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The Autodependogram: A Graphical Device to

Investigate Serial Dependences

Luca Bagnato∗ Antonio Punzo† Orietta Nicolis‡

Abstract

In this paper the serial dependences between the observed time series

and the lagged series, taken into account one-by-one, are graphically ana-

lyzed by what we have chosen to call the “autodependogram”. This tool, is

a sort of natural nonlinear counterpart of the well-known autocorrelogram

used in the linear context. The simple idea, instead of using autocorrelations

at varying time lags, exploits the χ2-test statistics applied to convenient con-
tingency tables. The usefulness of this graphical device is confirmed by

simulations from certain classes of well-known models, characterized by

randomness and also by different kinds of linear and nonlinear dependences.

The autodependogram is also applied to both environmental and economic

real data. In this way its ability to detect nonlinear features is highlighted.

Key words: Nonlinear time series, Serial dependences, χ2-test, Autocorrelo-
gram.

1 Introduction

In modelizing observed time series, the most popular approach consists in adopt-

ing the class of linear models. In this wide class, the well-known white noise

process – characterized only by the properties of its first two moments – repre-

sents the building block and reflects information that is not directly observable.

Nevertheless, the limitations of linear models already appear in the classical pa-

per by Moran (1953). Nowadays, we know that there are nonstandard features,
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commonly referred to as nonlinear features (Jianqing and Qiwei, 2003) that, by

definition, cannot be captured in the linear frame. In the attempt to overcome this

problem, nonlinear models have to be taken into account (for a discussion on the

chief objectives which guarantee the introduction of nonlinear models, see for ex-

ample, Tjøstheim, 1994). For these kinds of models, as indicated by Jianqing and

Qiwei (2003), a white noise process is no longer a pertinent building block as we

have to look for measures beyond the second moments to characterize the non-

linear dependence structure. Thus, the white noise has to be replaced by a noise

process composed of independent and identically distributed (i.i.d.) variables.
As for serial correlation (better known as autocorrelation) in the linear case,

the analysis of serial dependence (that for analogy, could be defined as autode-

pendence) is then fundamental in the nonlinear approach. The term “serial” em-

phasizes that the dependence/correlation structure is analyzed as a function of the

time lags. Studying the serial dependence of a time series, besides being use-

ful per se, could be motivated by at least two other reasons. First, it is often a

preliminary step carried out before modeling the data generating process (model

selection); for example, it is common practice in finance to check serial depen-

dence on increments of log prices or exchange rates (Bera and Robinson, 1989;

Booth Teppo and Yli-Olli, 1994; Lo, 2000). Second, it can be a final step, once a

nonlinear model is fitted to the observed data, to check possible serial dependences

among estimated residuals (model validation; see, e.g., Diks and Panchenko 2007

who investigate the behavior of their test of serial independence when applied to

estimated residuals).

The first step in an attempt to investigate the serial dependence structure con-

sists in adopting a test specifically conceived for it. In these terms, the statisti-

cal literature with particular reference to the nonparametric one, contains a large

number of serial independence tests, the most famous of which is undoubtedly the

BDS test of Brock et al. (1996). The interested reader is referred to Diks (2009)

for a recent and detailed survey of all these methods (see also Dufour et al. 1982

and Hallin and Puri 1992). Nevertheless, a difference between the study of serial

correlatedness and serial dependence remains. While in the former case a prelim-

inary explorative investigation can be provided by the use of the autocorrelogram,

in the latter case we do not have an analogous of this graphical device. To the

best of the authors’ knowledge, the only attempts in these terms are the proposals

by Genest and Rémillard (2004) and Bagnato and Punzo (2010) that suggest two

diagrams, called respectively dependogram and lag subsets dependence plot, al-

lowing for a visual inspection of the subsets of lags leading to a possible rejection

of the null hypotheses in account. However, these graphical devices besides being

different in principle to the classical autocorrelogram, are also less simple to use.

In this paper we propose a graphical representation called autodependogram,

that can be really considered as the analogous of the autocorrelagram when the
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dependence structure to be analyzed is the distributive one. The proposal takes

advantage of the well-known χ2-test applied to pairs of lagged variables. Obvi-
ously, being based on the χ2-test, the proposal is valid asymptotically and it can
also be applied in presence of missing data.

Proposal and paper can be so schematically summarized: Section 2 begins by

presenting the common setting for both autocorrelogram and autodependogram.

Although treatment is carried out directly on the observed data, it can also be eas-

ily extended in the model validation phase to the estimated residuals from a lin-

ear/nonlinear model. Section 3 describes the proposal in detail, while Section 3.1

puts forward a simple way to select the unknown quantities characterizing the au-

todependogram. Its behavior, in comparison with the autocorrelogram, is shown

in all simulations and applications reported in Section 4 and Section 5. More

specifically, in Section 4.1 two simple examples are provided using well-known

models in time series literature. In Section 4.2 the performance of the autodepen-

dogram, in terms of size and power of each of its bar, is evaluated by simulations

for a wide range of serial dependence alternatives. Section 5 presents two applica-

tions respectively related to ozone concentrations and natural gas prices. Finally,

in Section 6, conclusive remarks, but also a brief discussion, are given.

2 Some preliminary notes: the autocorrelogram

Let {Xt}t∈N represent a strictly stationary stochastic process. Moreover, let {x1, . . . ,xn}
be an observed time series, of length n, from {Xt}t∈N, where n denotes the last

temporal instant. Choosing a positive integer r representing the lag, with r < n, it

is possible to obtain the rth delayed observed series {x1, . . . ,xn−r}.
Now, suppose that we are interested in (graphically) studying the serial depen-

dences of {Xt}t∈N, as a function of r, using the observed counterpart {x1, . . . ,xn}.
The first kind of serial dependence structure that comes to mind to study, is with-

out doubt, the linear one. To do this, the well-known autocorrelation function

(ACF) is commonly considered; it describes the autocorrelations between Xt and

its lag Xt−r as a function of r. In this case, the less restrictive weak stationarity
can be assumed.

The graphical representation of an ACF is often referred to as autocorrelo-

gram. In order to define this, we ideally construct a scheme, as in Table 1, in

which l represents the maximum value chosen for r. Thus, the sample autocorre-

lations

ρ̂r =
�
�
�1

n

n

∑
t=r+1

(xt− x)(xt−r− x)

�
�
�1

n

n

∑
t=1

(xt− x)2
, r = 1, . . . , l, (1)
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Table 1: Preliminary scheme to compute autocorrelations.

Xt Xt−1 Xt−2 · · · Xt−r · · · Xt−l

x1
x2 x1
x3 x2 x1
...

...
...

. . .

xr+1 xr xr−1 · · · x1
...

...
...

...
. . .

xl xl−1 xl−2 · · · xl−r · · · x1
xl+1 xl xl−1 · · · xl−r+1 · · · x2
xl+2 xl+1 xl · · · xl−r+2 · · · x3
...

...
...

...
...

xn−2 xn−3 xn−4 · · · xn−r−2 · · · xn−l−2
xn−1 xn−2 xn−3 · · · xn−r−1 · · · xn−l−1
xn xn−1 xn−2 · · · xn−r · · · xn−l

between the column Xt , and each column Xt−r, are examined. In (1), x=(1/n)∑n
t=1 xt

denotes the sample average of (the column) Xt in Table 1. Note that some sources

use an alternative formula that substitutes the term 1/n, in the numerator of (1),
with 1/(n− r). Although this definition has less bias, the formulation in (1) has
some desirable statistical properties and is the form most commonly used in statis-

tics literature (for details, see Chatfield, 1989, pages 20 and 49–50). In the absence

of autocorrelation, the asymptotic distribution of ρ̂r in (1), r = 1, . . . , l, is normal;
thus, in the autocorrelogram, choosing a significance level α, one can draw up-

per and lower bounds, for absence of autocorrelation, with limits ∓z1−α/2/
√
n,

where z1−α/2 is the quantile of the standard normal distribution. In this case, the

confidence bands have fixed width that depends on the sample size n.

Logically, through the autocorrelogram, other kinds of specific serial depen-

dences can be considered for investigation transforming the original time series

in a convenient way. Thus, for example, if we are interested in evaluating se-

rial linear dependence between squared variables of the process, we can apply

the transformation Yt = X2
t and compute the ACF on {y1, . . . ,yn}. With this phi-

losophy, McLeod and Li (1983) suggest inserting squared residuals in the Box-

Ljung statistic; in doing so the authors solve the problem of checking a possible

quadratic correlation but, at the same time, their method may clearly fail to be

consistent against different dependence structures. In other words, a clear disad-

vantage of this approach is its “directional” nature, since it is intended to detect
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specified alternatives. To solve this problem, in an attempt to provide a more gen-

eral graphical representation than the autocorrelogram, one could consider rank-

based variants of the sample autocorrelation coefficient in (1) as, for example, the

well-known indexes of Spearman (1904) and Kendall (1938); for a survey on the

use of these coefficients in constructing tests for serial dependence see, for ex-

ample, Diks (2009). Although the sphere of activity is extended so to investigate

more general monotonic serial dependences, the initial problem is still not cov-

ered. In fact, it is not hard to construct examples of processes for which statistics

of linear and monotonic serial dependence may clearly fail to highlight the real

but unknown underlying dependence structure. For instance, the bilinear process

Xt = ϑXt−2εt−1+ εt , |ϑ|< 1,

where {εt} is a sequence of independent standard normal variables, clearly ex-

hibits a complex form of dependence, but it has neither linear nor monotonic serial

dependence structure of any order beyond lag zero.

3 The autodependogram

In this section, motivated by the above considerations, a graphical device is pro-

vided designed to detect dependences as a function of the time lags. We recall

that the term “dependences” is referred to dependence in a wider sense (distribu-

tive dependence). In these terms, the proposal could be defined as “omnibus”.

Naturally, being omnibus, it will be less powerful than the autocorrelogram when

the structure of dependence characterizing the observed time series is the linear

one, and less powerful of a representation using rank correlation statistics when

the underlying dependence is monotonic.

The proposal draws on Bagnato and Punzo (2010) and considers the problem

of studying the generic dependence of lag r by using the well-known and general

χ2-statistic of independence. To address this, the first step consists in creating the
bivariate joint distribution in Table 2 of the variables Xt and Xt−r, considering the
elements highlighted in Table 1. Here, k is the number of classes, supposed to be

the same for each variable and for each lag r, and a
(r)
1 , . . . ,a

(r)
k−1, a= c,d, are cutoff

points. Naturally, the procedure can be generalized by setting k as a function of

r. Thus, the simple χ2-test can be used to evaluate the dependence of lag r. In

particular we denote

Tr =
k

∑
i=1

k

∑
j=1

[
n
(r)
i j − n̂

(r)
i j

]2

n̂
(r)
i j

, (2)
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Table 2: Two-way contingency table related to the dependence of lag r.

Xt−r
Xt

≤ d
(r)
1 · · · d

(r)
j−1 ⊣ d

(r)
j · · · > d

(r)
k−1

≤ c
(r)
1 n

(r)
11 · · · n

(r)
1 j · · · n

(r)
1k

...
...

...
...

c
(r)
i−1 ⊣ c

(r)
i n

(r)
i1 · · · n

(r)
i j · · · n

(r)
ik

...
...

...
...

> c
(r)
k−1 n

(r)
k1 · · · n

(r)
k j · · · n

(r)
kk

n(r)

the test statistic, where n
(r)
i j are the observed frequencies and n̂

(r)
i j are the the-

oretical frequencies under the (null) hypothesis of independence of lag r, with

i, j = 1, . . . ,k. It is well-known that under this condition, Tr is asymptotically dis-
tributed as a χ2 with (k−1)2 degrees of freedom. From now on, in analogy with

the autocorrelogram, the statistic Tr in (2) will be referred as AutoDependence

Function (ADF). Note that, all considerations and results described so far can also

be easily extended to time series with missing data.

Once chosen k, the cutoff points, and l in Table 1, we can plot the ADF as

a function of r. In analogy with the autocorrelogram we define such a diagram

as autodependogram. Since k is fixed and equal for each lag on the x-axis, we

can also superimpose on the same graph, an upper bound at height χ2
[(k−1)2;1−α/2]

,

quantile of a χ2 distribution with (k−1)2 degrees of freedom.

3.1 Choosing the number of classes and the cutoff points

In order to compute Tr in (2), both the number of classes k and the k− 1 cutoff

points a
(r)
1 ,a

(r)
2 , . . . ,a

(r)
k−1, a= c,d, have to be defined.

We construct Table 2 such that the classes of the marginal distributions have

the same frequencies (the so-called equifrequency classes). This choice forces the

marginal distributions to be discrete uniforms and, once k is fixed, the internal

cutoff points are automatically generated. Thus, k remains the only parameter to

be chosen in order to construct Table 2.

In choosing k, the number of observations has to be taken into account. Be-

fore proceeding, note that both joint frequencies and classes vary by changing

compared variables. In particular, from Table 1, it is possible to note that we have

n(r) = n− r available observations in constructing Table 2. In order to make valid
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the rth χ2-test, the well-known rule of thumb n̂
(r)
i j ≥ 5, for each i, j = 1, . . . ,k,

should hold. This means that the number of observations, in comparison of lag r,

has to satisfy the inequality n(r) ≥ 5k2. Being k equal for each comparison and

being l the maximum value of r, the following has to hold

k ≤

√
n(l)

5
= s. (3)

Equifrequency classes make it easier to guarantee this condition.

In order to select k among its possible values in the set S= {2, . . . ,⌊s⌋}, where
⌊·⌋ is the floor function, considerations about the power of the l χ2-tests can be
made. In fact, while the significance level α should be preserved at the varying of

k, the power can be maximized. To obtain this, in the following we provide a sim-

ple method, that instead of using α, takes into account the more general concept
of p-value. Other more sophisticated techniques can be considered however.

Let prk be the p-value of the rth χ2-test obtained using k classes, k ∈ S and

r = 1, . . . , l. For each k ∈ S, consider the vector pk = (p1k, . . . , plk)
′
. A natural

way to maximize the power consists in choosing k such that pk contains values as

close as possible to zero. Then, a very simple choice for k could be the following:

k∗ = argmin
k∈S

‖pk‖ , (4)

where ‖·‖ denotes the L2-norm.

4 Illustrative examples and simulations

This section pursues the aim of evaluating the performance of the ADF using sim-

ulated data with gradual departure from serial independence. This performance is

compared with that of the ACF. Some simple generated series from famous mod-

els in the time series literature, are preliminarly considered in order to directly

display the behavior of the autodependogram. A comparison with the autocorrel-

ogram will be always provided.

In what follows, the nominal size will be fixed at 0.05 and the value of k in

the autodependogram will always be computed according to rule (4). To perform

these numerical experiments we use the R environment. The R code necessary to

compute the ADF and to plot the corresponding autodependogram, is available

from the authors upon request. Finally note that, according to Tsay (2005), we

will plot the autocorrelogram without the traditional noninformation unit spike at

lag 0.



8

4.1 Two simple examples

Two series, of length n = 800, are respectively generated from a MA(1), and a

quadratic MA(1), both with parameter 0.8. A standard Gaussian noise, and a

maximum lag l = 30, are adopted. Results are displayed in Figure 1. Note that,
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(d) Quadratic MA(1): ADF

Figure 1: Sample ACF, on the left, and sample ADF, on the right, computed on two

series generated respectively from a MA(1), and a quadratic MA(1), both with

parameter 0.8 (n= 800 and α = 0.05).

as said before, the horizontal dotted line, placed at height χ2
[(k−1)2;0.975], makes it

easy to identify lags for which the null hypothesis of independence does not hold

at the nominal level 0.05.
The examples results can be summarized as follows: in the linear case, for

the MA(1), ADF and ACF provide similar information; a significant spike at the

first lag, and bars that are almost all included in the confidence bands for the

other lags. These are respectively displayed both in Figure 1(b) and Figure 1(a).
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Such concordant behavior has also been observed for series (whose results are

not here reported) generated from other linear models of the more general ARMA

class. In the nonlinear case for the quadratic MA(1), only the autodependogram

highlights dependence: in Figure 1(d), in fact, there is a spike at lag 1 and almost

no dependence for the other lags. Note that, differently from the autocorrelogram

which gives an indication of the percentage of the maximum (linear) dependence,

the ADF, by construction, can not measure the relative impact of dependence for

the generic lag. Nevertheless, each bar of the ADF can be compared with the other

ones; for example, ADF in Figure 1(d) highlights that dependences of lags greater

than 2 are less intense than the dependence of lag 1.

4.2 Simulations

In this section, three sets of Monte Carlo experiments are shown in order to com-

pare the performance of the autocorrelogram and the autodependogram consider-

ing a maximum lag l = 30. A wide scenario of situations is considered including

independence, linear and nonlinear dependence. The subsets of models used in

each scenario are specified in the third column of Table 3. For the indepen-

Table 3: Adopted models.

Context Model Specification

Independence





(A) Cauchy ut

(B) Bimodal Gaussian Mixture υt

Linear

dependence





(C) MA(q) Xt =
q

∑
j=1

ϑ jεt− j+ εt

(D) AR(p) Xt =
p

∑
j=1

ϑ jXt− j+ εt

Noninear

dependence





(E) ARCH(p) Xt = σtεt , σ2
t = 1.5+

p

∑
j=1

ϑ jX
2
t− j

(F) GARCH(1,1) Xt = σtεt , σ2
t = 1.5+ϑ1X

2
t−1+η1σ

2
t−1

(G) Quadratic MA(q) Xt =
q

∑
j=1

ϑ jε
2
t− j+ εt

(H) Bilinear AR(2) Xt = ϑ1Xt−2εt−1+ εt

dence case, noise is generated from a standard Cauchy (denoted with ut) and from
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a bimodal normal mixture1 (denoted with vt), while a standard normal (denoted

with εt) is always used under linearity and nonlinearity. The parameters for mod-
els in Table 3 are chosen in order to guarantee stationarity. With the exception of

the serial independence case, two different sets of parameters are considered for

each model in order to fully appreciate the dynamic of the estimated power. For

each model, 1000 samples are generated. For each of them, a time series of length

900 is generated, with only the final n = 800 observations used. Rejection rates,

of both ACF and ADF, are so recorded for each lag r, r = 1, . . . , l (here, the rth
rejection rate has to be understood to mean the percentage of times that the rth

bar exceeds the confidence bands). We recall that the value of k in each repetition

is selected according to (4). To facilitate size evaluation in all displayed plots, a

dotted horizontal line is placed at height 0.05.

Figure 2 shows results in the context of independence. The ADF for both of the
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(b) Bimodal normal-mixture

Figure 2: Rejection rates of ACF and ADF computed on 1000 series, of length n=
800, arising from model (A), on the left, and model (B), on the right, of Table 3.

simulated noises shows an empirical size close to the nominal one for each of the

30 considered lags. On the other hand, the ACF behaves according to expectations

when the noise is generated from the bimodal normal mixture (see Figure 2(a)),

but it tends to be more conservative in the other case (see Figure 2(b)).

Figure 3 displays results in the context of serial linear dependence. Here, the

set of parameters are chosen in order to highlight the best performance of the

autocorrelogram. However, further simulation results (not reported here) show

that the disparity in terms of estimated power between the two dependence func-

tions, decreases when the degree of linear dependence increases. For example,

1The density is 6/10φ(x;−5/3,1)+ 4/10φ(x;5/2,1), where φ(·;µ,σ) denotes a normal den-
sity with mean µ and standard deviation σ. It ensures: zero mean, bimodality and skewness.
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(b) MA(4):(ϑ1,ϑ2,ϑ3,ϑ4) = (0,0,0,0.4)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
ADF

ACF

lag

re
je

ct
io

n 
ra

te
s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(c) AR(1): ϑ1 = 0.4
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(d) AR(4): (ϑ1,ϑ2,ϑ3,ϑ4) = (0,0,0,0.4)

Figure 3: Rejection rates of ACF and ADF computed on 1000 series, of length n=
800, arising from model (C) and model (D) of Table 3.

as regards the MA(1), ADF and ACF already behave practically in the same way

when ϑ1 = 0.3. Generally, regardless of the chosen parameters, the two graphi-
cal devices are characterized by the same underlying structure for all diagrams in

Figure 3.

Finally, in Figure 4 the rejection rates are jointly represented for two different

sets of parameters of the nonlinear models in Table 3. In this case, the results are

inverted with respect to the previous one. More specifically, although ACF and

ADF show the same general pattern also in this case, the latter seems to be more

powerful above all for the quadratic MA model of Figure 4(e) and Figure 4(f).

Moreover, since the adopted models have zero-correlation, the estimated power

for the ACF should be near the nominal size. This means that the ACF, in these

cases, wrongly displays linear dependences; this is probably due to the fact that

dependence structure of the series can be approximated, in some way and degree,
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(a) ARCH(1): ϑ1 = 0.6
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(b) ARCH(3): (ϑ1,ϑ2,ϑ3) = (0,0,0.6)
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(c) GARCH(1,1): (ϑ1,η1) = (0.3,0.3)
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(d) GARCH(1,1): (ϑ1,η1) = (0.6,0.3)
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(e) Quadratic MA(1): ϑ1 = 0.8
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(f) Quadratic MA(3): (ϑ1,ϑ2,ϑ3) = (0,0,0.8)
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(g) BILINEAR: ϑ1 = 0.6
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(h) BILINEAR: ϑ1 = 0.9

Figure 4: Rejection rates of ACF and ADF computed on 1000 series, of length n=
800, arising from models (E), (F), (G), and (H) of Table 3.
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by the linear one.

5 Real applications

In this Section, in order to show the potential of the autodependogram in detecting

nonlinear dependences, we apply the ADF to both an environmental time series

(ozone concentrations) and an economic one (natural gas prices). A comparison

with the ACF will be also given.

5.1 Ozone concentrations

As first real field of application, we consider the hourly ozone concentrations mea-

sured by a single monitoring site, located in via Juvara, Milano (North of Italy),

during the period 2002–2006 (see Figure 5). Data have been gathered and their

quality assessed, by the Lombardia ARPA (Agenzia Regionale per la Protezione

Ambientale, i.e. Regional Environmental Protection Agency) and they can be

downloaded from the web site

http://ita.arpalombardia.it/ITA/qaria/doc RichiestaDati.asp.

The time series of ozone is typically characterized by nonlinear components

arising from the chemical process underlying its formation. Ozone concentrations

are produced as a secondary pollutant by a chemical reaction of NOx with volatile

organic compounds (VOCs), an important class of air pollutants commonly found

in the atmosphere at ground level in all urban and industrial centers.

The photochemical reactions that produce ozone depend on meteorological

conditions such as solar radiation, wind speed, temperature and pressure. The

influence of these variables makes the ozone series highly seasonal. Wind speed

determines transport and accumulation of primary pollutants and temperature di-

rectly influences the kinetics of reactions producing ozone and determines the

mixing height, which affects the accumulation of primary pollutants. The solar

radiation acts directly on the ozone concentrations producing minimum values in

winter and maximum values in summer. A daily cycle is also present producing a

peak in concentration during the warmer hours of the day and a reduction at night

(see Cocchi and Trivisano, 2002; Nicolis and Fassò, 2002). Small seasonal vari-

ations depend essentially on the local climatic peculiarities and on the land use.

Many models have been proposed in literature for studying the nonlinear behavior

of time series in general (see, e.g., the recent work of Chen et al., 2010), and with

respect to ozone concentrations (see, e.g., Niu, 1996; Chen et al., 1998; Fassò and

Negri, 2002; Nicolis, 2002). In particular, Nicolis (2002) uses wavelet transforms

for decomposing the ozone series in different frequency components reflecting the

cyclical components of the data.
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Figure 5: Hourly ozone concentrations from 1/1/2002 to 31/12/2006.

This application shows that the autodependogram is a powerful tool for detect-

ing nonlinear components in environmental time series. In particular, the autode-

pendogram of hourly ozone concentrations, in Figure 6(b), highlights not only the

dominant daily cyclical component but also the intra-day cycle due to the vari-

ation of temperature and solar radiation. In fact, the absence of solar radiation

during the night associated with the emission of NOx in the urban areas causes

the conversion reaction. This intra-day component is not detected by the standard

autocorrelogram where the linear trend is dominant Figure 6(a).

5.2 Natural gas prices

As second real field of application, we consider the economic one. In particular,

in recent years the electric power industry has undergone many fundamental and

unprecedented changes due to the process of deregulation. Time series of prices in

this sector are often characterized by multi-scale seasonality, high volatility and

spiking behavior. An increasing amount of works has tried to describe the ex-
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Figure 6: ACF and ADF of hourly ozone concentrations.

post properties of the market prices and to specify adequate econometric models

to describe the delicate, nonlinear and evolutionary interactions of fundamental

and market conduct variables known to influence power price formation (see, e.g.,

Robinson 2000, Bunn 2000, Benaouda et al. 2006, Weron 2006, and Chen et al.

2010).

In this example we consider monthly data for US Natural Gas Industrial Prices

(Dollars per Thousand Cubic Feet), freely available from the web page

http://www.eia.gov/dnav/ng/ng pri sum dcu nus m.htm,

for the period ranging from October 1983 to August 2010 (Figure 7).

Figure 8 shows the ACF and ADF plots of monthly series of natural gas prices.

While the ACF shows a strong linear trend that occurred in the last ten years,

the ADF detects nonlinear dependences at different lags. For example, the ADF

shows an evident peak around the lag 36 (three years), and other small but promi-

nent humps for the subsequent lags; among them it is possible to note a peak

around lag 84 (seven years). These dependences are shown by ACF only on the

detrended series, that is, after applying a first order differentiation (see Figure 9).

This example wants to highlight that while the ADF is able to detect all the de-

pendences, the ACF needs a preliminary transformation of the series, especially

when the trend component is strong. Moreover, using ACF many problems arises

when we do not know the transformation to use.
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Figure 7: US Natural Gas Industrial Prices (Dollars per Thousand Cubic Feet) from

October 1983 to August 2010.

6 Conclusions and discussion

In this paper, we present a new graphical device that we have chosen to call au-

topependogram, with the aim of graphically investigating (serial) dependences

as a function of the time lags. The proposal takes advantage of the simple set-

ting characterizing the famous autocorrelogram and exploits the simple and well-

known χ2-statistic of independence. Such a choice allows us to easily detect de-
pendences that are more general than, for example, the linear or monotonic ones.

Applications and simulations show the good performance of the autodependo-

gram in situations where the autocorrelogram is applicable too highlighting its

usefulness when the time series is nonlinear.

Further effort can be devoted to solve one criticism of the ADF Tr: it, in fact,

does not give a meaningful description of the degree of dependence for lag r.

In other words, it is useful for determining whether there is dependence but it is

not easy to interpret the strength of that dependence. Thus, it could be useful
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Figure 8: ACF and ADF of Monthly Natural Gas Prices.
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Figure 9: Detrended series of Monthly Natural Gas Prices and its ACF.

to provide a normalized statistic, taking values in the compact interval [0,1]. In
these terms, Cramer’s contingency coefficient would provide an easier to interpret
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measure of strength of dependence. With our notation, it is defined as

Cr =

√
Tr

n(k−1)
, (5)

monotone transformation of Tr. This statistic is based on the fact that the maxi-

mum value of Tr is n(k−1). So, Cr basically scales Tr to a value between 0 (no

dependence) and 1 (maximum dependence). It has the desirable property of scale

invariance, that is, if the sample size n increases, the value of Cramer’s contin-

gency coefficient in (5) does not change as long as values in the table change the

same relative to each other. Moreover, theCr statistic, like the ACF, is dimension-

less, that is, independent of the scale of measurement of the time series. Finally,

it is interesting to note, that applying the same transformation in (5) to the critical

value χ2
[(k−1)2;1−α/2]

, one obtains a sort of “normalized” upper bound that can be

superimposed on the diagram of the normalized ADF in order to evaluate ran-

domness of the observed time series. Nevertheless, we do not use Cramer’s index

because it has a substantial defect. In fact, as well-known, it attains values near to

its maximum very sporadically. This consideration motivates the search for other

normalized indexes not affected by this inconvenient.
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