the other $(m-1)$ equal to $-1 /(m-1)$, we have

$$
\operatorname{tr}\left(B_{m}^{i+1}\right)=1+(m-1)\left(\frac{-1}{m-1}\right)^{i+1}
$$

and hence, since $|\lambda|<1$,

$$
\begin{align*}
\operatorname{tr}\left(S^{-1}(\lambda) W\right) & =r \sum_{i=0}^{\infty} \lambda^{i}\left(1-\left(\frac{-1}{m-1}\right)^{i}\right) \\
& =\frac{r}{1-\lambda}-\frac{r}{1+\frac{\lambda}{m-1}}=\frac{\lambda}{1-\lambda} \frac{r m}{m-1+\lambda} \tag{1.A.19}
\end{align*}
$$

By substituting $h=m-1$ and $n=m r$ into (1.A.19),

$$
\frac{h}{n} \operatorname{tr}\left(S^{-1}(\lambda) W\right)=\frac{m-1}{m r} \frac{\lambda}{1-\lambda} \frac{r m}{m-1+\lambda}=\frac{\lambda}{1-\lambda} \frac{m-1}{m-1+\lambda}
$$

which has the same sign of λ, whether m is divergent or bounded, provided that $m>1$.
Lemma 1.1 Suppose model (1.0.8) and Assumptions 1-3 hold. For $\lambda_{n}=c(h / n)^{\gamma}$ with $0<$ $\gamma \leq 1 / 2, \hat{\lambda}_{n}=O_{p}\left(\lambda_{n}\right)$, while with $\gamma>1 / 2, \hat{\lambda}_{n}=O_{p}\left((h / n)^{1 / 2}\right)$.

Proof We should stress that Assumption 1 could be relaxed. However, Gaussianity is assumed throughout this work and hence is retained. Here, Assumption 1 simplifies the derivation of the expectations of quadratic forms in ϵ in the following argument.

By the OLS formula,

$$
\hat{\lambda}_{n}-\lambda_{n}=\frac{\frac{h}{n} Y^{\prime} W^{\prime} \epsilon}{\frac{h}{n} Y^{\prime} W^{\prime} W \epsilon}=\frac{\frac{h}{n} \epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} \epsilon}{\frac{h}{n} \epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} W S^{-1}\left(\lambda_{n}\right) \epsilon} .
$$

Therefore, when $\gamma \leq 1 / 2$, we need to show that

$$
\begin{equation*}
\frac{\frac{h}{n} \epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} \epsilon}{\frac{h}{n} \epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} W S^{-1}\left(\lambda_{n}\right) \epsilon}=O_{p}\left(\left(\frac{h}{n}\right)^{\gamma}\right) \tag{1.A.20}
\end{equation*}
$$

Similarly, when $\gamma>1 / 2$, it suffices to show

$$
\begin{equation*}
\frac{\frac{h}{n} \epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} \epsilon}{\frac{h}{n} \epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} W S^{-1}\left(\lambda_{n}\right) \epsilon}=O_{p}\left(\left(\frac{h}{n}\right)^{1 / 2}\right) \tag{1.A.21}
\end{equation*}
$$

and conclude the claim by observing that $O\left((h / n)^{1 / 2}\right)$ dominates $\lambda_{n}=O\left((h / n)^{\gamma}\right)$ when $\gamma>1 / 2$.

Under Assumptions 1-3, the denominator in (1.A.20) (and (1.A.21)) has a finite and positive probability limit. Indeed, let

$$
V_{n}=\frac{h}{n} \epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} W S^{-1}\left(\lambda_{n}\right) \epsilon-\frac{h}{n} E\left(\epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} W S^{-1}\left(\lambda_{n}\right) \epsilon\right)
$$

Then,

$$
\begin{aligned}
E\left(V_{n}^{2}\right) & =\left(\frac{h}{n}\right)^{2} E\left(\left(\epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} W S^{-1}\left(\lambda_{n}\right) \epsilon\right)^{2}\right)-\left(\frac{h}{n}\right)^{2}\left(E\left(\epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} W S^{-1}\left(\lambda_{n}\right) \epsilon\right)\right)^{2} \\
& =\left(\frac{h}{n}\right)^{2} \sigma^{4}\left(\operatorname{tr}\left(S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} W S^{-1}\left(\lambda_{n}\right)\right)\right)^{2}+2\left(\frac{h}{n}\right)^{2} \sigma^{4} \operatorname{tr}\left(\left(S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} W S^{-1}\left(\lambda_{n}\right)\right)^{2}\right) \\
& -\left(\frac{h}{n}\right)^{2} \sigma^{4}\left(\operatorname{tr}\left(S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} W S^{-1}\left(\lambda_{n}\right)\right)\right)^{2} \\
& =2\left(\frac{h}{n}\right)^{2} \sigma^{4} \operatorname{tr}\left(\left(S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} W S^{-1}\left(\lambda_{n}\right)\right)^{2}\right)=O\left(\frac{h}{n}\right)
\end{aligned}
$$

where the last equality follows by Lemma 1 , after observing that $\left\|S^{-1}\left(\lambda_{n}\right)\right\|_{r}+\left\|S^{-1}\left(\lambda_{n}\right)\right\|_{c} \leq$ K, as shown in Section 1.4. Hence, as $n \rightarrow \infty, E\left(V_{n}^{2}\right) \rightarrow 0$ and therefore $V_{n} \xrightarrow{p}$ 0, i.e.

$$
\begin{equation*}
\operatorname{plim}_{n \rightarrow \infty} \frac{h}{n} \epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} W S^{-1}\left(\lambda_{n}\right) \epsilon=\lim _{n \rightarrow \infty} \frac{h}{n} E\left(\epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} W S^{-1}\left(\lambda_{n}\right) \epsilon\right) \tag{1.A.22}
\end{equation*}
$$

Let

$$
Q=\lim _{n \rightarrow \infty} \frac{h}{n} \operatorname{tr}\left(W^{\prime} W\right)
$$

Under Assumption $3 Q>0$. Moreover,

$$
\frac{h}{n} E\left(\epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} W S^{-1}\left(\lambda_{n}\right) \epsilon\right)=\frac{h}{n} \sigma^{2} \operatorname{tr}\left(W^{\prime} W\right)+O\left(\left(\frac{h}{n}\right)^{\gamma}\right) .
$$

The last displayed expression has been obtained by observing that

$$
\begin{aligned}
& \frac{h}{n} E\left(\epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} W S^{-1}\left(\lambda_{n}\right) \epsilon\right)=\frac{h}{n} \sigma^{2} \operatorname{tr}\left(S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} W S^{-1}\left(\lambda_{n}\right)\right) \\
= & \sigma^{2} \frac{h}{n}\left(\operatorname{tr}\left(W^{\prime} W\right)+2 \lambda_{n} \operatorname{tr}\left(\left(W^{\prime}\right)^{2} W\right)+\operatorname{tr}\left(\sum_{i=1}^{\infty}\left(\lambda_{n} W^{\prime}\right)^{i} W^{\prime} W \sum_{j=1}^{\infty}\left(\lambda_{n} W\right)^{j}\right)\right) \\
= & \sigma^{2} \frac{h}{n}\left(\operatorname{tr}\left(W^{\prime} W\right)+2 \lambda_{n} \operatorname{tr}\left(\left(W^{\prime}\right)^{2} W\right)+\operatorname{tr}\left(\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \lambda_{n}^{i} \lambda_{n}^{j} W^{\prime i+1} W^{j+1}\right)\right) \\
= & \sigma^{2} \frac{h}{n}\left(\operatorname{tr}\left(W^{\prime} W\right)+2 \lambda_{n} \operatorname{tr}\left(\left(W^{\prime}\right)^{2} W\right)+\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \lambda_{n}^{i} \lambda_{n}^{j} \operatorname{tr}\left(W^{\prime i+1} W^{j+1}\right)\right) \\
= & \sigma^{2} \frac{h}{n}\left(\operatorname{tr}\left(W^{\prime} W\right)+2 \lambda_{n} \operatorname{tr}\left(\left(W^{\prime}\right)^{2} W\right)+\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \lambda_{n}^{i} \lambda_{n}^{j} O\left(\frac{n}{h}\right)\right) \\
= & \sigma^{2} \frac{h}{n}\left(\operatorname{tr}\left(W^{\prime} W\right)+2 \lambda_{n} \operatorname{tr}\left(\left(W^{\prime}\right)^{2} W\right)+\left(\frac{\lambda_{n}}{1-\lambda_{n}}\right)^{2} O\left(\frac{n}{h}\right)\right),
\end{aligned}
$$

where the fifth equality holds since $\operatorname{tr}\left(W^{\prime i+1} W^{j+1}\right)=O(n / h)$ for every i, j by Lemma 1 . The last equality is obtained by

$$
\sum_{i=1}^{\infty} \lambda_{n}^{i}=\frac{\lambda_{n}}{1-\lambda_{n}}
$$

since $\left|\lambda_{n}\right|<1$ for n sufficiently large. Hence, from (1.A.22),

$$
\begin{equation*}
\operatorname{plim}_{n \rightarrow \infty} \frac{h}{n} \epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} W S^{-1}\left(\lambda_{n}\right) \epsilon=Q>0 . \tag{1.A.23}
\end{equation*}
$$

On the other hand, the numerator in (1.A.20) is $O_{p}\left((h / n)^{\gamma}\right)$, when $\gamma \leq 1 / 2$, and $O_{p}\left((h / n)^{1 / 2}\right)$, when $\gamma>1 / 2$, since

$$
\begin{align*}
\left(\frac{h}{n}\right)^{2} E\left(\left(\epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} \epsilon\right)^{2}\right) & =\sigma^{4}\left(\frac{h}{n}\right)^{2}\left(\left(\operatorname{tr}\left(W S^{-1}\left(\lambda_{n}\right)\right)\right)^{2}+2 \operatorname{tr}\left(\left(W S^{-1}\left(\lambda_{n}\right)\right)^{2}\right)\right) \\
& =\sigma^{4}\left(\frac{h}{n}\right)^{2}\left(\left(0+\operatorname{tr}\left(\sum_{i=1}^{\infty} \lambda_{n}^{i} W^{i+1}\right)\right)^{2}+O\left(\frac{n}{h}\right)\right) \tag{1.A.24}
\end{align*}
$$

while

$$
\begin{equation*}
\operatorname{tr}\left(\sum_{i=1}^{\infty} \lambda_{n}^{i} W^{i+1}\right)=\sum_{i=1}^{\infty} \lambda_{n}^{i} \operatorname{tr}\left(W^{i+1}\right)=\sum_{i=1}^{\infty} \lambda_{n}^{i} O\left(\frac{n}{h}\right)=\frac{\lambda_{n}}{1-\lambda_{n}} O\left(\frac{n}{h}\right)=O\left(\left(\frac{n}{h}\right)^{1-\gamma}\right) \tag{1.A.25}
\end{equation*}
$$

Therefore, collecting (1.A.24) and (1.A.25),

$$
\left(\frac{h}{n}\right)^{2} E\left(\left(\epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} \epsilon\right)^{2}\right)=O\left(\left(\frac{h}{n}\right)^{2 \gamma}\right)
$$

when $\gamma \leq 1 / 2$, and

$$
\left(\frac{h}{n}\right)^{2} E\left(\left(\epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} \epsilon\right)^{2}\right)=O\left(\frac{h}{n}\right)
$$

when $\gamma>1 / 2$. By Markov's inequality,

$$
\begin{equation*}
\frac{h}{n} \epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} \epsilon=O_{p}\left(\left(\frac{h}{n}\right)^{\gamma}\right) \tag{1.A.26}
\end{equation*}
$$

when $\gamma \leq 1 / 2$, and

$$
\begin{equation*}
\frac{h}{n} \epsilon^{\prime} S^{-1}\left(\lambda_{n}\right)^{\prime} W^{\prime} \epsilon=O_{p}\left(\left(\frac{h}{n}\right)^{1 / 2}\right) \tag{1.A.27}
\end{equation*}
$$

when $\gamma>1 / 2$.
Collecting (1.A.23), (1.A.26) and (1.A.27) the claims in (1.A.20) and (1.A.21) follow trivially.

2 Improved Test Statistics based on MLE for Pure SAR

In Chapter 1 we focused on the test of H_{0} in (0.0.2) when λ in model (1.0.8) is estimated by OLS. As outlined, the OLS estimate of λ in (1.0.8) is inconsistent when $\lambda \neq 0$ and hence the results of Chapter 1 cannot be extended to test the more general null hypothesis

$$
\begin{equation*}
H_{0}: \lambda=\lambda_{0} \tag{2.0.1}
\end{equation*}
$$

against the alternative

$$
\begin{equation*}
H_{1}: \lambda>\lambda_{0} \quad\left(<\lambda_{0}\right) \tag{2.0.2}
\end{equation*}
$$

for any fixed λ_{0}. More importantly, as discussed in Section 1.5, a test of H_{0} in (0.0.2) might be inconsistent for some choices of W.

In this chapter we derive new tests of (0.0 .2) based on the MLE of λ when again the data follow model (1.0.8), i.e. (0.0.1) when $\mu=0$ and $\beta=0$ a priori. The MLE for λ, denoted $\tilde{\lambda}$ henceforth, is consistent for every value of $\lambda \in(-1,1)$ in model (1.0.8), as shown in Lee (2004). Hence, in principle we could extend the results presented in this section to test (2.0.1) against (2.0.2). Although the procedure would be identical, when $\lambda_{0} \neq 0$ the algebraic burden would increase dramatically. In addition, in most of practical application, $\lambda=0$ is probably the most interesting value one wishes to test, as discussed in the Introduction. Therefore, it seems reasonable to focus only on the test of H_{0} as specified in (0.0.2).

Similarly to what discussed in Chapter 1 , the rate of convergence of $\tilde{\lambda}$ can be slower than the parametric rate \sqrt{n}, depending on the choice of W. When this is the case, the normal cdf might not be an accurate approximation for the cdf of the t-statistic based on $\tilde{\lambda}$ under H_{0}. Thus, inference based on standard first order asymptotic theory can be unreliable and this provides motivation for employing instead refined statistics, based on formal Edgeworth expansions, which entail closer approximations.

In Section (2.1) we present refined tests based on both Edgeworth-corrected critical values and corrected t-statistics under H_{0} in (0.0.2). In Section 2.2 we report the results of Monte Carlo simulations to assess the finite sample performance of the new tests. Finally, in Sections 2.3 and 2.4 the new tests based on both MLE and OLS estimates of λ in model (1.0.8) are applied in two empirical examples. It should be stressed that these examples are intended for illustrative purpose only and do not aim to be exhaustive analyses of the issues involved. Proofs are reported in the appendices.

2.1 Test against a one-sided alternative: Edgeworth-corrected critical values and corrected statistic

We suppose that model (1.0.8) holds and we are interested in testing (0.0.2) against
(1.1.1). Extensions of the following results to testing (0.0.2) against a two-sided alternative are straightforward in principle, but algebraically very cumbersome, since the derivation or a third order Edgeworth expansion, rather than the second order one, would be necessary (similarly to what was discussed in Section 1.2). The Gaussian log-likelihood function for model (1.0.8) is given by

$$
\begin{equation*}
l\left(\lambda, \sigma^{2}\right)=-\frac{n}{2} \ln (2 \pi)-\frac{n}{2} \ln \sigma^{2}+\ln (\operatorname{det}(S(\lambda)))-\frac{1}{2 \sigma^{2}} Y^{\prime} S(\lambda)^{\prime} S(\lambda) Y \tag{2.1.1}
\end{equation*}
$$

where $S(\lambda)$ is defined according to (0.0.6). Given λ, the MLE of σ^{2} is

$$
\begin{equation*}
\tilde{\sigma}^{2}(\lambda)=\frac{1}{n} Y^{\prime} S(\lambda)^{\prime} S(\lambda) Y \tag{2.1.2}
\end{equation*}
$$

and hence

$$
\tilde{\lambda}=\arg \max _{\lambda \in \Lambda} l\left(\lambda, \tilde{\sigma}^{2}(\lambda)\right)
$$

where $\Lambda \in(-1,1)$ and here λ denotes any admissible value.
When $\Lambda \in(-1,1)$, $\operatorname{det}(S(\lambda))$ in (2.1.1) is positive for every $\lambda \in \Lambda$. Indeed, $\operatorname{det}(S(\lambda))=\operatorname{det}(I-\lambda W)$ is positive when $|\lambda|<1 / \rho(W)$, where $\rho(W)$ is defined in (0.0.5). On the other hand under Assumption 2(i) $\rho(W)=1$, as discussed in the Introduction. Furthermore, under Assumption 2(i), existence of $S^{-1}(\lambda)$ is guaranteed from (1.4.2) provided that $|\lambda|<1$.

We have the following result

Theorem 2.1 Let model (1.0.8) and Assumptions 1-3 hold. The cdf of $\tilde{\lambda}$ under H_{0} in (0.0.2) admits the second order formal Edgeworth expansion

$$
\operatorname{Pr}\left(\tilde{a} \tilde{\lambda} \leq \zeta \mid H_{0}\right)=\Phi(\zeta)+\left(2 \frac{\operatorname{tr}\left(W W^{\prime} W\right)}{\tilde{a}^{3}}+\frac{\operatorname{tr}\left(W^{3}\right)}{\tilde{a}^{3}}\right) \phi(\zeta)-\frac{\tilde{\kappa}_{3}^{c}}{3!} \Phi^{(3)}(\zeta)+o\left(\sqrt{\frac{h}{n}}\right)
$$

or equivalently

$$
\begin{equation*}
\operatorname{Pr}\left(\tilde{a} \tilde{\lambda} \leq \zeta \mid H_{0}\right)=\Phi(\zeta)+\left(2 \frac{\operatorname{tr}\left(W W^{\prime} W\right)}{\tilde{a}^{3}}+\frac{\operatorname{tr}\left(W^{3}\right)}{\tilde{a}^{3}}\right) \phi(\zeta)-\frac{\tilde{\kappa}_{3}^{c}}{3!} H_{2}(\zeta) \phi(\zeta)+o\left(\sqrt{\frac{h}{n}}\right) \tag{2.1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{a}=\sqrt{\operatorname{tr}\left(W^{2}+W^{\prime} W\right)} \tag{2.1.4}
\end{equation*}
$$

and

$$
\tilde{\kappa}_{3}^{c} \sim-\frac{4 \operatorname{tr}\left(W^{3}\right)+6 \operatorname{tr}\left(W W^{\prime} W\right)}{\tilde{a}^{3}} \sim \sqrt{\frac{h}{n}}
$$

The proof of Theorem 2.1 is in Appendix A.1.

Under Assumption 3,

$$
\left(2 \frac{\operatorname{tr}\left(W W^{\prime} W\right)}{\tilde{a}^{3}}+\frac{\operatorname{tr}\left(W^{3}\right)}{\tilde{a}^{3}}\right) \phi(\zeta)-\frac{\tilde{\kappa}_{3}^{c}}{3!} \Phi^{(3)}(\zeta) \sim \sqrt{\frac{h}{n}}
$$

It should again be stressed that the expansion in (2.1.3) is formal and hence the order of the remainder can only be conjectured by the rate of the coefficients. Without considering validity issues, the error order $o(\sqrt{h / n})$ is the sharpest one can conjecture since several approximations are used to obtain (2.1.3), as explained in detail in Appendices A. 1 and A. 2

Under Assumption $3 \tilde{a}$ is finite and strictly positive for large n and hence the rate of convergence of $\operatorname{Pr}\left(\tilde{a} \tilde{\lambda} \leq \zeta \mid H_{0}\right)$ to the standard normal cdf is slower than the usual \sqrt{n} when the sequence h is divergent.

From expansion (2.1.3), Edgeworth-corrected critical values and the corrected null statistic can be obtained. The derivation is very similar to that reported in Chapter 1 , Section 1.1, for the cdf of $a \hat{\lambda}$ and is omitted here. The size of the test of (0.0.2) obtained with the usual standard normal approximation

$$
\begin{equation*}
\operatorname{Pr}\left(\tilde{a} \tilde{\lambda}>z_{\alpha} \mid H_{0}\right) \tag{2.1.5}
\end{equation*}
$$

can be compared with that for the Edgeworth-corrected critical value, that is

$$
\begin{equation*}
\operatorname{Pr}\left(\tilde{a} \tilde{\lambda}>\tilde{t}^{E d} \mid H_{0}\right) \tag{2.1.6}
\end{equation*}
$$

where

$$
\tilde{t}^{E d}=z_{\alpha}-\left(2 \frac{\operatorname{tr}\left(W W^{\prime} W\right)}{\tilde{a}^{3}}+\frac{\operatorname{tr}\left(W^{3}\right)}{\tilde{a}^{3}}\right)+\frac{\tilde{\kappa}_{3}^{c}}{3!} H_{2}\left(z_{\alpha}\right)
$$

As discussed in Chapter 1, when z_{α} is used to approximate the true quantile, we have an error of order $\sqrt{h / n}$, while the error is decreased to $o(\sqrt{h / n})$ when the Edgeworthcorrected critical value is used.

Finally, (2.1.5) can be compared with the size based on the corrected statistic, i.e.

$$
\begin{equation*}
\operatorname{Pr}\left(\tilde{g}(\tilde{a} \tilde{\lambda})>z_{\alpha} \mid H_{0}\right), \tag{2.1.7}
\end{equation*}
$$

where

$$
\tilde{g}(x)=x+2 \frac{\operatorname{tr}\left(W W^{\prime} W\right)}{\tilde{a}^{3}}+\frac{\operatorname{tr}\left(W^{3}\right)}{\tilde{a}^{3}}-\frac{\tilde{\kappa}_{3}^{c}}{3!} H_{2}(x)+\tilde{Q}(x)
$$

and

$$
\tilde{Q}(x)=\left(\frac{\tilde{\kappa}_{3}^{c}}{3!}\right)^{2} \frac{x^{3}}{3} .
$$

As discussed in detail in Section 1.1, $\tilde{Q}(x)$ can be derived from (1.1.14) and is cubic so that $\tilde{g}(x)$ is strictly increasing over the whole domain, but does not affect the order of the remainder.

2.2 Bootstrap correction and Monte Carlo results

In this section we report and discuss some Monte Carlo simulations to investigate the finite sample performance of the tests derived in Section 2.1. As in Chapter 1, we adopt the Case (1991) specification for W, specified in (0.0.7). The setting of the Monte Carlo study is identical to that described in Section 1.5.

The empirical sizes of the test of (0.0.2) based on the usual normal approximation are compared with the same quantities obtained with both the Edgeworth-corrected critical values and corrected test statistics. In addition, we consider the simulated sizes based on bootstrap critical values. The bootstrap algorithm to obtain the critical values is similar to that outlined in Section 1.5. Once B pseudo-samples $Y_{j}^{*}, j=$ $1, \ldots . B$, are obtained from $N\left(0, Y^{\prime} Y / n\right)$, we obtain B bootstrap MLE null statistics

$$
\tilde{Z}_{j}=\tilde{a} \tilde{\lambda}_{j}^{*}, \quad j=1, \ldots . . B,
$$

where

$$
\tilde{\lambda}_{j}^{*}=\arg \max _{\lambda \in \Lambda} l_{j}^{*}(\lambda)
$$

and

$$
l_{j}^{*}(\lambda)=-\frac{n}{2}(\ln (2 \pi)+1)-\frac{n}{2} \ln \left(\frac{1}{n} Y_{j}^{*^{\prime}} S(\lambda)^{\prime} S(\lambda) Y_{j}^{*}\right)+\ln (\operatorname{det}(S(\lambda))) .
$$

The α-percentile is computed as the value \tilde{w}_{α}^{*} which solves

$$
\frac{1}{B} \sum_{j=1}^{B} 1\left(\tilde{Z}_{j} \leq \tilde{w}_{\alpha}^{*}\right)=\alpha .
$$

The size of the test of (0.0.2) when the bootstrap critical value is used is then

$$
\begin{equation*}
\operatorname{Pr}\left(\tilde{a} \tilde{\lambda}>\tilde{w}_{\alpha}^{*} \mid H_{0}\right) . \tag{2.2.1}
\end{equation*}
$$

Similarly to Section 1.5 , in the Tables we denote by "normal", "Edgeworth", "transformation" and "bootstrap" the simulated values corresponding to the size obtained with the standard approximation, Edgeworth-corrected critical values, Edgeworthcorrected null statistic and bootstrap critical values, respectively. Also, similarly to Section 1.5, we denote by "divergent" and "bounded" h the cases where m is monotonically increased and kept fixed, respectively.

	$m=8$ $r=5$	$m=12$ $r=8$	$m=18$ $r=11$	$m=28$ $r=14$
normal	0.005	0.006	0.004	0.013
Edgeworth	0.118	0.091	0.074	0.060
transformation	0.056	0.052	0.052	0.045
bootstrap	0.058	0.052	0.054	0.046

Table 2.1: Empirical sizes of the tests of H_{0} in (0.0.2) when λ in (1.0.8) is estimated by MLE and the sequence h is "divergent". The reported values have to be compared with the nominal 0.05 .

	$m=5$ $r=8$	$m=5$ $r=20$	$m=5$ $r=40$	$m=5$ $r=80$
normal	0.012	0.025	0.032	0.038
Edgeworth	0.090	0.075	0.068	0.049
transformation	0.057	0.055	0.049	0.051
bootstrap	0.062	0.056	0.058	0.052

Table 2.2: Empirical sizes of the tests of H_{0} in (0.0.2) when λ in (1.0.8) is estimated by MLE and the sequence h is "bounded". The reported values have to be compared with the nominal 0.05 .

Tables 2.1 and 2.2 display the simulated values corresponding to (2.1.5), (2.1.6), (2.1.7) and (2.2.1) when h is "divergent" and "bounded", respectively. All the values in Tables 2.1 and 2.2 have to be compared with the nominal 5%.

For both "divergent" and "bounded" h, it is clear that the usual normal approximation does not work well in practice, since the simulated values for the size greatly underestimate the nominal 5% for all sample sizes. On the other hand, the Edgeworth-corrected results seem to perform reasonably well. Similarly to what discussed in Section 1.5, the results obtained with the Edgeworth-corrected critical values exceed the target 0.05 for very small sample sizes, but the convergence to the nominal value appears to be fast. Specifically, on average across sample sizes, the difference between the values obtained with Edgeworth-corrected critical values and the nominal 0.05 is only 19% and 21% smaller than the same quantity obtained with the standard t-statistic, h being "divergent" and "bounded", respectively. However, as sample size increases, such difference decreases at a faster rate when inference is based on corrected critical values. Indeed, the difference between actual and nominal values decreases by 46% and 53% when inference is based on Edgeworth-corrected critical values, and only by 6% and 32% when we rely on the standard statistic, h being "divergent" or "bounded", respectively. The simulated sizes based on the corrected statistics, instead, are very satisfactory also for very small sample sizes, whether h is "divergent" or "bounded". Finally, for all sample sizes, the bootstrap results appear to be very similar to ones based on the Edgeworth-corrected statistic, whether h is "divergent" or "bounded". Specifically, when h is "divergent", the values obtained by Edgeworth-corrected statistic and by bootstrap critical values are 91% and 89% closer
to 0.05 than values obtained by the standard statistic. Such improvements become 87% and 71% when h is "bounded".

As expected, by comparing Tables 2.1 and 2.2 with Tables 1.1 and 1.2 (reported in Section 1.5), we notice that the results are similar whether λ is estimated by OLS or MLE. However, for "divergent" h and when considering the Edgeworth-corrected critical values, the results obtained when λ is estimated by MLE slightly outperform those based on the OLS estimate. Other than this case, the values appear to be comparable.

Figure 2.1: Simulated pdf of $\tilde{a} \tilde{\lambda}$ under H_{0}

Figure 2.2: Simulated pdf of $\tilde{g}(\tilde{a} \tilde{\lambda})$ under H_{0}

In Figures 2.1 and 2.2 we plot the pdf obtained from the Monte Carlo simulation of the non-corrected MLE null statistic $\tilde{a} \tilde{\lambda}$ and its corrected version $\tilde{g}(\tilde{a} \tilde{\lambda})$, respec-
tively. We notice that the non-corrected statistic is skewed to the left but most of this skewness is removed when we consider the corrected version.

	$\begin{aligned} & m=8 \\ & r=5 \end{aligned}$	$\begin{aligned} & m=12 \\ & r=8 \end{aligned}$	$\begin{aligned} & m=18 \\ & r=11 \end{aligned}$	$\begin{aligned} & m=28 \\ & r=14 \end{aligned}$
normal	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.0100 \\ 0.5 & 0.4740 \\ 0.8 & 0.9850 \end{array}$	$\bar{\lambda}$ 0.1 0.0370 0.5 0.7270 0.8 0.9990	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.0380 \\ 0.5 & 0.8640 \\ 0.8 & 1 \end{array}$	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.0560 \\ 0.5 & 0.8930 \\ 0.8 & 1 \end{array}$
Edgeworth	$\bar{\lambda}$ 0.1 0.1270 0.5 0.7600 0.8 0.9900	$\begin{array}{ll} \bar{\lambda} & \\ 0.1 & 0.1300 \\ 0.5 & 0.8710 \\ 0.8 & 1 \end{array}$	$\bar{\lambda}$ 0.1 0.1410 0.5 0.9270 0.8 1	$\bar{\lambda}$ 0.1 0.1740 0.5 0.9750 0.8 1
bootstrap	$\bar{\lambda}$ 0.1 0.0940 0.5 0.7480 0.8 0.9980	$\bar{\lambda}$ 0.1 0.1220 0.5 0.8560 0.8 1	$\bar{\lambda}$ 0.1 0.1300 0.5 0.9180 0.8 1	$\bar{\lambda}$ 0.1 0.1450 0.5 0.9990 0.8 1

Table 2.3: Empirical powers of the tests of H_{0} in (0.0.2) against H_{1} in (1.5.3) with $\bar{\lambda}=0.1,0.5,0.8$ when λ in (1.0.8) is estimated by MLE and the sequence h is "divergent". α is set to 0.95 .

	$\begin{aligned} & m=5 \\ & r=8 \end{aligned}$	$\begin{aligned} & m=5 \\ & r=20 \end{aligned}$	$\begin{aligned} & m=5 \\ & r=40 \end{aligned}$	$\begin{aligned} & m=5 \\ & r=80 \end{aligned}$
normal	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.0510 \\ 0.5 & 0.7910 \\ 0.8 & 1 \end{array}$	$\begin{array}{ll} \overline{\bar{\lambda}} & \\ 0.1 & 0.1260 \\ 0.5 & 0.9890 \\ 0.8 & 1 \end{array}$	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.2070 \\ 0.5 & 0.9980 \\ 0.8 & 1 \end{array}$	$\begin{array}{ll} \bar{\lambda} & \\ 0.1 & 0.4000 \\ 0.5 & 1 \\ 0.8 & 1 \end{array}$
Edgeworth	$\bar{\lambda}$ 0.1 0.1260 0.5 0.8820 0.8 1	$\bar{\lambda}$ 0.1 0.1920 0.5 0.9950 0.8 1	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.2720 \\ 0.5 & 1 \\ 0.8 & 1 \end{array}$	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.4530 \\ 0.5 & 1 \\ 0.8 & 1 \end{array}$
bootstrap	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.1140 \\ 0.5 & 0.8920 \\ 0.8 & . \end{array}$	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.1940 \\ 0.5 & 1 \\ 0.8 & 1 \end{array}$	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.3020 \\ 0.5 & 1 \\ 0.8 & 1 \end{array}$	$\begin{array}{ll} \hline \bar{\lambda} & \\ 0.1 & 0.5220 \\ 0.5 & 1 \\ 0.8 & 1 \end{array}$

Table 2.4: Empirical powers of the tests of H_{0} in (0.0.2) against (1.5.3) with $\bar{\lambda}=0.1,0.5,0.8$ when λ in (1.0.8) is estimated by MLE and the sequence h is "bounded". α is set to 0.95 .

In Tables 2.3 and 2.4 we report some Monte Carlo results to assess the finite sample value of the power of both standard and corrected tests of (0.0.2) against a fixed alternative hypothesis, as specified in (1.5.3). In Tables 2.3 and 2.4 we report the simulated quantities corresponding to $\operatorname{Pr}\left(\tilde{a} \tilde{\lambda}>z_{\alpha} \mid H_{1}\right), \operatorname{Pr}\left(\tilde{a} \tilde{\lambda}>\tilde{t}^{E d} \mid H_{1}\right)$ and $\operatorname{Pr}\left(\tilde{a} \tilde{\lambda}>\tilde{w}_{\alpha}^{*} \mid H_{1}\right)$. As in Section 1.5, we choose three different values of $\bar{\lambda}$, specifically $\bar{\lambda}=0.1,0.5,0.8$. The values in Tables 2.3 and 2.4 are consistent with the empirical
sizes reported in Tables 1.1-1.4. By comparison of the results in Tables 2.3 and 2.4 with Tables 2.1 and 2.2, we notice that the simulated values for the power obtained with Edgeworth-corrected critical values when λ is estimated by MLE are significantly smaller than the corresponding ones when λ is estimated by OLS. This is due to the sign of the probability limit of $(\hat{\lambda}-\lambda)$ (Theorem 1.4) when W is chosen as in (0.0.7) and does not necessarily extend to other choices of W.

2.3 Empirical evidence: the geography of happiness

In this section the corrected tests presented in Sections 1.1 and 2.1 are applied to a small empirical example based on Stanca (2009). We first shortly describe the methodology and main results in Stanca (2009) and then outline the purpose and results of our analysis. The main goal of the empirical work in Stanca (2009) is to investigate the spatial distribution of the effects of both income and unemployment on well-being for a sample of $n=81$ countries. For the purpose of our analysis we only focus on income effects. Several specifications are considered in Stanca (2009), the three main ones being

$$
\begin{gather*}
P=\lambda W P+X \gamma+\epsilon, \tag{2.3.1}\\
P=\lambda W P+\epsilon, \tag{2.3.2}\\
P=X \gamma+\epsilon,
\end{gather*}
$$

income in each country, X is a $n \times k$ matrix, $k=10$, containing exogenous macroeconomic conditions, which include GDP per capita, unemployment rate, government size and trade openness. W is the usual matrix of spatial weights and more details about the choice of W will be given below.

The components of P are clearly unobservable. Stanca (2009) provides a proxy for each component of P by estimating n country-specific, micro-level linear models where well-being (denoted W^{b}, henceforth) is regressed on income (denoted In, henceforth) as well as unemployment status, demographic factors, social conditions, personality traits and environmental characteristics. For notational convenience we denote Z_{j}, for $j=1, \ldots .81$, the $n_{1} \times k_{1}$ matrix of all the regressors other than income, $k_{1}=19$. The sample sizes n_{1} of each country-specific analysis varies country by country, on average $n_{1}=2300$. Specifically, for each country $j=1, \ldots . .81$,

$$
\begin{equation*}
W_{j}^{b}=\beta_{1, j} I n_{j}+\beta_{2, j} Z_{j}+u_{j}, \tag{2.3.4}
\end{equation*}
$$

where u_{j} is a normally distributed error term. Stanca (2009) chooses the OLS estimate
of $\beta_{1, j}$, denoted $\hat{\beta}_{1, j}$, for $j=1, \ldots 81$, as proxy for each component of P.
For each individual in the sample, W^{b} (intended as life satisfaction) is a self reported number from 1 to 10 while income is measured by self reported deciles in the national distribution of income. The data source for the analyses in (2.3.1), (2.3.2) and (2.3.3) is the database "World Development Indicators" (World Bank (2005)). The data source for the country-specific regressions in (2.3.4) is the "World Values Survey".

The results in Stanca (2009) indicate that by estimating λ by MLE in model (2.3.2) the presence of spatial correlation is detected. However, when the macroeconomic conditions are included among the regressors, such as in specification (2.3.1), the estimate of λ becomes insignificant, suggesting that the geographical correlation is mainly explained by similar underlying macroeconomic conditions in neighbouring countries. Therefore, either specification (2.3.2) or (2.3.3) can be appropriate, as the estimate of λ in model (2.3.2) should reflect the macroeconomic similarities among countries.

By a closer inspection of the results in Stanca (2009), we notice that the estimates of the relevant components of γ in (2.3.3) are strongly significant (1% or 0.5% level), while the estimate of λ in specification (2.3.2) is barely significant at 5%. Given that specifications (2.3.2) and (2.3.3) should both be appropriate, in principle we would expect the estimates of the relevant coefficients of the two specifications to be equally significant (at least roughly). Therefore, it can be useful to investigate whether an Edgeworth-corrected test gives a different result.

We only consider a sub-sample of the 43 European countries, rather than the 81 worldwide ones considered in Stanca (2009). Since P in specification (2.3.2) is a vector of estimates and not actual data, some heterogeneity issues might be eliminated by considering only European countries. Indeed, we expect that the micro-level analysis to obtain $\hat{\beta}_{1, j}, j=1, \ldots 43$, does not exhibit strong structural differences across a sample of 43 European countries. On the other hand, when considering a broader sample, some systematic differences in the relationship among the country-specific variables might occur. In practice, (2.3.4) might not be the correct specification for all countries, when such countries are very heterogeneous. In turn, when such differences occur, the reliability of $\hat{\beta}_{1, j}$ as proxies for the components of P is not clear. This problem might be reduced by considering only a sub-sample of less heterogeneous countries.

Since the dependent variable in (2.3.2) is a vector of proxies and not actual data, we acknowledge that the corrections derived in Sections 1.1 and 2.1 do not fully hold. In principle, we might be neglecting some relevant term arising from the approximation of the components of P by $\hat{\beta}_{1, j}, j=1, \ldots .43$, in the Edgeworth expansions of the cdf of the OLS and MLE statistics under H_{0} in (0.0.2). However, at least for illustrative purpose, we think that a preliminary investigation of the effects of the inclusion of the small sample corrections derived in Sections 1.1 and 2.1 is worthwhile.

The choice of W is not described in Stanca (2009). We construct W based on a contiguity criterion, i.e. $w_{i j}=1$ if country i and country j share a border and $w_{i j}=0$ otherwise.

Rejection rule	$\alpha=0.95$	$\alpha=0.99$	
$a \hat{\lambda}>z_{\alpha}$	reject H_{0}	$(1.713>1.645)$	fail to reject $H_{0} \quad(1.713<2.326)$
$a \hat{\lambda}>t^{E d}$	reject H_{0}	$(1.713>1.287)$	reject $H_{0} \quad(1.713>1.666)$

Table 2.5: Outcomes of the tests of H_{0} in (0.0.2) when λ in model (2.3.2) is estimated by OLS

Rejection rule	$\alpha=0.95$	$\alpha=0.99$
$\tilde{a} \tilde{\lambda}>z_{\alpha}$	reject $H_{0}(2.869>1.645)$	reject $H_{0}(2.869>2.326)$
$\tilde{a} \tilde{\lambda}>\tilde{t}^{E d}$	reject $H_{0}(2.869>1.429)$	reject $H_{0}(2.869>1.922)$

Table 2.6: Outcomes of the tests of H_{0} in (0.0.2) when λ in model (2.3.2) is estimated by MLE

In Tables 2.5 and 2.6, we report the outcome of the tests of (0.0.2) when λ is estimated by OLS and MLE, respectively. The actual values of statistics and critical values are reported in brackets. When λ is estimated by OLS, $\hat{\lambda}$ is only (barely) significant at 5%, while it becomes significant at 1% when corrected critical values are used. We notice that in case λ is estimated by MLE, the outcome of the test does not change when corrected critical values are used. This is a result that could be expected, to some extent. From the simulation work, the non-corrected results for the MLE appear to be slightly better than OLS in very small samples.

2.4 Empirical evidence: the distribution of crimes in Italian provinces

The second example we consider to assess the practical performance of the new tests derived in Sections 1.1 and 2.1 is based on a paper by Buonanno et al. (2009) and deals with crime rates in Italian provinces. In particular, Buonanno et al. (2009) aim to investigate whether social capital, intended as civic norms and associational networks, affects the property crime rate at a provincial level. The 103 Italian provinces are especially suitable for this purpose since Italy displays significant provincial disparities despite being politically, ethically and religiously quite homogeneous. The literature about the influence of social capital on crime rate is broad and a survey is beyond the scope of this example. Similarly, for a discussion about the peculiar contribution of Buonanno et al. (2009), we refer to the paper.

For the purpose of our investigation, we consider the following three models

$$
\begin{gather*}
Y=\lambda W Y+\epsilon \tag{2.4.1}\\
Y=\lambda W Y+\beta_{1} S C+\beta_{2} X+\delta D+\epsilon \tag{2.4.2}
\end{gather*}
$$

and

$$
\begin{equation*}
Y=\beta_{1} S C+\beta_{2} X+\delta D+\epsilon \tag{2.4.3}
\end{equation*}
$$

where $\epsilon \sim N\left(0, \sigma^{2} I\right) . Y$ is the n-dimensional vector of crime rates in each province, where $n=103$. Each component of Y is obtained by dividing the reported crime rate at provincial level by the corresponding overall report rate at regional level. The dataset, originally constructed by Buonanno et al. and mainly based on ISTAT ("Istituto Nazionale di Statistica") records, contains three sets of observations, regarding car thefts, robberies and general thefts rates. $S C$ is the vector of social capital observations. Buonanno et al. (2009) proposes four different measures of social capital, which are used separately, namely the number of recreational associations, voluntary associations, referenda turnout and blood donation. X is a $n \times k$ matrix of exogenous regressors, with $k=8$, containing deterrence (such as the average length of judicial process and the crime specific clear up rate), demographic and socio-economic variables. In addition, X contains a measure of criminal association at provincial level. Finally, D is a matrix of geographical dummies to control for heterogeneity among the north, centre and south of the country. Our analysis is conducted with and without the inclusion of the geographical dummies and the results do not appear to vary significantly. The data pertain to 2002 or, when an average is considered, to the period 2000-2002.

In Buonanno et al. (2009) the parameters in model (2.4.2) are estimated for each crime type, with different variants of W and measures of social capital. Details of the estimation methods used are not provided in the paper. The results in Buonanno et al. (2009) indicate that the estimate of λ in model (2.4.2) is insignificant in each of the regressions considered (or only barely significant at 10%, in few cases). However, we observe that when we estimate λ in model (2.4.1) we detect spatial correlation, suggesting that the effect of geographical contiguity is mostly taken into account by the regressors included in model (2.4.2). Hence, both models (2.4.1) and (2.4.3) seem to be appropriate and we expect the estimate of λ in model (2.4.1) to reflect the overall similarities across neighbouring provinces.

For the purpose of out analysis, in order to investigate more specifically which are the main determinants of Y, we perform an OLS estimation of the parameters in model (2.4.3) and observe that Y is strongly affected by the measure of criminal association (denoted $C A$, henceforth). Indeed, the estimate of the coefficient of $C A$ is significant at 0.5% level. In turn, we expect that $C A$ displays significant correlation across provinces and to confirm our conjecture we estimate the spatial parameter μ of the additional model

$$
\begin{equation*}
C A=\mu W C A+\epsilon \tag{2.4.4}
\end{equation*}
$$

As expected, the estimate of μ is strongly significant (0.5% level) when inference is based on the normal approximation.

When regressors are not included, such as in (2.4.1), we would expect to detect a similarly strong spatial correlation in the dependent variable. However, the estimate of λ in (2.4.1) is only significant at 5% level, when inference is based on the normal
approximation.
As discussed for the previous example, we investigate whether we obtain a different outcome of the test of (0.0.2) by including the small sample corrections derived in Sections 1.1 and 2.1. We report the results obtained for the robberies rates, W defined by a contiguity criterion as described in Section 2.3 (the same choice of W is adopted in Buonanno et al. (2009)), and blood donation as a measure of social capital, although similar results can be derived for the other crime rates and alternative measures of social capital.

Table 2.7: Outcomes of the tests of H_{0} in (0.0.2) when λ in model (2.4.1) is estimated by OLS

Rejection rule	$\alpha=0.95$	$\alpha=0.99$	$\alpha=0.995$
$\tilde{a} \tilde{\lambda}>z_{\alpha}$	reject $H_{0} \quad(2.2934>1.645)$	fail to reject $H_{0} \quad(2.2934<2.326)$	fail to reject $H_{0} \quad(2.2934<2.5776)$
$\tilde{a} \tilde{\lambda}>\tilde{t}^{\text {ed }}$	reject $H_{0} \quad(2.2934>1.5227)$	reject $H_{0} \quad(2.2934>2.0767)$	reject $H_{0} \quad(2.2934>2.2704)$

Table 2.8: Outcomes of the tests of H_{0} in (0.0.2) when λ in model (2.4.1) is estimated by MLE

The outcomes of the tests of H_{0} in (0.0.2) when λ is estimated by OLS and MLE are reported in Tables 2.7 and 2.8, respectively. We notice that when the usual normal approximation is adopted, we are able to reject H_{0} only at 5% level, λ being estimated by either OLS or MLE. Instead, when the Edgeworth correction is included, we are able to reject H_{0} at 1% level when λ is estimated by OLS and at 0.5% level when λ is estimated by MLE. As is the case in the previous example, these results confirm those of the simulation work, i.e. for small/moderate sample sizes, the results obtained when λ is estimated by MLE slightly outperform those obtained by OLS estimation.

A Appendix

A. 1 Proof of Theorem 2.1

We first introduce some notation that will be used throughout the proof. We write

$$
l(\lambda)=l\left(\lambda, \tilde{\sigma}^{2}(\lambda)\right)
$$

where $l\left(\lambda, \sigma^{2}\right)$ and $\tilde{\sigma}^{2}(\lambda)$ are defined in (2.1.1) and (2.1.2), respectively. Define also

$$
\begin{aligned}
& Z^{(1)}(\lambda)=\sqrt{\frac{h}{n}} \frac{\partial l(\lambda)}{\partial \lambda}, \quad Z^{(2)}(\lambda)=\sqrt{\frac{h}{n}}\left(\frac{\partial^{2} l(\lambda)}{\partial \lambda^{2}}-E\left(\frac{\partial^{2} l(\lambda)}{\partial \lambda^{2}}\right)\right), \\
& J(\lambda)=\frac{h}{n} \frac{\partial^{3} l(\lambda)}{\partial \lambda^{3}}, \quad K(\lambda)=-\frac{h}{n} E\left(\frac{\partial^{2} l(\lambda)}{\partial \lambda^{2}}\right), \quad \frac{\partial l(0)}{\partial \lambda}=\left.\frac{\partial l(\lambda)}{\partial \lambda}\right|_{\lambda=0} .
\end{aligned}
$$

Finally, $O_{e}($.$) indicates an exact rate (in probability). In order to establish whether the orders$
of the coefficients appearing in Theorem 2.1 hold as exact rates, it is relevant here to distinguish $O_{e}($.$) from O_{p}($.$) .$

By (2.1.1),

$$
\begin{equation*}
\frac{\partial l(\lambda)}{\partial \lambda}=n \frac{\left(Y^{\prime} W Y-\lambda Y^{\prime} W^{\prime} W Y\right)}{Y^{\prime} S(\lambda)^{\prime} S(\lambda) Y}-\operatorname{tr}\left(S^{-1}(\lambda) W\right) \tag{2.A.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} l(\lambda)}{\partial \lambda^{2}}=-n \frac{Y^{\prime} W^{\prime} W Y}{Y^{\prime} S(\lambda)^{\prime} S(\lambda) Y}+2 n \frac{\left(\lambda Y^{\prime} W^{\prime} W Y-Y^{\prime} W Y\right)^{2}}{\left(Y^{\prime} S(\lambda)^{\prime} S(\lambda) Y\right)^{2}}-\operatorname{tr}\left(S^{-1}(\lambda) W S^{-1}(\lambda) W\right) \tag{2.A.2}
\end{equation*}
$$

Therefore, under H_{0},

$$
\begin{equation*}
Z^{(1)}(0)=\sqrt{h n} \frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon} \tag{2.A.3}
\end{equation*}
$$

and

$$
\begin{align*}
Z^{(2)}(0) & =\sqrt{\frac{h}{n}}\left\{-n \frac{\epsilon^{\prime} W^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}+2 n\left(\frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)^{2}-\operatorname{tr}\left(W^{2}\right)+n E\left(\frac{\epsilon^{\prime} W^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)-2 n E\left(\frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)^{2}+\operatorname{tr}\left(W^{2}\right)\right\} \\
& =\sqrt{\frac{h}{n}}\left\{-n \frac{\epsilon^{\prime} W^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}+2 n\left(\frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)^{2}-\operatorname{tr}\left(W^{2}\right)+n \frac{E\left(\epsilon^{\prime} W^{\prime} W \epsilon\right)}{E\left(\epsilon^{\prime} \epsilon\right)}-2 n \frac{E\left(\frac{1}{2} \epsilon^{\prime}\left(W+W^{\prime}\right) \epsilon\right)^{2}}{E\left(\epsilon^{\prime} \epsilon\right)^{2}}+\operatorname{tr}\left(W^{2}\right)\right\} \\
& =\sqrt{\frac{h}{n}}\left\{-n \frac{\epsilon^{\prime} W^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}+2 n \frac{\left(\epsilon^{\prime} W \epsilon\right)^{2}}{\left(\epsilon^{\prime} \epsilon\right)^{2}}+\operatorname{tr}\left(W^{\prime} W\right)-\frac{1}{n} \operatorname{tr}\left(\left(W+W^{\prime}\right)^{2}\right)\left(1+\frac{2}{n}\right)^{-1}\right\} \tag{2.A.4}
\end{align*}
$$

since

$$
\begin{gather*}
E\left(\epsilon^{\prime} W^{\prime} W \epsilon\right)=\sigma^{2} \operatorname{tr}\left(W^{\prime} W\right) \tag{2.A.5}\\
E\left(\left(\epsilon^{\prime}\left(W+W^{\prime}\right) \epsilon\right)^{2}\right)=2 \sigma^{4} \operatorname{tr}\left(\left(W+W^{\prime}\right)^{2}\right) \tag{2.A.6}
\end{gather*}
$$

and

$$
\begin{equation*}
E\left(\left(\epsilon^{\prime} \epsilon\right)^{2}\right)=\sigma^{4}\left(n^{2}+2 n\right) \tag{2.A.7}
\end{equation*}
$$

The second equality in (2.A.4) follows because both the ratios

$$
\frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}=\frac{\frac{1}{2} \epsilon^{\prime}\left(W+W^{\prime}\right) \epsilon}{\epsilon^{\prime} \epsilon} \quad \text { and } \quad \frac{\epsilon^{\prime} W^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}
$$

are independent of their own denominator and therefore the expectation of the ratio is equal to the ratio of the expectations (Pitman (1937)). Similarly,

$$
\begin{equation*}
J(0)=\frac{h}{n}\left(\frac{-6 n \epsilon^{\prime} W \epsilon \epsilon^{\prime} W^{\prime} W \epsilon}{\left(\epsilon^{\prime} \epsilon\right)^{2}}+\frac{8 n\left(\epsilon^{\prime} W \epsilon\right)^{3}}{\left(\epsilon^{\prime} \epsilon\right)^{3}}-2 \operatorname{tr}\left(W^{3}\right)\right) \tag{2.A.8}
\end{equation*}
$$

and, using (2.A.5), (2.A.6), (2.A.7),

$$
\begin{align*}
K(0) & =-\frac{h}{n}\left(-n \frac{E\left(\epsilon^{\prime} W^{\prime} W \epsilon\right)}{E\left(\epsilon^{\prime} \epsilon\right)}+2 n \frac{E\left(\epsilon^{\prime} \frac{1}{2}\left(W+W^{\prime}\right) \epsilon\right)^{2}}{E\left(\epsilon^{\prime} \epsilon\right)^{2}}\right)+\frac{h}{n} \operatorname{tr}\left(W^{2}\right) \\
& =\frac{h}{n} \operatorname{tr}\left(W^{2}\right)+\frac{h}{n} \operatorname{tr}\left(W^{\prime} W\right)-\frac{h}{n^{2}} \operatorname{tr}\left(\left(W+W^{\prime}\right)^{2}\right)\left(1+\frac{2}{n}\right)^{-1} \tag{2.A.9}
\end{align*}
$$

By Lemmas 2.1, 2.2 and 2.3 (reported in Appendix A.2) $Z^{(1)}(0)=O_{e}(1), Z^{(2)}(0)=O_{p}(1)$ and $J(0)=O_{p}(1)$, respectively. In addition, under Assumption 3, $K(0)$ is finite and positive for large n.

By the Mean Value Theorem,

$$
0=\frac{h}{n} \frac{\partial l(\tilde{\lambda})}{\partial \lambda}=\frac{h}{n} \frac{\partial l(0)}{\partial \lambda}+\frac{h}{n} \frac{\partial^{2} l(0)}{\partial \lambda^{2}} \tilde{\lambda}+\frac{1}{2} \frac{h}{n} \frac{\partial^{3} l(0)}{\partial \lambda^{3}} \tilde{\lambda}^{2}+\frac{h}{6 n} \frac{\partial^{4} l(\bar{\lambda})}{\partial \lambda^{2}} \tilde{\lambda}^{3}
$$

where $\bar{\lambda}$ is an intermediate point between $\tilde{\lambda}$ and 0 . Therefore,

$$
0=\sqrt{\frac{h}{n}} Z^{(1)}(0)+\sqrt{\frac{h}{n}} Z^{(2)}(0) \tilde{\lambda}-K(0) \tilde{\lambda}+\frac{1}{2} J(0) \tilde{\lambda}^{2}+\frac{h}{6 n} \frac{\partial^{4} l(\bar{\lambda})}{\partial \lambda^{4}} \tilde{\lambda}^{3}
$$

and rearranging,

$$
\begin{equation*}
\sqrt{\frac{n}{h}} \tilde{\lambda}=\frac{Z^{(1)}(0)}{K(0)}+\frac{Z^{(2)}(0)}{K(0)} \tilde{\lambda}+\frac{1}{2} \sqrt{\frac{n}{h}} \frac{J(0)}{K(0)} \tilde{\lambda}^{2}+\frac{1}{6} \sqrt{\frac{h}{n}} \frac{\partial^{4} l(\bar{\lambda})}{\partial \lambda^{4}} \tilde{\lambda}^{3} \tag{2.A.10}
\end{equation*}
$$

The first term of the RHS of (2.A.10) is $O_{e}(1)$, the second and the third are $O_{p}(\sqrt{h / n})$, since it is known that $\tilde{\lambda}=O_{e}(\sqrt{h / n})$ (see Lee (2004)) while $Z^{(2)}(0)$ and $J(0)$ are $O_{p}(1)$, by Lemma 2.2 and Lemma 2.3, respectively. The last term is $o_{p}(\sqrt{h / n})$ since $\bar{\lambda} \xrightarrow{p} 0$ and $\partial^{4} l(0) / \partial \lambda^{4} \sim \operatorname{tr}\left(W^{4}\right) \sim(n / h)$. Hence,

$$
\sqrt{\frac{n}{h}} \tilde{\lambda}=\frac{Z^{1}(0)}{K(0)}+\sqrt{\frac{h}{n}} \frac{Z^{(2)}(0) Z^{(1)}(0)}{K(0)^{2}}+\frac{1}{2} \sqrt{\frac{h}{n}} \frac{J(0)\left(Z^{(1)}(0)\right)^{2}}{K(0)^{3}}+o_{p}\left(\sqrt{\frac{h}{n}}\right)
$$

where the last displayed expression has been obtained by substituting into (2.A.10) the approximation for $\tilde{\lambda}$ implicit in (2.A.10), i.e.

$$
\tilde{\lambda} \sim \sqrt{\frac{h}{n}} \frac{Z^{(1)}(0)}{K(0)}
$$

Let x be any finite real number. We have

$$
\begin{aligned}
& \operatorname{Pr}\left(\sqrt{\frac{n}{h}} \tilde{\lambda} \leq x\right) \\
= & \operatorname{Pr}\left(\frac{Z^{1}(0)}{K(0)}+\sqrt{\frac{h}{n}} \frac{Z^{(2)}(0) Z^{(1)}(0)}{K(0)^{2}}+\frac{1}{2} \sqrt{\frac{h}{n}} \frac{J(0)\left(Z^{(1)}(0)\right)^{2}}{K(0)^{3}}+o_{p}\left(\sqrt{\frac{h}{n}}\right) \leq x\right) \\
= & \operatorname{Pr}\left(\frac{1}{K(0)} \sqrt{\frac{h}{n}} \frac{\epsilon^{\prime} W \epsilon}{\frac{1}{n} \epsilon^{\prime} \epsilon}+\sqrt{\frac{h}{n}} \frac{Z^{(2)}(0) Z^{(1)}(0)}{K(0)^{2}}+\frac{1}{2} \sqrt{\frac{h}{n}} \frac{J(0)\left(Z^{(1)}(0)\right)^{2}}{K(0)^{3}}+o_{p}\left(\sqrt{\frac{h}{n}}\right) \leq x\right),
\end{aligned}
$$

where the last equality is obtained by substituting (2.A.3) and multiplying both numerator and denominator of the first term by $1 / n$. We write

$$
\begin{align*}
\tilde{f} & =\sqrt{\frac{h}{n}} \epsilon^{\prime} W \epsilon-x \frac{K(0)}{n} \epsilon^{\prime} \epsilon+\sqrt{\frac{h}{n}} \frac{Z^{(2)}(0) Z^{(1)}(0)}{K(0)} \frac{1}{n} \epsilon^{\prime} \epsilon+\frac{1}{2} \sqrt{\frac{h}{n}} \frac{J(0)\left(Z^{(1)}(0)\right)^{2}}{K(0)^{2}} \frac{1}{n} \epsilon^{\prime} \epsilon+o_{p}\left(\sqrt{\frac{h}{n}}\right) \\
& =\frac{1}{2} \epsilon^{\prime}\left(\tilde{C}+\tilde{C}^{\prime}\right) \epsilon+\sqrt{\frac{h}{n}} \frac{Z^{(2)}(0) Z^{(1)}(0)}{K(0)} \frac{1}{n} \epsilon^{\prime} \epsilon+\frac{1}{2} \sqrt{\frac{h}{n}} \frac{J(0)\left(Z^{(1)}(0)\right)^{2}}{K(0)^{2}} \frac{1}{n} \epsilon^{\prime} \epsilon+o_{p}\left(\sqrt{\frac{h}{n}}\right), \tag{2.A.11}
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{C}=\sqrt{\frac{h}{n}} W-x \frac{K(0)}{n} I \tag{2.A.12}
\end{equation*}
$$

Therefore, by standard algebraic manipulation,

$$
\operatorname{Pr}\left(\sqrt{\frac{n}{h}} \tilde{\lambda} \leq x\right)=\operatorname{Pr}(\tilde{f} \leq 0)
$$

Under Assumption 3 and by a slight modification of the argument in Lemma 2.1 the first term of the RHS of (2.A.11) is $O_{e}(1)$. The second and the third terms are both $O_{p}(\sqrt{h / n})$ by Lemmas 2.1, 2.2 2.3, and since $K(0)$ is finite and positive in the limit.

Under Assumption 1 the characteristic function of \tilde{f} can be written as

$$
\begin{aligned}
E\left(e^{i t \tilde{f}}\right) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{\Re^{n}} e^{i t \tilde{f}} e^{-\frac{u^{\prime} u}{2 \sigma^{2}}} d u \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{\Re^{n}} e^{\frac{1}{2} i t u^{\prime}\left(\tilde{C}+\tilde{C}^{\prime}\right) u}\left\{1+i t \sqrt{\frac{h}{n}} \frac{Z^{(2)}(0) Z^{(1)}(0)}{K(0)} \frac{1}{n} u^{\prime} u\right. \\
& \left.+\frac{1}{2} i t \sqrt{\frac{h}{n}} \frac{J(0)\left(Z^{(1)}(0)\right)^{2}}{K(0)^{2}} \frac{1}{n} u^{\prime} u+o_{p}\left(\sqrt{\frac{h}{n}}\right)\right\} \times e^{-\frac{u^{\prime} u}{2 \sigma^{2}}} d u
\end{aligned}
$$

where, from (2.A.3), (2.A.4) and (2.A.8), it is clear than in $Z^{(1)}(0), Z^{(2)}(0)$ and $J(0)$ appearing in the integrand function of the last displayed expression, are functions of u. Next,

$$
\begin{aligned}
E\left(e^{i t \tilde{f}}\right) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{\Re^{n}} e^{-\frac{1}{2 \sigma^{2}} u^{\prime}\left(I-i t \sigma^{2}\left(\tilde{C}+\tilde{C}^{\prime}\right)\right) u} d u \\
& +i t \sqrt{\frac{h}{n}} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \frac{1}{K(0)} \int_{\Re^{n}} e^{-\frac{1}{2 \sigma^{2}}{ }^{\prime}\left(I-i t \sigma^{2}\left(\tilde{C}+\tilde{C}^{\prime}\right)\right) u} \frac{Z^{(1)}(0) Z^{(2)}(0) u^{\prime} u}{n} d u \\
& +\frac{1}{2} i t \sqrt{\frac{h}{n}} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \frac{1}{K(0)^{2}} \int_{\Re^{n}} e^{-\frac{1}{2 \sigma^{2}} u^{\prime}\left(I-i t \sigma^{2}\left(\tilde{C}+\tilde{C}^{\prime}\right)\right) u} \frac{\left(Z^{(1)}(0)\right)^{2} J(0) u^{\prime} u}{n} d u+o\left(\sqrt{\frac{h}{n}}\right) .
\end{aligned}
$$

Let

$$
\begin{equation*}
\Sigma=\left(I-i t \sigma^{2}\left(\tilde{C}+\tilde{C}^{\prime}\right)\right) \tag{2.A.13}
\end{equation*}
$$

By the change of variable

$$
\begin{equation*}
u \rightarrow v=\Sigma^{1 / 2} u \tag{2.A.14}
\end{equation*}
$$

$$
\begin{align*}
& E\left(e^{i t \tilde{f}}\right)=\operatorname{det}\left(I-i t \sigma^{2}\left(\tilde{C}+\tilde{C}^{\prime}\right)\right)^{-1 / 2} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \\
& \quad \times\left(\int_{\Re^{n}} e^{-\frac{v^{\prime} v}{2 \sigma^{2}}}\left(1+i t \sqrt{\frac{h}{n}} \frac{1}{K(0)} \frac{Z^{(1)}(0) Z^{(2)}(0) v^{\prime} \Sigma^{-1} v}{n} d v+\frac{1}{2} i t \sqrt{\frac{h}{n}} \frac{1}{K(0)^{2}} \frac{\left(Z^{(1)}(0)\right)^{2} J(0) v^{\prime} \Sigma^{-1} v}{n}\right) d v\right)+o\left(\sqrt{\frac{h}{n}}\right) \\
& \quad=\prod_{j=1}^{n}\left(1-i t \sigma^{2} \eta_{j}\left(\tilde{C}+\tilde{C}^{\prime}\right)\right)^{-1 / 2}\left\{1+i t \sqrt{\frac{h}{n}} \frac{1}{K(0)} E\left(\frac{Z^{(1)}(0) Z^{(2)}(0) \epsilon^{\prime} \Sigma^{-1} \epsilon}{n}\right)\right. \\
& \left.\quad+\frac{1}{2} i t \sqrt{\frac{h}{n}} \frac{1}{K(0)^{2}} E\left(\frac{\left(Z^{(1)}(0)\right)^{2} J(0) \epsilon^{\prime} \Sigma^{-1} \epsilon}{n}\right)\right\}+o\left(\sqrt{\frac{h}{n}}\right) \tag{2.A.15}
\end{align*}
$$

where $\operatorname{det}\left(I-i t \sigma^{2}\left(\tilde{C}+\tilde{C}^{\prime}\right)\right)^{-1 / 2}$ is the Jacobian of the transformation in (2.A.14) and $\eta_{j}(\tilde{C}+$ $\left.\tilde{C}^{\prime}\right), j=1 \ldots n$, are the eigenvalues of $\left(\tilde{C}+\tilde{C}^{\prime}\right)$. It should be stressed that, after the transformation in (2.A.14), $Z^{(1)}(0), Z^{(2)}(0)$ and $J(0)$ in the expectations displayed in (2.A.15) are functions of $V=\Sigma^{-1 / 2} \epsilon$ instead of ϵ only.

For notational simplicity, let

$$
Q=Q_{1}+Q_{2}+o\left(\sqrt{\frac{h}{n}}\right)
$$

where

$$
Q_{1}=i t \sqrt{\frac{h}{n}} \frac{1}{K(0)} E\left(\frac{Z^{(1)}(0) Z^{(2)}(0) \epsilon^{\prime} \Sigma^{-1} \epsilon}{n}\right)
$$

and

$$
Q_{2}=\frac{1}{2} i t \sqrt{\frac{h}{n}} \frac{1}{K(0)^{2}} E\left(\frac{\left(Z^{(1)}(0)\right)^{2} J(0) \epsilon^{\prime} \Sigma^{-1} \epsilon}{n}\right) .
$$

From (2.A.15) the cumulant generating function for \tilde{f}, denoted $\tilde{\psi}(t)$, can be written as

$$
\begin{align*}
\tilde{\psi}(t) & =-\frac{1}{2} \sum_{j=1}^{n} \ln \left(1-i t \sigma^{2} \eta_{j}\left(\tilde{C}+\tilde{C}^{\prime}\right)\right)+\ln (1+Q) \\
& =\frac{1}{2} \sum_{s=1}^{\infty} \frac{\left(i t \sigma^{2}\right)^{s}}{s} \operatorname{tr}\left(\left(\tilde{C}+\tilde{C}^{\prime}\right)^{s}\right)+\sum_{s=1}^{\infty} \frac{(-1)^{s+1}}{s} Q^{s} . \tag{2.A.16}
\end{align*}
$$

Let $\tilde{\kappa}_{s}$ be the s th cumulant of f. The contributions of the first term of the RHS of (2.A.16) to $\tilde{\kappa}_{1}, \tilde{\kappa}_{2}$ and $\tilde{\kappa}_{3}$ are given by

$$
\begin{gather*}
\sigma^{2} \operatorname{tr}(\tilde{C})=-\sigma^{2} x K(0) \tag{2.A.17}\\
\left.\frac{\sigma^{4}}{2} \operatorname{tr}\left(\left(\tilde{C}+\tilde{C}^{\prime}\right)^{2}\right)\right)=\frac{h}{n} \sigma^{4}\left(\operatorname{tr}\left(W^{2}+W^{\prime} W\right)\right)+O\left(\frac{1}{n}\right) \tag{2.A.18}
\end{gather*}
$$

and

$$
\begin{equation*}
\sigma^{6} \operatorname{tr}\left(\tilde{C}+\tilde{C}^{\prime}\right)^{3}=\sigma^{6}\left(\frac{h}{n}\right)^{3 / 2}\left(2 \operatorname{tr}\left(W^{3}\right)+6 \operatorname{tr}\left(W^{2} W^{\prime}\right)\right)+o\left(\sqrt{\frac{h}{n}}\right) \tag{2.A.19}
\end{equation*}
$$

respectively. The contribution to $\tilde{\kappa}_{1}, \tilde{\kappa}_{2}$ and $\tilde{\kappa}_{3}$ of the second term of the RHS of (2.A.16) are evaluated in Appendix A.2. Collecting (2.A.17), (2.A.18), (2.A.19) and the results in Appendix A.2,

$$
\begin{gather*}
\tilde{\kappa}_{1}=-\sigma^{2} x K(0)-2 \sigma^{2}\left(\frac{h}{n}\right)^{3 / 2} \frac{\operatorname{tr}\left(W W^{\prime} W\right)}{K(0)}-\sigma^{2}\left(\frac{h}{n}\right)^{3 / 2} \frac{\operatorname{tr}\left(W^{3}\right)}{K(0)}+o\left(\sqrt{\frac{h}{n}}\right), \tag{2.A.20}\\
\tilde{\kappa}_{2}=\sigma^{4} \frac{h}{n}\left(\operatorname{tr}\left(W^{2}+W^{\prime} W\right)\right)+o\left(\sqrt{\frac{h}{n}}\right) \tag{2.A.21}
\end{gather*}
$$

and

$$
\begin{equation*}
\tilde{\kappa}_{3}=-4 \sigma^{6}\left(\frac{h}{n}\right)^{3 / 2} \operatorname{tr}\left(W^{3}\right)-6 \sigma^{6}\left(\frac{h}{n}\right)^{3 / 2} \operatorname{tr}\left(W W^{\prime} W\right)+o\left(\sqrt{\frac{h}{n}}\right) \tag{2.A.22}
\end{equation*}
$$

By centring and scaling the statistic \tilde{f},

$$
\tilde{f}^{c}=\frac{\tilde{f}-\tilde{\kappa}_{1}}{\tilde{\kappa}_{2}^{1 / 2}}
$$

the cumulant generating function of \tilde{f}^{c} can be written as

$$
\begin{equation*}
\tilde{\psi}^{c}(t)=-\frac{1}{2} t^{2}+\sum_{s=3}^{\infty} \frac{\tilde{\kappa}_{s}^{c}(i t)^{s}}{s!} \tag{2.A.23}
\end{equation*}
$$

where $\tilde{\kappa}_{s}^{c}=\tilde{\kappa}_{s} / \tilde{\kappa}_{2}^{s / 2}$. From (2.A.23), the characteristic function of \tilde{f}^{c} becomes

$$
\begin{aligned}
E\left(e^{i t \tilde{f}^{c}}\right) & =e^{-\frac{1}{2} t^{2}} \exp \left\{\sum_{s=3}^{\infty} \frac{\tilde{\kappa}_{s}^{c}(i t)^{s}}{s!}\right\}= \\
& =e^{-\frac{1}{2} t^{2}}\left\{1+\sum_{s=3}^{\infty} \frac{\tilde{\kappa}_{s}^{c}(i t)^{s}}{s!}+\frac{1}{2!}\left(\sum_{s=3}^{\infty} \frac{\tilde{\kappa}_{s}^{c}(i t)^{s}}{s!}\right)^{2}+\frac{1}{3!}\left(\sum_{s=3}^{\infty} \frac{\tilde{\kappa}_{s}^{c}(i t)^{s}}{s!}\right)^{3}+\ldots . .\right\} \\
& =e^{-\frac{1}{2} t^{2}}\left\{1+\frac{\tilde{\kappa}_{3}^{c}(i t)^{3}}{3!}+\frac{\tilde{\kappa}_{4}^{c}(i t)^{4}}{4!}+\frac{\tilde{\kappa}_{5}^{c}(i t)^{5}}{5!}+\left\{\frac{\tilde{\kappa}_{6}^{c}}{6!}+\frac{\left(\tilde{\kappa}_{3}^{c}\right)^{2}}{(3!)^{2}}\right\}(i t)^{6}+\ldots . .\right\} .
\end{aligned}
$$

Thus, by the Fourier inversion formula,

$$
\operatorname{Pr}\left(\tilde{f}^{c} \leq z\right)=\int_{-\infty}^{z} \phi(z) d z+\frac{\tilde{\kappa}_{3}^{c}}{3!} \int_{-\infty}^{z} H_{3}(z) \phi(z) d z+\frac{\tilde{\kappa}_{4}^{c}}{4!} \int_{-\infty}^{z} H_{4}(z) \phi(z) d z+\ldots
$$

Collecting the results derived above,

$$
\begin{align*}
\operatorname{Pr}\left(\sqrt{\frac{n}{h}} \tilde{\lambda} \leq x\right) & =\operatorname{Pr}(\tilde{f} \leq 0)=\operatorname{Pr}\left(\tilde{f}^{c} \tilde{\kappa}_{2}^{1 / 2}+\tilde{\kappa}_{1} \leq 0\right)=\operatorname{Pr}\left(\tilde{f}^{c} \leq-\tilde{\kappa}_{1}^{c}\right) \\
& =\Phi\left(-\tilde{\kappa}_{1}^{c}\right)-\frac{\tilde{\kappa}_{3}^{c}}{3!} \Phi^{(3)}\left(-\tilde{\kappa}_{1}^{c}\right)+\frac{\tilde{\kappa}_{4}^{c}}{4!} \Phi^{(4)}\left(-\tilde{\kappa}_{1}^{c}\right)+\ldots \tag{2.A.24}
\end{align*}
$$

Now, from (2.A.20) and (2.A.21),

$$
\begin{aligned}
\tilde{\kappa}_{1}^{c} & =\frac{-\sigma^{2} x K(0)-2 \sigma^{2}\left(\frac{h}{n}\right)^{3 / 2} \frac{\operatorname{tr}\left(W W^{\prime} W\right)}{K(0)}-\sigma^{2}\left(\frac{h}{n}\right)^{3 / 2} \frac{\operatorname{tr}\left(W^{3}\right)}{K(0)}}{\sigma^{2}\left(\frac{h}{n}\left(\operatorname{tr}\left(W^{2}+W^{\prime} W\right)\right)\right)^{1 / 2}}+o\left(\sqrt{\frac{h}{n}}\right) \\
& =\frac{-x \frac{h}{n}\left(\operatorname{tr}\left(W^{2}+W^{\prime} W\right)\right)-2 \sqrt{\frac{h}{n}} \frac{\operatorname{tr}\left(W W^{\prime} W\right)}{\left(\operatorname{tr}\left(W^{2}+W^{\prime} W\right)\right)}-\sqrt{\frac{h}{n}} \frac{\operatorname{tr}\left(W^{3}\right)}{\left(\operatorname{tr}\left(W^{2}+W^{\prime} W\right)\right)}}{\left(\frac{h}{n}\left(\operatorname{tr}\left(W^{2}+W^{\prime} W\right)\right)\right)^{1 / 2}} \\
& +o\left(\sqrt{\frac{h}{n}}\right),
\end{aligned}
$$

where the second equality has been obtained by substituting

$$
K(0)=\frac{h}{n}\left(\operatorname{tr}\left(W^{2}+W^{\prime} W\right)\right)+O\left(\frac{1}{n}\right)
$$

according to (2.A.9). We set $x=\sqrt{n / h} \tilde{a}^{-1} \zeta$, where

$$
\tilde{a}=\sqrt{\operatorname{tr}\left(W^{2}+W^{\prime} W\right)}
$$

Therefore

$$
\tilde{\kappa}_{1}^{c}=-\zeta-2 \frac{\operatorname{tr}\left(W W^{\prime} W\right)}{\tilde{a}^{3}}-\frac{\operatorname{tr}\left(W^{3}\right)}{\tilde{a}^{3}}+o\left(\sqrt{\frac{h}{n}}\right)
$$

and, from (2.A.21) and (2.A.22),

$$
\tilde{\kappa}_{3}^{c} \sim \frac{-4 \operatorname{tr}\left(W^{3}\right)-6 \operatorname{tr}\left(W W^{\prime} W\right)}{\left(\operatorname{tr}\left(W^{2}+W^{\prime} W\right)\right)^{3 / 2}}=-\frac{4 \operatorname{tr}\left(W^{3}\right)+6 \operatorname{tr}\left(W W^{\prime} W\right)}{\tilde{a}^{3}} \sim \sqrt{\frac{h}{n}}
$$

By Taylor expansion of the function $\Phi\left(-\tilde{\kappa}_{1}^{c}\right)$ in (2.A.24),

$$
\operatorname{Pr}(\tilde{a} \tilde{\lambda} \leq \zeta)=\Phi(\zeta)+\left(2 \frac{\operatorname{tr}\left(W W^{\prime} W\right)}{\tilde{a}^{3}}+\frac{\operatorname{tr}\left(W^{3}\right)}{\tilde{a}^{3}}\right) \phi(\zeta)-\frac{\tilde{\kappa}_{3}^{c}}{3!} \Phi^{(3)}(\zeta)+o\left(\sqrt{\frac{h}{n}}\right)
$$

A. 2 Auxiliary results

In this appendix we will present and prove some of the auxiliary results used in the proof of Theorem 2.1. As already stressed, the expansion in Theorem 2.1 is formal, so we do not deal with convergence issues in some of the results that follow. Moreover, it must be mentioned that for notational simplicity, we prove Lemmas 2,3 and 4 for a symmetric W. When W is not symmetric the same results hold simply by substituting $\left(W+W^{\prime}\right) / 2$ instead of W where necessary.

Lemma 2.1 Under Assumptions 1-3

$$
Z^{(1)}(0)=\sqrt{h n} \frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}=O_{e}(1)
$$

Proof We have

$$
E\left(\frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)^{2}=\frac{E\left(\epsilon^{\prime} W \epsilon\right)^{2}}{E\left(\epsilon^{\prime} \epsilon\right)^{2}}=\frac{2 \operatorname{tr}\left(W^{2}\right)}{n^{2}+2 n} \sim \frac{1}{n h}
$$

under Assumptions 1-3. Hence, by Markov's inequality,

$$
\sqrt{h n} \frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}=O_{e}(1)
$$

Lemma 2.2 Under Assumptions 1-3

$$
Z^{(2)}(0)=O_{p}(1)
$$

where $Z^{(2)}($.$) is defined according to (2.A.4).$

Proof By rearranging terms in the first two lines of (2.A.4),
$Z^{(2)}(0)=-\sqrt{\frac{h}{n}}\left(n \frac{\epsilon^{\prime} W^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}-n E\left(\frac{\epsilon^{\prime} W^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)\right)+\sqrt{\frac{h}{n}}\left(2 n\left(\frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)^{2}-2 n E\left(\frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)^{2}\right)$.

By the C_{r} inequality,
$E\left(Z^{(2)}(0)\right)^{2} \leq 2 \frac{h}{n} E\left(n \frac{\epsilon^{\prime} W^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}-n E\left(\frac{\epsilon^{\prime} W^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)\right)^{2}+2 \frac{h}{n} E\left(2 n\left(\frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)^{2}-2 n E\left(\frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)^{2}\right)^{2}$.
Now,

$$
\begin{align*}
& E\left(n \frac{\epsilon^{\prime} W^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}-n E\left(\frac{\epsilon^{\prime} W^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)\right)^{2}=E\left(n \frac{\epsilon^{\prime} W^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}-\operatorname{tr}\left(W^{\prime} W\right)\right)^{2} \\
= & n^{2} \frac{E\left(\epsilon^{\prime} W^{\prime} W \epsilon\right)^{2}}{E\left(\epsilon^{\prime} \epsilon\right)^{2}}+\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}-2 n \operatorname{tr}\left(W^{\prime} W\right) \frac{E\left(\epsilon^{\prime} W^{\prime} W \epsilon\right)}{E\left(\epsilon^{\prime} \epsilon\right)} \\
= & \left(\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}+2 \operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)\right)\left(1+\frac{2}{n}\right)^{-1}+\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}-2\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2} \\
= & \left(\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}+2 \operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)\right)\left(1-\frac{2}{n}+O\left(\frac{1}{n^{2}}\right)\right)-\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2} \\
= & 2 \operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)\left(1-\frac{2}{n}+O\left(\frac{1}{n^{2}}\right)\right)-\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}\left(\frac{2}{n}+O\left(\frac{1}{n^{2}}\right)\right) \tag{2.A.26}
\end{align*}
$$

and hence,

$$
\begin{equation*}
E\left(n \frac{\epsilon^{\prime} W^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}-n E\left(\frac{\epsilon^{\prime} W^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)\right)^{2} \sim 2 \operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right) \sim \frac{n}{h} \tag{2.A.27}
\end{equation*}
$$

under Assumption 3. In case the sequence h is bounded, the latter result would be modified as

$$
E\left(n \frac{\epsilon^{\prime} W^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}-n E\left(\frac{\epsilon^{\prime} W^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)\right)^{2} \sim 2 \operatorname{tr}\left(\left(W^{\prime} W\right)^{2}\right)-\frac{2}{n}\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2} \sim n
$$

It is worth stressing that, despite we are not attempting to provide an exact rate, we could not use the inequality

$$
E(X-E(X))^{2} \leq E\left(X^{2}\right)
$$

instead of (2.A.26), as it would neglect relevant terms. Moreover,

$$
\begin{align*}
& 4 n^{2} E\left(\left(\frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)^{2}-E\left(\frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)^{2}\right)^{2} \leq 4 n^{2} E\left(\frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)^{4} \\
= & 4 n^{2} \frac{E\left(\epsilon^{\prime} W \epsilon\right)^{4}}{E\left(\epsilon^{\prime} \epsilon\right)^{4}} \sim 4 n^{2} \frac{12\left(\operatorname{tr}\left(W^{2}\right)\right)^{2}+48 \operatorname{tr}\left(W^{4}\right)}{n^{4}} \sim \frac{1}{h^{2}} . \tag{2.A.28}
\end{align*}
$$

Collecting (2.A.25), (2.A.27), (2.A.28) and by Markov's inequality, we conclude $Z^{(2)}(0)=$ $O_{p}(1)$.

Lemma 2.3 Under Assumptions 1-3

$$
J(0)=O_{p}(1)
$$

where $J(0)$ is defined according to (2.A.8).

Proof By the C_{r} inequality (applied twice),

$$
\begin{align*}
E(J(0))^{2} & \leq 2 \frac{h^{2}}{n^{2}}\left(E\left(\frac{6 n \epsilon^{\prime} W \epsilon \epsilon^{\prime} W^{\prime} W \epsilon}{\left(\epsilon^{\prime} \epsilon\right)^{2}}\right)^{2}+E\left(\frac{8 n\left(\epsilon^{\prime} W \epsilon\right)^{3}}{\left(\epsilon^{\prime} \epsilon\right)^{3}}-2 \operatorname{tr}\left(W^{3}\right)\right)^{2}\right) \\
& \leq 2 \frac{h^{2}}{n^{2}} E\left(\frac{6 n \epsilon^{\prime} W \epsilon \epsilon^{\prime} W^{\prime} W \epsilon}{\left(\epsilon^{\prime} \epsilon\right)^{2}}\right)^{2}+4 \frac{h^{2}}{n^{2}} E\left(\frac{8 n\left(\epsilon^{\prime} W \epsilon\right)^{3}}{\left(\epsilon^{\prime} \epsilon\right)^{3}}\right)^{2} \\
& +4 \frac{h^{2}}{n^{2}}\left(2 \operatorname{tr}\left(W^{3}\right)\right)^{2} \tag{2.A.29}
\end{align*}
$$

In order to evaluate the rate of the first term in (2.A.29), we use $E(A / B) \sim E(A) / E(B)$, without deriving the exact order of the remainder. As previously mentioned, $E(A / B)=$ $E(A) / E(B)$ when A / B is independent of B. When the latter fails, we are able to justify $E(A / B) \sim E(A) / E(B)$ as an approximation using an argument similar to Lieberman (1994). Using standard results on the expectations of quadratic forms,

$$
\begin{equation*}
E\left(\frac{6 n \epsilon^{\prime} W \epsilon \epsilon^{\prime} W^{\prime} W \epsilon}{\left(\epsilon^{\prime} \epsilon\right)^{2}}\right)^{2} \sim 36 n^{2} \frac{E\left(\epsilon^{\prime} W \epsilon \epsilon^{\prime} W^{\prime} W \epsilon\right)^{2}}{E\left(\epsilon^{\prime} \epsilon\right)^{4}} \sim 36 n^{2} \frac{2 \operatorname{tr}\left(W^{2}\right)\left(\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}}{n^{4}} \sim \frac{n}{h^{3}} . \tag{2.A.30}
\end{equation*}
$$

Moreover, by a recursive formula (Ghazal (1996)),

$$
\begin{equation*}
E\left(\epsilon^{\prime} W \epsilon\right)^{n}=\sum_{i=0}^{n-1} g_{i} E\left(\epsilon^{\prime} W \epsilon\right)^{n-1-i} \tag{2.A.31}
\end{equation*}
$$

where

$$
g_{i}=\binom{n-1}{i} i!2^{i} \sigma^{2 i+2} \operatorname{tr}\left((W)^{i+1}\right)
$$

we have

$$
\begin{equation*}
E\left(\frac{8 n\left(\epsilon^{\prime} W \epsilon\right)^{3}}{\left(\epsilon^{\prime} \epsilon\right)^{3}}\right)^{2}=\frac{64 n^{2} E\left(\epsilon^{\prime} W \epsilon\right)^{6}}{E\left(\epsilon^{\prime} \epsilon\right)^{6}} \sim 64 n^{2} \frac{120\left(\operatorname{tr}\left(W^{2}\right)\right)^{3}}{n^{6}} \sim \frac{1}{n h^{3}} \tag{2.A.32}
\end{equation*}
$$

Hence, the term

$$
4\left(\operatorname{tr}\left(W^{3}\right)^{2}\right) \sim \frac{n^{2}}{h^{2}}
$$

in (2.A.29) dominates both (2.A.30) and (2.A.32), whether h is divergent or bounded. Therefore,

$$
E(J(0))^{2}=O\left(\frac{h^{2}}{n^{2}} \frac{n^{2}}{h^{2}}\right)=O(1)
$$

implying $J(0)=O_{p}(1)$.

Evaluation of cumulants

Here we evaluate the contribution to $\tilde{\kappa}_{1}, \tilde{\kappa}_{2}$ and $\tilde{\kappa}_{3}$ of the term

$$
Q_{1}=i t \sqrt{\frac{h}{n}} \frac{1}{K(0)} \frac{1}{n} E\left(Z^{(1)}(0) Z^{(2)}(0) \epsilon^{\prime} \Sigma^{-1} \epsilon\right)
$$

appearing in (2.A.15). Since the expansion in Theorem 2.1 is formal, $E(A / B) \sim E(A) / E(B)$ is used without proving the exact order of the remainder terms. Substituting (2.A.3) and
(2.A.4),

$$
Q_{1}=Q_{11}+Q_{12}+Q_{13}
$$

where

$$
\begin{gathered}
Q_{11}=-i t \sqrt{\frac{h}{n}} \frac{1}{K(0)} h E\left(\frac{\epsilon^{\prime} \Sigma^{-1 / 2} W \Sigma^{-1 / 2} \epsilon \epsilon^{\prime} \Sigma^{-1 / 2} W^{\prime} W \Sigma^{-1 / 2} \epsilon}{\epsilon^{\prime} \Sigma^{-1} \epsilon}\right) \\
Q_{12}=2 i t \sqrt{\frac{h}{n}} \frac{1}{K(0)} h E\left(\frac{\left(\epsilon^{\prime} \Sigma^{-1 / 2} W \Sigma^{-1 / 2} \epsilon\right)^{3}}{\left(\epsilon^{\prime} \Sigma^{-1} \epsilon\right)^{2}}\right)
\end{gathered}
$$

and

$$
Q_{13}=i t \sqrt{\frac{h}{n}} \frac{1}{K(0)} \frac{h}{n}\left(\operatorname{tr}\left(W^{\prime} W\right)-\frac{1}{n} \operatorname{tr}\left(\left(W+W^{\prime}\right)^{2}\right)\left(1+\frac{2}{n}\right)^{-1}\right) E\left(\epsilon^{\prime} \Sigma^{-1 / 2} W \Sigma^{-1 / 2} \epsilon\right)
$$

Contribution from term Q_{11}

By standard results on the expectations of quadratic forms in normal random variables, we have

$$
\begin{aligned}
Q_{11} & \sim-i t \sqrt{\frac{h}{n}} \frac{1}{K(0)} h \frac{E\left(\frac{1}{2} \epsilon^{\prime} \Sigma^{-1 / 2}\left(W+W^{\prime}\right) \Sigma^{-1 / 2} \epsilon \epsilon^{\prime} \Sigma^{-1 / 2} W^{\prime} W \Sigma^{-1 / 2} \epsilon\right)}{E\left(\epsilon^{\prime} \Sigma^{-1} \epsilon\right)} \\
& =-i t \sqrt{\frac{h}{n}} \frac{1}{K(0)} h \frac{\sigma^{4}\left(\frac{1}{2} \operatorname{tr}\left(\left(W+W^{\prime}\right) \Sigma^{-1}\right) \operatorname{tr}\left(W^{\prime} W \Sigma^{-1}\right)+\operatorname{tr}\left(\Sigma^{-1}\left(W+W^{\prime}\right) \Sigma^{-1} W^{\prime} W\right)\right)}{\sigma^{2} \operatorname{tr}\left(\Sigma^{-1}\right)} .
\end{aligned}
$$

Since

$$
\Sigma^{-1}=\left(I-i t \sigma^{2}\left(\tilde{C}+\tilde{C}^{\prime}\right)\right)^{-1}=\sum_{s=0}^{\infty}\left(i t \sigma^{2}\left(\tilde{C}+\tilde{C}^{\prime}\right)\right)^{s}
$$

by (1.4.2), it is straightforward to show that $\operatorname{tr}\left(\Sigma^{-1}\right) \sim n$.
The contribution from Q_{11} to $\tilde{\kappa}_{1}$ is then

$$
\begin{equation*}
-2 \sqrt{\frac{h}{n}} \frac{1}{K(0)} \frac{h}{n} \sigma^{2} \operatorname{tr}\left(W W^{\prime} W\right)+o\left(\sqrt{\frac{h}{n}}\right)=-2 \sigma^{2} \sqrt{\frac{h}{n}} \frac{\operatorname{tr}\left(W W^{\prime} W\right)}{\operatorname{tr}\left(W^{2}\right)+\operatorname{tr}\left(W^{\prime} W\right)}+o\left(\sqrt{\frac{h}{n}}\right) \tag{2.A.33}
\end{equation*}
$$

since

$$
\left.K(0)=\frac{h}{n}\left(\operatorname{tr} W^{2}+W^{\prime} W\right)\right)+O\left(\frac{1}{n}\right)
$$

according to (2.A.9).
The contribution to $\tilde{\kappa}_{2}$ comes from the term

$$
\begin{aligned}
& -(i t)^{2} \sigma^{4}\left(\frac{h}{n}\right)^{3 / 2} \frac{1}{K(0)}\left\{\frac{1}{2} \operatorname{tr}\left(\left(W+W^{\prime}\right)\left(\tilde{C}+\tilde{C}^{\prime}\right)\right) \operatorname{tr}\left(W^{\prime} W\right)\right. \\
+\quad & \left.\operatorname{tr}\left(\left(\tilde{C}+\tilde{C}^{\prime}\right)\left(W+W^{\prime}\right) W^{\prime} W\right)+\operatorname{tr}\left(\left(W+W^{\prime}\right)\left(\tilde{C}+\tilde{C}^{\prime}\right) W^{\prime} W\right)\right\}
\end{aligned}
$$

with \tilde{C} given by (2.A.12). The contribution to $\tilde{\kappa}_{2}$ is given by

$$
\begin{equation*}
-\sigma^{4}\left(\frac{h}{n}\right)^{2} \frac{1}{K(0)}\left(\operatorname{tr}\left(\left(W+W^{\prime}\right)^{2}\right) \operatorname{tr}\left(W^{\prime} W\right)+o_{p}\left(\sqrt{\frac{h}{n}}\right),\right. \tag{2.A.34}
\end{equation*}
$$

since

$$
\begin{gather*}
\operatorname{tr}\left(\left(W+W^{\prime}\right)\left(\tilde{C}+\tilde{C}^{\prime}\right)\right)=\left(\operatorname{tr}\left(W+W^{\prime}\right)^{2}\right) \sqrt{\frac{h}{n}} \sim\left(\sqrt{\frac{n}{h}}\right) \tag{2.A.35}\\
\operatorname{tr}\left(\left(\tilde{C}+\tilde{C}^{\prime}\right)\left(W+W^{\prime}\right) W^{\prime} W\right) \sim\left(\sqrt{\frac{n}{h}}\right) \tag{2.A.36}
\end{gather*}
$$

and

$$
\begin{equation*}
\operatorname{tr}\left(\left(W+W^{\prime}\right)\left(\tilde{C}+\tilde{C}^{\prime}\right) W^{\prime} W\right) \sim\left(\sqrt{\frac{n}{h}}\right) \tag{2.A.37}
\end{equation*}
$$

Similarly, the contribution to $\tilde{\kappa}_{3}$ comes from the term

$$
\begin{aligned}
& -(i t)^{3}\left(\frac{h}{n}\right)^{3 / 2} \frac{1}{K(0)} \frac{1}{\sigma^{2}} \sigma^{8}\left(\frac{1}{2} \operatorname{tr}\left(\left(W+W^{\prime}\right)\left(\tilde{C}+\tilde{C}^{\prime}\right)\right) \operatorname{tr}\left(W^{\prime} W\left(\tilde{C}+\tilde{C}^{\prime}\right)\right)\right. \\
+ & \frac{1}{2} \operatorname{tr}\left(\left(W+W^{\prime}\right)\left(\tilde{C}+\tilde{C}^{\prime}\right)^{2}\right) \operatorname{tr}\left(W^{\prime} W\right)+\operatorname{tr}\left(\left(\tilde{C}+\tilde{C}^{\prime}\right)^{2}\left(W+W^{\prime}\right) W^{\prime} W\right) \\
+\quad & \left.\operatorname{tr}\left(\left(W+W^{\prime}\right)\left(\tilde{C}+\tilde{C}^{\prime}\right)^{2} W^{\prime} W\right)+\operatorname{tr}\left(\left(\tilde{C}+\tilde{C}^{\prime}\right)\left(W+W^{\prime}\right)\left(\tilde{C}+\tilde{C}^{\prime}\right) W^{\prime} W\right)\right)
\end{aligned}
$$

Now,

$$
\begin{gather*}
\operatorname{tr}\left(W^{\prime} W\left(\tilde{C}+\tilde{C}^{\prime}\right)\right) \sim \sqrt{\frac{h}{n}} 2 \operatorname{tr}\left(W W^{\prime} W\right) \tag{2.A.38}\\
\operatorname{tr}\left(W\left(\tilde{C}+\tilde{C}^{\prime}\right)^{2}\right) \sim \frac{h}{n} \operatorname{tr}\left(\left(W+W^{\prime}\right)^{3}\right) \tag{2.A.39}\\
\operatorname{tr}\left(\left(\tilde{C}+\tilde{C}^{\prime}\right)^{2}\left(W+W^{\prime}\right) W^{\prime} W\right)=o\left(\sqrt{\frac{n}{h}}\right) \tag{2.A.40}\\
\operatorname{tr}\left(\left(W+W^{\prime}\right)\left(\tilde{C}+\tilde{C}^{\prime}\right)^{2} W^{\prime} W\right)=o\left(\sqrt{\frac{n}{h}}\right) \tag{2.A.41}
\end{gather*}
$$

and

$$
\begin{equation*}
\operatorname{tr}\left(\left(\tilde{C}+\tilde{C}^{\prime}\right)\left(W+W^{\prime}\right)\left(\tilde{C}+\tilde{C}^{\prime}\right) W^{\prime} W\right)=o\left(\sqrt{\frac{n}{h}}\right) \tag{2.A.42}
\end{equation*}
$$

Using (2.A.35), (2.A.36), (2.A.38)-(2.A.42), and after some tedious but straightforward algebra we conclude that the contribution to $\tilde{\kappa}_{3}$ is

$$
\begin{align*}
& -6\left(\frac{h}{n}\right)^{5 / 2} \frac{1}{K(0)} \sigma^{6}\left(2 \operatorname{tr}\left(W^{2}\right) \operatorname{tr}\left(W W^{\prime} W\right)+5 \operatorname{tr}\left(W^{\prime} W\right) \operatorname{tr}\left(W W^{\prime} W\right)\right. \\
+ & \left.\operatorname{tr}\left(W^{\prime} W\right) \operatorname{tr}\left(W^{3}\right)\right)+o\left(\sqrt{\frac{h}{n}}\right) \tag{2.A.43}
\end{align*}
$$

When W is symmetric (e.g. W given in (0.0.7)), the latter expression simplifies to

$$
-24\left(\frac{h}{n}\right)^{3 / 2} \sigma^{6} \operatorname{tr}\left(W^{3}\right)+o\left(\sqrt{\frac{h}{n}}\right)
$$

as

$$
K(0)=2 \frac{h}{n} \operatorname{tr} W^{2}+O\left(\frac{1}{n}\right)
$$

according to (2.A.9).

Contribution from term Q_{12}

When Σ^{-1} is positive definite, $1 / 2\left(\epsilon^{\prime} \Sigma^{-1 / 2}\left(W+W^{\prime}\right) \Sigma^{-1 / 2} \epsilon\right) / \epsilon^{\prime} \Sigma^{-1} \epsilon$ and $\epsilon^{\prime} \Sigma^{-1} \epsilon$ are independent. (see e.g. Heijmans (1999), who provides sufficient conditions for Pitman (1937) general result to hold). Without considering validity issues for (1.4.2), Σ^{-1} in (2.A.13) is indeed positive definite, since $\Sigma^{-1} \sim \sigma^{2} I$. Hence,

$$
\begin{aligned}
Q_{12} & =2 i t \sqrt{\frac{h}{n}} \frac{1}{K(0)} h E\left(\left(\frac{\epsilon^{\prime} \Sigma^{-1 / 2} W \Sigma^{-1 / 2} \epsilon}{\epsilon^{\prime} \Sigma^{-1} \epsilon}\right)^{3} \epsilon^{\prime} \Sigma^{-1} \epsilon\right)=2 i t \sqrt{\frac{h}{n}} \frac{1}{K(0)} h E\left(\frac{\epsilon^{\prime} \Sigma^{-1 / 2} W \Sigma^{-1 / 2} \epsilon}{\epsilon^{\prime} \Sigma^{-1} \epsilon}\right)^{3} E\left(\epsilon^{\prime} \Sigma^{-1} \epsilon\right) \\
& =2 i t \sqrt{\frac{h}{n}} \frac{1}{K(0)} h \frac{E\left(\frac{1}{2} \epsilon^{\prime} \Sigma^{-1 / 2}\left(W+W^{\prime}\right) \Sigma^{-1 / 2} \epsilon\right)^{3}}{E\left(\epsilon^{\prime} \Sigma^{-1} \epsilon\right)^{3}} E\left(\epsilon^{\prime} \Sigma^{-1} \epsilon\right) \\
& =2 i t \sqrt{\frac{h}{n}} \frac{1}{K(0)} h \sigma^{6}\left\{\left(\frac{1}{2} \operatorname{tr}\left(\left(W+W^{\prime}\right) \Sigma^{-1}\right)\right)^{3}+6 \operatorname{tr}\left(\frac{1}{2}\left(W+W^{\prime}\right) \Sigma^{-1}\right) \operatorname{tr}\left(\left(\frac{1}{2}\left(W+W^{\prime}\right) \Sigma^{-1}\right)^{2}\right)\right. \\
& \left.+8 \operatorname{tr}\left(\left(\frac{1}{2} \Sigma^{-1}\left(W+W^{\prime}\right)\right)^{3}\right)\right\} \frac{\sigma^{2} \operatorname{tr}\left(\Sigma^{-1}\right)}{\sigma^{6}\left(\left(\operatorname{tr} \Sigma^{-1}\right)^{3}+6 \operatorname{tr}\left(\Sigma^{-1}\right) \operatorname{tr}\left(\Sigma^{-2}\right)+8 \operatorname{tr}\left(\Sigma^{-3}\right)\right)} .
\end{aligned}
$$

We have

$$
\left(\operatorname{tr} \Sigma^{-1}\right)^{3}+6 \operatorname{tr}\left(\Sigma^{-1}\right) \operatorname{tr}\left(\Sigma^{-2}\right)+8 \operatorname{tr}\left(\Sigma^{-3}\right) \sim n^{3}
$$

and $\operatorname{tr}\left(\Sigma^{-1}\right) \sim n$.
The contribution from Q_{12} to $\tilde{\kappa}_{1}$ is then

$$
\begin{equation*}
2 \sigma^{2} \sqrt{\frac{h}{n}} \frac{1}{K(0)} \frac{h}{n^{2}} \operatorname{tr}\left(\left(W+W^{\prime}\right)^{3}\right)=o\left(\sqrt{\frac{h}{n}}\right) \tag{2.A.44}
\end{equation*}
$$

A similar argument holds also for the contribution from Q_{12} to both $\tilde{\kappa}_{2}$ and $\tilde{\kappa}_{3}$.

Contribution from term Q_{13}

We have

$$
Q_{13}=i t\left(\frac{h}{n}\right)^{3 / 2} \frac{1}{K(0)}\left(\operatorname{tr}\left(W^{\prime} W\right)-\frac{1}{n} \operatorname{tr}\left(\left(W+W^{\prime}\right)^{2}\right)\left(1+\frac{2}{n}\right)^{-1}\right) \sigma^{2} \operatorname{tr}\left(\frac{1}{2}\left(W+W^{\prime}\right) \Sigma^{-1}\right)
$$

It is straightforward to see that there are no contributions to $\tilde{\kappa}_{1}$, since

$$
\begin{equation*}
\sigma^{2}\left(\frac{h}{n}\right)^{3 / 2} \frac{1}{K(0)}\left(\operatorname{tr}\left(W^{\prime} W\right)-\frac{1}{n} \operatorname{tr}\left(W^{2}\right)\left(1+\frac{2}{n}\right)^{-1}\right) \operatorname{tr}(W)=0 \tag{2.A.45}
\end{equation*}
$$

The contribution to $\tilde{\kappa}_{2}$ comes from

$$
(i t)^{2} \sigma^{4}\left(\frac{h}{n}\right)^{3 / 2} \frac{1}{K(0)}\left(\operatorname{tr}\left(W^{\prime} W\right)-\frac{4}{n} \operatorname{tr}\left(W^{2}\right)\left(1+\frac{2}{n}\right)^{-1}\right) \frac{1}{2} \operatorname{tr}\left(\left(W+W^{\prime}\right)\left(\tilde{C}+\tilde{C}^{\prime}\right)\right)
$$

and by (2.A.35) we conclude that Q_{13} contributes to κ_{2} with

$$
\begin{equation*}
\sigma^{4}\left(\frac{h}{n}\right)^{2} \frac{1}{K(0)} \operatorname{tr}\left(\left(W+W^{\prime}\right)^{2}\right) \operatorname{tr}\left(W^{\prime} W\right)+o_{p}\left(\sqrt{\frac{h}{n}}\right) \tag{2.A.46}
\end{equation*}
$$

The contribution to $\tilde{\kappa}_{3}$ comes from

$$
(i t)^{3} \sigma^{6}\left(\frac{h}{n}\right)^{3 / 2} \frac{1}{K(0)}\left(\operatorname{tr}\left(W^{\prime} W\right)-\frac{1}{n} \operatorname{tr}\left(W^{2}\right)\left(1+\frac{2}{n}\right)^{-1}\right) \frac{1}{2} \operatorname{tr}\left(\left(W+W^{\prime}\right)\left(\tilde{C}+\tilde{C}^{\prime}\right)^{2}\right)
$$

and hence, from (2.A.39), we conclude that Q_{13} contributes to κ_{3} with

$$
\begin{equation*}
6 \sigma^{6}\left(\frac{h}{n}\right)^{5 / 2} \frac{1}{K(0)} \operatorname{tr}\left(W^{\prime} W\right)\left(\operatorname{tr}\left(W^{3}\right)+3 \operatorname{tr}\left(W\left(W^{\prime}\right)^{2}\right)\right)+o\left(\sqrt{\frac{h}{n}}\right) \tag{2.A.47}
\end{equation*}
$$

When W is symmetric, the latter simplifies to

$$
12 \sigma^{6}\left(\frac{h}{n}\right)^{3 / 2} \operatorname{tr}\left(W^{3}\right)+o\left(\sqrt{\frac{h}{n}}\right)
$$

From (2.A.33), (2.A.44) and (2.A.45) we conclude that Q_{1} contributes to $\tilde{\kappa}_{1}$ with the term

$$
\begin{equation*}
-2 \sigma^{2}\left(\frac{h}{n}\right)^{3 / 2} \frac{1}{K(0)} \operatorname{tr}\left(W W^{\prime} W\right)+o\left(\sqrt{\frac{h}{n}}\right) \tag{2.A.48}
\end{equation*}
$$

From (2.A.34) and (2.A.46) we conclude that any contribution to $\tilde{\kappa}_{2}$ from Q_{1} is neglegible, while collecting (2.A.43) and (2.A.47) we have that the contribution to $\tilde{\kappa}_{3}$ from Q_{1} is

$$
\begin{align*}
& -12 \sigma^{6}\left(\frac{h}{n}\right)^{5 / 2} \frac{1}{K(0)} \operatorname{tr}\left(W W^{\prime} W\right)\left(\operatorname{tr}\left(W^{2}\right)+\operatorname{tr}\left(W^{\prime} W\right)\right)+o\left(\sqrt{\frac{h}{n}}\right) \\
= & -12 \sigma^{6}\left(\frac{h}{n}\right)^{3 / 2} \operatorname{tr}\left(W W^{\prime} W\right)+o\left(\sqrt{\frac{h}{n}}\right) . \tag{2.A.49}
\end{align*}
$$

Finally, we report the main steps for the evaluation of the contribution to $\tilde{\kappa}_{1}, \tilde{\kappa}_{2}$ and $\tilde{\kappa}_{3}$ from

$$
Q_{2}=\frac{1}{2} i t \sqrt{\frac{h}{n}} \frac{1}{K(0)^{2}} \frac{1}{n} E\left(\left(Z^{(1)}(0)\right)^{2} J(0) \epsilon^{\prime} \Sigma^{-1} \epsilon\right)
$$

Substituting (2.A.3) and (2.A.8), we write

$$
Q_{2}=Q_{21}+Q_{22}+Q_{23}
$$

where, by independence between $1 / 2\left(\epsilon^{\prime} \Sigma^{-1 / 2}\left(W+W^{\prime}\right) \Sigma^{-1 / 2} \epsilon\right) / \epsilon^{\prime} \Sigma^{-1} \epsilon$ and $\epsilon^{\prime} \Sigma^{-1} \epsilon$,

$$
\begin{gathered}
Q_{21} \sim-3 i t \sqrt{\frac{h}{n}} \frac{1}{K(0)^{2}} h^{2} \frac{E\left(\left(\epsilon^{\prime} \Sigma^{-1 / 2} W \Sigma^{-1 / 2} \epsilon\right)^{3} \epsilon^{\prime} \Sigma^{-1 / 2} W^{\prime} W \Sigma^{-1 / 2} \epsilon\right)}{E\left(\epsilon^{\prime} \Sigma^{-1} \epsilon\right)^{3}} \\
Q_{22}=4 i t \sqrt{\frac{h}{n}} \frac{1}{K(0)^{2}} h^{2} E\left(\left(\frac{\epsilon^{\prime} \Sigma^{-1 / 2} W \Sigma^{-1 / 2} \epsilon}{\epsilon^{\prime} \Sigma^{-1} \epsilon}\right)^{5} \epsilon^{\prime} \Sigma^{-1} \epsilon\right) \\
=4 i t \sqrt{\frac{h}{n}} \frac{1}{K(0)^{2}} h^{2} \frac{E\left(\epsilon^{\prime} \Sigma^{-1 / 2} W \Sigma^{-1 / 2} \epsilon\right)^{5}}{E\left(\epsilon^{\prime} \Sigma^{-1} \epsilon\right)^{5}} E\left(\epsilon^{\prime} \Sigma^{-1} \epsilon\right)
\end{gathered}
$$

and

$$
\begin{aligned}
Q_{23} & =-i t \sqrt{\frac{h}{n}} \frac{1}{K(0)^{2}} \frac{h^{2}}{n} \operatorname{tr}\left(W^{3}\right) E\left(\left(\frac{\epsilon^{\prime} \Sigma^{-1 / 2} W \Sigma^{-1 / 2} \epsilon}{\epsilon^{\prime} \Sigma^{-1} \epsilon}\right)^{2} \epsilon^{\prime} \Sigma^{-1} \epsilon\right) \\
& =-i t \sqrt{\frac{h}{n}} \frac{1}{K(0)^{2}} \frac{h^{2}}{n} \operatorname{tr}\left(W^{3}\right) \frac{E\left(\epsilon^{\prime} \Sigma^{-1 / 2} W \Sigma^{-1 / 2} \epsilon\right)^{2}}{E\left(\epsilon^{\prime} \Sigma^{-1} \epsilon\right)^{2}} E\left(\epsilon^{\prime} \Sigma^{-1} \epsilon\right)
\end{aligned}
$$

Contribution from term Q_{21}

Using some standard results on the expectations of quadratic forms in normal random variables,

$$
\begin{aligned}
& E\left(\left(\frac{1}{2} \epsilon^{\prime} \Sigma^{-1 / 2}\left(W+W^{\prime}\right) \Sigma^{-1 / 2} \epsilon\right)^{3} \epsilon^{\prime} \Sigma^{-1 / 2} W^{\prime} W \Sigma^{-1 / 2} \epsilon\right)=\sigma^{8}\left(\left(\operatorname{tr}\left(\Sigma^{-1} \frac{1}{2}\left(W+W^{\prime}\right)\right)\right)^{3} \operatorname{tr}\left(\Sigma^{-1} W^{\prime} W\right)\right. \\
+ & 6\left(\operatorname{tr}\left(\Sigma^{-1} \frac{1}{2}\left(W+W^{\prime}\right)\right)\right)^{2} \operatorname{tr}\left(\Sigma^{-1} \frac{1}{2}\left(W+W^{\prime}\right) \Sigma^{-1} W^{\prime} W\right)+6 \operatorname{tr}\left(\left(\Sigma^{-1} \frac{1}{2}\left(W+W^{\prime}\right)\right)^{2}\right) \operatorname{tr}\left(\Sigma^{-1} \frac{1}{2}\left(W+W^{\prime}\right)\right) \operatorname{tr}\left(\Sigma^{-1} W^{\prime} W\right) \\
+ & 8 \operatorname{tr}\left(\Sigma^{-1} \frac{1}{2}\left(W+W^{\prime}\right)\right) \operatorname{tr}\left(\left(\Sigma^{-1} \frac{1}{2}\left(W+W^{\prime}\right)\right)^{2} \Sigma^{-1} W^{\prime} W\right)+12 \operatorname{tr}\left(\Sigma^{-1} \frac{1}{2}\left(W+W^{\prime}\right) \Sigma^{-1} W^{\prime} W\right) \operatorname{tr}\left(\left(\Sigma^{-1} \frac{1}{2}\left(W+W^{\prime}\right)\right)^{2}\right) \\
+ & \left.48 \operatorname{tr}\left(\left(\Sigma^{-1} \frac{1}{2}\left(W+W^{\prime}\right)\right)^{3} \Sigma^{-1} W^{\prime} W\right)\right)
\end{aligned}
$$

and $E\left(\epsilon^{\prime} \Sigma^{-1} \epsilon\right)^{3} \sim \sigma^{6} n^{3}$. Therefore, the contribution to $\tilde{\kappa}_{1}$ is

$$
\begin{aligned}
& -3 \sigma^{2} \sqrt{\frac{h}{n}} \frac{1}{(K(0))^{2}} \frac{h^{2}}{n^{3}}\left(\frac{3}{2} \operatorname{tr}\left(\left(W+W^{\prime}\right)^{2}\right) \operatorname{tr}\left(\left(W+W^{\prime}\right) W W^{\prime}\right)\right. \\
+ & \left.6 \operatorname{tr}\left(\left(W+W^{\prime}\right)^{3} W^{\prime} W\right)\right)=o\left(\sqrt{\frac{h}{n}}\right) .
\end{aligned}
$$

A similar argument holds for the contribution to both $\tilde{\kappa}_{2}$ and $\tilde{\kappa}_{3}$.

Contribution from term Q_{22}

We have

$$
\frac{E\left(\epsilon^{\prime} \Sigma^{-1} \epsilon\right)}{E\left(\epsilon^{\prime} \Sigma^{-1} \epsilon\right)^{5}} \sim \frac{\sigma^{2} n}{\sigma^{10} n^{5}}=\frac{1}{\sigma^{8} n^{4}}
$$

Also, we can evaluate the fifth moment of $\epsilon^{\prime} \Sigma^{-1 / 2} W \Sigma^{-1 / 2} \epsilon$ by the recursive formula given in (2.A.31). By tedious, but straightforward algebra, it is possible to show that the contribution to $\tilde{\kappa}_{1}, \tilde{\kappa}_{2}$ and $\tilde{\kappa}_{3}$ are $o(\sqrt{h / n})$. Intuitively, this is because no term in $E\left(\left(\epsilon^{\prime} \Sigma^{-1 / 2} W \Sigma^{-1 / 2} \epsilon\right)^{5}\right)$ is large enough to offset the factor h^{2} / n^{4}.

Contribution from term Q_{23}

We have

$$
E\left(\left(\epsilon^{\prime} \Sigma^{-1 / 2} W \Sigma^{-1 / 2} \epsilon\right)^{2}\right)=\frac{1}{4} E\left(\epsilon^{\prime} \Sigma^{-1 / 2}\left(W+W^{\prime}\right) \Sigma^{-1 / 2} \epsilon\right)^{2}=\sigma^{4}\left(\frac{1}{4}\left(\operatorname{tr}\left(\Sigma^{-1}\left(W+W^{\prime}\right)\right)\right)^{2}+\frac{1}{2} \operatorname{tr}\left(\left(\Sigma^{-1}\left(W+W^{\prime}\right)\right)^{2}\right)\right)
$$

and

$$
\frac{E\left(\epsilon^{\prime} \Sigma^{-1} \epsilon\right)}{E\left(\epsilon^{\prime} \Sigma^{-1} \epsilon\right)^{2}} \sim \frac{n \sigma^{2}}{n^{2} \sigma^{4}}=\frac{1}{n \sigma^{2}}
$$

Therefore, the contribution to $\tilde{\kappa}_{1}$ is

$$
\begin{align*}
& -\sigma^{2} \sqrt{\frac{h}{n}} \frac{1}{K(0)^{2}} \frac{h^{2}}{n^{2}}\left(\operatorname{tr}\left(W^{2}\right)+\operatorname{tr}\left(W^{\prime} W\right)\right) \operatorname{tr}\left(W^{3}\right) \\
= & -\sigma^{2} \sqrt{\frac{h}{n}} \frac{\operatorname{tr}\left(W^{3}\right)}{\left(\operatorname{tr}\left(W^{2}+W^{\prime} W\right)\right)}+o\left(\sqrt{\frac{h}{n}}\right) \tag{2.A.50}
\end{align*}
$$

Similarly, the contribution to $\tilde{\kappa_{2}}$ comes from the term

$$
-(i t)^{2} \sigma^{4} \sqrt{\frac{h}{n}} \frac{1}{K(0)^{2}} \frac{h^{2}}{n^{2}} \operatorname{tr}\left(W^{3}\right) \operatorname{tr}\left(\left(W+W^{\prime}\right)^{2}\left(\tilde{C}+\tilde{C}^{\prime}\right)\right)
$$

and, by (2.A.36), is $o(\sqrt{h / n})$.
Finally, the contribution to $\tilde{\kappa}_{3}$ comes from the term

$$
-\frac{1}{4}(i t)^{3} \sigma^{6}\left(\frac{h}{n}\right)^{7 / 2} \frac{1}{K(0)^{2}} \operatorname{tr}\left(W^{3}\right)\left(\operatorname{tr}\left(\left(W+W^{\prime}\right)^{2}\right)\right)^{2}
$$

and hence the actual contribution to $\tilde{\kappa}_{3}$ is

$$
\begin{align*}
& -6 \sigma^{6}\left(\frac{h}{n}\right)^{7 / 2} \frac{1}{K(0)^{2}} \operatorname{tr}\left(W^{3}\right)\left(\operatorname{tr}\left(W^{2}\right)+\operatorname{tr}\left(W^{\prime} W\right)\right)^{2}+o\left(\sqrt{\frac{h}{n}}\right) \\
& =-6 \sigma^{6}\left(\frac{h}{n}\right)^{3 / 2} \operatorname{tr}\left(W^{3}\right)+o\left(\sqrt{\frac{h}{n}}\right) \tag{2.A.51}
\end{align*}
$$

Collecting (2.A.48) and (2.A.50), we conclude that the contribution to $\tilde{\kappa}_{1}$ from $Q_{1}+Q_{2}$ is

$$
-2 \sigma^{2}\left(\frac{h}{n}\right)^{3 / 2} \frac{\operatorname{tr}\left(W W^{\prime} W\right)}{K(0)}-\sigma^{2}\left(\frac{h}{n}\right)^{3 / 2} \frac{\operatorname{tr}\left(W^{3}\right)}{K(0)}+o\left(\sqrt{\frac{h}{n}}\right)
$$

The overall contribution to $\tilde{\kappa}_{2}$ from $Q_{1}+Q_{2}$ is neglegible, while that to $\tilde{\kappa}_{3}$ is

$$
-12 \sigma^{6}\left(\frac{h}{n}\right)^{3 / 2} \operatorname{tr}\left(W W^{\prime} W\right)-6 \sigma^{6}\left(\frac{h}{n}\right)^{3 / 2} \operatorname{tr}\left(W^{3}\right)+o\left(\sqrt{\frac{h}{n}}\right)
$$

by collecting (2.A.49) and (2.A.51).

3 Finite Sample Corrections for the LM Test in SAR Models

As already outlined in the Introduction, LM testing is especially computationally convenient because it depends on the null model, and thus does not require estimating the spatial coefficient. An LM test can be expected to be efficient against local SAR alternatives, and to have an asymptotic null χ^{2} distribution under the null. However, the χ^{2} approximation may not be accurate in modest samples, so a test based on it may be badly sized. Thus we develop tests with improved finite-sample properties.

The main contribution of this chapter is to develop tests based on the Edgeworth expansion of the cdf of the LM statistic. Specifically, in Section 3.1 we derive a refined test for H_{0} in (0.0.2) against a (1.2.1) when the data follow model (1.0.8). We focus here on a two-sided test because in some circumstances the practitioner might not have an ex ante evidence regarding the sign of λ. We then provide corresponding tests of (0.0.2) in linear regression models with SAR disturbances, that is model (0.0.3). In both cases the proofs of the theorems are left to an Appendix. In Section 3.3 we describe the finite sample corrections of Robinson (2008b), so that the finite sample performance of the latter can be compared with that of the Edgeworth-corrected tests. In Section 3.4 we compare the corrected tests presented in Sections 3.1-3.3 with bootstrap-based ones in a Monte Carlo study of finite sample. Section 3.5 compares the Edgeworth approximation with the the exact distribution of the LM statistic.

3.1 Edgeworth-corrected LM tests for independence in pure SAR

We suppose that model (1.0.8) holds and we focus on testing (0.0.2) against (1.2.1). For any admissible values of λ and σ^{2}, the Gaussian log-likelihood for Y in model (1.0.8) is given by (2.1.1). As discussed in Section 2.1, any $\lambda \in \Lambda$ where Λ is any closed subset of $(-1,1)$ is admissible.

By standard linear algebra,

$$
\begin{gathered}
\frac{\partial l\left(\lambda, \sigma^{2}\right)}{\partial \lambda}=-\operatorname{tr}\left(S^{-1}(\lambda) W\right)+\frac{1}{\sigma^{2}} Y^{\prime} S(\lambda) W^{\prime} Y, \\
\frac{\partial^{2} l\left(\lambda, \sigma^{2}\right)}{\partial \lambda^{2}}=-\operatorname{tr}\left(\left(S^{-1}(\lambda) W\right)^{2}\right)-\frac{1}{\sigma^{2}} Y^{\prime} W^{\prime} W Y .
\end{gathered}
$$

Hence, given the MLE for σ^{2} displayed in (2.1.2)

$$
\left.\frac{\partial l\left(\lambda, \sigma^{2}\right)}{\partial \lambda}\right|_{H_{0}}=\frac{Y^{\prime} W Y}{\frac{1}{n} Y^{\prime} Y},
$$

and

$$
-\left.E\left(\frac{\partial^{2} l\left(\lambda, \sigma^{2}\right)}{\partial \lambda^{2}}\right)\right|_{H_{0}}=\operatorname{tr}\left(W^{\prime} W+W^{2}\right)
$$

Therefore, a version of the LM statistic is

$$
\begin{equation*}
L M=\frac{n^{2}}{\operatorname{tr}\left(W^{2}+W^{\prime} W\right)}\left(\frac{Y^{\prime} W Y}{Y^{\prime} Y}\right)^{2} \tag{3.1.1}
\end{equation*}
$$

so, under H_{0},

$$
\begin{equation*}
L M=\frac{n^{2}}{\operatorname{tr}\left(W^{2}+W^{\prime} W\right)}\left(\frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon}\right)^{2} \tag{3.1.2}
\end{equation*}
$$

This statistic was derived by Burridge (1980) who noted that it is equivalent to the test statistic of Cliff and Ord (1972), which in turn is related to one of Moran (1950); see also Anselin $(1988,2001)$ for extensions to more general models, and Pinkse (2004). As noted by Burridge (1980), (3.1.2) is also the LM statistic for testing (0.0.2) against the spatial moving average model

$$
Y=\epsilon+\lambda W \epsilon
$$

(a corresponding equivalence to that found with time series models).
The derivation of (3.1.2) is based on a Gaussian likelihood but as is common the same first order limit distribution obtains more generally. Under suitable conditions we have

$$
\begin{equation*}
P(L M \leq \eta)=F(\eta)+o(1) \tag{3.1.3}
\end{equation*}
$$

for any $\eta>0$, where F denotes the cdf of a χ_{1}^{2} random variable. Thus (0.0 .2) is rejected in favour of (1.2.1) if $L M$ exceeds the appropriate percentile of the χ_{1}^{2} distribution. We can likewise test (0.0.2) against (1.1.1) by comparing $\sqrt{L M}$ with the appropriate upper or lower percentiles of the standard normal distribution. However, except in Section 3.5, we focus throughout on a two-sided tests.

We do not describe sufficient conditions for (3.1.3), because we wish to consider statistics with better finite-sample properties and we can only justify these under the precise distributional assumption.

Throughout this chapter f denotes the χ^{2} pdf.

Theorem 3.1 Suppose that model (1.0.8) and Assumptions 1-3 hold. Under H_{0} in (0.0.2), the cdf of LM admits the formal Edgeworth expansion

$$
\begin{equation*}
\operatorname{Pr}\left(L M \leq \eta \mid H_{0}\right)=F(\eta)+\frac{\kappa}{4} \eta f(\eta)-\frac{\kappa}{12} \eta^{2} f(\eta)+o\left(\frac{h}{n}\right) \tag{3.1.4}
\end{equation*}
$$

in case h is divergent, and

$$
\begin{equation*}
\operatorname{Pr}(L M \leq \eta)=F(\eta)+\frac{\kappa}{4} \eta f(\eta)-\frac{\kappa}{12} \eta^{2} f(\eta)-\frac{2}{n} \eta^{2} f(\eta)+o\left(\frac{1}{n}\right) \tag{3.1.5}
\end{equation*}
$$

when h is bounded, where

$$
\begin{equation*}
\kappa=\frac{3 \operatorname{tr}\left(W^{\prime}+W\right)^{4}}{\tilde{a}^{4}} \sim \frac{h}{n} \tag{3.1.6}
\end{equation*}
$$

and \tilde{a} defined according to (2.1.4)

The proof of Theorem 3.1 is in the Appendix. Again, it must be stressed that both expansions in Theorem 3.1 are formal.

Clearly, (3.1.4) and (3.1.5) entail better approximations than (3.1.3). The leading terms in (3.1.4) and (3.1.5) depend on known quantities, so they can be used directly for approximating the cdf. The two outcomes in Theorem 3.1 create a dilemma for the practitioner because it cannot be determined from a finite data set whether to treat h as divergent or bounded. However, (3.1.5) is justified also when h is divergent because the extra term in the expansion, $-2 \eta^{2} f(\eta) / n$, is $o(h / n)$.

Theorem 3.1 can be used to derive Edgeworth-corrected critical values. Let $w_{\alpha}^{L M}$ be the α-quantile of $L M$. By inverting either expansion, we can expand $w_{\alpha}^{L M}$ as an infinite series

$$
\begin{equation*}
w_{\alpha}^{L M}=z_{(1+\alpha) / 2}^{2}+p_{1}\left(z_{(1+\alpha) / 2}^{2}\right)+\ldots \ldots \tag{3.1.7}
\end{equation*}
$$

where $p_{1}\left(z_{(1+\alpha) / 2}^{2}\right)$ is a polynomial whose coefficients have order h / n, and that can be determined using the identity $\alpha=\operatorname{Pr}\left(L M \leq w_{\alpha}^{L M}\right)$ and the expansions given in Theorem 3.1. It is worth recalling that, consistently with the notation used in Chapters 1 and $2, z_{\alpha}$ denoted the α-quantile of the standard normal variate. Specifically, when h is divergent, we have

$$
\alpha=\operatorname{Pr}\left(L M \leq w_{\alpha}^{L M}\right)=F\left(w_{\alpha}^{L M}\right)+\left(\frac{\kappa}{4} w_{\alpha}^{L M}-\frac{\kappa}{12}\left(w_{\alpha}^{L M}\right)^{2}\right) f\left(\left(w_{\alpha}^{L M}\right)^{2}\right)+o\left(\frac{h}{n}\right)
$$

By substituting (3.1.7), the leading terms of the LHS are

$$
\begin{aligned}
& F\left(z_{(1+\alpha) / 2}^{2}\right)+p_{1}\left(z_{(1+\alpha) / 2}^{2}\right) f\left(z_{(1+\alpha) / 2}^{2}\right) \\
+ & \left(\frac{\kappa}{4} z_{(1+\alpha) / 2}^{2}-\frac{\kappa}{12} z_{(1+\alpha) / 2}^{4}\right) f\left(z_{(1+\alpha) / 2}^{2}\right)+o\left(\frac{h}{n}\right) \\
= & \alpha+p_{1}\left(z_{(1+\alpha) / 2}^{2}\right) f\left(z_{(1+\alpha) / 2}^{2}\right) \\
+ & \left(\frac{\kappa}{4} z_{(1+\alpha) / 2}^{2}-\frac{\kappa}{12} z_{(1+\alpha) / 2}^{4}\right) f\left(z_{(1+\alpha) / 2}^{2}\right)+o\left(\frac{h}{n}\right) .
\end{aligned}
$$

The latter is $\alpha+o(h / n)$ (rather than $\alpha+O(h / n)$), when we take

$$
\begin{equation*}
p_{1}(x)=-\left(\frac{\kappa}{4} x-\frac{\kappa}{12} x^{2}\right) \sim \frac{h}{n} . \tag{3.1.8}
\end{equation*}
$$

Similarly, when h is bounded, we take

$$
\begin{equation*}
p_{1}(x)=-\left(\frac{\kappa}{4} x-\frac{\kappa}{12} x^{2}-\frac{2}{n} x^{2}\right) \sim \frac{1}{n} \tag{3.1.9}
\end{equation*}
$$

If $w_{\alpha}^{L M}$ were known, the size of a test of H_{0} in (0.0.2) would obviously be $\operatorname{Pr}(L M>$ $\left.w_{\alpha}^{L M} \mid H_{0}\right)=1-\alpha$. We can compare the size of the test of (0.0.2) against (1.2.1) based on the usual first order approximation, i.e.

$$
\begin{equation*}
\operatorname{Pr}\left(L M>z_{(\alpha+1) / 2}^{2} \mid H_{0}\right) \tag{3.1.10}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{Pr}\left(L M>z_{(\alpha+1) / 2}^{2}+p_{1}\left(z_{(\alpha+1) / 2}^{2}\right) \mid H_{0}\right) \tag{3.1.11}
\end{equation*}
$$

where $p_{1}($.$) is defined according to (3.1.8) if h$ is divergent and (3.1.9) if h is bounded.
Thus, the error of the approximation of (3.1.10) is $O(h / n)$, while that of (3.1.11) is $o(h / n)$ when the sequence h is divergent, or $o(1 / n)$ when it is bounded.

As an alternative to using corrected critical values, we can also apply Theorem 3.1 to construct a transformation of $L M$ whose distribution better approximates χ^{2} than $L M$ itself. Starting from the expansion in (3.1.4), we consider the cubic transformation

$$
\begin{equation*}
g(x)=x+\frac{\kappa}{4} x-\frac{\kappa}{12} x^{2}+\frac{1}{4} Q(x), \quad Q(x)=\left(\frac{\kappa}{4}\right)^{2}\left(\frac{4}{27} x^{3}-\frac{2}{3} x^{2}+x\right) \tag{3.1.12}
\end{equation*}
$$

such that

$$
\operatorname{Pr}(g(L M) \leq \eta)=F(\eta)+o\left(\frac{h}{n}\right)
$$

Similarly, from (3.1.5), we can write

$$
\begin{align*}
& g(x)=x+\frac{\kappa}{4} x-\frac{\kappa}{12} x^{2}-\frac{2}{n} x^{2}+\frac{1}{4} Q(x) \\
& Q(x)=\left(\frac{\kappa}{4}\right)^{2} x+\frac{1}{3}\left(\frac{\kappa}{6}+\frac{4}{n}\right)^{2} x^{3}-\frac{\kappa}{4}\left(\frac{\kappa}{6}+\frac{4}{n}\right) x^{2} \tag{3.1.13}
\end{align*}
$$

such that

$$
\operatorname{Pr}(g(L M) \leq \eta)=F(\eta)+o\left(\frac{1}{n}\right)
$$

As already outlined in Section 1.1, the transformations (3.1.12) and (3.1.13) were proposed in case of a standard normal limiting distribution by Hall (1992), or, in a slightly more general setting, Yanagihara et al. (2005). In Lemma 3.1 (reported in the Appendix) we show that such result extends to χ^{2} limiting distributions.

Therefore, we can compare

$$
\begin{equation*}
\operatorname{Pr}\left(g(L M)>z_{(\alpha+1) / 2}^{2} \mid H_{0}\right) \tag{3.1.14}
\end{equation*}
$$

where $g($.$) is defined according to (3.1.12) or (3.1.13) depending on h$, with (3.1.10).

Again, (3.1.14) has error $o(h / n)$ compared to the $O(h / n)$ error of (3.1.10).

3.2 Improved LM tests in regressions where the disturbances are spatially correlated

In this section we extend the results derived in Section 3.1 to to the more general model

$$
\begin{equation*}
Y=X \beta+u, \quad u=\lambda W u+\epsilon \tag{3.2.1}
\end{equation*}
$$

where X is an $n \times k$ matrix of nonstochastic regressors (possibly containing a column of ones) and β is a $k \times 1$ vector of unknown parameters.

From Burridge (1980), Anselin (1988, 2001), the LM statistic for testing (0.0.2) against (1.2.1) is

$$
\begin{equation*}
L \tilde{M}=\frac{n^{2}}{\operatorname{tr}\left(W^{\prime} W\right)+\operatorname{tr}\left(W^{2}\right)}\left(\frac{\hat{u}^{\prime} W \hat{u}}{\hat{u}^{\prime} \hat{u}}\right)^{2}=\frac{n^{2}}{\tilde{a}^{2}}\left(\frac{Y^{\prime} P W P Y}{Y^{\prime} P Y}\right)^{2} \tag{3.2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
P=I-X\left(X^{\prime} X\right)^{-1} X^{\prime} \tag{3.2.3}
\end{equation*}
$$

Indeed, when data are driven by (3.2.1) and for any admissible values of λ, σ and β, the Gaussian log-likelihood for Y is given by
$l\left(\lambda, \sigma^{2}, \beta\right)=-\frac{n}{2} \ln (2 \pi)-\frac{n}{2} \ln \left(\sigma^{2}\right)+\ln (\operatorname{det}(S(\lambda)))-\frac{1}{2 \sigma^{2}}(Y-X \beta)^{\prime} S(\lambda) S(\lambda)^{\prime}(Y-X \beta)$.
Thus, given λ, the MLE for β and σ^{2} are

$$
\hat{\beta}(\lambda)=\left(X^{\prime} S(\lambda) S(\lambda)^{\prime} X\right)^{-1} X^{\prime} S(\lambda) S(\lambda)^{\prime} Y
$$

and

$$
\hat{\sigma}^{2}(\lambda)=\frac{1}{n}(Y-X \beta)^{\prime} S(\lambda) S(\lambda)^{\prime}(Y-X \beta)
$$

It is straightforward to notice that $\hat{\beta}(0)$ is the OLS estimate of β. We denote $\hat{u}=$ $Y-X \hat{\beta}(0)$, which is the vector of OLS residuals. By standard linear algebra,

$$
\left.\frac{\partial l\left(\lambda, \sigma^{2}, \beta\right)}{\partial \lambda}\right|_{H_{0}}=\frac{1}{\hat{\sigma}^{2}(0)}(Y-X \hat{\beta}(0))^{\prime} W(Y-X \hat{\beta}(0))=n \frac{\hat{u}^{\prime} W \hat{u}}{\hat{u}^{\prime} \hat{u}}
$$

and

$$
-\left.E\left(\frac{\partial^{2} l\left(\lambda, \sigma^{2}\right)}{\partial \lambda^{2}}\right)\right|_{H_{0}}=\operatorname{tr}\left(W^{\prime} W\right)+\operatorname{tr}\left(W^{2}\right)
$$

Hence, \tilde{M} is given by (3.2.2).
We impose the following condition on X

Assumption 4 For all n, each element $x_{i j}$ of X is predetermined and $\left|x_{i, j}\right| \leq K$. Moreover, the smallest eigenvalue of $X^{\prime} X / n$ is bounded away from zero for all suf-
ficiently large n and the limits of at least one element of each $X^{\prime} W X / n, X^{\prime} W^{2} X / n$ and $X^{\prime} W^{\prime} W X / n$ are non zero.

Non nullity of the limits of at least one element of each $X^{\prime} W X / n, X^{\prime} W^{2} X / n$ and $X^{\prime} W^{\prime} W X / n$ is required to ensure that the orders of some of the quantities appearing in the following Theorem hold as exact rates and not only as upper bounds, as will be explained below. We have the following results

Theorem 3.2 Suppose that model (3.2.1) and Assumptions $1-4$ hold. Under (0.0.2), the cdf of $L \tilde{M}$ admits the formal Edgeworth expansion

$$
\begin{equation*}
\operatorname{Pr}\left(\tilde{L M} \leq \eta \mid H_{0}\right)=F(\eta)+\left(\frac{\kappa}{4} \eta-\frac{\kappa}{12} \eta^{2}+2 \omega_{1} \eta\right) f(\eta)+o\left(\frac{h}{n}\right) \tag{3.2.4}
\end{equation*}
$$

with

$$
\begin{equation*}
\omega_{1}=\frac{\operatorname{tr}\left(K_{3}-K_{2}\right)}{\tilde{a}^{2}}-\frac{1}{2} \frac{\left(\operatorname{tr}\left(K_{1}\right)\right)^{2}}{\tilde{a}^{2}} \sim \frac{h}{n} \tag{3.2.5}
\end{equation*}
$$

if h is divergent, and

$$
\begin{equation*}
\operatorname{Pr}(\tilde{L M} \leq \eta)=F(\eta)+\left(\frac{\kappa}{4} \eta-\frac{\kappa}{12} \eta^{2}+2 \omega_{2} \eta-\frac{2}{n} \eta^{2}\right) f(\eta)+o\left(\frac{1}{n}\right) \tag{3.2.6}
\end{equation*}
$$

with

$$
\begin{equation*}
\omega_{2}=\frac{\operatorname{tr}\left(K_{3}-K_{2}\right)}{\tilde{a}^{2}}-\frac{1}{2} \frac{\left(\operatorname{tr}\left(K_{1}\right)\right)^{2}}{\tilde{a}^{2}}-\frac{k}{n} \sim \frac{1}{n} \tag{3.2.7}
\end{equation*}
$$

if h is bounded, where κ is given in (3.1.6),

$$
\begin{gather*}
K_{1}=\left(X^{\prime} X\right)^{-1} X^{\prime} W X \tag{3.2.8}\\
K_{2}=\frac{1}{2} X^{\prime}\left(W+W^{\prime}\right) X\left(X^{\prime} X\right)^{-1} X^{\prime}\left(W^{\prime}+W\right) X\left(X^{\prime} X\right)^{-1} \tag{3.2.9}
\end{gather*}
$$

and

$$
\begin{equation*}
K_{3}=X^{\prime}\left(W+W^{\prime}\right)^{2} X\left(X^{\prime} X\right)^{-1} \tag{3.2.10}
\end{equation*}
$$

The components of $\left(X^{\prime} X\right)^{-1}$ have order $1 / n$ by Assumption 4. On the other hand, the absolute values of the components of $X^{\prime} W X, X^{\prime}\left(W+W^{\prime}\right) X$ and $X^{\prime}\left(W+W^{\prime}\right)^{2} X$ are $O(n)$ by Lemma 2. Assumption 4 imposes that for at least one component of each matrix the latter holds as an exact rate. It follows that $\operatorname{tr}\left(K_{1}\right), \operatorname{tr}\left(K_{2}\right)$ and $\operatorname{tr}\left(K_{3}\right)$ are bounded and non zero. Since $\tilde{a}^{2} \sim n / h$ under Assumption $3, \omega_{1}$ and ω_{2} have exactly order h / n and $1 / n$, respectively.

The proof of Theorem 3.2 is the Appendix. Again, both the expansions are formal.
From (3.2.4) and (3.2.6), we can obtain Edgeworth-corrected critical values. Pro-
ceeding as described in Section 3.1, the size based on χ^{2} critical value is

$$
\begin{equation*}
\operatorname{Pr}\left(\tilde{M}>z_{(\alpha+1) / 2}^{2} \mid H_{0}\right) \tag{3.2.11}
\end{equation*}
$$

while the Edgeworth-corrected critical value is

$$
\begin{equation*}
\operatorname{Pr}\left(L \tilde{M}>z_{(\alpha+1) / 2}^{2}+\tilde{p}_{1}\left(z_{(\alpha+1) / 2}^{2}\right) \mid H_{0}\right), \tag{3.2.12}
\end{equation*}
$$

where

$$
\tilde{p}_{1}\left(z_{(\alpha+1) / 2}^{2}\right)=-\left(\frac{\kappa}{4} z_{(\alpha+1) / 2}^{2}-\frac{\kappa}{12} z_{(\alpha+1) / 2}^{4}+2 \omega_{1} z_{(\alpha+1) / 2}^{2}\right)
$$

if h is divergent and

$$
\tilde{p}_{1}\left(z_{(\alpha+1) / 2}\right)=-\left(\frac{\kappa}{4} z_{(\alpha+1) / 2}^{2}-\frac{\kappa}{12} z_{(\alpha+1) / 2}^{4}+2 \omega_{2} z_{(\alpha+1) / 2}^{2}-\frac{2}{n} z_{(\alpha+1) / 2}^{4}\right)
$$

if h is bounded. As before, (3.2.11) has error of order h / n, while (3.2.12) has error $o(h / n)$.

As in Section 3.1, we can also consider Edgeworth-corrected test statistics. The size of test of (0.0.2) based on $L \tilde{M}$ is compared with that based on a corrected statistic, i.e.

$$
\begin{equation*}
\operatorname{Pr}\left(g(\tilde{L M})>z_{(\alpha+1) / 2}^{2} \mid H_{0}\right) . \tag{3.2.13}
\end{equation*}
$$

The choice of the function g is motivated by Lemma 3.1 and in this case is given by

$$
g(x)=x+\frac{\kappa}{4} x-\frac{\kappa}{12} x^{2}+2 \omega_{1} x+\frac{1}{4} Q(x)
$$

where

$$
Q(x)=\left(\left(\frac{\kappa}{4}\right)^{2}+4 \omega_{1}^{2}+\kappa \omega_{1}\right) x-\frac{1}{2}\left(\frac{2}{3} \kappa \omega_{1}+\frac{\kappa^{2}}{12}\right) x^{2}+\frac{1}{3}\left(\frac{\kappa}{6}\right)^{2} x^{3}
$$

in case h is divergent and

$$
g(x)=x+\frac{\kappa}{4} x-\frac{\kappa}{12} x^{2}+2 \omega_{2} x-\frac{2}{n} x^{2}+\frac{1}{4} Q(x),
$$

with

$$
Q(x)=\left(\frac{\kappa}{4}+2 \omega_{2}\right)^{2} x-\left(\frac{\kappa}{4}+2 \omega_{2}\right)\left(\frac{\kappa}{6}+\frac{4}{n}\right) x^{2}+\frac{1}{3}\left(\frac{\kappa}{6}+\frac{4}{n}\right)^{2} x^{3}
$$

if h is bounded. Similarly Section 3.1, when $L \tilde{M}$ is used the error of the approximation has order h / n while it is reduced to $o(h / n)$ when the test is based on the Edgeworthcorrected variant.

3.3 Alternative correction

The results derived in Sections 3.1 and 3.2 can be compared with two alternative corrections derived for asymptotically χ^{2} statistics in Robinson (2008b). The class of statistics considered in Robinson (2008b) include the LM for testing (0.0.2) in either (1.0.8) or (3.2.1) as special cases. In particular, Robinson (2008b) proposes both meanadjusted and mean and variance-adjusted variants of (3.1.1) and (3.2.2), which prove to be asymptotically distributed as a χ^{2} random variable with one degree of freedom. Such corrected statistics are expected to have better finite sample properties than either (3.1.1) or (3.2.2), even though the magnitude of the gain in accuracy is not explicitly shown. In finite sample the corrected statistic based on mean adjustment might have a larger variance than the non-corrected version, resulting in a partial (or total) offset of the gain in accuracy from the mean standardisation. In such case, a mean and variance standardisation should be performed instead.

It should be stressed that such corrected statistics might be convenient in the present case since the ratios $\epsilon^{\prime} W \epsilon / \epsilon^{\prime} \epsilon$ and $\epsilon^{\prime} P W P \epsilon / \epsilon^{\prime} P \epsilon$ are independent of their own denominator and therefore the expectation of the ratio is equal to the ratio of expectations (Pitman (1937)). If the latter condition failed, a correction based on mean and variance standardisation be much less feasible, since the evaluation of mean and variance would require some approximation.

We suppose that Assumptions 1-4 hold and focus on the simpler case first, i.e. the statistic given in (3.1.1). Specifically, Robinson (2008b) proposes a mean and variance-adjusted statistic under H_{0} as

$$
\begin{equation*}
\left(\frac{2}{\operatorname{Var}(L M)}\right)^{1 / 2}(L M-E(L M))+1, \tag{3.3.1}
\end{equation*}
$$

where $\operatorname{Var}(L M)$ denotes the variance of $L M$. In order to compare the performance of such corrected statistics with that based on the results presented in Section 3.1, the leading terms of (3.3.1) have to be derived.

As presented in Robinson (2008b),

$$
\begin{equation*}
E(L M)=\left(1+\frac{2}{n}\right)^{-1} \tag{3.3.2}
\end{equation*}
$$

while

$$
\operatorname{Var}(L M)=\frac{n^{4}}{\tilde{a}^{4}} \frac{E\left(\epsilon^{\prime} W \epsilon\right)^{4}}{E\left(\epsilon^{\prime} \epsilon\right)^{4}}-\left(1+\frac{2}{n}\right)^{-2} .
$$

By standard formulae for moments of quadratic forms in normal random variables
(see e.g. Ghazal (1996)),

$$
\begin{aligned}
E\left(\epsilon^{\prime} W \epsilon\right)^{4} & =E\left(\frac{1}{2} \epsilon^{\prime}\left(W+W^{\prime}\right) \epsilon\right)^{4} \\
& =\frac{1}{16} \sigma^{8}\left(6 \operatorname{tr}\left(\left(W+W^{\prime}\right)^{2}\right) E\left(\epsilon^{\prime}\left(W+W^{\prime}\right) \epsilon\right)^{2}+48 \operatorname{tr}\left(\left(W+W^{\prime}\right)^{4}\right)\right) \\
& =3 \sigma^{8}\left(\tilde{a}^{4}+\operatorname{tr}\left(\left(W+W^{\prime}\right)^{4}\right)\right.
\end{aligned}
$$

and

$$
E\left(\epsilon^{\prime} \epsilon\right)^{4}=\sigma^{8}\left(n^{4}+12 n^{3}+44 n^{2}+48 n\right)=\sigma^{8} n^{4}\left(1+\frac{12}{n}+\frac{44}{n^{2}}+\frac{48}{n^{3}}\right)
$$

Hence,

$$
\begin{align*}
\operatorname{Var}(L M) & =\frac{n^{4}}{\tilde{a}^{4}} \frac{3 \tilde{a}^{4}+3 \operatorname{tr}\left(\left(W+W^{\prime}\right)^{4}\right)}{n^{4}\left(1+\frac{12}{n}+\frac{44}{n^{2}}+\frac{48}{n^{3}}\right)}-\left(1+\frac{2}{n}\right)^{-2} \\
& =2+\frac{3 \operatorname{tr}\left(\left(W+W^{\prime}\right)^{4}\right)}{\tilde{a}^{4}}-\frac{32}{n}+o\left(\frac{1}{n}\right) \tag{3.3.3}
\end{align*}
$$

where the second equality follows by standard Taylor expansion.
Collecting (3.3.2) and (3.3.3), (3.3.1) becomes

$$
\begin{aligned}
& \left(1+\frac{3 \operatorname{tr}\left(\left(W+W^{\prime}\right)^{4}\right)}{2 \tilde{a}^{4}}-\frac{16}{n}+o\left(\frac{1}{n}\right)\right)^{-1 / 2}\left(L M-\left(1+\frac{2}{n}\right)^{-1}\right)+1 \\
= & \left(1-\frac{3}{4} \frac{\operatorname{tr}\left(\left(W+W^{\prime}\right)^{4}\right)}{\tilde{a}^{4}}+\frac{8}{n}+o\left(\frac{1}{n}\right)\right)\left(L M-1+\frac{2}{n}+o\left(\frac{1}{n}\right)\right)+1,
\end{aligned}
$$

where the second equality follows by Taylor expansion. Hence, when h is divergent, we define

$$
\begin{equation*}
L \bar{M}=L M-\frac{3}{4} \frac{\operatorname{tr}\left(\left(W+W^{\prime}\right)^{4}\right)}{\tilde{a}^{4}}(L M-1) \tag{3.3.4}
\end{equation*}
$$

while

$$
\begin{equation*}
L \bar{M}=L M-\frac{3}{4} \frac{\operatorname{tr}\left(\left(W+W^{\prime}\right)^{4}\right)}{\tilde{a}^{4}}(L M-1)+\frac{8}{n} L M-\frac{6}{n} \tag{3.3.5}
\end{equation*}
$$

when h is bounded.
For both divergent and bounded h, we consider the size of the test of (0.0.2) against (1.2.1) based on $L \bar{M}$, i.e.

$$
\begin{equation*}
\operatorname{Pr}\left(L \bar{M}>z_{(\alpha+1) / 2}^{2} \mid H_{0}\right) \tag{3.3.6}
\end{equation*}
$$

We expect that when inference is based on $L \bar{M}$ rather than on $L M$, the error of the approximation is reduced by one order. To this extent, the finite sample performance of $\overline{L M}$ should be similar to that of $g(L M)$, with g defined in (3.1.12) or (3.1.13).

Finally, we consider the mean-adjusted null statistic corresponding to (3.2.2). Since the algebraic burden is larger relative to the previous case, the derivation of the mean and variance-adjusted variant is omitted. At the beginning of this section,
we stressed that mean and mean and variance adjustments might be algebraically more convenient than Edgeworth corrections. However, the mean and variance standardisation of (3.2.2) does not entail significant computational advantage and is therefore omitted.

Given (3.2.2), Robinson (2008b) proposes the mean-adjusted null statistic

$$
\begin{equation*}
\frac{\tilde{L M}}{E(L \tilde{M})} \tag{3.3.7}
\end{equation*}
$$

Using standard formulae, we describe the results of Robinson (2008b) as

$$
\begin{aligned}
E(L \tilde{M}) & =\frac{n^{2}}{\tilde{a}^{2}} \frac{E\left(\frac{1}{2} \epsilon^{\prime} P\left(W+W^{\prime}\right) P \epsilon\right)^{2}}{E\left(\epsilon^{\prime} P \epsilon\right)^{2}} \\
& =1+\frac{\left(\operatorname{tr}\left(K_{1}\right)\right)^{2}}{\tilde{a}^{2}}+\frac{\operatorname{tr}\left(K_{2}-K_{3}\right)}{\tilde{a}^{2}}-\frac{2(1-k)}{n}+O\left(\frac{1}{n^{2}}\right)
\end{aligned}
$$

where K_{1}, K_{2} and K_{3} are defined according to (3.2.8), (3.2.9) and (3.2.10), respectively. The second equality follows by a standard Taylor expansion of the denominator. Hence, (3.3.7) becomes

$$
\tilde{L M}\left(1-\frac{\left(\operatorname{tr}\left(K_{1}\right)\right)^{2}}{\tilde{a}^{2}}-\frac{\operatorname{tr}\left(K_{2}-K_{3}\right)}{\tilde{a}^{2}}\right)+o\left(\frac{h}{n}\right)
$$

in case h is divergent, and

$$
\tilde{L M}\left(1-\frac{\left(\operatorname{tr}\left(K_{1}\right)\right)^{2}}{\tilde{a}^{2}}-\frac{\operatorname{tr}\left(K_{2}-K_{3}\right)}{\tilde{a}^{2}}+\frac{2(1-k)}{n}\right)+o\left(\frac{1}{n}\right)
$$

if h is bounded. We define

$$
\begin{equation*}
L \overline{\tilde{M}}=L \tilde{M} M\left(1-\frac{\left(\operatorname{tr}\left(K_{1}\right)\right)^{2}}{\tilde{a}^{2}}-\frac{\operatorname{tr}\left(K_{2}-K_{3}\right)}{\tilde{a}^{2}}\right) \tag{3.3.8}
\end{equation*}
$$

in case h_{n} is divergent, and

$$
\begin{equation*}
L \overline{\tilde{M}}=L \tilde{M}\left(1-\frac{\left(t r\left(K_{1}\right)\right)^{2}}{\tilde{a}^{2}}-\frac{\operatorname{tr}\left(K_{2}-K_{3}\right)}{\tilde{a}^{2}}+\frac{2(1-k)}{n}\right) \tag{3.3.9}
\end{equation*}
$$

when h_{n} is bounded.
We consider the size of the test of (0.0.2) against (1.2.1) based on $L \tilde{\bar{M}}$, i.e.

$$
\begin{equation*}
\operatorname{Pr}\left(L \tilde{\bar{M}}>z_{(\alpha+1) / 2}^{2} \mid H_{0}\right) \tag{3.3.10}
\end{equation*}
$$

As previously mentioned, the finite sample variance of the mean-adjusted statistic can be larger than that of the non corrected one. From (3.3.8) and (3.3.9), it is straightforward to notice that this might be the case, depending on the choice of W. By Monte Carlo simulations we can assess whether the mean standardisation
correction is worthwhile for any particular choice of W and its performance is therefore comparable with that based on Edgeworth corrections.

3.4 Bootstrap correction and simulation results

In this section we report some Monte Carlo simulations to investigate the finite sample performance of the refined tests derived in Sections 3.1, 3.2 and 3.3. The general setting of the Monte Carlo simulation is identical to that described in Section 1.5. In addition, we construct X as an $n \times 3$ matrix (that is, we set $k=3$) whose first column is a column of ones, while each component of the remaining two columns are generated independently from a uniform distribution with support $[0,1]$ and kept fixed over replications.

For both models (1.0.8) and (3.2.1), the empirical sizes of the test of H_{0} in (0.0.2) against (1.2.1) based on the usual normal approximation are compared with the same quantities obtained with both the Edgeworth-corrected critical values and Edgeworthcorrected test statistics. Such values are compared also with the empirical size based on the corrected statistics derived according to the procedure described in Section 3.3. In addition, we consider the simulated sizes based on bootstrap critical values.

Before discussing and comparing the simulation results, we outline how the bootstrap critical values have been obtained in this case. Again, we focus on the implementation of the bootstrap procedure, without addressing validity issues. As described in both Sections 1.5 and 2.2, we generate B pseudo-samples $Y_{j}^{*}, j=1, \ldots . B$, and hence B bootstrap statistics

$$
L M_{j}^{*}=\frac{n^{2}}{\tilde{a}^{2}}\left(\frac{Y_{j}^{*^{\prime}} W Y_{j}^{*}}{Y_{j}^{*^{\prime}} Y_{j}^{*}}\right)^{2} \quad j=1, \ldots . . B .
$$

The bootstrap quantile w_{α}^{*} is defined such that the proportion of $L M_{j}^{*}$ that does not exceed w_{α}^{*} is α. The bootstrap test rejects H_{0} when $L M>w_{\alpha}^{*}$. Hence, the size of the test of (0.0.2) based on bootstrap is

$$
\begin{equation*}
\operatorname{Pr}\left(L M>w_{\alpha}^{*} \mid H_{0}\right) . \tag{3.4.1}
\end{equation*}
$$

When dealing with (3.2.2), we modify the previous algorithm accordingly, i.e. we define

$$
L \tilde{M}_{j}^{*}=\frac{n^{2}}{a}\left(\frac{u_{j}^{*^{\prime}} P W P u_{j}^{*}}{u_{j}^{*^{\prime}} P u_{j}^{*}}\right)^{2}, \quad j=1, \ldots . B,
$$

where u_{j}^{*} is a vector of independent observations from the $N\left(0, Y^{\prime} P Y / n\right)$ distribution. In this case, we denote \bar{w}_{α}^{*} the bootstrap α-quantile. The size of the test of (0.0.2) based on the bootstrap procedure is then

$$
\begin{equation*}
\operatorname{Pr}\left(L \tilde{M}>\bar{w}_{\alpha}^{*} \mid H_{0}\right) . \tag{3.4.2}
\end{equation*}
$$

Tables 3.1 and 3.2 display the simulated values corresponding to (3.1.10), (3.1.11), (3.1.14), (3.3.6) and (3.4.1) when m is increased monotonically and kept fixed (i.e. when h is "divergent" and "bounded"), respectively. Moreover, Tables 3.3 and 3.4 display the simulated values corresponding to (3.2.11), (3.2.12), (3.2.13), (3.3.10) and (3.4.2) when h is either "divergent" or "bounded", respectively. All the values in Tables 3.1-3.4 have to be compared with the nominal 5%. Similarly to Chapters 1 and 2, in the Tables we denote by "chi square", "Edgeworth", "transformation", "mean-variance correction" and "bootstrap" the simulated values corresponding to $(3.1 .10) /(3.2 .11),(3.1 .11) /(3.2 .12),(3.1 .14) /(3.2 .13),(3.3 .6) /(3.3 .10)$ and (3.4.1)/(3.4.2), respectively.

	$m=8$ $r=5$	$m=12$ $r=8$	$m=18$ $r=11$	$m=28$ $r=14$
chi square	0.032	0.036	0.038	0.037
Edgeworth	0.040	0.039	0.041	0.042
transformation	0.045	0.048	0.046	0.048
mean-variance correction	0.035	0.037	0.041	0.042
bootstrap	0.054	0.046	0.047	0.053

Table 3.1: Empirical sizes of the tests of (0.0.2) against (1.2.1) for model (1.0.8) when the sequence h is "divergent". The reported values have to be compared with the nominal 0.05.

	$m=5$ $r=8$	$m=5$ $r=20$	$m=5$ $r=40$	$m=5$ $r=80$
chi square	0.034	0.036	0.037	0.037
Edgeworth	0.041	0.042	0.047	0.048
transformation	0.034	0.045	0.048	0.050
mean-variance correction	0.041	0.043	0.046	0.052
bootstrap	0.063	0.052	0.051	0.052

Table 3.2: Empirical sizes of the tests of (0.0.2) against (1.2.1) for model (1.0.8) when the sequence h is "bounded". The reported values have to be compared with the nominal 0.05 .

From Tables 3.1 and 3.2 we notice that the approximation entailed by the first order asymptotic theory does not work well in practice. Indeed, the nominal 5% is underestimated for all sample sizes and whether h is "divergent" or "bounded", although in the latter case the convergence to the nominal value appears to be faster, as expected. On the other hand, all the corrections we consider improve upon the approximation. In particular, when h is "divergent" (Table 3.1) the corrections based on the Edgeworth-corrected test statistic and bootstrap critical values appear to outperform the others, at least for the sample sizes considered here. On average across sample sizes, the simulated sizes based on Edgeworth-corrected statistic and bootstrap critical values are 77% and 75%, respectively, closer to the nominal 0.05 than the values
based on standard LM statistic. Improvements entailed by Edgeworth-corrected critical values and mean-variance correction, instead, are only 32% and 21%, respectively. A similar pattern holds in case h is "bounded" (Table 3.2), although the discrepancy among the performance of the different corrections is less glaring. The difference between the nominal 0.05 and simulated sizes based on Edgeworth-corrected critical values, Edgeworth-corrected statistics, mean-variance corrections and bootstrap critical values are, on average across sample sizes, $62 \%, 62 \%, 61 \%$ and 70% lower than the difference between the nominal 0.05 and the simulated sizes based on the standard LM statistic. The latter result was expected since, as previously mentioned, the rate of convergence of the cdf of $L M$ to the χ^{2} cdf is faster in this case.

	$m=8$ $r=5$	$m=12$ $r=8$	$m=18$ $r=11$	$m=28$ $r=14$
chi square	0.023	0.027	0.036	0.027
Edgeworth	0.044	0.048	0.046	0.047
transformation	0.055	0.049	0.047	0.049
mean-variance correction	0.030	0.034	0.032	0.038
bootstrap	0.045	0.052	0.056	0.051

Table 3.3: Empirical sizes of the tests of (0.0.2) against (1.2.1) for model (3.2.1) when the sequence h is "divergent". The reported values have to be compared with the nominal 0.05 .

	$m=5$ $r=8$	$m=5$ $r=20$	$m=5$ $r=40$	$m=5$ $r=80$
chi square	0.025	0.035	0.038	0.036
Edgeworth	0.031	0.044	0.047	0.052
transformation	0.033	0.042	0.047	0.052
mean-variance correction	0.027	0.044	0.046	0.052
bootstrap	0.043	0.047	0.048	0.048

Table 3.4: Empirical sizes of the tests of (0.0.2) against (1.2.1) for model (3.2.1) when the sequence h is "bounded". The reported values have to be compared with the nominal 0.05 .

From Tables 3.3 and 3.4 we see that the usual test based on first order asymptotic theory performs even worse than in the previous case. Indeed, when inference is based on the standard χ^{2} approximation, on average the difference between the simulated sizes and the nominal 0.05 is 52% larger than in the previous case when h is "divergent", and 16% when h is "bounded". However, the corrections give very satisfactory results. In particular, when h is "divergent", both the test based on Edgeworth-corrected critical values and Edgeworth-corrected statistics appear to perform very well, giving results that are comparable to the bootstrap-based procedure. Specifically, when h is "divergent, the improvements entailed by Edgeworth-corrected critical values, Edgeworth-corrected statistics and bootstrap critical values over the
standard LM statistic are $82 \%, 88 \%$ and 81%, respectively (on average across sample sizes). The simulated values corresponding to (3.3.6) are closer to the nominal than ones of the standard test for all sample sizes, but not as satisfactory as the Edgeworthbased results (the improvement over the standard LM is only 18%). This might be due to the variance inflation discussed in Section 3.3. Again, when the sequence h is "bounded", the pattern of the results appears to be very similar: on average across sample sizes, the values for the simulated sizes based on Edgeworth-corrected critical values, Edgeworth-corrected statistics, mean-variance standardization and bootstrap critical values are, respectively, $61 \%, 60 \%, 55 \%$ and 80% closer to 0.05 than those based on the standard LM statistic.

3.5 The exact distribution

In Sections 3.1 and 3.2 we developed refined procedures for testing (0.0.2) against (1.2.1) based on LM statistics, as given in (3.1.1) and (3.2.2), respectively. It must be mentioned that, since λ is a scalar parameter, we could have focused on the square root of the statistics in (3.1.1) and (3.2.2) and test H_{0} against a one-sided alternative. We chose to develop the corrected procedure based on (3.1.1) and (3.2.2), and compare its performance in finite samples with that derived in Robinson (2008b), because in several circumstances we might not have any preliminary evidence about the sign of λ and therefore the standard two-sided LM test might be preferred instead. However, it should be stressed that in case a test against a one-sided alternative is justified, suitable Edgeworth-corrections can be derived by a relatively straightforward modification of the proofs of either Theorems 3.1 or 3.2 .

In this section we investigate numerically the properties of the distribution under H_{0} of the square root of both (3.1.1) and (3.2.2), denoted by T and \tilde{T} respectively, by means of Imhof's procedure and compare the results with those obtained using Edgeworth correction terms. The numerical evaluation of the cdf of T and \tilde{T} and the corresponding quantiles, despite the obvious limitations of numerical algorithms, provides some information about the true distribution of the statistics and, to some extent, confirms the accuracy of Edgeworth corrections.

Since the numerical procedure is implemented using W given in (0.0.7), we describe the algorithm for a symmetric weight matrix, although it can be easily generalised to any choice of W. Moreover, we will describe the numerical procedure for evaluating the cdf of T, but the same argument with minor, obvious, modifications holds for \tilde{T}.

As discussed in the proof of Theorem 3.1, we can write $\operatorname{Pr}(T \leq \zeta)=\operatorname{Pr}\left(\epsilon^{\prime} C \epsilon \leq 0\right)$, where $C=W-I \zeta \tilde{a} / n$ (that is (3.A.2) with $x=\tilde{a} \zeta)$.

When the cdf can be written in terms of a quadratic form in normal random variables, as is the case in the last displayed expression, a procedure to evaluate it by numerical inversion of the characteristic function has been developed by Imhof (1961) and then improved and extended to different contexts by several authors. For the
purpose of our implementation, we rely on the work by Imhof (1961), Davies (1973), Davies (1980), Ansley et al. (1992) and on the survey of Lu and King (2002).

Let s be the number of distinct eigenvalues of $\sigma^{2} C$, which are denoted by μ_{j} for $j=1, . ., s$, while n_{j} for $j=1, \ldots, s$ is their order of algebraic multiplicity. Staring from the inversion formula of Gil-Pelaez (1951), Imhof (1961) suggests to evaluate the cdf of $\epsilon^{\prime} C \epsilon$ as

$$
\begin{equation*}
\operatorname{Pr}\left(\epsilon^{\prime} C \epsilon \leq 0\right)=\frac{1}{2}-\frac{1}{\pi} \int_{0}^{\infty} \frac{\sin \theta(u)}{u \gamma(u)} d u, \tag{3.5.1}
\end{equation*}
$$

where

$$
\theta(u)=\sum_{j=0}^{s}\left(\frac{n_{j}}{2} t g^{-1}\left(2 u \mu_{j}\right)\right) \quad \text { and } \quad \gamma(u)=\prod_{j=1}^{s}\left(1+4 u^{2} \mu_{j}^{2}\right)^{n_{j} / 4}
$$

The integral on the RHS of (3.5.1) cannot be evaluated using standard analytical methods because of the oscillatory nature of the integrand function and numerical procedures should be employed instead.

As suggested in Lu and King (2002), we rely on the discretisation rule provided by Davies (1973), which is based on a trapezoidal approximation for the integral on the RHS of (3.5.1), i.e.

$$
\begin{equation*}
\operatorname{Pr}\left(\epsilon^{\prime} C \epsilon \leq 0\right)=\frac{1}{2}-\sum_{m=0}^{M} \frac{\sin \theta\left(\left(m+\frac{1}{2}\right) \Delta\right)}{\pi\left(m+\frac{1}{2}\right) \gamma\left(\left(m+\frac{1}{2}\right) \Delta\right)}, \tag{3.5.2}
\end{equation*}
$$

where Δ is the step interval and M is related to the truncation point, denoted by U henceforth, by the relationship $U=(M+1 / 2) \Delta$. Both Δ and U need to be determined numerically.

We denote by $M G F(t)$ the moment generating function of $\epsilon^{\prime} C \epsilon$. In order to evaluate Δ, we solve numerically the equation

$$
\begin{equation*}
M G F(t)-t M G F^{(1)}(t)-\ln \left(E_{I}\right)=0 \tag{3.5.3}
\end{equation*}
$$

where $M G F^{(1)}(t)=d M G F(t) / d t$ and E_{I} is the maximum allowable integration error. It can be shown (see e.g. Ansley et al.(1992)) that the last displayed equation has always two solutions $t_{1}>0$ and $t_{2}<0$, both satisfying the constraint $\left(1-2 t_{i} \mu_{j}\right)>$ $0, \forall j=1, \ldots . s$, and $i=1,2$. For $i=1,2$, we define

$$
\Delta_{i}=\operatorname{sign}\left(t_{i}\right) \frac{2 \pi}{M G F^{(1)}(t) \mid t=t_{i}} .
$$

We choose Δ appearing in the RHS of (3.5.2) as the minimum value of Δ_{i}, for $i=1,2$.
We briefly mention the algorithm to determine U, for more details we see Lu and $\operatorname{King}(2002)$. It is possible to show that the function $u \gamma(u)$ in (3.5.1) is strictly
increasing, while $|\sin \theta(u)|$ is bounded. Hence, there exists a function $\xi(U)$ such that

$$
\left|\frac{1}{\pi} \int_{U}^{\infty} \frac{\sin \theta(u)}{u \gamma(u)} d u\right| \leq \xi(U) \leq E_{T}
$$

where E_{T} is the maximum allowable truncation error. U is then derived as the numerical solution of

$$
\begin{equation*}
\ln \xi(U)-\ln E_{T}=0 \tag{3.5.4}
\end{equation*}
$$

Several functional forms for $\xi(U)$ have been proposed in the literature. In the present case, we implement the procedure using Imhof's truncation bound, that is

$$
\xi(U)=\frac{2}{\pi n} \prod_{j=1}^{m}\left|\mu_{j}\right|^{-f_{j} / 2}(2 U)^{-n / 2}
$$

Our results seem to be insensitive to the choice of $\xi(U)$.
Once both Δ and U are obtained, the cdf of $\epsilon^{\prime} C \epsilon$ using (3.5.2) can be evaluated. As suggested in Davies(1973), we set tolerance $E=10^{-6}$ and choose $E_{I}=0.1 E$ and $E_{T}=0.9 E$.

In order to calculate the α-quantile of the cdf of T, we need to find ζ so that

$$
\operatorname{Pr}(T \leq \zeta)=\alpha,
$$

where the LHS of the last displayed expression can be obtained, as a function of ζ, by the algorithm described above. However, in the present case, the numerical solution to calculate ζ is particularly troublesome since the approximated cdf of T is almost flat as ζ varies.

Although Imhof's framework to obtain the cdf and its quantiles is useful to some extent, it obviously relies heavily on several numerical solutions of highly non-linear equations, such as (3.5.3) and (3.5.4). Hence it cannot be preferred to analytical procedures that improve upon the approximation given by the central limit theorem, such as those based on Edgeworth expansions or on mean and variance standardization. However, despite being not fully reliable, quantiles obtained with Imhof's procedure can be compared with Edgeworth-corrected ones, to provide further evidence that the latter are closer to the true values than those of the normal cdf.

Edgeworth-corrected quantiles of the cdf of T can be obtained from intermediate results reported in the proof of Theorem 3.1 and a procedure similar to that described in Section 3.1. Specifically, in the Appendix we derive the Edgeworth expansion for the cdf of T as

$$
\operatorname{Pr}(T \leq \zeta)=\Phi(\zeta)-\frac{\bar{\kappa}}{3!} H_{2}(\zeta) \phi(\zeta)+o\left(\sqrt{\frac{h}{n}}\right),
$$

where $\bar{\kappa}=\operatorname{tr}\left(W^{\prime}+W\right)^{3} / \tilde{a}^{3}$. From the last displayed expression we can derive a corresponding expansion for the α-quantile by a straightforward modification of the argument presented in Section 3.1. We denote the true α-quantile of the cdf of T by w_{α}^{T} and write

$$
w_{\alpha}^{T}=z_{\alpha}+\frac{\bar{\kappa}}{3!} H_{2}(\zeta)+o\left(\sqrt{\frac{h}{n}}\right),
$$

whether h is either divergent or bounded.

		$\alpha=95 \%$	$\alpha=97.5 \%$	$\alpha=99 \%$
$m=8$	Edgeworth	1.9334	2.4403	3.0715
$r=5$	Imhof	1.8620	2.3250	2.9000
$m=12$	Edgeworth	1.8925	2.3722	2.9658
$r=8$	Imhof	1.8430	2.3100	2.8850
$m=18$	Edgeworth	1.8668	2.3294	2.8994
$r=11$	Imhof	1.8310	2.2880	2.8550
$m=28$	Edgeworth	1.8482	2.2985	2.8514
$r=14$	Imhof	1.8200	2.2700	2.8250

Table 3.5: Edgeworth-corrected and Imhof's α-quantiles of the cdf of T in when h is "divergent".

		$\alpha=95 \%$	$\alpha=97.5 \%$	$\alpha=99 \%$
$m=5$	Edgeworth	1.8357	2.2777	2.8191
$r=8$	Imhof	1.7840	2.1920	2.6800
$m=5$	Edgeworth	1.7656	2.1609	2.6379
$r=20$	Imhof	1.7450	2.1280	2.5850
$m=5$	Edgeworth	1.7303	2.1021	2.5465
$r=40$	Imhof	1.7200	2.0860	2.5200
$m=5$	Edgeworth	1.7053	2.0605	2.4819
$r=80$	Imhof	1.7010	2.0530	2.4730

Table 3.6: Edgeworth-corrected and Imhof's α-quantiles of the cdf of T when h is "bounded".

As expected, from Tables 3.5 and 3.6 we notice that for all sample sizes and for h being either divergent or bounded, the Edgeworth-corrected quantiles for $\alpha=$ $0.95,0.975,0.99$ are closer to those obtained by Imhof's procedure than ones of the standard normal cdf. Indeed, the standard normal quantiles are significantly lower than Imhof's ones for all sample sizes. To some extent, this confirms that tests based on Edgeworth-corrected critical values should be more reliable than those based on the standard normal approximation.

Imhof's algorithm was also implemented to obtain the cdf of \tilde{T}. Unfortunately, in this case, the numerical procedure does not work well and it appears to be too sensitive to both the choice of the initial values for the numerical solution of nonlinear equations and the choice of X. This give strong motivation to the practitioner
to rely on the analytical corrections based on Edgeworth expansions, rather than on numerical procedures to evaluate the exact cdf.

A Appendix

Proof of Theorem 3.1

Given (3.1.2), we start by deriving the formal Edgeworth expansion of the cdf of

$$
\begin{equation*}
n \frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon} \tag{3.A.1}
\end{equation*}
$$

The development is standard and similar to that presented for the proofs of Theorems 1.1, 1.2 and 1.3. Hence, some of the details are omitted. The cdf of (3.A.1) can be written in terms of a quadratic form in ϵ, i.e.

$$
\operatorname{Pr}\left(n \frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon} \leq x\right)=\operatorname{Pr}\left(\epsilon^{\prime} C \epsilon \leq 0\right)
$$

where

$$
\begin{equation*}
C=\frac{1}{2}\left(W+W^{\prime}\right)-\frac{x}{n} I \tag{3.A.2}
\end{equation*}
$$

and x is any real number.
Proceeding as described in detail in the proof of Theorem 1.1, under Assumption 1, we derive the s-th cumulant, κ_{s}, of $\epsilon^{\prime} C \epsilon$ as

$$
\begin{gather*}
\kappa_{1}=\sigma^{2} \operatorname{tr}(C) \tag{3.A.3}\\
\kappa_{2}=2 \sigma^{4} \operatorname{tr}\left(C^{2}\right), \tag{3.A.4}\\
\kappa_{s}=\frac{\sigma^{2 s} s!2^{s-1} \operatorname{tr}\left(C^{s}\right)}{s}, s>2 \tag{3.A.5}
\end{gather*}
$$

From (3.A.3), (3.A.4) and given (3.A.2),

$$
\kappa_{1}=-\sigma^{2} x, \quad \kappa_{2}=\sigma^{4}\left(\operatorname{tr}\left(W^{2}+W^{\prime} W\right)+\frac{2}{n} x^{2}\right)=\sigma^{4}\left(\tilde{a}^{2}+\frac{2}{n} x^{2}\right)
$$

and hence the first centred cumulant, denoted κ_{1}^{c}, becomes

$$
\begin{equation*}
\kappa_{1}^{c}=\frac{-x}{\tilde{a}\left(1+\frac{2}{n \tilde{a}^{2}} x^{2}\right)^{1 / 2}} \tag{3.A.6}
\end{equation*}
$$

We set

$$
\begin{equation*}
x=\tilde{a} \zeta \tag{3.A.7}
\end{equation*}
$$

where ζ, as usual, denotes any real number. Under Assumption 3, $x \sim \sqrt{n / h}$. By Taylor expansion of the denominator of (3.A.6) we obtain

$$
\kappa_{1}^{c}=-\zeta\left(1-\frac{1}{n} \zeta^{2}\right)+o\left(\frac{1}{n}\right) .
$$

Moreover, under Assumption 3,

$$
\kappa_{3}^{c}=\frac{8 \sigma^{6} \operatorname{tr}\left(C^{3}\right)}{\kappa_{2}^{3 / 2}} \sim \frac{\operatorname{tr}\left(W^{\prime}+W\right)^{3}}{\tilde{a}^{3}} \sim \sqrt{\frac{h}{n}}
$$

and

$$
\begin{equation*}
\kappa_{4}^{c}=\frac{48 \sigma^{8} \operatorname{tr}\left(C^{4}\right)}{\left(\kappa_{2}\right)^{2}} \sim \frac{3 \operatorname{tr}\left(W^{\prime}+W\right)^{4}}{\tilde{a}^{4}} \sim \frac{h}{n} \tag{3.A.8}
\end{equation*}
$$

By Taylor expansion we have

$$
\Phi\left(-\kappa_{1}^{c}\right)=\Phi(\zeta)+O\left(\frac{1}{n}\right)=\Phi(\zeta)+o\left(\frac{h_{n}}{n}\right)
$$

when h is divergent and

$$
\Phi\left(-\kappa_{1}^{c}\right)=\Phi(\zeta)-\frac{1}{n} \zeta^{3} \phi(\zeta)+o\left(\frac{1}{n}\right)
$$

when h is bounded.
Proceeding as in the proof of Theorem 1.1, for x given in (3.A.7) and when h is divergent, the Edgeworth expansion of the cdf of (3.A.1) under H_{0} is

$$
\begin{align*}
\operatorname{Pr}\left(n \tilde{a}^{-1} \frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon} \leq \zeta\right) & =\Phi(\zeta)-\frac{\kappa_{3}^{c}}{3!} \Phi^{(3)}(\zeta)+\frac{\kappa_{4}^{c}}{4!} \Phi^{(4)}(\zeta)+o\left(\frac{h}{n}\right) \\
& =\Phi(\zeta)-\frac{\kappa_{3}^{c}}{3!} H_{2}(\zeta) \phi(\zeta)-\frac{\kappa_{4}^{c}}{4!} H_{3}(\zeta) \phi(\zeta)+o\left(\frac{h}{n}\right) \tag{3.A.9}
\end{align*}
$$

where the last equality follows by (1.1.9). Similarly, when h is bounded,

$$
\begin{align*}
\operatorname{Pr}\left(n \tilde{a}^{-1} \frac{\epsilon^{\prime} W \epsilon}{\epsilon^{\prime} \epsilon} \leq \zeta\right) & =\Phi(\zeta)-\frac{\zeta^{3}}{n} \phi(\zeta)-\frac{\kappa_{3}^{c}}{3!} \Phi^{(3)}(\zeta)+\frac{\kappa_{4}^{c}}{4!} \Phi^{(4)}(\zeta)+o\left(\frac{1}{n}\right) \\
& =\Phi(\zeta)-\frac{\kappa_{3}^{c}}{3!} H_{2}(\zeta) \phi(\zeta)-\left(\frac{\zeta^{3}}{n}+\frac{\kappa_{4}^{c}}{4!} H_{3}(\zeta)\right) \phi(\zeta)+o\left(\frac{1}{n}\right) \tag{3.A.10}
\end{align*}
$$

For notational simplicity, let $T=n \tilde{a}^{-1} \epsilon^{\prime} W \epsilon / \epsilon^{\prime} \epsilon$, so that $L M=T^{2}$. Term by term differentiation of (3.A.9) and (3.A.10) gives the corresponding expressions for the pdf of T, $f_{T}(\zeta)$, i.e.

$$
\begin{equation*}
f_{T}(\zeta)=\phi(\zeta)-\frac{\kappa_{3}^{c}}{3!}\left(-\zeta^{3}+3 \zeta\right) \phi(\zeta)-\frac{\kappa_{4}^{c}}{4!}\left(-\zeta^{4}+6 \zeta^{2}-3\right) \phi(\zeta)+o\left(\frac{h}{n}\right) \tag{3.A.11}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{T}(\zeta)=\phi(\zeta)+\frac{1}{n}\left(\zeta^{4}-3 \zeta^{2}\right) \phi(\zeta)-\frac{\kappa_{3}^{c}}{3!}\left(-\zeta^{3}+3 \zeta\right) \phi(\zeta)-\frac{\kappa_{4}^{c}}{4!}\left(-\zeta^{4}+6 \zeta^{2}-3\right) \phi(\zeta)+o\left(\frac{1}{n}\right) \tag{3.A.12}
\end{equation*}
$$

respectively.
For divergent h, using (3.A.11), we can derive an approximate expression for the charac-
teristic function of T^{2} as

$$
\begin{align*}
& \frac{1}{\sqrt{2 \pi}} \int_{\Re} e^{i t v^{2}} e^{-\frac{v^{2}}{2}}\left(1-\frac{\kappa_{3}^{c}}{3!}\left(-v^{3}+3 v\right)-\frac{\kappa_{4}^{c}}{4!}\left(-v^{4}+6 v^{2}-3\right)\right) d v \\
= & \frac{1}{\sqrt{2 \pi}} \int_{\Re} e^{-\frac{v^{2}}{2}(1-2 i t)}\left(1-\frac{\kappa_{3}^{c}}{3!}\left(-v^{3}+3 v\right)-\frac{\kappa_{4}^{c}}{4!}\left(-v^{4}+6 v^{2}-3\right)\right) d v . \tag{3.A.13}
\end{align*}
$$

We notice that the first term of the last displayed integral is

$$
\frac{1}{\sqrt{2 \pi}} \int_{\Re} e^{-\frac{v^{2}}{2}(1-2 i t)} d v=(1-2 i t)^{-1 / 2},
$$

which is the χ^{2} characteristic function. By Gaussian integration, the second and third terms are, respectively,

$$
\frac{1}{\sqrt{2 \pi}} \int_{\Re} e^{-\frac{v^{2}}{2}(1-2 i t)} \frac{\kappa_{3}^{c}}{3!} v^{3} d v=0
$$

and

$$
\frac{1}{\sqrt{2 \pi}} \int_{\Re} e^{-\frac{v^{2}}{2}(1-2 i t)} \frac{\kappa_{3}^{c}}{3!} 3 v d v=0
$$

while

$$
\frac{1}{\sqrt{2 \pi}} \int_{\Re} e^{-\frac{v^{2}}{2}(1-2 i t)} v^{4} d v=\frac{3}{(1-2 i t)^{5 / 2}}, \quad \frac{1}{\sqrt{2 \pi}} \int_{\Re} e^{-\frac{v^{2}}{2}(1-2 i t)} v^{2} d v=\frac{1}{(1-2 i t)^{3 / 2}}
$$

Collecting the previously displayed results, (3.A.13) becomes

$$
\begin{equation*}
\frac{1}{\sqrt{1-2 i t}}+\frac{\kappa_{4}^{c}}{8} \frac{1}{\sqrt{1-2 i t}}-\frac{\kappa_{4}^{c}}{4} \frac{1}{(1-2 i t)^{3 / 2}}+\frac{\kappa_{4}^{c}}{8} \frac{1}{(1-2 i t)^{5 / 2}} \tag{3.A.14}
\end{equation*}
$$

Term by term Fourier inversion of (3.A.14) gives

$$
\begin{align*}
\operatorname{Pr}(L M \leq \eta) & =F(\eta)+\frac{\kappa_{4}^{c}}{8} F(\eta)-\frac{\kappa_{4}^{c}}{4} F_{3}(\eta)+\frac{\kappa_{4}^{c}}{8} F_{5}(\eta)+o\left(\frac{h}{n}\right) \\
& =F(\eta)+\frac{\kappa_{4}^{c}}{4} \eta f(\eta)-\frac{\kappa_{4}^{c}}{12} \eta^{2} f(\eta)+o\left(\frac{h}{n}\right) \tag{3.A.15}
\end{align*}
$$

The last displayed equality follows from the recursions (see e.g. Harris (1985))

$$
\begin{align*}
& f_{k+2}(x)=x k^{-1} f_{k}(x) \\
& F_{k+2}(x)=F_{k}(x)-2 x k^{-1} f_{k}(x) \tag{3.A.16}
\end{align*}
$$

where f_{k} and F_{k} denote the χ^{2} pdf and cdf with k degrees of freedom, respectively. When no subscript is specified, $k=1$.

Similarly, for bounded h, from (3.A.12) we obtain an approximation for the characteristic function as

$$
\frac{1}{\sqrt{1-2 i t}}+\frac{\kappa_{4}^{c}}{8} \frac{1}{\sqrt{1-2 i t}}-\frac{\kappa_{4}^{c}}{4} \frac{1}{(1-2 i t)^{3 / 2}}+\frac{\kappa_{4}^{c}}{8} \frac{1}{(1-2 i t)^{5 / 2}}+\frac{1}{n} \frac{3}{(1-2 i t)^{5 / 2}}-\frac{3}{n} \frac{1}{(1-2 i t)^{3 / 2}}
$$

and thus, term by term Fourier inversion gives

$$
\begin{align*}
\operatorname{Pr}(L M \leq \eta) & =F(\eta)+\frac{\kappa_{4}^{c}}{8} F(\eta)-\frac{\kappa_{4}^{c}}{4} F_{3}(\eta)+\frac{\kappa_{4}^{c}}{8} F_{5}(\eta)+\frac{3}{n}\left(-F_{3}(\eta)+F_{5}(\eta)\right)+o\left(\frac{1}{n}\right) \\
& =F(\eta)+\frac{\kappa_{4}^{c}}{4} \eta f(\eta)-\frac{\kappa_{4}^{c}}{12} \eta^{2} f(\eta)-\frac{2}{n} \eta^{2} f(\eta)+o\left(\frac{1}{n}\right) \tag{3.A.17}
\end{align*}
$$

The claim in Theorem 3.1 follows from (3.A.15) and (3.A.17) by letting $\kappa=3 \operatorname{tr}\left(W^{\prime}+W\right)^{4} / \tilde{a}^{4}$, which is the leading term of κ_{4}^{c}, as given in (3.A.8).

Proof of Theorem 3.2

Parts of the proof of Theorem 3.2 are similar to Theorem 3.1 and are omitted. We derive the third order Edgeworth expansion of the cdf of

$$
\begin{equation*}
n \frac{\epsilon^{\prime} P W P \epsilon}{\epsilon^{\prime} P \epsilon} \tag{3.A.18}
\end{equation*}
$$

where P is defined according to (3.2.3). The cdf of (3.A.18) can be written in terms of a quadratic form in ϵ, i.e.

$$
\operatorname{Pr}\left(\frac{\epsilon^{\prime} P W P \epsilon}{\frac{1}{n} \epsilon^{\prime} P \epsilon} \leq z\right)=\operatorname{Pr}\left(\epsilon^{\prime} C \epsilon \leq 0\right)
$$

where

$$
\begin{equation*}
C=\frac{1}{2} P\left(W+W^{\prime}\right) P-\frac{1}{n} P z \tag{3.A.19}
\end{equation*}
$$

and z is any real number.
The same argument presented in the proof of Theorem 3.1 for the evaluation of both characteristic and cumulant generating functions holds here with C defined according to (3.A.19) instead of (3.A.2). From (3.A.19),

$$
\kappa_{1}=\sigma^{2} \operatorname{tr}(P W)-\sigma^{2} \frac{1}{n} \operatorname{tr}(P) z=-\sigma^{2}\left(\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} W X\right)-\frac{n-k}{n} z\right) .
$$

Also, by straightforward algebra,

$$
\begin{aligned}
\kappa_{2} & =\sigma^{4}\left(\operatorname{tr}(W P W P)+\operatorname{tr}\left(W^{\prime} P W P\right)+2 \frac{n-k}{n} z^{2}-\frac{4}{n} \operatorname{tr}(P W) z\right) \\
& =\sigma^{4}\left(\operatorname{tr}\left(\left(W+W^{\prime}\right) P W P\right)+2 \frac{n-k}{n^{2}} z^{2}-\frac{4}{n} \operatorname{tr}(P W) z\right) \\
& =\sigma^{4}\left(\operatorname{tr}\left(W^{2}\right)+\operatorname{tr}\left(W^{\prime} W\right)+\frac{1}{2} \operatorname{tr}\left(X^{\prime}\left(W+W^{\prime}\right) X\left(X^{\prime} X\right)^{-1} X^{\prime}\left(W^{\prime}+W\right) X\left(X^{\prime} X\right)^{-1}\right)\right. \\
& \left.-\operatorname{tr}\left(X^{\prime}\left(W+W^{\prime}\right)^{2} X\left(X^{\prime} X\right)^{-1}\right)+2 \frac{n-k}{n^{2}} z^{2}+\frac{4}{n} \operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} W X\right) z\right)
\end{aligned}
$$

By (3.2.8), (3.2.9), and (3.2.10), we write

$$
\begin{equation*}
\kappa_{1}=-\sigma^{2} \operatorname{tr}\left(K_{1}\right)-\sigma^{2} z+\sigma^{2} \frac{k}{n} z \tag{3.A.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\kappa_{2}=\sigma^{4}\left(\tilde{a}^{2}+\operatorname{tr}\left(K_{2}-K_{3}\right)+2 \frac{n-k}{n^{2}} z^{2}+\frac{4}{n} \operatorname{tr}\left(K_{1}\right) z\right) \tag{3.A.21}
\end{equation*}
$$

Similarly to the proof of Theorem 3.1, we define $f^{c}=\left(\epsilon^{\prime} C \epsilon-\kappa_{1}\right) / \kappa_{2}^{1 / 2}$ and derive the
centred cumulants as $\kappa_{s}^{c}=\kappa_{s} / \kappa_{2}^{s / 2}$. From (3.A.20) and (3.A.21),

$$
\begin{equation*}
\kappa_{1}^{c}=\frac{-\sigma^{2} \operatorname{tr}\left(K_{1}\right)-\sigma^{2} z+\sigma^{2} \frac{k}{n} z}{\sigma^{2} \tilde{a}\left(1+\frac{\operatorname{tr}\left(K_{2}\right)}{\tilde{a}^{2}}-\frac{\operatorname{tr}\left(K_{3}\right)}{\tilde{a}^{2}}+\frac{2}{\tilde{a}^{2}} \frac{n-k}{n^{2}} z^{2}+\frac{4}{n} \frac{\operatorname{tr}\left(K_{1}\right) z}{\tilde{a}^{2}}\right)^{1 / 2}} . \tag{3.A.22}
\end{equation*}
$$

We choose $z=\tilde{a} \zeta$. Under Assumptions 3 and 4, we have $\tilde{a} \sim \sqrt{n / h}$ and

$$
z \sim \sqrt{\frac{n}{h}}, \quad \frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}^{2}} \sim \frac{h}{n}, \quad \frac{\operatorname{tr}\left(K_{2}\right)}{\tilde{a}^{2}} \sim \frac{h}{n}, \quad \frac{\operatorname{tr}\left(K_{3}\right)}{\tilde{a}^{2}} \sim \frac{h}{n} .
$$

Hence, substituting the expression for z in (3.A.22) and performing a standard Taylor expansion of the denominator we obtain

$$
\begin{aligned}
\kappa_{1}^{c} & =-\left(\zeta+\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}}\right)\left(1+\frac{\operatorname{tr}\left(K_{3}-K_{2}\right)}{2 \tilde{a}^{2}}+o\left(\frac{h}{n}\right)\right) \\
& =-\zeta-\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}}-\frac{\operatorname{tr}\left(K_{3}-K_{2}\right)}{2 \tilde{a}^{2}} \zeta+o\left(\frac{h}{n}\right)
\end{aligned}
$$

in case h is divergent, and

$$
\begin{aligned}
\kappa_{1}^{c} & =-\left(\zeta+\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}}-\frac{k}{n} \zeta\right)\left(1+\frac{\operatorname{tr}\left(K_{3}-K_{2}\right)}{2 \tilde{a}^{2}}-\frac{1}{n} \zeta^{2}+o\left(\frac{1}{n}\right)\right) \\
& =-\zeta-\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}}+\frac{k}{n} \zeta-\frac{\operatorname{tr}\left(K_{3}-K_{2}\right)}{2 \tilde{a}^{2}} \zeta+\frac{1}{n} \zeta^{3}+o\left(\frac{1}{n}\right)
\end{aligned}
$$

if h is bounded.
Moreover,

$$
\kappa_{3}^{c}=\frac{8 \sigma^{6} \operatorname{tr}\left(C^{3}\right)}{\kappa_{2}^{3 / 2}} \sim \frac{\operatorname{tr}\left(\left(\left(W+W^{\prime}\right) P\right)^{3}\right)}{\tilde{a}^{3}} \sim \sqrt{\frac{h}{n}}
$$

and

$$
\kappa_{4}^{c}=\frac{48 \sigma^{8} \operatorname{tr}\left(C^{4}\right)}{\tilde{\kappa}_{2}^{2}} \sim \frac{3 \operatorname{tr}\left(\left(\left(W+W^{\prime}\right) P\right)^{4}\right)}{\tilde{a}^{4}} \sim \frac{h}{n}
$$

Therefore,

$$
\begin{align*}
\operatorname{Pr}\left(\left.n \tilde{a}^{-1} \frac{\epsilon^{\prime} P W P \epsilon}{\epsilon^{\prime} P \epsilon} \leq \zeta \right\rvert\, H_{0}\right) & =\operatorname{Pr}\left(\epsilon^{\prime} C \epsilon \leq 0 \mid H_{0}\right)=\operatorname{Pr}\left(f^{c} \kappa_{2}^{1 / 2}+\kappa_{1} \leq 0 \mid H_{0}\right)=\operatorname{Pr}\left(f^{c} \leq-\kappa_{1}^{c}\right) \\
& =\Phi\left(-\kappa_{1}^{c}\right)-\frac{\kappa_{3}^{c}}{3!} \Phi^{(3)}\left(-\kappa_{1}^{c}\right)+\frac{\kappa_{4}^{c}}{4!} \Phi^{(4)}\left(-\kappa_{1}^{c}\right)+\ldots \tag{3.A.23}
\end{align*}
$$

By Taylor expansion we have

$$
\Phi\left(-\kappa_{1}^{c}\right)=\Phi(\zeta)+\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}} \phi(\zeta)+\frac{\operatorname{tr}\left(K_{3}-K_{2}\right)}{\tilde{a}^{2}} \zeta \phi(\zeta)+\frac{1}{2}\left(\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}}\right)^{2} \Phi^{(2)}(\zeta)+o\left(\frac{h}{n}\right)
$$

when h is divergent and

$$
\begin{aligned}
\Phi\left(-\kappa_{1}^{c}\right) & =\Phi(\zeta)+\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}} \phi(\zeta)+\frac{\operatorname{tr}\left(K_{3}-K_{2}\right)}{\tilde{a}^{2}} \zeta \phi(\zeta) \\
& -\frac{k}{n} \zeta \phi(\zeta)-\frac{1}{n} \zeta^{3} \phi(\zeta)+\frac{1}{2}\left(\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}}\right)^{2} \Phi^{(2)}(\zeta)+o\left(\frac{1}{n}\right)
\end{aligned}
$$

when h is bounded. Therefore, (3.A.23) becomes

$$
\begin{align*}
\operatorname{Pr}\left(\left.n \tilde{a}^{-1} \frac{\epsilon^{\prime} P W P \epsilon}{\epsilon^{\prime} P \epsilon} \leq \zeta \right\rvert\, H_{0}\right) & =\Phi(\zeta)+\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}} \phi(\zeta)-\frac{\kappa_{3}^{c}}{3!} \Phi^{(3)}(\zeta)+\frac{\operatorname{tr}\left(K_{3}-K_{2}\right)}{\tilde{a}^{2}} \zeta \phi(\zeta) \\
& +\frac{1}{2}\left(\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}}\right)^{2} \Phi^{(2)}(\zeta)+\frac{\kappa_{4}^{c}}{4!} \Phi^{(4)}(\zeta)+o\left(\frac{h}{n}\right) \\
& =\Phi(\zeta)+\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}} \phi(\zeta)-\frac{\kappa_{3}^{c}}{3!} H_{2}(\zeta) \phi(\zeta)+\frac{\operatorname{tr}\left(K_{3}-K_{2}\right)}{\tilde{a}^{2}} \zeta \phi(\zeta) \\
& -\frac{1}{2}\left(\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}}\right)^{2} H_{1}(\zeta) \phi(\zeta)-\frac{\kappa_{4}^{c}}{4!} H_{3}(\zeta) \phi(\zeta)+o\left(\frac{h}{n}\right), \tag{3.A.24}
\end{align*}
$$

where the last equality follows by (1.1.9). Similarly, when h is bounded,

$$
\begin{align*}
\operatorname{Pr}\left(\left.n \tilde{a}^{-1} \frac{\epsilon^{\prime} P W P \epsilon}{\epsilon^{\prime} P \epsilon} \leq \zeta \right\rvert\, H_{0}\right) & =\Phi(\zeta)+\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}} \phi(\zeta)-\frac{\kappa_{3}^{c}}{3!} \Phi^{(3)}(\zeta)+\frac{\operatorname{tr}\left(K_{3}-K_{2}\right)}{\tilde{a}^{2}} \zeta \phi(\zeta) \\
& +\frac{1}{2}\left(\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}}\right)^{2} \Phi^{(2)}(\zeta)-\frac{k}{n} \zeta \phi(\zeta)-\frac{1}{n} \zeta^{3} \phi(\zeta)+\frac{\kappa_{4}^{c}}{4!} \Phi^{(4)}(\zeta)+o\left(\frac{h}{n}\right) \\
& =\Phi(\zeta)+\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}} \phi(\zeta)-\frac{\kappa_{3}^{c}}{3!} H_{2}(\zeta) \phi(\zeta)+\frac{\operatorname{tr}\left(K_{3}-K_{2}\right)}{\tilde{a}^{2}} \zeta \phi(\zeta) \\
& -\frac{1}{2}\left(\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}}\right)^{2} H_{1}(\zeta) \phi(\zeta)-\frac{k}{n} \zeta \phi(\zeta)-\frac{1}{n} \zeta^{3} \phi(\zeta) \\
& -\frac{\kappa_{4}^{c}}{4!} H_{3}(\zeta) \phi(\zeta)+o\left(\frac{1}{n}\right) . \tag{3.A.25}
\end{align*}
$$

For notational convenience, we write $\tilde{T}=n \tilde{a}^{-1} \epsilon^{\prime} P W P \epsilon / \epsilon^{\prime} P \epsilon$, so that $L \tilde{M}=\tilde{T}^{2}$. Moreover, we recall that $H_{1}(\zeta)=\zeta, H_{2}(\zeta)=\zeta^{2}-1$ and $H_{3}(\zeta)=\zeta^{3}-3 \zeta$.

As discussed in detail in the proof of Theorem 3.1, term by term differentiation of (3.A.24) and (3.A.25) gives

$$
\begin{align*}
f_{\tilde{T}}(\zeta) & =\phi(\zeta)-\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}} \zeta \phi(\zeta)-\frac{\kappa_{3}^{c}}{3!}\left(-\zeta^{3}+3 \zeta\right) \phi(\zeta)+\frac{\operatorname{tr}\left(K_{3}-K_{2}\right)}{\tilde{a}^{2}}\left(1-\zeta^{2}\right) \phi(\zeta)-\frac{1}{2} \frac{\left(\operatorname{tr}\left(K_{1}\right)\right)^{2}}{\tilde{a}^{2}}\left(1-\zeta^{2}\right) \phi(\zeta) \\
& -\frac{\kappa_{4}^{c}}{4!}\left(-\zeta^{4}+6 \zeta^{2}-3\right) \phi(\zeta)+o\left(\frac{h}{n}\right) \tag{3.A.26}
\end{align*}
$$

and

$$
\begin{align*}
f_{\tilde{T}}(\zeta) & =\phi(\zeta)-\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}} \zeta \phi(\zeta)-\frac{\kappa_{3}^{c}}{3!}\left(-\zeta^{3}+3 \zeta\right) \phi(\zeta)+\frac{\operatorname{tr}\left(K_{3}-K_{2}\right)}{\tilde{a}^{2}}\left(1-\zeta^{2}\right) \phi(\zeta)-\frac{1}{2} \frac{\left(\operatorname{tr}\left(K_{1}\right)\right)^{2}}{\tilde{a}^{2}}\left(1-\zeta^{2}\right) \phi(\zeta) \\
& -\frac{k}{n}\left(1-\zeta^{2}\right) \phi(\zeta)-\frac{1}{n}\left(3 \zeta^{2}-\zeta^{4}\right) \phi(\zeta)-\frac{\kappa_{4}^{c}}{4!}\left(-\zeta^{4}+6 \zeta^{2}-3\right) \phi(\zeta)+o\left(\frac{1}{n}\right), \tag{3.A.27}
\end{align*}
$$

respectively.
In order to simplify the notation, we define

$$
\omega_{1}=\frac{\operatorname{tr}\left(K_{3}-K_{2}\right)}{\tilde{a}^{2}}-\frac{1}{2} \frac{\left(\operatorname{tr}\left(K_{1}\right)\right)^{2}}{\tilde{a}^{2}}, \quad \omega_{2}=\frac{\operatorname{tr}\left(K_{3}-K_{2}\right)}{\tilde{a}^{2}}-\frac{1}{2} \frac{\left(\operatorname{tr}\left(K_{1}\right)\right)^{2}}{\tilde{a}^{2}}-\frac{k}{n}
$$

and

$$
\omega_{3}=\frac{\operatorname{tr}\left(K_{1}\right)}{\tilde{a}}+\frac{\kappa_{3}^{c}}{2} .
$$

Proceeding as described in the proof of Theorem 3.1, when h is divergent we approximate
the characteristic function of \tilde{T} as

$$
\begin{align*}
& \frac{1}{\sqrt{2 \pi}} \int_{\Re} e^{i t v^{2}} e^{-\frac{v^{2}}{2}}\left(1-\omega_{3} v+\frac{\kappa_{3}^{c}}{3!} v^{3}+\omega_{1}\left(1-v^{2}\right)-\frac{\kappa_{4}^{c}}{4!}\left(-v^{4}+6 v^{2}-3\right)\right) d v \\
= & \frac{1}{\sqrt{2 \pi}} \int_{\Re} e^{-\frac{v^{2}}{2}(1-2 i t)}\left(1-\omega_{3} v+\frac{\kappa_{3}^{c}}{3!} v^{3}+\omega_{1}\left(1-v^{2}\right)-\frac{\kappa_{4}^{c}}{4!}\left(-v^{4}+6 v^{2}-3\right)\right) d v \\
= & \frac{1}{\sqrt{1-2 i t}}\left(1+\omega_{1}-\frac{\omega_{1}}{1-2 i t}+\frac{\kappa_{4}^{c}}{8} \frac{1}{(1-2 i t)^{2}}-\frac{\kappa_{4}^{c}}{4} \frac{1}{1-2 i t}+\frac{\kappa_{4}^{c}}{8}\right) . \tag{3.A.28}
\end{align*}
$$

By term by term Fourier inversion of (3.A.28) and some standard algebraic manipulation,

$$
\begin{align*}
\operatorname{Pr}\left(\tilde{L M} \leq \eta \mid H_{0}\right) & =F(\eta)+\left(\frac{\kappa_{4}^{c}}{8}+\omega_{1}\right) F(\eta)-\left(\omega_{1}+\frac{\kappa_{4}^{c}}{4}\right) F_{3}(\eta)+\frac{\kappa_{4}^{c}}{8} F_{5}(\eta)+o\left(\frac{h}{n}\right) \\
& =F(\eta)+\left(\frac{\kappa_{4}^{c}}{4} \eta-\frac{\kappa_{4}^{c}}{12} \eta^{2}+2 \omega_{1} \eta\right) f(\eta)+o\left(\frac{h}{n}\right) \tag{3.A.29}
\end{align*}
$$

Similarly, when h is bounded, we have

$$
\begin{align*}
\operatorname{Pr}\left(L \tilde{M} \leq \eta \mid H_{0}\right) & =F(\eta)+\left(\frac{\kappa_{4}^{c}}{8}+\omega_{2}\right) F(\eta)-\left(\omega_{2}+\frac{\kappa_{4}^{c}}{4}+\frac{3}{n}\right) F_{3}(\eta)+\left(\frac{\kappa_{4}^{c}}{8}+\frac{3}{n}\right) F_{5}(\eta)+o\left(\frac{1}{n}\right) \\
& =F(\eta)+\left(\frac{\kappa_{4}^{c}}{4} \eta-\frac{\kappa_{4}^{c}}{12} \eta^{2}+2 \omega_{2} \eta-\frac{2}{n} \eta^{2}\right) f(\eta)+o\left(\frac{1}{n}\right) \tag{3.A.30}
\end{align*}
$$

The claim in Theorem 3.2 follows from (3.A.29) and (3.A.30) by observing that the leading term of κ_{4}^{c} is $\kappa=3 \operatorname{tr}\left(W^{\prime}+W\right)^{4} / \tilde{a}^{4}$. Indeed, each term in $\left(\operatorname{tr}\left(W+W^{\prime}\right)^{4} P\right)$ other than $\operatorname{tr}\left(\left(W+W^{\prime}\right)^{4}\right) \sim n / h$ is $O(1)$ by Assumption 4 and Lemma 2, and is therefore $o(n / h)$.

Lemma 3.1 Let ξ be a statistic whose cdf admits the expansion

$$
\begin{equation*}
\operatorname{Pr}(\xi \leq \eta)=F(\eta)+\frac{h}{n} s(\eta) f(\eta)+o\left(\frac{h}{n}\right) \tag{3.A.31}
\end{equation*}
$$

where h can be either divergent or bounded and $s(\eta)$ is a polynomial in η, whose leading coefficients are finite and non-zero as $n \rightarrow \infty$. We define the function $g($.$) as$

$$
\begin{equation*}
g(x)=x+\frac{h}{n} s(x)+\left(\frac{h}{n}\right)^{2} Q(x), \quad \text { with } \quad Q(x)=\frac{1}{4} \int\left(\frac{d}{d x} s(x)\right)^{2} d x \tag{3.A.32}
\end{equation*}
$$

We have

$$
\operatorname{Pr}(g(\xi) \leq \eta)=o\left(\frac{h}{n}\right)
$$

Proof It is straightforward to verify that $g(x)$ is strictly increasing, its first derivative being

$$
1+\frac{h}{n} \frac{d s(x)}{d x}+\frac{1}{4}\left(\frac{h}{n}\right)^{2}\left(\frac{d s(x)}{d x}\right)^{2}=\left(1+\frac{1}{2} \frac{h}{n} \frac{d s(x)}{d x}\right)^{2}
$$

Since $g($.$) is monotonic,$

$$
\begin{equation*}
\operatorname{Pr}(g(\xi) \leq \eta)=\operatorname{Pr}\left(\xi \leq g^{-1}(\eta)\right)=F_{1}\left(g^{-1}(\eta)\right)+\frac{h}{n} s\left(g^{-1}(\eta)\right) f_{1}\left(g^{-1}(\eta)\right)+o\left(\frac{h}{n}\right) \tag{3.А.33}
\end{equation*}
$$

Now, by (3.A.32),

$$
\begin{equation*}
\eta=g^{-1}\left(\eta+\frac{h}{n} s(\eta)+\left(\frac{h}{n}\right)^{2} Q(\eta)\right)=g^{-1}(\eta)+\left.\frac{h}{n} \frac{d g^{-1}(x)}{d x}\right|_{\mid x=\eta} s(\eta)+o\left(\frac{h}{n}\right) \tag{3.A.34}
\end{equation*}
$$

where the second equality follows by a standard Taylor expansion. We define $q=g^{-1}(x)$. Therefore,

$$
\begin{equation*}
\left.\frac{d g^{-1}(x)}{d x}\right|_{x=\eta}=\left.\left(\frac{d g(q)}{d q}\right)^{-1}\right|_{x=\eta}=1+O\left(\frac{h}{n}\right) \tag{3.A.35}
\end{equation*}
$$

where the last equality follows by total differentiation of the function $g($.$) and Taylor expansion.$ Collecting (3.A.34) and (3.A.35),

$$
\eta=g^{-1}(\eta)+\frac{h}{n} s(\eta)+o\left(\frac{h}{n}\right)
$$

and hence

$$
\begin{equation*}
g^{-1}(\eta)=\eta-\frac{h}{n} s(\eta)+o\left(\frac{h}{n}\right) \tag{3.A.36}
\end{equation*}
$$

Finally, by substitution of (3.A.36) into (3.A.33) and using

$$
\begin{gathered}
F\left(g^{-1}(\eta)\right)=F(\eta)-\frac{h}{n} s(\eta) f(\eta)+o\left(\frac{h}{n}\right) \\
f\left(g^{-1}(\eta)\right)=f(\eta)+O\left(\frac{h}{n}\right), \quad s\left(g^{-1}(\eta)\right)=s(\eta)+O\left(\frac{h}{n}\right)
\end{gathered}
$$

we obtain

$$
\operatorname{Pr}(g(\xi) \leq \eta)=F(\eta)-\frac{h}{n} s(\eta) f(\eta)+\frac{h}{n} s(\eta) f(\eta)+o\left(\frac{h}{n}\right)=F(\eta)+o\left(\frac{h}{n}\right)
$$

References

Anselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer Academic Publishers.

Anselin, L. (2001). Rao's score test in spatial econometrics, Journal of Statistical Planning and Inference, 97, 113-39.

Anselin, L. (2010). Thirty years of spatial econometrics. Papers in Regional Science, 89, 3-25.

Ansley, C.F., R. Kohn and T.S. Shively (1992). Computing p - values for the generalized Durbin-Watson and other invariant test statistics. Journal of Econometrics, 54, 277-300.

Anselin, L. and R. Florax (1995). Small sample properties of tests for spatial dependence in regression models: some further results. In L. Anselin and R. Florax (Eds.) New Directions in Spatial Econometrics. Springer-Verlag, Berlin, 21-74.

Anselin, L. and S. Rey (1991). Properties of tests for spatial dependence in linear regression models. Geographical Analysis, 23, 112-31.

Arbia, G. (2006). Spatial Econometrics: Statistical Foundation and Applications to Regional Analysis. Springer-Verlag, Berlin.

Bao, Y and A. Ullah (2007). Finite sample properties of maximum likelihood estimator in spatial models. Journal of Econometrics, 137, 396-413.

Barndorff-Nielsen, O.E. and D.R. Cox (1989). Asymptotic Techniques for Use in Statistics. Chapman and Hall, London.

Bhattacharya, R.N. and J.K. Ghosh (1978). On the validity of the formal Edgeworth expansion. Annals of Statistics, 6, 434-451.

Bhattacharya, R.N. and R.R. Rao (1976). Normal Approximation and Asymptotic Expansions. John Wiley \& Sons.

Buonanno, P., D. Montolio and P. Vanin (2009). Does social capital reduce crime? Journal of Law and Economics 52, 145-70.

Burridge, P. (1980). On the Cliff-Ord test for spatial correlation. Journal of the Royal Statistical Society, Series B, 42, 107-8.

Case, A.C. (1991). Spatial Patterns in Household Demand. Econometrica, 59, 953-65.

Cliff, A. and J.K. Ord, (1968). The problem of spatial autocorrelation. Joint Discussion Paper, University of Bristol: Department of Economics, 26, Department of Geography, Series $A, 15$.

Cliff, A. and J.K. Ord, (1972). Testing for spatial autocorrelation among regression residuals. Geographical Analysis, 4, 267-84.

Cliff, A. and J.K. Ord, (1975). Spatial Autocorrelation. Pion, London.
Conley, T.G. and B. Dupor (2003). A spatial analysis of sectoral complementarity. Journal of Political Economy, 111, 311-52.

Conley, T.G. and E. Ligon (2002). Economic distance and cross-country spillovers. Journal of Economic Growth, 7, 157-87.

Cornish, E.A. and R.A. Fisher (1937). Moments and cumulants in the specification of distributions. International Statistical Reviews, 5, 307-22.

Cornish, E.A. and R.A. Fisher (1960). The percentile points of distributions having known cumulants. Technometrics, 2, 209-26.

Cramér, H. (1946). Mathematical Methods of Statistics. Princeton University Press, Princeton, NJ.

Cressie, N. (1993). Statistics for Spatial Data. Wiley, New York.

Das, D., H.H. Kelejian, and I. Prucha (2003). Small sample properties of estimators of spatial autoregressive models with autoregressive disturbances. Papers in Regional Science, 82, 1-26.

Davies, R.B. (1973). Numerical inversion of a characteristic function. Biometrika, 60, 415-417.

Davies, R.B. (1980). The distribution of a linear combination of χ^{2} random variables. Applied Statistics, 29, 323-333.

DiCiccio, T.J. and J.P. Romano (1995). On bootstrap procedures for secondorder accurate confidence limits in parametric models. Statistica Sinica, 5, 14160.

DiCiccio, T.J. and B. Efron (1996). Bootstrap confidence intervals. Statistical Science, 11, 189-228.

Edgeworth, F.Y. (1896). The asymmetrical probability curve. Philosophical Magazine, 5th Series, 41, 90-9.

Edgeworth, F.Y. (1905). The law of error. Proceedings of the Cambridge Philosophical Society, 20, 36-65.

Efron, B. and R.J. Tibshirani (1993). An Introduction to the Bootstrap. London: Chapman and Hall.

Egger, P., M. Larch, M. Pfaffermayr and J. Walde (2009). Small sample properties of maximum likelihood versus generalized method of moments based tests for spatially autocorrelated errors. Regional Science and Urban Economics, 39, 670-78.

Ghazal, G.A. (1996) Recurrence formula for expectation of products of quadratic forms. Statistics and Probability Letters, 27, 101-9.

Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer-Verlag.
Heijmans, R. (1999). When does the expectation of a ratio equal the ratio of expectations? Statistical Papers, 40, 107-15.

Harris,P. (1985). An asymptotic expansion for the null distribution of the efficient score statistic. Biometrika, 72, 653-659.

Horn, R.A. and C.R. Johnson (1985). Matrix Analysis. New York: Cambridge University Press.

Kakizawa, Y. (1999). Valid Edgeworth expansions of some estimators and bootstrap confidence intervals in first-order autoregression. Journal of Time Series Analysis, 20, 343-59.

Kelejian, H.H. and I.R. Prucha (1998). A generalized spatial two-stages least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. Journal of Real Estate Finance and Economics, 17,99-121.

Kelejian, H.H. and I.R. Prucha (2001). On the asymptotic distribution of the Moran I test statistic with applications. Journal of Econometrics, 104, 219-57.

Kelejian, H.H, I.R. Prucha and Y. Yuzefovich (2004). Instrumental variable estimation of a spatial autoregressive model with autoregressive disturbances: large and small sample results. In J.P. Lesage and R.K.Pace (Eds.) Advances in Econometrics: Spatial and Spatiotemporal Econometrics . Elsevier, New York, 163-98.

Kelejian, H.H. and D.P. Robinson (1992). Spatial autocorrelation - a new computationally simple test with an application to the per capita county police expenditures. Regional Science and Urban Economics, 22, 317-31.

Kelejian, H.H. and D.P. Robinson (1998). A suggested test for spatial autocorrelation and/or heteroskedasticity and corresponding Monte Carlo results. Regional Science and Urban Economics, 28, 389-417.

Imhof, J.P. (1961). Computing the distribution of quadratic forms in normal variables. Biometrika, 48, 266-83.

Lee, L.F. (2002). Consistency and efficiency of least squares estimation for mixed regressive, spatial autoregressive models. Econometric Theory, 18, 252-277.

Lee, L.F. (2003). Best spatial two-stages least squares estimators for a spatial autoregressive model with autoregressive disturbances. Econometric Reviews, 22, 307-335.

Lee, L.F. (2004). Asymptotic distribution of quasi-maximum likelihood estimates for spatial autoregressive models. Econometrica, 72, 1899-1925.

Lieberman, O. (1994). A Laplace approximation to the moments of a ratio of quadratic forms. Biometrika 81, 681-90.

Magee, L. (1989). An Edgeworth test size correction for the linar model with AR(1) errors. Econometrica, 57, 661-74.

Moran, P.A.P. (1950). A test for the serial dependence of residuals. Biometrika 37, 178-81.

Ochi, Y. (1983). Asymptotic expansions for the distribution of an estimator in the first order autoregressive process. Journal of Time Series Analysis, 4, 57-67.

Pace, R.K. and R. Berry (1997). Quick computation of spatial autoregressive estimators. Geographical Analysis, 29, 232-46.

Paparoditis, E. and D.N. Politis (2005). Bootstrap hypothesis testing in regression models. Statistics \mathcal{E} Probability Letters, 74, 356-365.

Phillips, P.C.B. and J.Y.Park (1988). On the formulation of the Wald tests of nonlinear restriction.Econometrica, 56, 1065-1083.

Pinkse, J. (1999). Asymptotics of the Moran test and a test for spatial correlation in probit models. $U B C$, mimeo.

Pinkse, J. (2004). Moran - flavoured tests with nuisance parameters: examples. In Anselin, L., Florax, R.G.M., Rey, S. (eds.). Advances in Spatial Econometrics: Methodology, Tools and Applications. Springer-Verlag, Berlin, 66-77.

Pitman, E.G.J. (1937). Significant tests which may be applied to samples from any population. Supplement to Journal of the Royal Statistical Society, 4, 11930.

Robinson, P.M. (2008a). Developments in the analysis of spatial data. Journal of the Japan Statistical Society (issue in honour of H. Akaike) 38, 87-96.

Robinson, P.M. (2008b). Correlation testing in time series, spatial and crosssectional data. Journal of Econometrics, 147, 5-16.

Rothenberg, T.J. (1984). Approximating the distribution of econometric estimators and test statistics. In Handbook of Econometrics, 2. Elsevier Science Publisher.

Sargan, J.D. (1976). Econometric estimators and the Edgeworth approximation. Econometrica, 44, 421-48.

Sen, A. (1976). Large sample-size distribution of statistics used in testing for spatial correlation. Geographical Analysis, 9, 175-84.

Singh, K. (1981). On the asymptotic accuracy of Efron's bootstrap. Annals of Statistics, 9, 1187-95.

Stanca, L. (2009). The geography of economics and happiness: spatial patterns in the effects of economic conditions on well being. Forthcoming, Social Indicators Research.

Taniguchi, M. (1983). On the second order asymptotic efficiency of estimators of Gaussian ARMA processes. Annals of Statistics 11, 157-69.

Taniguchi, M. (1986). Third order asymptotic properties of Maximum Likelihood Estimators for Gaussian ARMA processes. Journal of Multivariate Analysis 18, 1-31.

Taniguchi, M. (1988). Asymptotic expansion of the distributions of some test statistics for Gaussian ARMA processes. Journal of Multivariate Analysis 27, 494-511.

Taniguchi, M. (1991a). Third order asymptotic properties of a class of test statistics under a local alternative. Journal of Multivariate Analysis, 37, 22338.

Taniguchi, M. (1991b). Higher Order Asymptotic Theory for Time Series Analysis. Springer-Verlag, Berlin.

Yanagihara, H. and K. Yuan (2005). Four improved statistics for contrasting means by correcting skewness and kurtosis. British Journal of Mathematical and Statistical Psychology, 58, 209-37.

