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Modeling distributions on a bounded support

via finite mixtures of mode-parameterized

beta and gamma densities

Luca Bagnato · Antonio Punzo

Abstract This paper address the problem of estimating a density, defined on
a bounded interval, exploiting a general and natural form of finite mixture of
distributions. To this end, subclasses of unimodal beta and gamma densities
are used as components in the mixture. These belong to the Pearson family
of curves, whose definition consent mode-parameterized densities. The mode
is the natural parameter since mixtures of distributions are strictly related to
the concept of multimodality. The EM algorithm for maximum likelihood es-
timation of the mixture parameters, is also described. For this algorithm, the
choice of good starting values plays an important role. Here we propose a sim-
ple and ad hoc initialization strategy, based on bump-hunting; its performance,
in comparison with random initialization, is also evaluated by some simulation
experiments. Finally, two real data sets are considered, in order to appreciate
the advantages of the adopted parameterization for both components.

Keywords Finite mixtures of densities · Pearson system · EM algorithm ·
Initialization strategies · Bump hunting · Recovery rates · Number of first
births

Luca Bagnato
Dipartimento di Metodi Quantitativi per le Scienze Economiche ed Aziendali, Università di
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1 Introduction

This paper considers estimation of a probability density function, with bounded
support S, via finite mixtures of univariate densities. Some comprehensive and
exhaustive reviews of this class of models are available in Everitt and Hand
(1981), Redner and Walker (1984), Titterington et al (1985), Lindsay (1995)
and McLachlan and Peel (2000). Roughly speaking, according to Titterington
et al (1985, p. 2), there are two broad motivations for using finite mixture of
univariate densities. Firstly, from a direct viewpoint, we may believe in the
existence of g underlying groups such that each of the n observations xi is
made to belong to one of these; logically, we do not observe the source of xi.
Secondly, from an indirect viewpoint, a finite mixture of densities could simply
be used as a mathematical device in order to provide a flexible and tractable
form of analysis; in these terms, it represents a sort of semiparametric compro-
mise between a single (g = 1) parametric density and a nonparametric kernel
method of density estimation, represented in the case g = n (see Jordan and
Xu 1995, McLachlan and Peel 2000, p. 8, Titterington et al 1985, p. 29).

Most of the work published is concerned with mixture of normal densities.
Unfortunately, while using Gaussian components in the mixture is appropriate
for fitting densities with unbounded supports, it is not adequate for densities
with compact or bounded from one end only supports as it causes boundary

bias ; that is, allocation of probability mass outside the theoretical support
S. A simple remedy is to use mixture components defined on S (see Chen,
1999, 2000, for an analogous of this suggestion in the kernel density estimation
context). Motivated by this consideration and according to Chen (1999, 2000),
we suggest using gamma components for bounded from one end only supports,
and beta components for compact ones.

In analogy with the normal case, we have chosen to only focus attention
on unimodal beta and gamma densities, adopting a mode-based parameteriza-
tion. This parameterization arises naturally recalling that such distributions,
in addition to the normal one, belong to the Pearson system of density curves
(Pearson, 1902a,b). A general framework for finite mixture of unimodal dis-
tributions is therefore provided which includes normal-mixtures when S = IR.
The choice of using “mode-parameterized” components is justified, but above
all natural, if one thinks that the most striking feature of a mixture density
curve is often that of multimodality. Indeed, as highlighted in Titterington
et al (1985) and McLachlan and Basford (1988), many papers in applied fields
talk not in terms of mixtures but of multimodal distributions; examples are
the articles of Murphy (1964) and Brazier et al (1983) referring to bimodality
rather than to mixtures.

As usual, in order to estimate the parameters of the mixture by maxi-
mum likelihood (ML), the EM algorithm (Dempster et al, 1977) is taken into
account. Despite its good properties, as well-known, it needs to a good ini-
tialization method in order to be sure to find the global maximum of the
likelihood.
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As far as we know to date, different initialization strategies have only been
investigated for mixtures of multivariate normal distributions, while random
initialization is commonly used otherwise. Unfortunately, this procedure could
induce the EM algorithm to converge to different local maxima any time the
algorithm is executed. Motivated by this consideration, an ad-hoc initializa-
tion procedure, based on bump-hunting (BH) and coherent with the adopted
parameterization, is proposed and evaluated by some numerical experiments.

The paper can be schematically summarized as follows: in Section 2 the
general framework for finite mixtures of unimodal distributions defined on S
is introduced; details of the parameterization used for the gamma and beta
components are also provided in Section 2.1 and Section 2.2, respectively. The
EM-algorithm for ML estimation of the mixture-parameters is discussed in
Section 3, with further details given in Appendix A, while the proposed BH-
initialization strategy is described in Section 4. In Section 5 some simulation
experiments are illustrated in order to evaluate the behavior of the initializa-
tion proposal in various situations arising in practice. Two real applications
are also described in Section 6 to appreciate the advantages of the adopted
parameterization for both the components, beta (see Section 6.1) and gamma
(see Section 6.2). Finally, in Section 7, conclusions are drawn.

2 A general framework for finite mixture of distributions

In requiring that the component densities should all belong to the same para-
metric family, a general finite mixture density function f could assume the
form

f (x;π, m, v) =

g∑

j=1

πjfj (x;mj , vj) , x ∈ S, (1)

where

– fj is the unimodal component density defined on S and belonging to some
convenient parametric family;

– π = (π1, . . . , πg) is the g-dimensional vector of the mixture weights πj ∈
(0, 1), with

∑g

j=1 πj = 1;
– m = (m1, . . . , mg) is the g-dimensional vector of the modes mj ∈ S of fj ;
– v = (v1, . . . , vg) is a g-dimensional vector containing parameters vj > 0
governing the concentration of fj around the mode mj .

Thus, there are 3g − 1 unconstrained parameters to be estimated. Of course,
as also underlined by Izenman (2008, p. 103), there is no guarantee that a
mixture of unimodal densities will produce a multimodal density with the
same number of modes as there are densities in the mixture; similarly, there is
no guarantee that those individual modes mj will remain at the same locations
in (1). Indeed, the shape of the mixture distribution depends upon both the
spacings of the modes and the relative shapes of the component distributions.
Nevertheless, we retain that for well-separated components, the values of mj

will well-approximate the location of the mixture-modes in (1).
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More specifically, motivated by the works of Chen (1999, 2000), we have
chosen to adopt mode-parameterized unimodal beta densities for compact sup-
ports and unimodal gamma densities for bounded from one end only ones. The
adjective “unimodal” is useful to highlight the subclass of beta and gamma
densities on which attention is focused. However, other distributions may be
used if they can be parameterized according to mj . In doing so, it is natural to
take into account the Pearson system of density curves (Pearson, 1902a,b). In-
deed, these curves originate from a differential equation having mj between its
parameters; examples are the beta density for a compact support; the gamma
and lognormal densities for a bounded from one end only support; the nor-
mal, Student t and Cauchy densities for an unbounded support (see Elderton
and Johnson 1969, Johnson and Kotz 1970, and Kendall and Stuart 1958, for
further details). Given the importance of normals in the mixture context, it is
worthwhile noting that if S is unbounded, we could use normal components
in (1), with mj = µj and vj = σj (or, equivalently, vj = σ2

j ), obtaining the
popular finite mixture of normal distributions.

In the following, some properties of the adopted distributions are sketched.

2.1 Bounded from one end only support: S = [a,∞)

The following class of gamma components

fj (x;mj , vj) =
(x− a)

mj−a

vj e
−

x−a
vj

v

mj−a

vj
+1

j Γ

(
mj − a

vj

+ 1

) , a ≤ x < ∞, (2)

can be considered in (1) when S = [a,∞), with mj and vj satisfy the above-
mentioned conditions. The expectation of (2) is easily obtained as:

E (X) = mj + vj .

An eminent feature of gamma components is that their shape changes ac-
cording to the value of mj ; this is shown by a set of gamma densities displayed
in Fig. 1. The variance of a random variable (r.v.) with density function (2),
from the standard theory on gamma distribution, is

v2
j + (mj − a) vj . (3)

The last expression, analyzed as a function of mj , is a straight line with a
positive slope vj ; consequently, fixed vj , the variability increases in line with
the value of mj . Conversely, fixing mj in (3), the variance increases if vj

increases, confirming that vj governs the spread of the distribution. The effect
of varying vj , fixed the mode mj , is illustrated in Fig. 2.

Finally, note that (−∞, b] is also part of the bounded from one end only
supports. If the underlying density f is defined in S = (−∞, b], then it is
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Fig. 1: Gamma components defined in S = [0,∞), with vj = 2
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Fig. 2: Gamma components defined in S = [0,∞), with mj = 1.5

sufficient to consider the following gamma components

fj (x;mj , vj) =
(b− x)

b−m
vj e−

b−x
h

v
b−m

vj
+1

j Γ

(
b−m

vj

+ 1

) , −∞ < x ≤ b. (4)

2.2 Compact support: S = [a, b]

When S = [a, b], in (1) it is possible to consider the class of beta components

fj (x;mj , vj) =
(x− a)

mj−a

vj(b−a) (b− x)
b−mj

vj(b−a)

(b− a)
vj+1

vj B

[
mj − a

vj (b− a)
+ 1,

b−mj

vj (b− a)
+ 1

] , a ≤ x ≤ b,

(5)
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Fig. 3: Beta components defined in S = [0, 1], with vj = 0.3

with, as before,mj ∈ S and vj > 0. The same parameterization in conveniently
re-adapted in the discrete case by Punzo (2010) and Mazza and Punzo (2011)
to define two different nonparametric estimators. The expectation of (5) is:

E (X) =
mj + (a+ b) vj

2vj + 1
. (6)

In analogy with the gamma components (2)-(4), the beta density shape
changes according to the value ofmj ; this is shown by a set of beta components
displayed in Fig. 3. Note that the variance of a r.v. with density function (5),
from the standard theory on beta distribution, is

vj [(mj − a) + vj (b− a)] [(b −mj) + vj (b− a)]

(2vj + 1)
2
(3vj + 1)

. (7)

The expression (7) is a parabola, if it is analyzed as a function of mj , with
maximum in correspondence to mj = (a+ b) /2 (central point of S). In other
words, fixed vj , the variability decreases as |mj − (a+ b) /2| increases. On the
other hand, fixing mj in (7), the variance increases if vj increases, confirming
the previously-mentioned requirement. The effect of varying vj , fixed mj , is
illustrated in Fig. 4. In more detail, the limit of (7), as vj tends to zero, is

zero, while as vj becomes large, the limit is (b− a)
2
/12, that is the variance

of a uniform distribution defined on [a, b] (note that the beta distribution (5)
converges to a uniform distribution when vj →∞).
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Fig. 4: Beta components defined on S = [0, 1], with mj = 0.2

3 Estimation by the EM algorithm

In the conceptualization of a mixture model, hypothesizing knowing the num-
ber of groups g in advance, the observed data x = (x1, . . . , xi, . . . , xn) are
usually augmented by introducing, for each observation xi, the g-dimensional
latent component-indicator vector zi in which the single element is defined as
follows

zij =

{
1 if xi comes from group j
0 otherwise.

The complete-data vector is therefore declared to be xc = (x′, z′)
′
, where

z = (z′1, . . . ,z
′

n). Here it is assumed that each vector zi is independent and
that all the observations xi have been completely recorded. So, the likelihood
function for the complete-data is given by

Lc (π, m, v) =

n∏

i=1

g∏

j=1

[πjfj (xi;mj, vj)]
zij .

Consequently, the complete-data log-likelihood is given by

lc (π, m, v) =

n∑

i=1

g∑

j=1

zij [lnπj + ln fj (xi;mj , vj)] . (8)

Equation (8) can be iteratively maximized by the EM algorithm (Dempster
et al, 1977). It proceeds in the following two steps:

E-step: On the (k + 1)th iteration, k = 0, 1, . . ., the E-step simply requires
the calculation of the conditional expectation of Zij – the random vari-
able corresponding to zij – given the observed data x and the parameter
estimates from the M-step arising from the kth iteration

z
(k+1)
ij = E

(
Zij

∣∣∣xi, π
(k), m(k), v(k)

)

= P
(
Zij = 1

∣∣∣xi, π
(k), m(k), v(k)

)

=
π

(k)
j fj

(
xi;m

(k)
j , v

(k)
j

)

g∑

j=1

π
(k)
j fj

(
xi;m

(k)
j , v

(k)
j

) (9)
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i = 1, . . . , n and j = 1, . . . , g. The quantity z
(k+1)
ij in (9) is the posterior

probability that xi belongs to the jth component of the mixture.
M-step: On the (k + 1)th iteration, the M-step requires the global maximiza-

tion of (8) with respect to π, m, and v, replacing zij by z
(k+1)
ij ; the aim

is to obtain the updated estimates π
(k+1), m

(k+1) and v
(k+1). For the

finite mixture models, the updated estimates π
(k+1)
j are calculated inde-

pendently of the updated estimates m
(k+1)
j and v

(k+1)
j . Specifically, if the

zij were observable, then the complete-data ML-estimate of πj would be
given simply by

π̂j =

n∑

i=1

zij

n
, j = 1, . . . , g. (10)

As the E-step simply involves replacing each zij with its current condi-

tional expectation z
(k+1)
ij in the complete-data log-likelihood, the updated

estimate of πj is given by replacing each zij in (10) by z
(k+1)
ij to give

π
(k+1)
j =

n∑

i=1

z
(k+1)
ij

n
, j = 1, . . . , g.

Concerning the updating of m and v on the (k + 1)th iteration for the
M-step, it can be seen from (8) that m

(k+1) and v
(k+1) are obtained as an

appropriate root of





n∑

i=1

g∑

j=1

z
(k+1)
ij

∂ ln fj (xi;mj , vj)

∂m

= 0

n∑

i=1

g∑

j=1

z
(k+1)
ij

∂ ln fj (xi;mj , vj)

∂v

= 0

(11)

The solution of (11) exists in closed form when the components are nor-
mals; otherwise, maximization can only be carried out numerically. Details
on the derivatives in (11), for the components (2) and (5), are given in
Appendix A.

The final parameter estimates π̂j , m̂j and v̂j are so obtained, starting from a

set of initial values π
(0)
j , m

(0)
j and v

(0)
j , j = 1, . . . , g, alternatively repeating

the E- and M-steps until the difference in two consecutive values of the log-
likelihood in (8) is retained negligible (for further details on this algorithm,
applied to finite mixture models, see McLachlan and Peel, 2000; McLachlan
and Krishnan, 2007).

It is worth noting, that while the convergence of the algorithm to a local
maximum of the log-likelihood is guaranteed, the identification of the global
maximum cannot be assured. Indeed, the solution found by the EM algorithm
strongly depends on the choice of the initial parameters. In order to address
this issue, we propose an initialization strategy based on Bump-Hunting (BH)
which will be described in Section 4.
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4 Using Bump-Hunting to initialize the EM algorithm

As mentioned in Section 3, the EM algorithm is sensitive to the problem of
choosing the initial values of the parameters to be estimated. If these initial
values are inappropriately selected, it may lead to an unsatisfactory estima-
tion of the mixture. In an attempt to resolve this problem, several methods
are reported in literature although, so far, they have only been investigated for
data from mixtures of multivariate normal distributions (see Biernacki et al,
2003, for an overview of simple initialization strategies). The random initial-
ization that consists in initializing the EM algorithm from a random position,
is probably the one most used. An extension of this simple strategy consists in
repeating it t times from different random positions and selecting the solution
maximizing the likelihood among those t runs. The resulting algorithm will
be denoted hereafter as “tR-EM”. Unfortunately, final estimates from both
methods could be different every time the algorithm is executed. To avoid
these occurring, some authors use the result of the k-means algorithm – that
in our context should be more correctly named as “g-means algorithm” – to set
the initial cluster centers xj and the initial cluster variances s2

j , j = 1, . . . , g.
Nevertheless, the advantage of using this strategy is minimal, since this does
not assure that the k-means algorithm will not itself be trapped in local mini-
mum decisions (Dempster et al, 1977; Khan and Ahmad, 2004). Furthermore,
it can not be adopted with our parameterization, since for beta components,

it is not possible to obtain the values of m
(0)
j and v

(0)
j starting from the values

of xj and s2
j , j = 1, . . . , g; equations (6) and (7) in fact, once put equal respec-

tively to xj and s2
j , can not be simultaneously inverted in order to determine

mj and vj .
It is our belief, also supported by Meilă and Heckerman (2001), that we

should not expect to find an “optimal” initialization strategy that outperforms
all the others on all data sets. Thus, we simply propose an initialization method
that we retain ad hoc for the model and the parameterization used, and that we
hope works well for large classes of situations arising in practice (the answer
to this question will be provided in Section 5 by numerical experiments for
various data sets).

4.1 Some preliminary considerations

The underlying idea for our proposal originates from a common belief in the
mixture framework. Indeed, often, as underlined by Titterington et al (1985,
pp. 49–50), unless the separation between components is enough to manifest
multimodality, there is not sufficient evidence in the data to confidently reject
the pure component hypothesis. On the contrary, we also believe that a bump
(a part lying between two points of inflection in a probability density curve
without straight parts, and that is concave when viewed from below) even if
within it there is not a local maximum (a mode), indicates some feature of the
random variable requiring an explanation. In confirmation of our conviction,
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Bump Bump Bump

Fig. 5: Bumps associated with a mixture of three gaussian densities

it is sufficient to note that the existence of more than one bump has been
discussed by Cox (1966) as a “descriptive feature likely to indicate mixing
of components”. To agree with our remarks, from a direct point of view, it
is sufficient to recognize that bumps arise when unimodal distributions are
mixed and each bump can be interpreted as a group. Figure (5) displays how
effectively bumps can be linked to mixture components. This way of thinking
also has an advantage from an indirect point of view where the interest is
often focused on the flexibility of the density estimator and consequently, on
the goodness-of-fit with the empirical density. For example, it is easy to agree
with the observation that, if a unimodal density presents two bumps, it will
be difficult for it to be well-fitted by a classic unimodal density (note that
standard parametric densities are characterized by a single bump) should one
not consider the mix with a further unimodal component.

In order to detect bumps, our approach readjusts the idea of “critical
smoothing” used by Silverman (1981) to investigate multimodality. Consider
the kernel density estimator

f̂ (x, h) =
1

nh

n∑

i=1

K

(
x−Xi

h

)
, (12)

where K is a kernel function, which we shall assume throughout to be the
normal density function, and h is the bandwidth controlling the amount of
smoothing. Suppose we fix the number of components g and that we want
to find a density estimate (12) that highlights g bumps and consequently g
components. Using and extending the results of Silverman (1981), we can
define the g-critical bandwidth hg by

hg = inf
{

h : f̂ (·, h) has at most g bumps
}

. (13)
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Thus, hg identifies the most roughly kernel density estimate which highlights

g bumps. Since v(h), the number of sign changes in f̂ (2)(·, h), is a right con-
tinuous decreasing function of h (Silverman, 1981), then also b(h), the number
of bumps, is a right continuous decreasing function of h. From a practical
viewpoint, hg can be obtained through a simple binary search procedure. In
particular, we have that an interval (h1, h2), in which hg is known to fall, can
be halved in length by checking whether the value (h1 + h2) /2 leads to an

estimate f̂ with more then g bumps.

4.2 Starting values for the EM algorithm

Naturally, once the value of g in (1) is fixed, the BH binary search procedure
can be used to find hg in (13). Substituting this value in (12), the starting

values m
(0)
1 , . . . , m

(0)
g can be obtained in a natural way by considering the

maximum values of f̂(x, hg) in each bump. It is important to note, that in

the internal part of the jth bump Bj , we have f̂ (2)(x, hg) < 0. Only at the

boundaries of Bj we have f̂ (2)(x, hg) = 0. Then, the generic starting value

m
(0)
j will be obtained as

m
(0)
j = argmax

x∈Bj

{
f̂ (x, hg)

}
, j = 1, . . . , g. (14)

As regards the other two sets of parameters, they can be easily obtained
by taking advantage of the set of initial modes in (14). In analogy with the
k-means procedure, once S is fixed, the sample observations x1, . . . , xn can
be assigned to the g groups according to their closeness with the modes in
(14). In detail, the support S can be partitioned in g disjoint subintervals Sj

delimited by the g−1 internal cutoff points
(
m

(0)
l +m

(0)
l+1

)
/2, l = 1, . . . , g−1.

Naturally, m
(0)
j will belong to the jth interval Sj . Thus, it is simple to define

z
(0)
ij = 1 if xi ∈ Sj , and z

(0)
ij = 0 otherwise. Note, that in these terms, the

procedure described so far can be considered as an alternative method to the
k-means for non-hierarchical clustering; it can also be easily extended in the
multivariate context. The initial values for the weights can be so obtained as

π
(0)
j =

n∑

i=1

z
(0)
ij

n
, j = 1, . . . , g.

Finally, since we know the functional form fj of each component (beta or
gamma), the starting values for vj , j = 1, . . . , g, can be obtained, by ML, as

v
(0)
j = argmax

vj>0

{
n∏

i=1

[
fj

(
xi;m

(0)
j , vj

)]z
(0)
ij

}
.

The EM algorithm initialized according to the procedure described above will
be hereafter denoted as BH-EM.
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Fig. 6: Finite mixtures of standard beta densities used to generate data

5 Experimental results

Once the initialization procedure has been described, it is important to eval-
uate its performance in various situations arising in practice. To address this
issue, we use two convenient artificial data sets for each type of component
in the mixture, and compare the behavior of the BH-EM, with respect to the
tR-EM with t = 1, . . . , 10, in directing the EM algorithm towards the correct
estimates.

To perform these numerical experiments, we use the R environment. The R
functions necessary to implement graphics and estimates are available from the
authors upon request. Regarding the stopping rule, we have chosen to stop the
EM algorithm with the number of iterations. We do not use stopping criteria
based on the relative change of the estimates or log-likelihood because the slow
convergence of the EM makes such criteria hazardous (see Lindsay 1995 and
McLachlan and Peel 2000 for more on stopping criteria). More specifically, we
consider 1000 iterations that, according to Biernacki et al (2003), represent a
good compromise.

As regards the beta components, two types of data in [0, 1] have been
generated from the densities displayed in Fig. 6. Data B1 arise from a uni-
modal two-components beta mixture, with a further bump, characterized by
parameters π1 = 0.4, π2 = 0.6, m1 = 0.3, m2 = 0.6, v1 = 0.1 and v2 = 0.5
(see Fig. 6(a)), while data B2 arise from a trimodal three-components beta
mixture with parameters π1 = 0.3, π2 = 0.5, π3 = 0.2, m1 = 0.2, m2 = 0.5,
m3 = 0.8, v1 = 0.04, v2 = 0.08 and v3 = 0.04 (see Fig. 6(b)).

Likewise, for the gamma mixtures, two types of data in [0,∞) have been
considered. The distributions used to generate them are graphically repre-
sented in Fig. 7. Data G1 arise from a unimodal two-components gamma mix-
ture, with a further bump, characterized by parameters π1 = 0.4, π2 = 0.6,
m1 = 0.3, m2 = 1.5, v1 = 0.3 and v2 = 0.5 (see Fig. 7(a)), while data G2 arise
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Fig. 7: Finite mixtures of gamma densities in [0,∞) used to generate data

Table 1: Percentage of times that each initialization method induces the EM algorithm
towards correct estimates

Data 1R-EM 2R-EM 3R-EM 4R-EM 5R-EM 6R-EM 7R-EM 8R-EM 9R-EM 10R-EM BH-EM

B1 93 98 100 100 100 100 100 100 100 100 100
B2 34 48 55 64 68 72 81 83 86 86 88
G1 62 83 91 92 94 98 98 98 99 99 99
G2 77 86 90 93 95 95 96 96 96 96 96

from a bimodal three-components gamma mixture, with a further bump, hav-
ing parameters π1 = 0.4, π2 = 0.4, π3 = 0.2, m1 = 0.5, m2 = 1.3, m3 = 2.5,
v1 = 0.2, v2 = 0.14 and v3 = 0.1 (see Fig. 7(b)).

For each type of data, we have generated 100 samples of size n = 300.
In our experiments, the algorithms have been run with two components for
B1 and G1 and with three components for B2 and G2. Table 1 for each data
structure, provides the percentage of time that the algorithm converges to-
wards the best estimates. These “best” estimates are obtained initializing the
EM-algorithm with the true but unknown values of the parameters. From Ta-
ble 1 it appears that BH-EM never performs worse than the 10R-EM and, for
data B2, it behaves even better; moreover, computational times of the BH-EM
are, on average, similar to the 3R-EM but with a better performance. Further
experiments, whose results are not reported here, have highlighted that the
performance of the BH-EM does not vary at the increase of g. The same
reasoning does not hold for the tR-EM whose performance decreases when g
increases. This is probably due to the fact that random initialization tends to

produce initial values m
(0)
j , j = 1, . . . , g, that are uniformly distributed on S

even if the true but unknown values are not so.
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6 Real applications

In this section, in order to appreciate the advantages of both the model and
the adopted parameterization, the mode-parameterized mixtures will be ap-
plied to two data sets taken from two different real fields. In reality, a large
number of applications of beta and gamma mixtures, although they are not
parameterized as we suggest, can already be noted in literature; for example,
Ji et al (2005) study the correlations of gene-expression levels in bioinformat-
ics by finite mixtures of beta densities, while Mayrose et al (2005) use finite
mixtures of gamma distributions to better describe the among-site rate vari-
ation, characteristic of molecular sequence evolution. In particular, in Ji et al
(2005) the importance of knowing the position of the modes so as to make
inference about the behavior of genes belonging to the corresponding compo-
nent, is board to our attention. For this reason we looked for fields where our
parameterization could be useful. Moreover, in choosing the applications, we
have tried to find fields of application where, in the authors’ knowledge, beta
and gamma mixtures have not yet been adopted.

6.1 Recovery rates on Italian bank loans

The credit risk analysis is the first of the fields of application taken into ac-
count. More specifically, the example illustrated here, focuses on recovery risk
of bank loans. The importance in analyzing such a risk is justified by the
Basel II Accord which requires its measurement (Basel Comittee on Bank-
ing Supervision, 2004, paragraph 286). In particular, it is relevant to estimate
the distribution of the random variable X=“recovery rate”. Among the many
approaches existing in related literature for the calculation of recovery rates
(see Altman et al, 2005, for a survey), the proposal by Calabrese and Zenga
(2008) is considered here; it is based on the concept of “total exposure” and
constrains the rates to assume values in the compact interval [0, 1].

The Bank of Italy’s data on 149378 bank loan recovery rates are taken
into account here (see Banca d’Italia, 2001, for a detailed analysis of this
dataset). Because of the high frequencies corresponding to 0 (23.00%) or 1
(7.71%), Calabrese and Zenga (2010) suggest considering the recovery rate as
a random variable with a mixed-type distribution, obtained as a mixture of
a Bernoulli distribution on the set

{
{0} , {1}

}
and a (continuous) density on

the interval (0, 1). A different approach to tackling this problem is suggested
in Punzo and Zini (2010).

Attention will only be focused on the estimation of the true density of the
103511 “continuous” data on (0, 1). With this aim, we apply the finite mixture
of beta distributions, as described in Section 2.2, with number of components
g ranging from 1 to 6. Table 2 shows the values of classical model selection
criteria for each value of g. The numbers in bold represent the smallest value
for each row, that is, for each of them. Considering all the information criteria
to hand, it make sense to choose g = 6 as the best “compromise” model,
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Table 2: Values of AIC, BIC and CAIC for the finite mixture of beta densities with different
values of g

Model selection criteria g = 1 g = 2 g = 3 g = 4 g = 5 g = 6

-2lc (π̂, m̂, v̂) -7435.436 -9472.243 -9863.514 -10012.042 -10014.631 -10158.788

AIC -7431.436 -9462.243 -9847.514 -9990.042 -9986.631 -10124.788

BIC -7412.341 -9414.506 -9771.135 -9885.020 -9852.967 -9962.481

CAIC -7410.341 -9409.506 -9763.135 -9874.020 -9838.967 -9945.481

Table 3: Parameters of the finite mixture of g beta densities, sorted in a non-increasing
way according to the value of the modes, estimated via the BH-EM algorithm

Number
of components

πj mj vj

g = 1 1.000 0.246 1.782

g = 2
0.239 0.079 0.089
0.760 0.588 0.669

g = 3
0.395 0.101 0.122
0.156 0.471 0.055
0.448 0.764 0.304

g = 4

0.381 0.099 0.113
0.043 0.353 0.009
0.082 0.499 0.014
0.492 0.745 0.314

g = 5

0.408 0.104 0.121
0.100 0.373 0.024
0.120 0.509 0.020
0.141 0.684 0.056
0.228 0.859 0.178

g = 6

0.408 0.104 0.121
0.105 0.372 0.023
0.128 0.506 0.016
0.105 0.654 0.027
0.072 0.789 0.053
0.179 0.878 0.170

corresponding to a 18-parameters model. Fig. 8 displays the fitted densities
of the mixture with g ranging from 1 to 6. However, if we are interested in
a more parsimonious model, g = 4 components could be an alternative; this
choice is justified by the information criteria adopted, but also by a simple
graphical inspection of Fig. 8. Details on the estimated parameters, computed
via the BH-EM algorithm, are contained in Table 3.

These results confirm the observation that a single beta density (classical
model used in literature for the recovery rate variable, Gupton et al, 1997; Gup-
ton and Stein, 2002; Bruche and González-Aguado, 2010) is unable to represent
X . Also, Calabrese and Zenga (2010), on the basis of their nonparametric den-
sity estimator, heuristically suggest using a mixture of a right-skewed random
variable and a symmetric random variable as a (semi)parametric model for the
recovery rate on bank loans (naturally, once the endpoints are removed from
the support of the variable). In reality, we can see that the situation is much
too complicated to be described with only two components; according to the
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(f) g = 6

Fig. 8: Finite mixtures of g beta densities fitted to the observed distribution of bank loan
recovery rates (Source: Bank of Italy). Dotted lines show the component densities multiplied
by the corresponding weights, while the solid line plots the resulting mixture
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previous remarks, a value g ≥ 4 is required in order to obtain an adequate fit
to the observed data (see Fig. 2).

Finally, it is important to underline that the parameterization in terms of
the modes, immediately gives an idea of the position where the recovery rates
with high probability could be located on the x-axis (see the third column
of Table 3). For example, considering the three-components model, the first
mode located in 0.101 suggests that a recovery rate of about 10% is more likely
for this dataset.

6.2 Age at first birth in the United States

The second application is demographic. In particular, we apply a gamma mix-
ture to the problem of modeling the distribution by age (of women) at first
birth, that is, the number of first births occurring in women of a given age
divided by the total number of women at first birth. To modelize such a dis-
tribution, it is well-known that in demography the use of parametric formulae
is particularly emphasized, both in terms of the interpretability (substantive
meaning) of the parameters and their role in facilitating spatiotemporal com-
parisons and forecasts (see, e.g., Rogers, 1986; Congdon, 1993). The problem
in this context, is that commonly used unimodal parametric distributions of-
ten do not offer adequate fit to the empirical density. An obvious example that
will be analyzed, is provided by the recent behavior of multi-ethnic popula-
tions, such as in case of the the United States, where the distribution is clearly
bimodal.

Motivated by these considerations, we suggest using a mixture of g = 2
gamma distributions defined on S = [a,∞), whose estimated modes can be
used to facilitate comparisons across space and time of the two ages more
representative of the distribution. Since the age is in principle a positive con-
tinuous variable, we consider a = 0. Naturally, as suggested by Coale (1971), it
might be better to choose a > 0 if the values between zero and a are retained
as unlikely.

We use data consisting in officially registered birth counts by calendar year,
and mother’s age, for the United Stated in the period 2006 (source: Human
Fertility Database). Used data can be downloaded from the web site:
http://www.humanfertility.org/cgi-bin/main.php. Since they consist in
the number nx of first births only in correspondence to the age last birthday x,
with x = 0, 1, . . ., we hereafter will assume a uniform distribution of nx within
the class [x, x+ 1). The histogram of the distribution, with unitary bins, is
displayed in Fig. 9. The gamma-mixture (solid line) is also superimposed on
the plot, with dotted curves showing the component densities multiplied by
the corresponding weights. Details on starting and final parameters, computed
via the BH-EM algorithm, are contained in Table 4. Here, it is easy to note
that the BH-initialization strategy leads the EM algorithm towards the “ex-
pected ”estimates. This is particularly true in the case of the modes of the
components.
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Fig. 9: Two-components gamma-mixture on [0,∞) fitted to the observed distribution, by
the mother’s age, of the number of first births in the United States for the period 2006
(Source: Human Fertility Database). Dotted lines show the component densities multiplied
by the corresponding weights, while the solid line plots the resulting mixture

Table 4: Starting and final parameters, obtained via the BH-EM algorithm, for the mixture
of g = 2 gamma densities on [0,∞)

Parameters π1 m1 m2 v1 v2

Starting values 0.486 20.015 28.618 0.274 0.607
Final estimates 0.395 19.545 28.145 0.287 0.853

As can easily be seen from Fig. 9, the distribution by age at first birth gives
prominence to a clear bimodality due to well-known social/demographical
reasons. Roughly speaking, in the United States there is a high number of
Hispanic, American Indians, Alaska Native and non-Hispanic black women
younger than 20 that became pregnant, and at the same time, a high number
of non-Hispanic white women having their first birth in the age range 25–29
(see Dye, 2008; Martin et al, 2009, for further details on this data set). These
situations considered together, create the bimodality highlighted in Fig. 9.

7 Concluding remarks

In this paper, starting from the Pearson system of distribution, we have focused
attention on the subclasses of unimodal beta and gamma distributions param-
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eterized according to their mode. We have used these mode-parameterized
densities as components inserted into a general class of finite mixtures that
can be used to modelize distributions defined on bounded supports. For this
mixture model, with a fixed number of components, we have described the EM
algorithm for the maximum likelihood estimation of its parameters. We have
also suggested an ad hoc initialization strategy that, in our simulation exper-
iments, proved to be a good alternative to the classical random initialization.
Real applications have also highlighted the usefulness of the parameterization
applied.

As regards possible future studies, we maintain that the parameterization
adopted could facilitate the analysis of modality for beta- and gamma-mixtures
in line with what is usually done for finite mixtures of normal distributions (see,
e.g., Eisenberger, 1964; Wessels, 1964; Robertson and Fryer, 1969; Behbood-
ian, 1970; Schilling et al, 2002; Ray and Lindsay, 2005). Moreover, focusing
attention on bumps, which have been highlighted in this paper as more infor-
mative than the modes, the parameterization adopted could be useful to study
the conditions leading to multy-bumpality. Finally, as a means of initializing
the EM algorithm for a normal-mixture, it could also be interesting to evaluate
the performance of the proposed initialization procedure, when comparing it
with the k-means method.

A Details on the EM algorithm

For completeness, here we attempt to explicit the derivatives in (11) for both gamma and
beta densities parameterized according to (2) and (5), respectively. We recall that the re-
sulting ML-estimates do not have a closed-form expression and can only be computed nu-
merically, with the aid of an iterative algorithm; such numerical methods are available in
most computer software, such as Mathematica and R.

In detail, for the gamma density in (2) we have

∂ ln fj (xi;mj , vj)

∂mj

=
1

vj

[
ln (xi − a) − ln vj − ψ

(
mj − a

vj

+ 1

)]

and

∂ ln fj (xi;mj , vj)

∂vj

=
1

v2
j

{
(mj − a)

[
ln vj + ψ

(
mj − a

vj

+ 1

)
− ln (xi − a)

]
+

− (mj + vj) + xi

}

where ψ (·) is the digamma function. In the same way, for the beta density (5) results

∂ ln fj (xi;mj , vj)

∂mj

=
1

vj (b− a)

{[
ψ

(
b−mj

vj (b− a)
+ 1

)
− ψ

(
mj − a

vj (b− a)
+ 1

)]
+

+ ln (xi − a)− ln (b− xi)

}
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and

∂ ln fj (xi;mj , vj)

∂vj

=
1

v2
j

(b− a)

{
(b− a)

[
ln (b− a)− ψ

(
2vj + 1

vj

)]
+

+

[
(mj − a)ψ

(
mj − a

vj (b− a)
+ 1

)
+ (b−mj)ψ

(
b−mj

vj (b− a)
+ 1

)]
+

− (mj − a) ln (xi − a) − (b−mj) ln (b− xi)

}
.
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