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Abstract

This work develops a portfolio model of the banking firm where both the size and compo-
sition of the portfolio are jointly determined. The model provides a micro-foundation of the
credit channel of transmission of monetary policy. It allows to analise the pricing policies of
the banking firm, and shows how interest rate shocks and credit quality shocks (the real shocks
that change expected default costs) affect the equilibrium level of loans and deposits. Besides
it shows the factors affecting the provision of insurance services by means of the smoothing of
shocks.
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1 Introduction

The theory of the credit market on which this work is founded highlights the particular features of
credit contracts due in particular to the relevance of uncertainty, limited information and transac-
tion costs. According to this conception, because of their particular institutional features, banks
can reduce the influence of market imperfections. Banking institutions can be considered to be
market solutions to the problems caused by the limited availability of information, and the high
cost that is necessary to undertake in order to obtain, select, and process the relevant information.
The peculiar institutional framework of contemporary banks, based on the joint provision of de-
pository and lending services, can be explained viewing the bank as an institution specialized in
the provision of liquidity, to both households and firms. Banks have been increasingly studied as
firms specialized in the analysis of a set of information, internal information, that is not available
to the market. The specific expertise that the intermediary develops in the analysis of information
provides the rationale for the actual existence of banking intermediaries.

The bank described in the model is a profit maximizing firm, that faces an infinite horizon
problem. The banking firm is assumed to be risk-neutral, so that the conclusions do not depend
on the assumption of risk-aversion on part of the bank. The need for an intertemporal framework
comes from the assumption of the existence of long term relationships between the bank and its
customers, either depositors or borrowers. The bank has to consider the effect that decisions made
in every point in time have on future period balance sheets. Short-run policy choices taken in
different periods are not independent, as it is normally assumed describing other markets. In a
credit transaction the object itself of the exchange contract is a promise, and time is explicitly
taken into account in every contract.

The model adopted is a dynamic model. Different market imperfections might determine the
need for a dynamic model. Most dynamic models of banking1 have simply assumed the presence
of quadratic adjustment cost for deposits, loans or both. Here the dynamic is driven by the
consideration that loans and deposits are not independent; loans feedback in deposits of future
periods.2 The feedback mechanism is quite complex and works through the interactions of the
entire banking system. Anyway it can be reasonable to formulate some drastically simplifying
assumptions, in order to take in consideration its effect. As it will be shown, considering the effect
of the feedback, the maximisation problem becomes dynamic even without explicitly formulating
quadratic adjustment costs for deposits or loans. If the bank takes into account the feedback,
a standard quadratic cost function on loans produces implicitly a quadratic adjustment cost on
deposits. The intuition behind this result is that the decision to extend any loan facility of the
bank implies a variation in the stock of deposits.

Three important limitations of the model must be spelled out.
We assume price and cost flexibility and neutrality, so that inflation has no effect. The only

market imperfections we want to consider are in fact linked to the limited and costly availability of
information. The limited availability of information produces both market power and the peculiar
structure of the cost functions that we introduce in the model.

In second order, we choose not to deal with liquidity problems, assuming that they are ad-
equately managed by means of the compulsory reserve requirement and the deposit insurance.
Liquidity costs could easily be introduced in the model, but they would complicate the results
without increasing the understanding of the problems that we want to study.

Finally, we disregard the influence of net worth that we introduce in the model in a peculiar way.
We discuss to some extent how the result would change partially relaxing our assumption, but a
general limitation remains: we do not introduce equity markets in the analysis. This simplification
is almost standard in the microeconomic theory of banking, but nevertheless this assumption is
a relevant omission. Our model in fact, in line with most of the recent literature, focus on an
explanation of the role of banking intermediaries based on the limited availability of information.
But when information is not perfect the Modigliani-Miller theorem does not hold, so that the
composition of the liabilities of the firm matters. In this work though we limit our analysis of the
liability of the bank to debt, deposits in particular. The explicit introduction of equity markets
woud be a fundamental extension of this line of research.

1Such as Elyasiani, Kopecky and Van Hoose [8] and Cosimano [3] and [4].
2This mechanism provides the dynamic constraint.
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2 A model with contemporaneous feedback

The model is in discrete time, and has the following time structure. At the beginning of every
period, households and firms dispose of a certain amount of funds that are the bequest of previous
periods. Households take decisions regarding their portfolio allocation and their consumption
plans for the period. Firms plan their investments for the period and evaluate their finance needs.
Deposits are necessary for households in order to carry out transactions, since there is no currency.
At the end of every period households and firms dispose of an amount of funds that reflects the
evolution of the value of their assets, the income of the period and their consumption choices.
Firms obtain the liquidity that is necessary to carry out their transactions by means of loans.
The feedback process of loans on deposits that we describe can be understood as the result of the
liquidity creation at the firm level: at the end of the period part of the liquidity generated by
means of loans is distributed to households. This assumption fits well with Ramey’s [20] findings
of cointegration between M1 and business M1.

The bank can invest its deposits in loans or other assets, that we implicitly assume to be bonds.
Besides it is compelled to hold a fraction of its deposits as reserves that can eventually provide a
return.3 Deposits are immediately invested in loans or assets by the bank, except the share that
is kept as reserves. At the end of the period loans are paid back and depositors are reimbursed.
With the beginning of the new period there is a new inflow of deposits and so on. Loans feedback
in deposits because firms invest the sums received, creating deposits in the system proportionally
to the amount of the loans. The circulation of money allows banks to provide payment services
with the same funds they have loaned, just keeping a fraction of deposits as reserves.

2.0.1 The budget constraint

The budget constraint is the following:

Lt + Ft +Rt = Dt +NWt. (1)

The bank can buy securities or lend as loans only the part of deposits that it does not keep as
reserve. Defining with q the legal reserve coefficient, so that Rt = qDt, the equation becomes:

Lt + Ft = (1 − q)Dt +NWt. (2)

The value of Ft represents the amount of assets that are invested on assets, such as bonds. The
value of Lt represents the amount of loans issued by the bank. NWt is the net worth of the bank,
and we assume that it remains constant over time: NWt+1 = NWt = NW . The bank cannot get
access to the capital markets to increase its capital. Since we assume the existence of a monopolistic
framework, profits are not pushed down to the normal rate by competition, but we assume that
there is a one hundred per cent dividend payout, so that all profits are distributed to shareholders
in every period.

2.0.2 Cost functions

The analysis of the problem of the banking firm in its most general form is impossible without
specifying a simplified cost structure that allows an analytical treatment. A solution often adopted
is to specify the cost structure in terms of the different components of the portfolio, such as bonds
loans and deposits. And a further simplification used is to assume a cost function that is separable
in the arguments. Formally:

C(K,L) = C
(
D(K,L)

)
+ C

(
L(K,L)

)
+ C

(
B(K,L)

)
.

Using this formulation the existence of a separate production function for each class of assets and
for deposits is implicitly assumed. The last simplification is not a big problem as long as the
eventual economies of scope between assets and liabilities or among assets are not crucial for the
problem studied. The empirical evidence regarding the relevance of the economies of scope among

3The model could be structured in order to allow the possibility for the bank to issue other liabilities, and the
results would not change radically.
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different component of the portfolio is not uncontroversial. This is not surprising, though, because
complementarities and economies of scope do not arise between the provision of deposit services
and loans. They arise between the two separate economic functions that banks fulfil: the provision
of payment services and financial intermediation. The empirical analysis is complicated by the fact
that revenues of one service are often confused with revenues or costs of the other and vice-versa.

We choose to describe the cost of servicing deposits and loans as linear in the quantity. We
assume that the bookkeeping transaction function implies a deterministic industrial cost that the
bank has to incur in order to provide bookkeeping services to depositors and borrowers. The cost of
checks clearing and other desk operation is in fact linked to the number of transactions made by the
customers, and we can for simplicity assume that they are proportional to the amount of deposits
and loans.4 In general, on there are no obvious reasons for the industrial costs to be convex. On
the contrary, they might be concave, because of the presence of some fixed costs. But since we
choose an infinite horizon problem, we can disregard the eventual relevance of fixed costs, which
in the banking sector, anyway, are not overwhelming. The large empirical literature regarding
the existence of scale economies in the banking system (economies that besides could be linked
to portfolio management function) has not reached undisputed conclusions.5 The simultaneous
survival of banks of different size in almost every country shows that economies of scale certainly
are not overwhelming.

The assumptions regarding the structure of costs linked with the provision of financial interme-
diation services are crucial. Banks are normally assumed to face two kinds of costs, default costs
and liquidity costs. Both liquidity and default costs are to be assumed as stochastic. They are in
fact essentially due to the uncertainty regarding shocks that may hit borrowers or depositors. The
first might cause the impossibility of borrowers to refund loans, the second may cause a bank run.
We choose to disregard the importance of liquidity costs, focusing just on default costs, because
their introduction would not change in a relevant way the analysis we want to develop.

The fundamental assumption of the model is that the default cost function is quadratic. This
assumption implies that the returns on the investment in information are decreasing. Banks cannot
increase direct lending at will without reducing the efficiency of their monitoring and screening
processes. Increasing direct lending indefinitely sooner or later they would finance investment
projects of decreasing quality, taking a higher risk without a proportional increase in the return.
They would end up not pricing risk properly. We assume that the default cost affects loans only.
This seems counterfactual since banks can hold corporate bonds as well as gilts. This does not
imply that there are no defaults on bonds, but that the market is efficient and prices risk correctly.
Any agent can take as much market risk as he desires at the market price for risk, as assumed
by the CAPM model. So banks can buy bonds without incurring in non-linear default costs
because they just buy market risk, and we assume that no bank is large enough to affect returns.
The decreasing returns are just with the banks own activity, the pricing of uncertain investments,
whose information is not common knowledge and has not been disclosed to the market. Investments
whose risk is virtually unknown so that the market can not price it.

It might be reasonable to assume a non linear cost function only if assets holding are allowed
to be negative, so that the bank can borrow issuing bonds in order to lend more. In this case the
non-linearity would imply that the cost of borrowing has to be increasing with the quantity. This
case can be studied with the same framework, but the results would not be radically different. In
order to simplify the notation we do not specify neither a linear default cost nor the transaction
cost of bonds. With no loss of generality we can define the returns on bonds as net of default and
transaction costs.

Formally:

∂C(Dt)
∂Dt

> 0
∂2C(Dt)
∂Dt

2 = 0;
∂C(Lt)
∂Lt

> 0
∂2C(Lt)
∂Lt

2 = 0. (3)

4A detailed study of the industrial costs of deposit is provided by Osborne [19], and our assumptions are com-
patible with it.

5The most recent empirical evidence regarding the return to scale of banks is in Weelock and Wilson [29]. They
showed that after 1985 there is evidence of increasing returns to scale for small and medium size banks, while the
restriction of constant returns to scale could not be rejected for large banks. The finding of relevant return to scale
is probably due to the progressive deregulation of the banking sector.

4



We can express the last functions simply as:

C(Dt) = uDt C(Lt) = zLt, (4)

where u and z are positive real numbers.
A stochastic default cost must be added to the industrial costs:

D(Lt) =
1
2
vL2

t , (5)

where

∂D(Lt)
∂Lt

> 0
∂2D(Lt)
∂Lt

2 < 0, (6)

and with
v = vd + εd with E[εd] = 0 E[ε2d] = σ2

d. (7)

The cost functions we have assumed are constant over time, because with time-varying coefficients
no closed-form solution can be obtained. Anyway the model could be extended to study this
more general case. For the purposes of this study this further complication was unnecessary. The
only important problem that could be obscured by our assumption regards the effect of expected
inflation on the problem of the bank. But if prices are not sticky and expectations are rational,
expected inflation is fully incorporated in all interest rates. And under these assumptions the price
of factors of production adjusts instantaneously to the change of other prices. This implies that
cost functions are homogeneous of degree one with respect to inflation. With our assumptions,
marginal costs coefficients and interest rates are proportionally shifted by variations of the price
level.

2.0.3 The demand for deposits and the dynamic constraint

Deposits are demanded not just as a financial asset for portfolio allocation, but mainly because
banks provide depositors with transaction services. The market for payment services has always
been highly competitive, since commercial banks where competing with issuing banks (only later
state-owned central banks) that provide those services by means of bank-notes. In order to get
remunerated for the payment services that they provide by means of checks, bookkeeping entries
and credit cards, banks charge fees on the transactions undertaken. On the contrary, transactions
by means of banknotes, whose technology is much simpler and cheaper, do not need the payment
of fees. As a consequence, commercial banks have to attract depositors offering an interest rate
that banknotes do not pay. The technological developments of the 20th century have reduced the
competitive pressure from banknotes, whose role has become smaller. But new competitors have
come out. At the beginning of the twentieth century savings institutions, which were developed
initially exclusively to provide financial intermediation services, have been allowed to provide pay-
ment services by means of the gyro. Only later they have been allowed to issue loans, becoming in
all respect analogous to commercial banks. More recent technological developments have allowed
money market mutual funds and other financial intermediaries to provide many of the payment
services that banks provide at a low cost. As a consequence the need to pay interest rates has
increased.

On the other hand the relevance of transaction costs, (search costs in particular) in the market
for deposits has been shown by Flannery [11] and Hess [15], and is quite uncontroversial. Deposits
are increasingly described as quasi-fixed inputs. Since search costs allow the firm to charge non-
competitive prices,6 in presence of search costs monopolistic competition becomes the normal
market structure. This suggests that each bank does not suffer a strong competitive pressure from
other banks and can price deposits monopolistically.

We can conclude that the need to pay an interest rate on deposits comes from the competition
of intermediaries different from banks. These new competitors can in fact offer interest rates no
too far from the rates that bonds pay. As a consequence we will assume that each bank can set

6See Salop [21] and Salop and Stiglitz [22] and [23].
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monopolistically the price of deposits, while the demand for deposits is negatively affected by the
market interest rate on bonds that intermediaries pay when providing payment services.

In order to obtain a demand schedule for deposits services, we study separately the demand
of households and firms. The demand of both classes of agents is assumed to depend on two
different interest rates, the own rate on deposits and the rate on bonds, that is an opportunity
cost. For simplicity, we assume that transaction fees do not affect the demand for deposits. This
assumption can be justified, following Fama [10], considering that the market for payment services
is competitive, marginal costs are constant and the supply of these services is normally infinitely
elastic.

Interest rates on bonds are assumed to follow a pure random walk process:

rB
t+1 = rB

t + εBt+1 with E[εBt ] = 0 E[εBt+iε
B
t+j ] = σ2

B i = j, E[εBt+iε
B
t+j ] = 0 i �= j. (8)

Interest rates on deposits are the result of the equilibrium condition of the market, and are set
by the banking system in function of the rate on bonds. So they are assumed to follow another
random walk process, correlated with the process of bonds:

rD
t+1 = rD

t + εDt+1 with E[εDt ] = 0 E[εDt+iε
D
t+j ] = σ2

D i = j, E[εDt+iε
D
t+j ] = 0 i �= jand

E[εDt+iε
B
t+j ] = Cov(DB) i = j, E[εDt+iε

B
t+j ] = 0 i �= j. (9)

Household’s deposits are assumed to depend (positively) on nominal income,7 the own interest
rate on deposits and (negatively) on the interest rate on bonds. The coefficients are assumed to
be constant over time.

Dh
t = f1Yt + f2r

D
t − f3r

B
t . (10)

The first term can be considered to capture mainly the behaviour of demand deposits while the
second two of time deposits. It has in fact been shown that both demand deposits and M1 are
not very sensitive to interest rates.8 We assume that nominal income is an AR(1) process, whose
trend and error coefficients depend on the growth of both real income and prices:

Yt+1 = γY Yt + εYt+1 = γYr
γPYt + εYr

t+1 + εPt+1. (11)

The expected value of deposits of the following period is:

E[Dh
t+1] = f1γY Yt + f2E[rD

t+1] − f3E[rB
t+1]. (12)

this can be rewritten as:

E[Dh
t+1] = γY D

h
t − (γY − 1)f2E[rD

t+1] + (γY − 1)f3E[rB
t+1]. (13)

Firm’s deposits are assumed to depend on both rates as before, and on the quantity of loans issued
by the bank. This dependence is due to the liquidity creation that loans allow because of the
convertibility on demand of deposits.9 Besides, banks compel firms to deposit a fraction of the
loans they issue. In this way they manage the payments of the borrower, earning fees, as was
suggested by Sprenkle,10 and they can monitor his liquidity. We assume that deposits depend on
the amount of loans of the current period.11

Df
t = κLt + f4r

D
t − f5r

B
t . (14)

The coefficient κ synthesizes the effect of the feedback of loans on deposits. Loans have a direct
impact on deposits through the effect of firms’ deposits, indirectly through firms’ expenditure.
The effect of the increase of loans is assumed to be analogous among different banks of the system,

7Since their transaction demand is assumed to be a function of income.
8See Hess [14] and [15] and Moosa [17].
9See Diamond and Rajan [7].

10See Sprenkle [26] and [27].
11Alternatively the dependence can be assumed to be lagged, and deposits of the current period depend on loans

of the previous one. It can be shown that the results do not change in a relevant way.
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assuming that banks operate in regions that are homogeneous. For simplicity loans are assumed
to affect deposits for the following period only.12

Summing deposits of firms and households we can obtain the expected level of deposits of the
bank as:

E[Dt+1] = γY Dt + g3E[rD
t+1] − g4E[rB

t+1] + κE[Lt+1] (15)

where g3 = [f4 − (γY − 1)f2] and g4 = [f5 − (γY − 1)f3].

Interest rates on deposits are assumed to affect equilibrium levels, but not the dynamic behaviour
of deposits. The assumption of a unit root implicitly excludes the existence of a trend, and it
seems reasonable because of the infinite time period of the maximization problem. In the long run
the interest rate should in fact ultimately depend on the productivity of capital and the average
time-preference coefficient, both of which are unlikely to follow a trend, neither deterministic nor
stochastic. The interest rate has increasingly been been model as a mean-reverting stochastic
process, such as the Uhlenberg-Ulbeck in continuous time.

In conclusion, the demand for deposits services is assumed to have three components. One
component is completely exogenous and cannot be influenced by the bank in any way, and it is
the behaviour of income. The second depends on the portfolio choices of the bank, since a fixed
proportion of loans has to be kept or feedbacks in deposits. The interest rate on deposits represents
just the third component. If banks are willing to increase deposits further than they could achieve
with just the normal flow plus the component dependent on the loans issued, they have to pay
an interest rate. But since they cannot separate different components of the demand banks can’t
price discriminate and have to pay the interest rate on all their deposits

2.0.4 The demand for loans

The costly availability of information generates monopoly power in the market for loans. Rela-
tionship lending allows the bank to price monopolistically and the higher return due to the market
power makes the higher risks of the project worth. Sharpe [25] has shown that establishing long-
term relationships with its customers, a bank learns more than others about the business and the
capability of the borrower. This information asymmetry generates a rent that allows banks to
finance risky projects whose information is very opaque, which cannot be financed in the market.
Establishing the relationship and developing their knowledge, banks provide a valuable service,
they create the knowledge necessary to price the risk. The price that firms pay for this service is
the monopolistic rent that they pay on loans.

The empirical tests for the presence of market power were traditionally performed studying the
behaviour of the rate on loans, which has been found to be stickier than the rate on bonds, in
different estimates conducted in different periods of time and different countries. This evidence
though was not uncontroversial, since the stickyness of the rate can be explained as well as the
outcome of credit rationing, or the result of implicit contracts for the smoothing of interest rate
shocks. An important recent result has been provided by Cosimano and Mc Donald [5], which,
analysing a large panel of bank loans, have shown that banks in the US exploit significant market
power in the market for loans.

2.0.5 Revenues

The main stream of profits of the bank stems from the difference between the interests rate rLt,
that the bank charges on loans, and the interest rate rDt, that it pays to depositors. For simplicity
we assume that banks do not buy shares, and that the only available alternative to the issuance of
loans is the purchase of bonds. The alternative source of revenues is given by the spread between
the interest rate on bonds rBt and the rate on deposits:

υt = rB
t − rD

t . (16)
12This assumption is necessary in order to make the model tractable. But it can be justified considering that the

lag in the operation of the feedback should not be too long: firms keep part of their loans as deposits, and in general
most of the portfolio of retail banks is made of short-term loans.
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The rate on bonds is assumed to be set exogenously, and the bank is assumed to be price taker.
Reserves are assumed to provide (eventually) a return equal to rR

t . Since banks are normally
compelled to hold reserves in form of cash, or non-interest bearing deposits at the central bank,
the net return ρt = rR

t − rD
t on reserves is usually negative, since the return is zero, but the bank

has to bear the costs of the proportional share of deposits.

2.0.6 Monopolistic pricing

The profit function that results from the previous assumptions is the following:

Π =
∞∑

t=0

βt
[
(rL

t − rD
t )Lt + υtFt + ρtRt − 1

2
vL2

t − utDt − zLt

]
. (17)

Its logical structure is very simple: revenues come from the interest rates spreads, the costs that
must be detracted are the cost functions previously defined. The importance of search costs in the
market for deposits and the relevance of relationship lending in the market for loans create the
need of a monopolistic model. As a consequence, the bank takes into account the demand schedule
for deposits and loans in its maximization problem. The demand for loans is introduced in the
model in a standard way, obtaining an inverse demand function and substituting its value for the
value of the interest rate on loans.

rL
t = −1

b
Lt +

a(Yt)
b

+
d

b
rB
t + εLt (18)

The peculiarity of the model lays in the way the deposit demand schedule is introduced in the
model. Because of the presence of the quantity of deposits in two different periods of time, the
demand schedule introduces another unknown in the problem, which becomes a dynamic problem.
The information provided by this equation cannot be used to eliminate the interest rate on deposits,
because it must be used to solve for the two quantities. The bank has to choose: it can either get
rid of the rate on deposits and solve for the quantity of deposits in just one period, or solve for
both quantities and treat the dynamic of the interest rate as exogenous. The correct solution is
the second. Solving for the quantity of loans, from:

Dt = γY Dt−1 + g3r
D
t − g4r

B
t + κLt, (19)

the following can be obtained:

Lt =
1
κ

{
Dt − γY Dt−1 − g3r

D
t + g4r

B
t

}
. (20)

Substituting this function for Lt in the profit function, we can observe that the quadratic cost on
loans works as a quadratic adjustment cost on deposits. Our model becomes formally identical
to a standard dynamic model, but its structure is much simper than the structure of any other
dynamic models of banking.

Rather than solving the model for Lt, it is convenient to use the budget constraint differently,
forming a Lagrangian. It becomes possible in this way to solve the model for the other two variables,
obtaining as a the solution, both the optimal size of the portfolio, and the optimal composition of
the portfolio of assets. Making a further assumption, it is possible to obtain the rate on deposits
from the solution on the quantities, as it happens in the perfectly competitive models.

2.1 Intertemporal maximization

The firm maximizes its expected profits over an infinite horizon period. The budget constraint
is implemented by substitution. The problem of the banking firm, for every pair of positive real
numbers (v, u), can be expressed as:

Max

{Ft,Dt}∞0
Π =

∞∑
t=0

βt
[
(rL

t − rD
t )Lt + υtFt + ρtRt − 1

2
vL2

t − utDt − zLt

]
, (21)
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s.t.
Lt + Ft +Rt = Dt +NW , (22)

Rt = qDt, (23)

Lt = a− brL
t + drB

t + ηt, (24)

and
Dt = γY Dt−1 + κLt + g3r

D
t − g4r

B
t . (25)

The discount factor βt represents the temporal perspective of the bank: βt = 1
(1+rE)t , where we

have assumed that rE , the return on equities, is the discount rate that the bank applies.13 Under
our assumption deposits are the state variable of the problem, while Ft is the control variable of
the bank.

From the Euler equations of the problem, defining
(

bv+2
b

)
= α, the following difference equation

can be obtained:

E[Ft+1] =
1 − (1 − q)κ

γY β
Ft +

(1 − q)
{
γ2

Y β − [1 − (1 − q)κ]
}

γY β
Dt +

+
βγY + (1 − q)κ− 1

γY β
NW + (1 − q)Xt +

1 − (1 − q)κ
γY β

E
[ 1
α
Zt+1

]
, (26)

where:14

Zt+1 =
[(

1 − d

b

)
(γY β − L) + (1 − q)κL

]
rB
t+1 − (γY β − L)εLt+1

+κ
[
rR
t q − rD

t − u
]
+ (βγY − 1)

(
z − a

b

)
, (27)

Xt = g3r
D
t − g4r

B
t . (28)

Equation (26) together with the original dynamic constraint, which we rewrite, form a system of
difference equations:

Dt =
γY

1 − κ(1 − q)
Dt−1 − κ

1 − κ(1 − q)
Ft +

κ

1 − κ(1 − q)
NW +

1
1 − κ(1 − q)

Xt. (29)

Stability conditions

It can be shown that the eigenvalues of the system are:

λ1 =
1

βγY
and λ2 = γY . (30)

Necessary and sufficient condition for the two eigenvalues to be one smaller the other larger
than one are the following:{

γY > 1 and βγY < 1 or 1+gY

1+rE
t
< 1 or gY < rE

t

γY < 1 and βγY > 1 or 1−gY

1+rE
t
> 1 or rE

t < −gY

This condition is necessary, but not sufficient, in order to assure the saddle path stability of the
system. Here gY is the rate of growth of nominal GDP, and we have made the strong assumption
of risk neutrality for the investors.

The meaning of this condition is that the stability of the banking system depends on the
relationship between the rate of growth of the demand for deposits and the interest rate that the
bank uses as a discount factor. If the discount factor is smaller than the rate of growth, and the
second is positive, the dimensions of the bank tend to increase indefinitely. If the nominal rate of

13Assuming investors to be risk neutral.
14Defining εL

t = 1
b
ηt.
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growth is negative, the bank does not tend to disappear only if the expected return on equities is
negative too and larger in absolute value than the rate of growth. The rate of growth of income
is the fundamental variable for the problem of the bank as long as the demand for deposits is a
function of nominal income. For simplicity we have assumed that deposits change as income, but
the conclusions would hold anyway.

If markets are efficient and shareholders are for simplicity considered to be risk-neutral, the
standard assumption is that the bank uses the expected return on equities as a discount rate. As
long as wages and rents do not adjust instantaneously this condition should normally be guaranteed.
In this case in fact profits are more volatile than income. And as a consequence the expected return
on equities should always be in absolute terms larger than the expected rate of growth of income.

2.1.1 General solution

The Rational Expectations Equilibrium of the system can be obtained substituting one of the
equations in the other. Substituting the first in the second we obtain an equation for the stock of
bonds:15

E[Ft+1] −
[ 1
γY β

+ γY

]
Ft +

1
β
Ft−1 =

[1 − γY ]
[
βγY − 1

]
γY β

NW +

−E
[ 1
βα

]
Zt + E

[
1 − (1 − q)κ

γY βα
Zt+1

]
+

(1 − q)(γY β − 1)
γY β

Xt +
(1 − q)γY

1 − κ(1 − q)
(εDt − εBt ). (31)

Following the same procedure, we can write the value of Dt as:

E[Dt+1] −
[ 1
γY β

+ γY

]
Dt +

1
β
Dt−1 =

γY β − 1
γY β

Xt − κ

γY β
E

[ 1
α
Zt+1

]
. (32)

2.1.2 The portfolio of bonds

Using the expectation lag operator H, such that H−jEs−1xs = Es−1xs+j , the left hand side of the
equation can be expressed as:

E[Ft+1] − E[
1

γY β
+ γY ]Ft +

1
β
Ft−1 = (1 − λ1H)(1 − λ2H)E[Ft+1]. (33)

Where λ1 and λ2 are the roots of the system. We already know their values, but they could have
easily been obtained realizing that the right hand side can be rewritten as

1 − (λ1 + λ2)H + λ1λ2H
2, so that:

−(λ1 + λ2) =
1

γY β
+ γY and λ1λ2 =

1
β

. (34)

λ1 =
1

βγY
λ2 = γY . (35)

Equation (31) can be rewritten as:

(1 − λ1H)Ft+1 =
1

(1 − λ2H)
Et

{
[1 − γY ]

[
βγY − 1

]
γY β

NW +

+
1 − (1 − q)κ− γY L

γY βα
Zt+1 +

(1 − q)(γY β − 1)
γY β

Xt +
(1 − q)γY

1 − κ(1 − q)
(εDt − εBt )

}
. (36)

Remembering that:

Zt+1 =
[(

1 − d

b

)
(γY β − L) + (1 − q)κH

]
rB
t+1 − (γY β −H)εLt+1

+κ
[
rR
t q − rD

t − u
]
+ (βγY − 1)

(
z − a

b

)
, (37)

15As shown in the appendix.
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it is now necessary to isolate the constant terms, dividing the former expression as:

Z ′
t+1 =

[(
1 − d

b

)
(γY β −H) + (1 − q)κH

]
rB
t+1 − (γY β − L)εLt+1 + κ

(
rR
t q − rD

t

)
, (38)

C = (βγY − 1)
[
z − a

b

]
− κu. (39)

We are assuming that λ1 < 1 and λ2 > 1. The right-hand side can be solved forward, applying
the algorithm developed by Sargent.16 The expression can be rewritten, using the properties that

1
(1−λ2L)a = −(λ2L)−1

1−(λ2L)−1 a = a
1−λ2

, and 1
(1−λ2L)bXt = b −(λ2L)−1

1−(λ2L)−1Xt = −b∑∞
i=1

(
1
λ2

)i

Xt+i+1, where a
and b are arbitrary constant terms. Applying the transversality condition of the problem (discussed
in the Appendix), Equation (31) can be solved as:

Ft+j+1 =
1

βγY
Ft+j +

βγY − 1
γY β

NW +
1 − (1 − q)κ− γY

(1 − γY )γY βα
C − 1 − (1 − q)κ

βγY

∞∑
i=1

( 1
γY

)i

Et+i

[Z ′
t+j+i+2

α

]
+

+
γY

βγY

∞∑
i=1

( 1
γY

)i

Et+i

[Z ′
t+j+i+1

α

]
− (1 − q)(γY β − 1)

γY β

∞∑
i=1

( 1
γY

)i

Xt+j+i+1. (40)

In order to simplify the interpretation of the results, it can be assumed that interest rates follow
a random walk process, so that the deterministic component is assumed to remain constant. This
assumption is reasonable for market interest rates on bonds, but it is not acceptable for the rates
on deposits, since the equilibrium rate of deposits is obtained from the model. Just to simplify
the understanding of the results, we will disregard the relevance of the deterministic components,
assuming for simplicity that future rates on deposits are expected to behave like a random walk.

If we assume that interest rates are random walks, assuming that the correlation between
interest rates and default costs is time-invariant, we can rewrite the expression treating all the
terms as constants:

Ft+j+1 =
1

βγY
Ft+j +

1 − (1 − q)κ− γY H

(1 − γY )γY βα

{[(
1 − d

b

)
(γY β −H) + (1 − q)κH

]
·

[
rB
t+j+1 + COV

(
rB ,

1
α

)]
+ κ(qrR

t+j − rD
t+j)

}
+

(1 − q)(γY β − 1)
βγY (1 − γY )

(g3rD
t+j − g4r

B
t+j) +

− [γY β − 1][1 − (1 − q)κ− γY ]
βγY (1 − γY )α

COV
(
LD,

1
α

)
+

1 − (1 − q)κ− γY

(1 − γY )γY βα
C +

βγY − 1
γY β

NW . (41)

To understand the results we have to remind our assumption that γY > 1 and
(

bv+2
b

)
= α .

We can observe that interest rates on bonds at time t+ 1 have a positive sign, so they always
increase the quantity of bonds held in the portfolio at time t + 1. Rates on bonds at time t have
a negative sign, in the first term, showing a positive effect on time t holdings of bonds. We can
observe though that under our basic assumption,17 higher rates produce an increase in the holdings
of bonds. The other terms in the interest rate at time t have a positive sign, and this means that
there is even a positive dependence on the lagged value of the interest rate. We can conclude that
both current and lagged values of interest rates increase the quantity of bonds held in the portfolio
by the bank.

Industrial costs and interest rates on deposits have a negative sign, since the profit margin
becomes tighter as they increase. On the contrary higher industrial costs on loans have a positive
sign, since they increase the relative appeal of bonds.

The covariance between the rate of interest and the reciprocal of the cost function has a positive
sign. This implies that a positive correlation between the rate of interest and the default cost has
a negative effect on the purchase of bonds. the sign of the other covariance is the opposite. This
highlights the fact that when the demand for loans is correlated with default costs, the bank issues
a proportionally lower quantity of loans, buying more bonds instead.

16See Sargent [24] p.176.
17That the nominal rate of growth is positive and larger than the discount rate.
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Default costs shrink the size of the forward looking part of the equation, reducing the portfolio
of bonds, and the same effect is a function of the elasticity of the demand for loans. The lower
the elasticity the smaller the portfolio. This result is due to the fact that both default costs and
inelastic demand for loans reduce the optimal quantity of loans and, as a consequence, the size of
the whole portfolio.

2.1.3 Deposits

The solution for deposits is given by:

Dt+j+1 =
1

γY β
Dt+j +

κ

βγY

∞∑
i=1

( 1
γY

)i

Et+i

[Z ′
t+j+i+2

α

]
− κ

βγY α(1 − γY )
C +

−γY β − 1
γY β

∞∑
i=1

( 1
γY

)i

Et+i[Xt+j+i+1], (42)

Under the assumption that interest rates follow a random walk process, we can for simplicity
assume that deterministic component of the rates remain constant and treat the values of the rates
at time t and t+ 1 that enter in the solution as constants. In this case the result can be simplified
as:

Dt+j+1 =
1

γY β
Dt+j +

κ
[(

1 − d
b

)
(γY β −H) + (1 − q)κH

]
+ (γY β − 1)αg4H

βγY α(γY − 1)
rB
t+j+1 +

+
κ

βγY α(γY − 1)
κrR

t+jq −
κ2 + α(γY β − 1)g3
βγY α(γY − 1)

rD
t+j +

κ
{

(βγY − 1)
[
z − a

b

]
− κu

}
βγY α(γY − 1)

+

+
κ

βγY α(γY − 1)

[(
1 − d

b

)
(γY β − 1) + (1 − q)κ

]
COV

(
rB ,

1
α

)
− (γY β − 1)κ
βγY (γY − 1)

COV
(
LD,

1
α

)
. (43)

It can be observed that the intertemporal equilibrium value of deposits depends negatively on the
costs of deposits as it should be the case. The variation of the quantity of deposits between two
periods is a negative function of the industrial cost of deposits. It is much more surprising that
interest rate on deposits has a negative effect. Solving the equation for the rate on deposits, it can
easily be realised that interest rates on deposits at time t increase with the level of deposits at time
t and vice-versa, as we would expect. The negative relationship is with the level of deposits at time
t + 1. This result can be understood reading the equation in the opposite way. The current level
of deposits has a direct relationship with both the rate on deposits and the level of next period.
As a consequence when the rate of interest is high because the demand for deposits is elastic, the
higher rates imply a lower level for next period. The other negative component is small since it is
of second order and reflects the reduction in profits due to the interest cost. The results regarding
the dependence on the rate on deposits, anyway, are not very robust, since they depend on the very
strong assumption that their deterministic component is expected by the banker not to change in
the future.

The quantity of deposits grows with the rate on bonds. This result is counterintuitive, but it
can easily be explained, as the effect of the feedback. It is useful to underline what would the
result be if the market for loans were to be competitive, rather than monopolistic. The structure
of the model would be the same, the only difference would be that in the final result we would have
−rL

t+1 instead of
(
1− d

b

)
rB
t+1, and of course the intercept term a

b would disappear and the term in
default cost would be v rather than α. The final result would show a negative relationship with the
rate on loans, the impact of which depends on the value of the feedback coefficient. In fact lower
rates would allow a greater issuance of loans generating more liquidity and vice-versa. Since higher
rates on bonds imply lower rates on loans in the monopolistic model, the first part of the result is
explained. The second component, κ2(1 − q)rB

t is of a smaller order, and is due to the fact that
higher rates imply higher returns of the part of the portfolio invested in bonds. This component
affects the level of deposits with a one period lag, and is small. The final term αg4r

B
t is due to the

standard demand effect, and measures the reduction in the demand of deposits services due to the
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higher return of alternative assets (that may even provide monetary services, in some cases). The
negative impact affects the contemporaneous level of deposits but not the level of the following
period. As a consequence, the higher the rate on bonds, the lower the contemporaneous level of
deposits, the higher the difference between the levels of the two periods. This result provides a
theoretical rational for the empirical evidence provided by Chari, Christiano and Eichenbaum [2],
which shows that M1 shows a relevant positive correlation with future values of the interest rate,
while the correlation with contemporaneous and past values is negative.

The covariance between the interest rate on bonds and the reciprocal of the default costs
increases deposits, so a positive correlation between interest rates and default costs reduces the
level of deposits. The opposite is true in the case of a positive correlation between shocks in the
demand for loans and default costs. Default costs shrink the size of the forward looking part of
the equation, reducing the size of the portfolio. They are the true constraint on the size of the
portfolio, putting a limit to the liquidity creation.

Loans

The rational expectation equilibrium quantity of loans can be easily obtained from the budget
constraint L = (1 − q)D − F +NW :

Lt+j+1 =
1

γY β
Lt+j +

1
γY β

NW − 1
γY βα

C +
1 − γY H

γY β

i+1∑
i=0

( 1
γY

)i

Et+i

[Z ′
t+j+i+1

α

]
. (44)

And:

Lt+j+1 =
1

γY β
Lt+j +

1
γY β

NW −
[(

1 − d
b

)
(γY β −H) + (1 − q)κH

]
rB
t+j+1 + κ

(
rR
t+jq − rD

t+j

)
γY βα

+

−
(βγY − 1)

[
z − a

b

]
− κu

γY βα
−

(
1 − d

b

)
(γY β − 1) + (1 − q)κ

γY βα
COV

(
rB ,

1
α

)
+
γY β − 1
βγY

COV
(
LD,

1
α

)
. (45)

This result shows that the contemporaneous rate on bonds has a negative impact on the issuance
of loans. Lower interest rates on bonds increase the amount of loans issued and vice-versa. This
is not surprising since the rate on loans depends negatively on the rate on bonds and the rate on
bonds itself represents the opportunity cost of the issuance of loans.

Loans depend positively on the lagged rate on deposits. At the same time, costs of loans
negatively affect the issuance of loans, while the opposite is true for the cost of deposits. In this
model the amount of deposits represents a constraint for the issuance of loans since it cannot be
adjusted in a costless way. Higher industrial costs (which are linear) and interest rates on deposits
have a stronger impact on the alternative investment of the assets portfolio of banks, bonds. Lower
margins in the intermediation due to higher industrial costs and interest rates of deposits push the
bank to issue proportionally more loans. The reason lies in the fact that there is a crucial difference
between the issuance of loans and of the purchase of bonds. Purchasing bonds the size of the bank
does not change, while the issuance of loans increases the size. The constraint on the size is
caused by the default cost, and is increased by the monopoly power. Default costs are the relevant
constraints for the issuance of loans because they work as an adjustment cost on deposits, as shown
before.

The covariance between the rate of interest and the reciprocal of the cost function has a negative
sign. This implies that a positive correlation between the rate of interest and the default cost has
a positive effect on the issuance of loans. This condition states that when higher rates on bonds
are correlated with higher default costs on loans, the banks, not surprisingly, issues more loans.
Any consideration regarding the impact of interest rate shocks must accordingly be qualified.

When the demand for loans is correlated with default costs, the bank issues a proportion-
ally lower quantity of loans, buying more bonds instead. Not surprisingly if a buoyant demand
is regarded as implying higher future default cost, the enthusiasm for the issuance of loans is
proportionally reduced.
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2.1.4 The interest rate on loans

The interest rate on loans can easily be obtained substituting the solution (44) for the quantity of
loans in the demand condition. For simplicity we use the solution of (26), but the general result
could easily obtained following the same procedure:

rL
t+j =

1
b
Et+j

{
drB

t+j +

[(
1 − d

b

)
(γY β − L) + (1 − q)κL

]
rB
t+j+1

γY βα
+G

}
, (46)

where

G = a+ ηt+j − 1
γY β

Lt+j − 1
γY β

NW +
κ
(
rR
t+jq − rD

t+j

)
γY βα

+
(βγY − 1)

[
z − a

b

]
− κu

γY βα
+

+

(
1 − d

b

)
(γY β − 1) + (1 − q)κ

γY βα
COV

(
rB ,

1
α

)
− γY β − 1

βγY
COV

(
LD,

1
α

)}
; (47)

and L is the lag operator. When the rate on loans is set monopolistically, interest rates on loans
depend on contemporaneous and expected rates on bonds. Interest rates on bonds have a strong
impact on the rates on loans.

It is useful to show the result when the bank has no market power and the rate on loans is
taken as exogenous, in order to separate the effect of market power from the supply side effect due
to the presence of bonds in the portfolio. Considering the bank as representative of the sector and
aggregating we would obtain:

rL
t+j+1 =

1 − γY βv

γY β
rL
t+j +

(1 − q)κ
γY β

rB
t+j + vG′, (48)

where

G′ = − 1
γY β

Lt+j − 1
γY β

NW +
κ
(
rR
t+jq − rD

t+j − u
)

γY βv
+

(1 − q)κ
γY βv

COV
(
rB ,

1
v

)
− γY β − 1

βγY
COV

(
LD,

1
v

)}
. (49)

An interest rate shock would decrease the contemporaneous value of the rate on loans but increase
the value of next period. We can see that in general higher interest rates on bonds tend to increase
the rate on loans since the difference between the two periods rates on loans is positive. It is
important to observe that the impact is in this case quite small, indicating that the rate on loans is
much more sluggish than the rate on bonds. The default cost coefficient, v, reduces the dependence
on the lagged value of the interest rate, but has no influence on the coefficient of the rate on bonds.

The equilibrium level of the interest rate on deposits can be obtained in the same way, consid-
ering the equilibrium rate for which demand and supply are equated. It can easily be realised how
the rate on deposits is subject to contrasting demand and supply effects, whose net effect is not
obvious on a priori ground.

2.1.5 Cournot competition

Assuming the presence of different banks in the market and that each bank’s cost structure is
common knowledge, the model developed in the former sections can be structured as a Cournot
model. The problem of every individual bank would in this case include the market share as
an unknown of the problem, and it would take into account the result of the same optimisation
problem performed by the others banks. We would now have n firms facing their n maximization
problems, that include the problems of the competitors in the price setting equation. And each
individual firm’s problem would now include as an unknown the value of the market shares ψ = L

Lj

and θ = D
Dj

. The n equations would provide the optimal supply functions. The condition of
aggregation of the loan and deposits supply schedules provides the two extra equations that allow
closing the system:

L =
n∑

j=1

Lj , D =
n∑

j=1

Dj , (50)

where n is the number of firms.
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3 Discussion

3.1 A positive interest rate shock

When the rate on loans is set monopolistically interest rates on bonds have a strong impact on the
rate on loans, in contrast with the perfectly competitive case.18 Our results show that contempo-
raneous interest rate shocks are the only that are smoothed.19 On the contrary shocks to expected
future rates need not be smoothed, and can produce a more than proportional increase of the rate
on loans. This kind of shocks can be smoothed only if the demand for loans is highly sensitive to
the rate on bonds. We can conclude that interest rate shocks are normally smoothed only when the
shock is expected to be transitory. If the shock is expected to affect permanently future interest
rates, the impact on the rate on loans may even be stronger than on the rate on bonds. Default
costs have no influence on the contemporaneous rate coefficient, but affect the coefficient of the
expected rate on bonds. The forward looking part becomes less important only when default costs
are very large.

An interest rate shock reduces the quantity of loans issued and increases more than propor-
tionally the size of the portfolio of bonds. The main force behind the result is the market power
of the bank. The sensitivity of the demand for loans on the rate on bonds is important in this
context. When its value is high relative to the coefficient of the own rate, the strength of the result
is proportionally reduced. When the competition from the bond market is strong, the impact of
the rate on bonds on the issuance of loans is reduced, because the market power of the bank is
proportionally reduced. In the case of a perfectly competitive market for loans, and assuming that
the rate on loans is perfectly correlated with the rate on bonds, the result is never overturned, but
it becomes far less significant.

Another important observation is that the impact of the shock on the two assets is not symmet-
ric, because the size of the portfolio is affected too. Not surprisingly, the effect is much stronger
on the bond component of the portfolio, because the negative impact on the issuance of loans is
necessarily more limited. We can conclude that the amount of bonds in the portfolio is necessarily
much more volatile than the quantity of loans. The reason is that the bond market does not take
default costs into account in the way banks do, because, assuming that risk is correctly priced in
an efficient market, expected default costs reduce proportionally the expected return in a linear
way, so that net returns are not affected. The case of the bank is different because it deals with
uncertainty, and the impact of default costs on its profits must be non-linear. It can finally be
observed that under our assumptions a higher rate of growth of output increases the rate on loans,
reducing the smoothing, even disregarding any effect of income on the demand for loans.20

In the former section we began to discuss the effect of the correlation between interest rates
and default costs. We have seen that because of this correlation the bank tends to issue more
loans. The assumption that higher rates on bonds increase default costs on loans can be justified
considering that large firms need both loans and bonds, and higher market interest rate reduce
the cash flow and increase the risk of default on both categories of assets. We did not formally
introduce a default cost on bonds, because we did not specify whether the bonds that the bank
buys were risk-free or high yield risky bonds. In the second case, assuming that default costs are a
linear function of the quantity purchased, these costs would proportionally shrink the net returns
of bonds. Even in this case the pattern of our results would not change, only the relevance of the
different effects would be different.

The results of our model show that the correlation between the interest rate on bonds and
the default costs tends to offset the direct effect of the interest rates on bonds. The correlation
is positive because higher interest rates reduce the free cash-flow of the borrowers, so that the
risk of default becomes proportionally higher. We have not made any assumption regarding this
correlation, but it is likely to be much larger when interest rates are high. The increase of the
interest rate implies in fact a reduction of the free cash flow that is proportional to the initial level
of the rate. So we can expect the effect of an interest rate shock on the composition of the portfolio

18Our results for a perfectly competitive framework confirm the finding of Cosimano [4].
19As it can easily be realised form Equation (46). The own coefficient b is in fact always larger than the cross

coefficient d of the demand for loans.
20The derivative of rL with respect to γY is in fact normally positive.
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to be dependent on the initial level of the rates. When the rates are low the direct effect of the
interest rate is likely to be predominant, because the opposite effect due to the correlation should
not be very large. For higher initial levels of the rate the direct effect of the interest rate is likely
to be largely offset by the correlation. When initial interest rates are high, the higher correlation
could even imply the dominance of the effect of the covariance. In this final case we would observe
the paradoxical result of an increase of the direct lending activity after a positive interest rate
shock, notwithstanding the market power of the bank. This could possibly happen in the case of
high inflation, when nominal rates are very high and the demand for loans remains strong.

Finally, following the same line of reasoning, in the case of heavy shocks we might expect that
the effects are not symmetric in the case of a positive or negative shock. The reduction in the
issuance of loans following a large positive shock should be smaller than the increase following a
proportional reduction.

3.2 Credit quality shocks

Different types of shocks of real origin affect borrowers, producing variations of current and expected
default costs. To keep the analysis simple, we have assumed that the coefficient of the expected
default costs are the same as the coefficient of the cost of the current period, and are revised when
the current cost changes. As a consequence the only shocks that we consider are those that are
regarded as permanent ones by the banker. Shocks that are supposed to affect negatively and
permanently the borrowers reduce the average quality of the portfolio of loans, increasing default
costs.

Higher default costs reduce the size of the whole portfolio. The higher volatility of the portfolio
of bonds implies that the impact on the purchase of bonds is proportionally much stronger than
on the issuance of loans. The bank reacts to higher default cost shrinking the whole portfolio,
reducing notably the amount of bonds in order to reduce less the issuance of loans. So when an
industry is affected by a negative shock and the placement of bonds becomes difficult because
spreads get wider, the banking industry does not increase the issuance of loans. The bank cannot
lend more because default costs affect the size of the portfolio, and only indirectly the composition.
The portfolio shrinks, and the composition changes favouring the issuance of loans just because
the reduction of the size affects bonds more. On the contrary when default cost gets smaller the
share of bonds in the portfolio grows more than proportionally.

This result shows the usefulness of a dynamic framework, where the size of the portfolio is
endogenous. Variations of the size of the whole portfolio are not captured by static portfolio
models, and may induce in error. In the case of a negative shock affecting the credit quality a
borrower or of an industry, our model predicts that banks reduce the issuance of loans, providing
insurance against the shock to a limited extent only. As long as their information allows the
formulation of expectations regarding future default cost, banks provide direct lending facilities,
but proportionally reducing the amounts involved. On the contrary, after the shock it may become
very difficult for the less informed lenders of the market to properly price the risk, so the bond
market may easily dry out because of the insurgence of a lemon problem. In the last case borrowers
are pushed to rely on banks, the demand for loans surges and bonds are not a substitute for loans
any more as a source of finance for risky projects.

A strong enough increase of the demand could in principle push the bank to lend more, since
demand grows more than proportionally as default costs rise. But this may be the case only when
the initial demand is low, for example when the shock hits an industrial sector whose main source
of finance is the bond market. This can easily be realised from Equation (26), which shows that
the increase of the demand21 change just one of the components of the equilibrium level of loans,
while the default costs affects other terms of the sum too. Besides the absence of competition
from bonds22 has both a positive and a negative impact in the issuance of loans. The positive
effect comes from the higher coefficient of the covariance term, the negative because the coefficient
measuring the direct effect of the interest rate on bonds becomes larger. When the level of the
rates on bonds affects the demand for loans, if the coefficient is large enough, the higher demand

21A variation of the intercept a of the demand for loans schedule, increased by the lower elasticity of the demand,
measured by a lower coefficient b.

22Shown by a value of zero for the coefficient d.
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for loans due to an increase of the rate on bonds may offset the negative supply side effect due
to the fact that the rate represents the opportunity cost of direct lending. This seems to suggest
that banks may provide insurance, increasing the issuance of loans when borrowers are hit by a
shock, to firms that have access to the bond market, when it becomes difficult for these firms to get
financed in the market. On the contrary, when a negative shock hits small firms or other borrowers
that do not get access to the bond market, banks are likely to reduce the issuance of loans.

3.3 Net worth

This model does not allow a correct assessment of the importance of the own capital and of capital
requirements, for two reasons. In first instance the volatility of deposits induced by bank runs
might be relevant for the problem, but this problem could be solved introducing a stochastic error
in the demand for depots schedule. Second, and much more important, the stock market has not
been introduced in the analysis, and it is a relevant omission, because we are explicitly analysing
conditions under which the Modigliani-Miller theorem does not hold. The explicit introduction
of the stock market would be quite complex, since we should model agency problems in condition
of opaque information, and is far beyond the scope of this work. Nevertheless it can be useful to
study the importance of the level of initial capital, under the very restrictive assumptions described
earlier, of a strong equity rationing.

In this case, the relevance of net worth for the problem of the bank does not depend on the lag
structure adopted, because the result is exactly the same if adopt a different structure for the lags of
the feedback, as in the appendix. Net worth increases the portfolio of assets in a very asymmetric
way, because independently of the expected returns of different securities, banks use net worth
almost entirely to finance loans, and only a modest fraction is invested in bonds. The share of
bonds might become substantial only in the case when the exogenous rate of growth of deposits is
much larger than the discount factor. Under our assumptions, this happens when the nominal rate
of growth of income is much larger than the real interest rate on equity. The surprising result is the
irrelevance of the relative returns of different classes of assets. This result is due to our assumption
that the level of net worth remains constant in every period, independently of the dimension of the
portfolio, which is not very realistic. This implies that banks are allowed to distribute all profits
in every period and there are no legally binding capital requirements. Besides banks do not need a
buffer because there is no penalty if profits become negative during a period, for example because
of a negative shock that affects the average quality of credit increasing the default cost. In this
extreme situation net worth increases the size of the portfolio at no cost, so banks normally use
most of the net worth to finance loans because loans allow the portfolio to grow, while bonds do
not. As we would intuitively expect net worth in this case has no effect on the other liability,
deposits. A larger net worth allows a one-off proportional increase of the portfolio of assets, loans
in particular, without increasing the amount of deposits. Yet this result is not trivial, because since
a higher capitalisation allows the bank to lend more creating liquidity, it could be supposed that
deposits should be positively correlated with net worth. On the contrary, the model shows that a
higher net worth increases direct lending without creating liquidity.

The model can easily be extended to analyse the impact of the legal requirement of a minimum
ratio between capital and loans. If the net worth of the bank has to cover at least a fixed proportion
of the loans issued, since in our model the bank would never have an incentive to keep a higher
than necessary share of capital, we could assume that:

Lt + Ft +Rt = Dt +NWt, (51)

Rt = qDt, (52)

NWt = δLt. (53)

so that the budget constraint becomes the following:

(1 − δ)Lt = (1 − q)Dt − Ft. (54)

It can be easily realised that in this case the results of the model would change in a simple way. The
term in net worth obviously disappears, and in the final result both intercept terms are multiplied
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for 1 − δ. The effect of this legal requirement is to proportionally reduce the forward looking part
of the solution. As a consequence in this case the size of the portfolio is proportionally reduced,
without changing the composition of the assets. Clearly deposits, the only freely chosen liability are
proportionally reduced as well, because deposits positively depend on the main spread Zt. These
constraint virtually acts a reserve coefficients on deposits, but is much more effective. In this case
we did not introduce explicitly net worth in the profit function, assuming that capital could not be
invested and had no cost. The introduction of those cost and revenues function would affect the
optimal composition, that would now take into account this component. But the general result
previously discussed would not change. Variations of the capital requirement coefficient would
affect only the size of the portfolio, not the composition.

3.4 Growth

An increase in the factor of growth of the economy reduces the importance of the backward looking
part of each of the equilibrium equations. The impact on the forward looking part is positive in
the case of deposits, negative for loans. This result reflects the fact that the forward looking part
is a function of the feedback process and of income growth. Income growth increases the demand
of future deposits services exogenously, independently of the feedback process. Since issuing loans
the bank increases the level of deposits through the feedback, when income grows the bank obtains
more deposits independently on the loans issuance. So the bank has to allocate these new deposits
to bonds and reduce proportionally the issuance of loans. This of course assuming that the demand
for loans is not affected by the higher income, which is unlikely. A higher demand for loans could
naturally offset this portfolio composition effect and reverse the result, but that would not be
surprising. The interesting result can be better understood considering the effect of a reduction
of the factor of growth of the economy, ceteris paribus. In this case the bank reacts shifting the
portfolio from bonds to loans, if the demand remains unchanged. This result implies that the
banking system shows a tendency to behave anti-cyclically, smoothing macroeconomic shocks.

Until the very recent past, Anglo-saxon economic systems, where stock and bond markets are a
relevant source of finance, were considered to be more volatile than continental European systems,
where the influence of the banking intermediation is stronger. Our results may help to explain why
banking institutions provide insurance. But the stronger impact of the last recession on continental
European economies has put in question the overall validity of these considerations. The German
banking system in particular has been hardly hit, producing, according to many observers, a credit
crunch. The close ties between banks and firms in the German system, where banks hold a large
portfolio of shares of their own borrowers, can explain the surprising fragility that the system
showed after the bubble in the stock market burst. The main limitation of our work, the absence
of an explicit modelling of the stock market, explains the failure of the model to predict such an
outcome.

3.5 Monetary policy and the control of monetary aggregates

Studying the composition of the portfolio of a bank, this model provides a micro-foundation of
the first step of the credit channel of transmission of monetary policy, showing how banks react
to monetary policy shocks. Most of the literature on the credit channel has focused on explaining
why the intermediation of banking institutions affects the investment behaviour of firms, and the
consumption pattern of households, when interest rates vary. Much less attention has recently
been devoted to understand how variations of market interest rates affect the lending decisions
of banks. This issue has probably neglected because central banks interventions are increasingly
conducted influencing the banking system, for example trough the discount window in the US or
the “corridor” of the ECB. Nevertheless in order to evaluate the importance of the credit channel
it is necessary to study how both the size and the composition of the portfolio of assets of banks
are changed.

The version of the model previously exposed considers interest rates on bonds as a substitute
for loans, and no other liabilities different form deposits are introduced in the problem. The
interest rate movements that we study are changes in the market equilibrium rates, and because
of the timing structure chosen we should consider short term interest rates in particular. As a
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consequence monetary policy can be analyzed only trough its effect on the bond market and the
price of securities in general. The model could easily be changed though to study the discount
window or other forms of direct lending form the central bank to the banking system. In this case
the formal structure would remain unchanged, but F would change sign and indicate a liability
rather than an asset. The only necessary modification would be the need to introduce a non-linear
cost on this liability, because the cost of borrowing for any firm is always convex since the risk
grows non-linearly with the amount borrowed, and the amount of finance provided by the central
bank is always limited. In this case the results would be quite similar, and the coefficient of the
cost function would play the same role as the coefficient of the default cost function. The model
could similarly be extended to include any number of assets and liabilities. We have not shown
these different cases because the solution becomes heavy whenever another liability is added to the
problem, since the value of the roots cannot be simplified. On the contrary the pattern of results
would remain similar since the formal structure of the model would remain unchanged.

The results of our basic model show that higher interest rates on securities reduce the size of
the portfolio and alter the composition in favour of bonds. Banks set the rate on loans in function
of the rate on bonds, smoothing transitory interest rates shocks, while in the case of permanent
shocks they may even amplify the shocks. Besides we have seen that the change of the portfolio
would depend on the initial level of the rates, because the impact of interest rates shocks on the
cash-flow of borrowers is likely to be much stronger when the rates are high. If we would have
considered direct lending of the central bank, the results would have been very similar, but the
forward looking part of the solutions would be smaller in absolute value, because of the presence
of a second cost coefficient in the denominator. This implies that the shock would be smoothed a
bit more.

These results suggest that the credit channel tends to increase the effectiveness of monetary
policy when interest rates are low, while in the case of high interest rates banks might even offset
the result of the policy. This explains why central banks need to impose quantitative restrictions
on the issuance of loans in order to fight high inflations. The interest rate is a very good instrument
as long as interest rates are not very high. In the last case the imposition of ceilings on the issuance
on loans can be necessary to control the endogenous growth of money supply.

In order to control the quantity of monetary aggregates the endogenous process of supply of
deposits by means of the feedback of loans must be considered. This model provides a useful
insight since it considers the incentives that a profit maximising banking firm faces in the process.
The model showed that capital requirements are much more effective than reserve coefficients as a
constraint on the size of the portfolio, because they affect the scale of the whole dynamic process.
Another crucial factor is the value of the parameters of the default cost function, since the size of
the portfolio is ultimately constrained by default costs. This implies that regulatory requirements
regarding the write-off of bad loans are crucial not just for the efficiency of the banking industry,
but for the health of the economic system as a whole. When banks are allowed to roll over loans
that should be written off, the constraint on the size of the portfolio is virtually removed, since
default costs can be indefinitely postponed. This implies that any investment could in principle be
financed, without any selection, producing permanent distortions in the productive structure.

The strength of the results depends on the sensitivity of the demand for loans on the rate on
bonds. The development of the bond market tends to reduce the market power of banks, reducing
the strength of the previous results. But since they can never be overturned, even in the limit case
of perfect competition in the market for loans, the results seem quite robust. It must finally be
observed that the results do not depend on the particular feedback process assumed, since it can
be shown that using different assumptions regarding the time profile of the feedback process the
model provides results that are almost identical.
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Appendix

Appendix: solution of the model with contemporaneous feedback

The Lagrangian of the problem is the following:

� =
∞∑

t=0

βt
{{

− 1
b

[
(1 − q)Dt − Ft +NW

]
+
a(Yt)
b

+
d

b
rB
t − rD

t + εLt

}[
(1 − q)Dt − Ft +NW

]
+

−1
2
v
[
(1 − q)Dt − Ft +NW

]2 − uDt − z
[
(1 − q)Dt − Ft +NW

]
+ υtFt + ρtqDt +

−µt

{
Dt − γY Dt−1 − κ

[
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D
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B
t

}}
. (55)

The first order conditions are:

∂�

∂Ft+j
= βt+j

{(
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2
b

)[
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]
−a(Yt+j)

b
−d
b
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D
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}
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(56)

∂�

∂Dt+j
= βt+jEt+j
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b

+
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b
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2
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= 0, (57)

∂�
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= −Dt+j + γY Dt+j−1 + κE

[
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]
+ g3r

D
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B
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For j = T , Condition (57) implies:

βt+TE
{

(1 − q)
[a(Yt+T )

b
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b
rB
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}
= 0. (59)

The transversality condition of the problem is:

lim
T→∞

βt+TEt

{
(1 − q)ωt+T − α

[
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}
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}}
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To keep the notation simpler, we omit from now on the index j, to show it only when it will be
necessary, in the final solutions. Besides we have used the definitions

(
bv+2

b

)
= α and a(Yt)

b +
d
b r

B
t − rD

t + εLt = ωt. From Equation (56) we can obtain an equation that can be solved in order
to get a solution for the multiplier µt.

µt =
1
κ

{
α
[
(1 − q)Dt − Ft +NW

]
− ωt + z + υt

}
. (61)

This value can be substituted in the other first order condition, shown in equation (57), that
provides the Euler equation of the system:
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βt
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Rearranging and dividing everything by βt we obtain a difference equation for Ft and Dt. Since
Xt = Et[Xt] we can include everything under the expectation, from which we will from now on
omit the time index, since all expectations are at time t.

E
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The next step is to simplify the resulting expression and to substitute for the value of Dt in
Equation (64), the expression of the dynamic constraint that is obtained from Equation (58).
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and
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Dividing both sides of the former equation for α, and introducing the lag operator L, we obtain:
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As before we end up with a system of two equations, the other is obtained from the dynamic
constraint:
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We can simplify the value of the second intercept term as:
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Solution of the system

Defining Xt = g3r
D
t − g4r

B
t , the first equation can be rewritten as:

Dt =
γY β

(1 − q)
[
γ2

Y β − [1 − (1 − q)κ]
]E[Ft+1] − [1 − (1 − q)κ]

(1 − q)
[
γ2

Y β − [1 − (1 − q)κ]
]Ft +

− βγY + [(1 − q)κ− 1]
(1 − q)

[
γ2

Y β − [1 − (1 − q)κ]
] ]NW − γY β[

γ2
Y β − [1 − (1 − q)κ]

]Xt +

− 1 − (1 − q)κ
(1 − q)

[
γ2

Y β − [1 − (1 − q)κ]
]E[ 1

α
Zt+1

]
. (70)

Substituting the former in the other equation, we obtain a second order difference equation in
E[Ft].
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It can be expressed as:
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Y β − [1 − (1 − q)κ]

]Xt−1 +
γY β[

γ2
Y β − [1 − (1 − q)κ]

]Xt +
1

1 − κ(1 − q)
Xt +

− γY

1 − κ(1 − q)
1 − (1 − q)κ

(1 − q)
[
γ2

Y β − [1 − (1 − q)κ]
]E[ 1

α

]
Zt +

1 − (1 − q)κ
(1 − q)

[
γ2

Y β − [1 − (1 − q)κ]
]E[ 1

α
Zt+1

]]
. (72)

We now study separately the left-hand side.

E[Ft+1] − [1 − (1 − q)κ]
γY β

Ft +
κ

1 − κ(1 − q)
(1 − q)

[
γ2

Y β − [1 − (1 − q)κ]
]

γY β
Ft +

− γY

1 − κ(1 − q)
Ft +

γY

1 − κ(1 − q)
[1 − (1 − q)κ]

γY β
Ft−1 = E[Ft+1] −

[ 1
γY β

+ γY

]
Ft +

1
β
Ft−1. (73)
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We split the right-end side in different pieces, to begin with net worth.

(1 − q)
[
γ2

Y β − [1 − (1 − q)κ]
]

γY β[[
− γY

1 − κ(1 − q)
+ 1

] βγY + [(1 − q)κ− 1]
(1 − q)

[
γ2

Y β − [1 − (1 − q)κ]
]NW +

κ

1 − κ(1 − q)
NW

]
= (74)

=
[1 − γY ]

[
βγY − 1

]
γY β

NW .

The value of Zt is:

(1 − q)
{
γ2

Y β − [1 − (1 − q)κ]
}

γY β
×[

− γY

1 − κ(1 − q)
1 − (1 − q)κ

(1 − q)
[
γ2

Y β − [1 − (1 − q)κ]
]E[ 1

α

]
Zt +

+
1 − (1 − q)κ

(1 − q)
[
γ2

Y β − [1 − (1 − q)κ]
]E[ 1

α
Zt+1

]]
=

= − 1
β
E

[ 1
α

]
Zt +

1 − (1 − q)κ
γY β

E
[ 1
α
Zt+1

]
.

The value of Xt is:

[
(1 − q)

[
γ2

Y β − [1 − (1 − q)κ]
]

γY β

]
[
− γY

1 − κ(1 − q)
γY β[

γ2
Y β − [1 − (1 − q)κ]

]Xt−1 +

+
γY β[

γ2
Y β − [1 − (1 − q)κ]

]Xt +
1

1 − κ(1 − q)
Xt

]
=

=
(1 − q)(γY β − 1)

γY β
Xt +

(1 − q)γY

1 − κ(1 − q)
(εDt − εBt ).

The final result is the following:

E[Ft+1] −
[ 1
γY β

+ γY

]
Ft +

1
β
Ft−1 =

[1 − γY ]
[
βγY − 1

]
γY β

NW +

− 1
β
E

[ 1
α

]
Zt +

1 − (1 − q)κ
γY β

E
[ 1
α
Zt+1

]
+

(1 − q)(γY β − 1)
γY β

Xt +
(1 − q)γY

[1 − κ(1 − q)]
(εDt − εBt ). (75)

Alternative solution of the system

E[Ft+1] =
1 − (1 − q)κ

γY β
Ft +

(1 − q)
[
γ2

Y β − [1 − (1 − q)κ]
]

γY β
Dt +

+
βγY + [(1 − q)κ− 1]

γY β
NW + (1 − q)Xt +

1 − (1 − q)κ
γY β

E
[ 1
α
Zt+1

]
. (76)
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Dt =
γY

1 − κ(1 − q)
Dt−1 − κ

1 − κ(1 − q)
Ft +

κ

1 − κ(1 − q)
NW +

Xt

1 − κ(1 − q)
. (77)

The second equation can be exposed as:

Ft =
γY

κ
Dt−1 − 1 − κ(1 − q)

κ
Dt +NW +

Xt

κ
. (78)

γY

κ
Dt − 1 − κ(1 − q)

κ
E[Dt+1] +NW +

E[Xt+1]
κ

=
1 − (1 − q)κ

γY β
×

[γY

κ
Dt−1 − 1 − κ(1 − q)

κ
Dt +NW +

Xt

κ

]
+

(1 − q)
[
γ2

Y β − [1 − (1 − q)κ]
]

γY β
Dt +

+
βγY + (1 − q)κ− 1

γY β
NW + (1 − q)Xt +

1 − (1 − q)κ
γY β

E
[ 1
α
Zt+1

]
. (79)

Putting all the terms in D on the left-hand side, we obtain the following expression:

−1 − κ(1 − q)
κ

E[Dt+1] +
γY

κ
Dt +

1 − (1 − q)κ
γY β

1 − κ(1 − q)
κ

Dt +

−E (1 − q)
[
γ2

Y β − [1 − (1 − q)κ]
]

γY β
Dt − 1 − (1 − q)κ

γY β

γY

κ
Dt−1 =

=
1 − (1 − q)κ

γY β
NW +

1 − (1 − q)κ
γY β

Xt

κ
+
βγY + (1 − q)κ− 1

γY β
NW +

−NW + (1 − q)Xt − E[Xt+1]
κ

+
1 − (1 − q)κ

γY β
E

[ 1
α
Zt+1

]
. (80)

It can be simplified as:

E[Dt+1] − γY

1 − κ(1 − q)
Dt − 1 − (1 − q)κ

γY β
Dt +

(1 − q)
[
γ2

Y β − [1 − (1 − q)κ]
]

γY β

κ

1 − κ(1 − q)
Dt +

+
1
β
Dt−1 = − κ

γY β
NW − 1

γY β
Xt − βγY − [(1 − q)κ− 1]

γY β

κ

1 − κ(1 − q)
NW +

κ

1 − κ(1 − q)
NW +

− κ

1 − κ(1 − q)
(1 − q)Xt +

1
1 − κ(1 − q)

E[Xt+1] − κ

γY β
E

[ 1
α
Zt+1

]
. (81)

The left-hand side of the equation has exactly the same structure as the one in Ft and clearly the
simplification is identical. We will now study the different parts of the right-end side, starting with
net worth.

− κ

γY β
NW − βγY − [(1 − q)κ− 1]

γY β

κ

1 − κ(1 − q)
NW +

κ

1 − κ(1 − q)
NW . (82)

Under a common denominator we obtain the following result:

−κ[1 − κ(1 − q)] − βγY κ+ [(1 − q)κ− 1]κ+ γY βκ

γY β[1 − κ(1 − q)]
NW = 0.

As a consequence the impact of net worth on deposits is null, as we would intuitively expect. The
direct effect of interest rates is due to:

− 1
γY β

Xt − κ

1 − κ(1 − q)
(1 − q)Xt +

1
1 − κ(1 − q)

E[Xt+1].

Or:

−γY βκ(1 − q) + [1 − κ(1 − q)]
γY β[1 − κ(1 − q)]

Xt +
1

1 − κ(1 − q)
Xt+1.
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Since we know that Xt+1 = Xt + εDt+1 − εBt+1, we can write:

−γY βκ(1 − q) + [1 − κ(1 − q)]
γY β[1 − κ(1 − q)]

Xt +
Xt + εDt+1 − εBt+1

1 − κ(1 − q)
.

And, sinceEt[εt+1] = 0:

−γY βκ(1 − q) − [1 − κ(1 − q)] + γY β

γY β[1 − κ(1 − q)]
Xt.

It can be simplified as:

γY β − 1
γY β

Xt.

The other intercept term is − κ
γY βE

[
1
αZt+1

]
. We can finally write the value of Dt as:

E[Dt+1] −
[ 1
γY β

+ γY

]
Dt +

1
β
Dt−1 =

γY β − 1
γY β

Xt − κ

γY β
E

[ 1
α
Zt+1

]
. (83)

Deposits

We can obtain the value of Dt from:

E[Dt+1] −
[ 1
γY β

+ γY

]
Dt +

1
β
Dt−1 =

γY β − 1
γY β

Xt − κ

γY β
E

[ 1
α
Zt+1

]
. (84)

The solution is given by:

Dt+j+1 =
1

γY β
Dt+j +

κ

βγY

∞∑
i=1

( 1
γY

)i

Et+i

[Z ′
t+j+i+2

α

]
− κ

βγY α(1 − γY )
C +

−γY β − 1
γY β

∞∑
i=1

( 1
γY

)i

Et+i[Xt+j+i+1], (85)

Under the assumption that interest rates follow a random walk process, we can for simplicity
assume that deterministic component of the rates remain constant and treat the values of the rates
at time t and t+ 1 that enter in the solution as constants. In this case the result is the following:

Dt+j+1 =
1

γY β
Dt+j − κ

βγY α(1 − γY )

[(
1 − d

b

)
(γY β −H) + (1 − q)κH

][
rB
t+j+1 + COV

(
rB ,

1
α

)]
+

− κ

βγY α(1 − γY )
κ
(
rR
t+jq − rD

t+j

)
+

γY β − 1
γY β(1 − γY )

(
g3r

D
t+j − g4r

B
t+j

) − κ

βγY α(1 − γY )
C +

− (γY β − 1)κ
βγY (1 − γY )

COV
(
LD,

1
α

)
; (86)

it can finally be simplified as:

Dt+j+1 =
1

γY β
Dt+j +

κ
[(

1 − d
b

)
(γY β −H) + (1 − q)κH

]
+ (γY β − 1)αg4H

βγY α(γY − 1)
rB
t+j+1 +

+
κ

βγY α(γY − 1)
κrR

t+jq −
κ2 + α(γY β − 1)g3
βγY α(γY − 1)

rD
t+j +

κ
{

(βγY − 1)
[
z − a

b

]
− κu

}
βγY α(γY − 1)

+

+
κ

βγY α(γY − 1)

[(
1 − d

b

)
(γY β − 1) + (1 − q)κ

]
COV

(
rB ,

1
α

)
− (γY β − 1)κ
βγY (γY − 1)

COV
(
LD,

1
α

)
. (87)

27



The interest rate on loans

The interest rate on loans can easily be obtained substituting the solution (44) for the quantity of
loans in the demand condition:

Lt+j = a− brL
t + drB

t+j + ηt+j , (88)

For simplicity we use the solution of (26), but the result is general.

Lt+j+1 =
1

γY β
Lt+j +

1
γY β

NW −
[(

1 − d
b

)
(γY β −H) + (1 − q)κH

]
rB
t+j+1 + κ

(
rR
t+jq − rD

t+j

)
γY βα

+

−
(βγY − 1)

[
z − a

b

]
− κu

γY βα
−

(
1 − d

b

)
(γY β − 1) + (1 − q)κ

γY βα
COV

(
rB ,

1
α

)
+
γY β − 1
βγY

COV
(
LD,

1
α

)
, (89)

rL
t+j =

1
b

{
a+ drB

t+j + ηt+j − 1
γY β

Lt+j − 1
γY β

NW +

+

[(
1 − d

b

)
(γY β −H) + (1 − q)κH

]
rB
t+j+1 + κ

(
rR
t+jq − rD

t+j

)
γY βα

+
(βγY − 1)

[
z − a

b

]
− κu

γY βα
+

+

(
1 − d

b

)
(γY β − 1) + (1 − q)κ

γY βα
COV

(
rB ,

1
α

)
− γY β − 1

βγY
COV

(
LD,

1
α

)}
; (90)

focusing just on the relationship with the rate on bonds, we obtain:

rL
t+j =

1
b

{
drB

t+j +

[(
1 − d

b

)
(γY β −H) + (1 − q)κH

]
rB
t+j+1

γY βα
+G

}
, (91)

where

G = a+ ηt+j − 1
γY β

Lt+j − 1
γY β

NW +
κ
(
rR
t+jq − rD

t+j

)
γY βα

+
(βγY − 1)

[
z − a

b

]
− κu

γY βα
+

+

(
1 − d

b

)
(γY β − 1) + (1 − q)κ

γY βα
COV

(
rB ,

1
α

)
− γY β − 1

βγY
COV

(
LD,

1
α

)}
; (92)

It is useful to study in first instance the result when the bank has no market power and the rate on
loans is taken as exogenous. Considering the bank as representative of the sector and aggregating
we would obtain:

rL
t+j =

[
− (γY β −H)rL

t+j+1 + (1 − q)κH
]
rB
t+j+1

γY βv
+G′

}
, (93)

and

rL
t+j +

γY β −H

γY βv
rL
t+j+1 =

(1 − q)κrB
t+j

γY βv
+G′. (94)

Finally,

rL
t+j+1 =

1 − γY βv

γY β
rL
t+j +

(1 − q)κ
γY β

rB
t+j + vG′, (95)

where

G′ = − 1
γY β

Lt+j − 1
γY β

NW +
κ
(
rR
t+jq − rD

t+j − u
)

γY βv
+

+
(1 − q)κ
γY βv

COV
(
rB ,

1
v

)
− γY β − 1

βγY
COV

(
LD,

1
v

)}
; (96)
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