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Some scientists work so hard

there is no time left for serious thinking.

Francis Crick





I

Introduction

The work presented in this PhD Thesis has been performed in the framework of the re-

search on Thermonuclear Fusion in magnetically confined plasmas of tokamak-like devices.

The effort is aimed at a feasibility study of Electron Cyclotron Resonance Heating (ECRH)

in overdense plasmas. The main aim of this Thesis consists in the study of the applica-

bility of the mode conversion scheme, known as ’O-X-B Double Mode Conversion’, to the

Italian tokamak FTU (Frascati Tokamak Upgrade), with the use of millimeter-waves at

the 140 GHz frequency. This overdense plasma heating technique, not yet demonstrated

at electron density of 2.4·1020 m−3 and consequently at such a high frequency, exploits the

conversion of an ordinary polarized wave (O) launched from the plasma boundary with a

very narrow angular range and reaching the cutoff region, into the extraordinary (X) one,

followed by a subsequent conversion into Bernstein (B) waves, which are then absorbed

by the plasma.

Simulations have been performed, by using a ray tracing code, to find the optimal launch-

ing conditions for the O-X coupling in FTU. The assessment of conversion efficiency was

carried out first with the use of a one-dimensional model, that considers the density and

the magnetic field gradients in the plasma. Moreover, the conversion predicted by recent

bi-dimensional theoretical models available in literature has been evaluated. The inhomo-

geneities of a toroidal plasma are thus accounted with a more realistic description.

The experimental part of the work for the Thesis can be divided into two main activities.

The first one has been carried out at the laboratories of the research center ENEA in

Frascati (Roma), where the tokamak FTU is operating. In this phase, experiments have

been performed, aimed at the detailed study of the density profiles and gradients, which

characterize the overdense plasma regimes. Proper experimental procedures have been

developed, to prepare with reliability the optimal plasma ’target’. The second experi-

mental activity has been carried out at the Istituto di Fisica del Plasma ’Piero Caldirola’

(IFP/CNR Milano), and consists in the contribution given for the design and construc-

tion of a new EC millimeter-waves launcher for FTU, whose installation is scheduled for

the first months of 2011. The system has been designed to reach the launching angles

requested for O-X-B mode conversion, which have been defined in the present work and

that are not achievable with the present launching system.



II

After an introduction in Chapter 1 on the Thermonuclear Fusion energy and on the Inter-

national Thermonuclear Experimental Reactor (ITER) project, the basic principles of the

theory of the Electron Cyclotron waves in tokamak plasmas and the hot plasma Electron

Bernstein Waves, together with the possible mode conversion schemes aimed to excite

them, are presented respectively in Chapters 2 and 3. The treatment of the wave prop-

agation, in these two Chapters, aims to provide the reader with the theoretical basis of

the predictive models developed in this Thesis and presented hereinafter, providing the

necessary references.

The results of the study carried out in FTU during last experimental campaigns, aimed

to prepare the optimal plasma ’target’ for the future experiments on mode conversion, are

presented in Chapter 4, together with a description of the high density plasma regimes

reachable since recent years in FTU.

The simulations of O-X mode conversion computed using the FTU plasma parameters

and the results of the predictive work are presented in Chapter 5.

In the beginning of Chapter 6, a general description of the EC launcher presently installed

in FTU is given, in order to show to the reader the motivations that led to the construction

of a new launching system to perform new experiments, among which the O-X-B mode

conversion ones.

The second part of Chapter 6 is dedicated to a detailed description of the new launcher,

from mechanical and scientific points of view, marking the importance of the features of

the new system for the aims of this Thesis. The results of millimeter-waves low power mea-

surements and dynamical tests performed at IFP/CNR laboratories with the new launcher

are shown, together with some 3D simulations of wave injections from the launching point

of this system, with optimal angles for O-X coupling in the FTU plasma.
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Chapter 1

The Thermonuclear Fusion and

the ITER Project

1.1 Introduction

Since last decades one of the purposes of humankind is the search of possible sources

for future energy production. During recent years, a large number of renewable energy

sources could be discovered, in principle, but the crucial point consists in finding sources

able to satisfy the always increasing demand while keeping compatible with a sustainable

development. So far, Men could not find any alternative for energy able to respect this

critical request. In addition to the environmental issues, the alarming aspect of the World

energy supply consists in the risk that most of the technologies in use nowadays may

reach their maximum level of production in the short term and a gap may open between

human demand of energy and the available supplies. Estimated consumption times of

several energy sources are shown in Table 1.1. By the end of the century the energy

demand may become about three times higher than the present consumption, due to the

increasing request of energy from part of the countries now in development. An estimation

on the total amount of energy consumed currently from Men can be done: 2.23 kW ×
6.5 billions people × 1 year = 15 TW·year [1], and this number will be likely growing

much in the next decades, up to about two times more than now. The energy supply in

the World, nowadays, is for 90% provided by burning fossil fuels and the release of CO2

in the atmosphere implied by this kind of sources may lead to serious problems in the

future, from the point of view of the environmental impact and global warming. CO2 is

1
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a greenhouse gas, which, with the time going by, increases the absorption of the infrared

radiation which is re-emitted by the Earth1. Up to now, measurements show a very steep

increase of the CO2 content in the atmosphere during the last tens of years. This aspect, in

addition to the fact that fossil fuels are not inexhaustible, make the research of new form of

energy sources inevitable. Unfortunately, despite several renewable energy resources were

discovered during last decades and started to be routinely exploited, they are characterized

by a low energy density2. In addition, many of them, still have a strong environmental

impact, not related to the CO2 emission, due to the deep modifications on the natural

scenery implied by their use.

Years of Use of the Different Fuels Available Today

Fuel Recoverable Reserves Years Remaining

Coal 0.9·1012 tons 210

Crude Oil 1.3·1012 barrels 30-40

Natural Gas 190·1012 m3 60-70

Uranium (as ore) 4.7·106 tons 85-270∗ / 2600-8000∗∗

Uranium (from sea water) 4.5·109 tons 81000-260000
∗Assuming Light Water Reactor.

∗∗Assuming breeder technology employment.

Table 1.1: Years of use of the different fuels available nowadays, calculated using the current rate

of consumption. Table taken from reference [1].

Nowadays, thermonuclear fusion represents one of the most promising long-term energy

supply for the future. The safety and ’cleanliness’ of this source represents one of the

most important aspects. CO2 emissions are completely absent in the products and the

environmental impact of hypothetical fusion plants may be extremely limited. In addition,

the huge abundance of chemical elements that can be used as fusion fuels adds to the fact

that, differently from what happens for the other energy supplies, fusion is capable to

deliver a huge amount of energy, much more than any other known physical process used

now. In fact, in fusion reactions (for example between deuterium (D) and tritium (T)) the

1Records from the past indicate that variations >7◦C of the average Earth temperature have taken

place in the course of a few tens of years [2].
2Defined as the parameter which expresses how much energy can be extracted from 1 g of fuel.
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energy density is largely the highest than for all the other processes that can be exploited

today for energy. For instance, a fusion plant of 1 GWe would need about 100 kg/year

of D and 3 ton/year of Li, to produce 7 billions kWh of energy. A plant operating with

coal would need about 1.5 · 106 tons of coal to produce the same amount of energy. In

Table 1.2 the present contributions of coal and the other most important primary energy

sources to the overall energy production are shown.

Contributions of Different Sources

Primary Energy Source Contribution to Energy Production

Oil 36.1%

Coal 27.6%

Gas 23.0%

Fission 6.0%

Hydro-electricity 6.3%

Solar, wind, wood, waste ≈1.0%

Table 1.2: Contributions of the different most important primary energy sources to the overall

energy production in the World, updated to 2006. Table taken from [1].

Control thermonuclear fusion is a challenging mission and the difficulty encountered in

the reproduction of the processes in laboratory represents the bigger obstacle, from both

technical and scientific points of view. Since Fifties, Men were studying the Physics of

hot thermonuclear plasmas for civil purposes, in order to find the way to reproduce fusion

reactions in the research laboratories, with the aim to make fusion become a reliable

source of energy for the future on Earth. To be able to fuse light nuclei together, very

high kinetic energies or very high pressures are required to overcome the repulsion force

between them. Fusion reactions keep in life the stars by converting hydrogen into helium

(as main reaction). In these process about 0.5% of the hydrogen mass is directly converted

into energy, in accordance with the Einsteins equation E = 4mc2:

4Ebinding = (Nneutronsmneutron +Nprotonsmproton −mnucleus) · c2.
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In principle, fusion is possible with several light elements, involving hydrogen isotopes and

light nuclei, like for instance:

2D + 2D → 3T + 1H + 4.03MeV, (1.1)

2D + 2D → 3He+ n+ 3.27MeV, (1.2)

2D + 3He→ 4He+ 1H + 18.35MeV. (1.3)

The advantage of these reactions is the natural abundance of elements, especially of deu-

terium3, but the drawback consists in stringent conditions for operations and higher energy

threshold to start the reactions, due to the lower cross-section and energy release, with

respect to the D-T reaction, which is the reference for controlled thermonuclear fusion

(see Figure 1.1). This reaction, which has a cross section peaking at temperatures T ≈ 25

Figure 1.1: Cross-section of several fusion reactions between light elements vs the energy of D o p.

It can be noticed that the D-T reaction has the maximum cross-section.

keV, converts the two hydrogen isotopes into an helium nucleus (an α particle) with a

total amount of energy of 17.6 MeV per reaction, while a neutron, carrying about 80% of

this energy, is released:

2D + 3T → 4He(3.5MeV ) + n (14.1MeV ).
3An hypothetical fusion plant producing 1000 MWe/year, would need just about 250 kg/year of D and

T.
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This means that 1 g of D-T fuel yields 90 MWth of thermal energy which, converted into

electricity with a typical efficiency of 0.33, yields 30 MWeh.

The fuels can be found quite easily. Deuterium is widely available on Earth and can be

extracted from the water4, where it is present in a concentration of about 35 g / m3, while

tritium, which does not exist in nature since it is radioactive with a half-life of 12.3 years:

3T → 3He+ e− + 18.7keV.

can be obtained from lithium, widely available from the following reactions on the Earth:

7Li+ n→ 3T + 4He+ n− 2.47MeV, (1.4)

6Li+ n→ 3T + 4He+ 4.86MeV, (1.5)

in its crust and in the sea water for example. Estimations on the availability and con-

sumption of Li indicate that this element will be available on Earth for at least one billion

of years [3]. Therefore fusion could be a sustainable energy source.

In order to fuse, the mutual electrostatic repulsion between positively charged atomic

nuclei must be overcame during their collisions. This means they must be provided of

the sufficient kinetic energy to do that. Since the overall energy of the gas is strictly in

relation with the thermal velocity of the particles, the temperature of the fusion fuel has

to be risen to very high values. In the case of D-T fusion, the required temperature is in

the range of 100/150 · 106 degrees centigrade, corresponding to 10 keV, making the gas

become partially or completely ionized, forming a plasma.

Such a hot gas must be confined using (strong) magnetic fields. The torus is demonstrated

to be the unique geometrical shape for the closed magnetic field lines, capable to keep the

plasma confined in fusion devices. Some kind of machines are the tokamaks, stellarators,

reversed field pinches and spherical tokamaks [4] [5]. Among them, the most diffuse config-

uration is the first one, the toroidal shaped tokamak [6], developed in Russia in the 1950s

and 60s, which name is a russian acronym standing for toroidal camera with magnetic

coils (TOroidalnaya KAmera v MAgnitnykh Katushkakh). In a tokamak the magnetic

field confining the plasma is generated by a certain number of external coils, and by a

toroidal current. The final configuration is formed by twisted toroidal field lines.

Additional heating systems are used, as well, to inject high power microwaves or particle

4A significant percentage of the common water H2O is actually D2O and HDO, and is called heavy

water.
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Figure 1.2: Results of several fusion devices. The red dots correspond to experiments performed

in JET (in Europe) and TFTR (in the US) devices with D-T.

beams into the plasma5, up to the Lawson criterion for the ignition condition, defined

in 1957 by John D. Lawson, at Harwell (UK), that written as function of the number

of electrons per unit volume n, the ion plasma temperature Ti (in keV) and the energy

5The transfer of energy and momentum to the plasma can be obtained by acting directly on electrons or

ions, depending from the frequency of the launched waves. The four methods used nowadays for heating and

driving non-inductive currents in fusion plasma are the Electron Cyclotron Resonance Heating (ECRH), the

Lower Hybrid (LH) waves, the Ion Cyclotron Resonance Heating (ICRH) and the Neutral Beam Injection

(NBI). All the first three techniques consist in the launch of RF waves, respectively in the range of 50-200

GHz, 5-10 GHz and tens of MHz. ECRH and LH acts directly on electrons, while ICRH interacts on

ions. The NBI, instead, consists in the injection of neutral beams into the plasma, not influenced by the

presence of magnetic fields. All the arguments of the present Thesis will be dealing only with applications

of ECRH and EC-waves in fusion plasmas. For a detailed treatment of the different approaches to heat

and drive current in plasmas, see for instance reference [7].
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confinement time6 τE , takes the following form:

nTiτE > 6 · 1021 keV s
m3

, (1.6)

for the D-T plasmas. An important parameter of a fusion plant is the factor Q, defined

Reactor Parameters

Unit size (GWe) 1 - 1.5

Fusion power (GW) 3 - 5

Q 30 - 40

Temperature (◦·106) 150 - 200

Plasma density (1020 particles/m3) 1 - 1.5

Table 1.3: Typical parameters of a fusion reactor. Table taken from [8].

as:

Q =
Pfusion
Pheating

,

called power multiplication factor (in Figure 1.3 the typical parameters of a fusion reactor

are reported). It defines the ratio between the energy produced by thermonuclear fusion

reactions (gain) PFusion and the power provided from outside through additional heating

systems (expense) PHeating. It is clear that fusion will have to reach a Q factor well beyond

1, before establishing as a reliable energy source for the future. In principle, if the ignition

phase may be obtained in the reactor, Q→∞; nevertheless, also in the case the conditions

for ignition are not reached, a satisfactory value of Q may be obtained.

A second important parameter, which defines the efficiency of the confinement, is the ratio

β between the kinetic plasma pressure p and the magnetic pressure B2/2µ0:

β =
p

B2/2µ0
,

usually measured relative to the total, local magnetic field. It may be shown that the

power arising from thermonuclear reactions roughly scales with p2 [6].

The first demonstration of D-T fusion reliability was obtained in 1997 [9] in the Joint

European Torus (JET) [10], which is presently the largest fusion device in the World.

A fusion power generation of 16 MW was demonstrated and the fusion reactions were
6Related to the thermal insulation of the plasma from the outside.
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maintained for 5 s. In Figure 1.2, the results of JET and several other fusion devices are

reported, for D-T and D-D operations.

1.2 The International Thermonuclear Experimental Reac-

tor Project (ITER)

The crucial demonstration of a Q>1 regime has not been demonstrated so far, since also

the experiments performed during the past in JET tokamak reached a maximum Q ≈ 0.65

of power multiplication factor.

ITER Parameters

Major Radius 6.2 m

Minor Radius 2.0 m

Plasma Elongation 1.85

Toroidal Magnetic Field 5.3 T

Nominal Plasma Current 15 MA

Additional Heating Power 73 MW

Plasma Pulse Length 400 s

Average Electron Density 1.1·1020 m−3

Average Ion Temperature 8.9 keV

Peak Fusion Power 500 MW

Fusion Power Gain (Q) >10

Table 1.4: Main ITER parameters. Table taken from [11].

To demonstrate the advantage of fusion, the scientific community has decided to proceed

to the next step of thermonuclear fusion with the construction of the International Ther-

monuclear Experimental Reactor (ITER) [12], based on the collaboration of European

Union, Japan, Republic of China, India, Republic of Korea, Russian Federation and the

USA. In Figure 1.3 a section of the ITER device is represented. ITER is expected to

demonstrate a never met Q factor >10 in the power gain of the fusion energy processes.

In the Table 1.4 the main parameters of the ITER design are reported. Additional plasma

heating systems, are foreseen in ITER; among these, an Electron Cyclotron Heating and

Current Drive (EC H&CD) system (see Table 1.5). Another crucial goal of ITER will
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Figure 1.3: Section of the International Thermonuclear Experimental Reactor (ITER). The dimen-

sional scale of the machine can be deduced by comparing the device with the representation of a

man, put in the bottom right of the picture.

be the implementation and test of the key technologies and processes needed for future

fusion plants; for instance, the superconducting components, like magnet and coils, all

the components that should be able to withstand higher heat loads, never tested before,

and remote handling systems, which are essential in presence of the activated components

that will be present inside the machine vessel. Concerning the physical processes, the goal

of ITER will be the test of tritium breeding, starting from the lithium contained in the

materials inside the camera or deposited inside the high temperature blankets, which will

cover the machine wall and will surround the plasma [13].

A significant effort is spent from the European Fusion Technology Program, in the frame

of the development of the best candidate materials for ITER. In particular, a International

Fusion Material Irradiation Facility (IFMIF) which consists in a facility able to provide

high fluxes of 14 MeV neutrons to irradiate different candidate materials under test for

future reactors, is being designed in these years, with an international collaboration be-
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Power Delivered in ITER

Heating System Baseline (MW) Possible Upgrades (MW)

NBI 33 16.5

EC H&CD (170 GHz) 20 20

IC H&CD (40-55 MHz) 20 /

LH H&CD (5 GHz) / 20

Total Power 73 130

EC H Start-up >2 /

Diagnostic NB >2 /

Table 1.5: Heating and current drive actuators of ITER, with the power respectively delivered to

the plasma by each system.

tween the different countries taking part to the ITER project.

Concluding, ITER is the next necessary step in the fusion field. It should confirm nuclear

fusion as a all-day-life compatible energy source for the humankind, since for the first time

the physics and technologies requirement for realizing controlled fusion at a Q > 1 regime,

are all integrated in a single device.



Chapter 2

Electron Cyclotron Resonance

Heating

2.1 Introduction

A fusion device needs auxiliary external heating systems to reach the requested particle

energies or to keep the plasma confined, as pointed out in Chapter 1. Among them, the

Electron Cyclotron Resonance Heating (ECRH) and the Electron Cyclotron Current Drive

(ECCD) [14] [15] [16] [17] play an important role. Nowadays, the use of ECRH has a rel-

evant importance for thermonuclear experimental devices, due to several reasons. Firstly,

electromagnetic waves with frequency in the range of the electron cyclotron one enable

very precise spatial power deposition into the plasma, of the order of a few centimeters.

When an oblique injection is performed, a current is driven locally, and the fine shaping

of the current profile is possible. Thus, ECCD represent an ideal tool for manipulating

local plasma instabilities, like Magneto Hydro Dynamic (MHD) modes. In fact, electron

cyclotron waves are absorbed exclusively by electrons, with typically more than 90% of

wave power being deposited in less than 10% of plasma volume [15]. Such a high level

of localization can not be obtained neither using other radio-frequncy heating systems,

working at lower frequencies, like Ion Cyclotron Resonance Heating (ICRH) and Lower

Hybrid (LH), nor using Neutral Beam Injection (NBI) systems. In the case of ECRH the

absorption is limited to regions where the gyromotion of electrons is in resonance with

the wave frequency. Furthermore, EC waves are excited in the transition from vacuum

propagation to plasma, without crossing an evanescent region. Radiation can be coupled

11
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to the plasma in the form of well defined narrow beams, with low diffraction associated

with the short wavelength, using rather simple systems. Overmoded waveguides, typically

corrugated, are able to transmit the low-loss HE1,1 mode, from the sources to the tokamak.

Quasi-optical components, like metallic mirrors, are used to propagate Gaussian beams

with low losses1, in free space. In order to avoid arcing, evacuated waveguides have been

employed in the recent years. EC wave launching systems can be put relatively far from

the plasma, unlike in the case of lower frequencies systems, whose coupling requires anten-

nas installed in the plasma boundary proximity, with consequent risk of interaction with

plasma and impurities introduction. Launching waves from remote antennas is clearly pre-

ferred, for reducing the interactions and for giving flexibility in source placement. Another

recent motivation which stimulated the use of EC systems is given by the development of

high power (up to 2MW) gyrotrons [18], able to deliver high frequency radiation (up to

170GHz). This happens in parallel to the advances in the development of the technolo-

gies requested in the plants, like for instance new kinds of gyrotron internal structures,

new windows, made of synthetic diamond, able to withstand higher thermal loads than

the older ones (made of ceramics, typically boron nitride and beryllium oxide) and recent

advanced matched systems [19] able to absorb and measure the powers produced by the

modern sources. After the first experiments, performed in the Sixties [20] [21] [22], ECRH

has been carried out also in tokamaks, demonstrating its versatility, not only as a very

efficient method to heat magnetically confined plasmas in large devices and to perform

ECCD, but also for further purposes, like plasma start-up and MHD modes stabilization.

2.2 Wave Dispersion and Propagation

EC waves heat electrons, in plasma regions where the local cyclotron frequency or higher

harmonics approximately equal the frequency of the propagating wave. Ions heating is just

a consequence of the collisions with electrons. This means that, when an EC additional

heating is present, the ion temperature is generally lower than electron temperature, and

approaches the electron one in the case of high density, i.e. of high collisionality. The

theory of ECW propagation and absorption is mostly verified with experiments and reliable

predictive models are available to describe most of the effects of EC waves which take place

in the plasma.

1Typical losses on copper mirrors are of the order of 0.2%
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2.2.1 The Cold-Plasma Dielectric Tensor

In general, propagation of EC waves in a uniform magnetized plasma can be adequately

described by the so called ’cold-plasma’ model. In this model, electrons and ions are

considered to be two frictionless charged fluids at temperature Te,i = 0 (thermal particles

motion is neglected), confined by a constant background magnetic field, which is assumed

to be a zero-order quantity, static in time and uniform in space, together with the density

of the plasma itself. The dispersion relation of the possible waves, representing the plasma

response to an external electromagnetic perturbation, can be written using the dielectric

tensor, once it has been obtained by the susceptibilities of the single plasma species. In

order to develop the theory of the waves, solutions of the linearized equations, in which

all the perturbative terms are considered to be proportional to exp[i(k · r − ωt)], are

considered. Applying the Fourier analysis on the electric displacement vector D, which,

according to the Ampère equation:

∇×B =
4πj
c

+
1
c

∂E
∂t

=
1
c

∂D
∂t

, (2.1)

includes both the vacuum displacement vector and plasma current, the following expression

can be written:

D(ω,k) = ε(ω,k) ·E(ω,k) = E(ω,k) +
4πi
ω

j(ω,k), (2.2)

where ε(ω,k) is the dielectric tensor. Taking advantage of the additive property of the

dielectric tensor, it is possible to write it in terms of the sum over all the susceptibilities

χs of the different plasma components s:

ε(ω,k) = 1 +
∑
s

χs(ω,k), (2.3)

where 1 is the unit dyadic.

Furthermore, the susceptibility of every singular specie can be determined in the frame

of the cold-plasma theory by writing the motion equation of the singular plasma specie

s [23], in terms of the cyclotron gyrofrequency:

ωcs =
qsB0

msc
, (2.4)

and of the plasma frequency of the s species:

ω2
ps =

4πnsq2s
ms

, (2.5)
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here both written in Gaussian units. Using the relation 2.3 it is possible to obtain the

expression for the cold-plasma dielectric tensor:

ε ·E =


S −iD 0

iD S 0

0 0 P



Ex

Ey

Ez

 (2.6)

where the clear structure of the matrix is obtained, thanks to the use of elements S, D

and P (which initials letters stay respectively for sum, difference and plasma), and that

group in a compact way different expressions of ω, ωps and ωcs:

S =
1
2

(R+ L), D =
1
2

(R− L),

and:

R = 1−
∑

s
ω2
ps

ω(ω+ωcs)
, (2.7)

L = 1−
∑

s
ω2
ps

ω(ω−ωcs) , (2.8)

P = 1−
∑

s
ω2
ps

ω2 . (2.9)

The cold-plasma model is useful to describe the physics of most of the phenomena of

interest with good approximation, in particular when finite Larmor radius and pressure

or temperature effects can be neglected in the treatment. Note that the mathematical

formulations of R, L and P just derived above, exclude the particular cases when ω = ±ωcs
and ω = 0.

2.2.2 The Dispersion Relation in Cold Magnetized Plasma

The propagation of a monochromatic electromagnetic field in a cold magnetized plasma

is governed by the wave equation:

∇× (∇×E) =
ω2

c2
E +

4πiω
c2

j (2.10)

After Fourier analysis, equation 2.10 transforms in:

k× (k×E) +
ω2

c2
ε ·E = 0 (2.11)

or, by using the dimensionless refractive index vector N = kc/ω, in the following way:

N× (N×E) + ε ·E = 0. (2.12)
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Thanks to cylindrical symmetry, Ny = 0 can be set without losing generality, i.e. N =√
N2
x +N2

z =
√
N2 sin2 ϑ+N2 cos2 ϑ, where ϑ defines the angle between the magnetic

field B0 = B0ẑ and the vector N. Making use of equation 2.6, the expression 2.12 can be

written in tensor notation:
S −N2 cos2 ϑ −iD N2 cosϑ sinϑ

iD S −N2 0

N2 cosϑ sinϑ 0 P −N2 sin2 ϑ



Ex

Ey

Ez

 = 0. (2.13)

To find a nontrivial solution of the homogeneus equation 2.12 for E, the determinant of

the 3x3 matrix Λij in 2.13 must satisfy:

det
[
εij −N2δij +NiNj

]
= 0 (2.14)

This enables to find the so called dispersion relation between ω and k of a wave propagating

in a medium characterized by a certain local density (ωp) and magnetic field (ωc):

AN4 +BN2 + PRL = 0 (2.15)

where R, L, P are the cold plasma expressions defined in 2.7 - 2.9 and:

A = S sin2 ϑ+ P cos2 ϑ (2.16)

B = −[RL sin2 ϑ+ PS(1 + cos2 ϑ)]. (2.17)

Let us call the dispersion relation 2.15 as D, it can be equivalently written in the form:

D
(
N,ω2

p, ωc, ϑ
)

= tan2 ϑ+
P (N2 −R)(N2 − L)

(SN2 −RL)(N2 − P )
= 0 (2.18)

which turns out to be much more convenient to highlight the solutions, at least in the two

limiting cases ϑ = π/2 (perpendicular propagation) and ϑ = 0 (parallel propagation):

ϑ =
π

2
(Nz = 0) ⇒ N2 = P, N2 =

RL

S
(2.19)

ϑ = 0 (Nx = 0) ⇒ N2 = L, N2 = R, P = 0. (2.20)

The transit from one case to the other, i.e. when the k vector is oblique and points the

ϑ = 90◦ direction, takes place through a smooth transformation between the dispersion

relations of a given propagation mode. The mode associated with N2 = P and N2 = L,

respectively for ⊥ and ‖ propagation, is called the ordinary mode (O-mode); the one
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described by N2 = RL/S and N2 = R, respectively for ⊥ and ‖ propagation, is the

extraordinary mode (X-mode). The P = 0 case, for propagation along the magnetic field,

represents the electrostatic solution, unlike the other two solutions N2 = L and N2 = R,

which are transverse circularly polarized waves (see section 2.2.2), i.e. k · E = 0. In any

case, when a magnetic field B is superimposed, the cold plasma becomes a birefringent

medium, with different dispersion relations for the two possible modes.

Wave Accessibility

The propagation of the waves in a medium can take places only for values of the refractive

index in the range 0 < N2 < ∞. This means that accessible regions for a certain mode

are the ones delimited by the points corresponding to N2 = 0 (cutoffs) and N2 → ∞
(resonances). Oher resonant phenomena take place between the single particles and the

wave at (respectively) the ω = `ωce and ω = `ωci layers, where ` is the number of harmonic.

Substituting N2 = 0 in the equation 2.15, cutoff takes place when the product PRL = 0,

i.e. when one of the three quantities P , R or L equals zero. They represents the limiting

layers between regions, in which the refractive index is purely real (neglecting absorption

processes) or imaginary, when no propagation can take place. In this last case the wave is

said to be evanescent. That is, its amplitude experiences an electromagnetic strong spatial

decay in the direction of propagation and, in practice, the wave is reflected back.

The case P = 0 represents the cutoff for the ordinary wave and is the only cutoff for this

mode. It is often indicated as the ’density’ cutoff, being the condition P ≡ 1−ω2
ps/ω

2 = 0

verified when ω2
ps = ω2, where ω2

ps ∼ ns (see 2.5). Considering the ions staying at rest as

a uniform background (mi → ∞), and taking into account a two-species plasma, formed

only by electrons and ions, the O-mode cutoff is at the region where ω2
pe = ω2. In tokamak

configuration, where density profile is typically monotonic and peaked at the center of

the plasma, the accessibility of EC waves to the inner regions is possible from both the

Low Field Side (LFS ), with O-mode, and the High Field Side (HFS ), with both modes,

provided the condition ω2
pe < ω2 holds true. This means that, when plasma density is

such that the condition ω2
pe ≥ ω2 is reached, at a certain layer of the density profile, a

central region is inaccessible for the ordinary polarized waves. The cutoff layer limits the

inaccessible region and the regime is sometimes called overdense 2. The possibility to come

2Typically, the term overdense refers to the situation when heating at the center is prevented by the

density, i.e. in the case when the electron cyclotron layer ωce = ω is (partially) ”hidden” by the O-mode
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across such plasma scenarios during operations in fusion machines is the key starting point

for the work performed in this Thesis.

The other two cases, R = 0 and L = 0, represent the X-mode cutoffs, respectively named

right-hand (RH) and left-hand (LH) cutoff. Furthermore, from equation 2.18, it can be

seen that in the limit of very large N2, a resonance occurs as well, at propagation angle

such that:

tan2 ϑ = −P
S
. (2.21)

This resonance is called the upper hybrid (UH) resonance and belongs to the X-mode

dispersion relation. It is evident a dependence of the upper hybrid resonance location in

the plasma from the angle ϑ of propagation of the X-wave, but it can be verified that this

dependence is not so strong, at least for propagation angles which are not too far from

π/2 with respect to B0.

Bearing in mind the definition of the refractive index vector N = ck/ω, an alternative

Figure 2.1: The fundamental O-mode (on the right) and X-mode (on the left) accessibility, repre-

sented in a poloidal section of a tokamak-like device, which axes are on the left of the two sections.

The green regions are prevented to the respective EC-waves.

useful way to write the X-mode cutoffs and upper hybrid resonance for perpendicular

propagation (Nz = 0), starting from the following form of 2.19, is:

c2k2
⊥ =

(
ω2 − ω2

R

) (
ω2 − ω2

L

)(
ω2 − ω2

UH

) . (2.22)

cutoff ω2
pe = ω2.
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For k⊥ → 0, the left and right cutoff can be explicited:

ωR,L =

√(ωce
2

)2
+ ω2

pe ±
ωce
2
, (2.23)

and the upper hybrid, when k⊥ →∞:

ωUH =
√(

ω2
pe + ω2

ce

)
. (2.24)

For oblique propagation, the cut-offs 2.23 change position in the plasma and the expres-

sions are generally given for a constant N‖:

ωR,L =

√(ωce
2

)2
+

ω2
pe

1−N2
‖
± ωce

2
. (2.25)

In a tokamak-like configuration a non-null region between the RH cutoff and the upper

hybrid layer (UHL) is always present. This region is evidently inaccessible to the funda-

mental extraordinary mode (X1-mode). This is the reason why extraordinary waves at

first harmonic can not be used to heat plasmas when launched from LFS, because they

can not reach the electron cyclotron layer ωce = ω (where the EC power is delivered to

plasma by resonant mechanisms) without crossing this region3. In Figure 2.1 and 2.2

the accessibility of O- and X-mode is represented, respectively in a poloidal section of a

tokamak-like plasma and in the Clemmow-Mullaly-Allis CMA diagram.

In addition, it may be shown that, considering also ions dynamic (two dynamic species

plasma) in the calculations4, a second term
(
ω2 − ω2

LH

)
appears with the

(
ω2 − ω2

UH

)
in

the denominator of equation 2.22. The quantity ω2
LH is such that:

1
ω2
LH

=
1

ω2
ci + ω2

pi

+
1

|ωciωce|
(2.26)

and is the so called lower hybrid resonant frequency, the second resonance of the dispersion

relation of extraordinary mode; it is always verified that ωLH < ωUH . Such LHR is

often used to deliver power to the plasma in the fusion devices, like in FTU (Frascati

Tokamak Upgrade) tokamak [24] [25]. Then, the behavior of the extraordinary mode

turns out to be more complicated than ordinary mode, and, unlike the O-mode, the

magnetic field intensity, as well as density, influences the positions of cutoffs (and UH/LH

resonant frequencies). Hence, in presence of EC resonance, the propagation of X1-mode
3Actually, just the fact that the RH cutoff always ”hides” the resonant layer ωce = ω in tokamak

configuration, is enough to prevent the use of X1-mode from LFS to heat plasmas.
4Then ions frequencies are summed together with electron ones, in relations 2.7 - 2.8.
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is divided into two regions in tokamak configuration, limited by RH, LH cutoffs and UH

layer, and this fact gives rise to two different branches of the dispersion relation, which,

depending on the phase velocity ω/k, are marked as SX-mode (slow) and FX-mode (fast)

branch. Transfer of energy to the particles can be obtained injecting waves at frequencies

Figure 2.2: A representation of the O- and X-mode accessibility in a cold plasma, called Clemmow-

Mullaly-Allis CMA diagram. Resonances and cutoffs form regions which are unaccessible by the

waves launched from LFS, represented with the arrows. Picture taken from [17].

corresponding to different harmonics of the EC resonances. These may have a better

accessibility and may reach higher density cutoffs [17]. For instance, the X2-mode is

often used to by-pass the problem of RH cutoff and deposit EC power at the resonant

layer. Nevertheless, these are not of interest for this work since they require higher wave

frequencies than those achievable at the power level of interest for high magnetic field

fusion devices.

Wave Polarization

From the second and third rows of equation 2.13 it is possible to derive the polarization

of the E field, from the ratio between the transverse components:

iEx
Ey

=
N2 − S
D

, (2.27)

Ex
Ez

=
N2 sin2 ϑ− P
N2 cosϑ sinϑ

, (2.28)
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where N denotes the refractive index of O- or X-mode. It can be noted that the right

hand side of equation 2.27 is real, therefore Ex and Ey must be 90◦ out of phase; this

implies the polarization to be typically elliptical. From the relations above, the following

results are obtained for propagation along the magnetic field (ϑ = 0):

N2 = R ⇒ iEx
Ey

= 1 (2.29)

N2 = L ⇒ iEx
Ey

= −1. (2.30)

These equations show that for parallel propagation the polarization of the two possible

transverse modes is circular, the rotation being right-hand or left-hand (iEx/Ey = 1⇒�,

or iEx/Ey = −1 ⇒	, for B = ⊗), i.e. respectively on the same gyration direction of

electrons or ions around the magnetic field. Then, electron cyclotron and ion cyclotron

frequencies are resonant, respectively for R-wave and L-wave, and this fact can be also

verified analytically in equations 2.7 - 2.8, where the quantities R and L diverge when

the denominators tend to 0, hence N2 →∞ in the dispersion relations, for the respective

electron or ion resonant frequencies.

For X-mode propagation across the magnetic field (⊥B), the dispersion relation 2.19

N2 = RL/S can be substituted in the equation 2.27, obtaining:

Ex
Ey

= − R− L
i(R+ L)

. (2.31)

Firstly, this demonstrates that E is in the (x, y)-plane, therefore in general the X-wave is

partially longitudinal and partially transverse. Furthermore, since the dispersion relation

2.19 shows that the X-mode resonances ωUH and ωLH occur when the denominator (R+

L) → 0, to have N2 → ∞, also |Ex/Ey| → ∞ in equation 2.31, being the denominator

the same. Then Ey → 0 as ω approaches ωUH and ωLH , and the wave becomes purelly

longitudinal. This behavior of the X-mode at the upper hybrid layer can be seen as a

cold plasma explanation of a phenomenon better described in the next chapter using a hot

plasma approach, which is one of the key points of the Physics considered for this thesis.

The polarization of a wave is maintained along the propagation, at least in the limit of a

cold plasma model5. The polarization fixed by the launcher at the plasma edge is conserved

in the plasma. Then, the polarization at the vacuum-plasma threshold represents the

boundary condition for coupling a certain mode in the medium. So, in order to inject
5It may be demonstrated that, if hot plasma effects are included in the description of wave propagation,

the polarization is not perfectly conserved [26], despite the modifications expected are small.
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a wave from vacuum, able to couple a precise mode in the plasma, the proper elliptical

polarization has to be generated ”before” or ”at” the last mirror of the launcher. In

practice, this is done using optical birefringent elements, for instance rotatable grooved

mirrors, which are typically put in the mitre bends of the transmission line, connected to

the launching system. The regulation of the mirrors must be such that the polarization

of the launched wave equals the low density limit of equations 2.27 and 2.28. Using the

typical reference system to describe the polarization of a wave, i.e. rotating the coordinates

in such a way that the z−axis defines the direction of propagation of the incident wave

(k = kẑ), the polarization requested at the boundary to excite pure O-wave (upper sign)

or X-wave (lower sign) in the plasma is given by:

iEp
Ey

= Y
∓
√

sin4 ϑ+ 4 cos2 ϑ
Y 2 − sin2 ϑ

2 cosϑ
, (2.32)

where Y = ωce/ω and Ep is the electric field component in the plane containing k and

B. The polarizations given by equation 2.32 are elliptical at any injection angle, for

both O-mode and X-mode, except for π/2, in which case the coupling of the pure modes

in the plasma takes place for purely transverse and linearly polarized field at the edge,

respectively parallel and perpendicular to B0 for O-mode and X-mode. Once in the

plasma, this polarization is conserved only in the case of the ordinary wave, since, as

already said, the electric field of the extraordinary wave develops a component parallel to

the wave vector k, which gives rise to a longitudinal elliptical polarization [27] [28]. On the

other side, in the case of propagation along the magnetic field (ϑ = 0), the coupling takes

place between transverse circularly polarized modes, which conserve identically either in

vacuum or in the plasma, and no further components are developed in the medium.

2.3 Single Particle-Wave Resonance

EC waves are generally absorbed by cyclotron damping in the proximity of the electron

cyclotron frequency layer or its harmonics, where ω = `ωce. From the analytic expressions

for absorption and emission of a wave traveling in the plasma [29], non-null values can be

obtained only for electrons which parallel component p‖ of the momentum satisfies the

following relation:

γ − ` Y −N‖
p‖

mec
= 0, (2.33)
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where Y = ωce/ω, ` is the number of harmonic and γ = [1 − (v2
⊥ + v2

‖)/c
2]−1/2 is the

relativistic factor. The resonant condition above can be rearranged in the form [30]:

ω =
`ωce
γ

+ k‖v‖, (2.34)

from which the Doppler-shifted nature of the resonant condition is clear. A proper rear-

Figure 2.3: In this figure, taken by [17], the resonance curves in the velocity space are represented

by the colored curved lines, the boundary of the particle trapped in the field (see further on for a

description of the trapping process) by colored straight lines and black curves are the contours of

constant velocity.

rangement of the terms in equation 2.33 allows to demonstrate that in the case of |N‖| < 1,

the resonant condition represents analytically an ellipse6 (see Figure 2.3) in the velocity

space (u⊥, u‖).

The increase in electrons energy distribution, hence the electron heating, is demonstrated

to be a diffusion process in velocity [17], and the resonance is demonstrated to act essen-

tially on the perpendicular direction with respect to the magnetic field B. For both 1st

harmonic O-mode (O1-mode) and 2nd harmonic X-mode (X2-mode) the wave absorption

is an increasing function of density.

Plasma heating profiles obtainable using EC power often are different from the expected

absorption that one may calculate using equations able to describe local wave-particle

interactions. Energy and particle confinement is modified during the EC heating and this

6When propagation of EC waves is described by a cold plasma model, |N‖| < 1 always holds true.

This not always happens in the case of Electron Bernstein Waves (EBW), that will be derived in the next

chapter using a hot plasma model. They represent the third propagation mode of EC waves and sometimes

they can achieve parallel refractive index N‖ larger than 1, thanks to their electrostatic character.
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gives rise to a complex plasma response to the wave perturbation.

For this reason, also in view of the experiments whose predictions are the aim of the

present Thesis, the measurements of plasma heating profile represent the main way to

demonstrate the power delivered to the plasma, to be compared to the expected efficiency

of the O-X-B heating process that will be described in the next Chapter.

2.4 Applications of Electron Cyclotron Waves in Plasmas

2.4.1 The Electron Cyclotron Current Drive

EC waves can be used also for driving non-inductive current in magnetically confined

toroidal plasmas [31] [32]. Two effects are responsible for Electron Cyclotron Current Drive

(ECCD), both based on the damping of waves with k‖ 6= 0, which are absorbed solely by

electrons with a well determined velocity component v‖. Being the damping of EC waves

highly localized around the resonant layers (see section 2.3), also the current profile, as

well as the power release in heating processes, can be modeled with high precision. Oblique

injection of electron cyclotron waves at an angle with respect to the magnetic field, allows

to control the plasma confinement7. Typically, an optical depth8 at least > 3 is requested

to allow convenient CD operations [33]. Differently from what happens for the other non-

inductive current drive systems, EC waves transfer little parallel momentum to electrons.

In fact, the wave damping makes the perpendicular particle energy increase mostly and

the electrons that have a parallel velocity in the required direction turn out to be heated

preferentially. For obtaining an efficient ECCD, power should be deposited as much as

7The possibility to perform a very precise local re-shaping of the current density profile using EC waves,

means to have the capability to control precisely also the magnetic shear S, defined as:

S =
r

q

dq

dr
,

where r is the minor radius of the toroidal plasma and q is called the safety factor. This factor is defined

as the ratio between the number of toroidal orbits per poloidal one, or equivalently the number of toroidal

orbits needed to let a magnetic twisted field line become a close path. It represents a very important

parameter in magnetically confined plasmas, from the point of view of the plasma stability. The safety

factor q(r) turns out to be inversely proportional to both the pitch angle of the total magnetic field B

with respect to the equatorial plane and to the local current density j(r). Hence, higher values of q mean

less steeply twisted field lines.
8The optical depth between s1 and s2 is defined as τ =

R s2
s1
α ds along the wave path, where α is the

absorption coefficient. The transmitted power is therefore P0 e
−τ .
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possible on the fastest electrons. Therefore, the situation in which a population of electrons

with high parallel momentum is previously created by means of other additional heating

systems (e.g. by LHCD), is ideal to increase ECCD efficiency [34] [35] [36].

The two processes responsible for the current driven by EC waves with k‖ 6= 0, are known

as Fisch-Boozer [37] and Ohkawa [38] mechanisms (see Figure 2.4): the first is based

on the absorption of radiation by electrons shifted to a less collisional regime in velocity

space, thought the transfer of perpendicular energy from the wave to the particles. The

Figure 2.4: The Fisch-Boozer (on the left) and the Ohkawa (on the right) processes responsible

for ECCD in plasmas, are illustrated schematically in velocity space, where the trapped particles

boundary are indicated on the right with straight oblique lines.

second is related to the unbalance of the population of passing electrons on the two toroidal

directions and creates a current with opposite sign than the trapped electrons. In steady

state, actually, a tendency to de-trapp particles, and hence to re-balance the two opposite

flows in v‖, is given by collisional processes. Nevertheless, being the trapping process an

asymmetrical mechanism in v‖
9, while de-trapping being symmetrical, from the balance

of the phenomena, a net current is driven with opposite sign respect to the electrons

trapped by the wave. Fisch-Boozer and Ohkawa mechanisms give rise to ECCD in opposite

directions, so the balance between the two phenomena must be carefully taken into account

in the analysis of experimental data.

In FTU tokamak, injection of EC waves, aimed to drive non-inductive current, is generally

performed in plasma regions where the dominant mechanism is the Fisch-Boozer one,

whose current drive efficiency, obtained by changing the collisional regime of particles
9EC wave injected with a given sign of k‖ acts only on particles with the same sign than v‖.
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with EC waves, can be properly described [31] [37] [39].

2.4.2 Control and Stabilization of MHD modes

The equilibrium of the configurations used to confine plasmas in tokamak-like devices,

which use magnetic confining fields with curvatures and gradients, are described by force

balance equations obtainable from the Magneto Hydro Dynamic (MHD) theory. Even

in a simpler ideal MHD model, in which the resistivity of the plasma is neglected, some

different kinds on instability are predicted [40] [41] [42]. Among the main ones, the kink

instabilities play an important role. Such modes take place in correspondence of rational

values of the safety factor q = m/n and are responsible for plasma column bending (hence

for losing the confinement). Despite the ideal MHD theory is able to describe some plasma

phenomena with a simplified description, in the real cases other kinds of MHD instabilities

play an important role in the equilibrium of the plasma confinement and can be described

uniquely with a resistive regime of MHD theory. Instabilities given by tearing of magnetic

surfaces and reconnection of the magnetic field lines are predicted by the theory and are

usually responsible for disruptions of the plasma during the operations. Such instabilities

are associated with local distortions of the current density profile, typically leading to

the degradation of the overall energy confinement10. When q = 1 an instability, called

Sawteeth oscillation (ST), appears in the plasma [44]. ST instability is a macroscopic

phenomenon, studied also in FTU tokamak [45], which affects a significant volume of the

plasma core. For q > 1, finite-resistive processes give rise to the birth of magnetic islands,

rapidly rotating, called tearing modes (TM), in correspondence of rational values of q.

Plasma disruptions can be avoided controlling MHD instabilities, by delivering, for exam-

ple with an external additional heating system, heat and current into the island or in the

proximity of the rational surface on which it develops. The precise power injection needed

to restore locally the perturbed current profile can be ensured only by ECRH systems.

Thanks to plenty of experiments performed during last tens of years in important fusion

devices, the fine EC power deposition has been demonstrated to be useful to control either

the ST phenomenon [45], [46], by increasing or decreasing its period in a controlled way, or

the TM instabilities [47] [48] [49], by injecting EC power in the islands region, sometimes

10For instance, in ITER, a neoclassical tearing (m, n)-mode activity in the plasma may lower the fusion

gain factor Q = Pfusion/Paux.heating considerably, up to 25% for a (3, 2)-mode and even 50% in the case

of (2, 1)-mode [43].
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also in phase with their rotational motion. The importance of MHD mode stabilization is

one of the main goals of the ECRH system in ITER.

2.4.3 Further Electron Cyclotron Waves Applications

In addition to the applications already described above, many other uses of ECRH sys-

tems are possible. For assisted plasma start-up, EC power deposition is used to perform

pre-ionization, obtaining ohmic discharges with a lower loop voltage than the nominal

one. Already demonstrated previously in other fusion devices11, this topic is under study

in FTU tokamak since recent years [50]. The importance of this application derives from

the attempt to obtain breakdown in gases, using a lower flux consumption of the ohmic

systems, in view of long pulse plasma devices, like FAST [51] [52], and in particular in

view of ITER.

Plasma disruptions caused by MHD activity, with loop voltage used as a premonitory

signal of the disruption [53] [54] [55], are prevented by a direct heating on the position

of the tearing modes12. This has been demonstrated to be an efficient way to delay or

completely avoid disruptions in FTU and ASDEX-U.

Furthermore, the very localized heating offered by the ECRH gave the possibility to study

the confinement properties of plasmas in many devices. For instance, in FTU, a modu-

lated and out-of-phase injection of ECRH radiation on two nearby radial locations was

used [56], to modulate the temperature gradients, in order to perform studies on critical

temperature gradients of interest.

Again, in FTU, EC heating was showed to be useful, combined with LHCD, to create

durable transport barriers [57] [58], capable to ensure highest plasma confinement levels

and central electron temperatures and densities.

11Experiments on ECRH assisted plasma start-up have been performed in the past in many tokamak,

like JT-60U, DIII-D, T-10, Tore Supra, ASDEX-U
12Before disruption a coupling between the MHD modes occurs. During the experiments performed in

FTU a fixed position was set for the power injection, shot by shot, generally the calculated one for q = 2

mode, which usually is the most dangerous for plasma stability.
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2.5 The Electron Cyclotron Launching System

The EC waves can be injected into the plasma from remote locations. The launcher

represents the matching element between plasma and the transmission components. The

conditions imposed by the launcher, that can be fixed or sometimes changed dynamically

by control systems acting on the launcher, select the injection angles of the beams for

aiming the desired plasma regions, and the beam size and front-phase curvature, which

determines their convergence/divergence in the plasma. Generally, mirrors are used for

beam shaping and focusing. Usually, the needed polarization is selected with polarizers

located along the transmission line, such that the best coupling with a definite propagation

mode can occur at the plasma-vacuum interface13. When the coupling efficiency with the

selected mode is less than 100%, both O-mode and X-mode are excited and then propagate

independently in the plasma. The need of fast movability of the injection angles is of

increasing importance for recent experiments of plasma physics, especially for real-time

control applications. The mounting and driving mechanism become crucial, to ensure a

fast dynamic of the system.

2.5.1 Launcher Set-up

In general, two possible configurations can be considered for the design of a launcher. The

mirror (or a set of mirrors) can be placed in the plasma proximity, in a ’front steering’

configuration, as the one foreseen for the EC launcher of ITER, or in the so called ’remote

steering’ configuration [59] [60], with the moving mirrors placed outside the vacuum and

far away from the plasma.

In the present EC launcher installed in the FTU tokamak, the launching mirrors are put

far from the plasma, while the injection angles are obtained through repeated reflections

at the port walls connected to the vessel (for a detailed description of this launcher see

Chapter 6). A new front steering launcher, designed for complementing the present ECRH

system for FTU, will be described in details in Chapter 6.

13From section 2.2.2, it can be understood that the polarization must be parallel or perpendicular to the

central magnetic field of the machine, for coupling respectively O-mode and X-mode in normal injection

with < 100% efficiency, and elliptical for all other launching angles.
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2.5.2 Launching Schemes

The main condition an ECRH launcher has to satisfy, dependently on the magnetic con-

figuration and on the frequency ω of the launched radiation, is to let the launched wave

access the ω = `ωce layer. This means that, in general, the P = 0 layer for O-mode, and

the L = 0 and R = 0 layers for X-mode, should not be present in the regions of plasma

between ω = `ωce and the launching point. Four main launching schemes can be though

in a tokamak-like configuration. Two of them consist in the launch of X-mode. In both

cases the L = 0 and R = 0 layers are not crossed by the propagating wave. The first

consists in launching X1-mode from the HFS, while the second one represents the use of

X`-mode from LFS, aiming ω = `ωce, under the restriction on the plasma density given by

ω2
pe 6 `(`− 1)ω2

ce. In the third scheme, the O1-mode is launched from LFS and can reach

the resonant layer ω = ωce, provided the density is not high enough to make the O-mode

cutoff layer ω = ωpe appear in the plasma region between the resonance and the launching

point (see section 2.2.2), in which case the plasma is said to be in an overdense regime.

This kind of coupling is the preferred one for high magnetic field and high temperature

plasmas. When the heating concerns an overdense plasma, a fourth scheme is needed,

typically used in low field and high density machines, known as O-X-B scheme. This

scheme still consist in launching the O-mode from the LFS, but with a definite launching

angle. It consists in two successive mode conversions, object of the predictive calculations

performed in this Thesis, whose aim is the demonstration, for the first time, of the O-X-B

scheme in the plasma of FTU, using the available frequency of the ECRH system, as will

be detailed in the next Chapters. A fifth scheme is known as the direct X-B scheme, and

consists in launching a fast X-wave (FX) from the LFS. It will be introduced in the next

Chapter, as well, despite it does not have relevant importance for EC applications in the

present fusion machines, and in particular in FTU.



Chapter 3

Electron Bernstein Waves and

O-X-B Coupling

3.1 Introduction

In Chapter 2 it was showed that, when the plasma density is high enough to reach the

condition ω2
pe ≥ ω2 in the density profile, the internal region is inaccessible for the O-waves.

When the injection is performed from the LFS, such a region is prevented to both O- and

X1-mode (since the central regions are always inaccessible for X1-mode), and the regime is

said to be overdense. The possibility to come across such scenarios and heat the overdense

regions of the plasma can be found only with the use of a hot plasma dielectric tensor, able

to take into account also finite Larmor radius effects. A hot description of the plasma,

that is being introduced in the next Section, enables to demonstrate the existence of a

third EC mode (Section 3.2.1), that allows EC heating in the regions where the condition

ωpe > ωce holds true, which are prevented to O- and X-modes. Since these hot waves

can not be launched from outside, but can only be excited in the plasma through mode

conversions, the mode coupling at the basis of their excitation will be described in Section

3.3 and the possible launching schemes to be used in real devices will be presented in the

subsequent sections. A recent 2D model of mode conversion will be detailed in Section

3.6, being applied to the FTU plasma in Chapter 5, and a brief presentation of the main

results of the main experiments performed so far on mode conversion, will be made at the

end of the Chapter, in Sections 3.7.

29
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3.2 The Hot Plasma Waves

When an SX-wave is excited into the plasma, it can propagate unperturbed in most of the

region limited by the upper hybrid resonance (UHR) and its high density ωL cutoff 2.25,

according to the dispersion relation 2.18 (see Figure 2.1). When it propagates towards

the higher densities regions, a cold plasma description is sufficient to explain a back-

reflection of the wave, toward the UHL1, once the ωL cutoff is reached. The reason for

this lies in the natural behavior of rays to deflect always towards higher refractive index

regions. The physics of the wave propagation can be described using a simple cold plasma

model, since neglecting temperature effects does not imply any substantial change in the

description of the phenomena under study. This fact is not true any more when the

SX-wave approaches the UHR layer. In fact, while approaching X + Y 2 = 1, the wave

becomes purely longitudinal and Nx goes to infinity, according to cold plasma theory

(see section 2.2.2). The wavelength decreases abruptly (or equivalently, the wave number

k increases), and consequently the phase velocity of the wave goes to zero. Sooner or

later, the scale length of λ reaches the size of the electron gyroradius and hence finite

Larmor radius effects begin to play an important role, while approaching the UHR2.

From this point, kinetic effects have to be taken into account for the description of the

phenomena. In a hot plasma description, when the phase velocity approaches the electron

thermal velocity, the SX-wave is not absorbed at the UHL, as one may expect, but it is

smoothly converted in a new electron cyclotron mode. To demonstrate that, it becomes

necessary to switch to a hot plasma description and finite Larmor radius effects must

be taken into account. Since the wavelength reaches the same order of magnitude of

the Larmor radius ρ = mvthc/(ZeB) (in Gauss units), where Z = 1 for electrons and

vth ≡ v⊥B = 2
√
KBTe/me is the electron thermal velocity, in proximity of the resonance

the approximation of null gyroradius decays. Assuming a Maxwellian velocity distribution

function, a magnetic field directed on the z axis (B = Bẑ) and neglecting relativistic

effects, we can introduce the finite Larmor parameter:

µ =
1
2
k2
⊥v

2
th

ω2
c

=
1
2
k2
⊥ρ

2,

1Which written with the quantities X and Y is X + Y 2 = 1
2In general, when the plasma temperatures becomes high enough, the electron gyroradius ρ =

mcvth/(eB) approaches the scale length of λ and finite Larmor radius effects have to be considered.
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where k⊥ represents the components of the k vector perpendicular to B. Expressing the

Doppler effects as the frequency distance from the nth cyclotron harmonic resonance:

ζn =
ω + nωc
|kz|vth

, (3.1)

we can write the hot plasma dielectric tensor [61]:

ε = 1 +
ω2
p

ω2
ζ0

+∞∑
n=−∞


n2

µ ĨnZn inĨ
′
nZn −n

√
2
µ Ĩn[1 + ζnZn]

−inĨ ′nZn
[
n2

µ Ĩn − 2µĨ
′
n

]
Zn i

√
2µĨ

′
n[1 + ζnZn]

−n
√

2
µ Ĩn[1 + ζnZn] −i

√
2µĨ

′
n[1 + ζnZn] 2ζnĨn[1 + ζnZn]


(3.2)

where 1 denotes the identity tensor and the abbreviations Ĩn = e−µIn(µ) and Zn = Z(ζn)

have been used, in which In is the nth order modified Bessel function and Z is the plasma

dispersion function:

Z(ζj) =
1√
π

∫ +∞

−∞

e−ξ
2

ξ − ζj
dξ. (3.3)

In the limit of null Larmor gyroradius, i.e. when respectively µ → 0 and ζn → +∞, the

hot plasma dielectric tensor 3.2 reduces to the cold one 2.6, by expanding the quantities

Ĩn and Zn.

3.2.1 The Electron Bernstein Waves

A new wave is then possible in hot magneto-plasmas, a third solution of the dispersion

relation. This mode is electrostatic and its nature can be better described by restricting

to propagation across the field, when Nz = 0, thus neglecting the Doppler effects. Under

this condition ζn → ∞ and 1 + ζnZn ≈ −1/2ζ2
n. Hence, the dispersion relation can be

found as solution the following [62]:

det


Λxx Λxy 0

−Λxy Λyy 0

0 0 Λzz

 = 0, (3.4)

where Λij are the same components of the matrix in equation 2.13, this time obtained

using the approximated (Nz = 0) hot dielectric tensor 3.2 for the εij components. The

eigenvectors of the dielectric tensor are the allowed propagation modes. The first mode

is the generalization of the ’cold’ O-mode and is given by Λzz = 0. It is characterized by

having E parallel to the B0 field and its dispersion relation is N2 = εzz.
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The remaining eigenvectors of 3.4 can be found by solving the determinant of the matrix:

det

 Λxx Λxy

−Λxy Λyy

 = 0, (3.5)

Without loosing generality, we can consider that propagation takes place only in the x−z-
plane. In this case, the dispersion relation can be simplified as following:

N2 =
εxxεyy + ε2xy

εxx
. (3.6)

This equation can be considered the generalization of the dispersion relation 2.19 for X-

mode, already studied in Chapter 2 with the cold plasma treatment, that we write again

here in a re-arranged way:

N2 =
RL

S
=
S2 −D2

S
. (3.7)

Unlikely what happens for O-mode, in this case there are two propagation modes solutions

of the dispersion relation, both extraordinary, i.e. E⊥B0. The first is actually the X-mode

already encountered, while the other one is a ’new’ mode. Differently from what happens

in the ’cold’ counterpart 3.7, in equation 3.6 εxx, εyy and εxy are function of the unknown

N2. Now, the equation 3.6 turns out to be transcendental and not simply algebraic, as

was in the cold plasma description, since here the quantity µ appears in the exponents,

as well as εxx 6= εyy. In particular, the sum over the Bessel functions gives rise to a large

number of possible roots ω for any given N, and hence a large number of pairs (ω,k), which

define different waves. They are named Electron Bernstein Waves (EBWs), in honour of

the famous physicist Ira B. Bernstein [63], and are the harmonics of the third EC-mode

existing in magneto-plasmas, named the electrostatic B-mode. The same equation 3.6

describes both X- and B-mode and this fact is of crucial importance for the X-B mode

conversion (being described in Section 3.3), which is the second conversion occurring in the

O-X-B scheme that will be introduced in Section 3.5. In order to obtain the description

of the mere B-mode, it is interesting to analyze the limit of large µ = 1/2k2
⊥v

2
th/ω

2
c , as

done in reference [62]. On the other side, in the hypothesis of perpendicular propagation,

which means ζn → ∞ in 3.1, the opposite limit of small µ is equivalent to come back to

a cold plasma treatment, and hence it is not interesting for the description of B-waves.

Under the condition of large µ (which means short wavelength or large Larmor radius)

an analytical formula for the dispersion relation of the Electron Bernstein Waves can be
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Figure 3.1: In this figure, modified from [62], the Electron Bernstein Waves are schematically

represented. The collective rotation in phase of the electrons around their guiding centers sustain

the longitudinal EBW. The red and blue regions have been added to visualize the periodic charge

accumulation and lack.

written, since the function Ĩn is characterized by having an asymptotic behaviour [61]:

Ĩn = e−µIn(µ) =
1√
2πµ

[
1− 4n2 − 12

1!8µ
+

(4n2 − 12)(4n2 − 32)
2!(8µ)2

− · · ·
]
. (3.8)

In this limit, the term 2µĨ ′n in the hot dielectric tensor 3.2 becomes dominant, giving the

following solutions for equation 3.5:

Λyy = 0 ⇒ transverse wave, E ≡ Ey, ⊥k : X-mode (3.9)

Λxx = 0 ⇒ longitudinal wave, E ≡ Ex, ‖ k : B-mode. (3.10)

The dispersion relation of the Bernstein mode (Figure 3.2) is obtained from the equation

Λxx ≡ εxx = 0 [63] [61]. It can be written in the following simplified form [62], by using

the approximation Zn ' −1/ζn:

µ = X

+∞∑
−∞

n2Ĩn(µ)
1 + nY

. (3.11)

The Electron Bernstein Waves are longitudinal waves. They propagate and are sustained

by the coherent motion of the electrons around their guiding centre in the magnetic field,

with frequency and phase in accordance with the wave (see Figure 3.1). The phase velocity

ω/k of the wave must be equal to the electron velocity. It is important to underline that

the velocity of the particles must be equal just to the ratio of ω and k, with no specific re-

lation to the singular values of the two quantities. For instance, electrons rotating around

the magnetic field lines with the frequency ωc, are able to sustain the propagation not

only of the (ω = ωc, λ ' 4ρ)-waves, but also of the (ω = `ωc, λ ' 4ρ/`)-harmonics. The
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Figure 3.2: EBW dispersion relation, where the frequency is normalized with the cyclotron fre-

quency and the wave vector with the thermal electron gyroradius, taken from [62].

lower is the phase velocity of the perturbation ω/k, the more efficient is the support by the

electrons population, since the number of possible resonant particles increases in this case,

being also the particles belonging to the bulk of an hypothetical Maxwellian distribution

able to participate. To enable this constructive process, for example at the first harmonic,

the wave must have a frequency of the same order (but higher) of the cyclotron frequency

ωc of interest. This coherence give rise to a periodic charge accumulations3, propagating in

the same direction of the wave vector as longitudinal waves (E ‖ k). Electrons contribute

to the propagation of the wave and since the motion of the electrons around the field

lines must be considered, finite Larmor radius effects become of basic importance. The

wavelength is of the order of four times the electron gyroradius (λ ' 4ρ). Still under the

assumption of wave propagation perpendicular to the magnetic field, the refractive index

becomes infinite only in the proximity of the cyclotron harmonics `ωc = ω, where the

waves are strongly damped (or excited) and can release power to the particles4. In all the

3Rarefaction and compression of electrons perpendicular to the magnetic field
4The power exchange, occurs only for a half of electron gyration, namely the one during which the

particle moves in the same direction of k. In the other half revolution, in fact, the particle travels in
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other plasma regions, instead, the free propagation is ensured by the vanishing imaginary

part of the dispersion relation. Therefore, orthogonal EBWs exist only between cyclotron

harmonics, but it is not true any more in the case of oblique propagation, in which case

the harmonics can couple5.

The mechanisms responsible for EBWs absorption at the harmonic resonance are basi-

cally the relativistic EC interaction or the non-relativistic Doppler-broadened absorption,

depending on the ratio between the electron thermal velocity and the N‖ of the wave.

More details on EBWs damping and a comparison between the dependences of B-mode

and X2-mode power absorptions on non-local parameters is reported in Appendix A.

3.3 The SX-B Mode Conversion

We can now go back to analyze the propagation of an SX-wave from the higher density

plasma regions toward the UH layer ω = ωUH . As already said, the cold plasma treatment

is no more sufficient to describe the behaviour of the wave, once it is upcoming the resonant

region. Only the hot dielectric tensor can describe properly the response of the plasma.

The B-branch turns out to be the natural extension of the SX-branch, in correspondence

of the region of density just slightly higher than the UH layer (see Figure 3.3). Actually,

as seen in Section 3.2.1, the SX-wave and the B-wave do belong to the same branch of

the hot dispersion relation6. As a consequence, in the proximity of the resonant upper

hybrid layer (UHL), the SX-mode is not absorbed, but a spontaneous conversion into a

backward propagating Bernstein wave occurs [65], taking into account that the longitudi-

nal components of the X-wave, strongly increases while approaching the UHL, becoming

dominant. This conversion occurs with very high efficiency, i.e. with a very low coupling

efficiency between SX-mode and FX-mode, which depends on the frequency of the wave.

The SX-FX coupling, in fact, can occur through the tunneling of the evanescent layer

existing between these two branches of the X-mode (see the FX-SX conversion in Section

3.4.2). In most cases, like the one of FTU, this back-tunneling efficiency of SX-mode is

counter-direction respect to the wave, tracing, in practice, an entire wave cycle in half gyrocircle, with a

sort of ’double velocity’ towards the wave.
5Since in the case of oblique propagation Zn 6= −1/ζn, the approximation done above is not valid

any more and the value of Zn must be inserted precisely in the dispersion relation of the B-mode 3.11.

This remove the divergences in correspondence of multiple values of ωc. For a detailed treatment see

reference [61].
6The roots of the two dispersion relations merge, then the SX- and B-mode coincide.
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Figure 3.3: Behavior of the radial component of the refractive index, perpendicular to the magnetic

field, versus the normalized plasma frequency, calculated with the parameters of the stellarator

device W7-AS, for an O-X-B mode conversion (see further on in this Chapter for the description of

this scheme). It can be noticed how the X-branch in the dispersion relation is the natural extension

of the B-branch, in a hot plasma description. Picture taken from reference [64].

near 0% at the UHL, and hence the coupling efficiency between SX- and B-mode is near

100%. Therefore, no special actions are needed in order to start the B-waves at the UH,

but exciting a SX-wave in the higher density regions with respect to the UH layer, to

initialize this natural smooth transition between the electromagnetic and the electrostatic

branches of the hot dispersion function.

While the orthogonal component of the k vector increases in the proximity of the UH,

the wave slows down7, and the electron-ion collisions gradually tend to damp the wave.

The collisional damping is highly efficient in this case because of the electrostatic nature

of the SX-wave near the UH layer. With a hot plasma description, the thermal frequency

vthk⊥, on which kinetic effects are based, increases quickly while the wave is approaching

the UH layer, and the condition vthk⊥ > νcollisions soon becomes true, before an effective

collisional damping has enough time to take place. Hence, the SX-wave is not absorbed at

the UH layer, but the (predominant) kinetic effects are such that its trajectory bends and

continues toward higher density regions, while conversion to the nth harmonic of B-mode

7In the sense of the phase velocity ω/k⊥.
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occurs, where n is such that:

nωc < ωUH < (n+ 1)ωc.

The B-waves generated at the UH, then, propagate towards higher densities and are

strongly absorbed around the cyclotron harmonics. The propagation of EBWs is not

limited by a density limit, since the wave vector remains always real for increasing den-

sities. This does not happens for O-, FX- and SX-mode, which upper density limits in

magneto-plasmas are the well known ω = ωp, ω = ωR (or RH), ω = ωL (or LH) layers

respectively. Such a feature of EBWs is of strong interest in view of high density plasma

operations, in particular in over-dense scenarios, for heating (or receiving from) the cen-

tral plasma regions, prevented to both O- and X-mode. This was the initial motivation

for studying, and then using, EBWs. The already known plasma heating techniques and

temperature diagnostics used in the EC-waves field, have no accessibility in over-dense

plasmas, while this limit does not exist for Bernstein Waves. Subsequently, other useful

features of these waves where discovered, like for instance a high cyclotron absorption

capability, which offers the possibility of plasma heating at harmonics frequencies higher

than the 2nd. For the other heating schemes, the most efficient absorption for heating

magnetically confined plasmas is usually found for the 2nd in extraordinary mode.

On the other side, EBWs suffer of the presence of a lower density limit, which is the UH

layer. In the plasma regions internal to ω = ωUH , the relevant frequency becomes ωc,

instead of the usual ωp, and the condition to be satisfied for the propagation to take place

is ω > ωc instead of ω > ωp. The physical explanation of the capability of EBWs to

propagate in plasma regions where ωc < ωp
8, lies in the fact that the Larmor radius is:

ρ > λD =
√

KBTe
4πnee2

(3.12)

in these regions. In the expression above, λD is the Debye length. This means that

the electron gyrorotation performed under the condition ωc < ωp, is able to transmit a

perturbation experienced by a particle to the other particles, beyond the shielding sphere,

defined with a λD radius length.

8Provided the condition ωc 6 ω being satisfied everywhere.
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3.4 Coupling Schemes to EBWs with X-mode Injection

Being EBWs space charge waves, they need the presence of populations of particles moving

in phase to be sustained. For this reason, the do not exist in vacuum but they can only be

excited in the plasma. First experiments on the use of EBWs were performed exciting them

directly in the plasma using electrostatic antennas inserted into the medium [66] [67] [68].

This method is clearly not useful in the case of the modern devices, in which millimeter

waves are injected to heat high temperature fusion plasmas. In fact, to perform a direct

excitation of EBWs, antennas dimensions of the order of the electron gyroradius (<0.1

mm) would be needed and furthermore the high temperatures prevent any contact between

external objects with the internal regions of the plasma. Hence, EBWs can be excited in

the plasma exclusively through mode conversions from externally launched electromagnetic

waves. The exciting process is possible through the already described coupling between

SX-waves and EBWs at the inner side of the UH layer where the wavelength reduces down

to the order of the electron gyroradius.

3.4.1 The Direct SX-B Coupling

To reach the UHL from the higher density plasma regions, a possible scheme consists in a

HFS launch of an SX-wave in the direction of the UHL, like in Figure 3.4, in such a way

that the coupling to the EBWs can occur spontaneously, while the wave is approaching

the resonant layer. A high field side launch is possible with the use of the first harmonic

X-wave. Nevertheless this scheme can be useful only for not too high densities, namely for

a density value such that the ωL cutoff layer does not appear along the path of the wave

to the UHR. When the density is high enough, instead, the ωL cut off prevents also the

use of X-mode in the internal regions. For this reason the use of the direct SX-B coupling

scheme is not of interest in view of overdense plasmas heating experiments, despite some

results on direct SX-B coupling, in which the Doppler-shifted power deposition [69], and

the Electron Bernstein Wave Current Drive (EBWCD) [70], are well described in literature

(see also [71] [72]).

3.4.2 The FX-SX-B Scheme

In some cases it is possible to excite the SX-mode by launching a FX-wave from the

LFS [73], where the launching system is usually located in most of the fusion machines.
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Figure 3.4: Schematic poloidal view of the (direct) coupling between a SX-wave launched from the

HFS and the B-mode, at the UHL. The green regions are the ones prevented to X-mode.

To let this coupling occur, the launched wave (FX) must be able to propagate beyond

the low density cutoff ω = ωR, by tunneling the evanescent region between the RH layer

and the UHL. Over this region, the coupling to SX-mode occurs (see Figure 3.5), and the

excited mode subsequently converts to Electron Bernstein Waves at the UHL, in the way

described above.

When the RH cutoff is close to the UHR, the situation is known as the classical Budden-

type of mode conversion scenarios [74], in which the launched FX-wave power is partially

transmitted to the SX-mode and partially is absorbed. The absorbed component of the

power is the fraction that is mode converted to the EBWs, while the transmitted to SX-

mode will encounter its own LH cutoff. Hence, the process playing the role in the FX-SX-B

conversion scheme can be thought similarly to an interferometric phenomenon between two

reflection points (the RH and LH cutoffs), which can let the wave phases become optimal

for SX-B mode coupling, in correspondence of a central point (the UHR layer) [75]. In

this representation, the power percentage converted to EBWs is the effective dissipation

of the R-UHL-L mode conversion resonator.

The excitation of EBWs by FX launch from vacuum needs a steep plasma density gradient

such that the density scale length of the medium must be of the order of the vacuum

wavelength of the wave. Since the cold plasma dispersion relation is not valid to describe
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Figure 3.5: Schematic poloidal view of the FX-SX-B scheme. The FX-wave couples the SX-wave

by tunneling the evanescent region (green) between the low density cutoff of the X-mode and the

UHL. The SX-mode, then, converts to B-mode.

wave propagation where a resonant layer is present in between two cutoffs limiting points,

to perform calculations (here not reported) it becomes necessary to revert back to the

wave equation 2.10 and introduce a ”scattering” potential [75] [76] [77], defined on the

quantities S and D introduced in section 2.2.1. The power conversion coefficient from FX-

to B-mode turns out to be:

TFX−B = 4e−πη(1− e−πη) cos2

(
φ

2
+ ϑ

)
, (3.13)

where ϑ is the phase of the gamma function Γ(−iη/2), φ is the phase difference between the

SX-mode which propagats toward the LH cutoff and the reflected component propagating

toward the UHL. The η parameter (Budden [74]) is obtained by expanding the ”scattering”

potential cited above around the UHR, to find the location of the RH cutoff, as in reference

[77]:

η =
ωceLn
c

α√
α2 + 2(Ln/LB)

√√√√[ √
1 + α2 − 1

α2 + (Ln/LB)
√

1 + α2

]
, (3.14)

where:

α =
[
ωpe
ωce

]
UHR

, (3.15)

and Ln = ne/(∂ne/∂x) and LB = B/(∂B/∂x) are the density and magnetic field scale

lengths, respectively, evaluated at the UHR, as well. It is easy to notice that in the limit
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LB � Ln, quite usual especially in high density scenarios, the expression 3.14 reduces to:

η ≈ ωceLn
cα

√[√
1 + α2 − 1

]
, (3.16)

wich for α ∼ 1 becomes:

η ≈ 1
2
ωceLn
c
≈ 293.5|BLn|UHR, (3.17)

where B and Ln are expressed in Tesla and meters, respectively. The maximum conversion

efficiency (TFX−B = 1) expressed by equation 3.13 can be obtained by simultaneously

equalize the quantity φ/2 + ϑ to any integer multiple of π and e−πη = 0.5, that means

η ≈ 0.22, and hence:

|BLn|UHR ≈ 5.8× 10−4Tm. (3.18)

This expression shows how the FX-SX-B mode conversion is applicable only to fusion

devices operating at low magnetic fields, or equivalently with a low frequency9 heating

system, in presence of a steep density gradient. This happens for instance in machines

like spherical tokamaks, reversed field pinches and high β stellarators experiments, when

operations are at low magnetic field only. Nevertheless, finally it must be also noticed that

the frequency can not be too low, since when the UHR ”shifts” outside the plasma volume,

the FX-SX-B scheme becomes clearly not applicable to excite EBWs and heat the plasma.

At the frequencies used in the FTU ECRH system, the FX-SX coupling computed with

3.13 is found negligible, excluding the use of this scheme to excite EBWs.

3.5 A Third Scheme for EBWs Excitation

3.5.1 The O-X-B Double Mode Conversion Scheme

It is clear that the crucial point for the excitation of the Electron Bernstein Waves in the

plasma is the production of an SX-wave propagating towards the UHR. The narrow range

of parameters allowed for the FX-SX-B mode conversion and the technical difficulties in

the accessibility required by the direct SX-B coupling, are such that these techniques can

not be widely used to excite EBWs in the large fusion devices. Additionally, in the latter

scheme, sometimes the UHR can be completely enclosed into the RH cutoff layer of the

X-mode, when the frequency is high. In this case the direct SX-B coupling cannot be

9Typically lower that 20 GHz.
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performed at all, despite a wave launch from the HFS.

To overcome these problems, a third way to excite EBWs was suggested in 1973 by J.

Preinhaelter [78]. This scheme consists in two consecutive mode conversions, like repre-

sented in Figure 3.6. The first one involves an O-wave launched from the LFS, which

converts into a SX-wave. This coupling is used to excite the SX-mode beyond the UHL

and is described in the next section. Also in this case, a second conversion to B-mode

occurs at the UHR, once the SX-mode has been excited, similarly to what happens in the

other schemes.

Figure 3.6: Schematic poloidal view of the O-(S)X-B mode conversion scheme. The O-wave is

launched from the LFS and excites the SX-wave at the O-mode density cutoff layer. The X-wave,

then, mode converts to EBWs, which can reach the central overdense plasma regions. The O-mode

encounters no evanescent regions while approaching its cutoff layer. This is the reason why a white

area has been drawn at its passage through the green region on the right of the picture, which is

evanescent only for the X-mode.

3.5.2 The O-SX Coupling

Introduction

In geometrical optics, it is known that when a ray of light is propagating in a medium,

whose refractive index is N1 and reaches an interface with a second medium, with refractive

index N2, refraction and reflection coefficients depend on the angle of incidence at the point
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of refraction and on N1 and N2, according to the Snell’s law. In particular, in the case of

a p−polarized wave, i.e. a wave with an oscillating electric field in the plane of incidence,

the wave is completely refracted in the second medium when the incidence angle is:

ϑB = arctan(
N2

N1
). (3.19)

This incidence angle is called Brewster angle, and gives rise to zero back-reflection into

the first medium. The relation between the amplitudes of the incident and reflected waves

can be demonstrated to be [79]:

Aref = −tan(ϑ1 − ϑ2)
tan(ϑ1 + ϑ2)

Ainc, (3.20)

where ϑ1 and ϑ2 are respectively the incidence and the refraction angles. Being the power

of a wave proportional to the square of its own amplitude, the transmitted (refracted)

power T of a normalized incident wave can be written, from 3.20, as:

T = 1− tan2(ϑ1 − ϑ2)
tan2(ϑ1 + ϑ2)

. (3.21)

Any incidence angle which is close enough to the Brewster angle ϑB allows a high value

for the transmitted power. Similar physical phenomena take place, as well, in the case of

radio waves propagating in the ionosphere (for a detailed treatment see [80]), and in the

plasmas of fusion machines, like tokamaks and stellarators.

Propagation of O-Mode from LFS

In order to find the best condition for O-SX coupling, we start from the description of the

propagation of an O-wave from LFS with a geometrical plasma model in slab geometry,

where density and magnetic field gradients are considered to be parallel. This is a simplified

description of a tokamak-like plasma, since in the real case the local magnetic field scales

approximately as 1/R, where R is the major tokamak radius, while the density profile of

the plasma is, at a first approximation, poloidally symmetric and approximately centered

on the vessel axis. When the propagation of an EC wave is considered, the ion dynamic

can be ignored and the medium can be described with the cold plasma treatment, as

already seen in the preceding Chapter. Let us consider, then, a homogeneous magnetic

field B = Bẑ and a density gradient 5n, directed along the x-axis. The plasma is

considered to be homogeneous along the y−axis and the z−axis. Only the x−component
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of the refractive index vector N is variable, with a dependence from the density (and hence

from x), while Ny and Nz ≡ N‖ are constants, according to the Snell’s law10. We re-write

the dispersion relation 2.15 and 2.18 in a third form, largely used in plasma physics, known

as the Appleton-Hartree form:

N2
x +N2

y +N2
z = 1− 2X(1−X)

2(1−X)− Y 2 sin2 ϑ± Γ
(3.22)

where

Γ =
√
Y 4 sin4 ϑ+ 4(1−X)2Y 2 cos2 ϑ, (3.23)

ϑ is the arbitrary angle between N and the magnetic field, X = ω2
pe/ω

2 and Y = ωce/ω.

The sign (+) in the expression 3.23 corresponds to the ordinary mode while (-) refers to

the extraordinary mode. The dispersion relation analytically describes different branches,

belonging to O-, SX- and FX-mode. The O- and SX-branches coalesce in the particular

case of Γ = 0, i.e. when the conditions X = 1 and ϑ = 0 are satisfied simultaneously.

Actually, under the condition X = 0, also the O- and FX-branches coalesce, but this

condition is mere degeneracy at low density, when both O- and FX-mode tend to vacuum

propagation. The O- and SX-branches, instead, always connect analytically for X = 1,

but they partly develops in the evanescence region where N2
⊥ < 0. The only way to avoid

these evanescence values consists in satisfying also ϑ = 0, together with X = 111. In

practice, these two conditions occur together when the phase velocity vph of the wave is

completely parallel to the magnetic field (ϑ = 0 ⇒ Nx = Ny = 0) at the O-mode density

cutoff layer P = 0 (X = 1 ⇒ ωpe = ω), obtained in 2.20 for propagation across the field

(ϑ = 0). It is important to underline now that, unlike the X-mode cutoff layers, which

position in the plasma depends from the values of the parallel refractive index N‖ with

respect to the magnetic field, and hence from the value of ϑ that appears in the dispersion

relation (according to equations 2.25), the O-mode cutoff is the same (ωpe = ω), also in

the case of oblique propagation. This is true for N‖ not too high, until the critical value:

N2
‖, c =

Y

Y + 1
(3.24)

10In a real tokamak-like configuration Ny and Nz are not constant, since the plasma geometry encoun-

tered by the wave while propagating is toroidal. In particular, it can be showed with geometrical calcu-

lations that, in an axisymmetric configuration, the quantity k‖(R0 + r cos γ) is conserved, if the plasma

equilibrium is independent of φ [81], where φ and γ are the toroidal and poloidal angles, respectively, and

R0 the major radius of the machine.
11In fact, these two conditions, together, imply a null value for Γ in 3.23, which is the only quantity in

the dispersion relation 3.22 that enables to distinguish O- and X-mode propagation.
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is reached [27]. When N‖ becomes higher than the value 3.24, the O-mode cutoff ’shifts’

toward lower plasma density layers, and its position depends on the value of N‖. Thus, the

accessibility conditions and cutoff densities for the propagation of an ordinary polarized

wave in terms of the corresponding plasma frequencies can be presented schematically as

follows:

O-mode cutoff⇒

ω
2
pe = ω2, for N2

‖ 6
Y
Y+1

ω2
pe =

(
1−N2

‖

)
(Y + 1)ω2, for Y

Y+1 < N2
‖ < 1.

In other words, |N‖| =
√
Y/(Y + 1) is the maximum value reachable by the parallel

component of the refractive index at the ωpe = ω layer, which represents the deeper

O-mode cutoff layer in the plasma.

The O-mode Coupling to SX-mode at X = 1 in Slab Geometry

Turning back to the coalescence of the O- and SX-branches in the non-evanescent plasma

region (where N2
⊥ > 0), it is interesting to investigate the wave properties when the

condition ϑ = 0 holds true, first. Under this condition, the Appleton-Hartree dispersion

relation 3.22 gives rise to four expressions, depending on the sign of X and if the considered

polarization is O-mode (upper sign) or X-mode (lower sign) [82]:

N2
z =


1−X±Y

1±Y , for X < 1

1−X∓Y
1∓Y , for X > 1.

To take into account real propagation, we must restrict only to the range 0 < N2
z < 1, to

allow real propagation of the wave (N2
z > 0), together with a wave injection from vacuum

(N2
z < 1). Thus, only the X-wave is allowed in the X > 1 region. Performing the limits

for X → 1+ for X-mode in the X > 1 region, and for X → 1− for O-mode in the X < 1

region, they both give:

N2
‖, opt ≡ N

2
‖, c =

Y |X=1

Y |X=1 + 1
, (3.25)

where the symbol Y |X=1 means that Y = ωce/ω is evaluated at the O-mode cutoff layer

X = 1. Expression 3.25 corresponds to the O-SX mode conversion optimal value for N‖ at

cutoff, which is the same critical value defined in 3.24. In correspondence of this limiting

value, the condition ωL = ωpe holds true. Hence, it is possible in principle to obtain

perfect conversion of an O-wave into a SX-wave, if the O-wave reaches the cutoff layer
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with N2
z = N2

‖,opt = Y/(Y + 1), while Nx = Ny = 0. In a magnetically confined plasma,

this can be obtained with a launch such that the wave can reach the layer ω2
pe = ω2,

but with null components of the perpendicular phase velocity. In this case, the O-wave

naturally excite a new wave at cutoff, which has the same polarization12, wave number,

phase and group velocity, but belonging to the SX-branch. If the O-wave reaches the

cutoff with a non-optimum value of N‖, or equivalently, with N⊥ & 0, the transmission

to SX-mode occurs with lower efficiency. The allowed values of N‖ and N⊥ around N‖, c

and 0, respectively, can vary in ranges that strongly depends on the plasma parameters

and the frequency of the incident wave13. In the case of non-optimal approach to the

cutoff layer, the incident O-wave splits into a transmitted SX-wave, beyond X = 1, and

a back-reflected O-wave. In our ideal slab model, where, without losing in generality, N‖
is constant along the propagation path and Ny = 0, the optimal O-wave is characterized

by N = (
√

1−N2
‖, opt, 0, N

2
‖, opt) at the plasma edge, and reaches the cutoff layer with

N = (0, 0, N2
‖, opt). Therefore, in a slab geometry, the optimal launching angle is given

by ϑl, opt = arcsin(
√
Y/(Y + 1)) 14. The O-X power transmission coefficient has been

theoretically estimated several times since the beginning of the Seventies, with different

approaches [83] [84] [85]. The results obtained are just slightly different and can be merged

into the following expression for the transmission to SX-mode [86], known as the Mjolhus

formula:

TO−SX(Ny, Nz) = exp
{
− πk0Ln

√
Y

2
[
2(1 + Y )(Nz,opt −Nz)2 +N2

y

]}
, (3.26)

where Ln = n/∂n/∂x is the local density scale length. Among all the expressions available

in literature, equation 3.26 is the most reliable to describe the O-SX mode conversion in

slab geometry, also for high values of k0Ln. This could be demonstrated after a compar-

ison among them, performed with full wave calculations [82]. The analytic expression of

TO−SX(Ny, Nz) is a Gaussian function of the variables Nz and Ny, centered on the optimal

12According to equations 2.29 and 2.30, we remember that the polarization of the modes for longitudinal

propagation is circular. In particular, the circular left-handed is the polarization of both the O-mode

launched from LFS with ϑ angle into the plasma, once it has approached the parallel propagation. The

polarization of FX-mode, instead, becomes circular right-handed, once the propagation is parallel.
13This fact will be shown to be the most critical aspect in view to obtain O-X conversion in the case of

FTU, since the ECRH system operates at a high frequency, equal to 140 GHz.
14Attention must be paid not to confuse the launching angle with the angle that appears in the dispersion

relation 3.22, which represents the angle between the B0 field and the wave number k of the wave. In slab

geometry, the relation ϑ = 90◦ − ϑl holds true between them.
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values Nz, opt =
√
Y/Y + 1 and Ny, opt = 0. The width of the Gaussian bell decreases

with Y , with the vacuum wave number k0 = 2π/λ0 of the wave and with Ln = n/∂n/∂x.

Clearly, in the ideal case of a plane wave with N‖, opt and N⊥ = 0 at X = 1, the parameters

in 3.26 are non influential on the perfect conversion. Nevertheless, calculations performed

on a single plane wave are just ideal. In the real case, Gaussian beams are launched and

the finite geometrical dimension together with the angular k−spectrum of the incident

beam should be taken into consideration, in order to perform a realistic evaluation. Thus,

the parameters Y , k0 and Ln are always influential on the transmission and the tolerance

on the injection precision, which ensures a reasonable amount of converted power, strongly

depends on them. Since in the real case, Y and k0 are fixed by the system, the quantity

Ln|X=1, given by the density profile of the plasma, is the crucial parameter. The steeper is

the density gradient of the profile, the larger is the angular window allowed in the injection.

Polarization Mismatches

An important technical aspect in view to obtain the maximum conversion is the wave

polarization control. We have shown in the preceding Chapter 2 that the polarization

of the EC waves is always elliptical, for oblique propagation. This is the reason why a

linearly polarized wave injected from outside with an oblique launch, excites both O-mode

and X-mode, which propagates independently in the plasma. In experiments aimed to

test O-X conversion, all the power coupled as X-mode in the LFS is lost, from the point of

view of transmission. In fact, this component is completely reflected at the lower density

cutoff ωR = ω (2.25) and increases the amount of stray radiation in the vessel. The

ellipticity of the launched polarization is often unimportant in many plasma operations

that foresee ECRH injections with launching angles not too far from 0, i.e. for quasi-

perpendicular injections. Nevertheless in experiments aimed to test O-X coupling higher

values are requested in the launch and the effective conversion must be normalized to the

actual power propagating as O-mode in the plasma. An ideal EC launcher should provide

a real time control on the polarization, with step-by-step optimal matching to O- and X-

mode, at a given launching angle, by providing the proper ellipticity to the polarization of

the wave. In order to evaluate polarization mismatches, we can re-write, for convenience,
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the equations 2.27 and 2.28 in terms of the quantities X and Y :

iEx
Ey

=
1
Y

[
1−N2

X
(1− Y 2)− 1

]
, (3.27)

Ex
Ez

= −1−X −N2 sin2 ϑ

N2 cosϑ sinϑ
, (3.28)

and obtain an expression for (1 − N2)/X from the Appleton-Hartree dispersion relation

3.22, to be substituted in 3.27:

iEx
Ey

=
1
Y

[
2(1−X)

2(1−X)− Y 2 sin2 ϑ± Γ
(1− Y 2)− 1

]
. (3.29)

We let X → 0 in equations 3.28 and 3.29, finding the equations:

iEx
Ey

= −Y
2 sin2 ϑ±

√
Y 2 sin4 ϑ+ 4 cos2 ϑ

2
(3.30)

Ex
Ez

= − cotϑ, (3.31)

for the polarization of the O- and X-waves at the plasma boundary. The polarization is

elliptical for both modes and the electric field vector lies on the x′y′-plane, rotated with

respect to the xy-plane, on which the ratio R of the axes in the ellipse are:

R+,− = |Ex
′

Ey′
| = ∓Y sin2 ϑ+

√
Y 2 sin4 ϑ+ 4 cos2 ϑ

2 cosϑ
, (3.32)

where the upper and lower signs denote O- and X-mode. It is possible to demonstrate [82]

that, since the power content in each mode is proportional to < E2
x′ > + < E2

y′ >, the

fraction of power η0 coupled in O-mode, when a linearly polarized wave is launched into

a magnetized plasma with the electric field vector lying in the NB-plane at the plasma

boundary, can be written in the following way:

η0 =
1 +R2

− cot2 φ
(1 +R2

−)(1 + cot2 φ)
, (3.33)

where φ is defined as the angle between the direction of oscillation of the wave electric

field and the x′-axis.

3.5.3 The O-X-B Power Transmission Efficiency

In the power conversion efficiency coefficient 3.13 presented in paragraph 3.4.2, which

refers to the expected mode conversion from FX-mode (launched from the LFS) to B-

mode, a back-conversion of SX-mode, propagating from the LH cutoff toward the UHR,
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into FX-mode, that leaves the plasma, is also considered. Also this coupling can occur

by tunneling the evanescent layer between the UHR and the RH cutoff, in the same way

(but in opposite direction) considered above for the FX-SX coupling. The efficiency of the

tunneling process is related to the Budden parameter 3.14. Here we report such parameter

in the exponential under the approximations LB � Ln, like done for the expression 3.16,

which holds true in the case of FTU:

TSX−FX = e−πη = exp
{
− π(ωceLn)/(cα)

√[√
1 + α2 − 1

]}
(3.34)

This component represents a power loss from the point of view of the overall O-X-B mode

conversion process, since all the waves which tunnel and propagate away from the plasma

as FX-mode, do not excite EBWs. The overall power mode conversion coefficient of the

O-X-B scheme TO−X−B can be estimated using equations 3.26 and 3.34:

TO−X−B = TO−SX · (1− TSX−FX). (3.35)

The expression 3.35 above shows how a high FX-SX-B efficiency automatically excludes

high O-X-B efficiency, and vice-versa. This happens since the tunneling which is at the

base of either the direct FX-SX conversion (which enable EBWs excitation) or the inverse

SX-FX conversion (which causes power loss in the O-X-B scheme) is the same. To minimize

the power losses, the coefficient η defined in 3.14 should be greater than 1. Therefore, the

condition that must be satisfied to increase the efficiency of the FX-SX-B and O-X-B

schemes are opposite, namely η <1 and η > 1 respectively. Additionally a small k‖ is

preferred in the first case while an optimal k‖ is needed in the second case. Equation

3.17 shows how, for a fixed magnetic field, the conversion from FX-mode launched from

vacuum into B-mode occurs closer to peripheral plasma regions, where Ln is shorter, while

the O-X-B mode conversion occurs deeper in the plasma and privileges a longer density

scale length.

A big advantage of the O-X-B scheme consists in the fact that the optimal condition for

O-X coupling is mainly geometrical, adjustable from outside just acting on the launching

system, hence, in principle, quite easy to obtain. This is not the case when an optimization

is performed for FX-SX coupling. In this case, in fact, the efficiency of the process is

fixed by the plasma parameters and the optimization can be performed only by acting on

them, with more challenging techniques15. Additionally, the FX-SX conversion is strongly

15Typically, limiters are used to change the local plasma density.
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dependent on the local value of the magnetic field. This can be noticed by re-writing the

transmission coefficients of the two conversions, highlighting in equations 3.26 and 3.3416

the different evanescent layers D1 and D2 to be tunneled by the wave in the two processes:

TO−X = e−D1/λ ⇒ D1 = 2π2Ln

√
Y

2
[
2(1 + Y )(N‖,opt −N‖)2 +N2

y

]
(3.36)

TFX−SX = e−D2/λ ⇒ D2 = 2π2LnY
2

√√
X + Y 2

XY
− 1 (3.37)

where both the expressions are written making use of the quantities X and Y , evaluated

at ω = ωpe and ω = ωUHR respectively. It can be noticed that the dependence on Y,

and hence on the local magnetic field, is stronger in equation 3.37, than in equation 3.36.

This dependence makes the FX-SX conversion efficiency decrease more rapidly with the

increasing magnetic field, with respect to the O-SX conversion. The O-X-B scheme, then,

is advantageous for higher magnetic field devices like, for instance, FTU tokamak.

The Effect of the Plasma Density Fluctuations

Another issue to be taken into account is the effect of the plasma density fluctuations.

These imply negative consequences on the conversions, since fluctuations change the local

density value in an unpredictable way. In general, density fluctuations are stronger at

the plasma edge, where the FX-SX conversion takes place, but nevertheless the O-SX

conversion, in the O-X-B scheme, is more sensitive to this phenomenon. Therefore, despite

the O-SX coupling occurs deeper in the plasma, where the level of fluctuations is lower,

the stronger dependence of the conversion on the local density makes the efficiency drop in

presence of even a low level of fluctuations17. In a pictorial view, density fluctuations make

the plasma surface at cutoff become rough and wavy, preventing a description of such a

process but using a statistical approach. The pejorative consequences of the turbulence

on the O-X conversion efficiency, is given by the modification of the real parallel and

perpendicular components of the refractive index N at the cutoff layer with respect to the

ones of the incident ray. Since the fluctuations have mainly poloidally directed (i.e. y axis)

wavevectors [87], the effects of the roughness turn out to be mainly on the perpendicular

components of N and introduce an effective poloidal beam divergence much higher than

16Assuming TFX−SX ≡ TSX−FX .
17The efficiency degradation implied by fluctuations is expected to be approximately the same for O-X-B

and FX-SX-B, but no theory able to quantitatively compare them has been developed so far.
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the intrinsic one. The effects on O-SX mode conversion can be described following the

statistical treatment presented in [64], in which only fluctuations with a wave vector in the

poloidal direction are considered. A probability density function of the poloidal component

Ny can be written as:

p(Ny) =
λy√
2πσx

exp

(
N2
yλ

2
y

2(1−N2
y )σ2

x

)
(1−N2

y )−3/2, (3.38)

where σx = Ln∆ne/ne is the fluctuation amplitude standard deviation, ∆ne/ne the rela-

tive fluctuation amplitude and λy the poloidal correlation length [78]. The O-SX power

transmission function 3.26, weighted on density fluctuations, is then:

TO−SX, mod(Nz) =
∫ +1

−1
TO−SX(Ny, Nz)p(Ny)dNy (3.39)

For any theoretical conversion efficiency calculated on the plane wave approximation, the

relation TO−SX, mod 6 TO−SX always holds true, since the wavy nature of the plasma

surface affects the O-SX coupling. However, deviations on the refractive index induced

by the turbulences can also become of minor importance when the modifications on N‖

keep in the range of values given by the launching angular window18. Therefore, a wide

angular window is always preferable, not only to have more flexibility in the beam in-

jection, but also to lower the negative effects of phenomena that can be controlled only

partially, like the refraction of the ray, or that can hardly be predicted, like local density

fluctuations. The wideness of the angular window cannot be chosen a priori, but is fixed

by the plasma parameters (the density scale length Ln) and the frequency of the wave (k0),

which dominate the Mjolhus formula 3.26 when N‖ 6= N‖, opt and Ny 6= 0. The statistical

model given by 3.38 has been proofed to be valid with good reliability on the stellarator

W7-AS [88]. It could be demonstrated that high conversion efficiencies were reachable19

in the two regimes, of low k0Ln (610) and relatively high (>25 %) density fluctuation

amplitude, or with k0Ln = 60 and a relative fluctuation amplitude of less than 2 % [64].

These experiments could be performed by changing the edge rotational transform [89],

which has a direct influence on the density profile shape and on the fluctuation activity.

18Angular tolerance in the launch which ensures 50% of transmitted power.
19Using a fixed injection angle.
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Electron Bernstein Wave Emission

If the plasma description is done using a slab geometry, the O-X-B mode conversion is a

reversible process [90]. Therefore, under this approximation, measuring B-X-O conversion

is always equivalent to the measure O-X-B conversion. Both of them, must be performed

at the proper (optimal) detection/injection angle, such that equation 3.24 turns out to be

satisfied at ω = ωpe layer. While O-X-B scheme can be used to heat over-dense plasmas

with EBWs, the B-X-O conversion is a natural emission of radiation which spontaneously

emerges from the internal plasma regions, above the O-mode cutoff, as EBWs. This

happens because in fusion plasmas the optical thickness of the EBWs is much larger

than unity (see section A), even for the higher harmonic, and the medium behaves like a

blackbody emitter for EBWs. This radiation, then, converts to ordinary polarization and

leaves the plasma. In analogy to Electron Cyclotron Emission (ECE) radiation, the signal

originated by B-X-O conversion is called Electron Bernstein Emission (EBE), and is widely

used as a temperature diagnostic [91] [92] [93] [94], when the configuration is such that

ECE signals are ’hidden’ (i.e. when the accessibility regime is over-dense). According to

Kirchhoff s law, the radiation which leaves the plasma by back conversion, is a measure of

the central plasma temperature [95], being the EBE radiation a strongly localized signal20.

This localization, together with the natural non-influencing character of the EBE signal

detection, based on B-X-O scheme, makes this kind of measurement more certain than

measuring plasma heating through O-X-B mode conversion, since in this last case the

proof of the conversion is less direct and the scaling of the energy confinement time with

heating power [96]:

τE ∼ P−0.69

has to be considered, leading to a rather uncertain measurement.

3.6 2D Models of O-SX Mode Conversion

Most of the analytical results in the theory for O-X-B mode conversion are obtained in a

one-dimensional model (slab geometry), in which density and magnetic field gradients are

considered to be parallel. The only spatial inhomogeneity is related to the constant density

gradient. All the predictive models on mode conversions, including the ones introduced in

20Considering a 100% efficiency of B-SX back conversion, the EBE signal intensity is then proportional

to the central electron temperature, normalized to the SX-O conversion efficiency.
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the previous sections, have been derived in such a slab description, despite some of them

where analyzed for a realistic sheared magnetic field, like in [97]. During recent years,

it has been demonstrated that a slab approximation may be insufficient to describe the

O-SX mode conversion in the vicinity of the cutoff plasma density, in real devices. This

analysis was initiated at first by H. Weitzner in 2004 [98]. It was demonstrated that in

a 2D treatment, able to consider the real variation of the magnetic field on flux surfaces

in tokamaks and stellarators, O-SX conversion occurs in a wider range of incident beam

parameters, if compared with a 1D case, in which effective transformation takes place only

in a precise range (typically narrow) of the parallel refractive indexes. After reference [98]

other work was carried out on developing 2D models of O-X conversion, initially based

on stronger simplified assumptions on the incident beam structure and magnetic field

configuration [99] [100], and later developed with a more realistic approach [101] [102] [103].

Using the Stix representation [104] for the electric field:

E± =
Ex ± iEy√

2
, E‖ = Ez

already introduced21 in Chapter 2, the cold-plasma dielectric tensor in 2.6 can be re-written

in the following useful form:

ε ·E =


ε+ 0 0

0 ε− 0

0 0 ε‖



E+

E−

E‖

 (3.40)

where:

ε± = 1−
ω2
pe

ω(ω ± ωce)
, ε‖ = 1−

ω2
pe

ω2

Given the dispersion relation of a cold magnetized plasma in 1D case, re-written in the

following form:

N2
⊥[(ε+ − ε‖)(ε− −N2) + (ε− − ε‖)(ε+ −N2)] = 2ε‖(ε+ −N2)(ε− −N2),

the propagation regions for the O- and SX-waves are separated by a slab evanescent region

defined by the condition:

ε‖(ε+ −N2
‖ ) < 0.

The O-SX (SX-O) conversion is explained in the 1D model with a tunneling of the O-mode

(SX-mode) through this evanescent layer when the parallel refractive index N‖ satisfies

21With a slightly different normalization.
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the conditions described in 3.5.222, and the tunneling efficiency is given by expressions like

the Mjolhus formula 3.26.

If the more realistic 2D geometry is considered, the topology is such that the two cutoff

surfaces ε‖ = 0 and ε+ = N2
‖ are not parallel and intersect in space along a certain line

in the plasma, like shown in Figure 3.7. Consequently, no evanescent layer is expected

by a beam passing from this intersection. Since the non-parallel nature of the O-mode

and X-mode cutoff surfaces is related to the bi-dimensional topology, such an intersection

always exists for a certain continuous range of values of the beam N‖. It depends from

the local parameters in the plasma and a change of N‖ implies just a spatial shift of

the transformation region, which follows the intersection line between the two surfaces,

differently from what happens in the 1D description, for which the two parallel cutoff

surfaces can coincide just for a single value of the parallel refractive index.

Figure 3.7: O-X transformation region in a 1D slab geometry (on the left), where the plasma

density and magnetic field strength both vary along the radial direction of the machine (x−axis).

A more realistic 2D geometry (on the right), where the plasma density and magnetic field strength

vary in the xy−plane and cross in a certain point. The evanescent regions ε‖(ε+ − N2
‖ ) < 0 are

dashed. The figure has been taken and modified from [102].

The model developed in references [99] - [103] is based on two flat cutoff surfaces23 whose

intersection forms an homogeneous region. Thus, the 3D tokamak-like geometry is reduced

to a bi-dimensionally inhomogeneous problem. A proper coordinate system is introduced

in [99], in which the z−axis is parallel to the homogeneous line (intersection between the

cutoff surfaces), the y−axis is in the evanescent region delimited by the cutoffs and the

22Therefore, in the new notations, when the cutoff surfaces ε‖ = 0 and ε+ = N2
‖ coincide and the

evanescent layer is then absent, giving rise to a complete conversion.
23Therefore, this model describe adequately the conversion region only in the cases in which the curvature

of the flux surfaces can be neglected.
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x−axis is located in the propagation region of the left hand polarized waves, directed

toward the higher plasma densities along the bisector of the angle 2α between the cutoff

surfaces, as showed in Figure 3.7. Formally, the direction of the x−axis is directed along

the vector 5ε‖/| 5 ε‖| +5ε+/| 5 ε+|, such that the O-SX (SX-O) mode conversion can

occur for a beam propagating in the positive (negative) direction along the x−axis. The

(x, y)-coordinate origin is fixed on the line of the intersection between the cutoff surfaces

for a given N‖ of the incident beam; in this way, the x ≡ y = 0 point coincide with the

conditions ε‖ = 0 and ε+ = N2
‖ .

Two parameters can be introduced, which are:

L5 =
√
Nz

4

√
(2k2

0| 5 ε‖|| 5 ε+|)

for Ln�LB−−−−−−−→ L5 ≈
Ln√
k0Ln

4

√
ωce
2ω

, (3.41)

and the angle α, corresponding to half the angle between the two cutoff surfaces and

defined by:

tan(2α) ≈ Ln
LB

sinχ
1 + ωce

ω

, (3.42)

where Ln and LB are respectively the scales of plasma density and magnetic field inho-

mogeneities in the proximity of the conversion point24, already encountered in equation

3.14, while χ is the angle between plasma density and magnetic field intensity gradients.

With a 2D treatment of O-X coupling, it is demonstrated that optimal conversion is fore-

seen uniquely for Gaussian beams [105] which phase fronts are properly modulated, in

both cases in which a poloidal component of the magnetic field is taken into account (in

a shearless limit) or neglected. This condition clearly is not easily achievable in practical

use, since a plane phase front of the Gaussian beam at the minimum of the waist w (in

the present Section the waist wx, y will be written as
√

2ax, y, to preserve the original

notation used in the considered model) is generally preferable, or most of the time even

inevitable. For this reason it is important to predict the conversion efficiency of an op-

timal distribution that, outside the region of linear interaction, is a (two-dimensional on

(y, z)−plane) Gaussian beam, propagating along the x−axis and with a plane phase front

at the minimum waist:

A = exp
[
−(y − y0)2

2a2
y

− z2

2a2
z

+ ik0Nyy + ik0Nzz

]
. (3.43)

where a2
y = w2

y/2 and a2
z = w2

z/2, being wy and wz the waist sizes of the beam [105]

in y− and z−directions. A detailed treatment of the solutions of passing and reflected
24In a tokamak-like configuration the condition Ln � LB is typically satisfied.
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beams at the coupling region, corresponding to an incident distribution given by equation

3.43 and in presence of a small poloidal component of the magnetic field, can be found in

reference [102], where an explicit expression for the transformation efficiency TO−SX, 2D
25

is derived for the case of weak poloidal field limit:

TO−SX, 2D(ay, az) =
az
āz

āyay(1 + tanh(π tanα))
a2
y + a2

0 tanh(π tan |α|)
exp(−φ), (3.44)

where a0 = L∇/
√

sin |α| is the beam width of the optimal distribution, exp(−φ) is a factor

useful to take into account the degradation of the conversion due to non-optimal aiming

of the beam to the transformation region26, and:

ā2
y = a2

0

a2
y + a2

0 tanh(π tan |α|)
a2

0 + a2
y tanh(π tan |α|)

, ā2
z = a2

z +
σ2a4

0

a2
y + a2

0 coth(π tan |α|)

are the effective width in y- and z−directions of the beam, after passing the transformation

region.

The transformation coefficient 3.44 increases monotonically with the increasing of az, and

becomes unitary only for divergent values of az, thus: TO−SX, 2D(ay, az)
az→∞−−−−→ 1. The

function:

ay = 4

√
a4

0 +
σ2a6

0

a2
z

tanh(π tan |α|)

defines the maxima:

TmaxO−SX, 2D(ay) =
a2

0 exp(π tanα)
a2
y cosh(π tan |α|) + a2

0 sinh(π tan |α|)

of ay, for fixed az.

In conclusion, a 2D geometry turns out to be more adequate for describing the config-

urations of real toroidal plasmas and for this reason the results obtained are expected

to be more reliable with respect to the one derived in a simpler mono-dimensional slab

description. The main results of the model can be summed up as following:

25The transformation efficiency here presented, which represent the ratio of the power fluxes in the

converted and incident beams, is the correspondent in 2D model of the Mjolhus formula 3.26 for the

transmission TO−SX(Ny, Nz) from O-mode to SX-mode, calculated in a slab description.
26The case exp(−φ) = 1 denotes the optimal aiming, i.e. when y0 = 0 and Ny = Nz tanϑ cosα, where

ϑ is the angle between the magnetic field direction and the z−axis, defined when a poloidal component of

the magnetic field is considered.
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• O-SX and SX-O Mode Conversions are demonstrated to be locally non-reversible

processes. Unlike the 1D case, the power transmission coefficient in opposite direc-

tions (i.e. opposite conversions) are shown to be different, also in the simpler case,

when the poloidal magnetic field is not considered; the relations:

TO−X
TX−O

= exp(2π tanα) (3.45)

holds true between the different cases above [99]. Since changing the beam propaga-

tion in the direction of plasma density increase and decrease; changing the toroidal

field sign; inverting the poloidal injection/detection point symmetrically with respect

to the equatorial plane; all imply a change of sign of the α angle, these reversal are

equivalent from the point of view of power conversion efficiency in two dimensions.

The expression 3.45 can be generalized with the following relations:

TO−X(α, k‖) ≡ TO−X(−α,−k‖) ≡ TX−O(α,−k‖) ≡ TX−O(−α, k‖)︸ ︷︷ ︸
⇒ TO−X(−α,k‖) exp(−2π tanα)

• An incident beam with strictly zero reflection at the conversion region can exist only

for α > 0 or α < 0, for O-X conversion or for X-O conversion respectively. This

means that perfect conversion can occur only for a given configuration of beam prop-

agation, magnetic field direction and poloidal launching/receiving point, or (equiv-

alently) for an even reversals of all these three parameters. Odd reversals of them

imply a non-optimal conversion, which efficiency is given by 3.45.

• Variations of Nz do not preclude the achievement of the optimal beam structure,

despite its variation is accompanied also by a displacement of coordinate. Such

variations imply that the optimal distribution becomes A(x − 4x, y − 4y, z,Nz +

4Nz), rather than A(x, y, z,Nz).

3.7 Experiments on O-X-B Mode Conversion

The accessibility limitations due to the O-mode cutoff is as much strong as much the

frequency used (and hence the magnetic field), is low. This is particularly true for the

most general case of LFS launch, since in this case the RH cutoff prevents the alternative

use of X-wave. Therefore, in low field (B ∼ 0.5 T) spherical tokamaks and medium field (B

∼ 1.5 T) fusion devices, operational plasma scenarios are often overdense. An empirical
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density value can be defined for tokamak-like machines, known as the Greenwald density

limit [106] [107], which fixes < ne,G = 0.27 · Ip/a2 > as the upper density limit generally

reachable in a configuration with plasma radius a and plasma current Ip. These values are

taken by using the shaping parameters elongation, triangularity and safety factor q from

the standard ITER operation model, i.e. κ = 1.85, δ = 0.5 and q95 = 3. The Greenwald

limit can be hardly ever overcome in common situations. Comparing the accessibility

limitations of EC waves for different devices with ne, G, it turns out that in spherical

tokamaks the low EC harmonics can only access density up to a few percents of the

Greenwald density limit. Also in medium field machines, like for instance TCV toakamak,

at least a 2nd harmonic X2-mode injection is needed to penetrate 10% of ne, G [108],

extended to 25% by using the 3rd extraordinary harmonic X3 [109]. EBWH, performed

through the O-X-B double mode conversion scheme, was demonstrated for the first time

in the W7-AS stellarator [64], by injecting O-waves into a high density high-confinement

mode (H-mode) [110] scenario. In particular, in these first experiments, EBWH was

demonstrated either in presence of EC resonance in the plasma or in the non-resonant

case, i.e. in absence of the EC resonant layer27, at lower central magnetic field. Later, it

was applied in other fusion devices. In particular, for the reasons above, in low and medium

magnetic field machines, EBW heating can be considered as an alternative way to heat the

plasma under certain conditions, and in some cases it can be even the only possible way

for using ECRH waves. This is the case of the RFX-mod reversed field pinch device [111].

The theoretical analysis performed to study the feasibility of ECRH applications in this

device showed that in this case the O-X-B mode conversion scheme turns out to be the

only possible way to heat RFX-mod plasma using EC-waves. In addition, finally, the use

of EBWs can be very attractive, since EBWCD is demonstrated to be potentially more

efficient than ECCD [70] [112] [113].

27EBWs are generally absorbed in correspondence of the EC harmonics resonances. The non-resonant

absorption is possible since they experience a cutoff layer at the UHR surface, which, in the non-resonant

case, totally encloses the inner plasma. Therefore, radiation turns out to be trapped inside the plasma. The

EBWs are either reflected at the UHR or back-converted to SX-waves. Such a SX-mode is then converted

again to the EBWs at its next contact with the UHR. Only the X-polarized radiation reaching the small

angular window for X-O conversion can escape the plasma. In the absence of EC resonance in the plasma

the EBWs may be absorbed due to finite plasma conductivity after some reflections at the UHR layer.
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3.7.1 EBWH Experiments in TCV via O-X-B Mode Conversion

The sole application of Eectron Bernstein Waves Heating that was performed by O-X-B

double mode conversion in an over-dense plasma of a standard aspect-ratio tokamak, was

demonstrated in 2005 in the TCV tokamak [114] (aspect ratio =3.6), making use of the

naturally generated steep density gradient that can be reproduced in this device. The

proper density scale length Ln, needed for the O-X coupling to take place, was obtained in

the H-mode plasma. The 2nd harmonic O-mode EC system featured by TCV was used to

obtain O-X conversion at the O2-mode cutoff layer (ne, cutoff = 8.7 · 1019 m−3). The power

absorption was measured using three diagnostics. EC power, scattered inside the torus,

Figure 3.8: Normalized stray radiation power measured in TCV in a poloidal scan with the gyrotron

(left), at fixed toroidal angle, and in a toroidal scan (right), at fixed polidal angle. The dashed

lines indicates the 50% of the maximum stray level. A minimum in the stray radiation level is

found in both cases.

was measured by a few semiconductor diodes, installed in different sectors of the machine.

The total absorbed power was measured by a diamagnetic loop, using power modulation

techniques. Finally, the local deposition was measured with a high spatial resolution, 64

channels, soft x-ray wire chamber, vertically interfaced to the plasma and sensitive in the 2-

25 keV range [108]. The stray power, measured during the short EC pulses (see Figure 3.8),

was strongly influenced by Edge Localized Mode (ELM) dominated phases, ranging from

30%, during the ELM-free phases, to 80%, during the ELMy phases. The reduced density

scale length Ln at the plasma cutoff, which implies steep density gradient, was reached in

the edge pedestal of H-mode plasmas with low q95 = 2.2-2.4, high triangularity δ = 0.5-0.6
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Figure 3.9: In this figure, the dots, representing the experimental measure of the stray radiation in

the TCV camera during the EC scans are compared with the results on the conversion efficiency

obtained using simulations.

and medium elongation κ = 1.8 [108]. The experimental determination of the optimum

injection angle was performed by scans performed on the two poloidal and toroidal injection

angles around the optimal window, previously estimated using a single ray simulation

of the non-relativistic ART ray tracing code [115] [116], which includes O-X-B double

mode conversion for wave propagation and absorption (see Figure 3.9). The angular scan,

performed shot by shot, has been aimed to find a minimum level of stray radiation28, which

corresponds to the maximum of power absorption and thus defines the optimal launching

angles. A good agreement between the theoretical and experimental radial deposition

at overdense plasma regions was reached. These results constitutes the first proof of

EBWH by O-X-B mechanism, acting in a standard aspect-ratio tokamak. For a detailed

description of such experiments in TCV tokamak see references [117] [118] [119] [108].

28In general, the experimental 50% absorption widths is larger than the one predicted using a single ray

simulation (of a factor two, in the case of TCV). The reason of this lies in the fact that any injected beam is

always characterized by having a finite dimension and a k−spectrum dispersion. Both these things are not

taken into account by a single-ray tracing. These factors imply a broadening of the conversion efficiency

function, while reducing its absolute value. Therefore, the condition TO−X =1 can never be reached in

the real case, while the 50% of power conversion (i.e. TO−X =0.5) is expected to be be reached in a larger

window than the one calculated with the single-ray tracing.



Chapter 4

The Optimal Plasma Target for

O-SX Coupling

4.1 Introduction

The feasibility study of EBW heating in FTU plasma at 140 GHz, the preparation of

future experiments on this issue and the research of the proper plasma target to be used,

are the core subjects of the present PhD Thesis.

After a brief description of the Liquid Lithium Limiter (LLL) recently installed in FTU,

the high density plasma regimes reachable with the use of LLL and the interferometer

used for the plasma density measurements in FTU (respectively in Sections 4.2.1, 4.2.2

and 4.2.3), together with the work aimed to the search of an optimal target for future

experiments on O-X-B mode conversion are being presented here below in this Chapter.

The predictive study of this phenomenon in FTU and the technical preparation of the

future experiments will be presented in the next two Chapters 5 and 6.

4.2 The High Density in FTU

4.2.1 The Liquid Lithium Limiter

Since 2005, lithium has been routinely introduced in the FTU tokamak, as a new plasma

facing component by means of a Liquid Lithium Limiter (LLL) [120] (Figure 4.1), in

addition to the original two limiters (toroidal and poloidal) both made with TZM, an

alloy of Titanium, Zirkonium and 98% of Molybdenum. The main motivation for the use

61
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of a liquid material is the interest in testing new plasma facing components, in view of

future fusion reactors. Most of these new materials are alternative to the Carbon Fiber

Composite and Tungsten and are promising, despite they also have technical problems

still to be understood. The lithium limiter of FTU is based on the innovative concept of a

Figure 4.1: On the left, picture of the three units of the lithium limiter installed on their supporting

structure. On the right, the following components of the LLL are showed: 1) ceramic break, 2)

stainless steel case, 3)lithium filled-capillary structure, 4) heater, 5) Li evaporating surface 6) Mo

heat accumulator, 7) thermocouples (figure taken from [121]).

Capillary Porous System (CPS) [122]. It is composed by three similar modules, separated

one from each other, and electrically insulated. Two of the modules are based on the

capillary surface tension that counteracts the electromagnetic J ×B tearing-off forces and

are made as a mat from wire meshes of AISI 304 stainless steel with 15 µm pore radius

and 30 µm wire diameter. In the third one the stainless steel wires has been replaced

by tungsten ones. After the change to tungsten, the overall structure of the LLL is able

to withstand heat load up to 5 MW / m2 without significant damages1. To extend the

operations with LLL over 5 MW / m2, a second step project is already under study, with

the use of LH and ECRH as additional plasma heatings [122]. The overall system will

also include an actively cooled system and a liquid lithium circuit for the renewal of the

lithium surface, since increasing heat load over a certain limit means to overcome the

critical temperature T = 550◦ of evaporation of lithium. The surface facing the plasma is

re-filled through capillary forces by a liquid lithium reservoir, placed on the bottom of the

structure [123].

1Thermal gradients do not give rise to stresses in the lithium filled CPS and consequently no thermal

induced cracking occurs, unlike the conventional solid materials.
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4.2.2 New Plasma Regimes with LLL

Lithization of the machine inner wall, obtained with the insertion of the CPS LLL into the

machine, leads to a strong reduction of heavy impurities and oxygen concentration in the

plasma as well as a strong modification of particle recycling from the walls, due to a demon-

strated pumping effect of lithium [124]. This implies better plasma performance than with

the usual boron coating on the vessel walls [125] [121] [124], with direct consequences on

plasma parameters, like Zeff , which in ohmic discharges maintains a level well below 2

for high normalized2 line electron density ranging between 0.15 · 1020 m−3 < ne < 3 · 1020

m−3 (only in some cases at low densities ne < 4.0 · 1019 m−3, Zeff seems to increase up to

a factor 2). The radiation losses are then lower than 30 % of the input power and electron

temperature in the SOL a factor > 1.5 higher than for discharges in boronized or fully

metallic regimes. For these reasons, very interesting and unusual plasma regimes have

Figure 4.2: Picture of the internal side of the FTU vessel, taken from [126]. The red arrow indicates

the position of the toroidal limiter, the green one show where the Liquid Lithium Limiter is inserted

in the camera (only when used).

been obtained in FTU with the use of lithium during the last experimental campaigns.

In particular, a strong peaking of the electron density profiles has been routinely reached.

2Usually, the integrated line density data acquired by the FTU interferometers [25] are used in a

normalized form, where the normalization factor is the maximum plasma diameter, equivalent to 0.6 m.

This means that integrated measures that should be measured in [m−2] are presented in [m−3].
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This is true, in principle, with the use of both boron and lithium. Nevertheless, with

lithium this happens at very high densities (line density ne > 1.0 · 1020 m−3). A strong

steepening at normalized minor radius r/a = 0.8 is found, with a marked increase of the

central density, while the peripheral density for r/a > 0.8 tends to remain nearly constant.

Peaking factors ne,0/ne up to 2.5 are obtained, typically when the line density ne is greater

than 1.0 · 1020 m−3. A strong activity of MARFE3 radiative instability [127], [128] inside

the last closed surface4 is very often present. This regime is characterized by almost total

absence of MHD activity at the plasma edge, thanks to the strong pumping capability of

lithium, which suppresses the recycling of cold particles from the walls.

4.2.3 Plasma Density Measurements in FTU

The measurement of the plasma density is very important for this work. In FTU it is

performed with the use of laser interferometers, starting from the measured change of the

refraction index along the path of a laser beam, which crosses the plasma along a chord.

The variation of the refractive index depends on the density of the plasma encountered by

the beam; the phase change of the beam crossing the plasma with respect to a reference

beam provides a measure of the line integrated density.

A scanning system (called SIRIO, represented in Figure 4.3), is used in FTU [129] [25] for

this kind of measures. The system is an assemblage of five interferometers, among which

two are scanning and three operate at fixed chords. SIRIO is located in a vertical port

of the machine, which is 40 cm wide in the radial direction. From such an aperture, the

FTU plasma can be scanned with the laser from the very edge, in the low field side, to

1/3 of the plasma radius, in the high field side. The port is mechanically divided into

two sectors, each housing the beams of a 10W, CO2 and a 1W, CO interferometers. The

scanning ranges reached from these two sectors of the port are 0.86 - 1.04 m and 1.07 -

1.25 m of the major radius of the tokamak. The CO2 interferometer is used to perform

the line integrated density measurement, while the CO laser beam in used in order to

compensate the mechanical vibrations of the overall system. The two colors used by the

3The term ’MARFE’ is an acronym for ’Multifaceted Asymmetric Radiation From the Edge’. This

kind of instability defines a toroidally symmetric and poloidally asymmetric belt of high density, strongly

radiating, cold plasma, localized at the high field side of a limiter tokamak, sometimes even extending all

around the poloidal cross-section, thus detaching plasma from the first wall. It is caused by a reduction of

the parallel thermal conductivity at the plasma edge, caused by a drop of the edge temperature.
4In FTU, MARFE instability develops especially in presence of low Z impurities, like lithium or boron.
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CO2 and CO lasers correspond respectively to wavelength of 10.6 µm and 5.4 µm. In order

Figure 4.3: Sketch of the scanning interferometer of FTU. It can be seen that the two scanning

interferometers are capable to cover 2/3 of the plasma diameter.

to use a single-photoconductive detector for the heterodyne detection of both the signals,

two Bragg cells were included in the system. Two colors are combined by a dichroic

mirror and modulated by means of the two Bragg cells, with different frequency shifts,

corresponding to 40 MHz for the CO2 and 30 MHz for the CO beam. At the end, the

signals are electronically split. A fast tilting mirror, whose dimensions are 6 mm × 4 mm

and oscillating with a 8 kHz frequency in the focus of a second parabolic mirror, provide

the production of the two vertical scanning beams and a measure of a density profile every

62.5 µs (16 kHz), which is a time short enough for most of the plasma phenomena. The

spatial resolution of the interferometer is fixed by the beam width (which is approximately

1 cm in the plasma), since the number of independent line-average density data depends

on the ratio between the scan amplitude and the beam diameter. Thus, the number of

equivalent chords in FTU typically varies from 28 to 34, depending on the scan amplitude

in use.

After the injection, each beam is then back-reflected to the launching point. A second
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passage through the same optics allows the use of a single fixed detection line, with a

typical detection noise of about 2 × 1018 m−2.

In addition to the scanning interferometers, three fixed chords of SIRIO are fixed at 0.755

m, 0.935 m (corresponding to the vessel center) and 1.17 m from the axis of the tokamak.

Two additional measurements on fixed chords are provided by a CO2 - HeNe lasers beam

interferometer, with wavelengths respectively of 10.6 µm and 0.63 µm. The radial positions

of these two chords are again 0.935 m (camera center) and 1.135 m from the device axis. In

FTU, the measurements performed at fixed positions, that can be acquired at frequencies

up to 200 kHz, are typically used for the automatic plasma density control in feedback

and for the density monitor.

Inversion methods are used to obtain the local density profile assuming the density as

a function of the poloidal magnetic flux coordinate [130]. Most of the inverted density

profiles are obtained using an expansion in polynomials, with known transform functions,

while the data coordinates are transformed from radial to flux, and the inversion is reduced

to a fitting operation. In other cases, a more accurate Abel inversion algorithm is also

used to produce density profiles, in a real geometry, by using the line integrated density

data without any fit. A particular approach was developed for the proper inversion of the

density profiles, when the MARFE activity is so strong that oscillations turn out to be

super-impsosed on the detected interferometric line density signal to be inverted. This had

to be done since such a disturbance in the line density channels can strongly compromise

the correctness of the inversion computation. More details on the techniques used in such

plasma regimes can be found in reference [126].

4.2.4 Overdense Plasmas in FTU

The availability of these particular regimes in FTU, became a stimulus for a deeper analysis

of the high density plasma discharges. FTU is not only one of the tokamaks featuring the

highest plasma densities reachable today, but also it can reach the highest values of the

toroidal magnetic fields, up to 8 T. Thus, studies on plasma confinement and stability of

magnetic configurations can be carried out, in wide ranges of B, ne and plasma currents.

In particular, since the first uses of lithium, the inverted electron density profiles showed

maxima well beyond the value ne = 2.43 · 1020 m−3 (see an example in Figure 4.4),

corresponding to the O1-mode cutoff density of the 140 GHz ECRH system of FTU, and

with such a density level routinely reached, called ’overdense’ regimes, from the point of
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Figure 4.4: 3D reconstruction of a typical inverted high density profile of FTU (shot #28510). The

radius where the O-mode cutoff density is overcome is shown. When the plasma density is high,

such radius is typically in the range 10-15 cm from plasma center.

view of the EC heating. Plasma regions interdicted to both O- and X-mode launched from

LFS, can be obtained by a strong gas puffing and lithization of the internal vessel walls.

These new regimes, which characterize strongly FTU in the panorama of the present fusion

machines, open the possibility to future experiments on overdense plasmas heating with

Electron Bernstein Waves.

At the frequency used by the ECRH system of FTU, the FX-SX coupling obtained with

the tunneling of a FX-wave launched from LFS through the evanescent region between the

LFS cutoff of the X-mode and the UH layer could not be performed, since the tunneling

efficiency, described by the formulae 3.13 and 3.14 presented in Chpater 3, turns out to be

null with the FTU parameters. Such a result could be expected, since the tunneling of the

evanescent region by part of a FX-wave from LFS (or vice-versa of a SX-wave towards the

LFS), is finite only when the magnetic field, the density and the wave frequency are such

that the wavelength is of the same order of magnitude, or larger, than the evanescent layer

depth. This condition is more likely to be satisfied in low magnetic field devices, where a

low frequency of the EC system is used. In the case of FTU, instead, the frequency is very

high, with an associated wavelength in vacuum of approximately 2 mm, while the order

of magnitude of the evanescent layer are centimeters.

The direct SX-B coupling, with a launch of the X-mode from HFS can not be taken into
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consideration for obvious reasons, since the launching system of FTU is installed on the

LFS of the vessel and no space is available on the HFS for optical components able to

change the polarization and the direction of the beam, due to the presence of the toroidal

limiter.

Thus, the interest in demonstrating overdense plasma heating in FTU with the use of

EBWs led to develop a predictive model of the O-X-B mode conversion scheme, presented

in Section 3.5, to excite Electron Bernstein Waves in the overdense plasma. In particular,

since the losses caused by SX-FX coupling are expected to be approximately null with

FTU parameters, the efficiency of the overall O-X-B scheme is almost completely given

by the efficiency of the first O-(S)X conversion. Thus, the presence of the O1-mode cutoff

of the 140 GHz ECR heating system, is a necessary condition in view to test the O-SX

coupling, described in details in Section 3.5.2.

4.3 Research of the Optimal Plasma Target for EBWH

The very high density regimes obtained initially with the use of LLL (see for instance the

density profile in Figure 4.5 and 4.6) were reached at 500 kA plasma current and 5.9 T

magnetic field, which represents a standard operational configuration for FTU. The 1st

harmonic resonance of the 140 GHz frequency of the ECRH system corresponds to plasma

regions where the magnetic field is 5 T (this is true, at least, to a first approximation,

when relativistic corrections are neglected and for perpendicular propagation with respect

to the magnetic field). This means that a configuration with 5 T central toroidal magnetic

field is such that the 1st harmonic of the EC resonance occurs in correspondence of the

vessel center. For a different toroidal magnetic field, such 1st harmonic ’shifts’ back or

forward, accordingly to the approximate 1/R scaling of the magnetic field in a toroidal

magnetic configuration, where R is the major radius of the torus. The simple relation

B0R0 = B(R)R holds true between the central magnetic field B0 at the major radius

of the torus R0 and the value of the field B(R) at the generic radius R. In the case of

FTU, when the central magnetic field B0 is 5.9 T, the EC resonant layer corresponds to

peripheral regions of the plasma. Applying the formula above, the resonance turns out to

be approximately at 17 cm from the center of the camera. Such a high field is not relevant

(generally) for the use of ECRH, since power deposition is usually needed in more central

regions of the plasma. Nevertheless, the preliminary results obtained with 5.9 T central
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Figure 4.5: Inverted density profile of shot #32240 at tree different times. The inversion of

the profile (plasma axis and magnetic surfaces) is calculated on the magnetic equilibrium of the

discharge. The density value corresponding to the O1-mode cuoff is indicated with the red line.

magnetic field were precious for a preliminary analysis of the FTU high density plasma

discharges, in view of the use of EC waves.

The primary evidence, that was immediately found with the use of the Lithium Lim-

iter, was that the operational Greenwald density limit [106] [107], here reported in an

approximate form:

ne,G[1020m−3] =
Ip[MA]
πa2[m2]

, (4.1)

already cited in Chapter 3, could be routinely exceeded at 5.9 T, 500 kA, in strongly

lithized discharges. The quantity a in the expression 4.1 is the minor radius of the torus.

The Greenwald density limit is an operational limit generally found in magnetic confine-

ment devices, especially in tokamak and Reverse Field Pinches. The physical mechanism

acting under this operational threshold has not been understood deeply, so far, but it is

demonstrated with experiments that generally exceeding the Greenwald limit leads to a

disruption and loss of the plasma, in tokamak-like devices5.

Given the typical FTU parameters, the Greenwald threshold, which represents a limit on

the integrated line density profile, corresponds, when the density profile is inverted, to a

5Typically, only stellarator devices, not provided of inductive plasma current, can cross the Greenwald

limit.
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density which in general is even higher than the 2.4·1020 m−3, needed to form an overdense

central plasma region on which to test EBWH. Nevertheless, the overcoming of this limit

opens the possibility to obtain more suitable plasma parameters for the conversion of the

launched O-wave into the SX-wave. The plasma density in FTU is pre-defined program-

Figure 4.6: Central density values of some discharges performed using the LLL, with B0 = 5.9 T

and Ip = 500 kA, versus time. The density value typically corresponding to the appearing of the

O-mode cutoff in the inverted density profiles (considering the typical plasma radius of FTU) is

marked. It is evident that this value is overcome by the peak density of the considered discharges.

ming the opening of apposite gas injection valves. This operation can be performed either

manually or using a feedback control, which automatically refer to a pre-programmed den-

sity profile; sometimes these two regulations are used together, for a more precise control.

However, the resulting plasma density is strongly affected also by other independent fac-

tors, in addition to the gas puffing, like the wall conditioning and the level of recycling or

sputtering at the plasma boundary. Thus, the fine regulation of the density is generally

a difficult operation. In particular, this is true when high density plasma operations are

being carried out with the use of LLL, since the influence of lithium (and in general of

’light’ impurities, like boron) on the regime is very strong.

The Greenwald limit calculated for typical values of the FTU plasma minor radius6, with a

standard 500 kA plasma current, is typically in the range 1.8 ·1020 m−3 6 ne,G 6 2.0 ·1020

6The mean plasma radius in FTU is 28/29 cm, if no particular shrink or elongations are forced with

external magnetic fields.
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m−3. The critical O-mode cutoff density in the inverted profiles, instead, appears in the

central region when the normalized line density is around ≈ 1.6·1020 m−3, hence at density

not too lower than ne,G. The possibility to rise the density at very high limits offers a

larger operating region in the research of a stable overdense regime, since the fine regula-

tion of the density between the cutoff density (lower limit) and the Greenwald threshold

(upper limit) would be more difficult.

Another reason for pushing the density at the highest levels is the increase of the local

Figure 4.7: Normalized integrated line density profiles of three discharges performed at 5.9 T, 500

kA, measured by the central chord of the SIRIO interferometer [25], installed in FTU. Since in

the three discharges the plasma currents and the magnetic equilibria are approximately the same,

the Greenwald limit of one discharge (#30583), in green, is representative also for the others. It is

evident that the Greenwald limit is extensively overcome at 5.9 T of the magnetic field.

density scale length parameter Ln = n/∂n/∂x, introduced in the expression 3.26, which

defines the power transmission efficiency from O-mode to SX-mode, in a slab description.

Equation 3.26 clearly suggests that a small density scale length (namely, a steep profile

slope of the density at cutoff) is beneficial for power transmission. In general, the nor-

malized density scale length k0Ln is more significant, since O-X conversion is strongly

influenced by the frequency. For typical parameters of FTU this quantity is particularly

high, in the range 200 6 k0Ln 6 500. The analytical form of the 3.26 shows the ex-

ponential decay of the transmission power, when Nz 6= Nz,opt and Ny 6= 0, with k0Ln.

In this contest of narrow operational range of launching angles, big effort was spent on
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the research of stable FTU discharges characterized by steep profiles and high density

gradients.

4.3.1 Experimental Activity Dedicated to the Density Limit in view of

the O-X-B Heating

During last campaigns, part of the experimental work for this Thesis has been the study

of the high density regimes, at magnetic fields different from the 5.9 T initially used to

perform the first operations with LLL, and at different plasma currents. The aim of the

experiments was to test high densities at magnetic field lower than the 5.9 T, to obtain a

more centered ECR scenario. The validation of the correct procedures useful to obtain the

stable plasma target with different parameters is important, either from the operational

point of view or to perform reliable predictions and hence to plan O-X-B experiments in

the correct way. The natural choice of the parameters for such experiments was a standard

current of 500 kA and a central magnetic field of 5.2 T. This field is such that the EC

resonance at 5 T corresponds with the plasma center, which in FTU is generally between

3 cm and 4.5 cm (96.5/98 cm of the major radius) from the center of the camera (at

93.5 cm). Nevertheless, lower magnetic fields enable the reach of a perfect O-SX mode

conversion at the cutoff with a lower value of the beam N‖ with respect to the field7.

This point is important, as well, since the highest is the request for N‖ in order to obtain

conversion the more oblique must be the injection of the beam from the launcher into the

plasma. Very oblique injections can generate difficulties, like a stronger deformation of

the beam, caused by diffraction, and stronger interactions with the port side walls. In

addition, injection obliqueness can imply less mode purity of the launched wave, when the

polarization is not properly controlled. Therefore, also lower magnetic fields were tested

in high density plasma discharges during the last campaigns in FTU. When the magnetic

field is lower the resonant layer is displaced from the plasma center, this time in the HFS

peripheral regions. A lower limit of 4.8 T for the central magnetic field was chosen, to

test configurations with the internal absorption of EBWs, while 5.5 T was selected as

the maximum field of interest. The choice of the magnetic fields had to be carried out by

considering, case to case, the mutual positions of the resonant layer and the radial position

of the cutoff layer in the density profiles, where the O-X mode conversion can occur. While

7The quantity Y/Y + 1, in fact, decrease (increase) with the reduction (rise) of the central magnetic

field.
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Figure 4.8: Density limit (green dashed line) found with a programmed density ramp-up (in red),

until the disruption of the plasma occurs. In both the discharges taken as example, performed at

4.8 T, 500 kA, the density limit is found around 2.2 · 1020 m−3 line integrated density, normalized

to the mean minor plasma radius (0.3 m). The oscillations in the density measurement that start

around 0.5 s in both shots, indicate the presence of the MARFE instability. The light purple lines

indicate the Greenwald limit versus time, calculated with the real-time measurements of plasma

current and (major and minor) plasma radius.

the first information can be calculated a priori, the second one could be found only with

the experiments, with an accurate analysis of the density profiles found at different fields.

At first, some discharges has been performed with the use of LLL, aimed to find the density

limit at 4.8 T, 500 kA. In these shots, a controlled density ramp-up was performed to find

the density limit as the one at which the plasma disrupts (Figure 4.8, on the left). Such

a limit was found near 2.2 · 1020 m−3 of the normalized line density signal. Subsequently,

a stable density plateau was found (Figure 4.8, on the right), at 4.8 T, 500 kA, at a

’safe’ value of the density, below the density limit found before. The calculation of the

inverted density profiles, corresponding to the density plateau in Figure 4.9, shows that

the peak central density is near the critical density 2.4 · 1020 m−3 of cutoff, but no stable

overdense plasma region forms at the center, not allowing to obtain the proper plasma

target for O-X-B experiments. From Figure 4.8, it can be noticed that the density limit

found at 4.8 T is in the proximity of the threshold off the Greenwald limit, differently

from what happens for 5.9 T, in which case the Greenwald limit is abundantly overcome,

in lithized discharges, like shown in Figure 4.7. Similar experiments were performed at
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Figure 4.9: The inversion of the density profile performed on the magnetic equilibrium when the

discharge is stable (at 0.5 s, in the example), put on the right, shows that the O-mode cutoff is

reached just by the central peak density, but no overdense regions creates, in particular around

the layer of the 1st harmonic EC resonance. Thus, staying at the results that could be obtained so

far, the configurations with 4.8 T of the magnetic field can not be considered for the experiments

on overdense plasma heating.

5.2 T magnetic field, with two different plasma currents of 500 kA and 700 kA.

With analogy with what has been done in the case of 4.8 T, also for 5.2 T the density limit

was experimentally searched, first. Also in this case, a density ramp-up was programmed,

with the two plasma currents and using the setup of gas puffing already tested with the

other fields, to allow a direct comparison between the shots. Different density plateaus

in the line density, at increasing density values step by step, have been performed in the

plasma at 500 kA of the current, with the same ramp slope, until the disruption caused

by density limit of shot #33719. The same limit has been then found with repetition, in

other discharges with 500 kA of the current. The limit found with this approach almost

coincide8 with the one found in 2009 in a single dedicated shot #32400 (see Figure 4.10),

where a similar density ramp-up was performed and only a different conditioning of the

FTU camera could affect the result. In both cases, with 5.2 T field, the limit turns out

to be higher than in the case of 4.8 T. It occurs near 3.0 · 1019 m−3 over the Greenwald

limit, giving rise to an operational range for the regulation of the density that enables

8For less than ≈1.0 · 1019 m−3 in the line density, probably given by the different conditioning of the

machine.
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Figure 4.10: Density limits found in shot #33719 (light purple), performed in 2010 campaign, and

in shot #32400 (red), performed in 2009, both at 5.2 T, 500 kA. The two limits seem to be slightly

different. The reason for that probably lies in the different conditioning of the machine, which

implies non-identical plasma conditions. As better shown in the zoomed area of the picture (on

the right), the difference between the two limits is ≈1.0 · 1019 m−3 in the line density signal. The

Greenwald limit for the two 500 kA currents, calculated in real-time, is also shown (dark purple

line).

the formation of an overdense central plasma region, surrounding the EC resonance, while

keeping a safe margin with respect to the density limit allowed at 5.2 T. The research of

the density limit was carried out then for higher values of B0, selected in the range of the

relevant fields for the use of EC, and led to the choice of 5.5 T as the highest field to be

tested. In principle, the reason why a higher field is interesting, despite this implies also

stronger requests in the injection of the wave, lies in the fact that a higher magnetic field

is expected, in general, to allow a higher peak density. This would likely implies also a

steeper density profile at cutoff, that is beneficial for the O-X power transmission. Such

a result should be expected, in general, in toroidal confined plasmas [131]. Experimental

evidences from the last campaigns of FTU, in fact, typically show a link between the

value of central field and the maximum density limit that can be reached. Nevertheless, in

practice, this was not the case for the density limit found at 5.5 T, 500 kA, that is shown

in Figure 4.11. The limit that could be reached turns out to be around 2.3 · 1020 m−3

of the normalized line density, which is the same found in the case of B0 =5.2 T. Deeper

analysis is being dedicated to the density limit at this field in the next campaigns. Different



76 CHAPTER 4. THE OPTIMAL PLASMA TARGET FOR O-SX COUPLING

Figure 4.11: The line density of shot #33725, reaching the density limit at 5.5 T, 500 kA, super-

imposed to the one of shot #33719, used to find the limit at 5.2 T, 500 kA. The two limits turn

out to be similar, both around 2.3 · 1020 m−3 despite the higher field of shot #33725 would lead

to expect a higher threshold. The accurate procedure carried out during recent experiments, in

the regulation of the reference density using the gas puffing, is evident in this picture. Identical

increase of the two density ramps, despite the different magnetic equilibria of the two shots, could

be performed. Also the MARFE instability, that can be recognized from the strong oscillations

on the interferometer signal and which typically ’start’ at a certain time during the discharge, has

the same starting point in the two traces, showing a behavior independent on the magnetic field.

plasma currents were also tested, in order to verify the real influence of the current on

the density regime. Currents of 500 kA and 700 kA were used in different discharges and

then compared, all performed at the same field of 5.2 T. The results on the density limit

value, shown in Figure 4.12, lead to conclude an independence of the density limit on the

plasma current, despite the values of the Greenwald operational limits at 700 kA and 500

kA are different. Many attempts to overcome the Greenwald limit with the use of lithium

have been made at current higher than 500 kA, like 700 kA, during last years, but all of

them were without success, when the magnetic fields was lower than 6 T. This limit could

be passed at 700 kA only by increasing the magnetic field to values higher than 6 T.

Density Peaking in Presence of MARFE Instability

Up to now, the more credible reason for the different limits found at different fields is

searched in a relation (still under study) with the different maximum value of the safety
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Figure 4.12: Density limits found for three discharges, with the same 5.2 T field but 500 kA

plasma current (shot #33719, red) and 700 kA (shot #33722, light purple, and shot #33731,

violet). Despite the Greenwald limit is higher at 700 kA (brown line) than at 500 kA (green line),

the disruption occurs at identical densities for the two currents.

factor q at the edge. During 2010 it was demonstrated, in a more detailed way with respect

to the past, that higher densities are only obtained for higher values of q. In particular,

the Greenwald limit has been overcome only for q & 5, like shown in Figure 4.15. It could

be calculated that the use of lithium extended the working density range in FTU beyond

the standard operational limits, but only for safety factors higher than approximately

5. The only difference between shots with different currents, that seems to be evident

from the interferometric signals (see for instance Figure 4.12) concerns the presence of the

MARFE instability, at least the very strong activity phase, when it is also detected by

the interferometer9. The oscillations present in the central density signal of shot #33719,

performed at 500 kA plasma current, are not present in the other two shots, at 700 kA. In

fact, it is demonstrated that this kind of instability, which is more easily obtained with the

use of lithium in the camera and which depends only on the average value of the density,

always appears above a critical density. Such a critical threshold seems to be higher for

9The MARFE instability is not always easily detectable. In general, the oscillations in the interfero-

metric density signals, like the ones visible in the traces of Figure 4.11, at 0.6 s, clearly give evidence of

the presence of MARFE. Nevertheless, a non-oscillating character of the traces does not imply the absence

of MARFE, with certainty.
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Figure 4.13: Two representative discharges, performed at the same field 5.2 T, but at different

currents 500 kA and 700 kA. Both shots have a sustained line density plateau, at the same density

value (top left). At 0.9 s, when the two signals indicate exactly the same integrated density (blue

dotted arrow), the inverted density profiles have been calculated (bottom left). It is evident how

the density peaking of shot #33717, performed at 500 kA, is higher than in shot #33721, at 700

kA. This is a typical difference found between 500 kA and higher fields lithized discharges. On

top and bottom right, the local density of the two shots, versus major radius (abscissa) and time

(ordinate), and calculated on the magnetic equilibrium, are shown. The density peaking factor

is higher for shot #33717 than in #33721, that means steeper slope of the density profiles, more

suitable for O-X power transmission. In the two plots the colors are normalized to different peak

density values: 3.42·1020 m−3 for shot #33717 and 2.77·1020 m−3 for shot #33721. The red and

purple arrows indicate the time at which the profiles in the bottom left have been calculated.
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Figure 4.14: Local density (top) and normalized density profiles (bottom), at different time between

300 ms and 900 ms, of shots #33719, at 5.2 T, 500 kA (on the left) and #33731, at 5.2 T, 700

kA (on the right). It is clear that the stronger density peaking given by the lower 500 kA plasma

current than 700 kA, at any time. In particular, from the normalized profiles, it can be seen how

the peaking factor rises with the time during the shot. The light blue arrows indicate the profile

change with the time. The cutoff density is also shown with the green dotted lines.
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higher plasma currents. For this reason, in the two shots of Figure 4.12, performed at 700

kA, the typical oscillations given by the presence of MARFE are not yet present, at the

performed densities.

As already emphasized, an important aspect to be considered in view of an optimal plasma

target for mode conversion is the local density gradient at the cutoff surface, hence the

slope of the inverted density profiles. From the Mjolhus formula [86] it is evident that a

steeper profile is of course preferable, since it gives rise to less constraints on the precision

of the optimal injection. The analysis of the high density discharges performed at different

currents and in presence of MARFE led to identify a different behavior of the particles

radial distribution, i.e. the shape of the density profile. While the density peaking10 of

Figure 4.15: Some discharges with different combinations of field and currents, having typical

values of the safety factor at the edge, are considered. The value q ≈ 5 seem to be confirmed

in the experiments as the threshold between discharge which density limit is under the respective

Greenwald limit (for lower q indicated with the grey area) and the ones that overcome it (for higher

q, white area). discharges with 5.2 T and 500 kA are near this threshold.

the profiles in absence of MARFE instability seems to be independent from curent and

field, both density and temperature distributions turn out to be considerably modified by

10Already defined above, as the ratio between the peak density of the profile and the mean density:

ne,0/ < ne >.
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them, when MARFE is present. Concerning the temperature, a marked shrinking of the

profiles is always evident, during MARFE, with an edge temperature usually dropping

below 20-30 eV for several centimeters in the peripheral regions of the plasma. From the

point of view of the density, the peaking is clearly influenced by the plasma current, when

MARFE is present. Higher currents tend to lower the density peaking factor, leading

to a lower central peak of the profiles and lower local density gradients on the slope of

the profiles at cutoff, like showed in the examples of Figures 4.13 and 4.14. This lower

density gradient would imply a strong reduction in the conversion efficiency, according to

Mjolhus equation. Since MARFE instability is easier, in general, to be found with lithized

walls, and turns out to be practically always present at the high densities of interest for

our experiments11, the increase of the density peaking found at a lower current can be

considered of general validity, for our aims. Such a result brought to conclude that lower

plasma currents should be preferable in view of EBWH experiments.

Concerning the definition of the best candidate magnetic field for the plasma target, in

Section 4.3.1 we have shown that several discharges with different fields relevant for ECRH

between 4.8 T and 5.5 T, have been performed during last campaigns. We demonstrated

that lower values, like 4.8 T, had to be discarded, since it does not allow to achieve the

overdense regime for the 140 GHz frequency. On the other side, a higher field, like 5.5 T,

turn out not to be convenient, since no effective increasing of the density limit could be

obtained in this case, while an higher value of the optimal wave N‖ at cutoff is requested

for such a field, in order to convert, and a higher field imply also a ’shift’ of the EC

resonance towards more external regions of the plasma, leading to further difficulties in

the achievement of the proper overdense region around the resonance.

These results led to the choice of the intermediate value of 5.2 T as the best field for the

target.

4.3.2 Analysis of 360kA, 5.2 T Discharges from the FTU Database

Since lower currents have been demonstrated to be more suitable for our aims, after the

last FTU campaign of 2010, discharges performed at high electron densities, lower current

and 5.2 T magnetic field were selected among the FTU database, to be analyzed. Despite

these discharges were dedicated to different kind of experimental programs, some high

density shots performed at 5.2 T and 360 kA could be found (see Figure 4.16). The same

11Also when such MARFE activity can not be detected with oscillations in the line density signal.
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procedures of analysis12 were applied to these shots.

Since for experimental reasons, from the end of the density ramp-up, ECRH was used

Figure 4.16: Line density profiles of several discharges, performed for different experimental pro-

grams at 5.2 T, 360 kA, then taken into consideration for the analysis aimed to find the plasma

target for O-X-B experiments (left). The lower Greenwald limit, calculated for the 360 kA cur-

rent, is showed (black trace). From the oscillations of the measurements it is evident that a strong

MARFE instability establishes at this low current and noisily affects the control of a stable plateau.

On the right, the comparison between a typical 360 kA and 500 kA is shown. The plateau obtained

at 500 kA is more stable and the high density results maintained during the shot.

in such shots, the peaking of the profiles could be compared with the previous ohmic dis-

charges only in the density ramp-up phase, when EC heating was not present. This was

done in order to prevent the risk that the EC power could affect the density profiles we

were going to study. In accordance with the results obtained previously, the density peak-

ing factor found at a current of 360 kA tends to be higher than at 500 kA (during a similar

density ramp-up phase), like shown in Figure 4.17. This is true for local density profiles

12The discharges at 360 kA here considered were performed in a non-litized vessel condition; thus, in

principle, they were performed in a different regime with respect to the other shots considered in this

Thesis, all performed with LLL. Nevertheless, the standard procedure of covering the internal walls of

the FTU camera with boron, that periodically is carried out to eliminate ’heavier’ impurities like oxygen,

had been carried out just few days before these discharges. From the past experimental evidences, it is

demonstrated that the influence of two ’light’ impurities like boron and lithium on the plasma regime are

approximately the same, from the point of view of confinement at different currents and of induction of

MARFE instability at the edge. In this sense, such discharges can be compared, at least at a first step,

with the other ones analyzed above.
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calculated at the same line integrated density and for the same plasma dimensions. In

addition to this feature, beneficial for O-SX coupling, a very strong activity of the MARFE

instability is detected by the interferometer diagnostic, which completely affects the qual-

ity of the measurement. The control on the density becomes very difficult, especially after

Figure 4.17: Density peaking factor, calculated in real time with the real parameters of two different

typical shots, at 360 kA and 500 kA, both with 5.2 T of the magnetic field. The trend of the

peaking factor is showed just for the initial ramp-up phase of the density, when the EC power was

not injected in the plasma of shot #32085 yet, in order to compare two identical ohmic conditions.

the density ramp-up, and the reliability of the density measurements drops. Moreover, the

density level of the plateau tends to decrease, after the ramp-up phase. The density turns

out not to be sustained by such a low plasma current, at least, in absence of lithium in the

camera. The result of this is the partial (and sometimes total) compensation of the ben-

eficial effect given by a steep slope of the density profiles at 360 kA. When this tendency

to decrease is particularly marked during the plateau phase, the unstable regulation of

the density sometimes even leads to a non-overdense regime for the 140 GHz frequency, in

some time intervals during the shot. These preliminary results, obtained without the use

of LLL, should in principle prevent the use of such a low current for future experiments on

O-X-B conversion. However, the repetition of such a low current, high density regime at

5.2 T and in lithized conditions, will be of great interest, of course, for the next campaigns.
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4.3.3 The Optimal Plasma Target for EBWH Experiments

In addition to the experiments described so far, where the high density regime has been

obtained through the regulation of the sole gas puffing in the camera, by using apposite

injection valves in both manual and feedback control modes, also a pellet injection system

was used, to increase the plasma density. This technique has been only preliminarily tested

in order to reproduce the optimal plasma target for testing the O-X-B scheme; the first

results obtained so far have been reported in Appendix B.

Figure 4.18: 3D reconstruction of the real density profile of a typical 5.2 T, 500 kA discharge (shot

#33717), selected as one of the best target obtained for O-X-B experiments. The calculation of

the density distribution is based on the real magnetic equilibrium of the discharge. The slope of

the profile is steep and a considerable overdense plasma region for the 140 GHz frequency (region

above the cutoff density level indicated by the blue plane) is centered near the O1-mode resonance

(yellow line), which corresponds at 5 T of the magnetic field.

In conclusion, a central ECR scenario at 5.2 T, 500 kA, like the one shown in Figure 4.18,

turns out to be the most promising, up to now, for our aims, giving rise to a quite consistent

overdense region, centered around the 1st harmonic resonance of the EC waves, where the

EBWs will be expected to be absorbed. High density discharges performed at 5.2 T and

500 kA, have been already routinely produced, with high repeatability and control of most

parameters, and the optimization may continue in this sense. This conclusion is based just

on the results that could be obtained so far: the study of the high density regimes of FTU,
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at 5.2 T and intermediate plasma currents between 360 kA and 500 kA, is of great interest

now, of course. A number of discharges will be dedicated in the next campaigns, in order

to find out an even better compromise between stability of the plasma and density peaking

or, on the contrary, to confirm 5.2 T and 500 kA as the best parameters for the optimal

target for future EBWH experiments.

The work described in the present Chapter also opened several other interesting issues

concerning the confinement of the high density fusion plasmas. In FTU, such a subject

can be studied in detail, thanks to the wide ranges of densities and fields available. Such

investigations have a more general importance, well beyond the purpose of the work carried

out for this Thesis and are presently under study in FTU.
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Chapter 5

Evaluations of O-SX Mode

Conversion in FTU

5.1 Introduction

In order to study mode conversion in FTU from a predictive point of view, the ECWGB

3D beam tracing code for electron cyclotron wave propagation/absorption, based on a

complex eikonal equation for the evolution of Gaussian beams in an inhomogeneous and

anisotropic toroidal plasma [132], developed at IFP/CNR-Milano, has been modified, in

order to calculate the quantities of interest for mode coupling while providing a very high

spatial resolution (0.16 mm step), and then used to perform ray tracing calculations. Sev-

eral simulations have been carried out, in which the data obtained from the plasma during

the experiments described in Chapter 4 were considered, in order to evaluate the injection

angles required to obtain optimal O-SX conversion with the typical FTU parameters.

In the present Chapter the preliminary evaluations on mode conversion obtained per-

forming geometrical calculations in FTU are presented in Section 5.2. The results of the

simulations carried out with the ray tracing code, using real plasma parameters, are re-

ported in Sections 5.3, while the description and the results of the application to the FTU

case of a 1D model of O-SX mode conversion developed for this Thesis and based on a

Gaussian beam-mode analysis, are showed in the following Section 5.3.3.

At the end of the Chapter, in Section 5.4, a 2D model of O-SX coupling available since

recent years in literature and the effects expected with this more realistic description of

the plasma, with respect to a 1D slab description, are briefly reported. The application

87
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of such a model to FTU is presented, by using real high density plasma parameters.

5.2 Geometrical Calculations

The preliminary phase was carried out with geometrical calculations, in order to have a

first approach to the phenomena under study, before the detailed analysis with the ray

tracing code. In this phase, purely equatorial propagation of the rays in the middle plane

of the machine were assumed. For the sake of simplicity, in some cases the plasma density

profiles have been described with analytical functions, with density peak centered on the

axis of the FTU camera1. Such a preliminary phase gave a first idea of the precision

required to study mode coupling in the subsequent work. Then, it was possible to perform

the proper modifications to the ECWGB ray tracing code and to consider the data from

the FTU database with the correct precision.

Figure 5.1: Dispersion relation branches of O- and X-mode, calculated with typical parameters of

FTU. For the sake of simplicity, the considered density profile has been written using an analytical

form. It is shown how a ≈ 39◦ launch is needed to make the O- and X-branches coalesce, thus

obtaining O-X mode conversion. The blue branch on the right is the one of the FX-polarized wave,

which plays no role in the conversion scheme.

The Appleton-Hartree dispersion relation 3.22 for electron cyclotron waves in a cold plasma

1As already said, this condition does not hold true, since generally the internal magnetic surfaces of the

plasma are not concentric and are centered on more external axes.



5.2. GEOMETRICAL CALCULATIONS 89

model, reported in Chapter 3, can be used to calculate the branches of the O- and X-

mode, for a given set of plasma and launch parameters, in the FTU case. For a given

central magnetic field, assumed pure toroidal and scaling radially as 1/R (with R being

the major radius coordinate of FTU), the cold dispersion relation for a 140 GHz wave

propagating in the equatorial plane, is determined just by the local density (given by

the plasma frequency) and by the angle between the wave vector and the antenna axis

(injection angle), which is the complementary angle with respect to the one appearing in

the Appleton-Hartree equation. If, for the sake of simplicity, an analytical fit of the real

density profile is assumed, the dispersion branches for the FTU case can be plotted as

a function of the angle between the propagation vector and the toroidal direction. By

varying this angle, different branches result from the dispersion relation, for O-, FX- and

SX-modes. If the angle between k and B at the launch is optimal, the two branches

of mode and X-mode at cutoff coalesce, giving rise to perfect power transmission at the

O-mode cutoff, like the ones shown in Figure 5.1. By changing the density profiles, then,

different optimal angles are required for conversion. The 1/R scaling of a toroidal magnetic

Figure 5.2: Left: variation of the optimal N‖,opt for different values of the central magnetic field

(from 3 T to 7 T) and of the actual N‖ of the ray for a 30◦ and 40◦ injection into the vessel,

calculated with geometrical calculations on a straight path in vacuum (N = 1). A purely toroidal

magnetic field, varying spatially as 1/R, has been supposed. Right: preliminary calculations of

the O-X power transmission efficiency, calculated at the equatorial plane of the machine, for an

analytical density profile of FTU and for some different central fields, from 5.0 T (dark purple

curve) to 5.8 T (pink curve).

field in a tokamak-like geometry, can be used to plot the critical quantity Y/(Y + 1) to be
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reached as N2
‖ for optimal conversion. Such a function is monotonic and increasing from

LFS towards the HFS, if calculated as function of the radial coordinate and for a given

central field. A higher field implies higher Y/(Y + 1), locally. The straight propagation

(in vacuum) of a ray on the equatorial plane in a toroidal magnetic configuration, is such

that the local N‖ of the ray is not a constant, but is an increasing function of the radial

coordinate as well, for propagation from the LFS to the center. This is a consequence of

the 1/R scaling of the field. The scaling of the local N‖ with the radial position has been

geometrically calculated and led to the following expression:

N‖ = sin(ϑl + Θ0), (5.1)

with:

Θ0 = arcsin


Rl

(R0+r) tanϑl
−
√

R2
l

(R0+r)2 tan2 ϑl
− 1

sin2 ϑl

(
R2
l

(R0+r)2
− 1
)

1
sin2 ϑl

 ,

where R0 is the major radius of the torus (0.935 m in the case of FTU), Rl is the radial

position of the launching point, ϑl is the toroidal launching angle on the equatorial plane

and r is minor radius coordinate. The calculated expression 5.1 was useful to plot N‖,

for different injection angles, together with the local critical value Y/(Y + 1), for different

central magnetic field. The result is shown on the left side of Figure 5.2. The intersections

(i.e. coupling) between N‖ and the critical value are found at launching angles between

35◦ and 40◦, for central fields between 5 T and 5.5 T, if the cutoff radius is assumed in the

range 10-15 cm, as usually holds true in FTU. The range of variation on the intersection

depends on the density profile, which thus must be well approximated, if one wants to

perform predictions with precision. By applying the Mjolhus formula 3.26 for the power

transmission to SX-mode, the same simplified model was used to calculate, for different

values of the central field, the power transmission efficiency for different cases, which is

a Gaussian-shaped function, peaked at the optimal injection angle of the ray, in the slab

plasma (Figure 5.2, on the right).

5.3 Simulations with Real FTU Parameters

The first simulations with the ray tracing code have been performed in order to under-

stand with precision the behavior of EC waves in the configurations such that both O- an

X-mode were in cutoff from the LFS. In Figure 5.3 an example of a ray tracing calculation
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performed for the injection of an O-wave in an overdense plasma is shown. Such a situation

is quite unusual in calculations with propagation codes, since, in general, predictions are

preformed in order to estimate the power absorption of the ECRH waves, in conditions

where the resonances are accessible to the propagating mode. For this reason, the existing

ray tracing code ECWGB was modified increasing the spatial resolution to the level (0.16

mm step) necessary to simulate the propagation path with the required precision.

Figure 5.3: Poloidal view of a typical ray path (in red) in an over-dense plasma. The O-polarized

wave propagates inside the plasma until the X = 1 cutoff is reached. At that point, the wave

is back-reflected, since the center of the plasma is prevented (overdense) for a general injection

angle. In the picture, also the magnetic flux surfaces of the FTU shot (taken from the magnetic

equilibrium of the plasma) are represented with the dotted circular blue lines. In this case, the

z−coordinate is the perpendicular one and R in the major radius of the device.

The first simulations performed with real FTU parameters clearly showed that the refrac-

tion influences the trajectories such that a small angular change at the wave injection into

such a dense medium has strong repercussions on the actual path and on the maximum

depth that can be reached by the ray in the plasma (some examples in Figure 5.4). This is

true for both poloidal and toroidal angles. Thus, the constraints in the injection precision

are very stringent, in an overdense plasma, when the O-mode cutoff has to be approached

by the wave in order to convert to SX-mode.

Assuming the FTU plasma as a slab, with both density and magnetic field gradients on the

radial coordinate, the launching condition for a perfect coupling between O- and SX-mode

is represented with the green ray of Figure 5.5, which represents in 2D the real 3D case.
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Figure 5.4: First results obtained with preliminary ray tracing calculations performed from the

launching point of the EC launcher presently installed in FTU. These calculations were performed

to obtain a first evaluation of the wave paths at different poloidal and fixed toroidal ±30◦ steering

angles, using real high density plasma parameters. The poloidal view of the simulations is on the

left, with y being the vertical component; the toroidal one is on the right of the picture, with

z being the toroidal coordinate. Thanks to this first simulations, it was demonstrated that no

poloidal component could be used in the wave injection to increase the N‖ of the wave, since only

the rays aiming the center of the plasma can reach the O-mode cutoff.

When a wave (here represented only with a singular ray, assumed to be the beam axis)

reaches the X = 1 layer (blue dotted line in Figure 5.5) with a value of the |N‖| which

is lower than the optimal one for conversion
√
Y/(Y + 1), it is back-reflected (red rays).

If the optimal value is reached exactly in correspondence of the cutoff layer, the O-mode

is converted to SX-mode beyond the X = 1 region (green ray). Finally, if the condition

N2
‖ = Y/(Y +1) is satisfied ’before’ reaching the density O-mode cutoff (blue dotted line),

the back-reflection occurs in correspondence of lower densities regions, namely towards

the LFS (yellow rays). In this case the local density corresponding to the cutoff is the one

indicated in Section 3.5.2. The higher is the local N‖ of the wave in the plasma, the lower

is the local density corresponding to the back-reflection point.

Calculations for different toroidal and poloidal launching angles done with ECWGB code

allow to draw maps which represent the real 3D description of what has been sketched

in the simpler two-dimensional case above. The result, obtained for a real shot, can be

represented in Figure 5.6. For the shot considered in this case typical cutoff minor radius

is found at 10-15 cm, namely in the proximity of half the minor radius of the plasma,
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Figure 5.5: The optimal launch for O-SX mode conversion (green) is represented in this simplified

representation of a slab geometry plasma, together with several other non-converting launched O-

waves (red and yellow arrows). If the N‖ becomes too high along the ray path (yellow arrows), the

wave does not even reach the X = 1 layer and the corresponding cutoff becomes the one reported

in Section 3.5.2, re-written again here in the picture, on the right. The only wave which reaches

X = 1 with the optimal value of the parallel refractive index N2
‖ = Y/(Y + 1) is the green one,

which couples SX-mode in the conversion region (blue area).

which is around 30 cm.

In Section 3.5.2, it was shown that the only way to obtain a complete coupling between

the O-mode and the SX-mode, in a slab geometry, consists in satisfying ϑ = 0 and X = 1

together, in the Appleton-Hartree cold dispersion relation 3.22. This can occur only when

the phase velocity vph of the wave is completely parallel to the magnetic field (ϑ = 0 ⇒
Nx = Ny = 0) at the O-mode cut off layer P = 0, namely when X = 1 (⇒ ωpe = ω). The

higher is the toroidal injection angle, the narrower is the range of poloidal angles which

enable the ray to reach the X = 1 region. In a magnetically confined plasma, the condition

of vph ‖ B at X = 1 can be obtained just for a couple of toroidal-poloidal injection angles.

Only such an injection let the ray reach the cutoff with optimal value of the refractive

index 3.24, here again reported:

N2
‖,c =

Y

Y + 1
=

ωce
ωce + ω

. (5.2)
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Figure 5.6: The three different regions, resulting from the ray tracing calculation performed with

real FTU parameters and explained in detail in the text, are shown in the toroidal-poloidal injection

angle map. The region of interest for O-SX coupling is indicated here with the green area. The

purple oblique dashed line indicates a sort of ’section’ of this graphics, which representation is

Figure 5.5, where a correspondence between the colors have been kept for clearness.

being the maximum allowed for N‖ of the wave at cutoff. For higher values the cutoff shifts

toward the LFS. A set of ray tracing evaluations has been performed with launch from

a single position and poloidal/toroidal angles variable in a region around the expected

optimal angle. Looking at the ray tracing propagation and evaluating the N‖ and N⊥

along the trajectory, each run can be classified into three sets, which define three regions

in the poloidal/toroidal injection angles map shown in Figure 5.6.

A first region of launching angles, shown with red dots, is defined by the couples of

toroidal-poloidal launching angles such that the O-wave reaches the density cutoff, where

it is back-reflected. In this region the condition N2
‖ 6 Y/(Y + 1) holds true. The red dots

in the present figure are the generalization in 3D of the red rays in Figure 5.5.

A second area (blue dots) is given by injections such that the above condition still holds

true, in principle, along the entire path of the injected ray, but the X = 1 region can not
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be reached, since the injection is too oblique in some direction and the refraction, implied

by the high density, does not allow the ray to penetrate enough into the plasma. The case

here represented with blue dots has no correspondence in Figure 5.5, since such injections

lie in the additional dimension not considered in the 2D representation of Figure 5.5.

The last region (yellow dots), corresponding to the yellow paths in Figure 5.5, collects all

the cases for which Y/(Y +1) < N2
‖ < 1 at a certain point of the ray propagation. In these

cases, the reflection layer for the O-mode does not correspond to ωpe = ω any more, since

it is shifted to outer regions, with respect to the plasma core. The position of cutoff is

shown in Figure 5.8, as calculated for another discharge of FTU, in a plot where the radial

position of the cutoff layer is shown as function of the N‖ of the incident wave. Thus, the

Figure 5.7: Left: values of N2
‖ and Y/Y + 1 versus minor radius. Right: N‖, and N⊥ versus

minor radius. The computations are performed with the ECWGB code, at optimal launch for O-X

conversion and plasma parameters of shot #30583, where a central field scaled down from the 5.9

T of the shot to 5.3 T has been used for the simulation. Since the injection performed with the ray

tracing is close to the optimal one, at the 140 GHz cutoff radius N2
‖ = Y/Y + 1 (left) and N⊥ ≈ 0.

optimal propagation for perfect O-X coupling at X = 1 layer is defined by the boundary

region between the red and the yellow areas of the map. For these injection angles the

wave approaches the ωpe = ω layer, with a monotonically increasing parallel refractive

index and reaches the maximum allowed parallel refractive index N2
‖ = Y/(Y + 1), with a

totally parallel propagation (phase velocity) at cutoff, giving rise to optimal (or partial)

conversion. The situation described above is shown in Figure 5.7, calculated for a real
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shot of FTU with the use of the ECWGB ray tracing code. It can be seen that the N⊥ of

the wave vanishes at the cutoff layer. The local power transmission efficiency to SX-mode,

Figure 5.8: O-mode cutoff position in the plasma versus parallel refractive index, calculated with

the parameters shot #28510. The optimal N‖ for conversion (green) corresponds to the ’knee’ of

the curve (green arrow).

in the proximity of the conversion region, using the formula 3.26 was calculated using the

N‖ and N⊥ on the trajectory. Hence, it was possible to compute the power transmission

efficiency of several rays launched with injection angles very close to each other, centered

around the direction allowing the maximum values of the ray N‖ at the O1-mode cutoff.

The simulations with the real plasma parameters of a couple of overdense discharges led

to estimate of the power conversion window2 shown in Figure 5.9. As expected, the

conversion window turns out to be very narrow, for a 140 GHz injection (that means

high k0), despite the steep density gradient of the plasma. A 50% drop of the conversion

efficiency is expected for angular deviations . 1◦, in both poloidal and toroidal directions,

as shown in Figure 5.9.

5.3.1 Effects of Density Fluctuations

In the general description of the theory of the O-SX coupling in Section 3.5.3, it has

been anticipated that the density fluctuations given by plasma turbulence can degrade the

perfect coupling, at least when a plane wave propagation is considered. This is the con-

sequence of a ’rough’ cutoff surface caused by plasma turbulences, giving rise to a change
2Already defined as the angular window (at the launching point) such that 50% of the launched power

is transmitted beyond the cutoff.
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Figure 5.9: Angular transmission window, centered on the optimal launching angles, in the case

of two different high density plasma discharges of FTU, calculated with a single ray tracing sim-

ulations, starting from the launching point of the new ECRH launcher. Each level corresponds to

10% of transmission efficiency. The angular window diameter, defining 50% of power transmission,

is around 2◦ in both poloidal and toroidal directions.

in the local density, which affects the effective value of N‖ at the conversion region. Since

such local changes are unpredictable, only a statistical approach, like the one introduced

in [64] and reported in Section 3.5.3, can be considered, in order to estimate the effects

of density fluctuations. The probability density function in the case of FTU could be

obtained with precision only by knowing the parameters which have a role in this ex-

pression, like σx = Ln∆ne/ne, which represents the standard deviation of the fluctuation

amplitude, and λy the poloidal correlation length of the fluctuations. Both the relative

fluctuation amplitude ∆ne/ne and λy should be obtained by reflectometry measurements

performed at the region of the cutoff layer, namely with a 140 GHz diagnostic, which is

not available nowadays in FTU. Thus, typical values for these parameters found in other

machines have been considered in order to estimate the degradation due to fluctuations

presented in Figures 5.10 and 5.11.

5.3.2 Effects of Wave Polarization

Another important issue to be considered in the real case, in order to correctly predict the

amount of coupled power, concerns the purity of the launched polarization. As described

in detail in Chapter 2, the polarization of pure O- and X-modes in a magnetized plasma,
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Figure 5.10: Conversion efficiency versus relative density fluctuation amplitudes and density scale

length Ln, calculated with the statistical model introduced in Section 3.5.3. The region defined by

the FTU parameters, obtained so far with experiments, is shown (orange area).

Figure 5.11: Power transmission efficiency at cutoff, in a slab geometry, weighted with a statistical

description of the turbulences at the conversion region, versus the density scale length Ln, calcu-

lated for a single ray propagation. A poloidal correlation length of 3 cm has been assumed. The

three curves corresponds to different relative fluctuation amplitudes ∆ne/ne. The typical range of

Ln for FTU is indicated with the orange region.
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gradually changes, from linear, for propagation at 90◦ across the field, to perfectly circular

(co- or counter-clockwise), when the propagation is directed along the field lines, with

N ≡ N‖. This means that when an O-polarized wave is launched at oblique angle, the

existing deviations of the polarization from the one with the correct ellipticity for given

propagation angle and local magnetic field, must be known, in order to estimate the

amount of power lost because launched in X-mode. Every polarization mismatch at the

launch, from the perfect pure mode coupling in the plasma, implies a weighting coefficient

< 1 to be considered in the overall efficiency of the O-SX conversion. The amount of

radiation which couples (F)X-mode at the plasma edge is totally reflected at its ω = ωR

cutoff, in the LFS of the plasma, and increases the stray radiation level in the vessel.

Part of such a stray components may mode convert from O- to X-mode, because of the

reflections at the vessel walls and may participate partially to the overall plasma heating,

mainly reaching the non-overdense regions. The estimation of all these processes is beyond

the scopes of this work, requiring dedicated statistical and geometrical models developed

explicitly for the FTU case.

Presently, not all the ECRH lines of FTU have the possibility to launch elliptical wave

Figure 5.12: Normalized power content in the O-mode versus the angle ϑkB between the wavenum-

ber and the magnetic field, for a linearly polarized wave. The different curves corresponds to

different values of the normalized electron cyclotron wave Y . In the case of FTU, the red curve

(Y = 0.8 at the plasma-vacuum threshold) is the one aiming at the cutoff with the angle between

k and B 50◦ 6 ϑkB 6 55◦, corresponding to the launch angle 35◦ 6 ϑl 6 40◦.

.
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polarizations; but some can only launch linearly polarized beams into the plasma also in

the case of oblique injection. In these cases pure O- and X-modes can be injected only for

90◦ injections with respect to the magnetic field. When the launch of a linearly polarized

wave is performed at angles different from 90◦ in the field, the efficiency of mode coupling

are less than one, depending from the injection angle and the local magnetic field at the

plasma edge. The ratio of the power content in the O-mode to the total power content in

the incident linearly polarized wave has been calculated (see Figure 5.12), accordingly to

equation 3.33. Typical local value of the parameter Y at the plasma-vacuum threshold,

for instance at 5.2 T of the central magnetic field, is around 0.8. In Figure 5.12 it is shown

that for a linearly polarized wave injected with these conditions at the oblique angles

needed for O-SX coupling in FTU, the power losses to the unwanted mode are around

30-35%; this power can be considered as stray radiation.

The more appropriate angle for the polarization launched by the optics of the launching

system, was also verified experimentally on the plasma with dedicated plasma discharges

with 6 T central magnetic field. Since the resonant layer at 5 T is still in the plasma, while

Figure 5.13: Poloidal view of the wave accessibilities of the X-mode, where the green regions are

the prevented ones. The O-mode had no problem with accessibility during the performed tests on

the plasma, since the density was well below the one of cutoff. Thus, it was completely absorbed

at the resonance. The FX-mode, instead, was completely reflected at its low density cutoff (green

region on the right) and became stray radiation in the vessel.

the X-mode cutoff being in front of the port end of the launcher, all the power coupled to
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O-mode can directly reach the resonance and be absorbed, while the component coupled

to (F)X-mode is back reflected at its ω = ωR cutoff layer and becomes stray radiation.

The launch configuration used for these tests is represented in Figure 5.13. The signals of

Figure 5.14: Signal detected by the sniffer probe #1 (located at the port #12 of the FTU camera),

proportional to the stray radiation amount in the vessel. It is evident that the signal is lower in

shot #30603 than in the other two shots, during which the encoder controllers of the polarizating

optics where slightly changed, in two opposite directions, with respect to the nominal encoder,

that has been used for the wave polarization control in shot #30603. The mean values of the noisy

signals are marked with the three horizontal lines, with a color correspondence with the stray signal

traces.

the stray radiation power detected by sniffer probes located at different toroidal positions

into the FTU vessel, are shown in Figure 5.14 for three different discharges performed with

a 90◦ injection of an O-wave. In shots #30602 and #30605 the rotation of the polarization

direction has been slightly changed3, with respect to the one used in shot #30603, where

the minimum stray radiation was detected, providing the minimum of FX-mode coupling

(corresponding to the stray radiation) occurring in this case. The check of the stray

radiation signal can similarly give an information on the effective coupling during O-X-B

3Since the optic is corrugated, its rotation gives rise to a rotation of the wave polarization.
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experiments.

5.3.3 O-SX Mode Conversion in a Slab Geometry based on a Gaussian

Beam-Mode Analysis

The predictions of O-X conversion, carried out up to now in a slab geometry, considered

only the propagation of a plane wave. Since predictive models of conversion of a Gaussian

beam in a slab model were not found in literature (apart from for the one that will be

introduced in the next Section, developed using a 2D description for the coupling rather

than a slab geometry), we developed in the frame of this Thesis a way to evaluate the

expected coupling in case of paraxial propagation of a beam in the Gaussian beam-mode

decomposition. Theoretical background for this issue could be found in [133].

A general solution to the wave-equation can be mathematically written as the superposi-

tion of infinite plane waves, propagating in infinite possible directions. This means that

such a general solution is the integral over an angular spectrum of plane waves, which

amplitude on each direction plays the role of a sort of weighting function for the consid-

ered component of the spectrum. A paraxial beam can be represented as a superposition

of independent beam-modes, which can be demonstrated to follow from the angular spec-

trum of plane waves. This enables to ’construct’ a real beam structure, starting from a

’basis’ of beam-modes, properly weighted. The evaluation of O-SX mode conversion of a

generic real field distribution (in the specific case of FTU it is the simple case of a generic

Gaussian beam) is made by summing infinite plane waves propagating on infinite direc-

tions, and applying the well known formula of mode conversion in a slab description to

the real FTU plasma and of the beams launched by the ECRH antenna. The conversion is

being estimated and opportunely ’weighted’ for each component of the angular spectrum,

first, and consequently integrated over the infinite components of the angular spectrum,

in order to obtain the overall conversion efficiency.

Let us assume the direction of propagation of the beam on the z-axis and the two orthog-

onal directions on x− and y−axes. The integral over an angular spectrum of plane waves,

defining the general solution of the wave equation, can be written as:

ψ(x, y, z) =
∫ +∞

−∞

∫ +∞

−∞
A(kx, ky) exp−i(kxx+ kyy + kzz)dkxdky. (5.3)
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The quantity A(kx, ky) defines completely the field for all the z > 0 regions. The mathe-

matical form of the field on the z = 0 plane, written as:

ψ(x, y, 0) =
∫ +∞

−∞

∫ +∞

−∞
A(kx, ky) exp−i(kxx+ kyy)dkxdky, (5.4)

leads to define A(kx, ky) as the inverse 2D Fourier Transform of ψ(x, y, 0), i.e. its spatial-

frequency spectrum:

A(kx, ky) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
ψ(x0, y0, 0) exp i(kxx0 + kyy0)dx0dy0, (5.5)

where x0 and y0 are the x and y coordinates at the z = 0 plane.

Making the paraxial assumption for propagation, which consists in the assumption that

kx � k and ky � k, the field ψ(x, y, z) ≡ u(x, y, z) exp−ikz can be re-written in the

approximated form:

ψ(x, y, z) = exp−ikz
∫ +∞

−∞

∫ +∞

−∞
A(kx, ky) exp[i(k2

x + k2
y)z/2k] exp−i(kxx+ kyy)dkxdky,

from which:

u(x, y, z) =
∫ +∞

−∞

∫ +∞

−∞
A(kx, ky) exp[i(k2

x + k2
y)z/2k] exp−i(kxx+ kyy)dkxdky,

turns out to be the Fourier Transform of:

A(kx, ky) exp[i(k2
x + k2

y)z/2k]. (5.6)

In order to describe a beam-like field distribution, the Gauss-Hermite functions:

ψHn(x) = exp
(
−x

2

2

)
Hn(x)

are very useful, where Hn(x) are the Hermite polynomial of grade n.

Since the spectrum of plane waves A(kx, ky) is the inverse 2D Fourier Transform of

ψ(x0, y0), which can be de-composed into the Gauss-Hermite functions, using the proper-

ties of the Fourier Transform, it can be demonstrated that:

A(kx, ky) =
∑
n,m

Cnm
(i)n+m

2π
· ψHn

(√
2kx
wkx

)
· ψHm

(√
2ky
wky

)
, (5.7)

where the beam width factors in k−space wkx and wky are equal to 2/w0,x and 2/w0,y,

and:

Cnm =
∫ +∞

−∞

∫ +∞

−∞
u(x0, y0) · ψHm

(√
2x0

w0,x

)
· ψHn

(√
2y0

w0,y

)
dx0dy0.
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Coming back to the FTU case, the electric field distribution in the launched beam is

assumed to be in the following Gaussian form:

u(x0, y0) =

√
2

π(w0,xw0,y)
exp−

(
x2

0

w2
0,x

+
y2
0

w2
0,y

)
, (5.8)

such that
∫ +∞
−∞

∫ +∞
−∞ |u(x, y)dxdy| = 1. Assuming the typical waist of the circular (i.e.

non-astigmatic) beams launched in the ECRH system of FTU, w0,x ≡ w0,y = 12 mm, the

spatial frequency spectrum 5.7 of the wave can be calculated for this specific case in the

simplest way, since only the first order beam-mode plays a role in the description.

Assuming pure ordinary polarization of the considered Gaussian beam, the Mjolhus for-

mula 3.26 for the transmission to SX-mode can be applied to every singular component

of the spectrum:

Tk(kx, ky) = exp

{
−πk0Ln

√
Y

2

2(1 + Y )

N‖,opt −
√
N2 −

c2(k2
x + k2

y)
ω2

2

+
c2(k2

x + k2
y)

ω2

}.
where the quantities Ln and Y (and hence N‖,opt) are the ones of the experimental density

and magnetic configurations of the FTU overdense plasma. The refractive index N here

introduced in the formula, coincides with N‖,opt, for the component with null components

kx and ky, orthogonal with respect to the propagation axis, i.e. the central axis of the

beam. This mean that such beam axis is considered on the optimal direction for the

single ray conversion, and all the other components of the k vector on the x− and y−axes

represent a deviation from the optimal propagation, since are both orthogonal. In this

way the conversion of the real beam is calculated assuming the optimal aiming of the wave

to the conversion region4. Thus, finally, to make an estimation of the overall conversion

TO−SX,G of the real Gaussian beam structure (5.8) in a slab description of the plasma, all

the conversion efficiencies, relative to the single spectral components, have been properly

’weighted’ and normalized with the spectrum, and then integrated:

TO−SX,G =
∫ +∞

−∞

∫ +∞

−∞
Tk(k

′
x, k

′
y)

A(k
′
x, k

′
y)∫ +∞

−∞
∫ +∞
−∞ A(k′′x , k

′′
y )dk′′xdk

′′
y

dk
′
xdk

′
y. (5.9)

The quantity (5.9) has been calculated using the real beam shape and waist. The perfect

injection, in this case, is the one such that the beam axis turns out to be on the direction
4The model here presented holds true under the approximation of propagation in vacuum, since no

refraction, given by the presence of the plasma, is taken into account for the components of the k−spectrum

of the Gaussian beam approaching the cutoff layer.
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of optimal aiming at the conversion region, found previously with the single ray tracing

simulations. The optimal injection of such a Gaussian beam in the FTU plasma gives:

TO−SX,G ≈ 0.43 (5.10)

as the resulting conversion efficiency. According to this model, the result 5.10 has to be

considered as a maximum limit for the overall power transmission efficiency to be expected

in FTU, with such a beam waist and with the plasma parameters (density gradient at cut-

off) obtained so far with the experiments, thus when a more realistic field distribution is

considered.

When a beam reaches the conversion region, another factor that is expected to have an

influence on the coupling is the curvature of the beam phase front with respect to the

curvature of the plasma cutoff layer. The optimal beam should have a (negative) phase

front curvature such that a perfect matching with the (positive) curvature of the cutoff

layer might occur. According to the Gaussian description of wave propagation, such a

situation occurs only in the case that the beam minimum waist is inside the overdense

plasma region. This is not the case of FTU, since the optics of the launching system are

such that the minimum waist of the propagating Gaussian beam is out of the plasma,

close to the antennas. Hence, the curvature of the beam phase front at the conversion

region is positive and a geometrical mismatching between the front and the plasma sur-

face is expected, affecting partially a description of the field based on plane waves. No

quantitative predictive model could be developed in this sense, but it will be interesting to

verify experimentally the influence of different phase fronts5 on conversion. It should be

stressed that the spatial frequency spectrum 5.7 of the Gaussian beam depends uniquely

by the beam waist u(x0, y0), and not by the local geometrical dimension u(x, y) of the

beam. Thus, the influence of the angular spectrum of the beam (fixed by the geometry

of the minimum waist w0 of Gaussian) can be described with the model above, while the

implications of curvature mismatches of phase front and cutoff layer (given by local beam

and plasma parameters) may introduce a further influence on conversion. This is because

the two effects have a different nature, despite they are not completely independent issues,

since a narrower waist w0 implies a higher divergence of the field, which implies a larger

surface of the phase front playing a role in the curvature mismatches.
5The change of the local phase front at cutoff can be obtained by changing the position of the beam

waist back and forth along the path, accordingly to a Gaussian description of beam propagation. See

reference [105] for details.
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5.4 Prediction of O-SX Conversion in FTU with a 2D Model

In Section 3.6, recent bi-dimensional models of O-X conversion available in literature,

whose development started during the last years, were presented. Such models, based on

a more realistic description of the density and magnetic gradients of the plasma, have been

applied to the case of FTU. In order to check the results presented in the previous Sections,

based on a slab description of the plasma, or, in case, to predict the difference arising from

a two-dimentsional description, in the FTU case. The modified ECWGB ray tracing code

Figure 5.15: On the left: reconstruction of the O- and X-mode cutoff surfaces, respectively ε‖ = 0

(red) and ε+ = N2
‖ (blue), at the conversion region, performed with the real parameter of a typical

FTU discharge. The camera of the machine is the thick orange circle. The grey rectangular region

around the intersection of the two layer is zoomed in the picture on the right. The angle 2α

between the two cutoffs is indicated in the picture on the right.

was used in this case, to simulate the propagation of the rays in the overdense plasma

target and calculate the needed parameters at the conversion region. As a first step, the

real directions of the magnetic and density gradients in FTU have been considered and

a more realistic plasma geometry has been constructed. The main parameters at the

basis of the model, like L5 (3.41) and the α angle, defined by equation 3.42, have been
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Figure 5.16: Contour plot of power transmission efficiency versus the vertical (y) and toroidal (z)

beam waist, calculated for two discharges of FTU, using the 2D model of O-SX conversion presented

in this Chapter. Optimal aiming of the beam to the conversion region has been considered for the

plots. Each level corresponds to 10% of power transmission efficiency.

calculated for the FTU plasma. The 2α angle between the ε‖ = 0 and ε+ = N2
‖ cutoff

surfaces, defined in Figure 3.7, turned out to be very small, as a consequence of the high

field needed to operate at 140 GHz (see Figure 5.17). Typical values of the α angle in

FTU are around 0.5◦-1◦. It can be demonstrated [99] that the 2D model predicts results

close to the more approximated 1D description6 if:

|α| � min
[
1,
L∇
Ly

]
= min

[
1,
Ln
Ly

1√
k0Ln

4

√
ωce
2ω

]
(5.11)

holds true (where angles are measured in radians), where Ln = ne/(∂ne/∂r) is the usual

radial density scale length and Ly is a characteristic width of the beam in the y−direction,

which, in our case, can be considered to be approximately the one of the local wy of the

beam. In FTU, the relation 5.11 turns out to be satisfied. Thus, in principle, the non-

parallel nature of the O- and X-mode cutoffs is not expected to have much influence

on conversion, as well as the asymmetric effects implied by a 2D geometry (presented

in Section 3.6) should not be too strong. Nevertheless, the application to FTU of the

2D model turned out to be interesting in any case, not only to evaluate the entity of the
6Namely, the non-parallel nature of the two cutoff surfaces can be neglected.
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expected two-dimensional effects in FTU, but, in particular, in order to make a comparison

between the results obtained using this model with the ones of the mono-dimensional model

developed in this Thesis and presented in the previous Section, since they are both able to

consider, with different approximations, a real spatial distribution and a angular spectrum

of the beam7, even if they are derived in different ways.

Calculations in the frame of the 2D model of O-SX coupling, with the FTU parameters

Figure 5.17: Scaling of the α angle with the magnetic field, at different poloidal positions, defined

by the central γ angle of Figure 5.15 (left). On the right: circularity of the two cutoff surfaces

ε‖ = 0 and ε+ = N2
‖ , calculated with real FTU parameters, at different γ angles, defined by the

ratios between the x and y components of the radial unitary vectors perpendicular to the surfaces.

It is shown that the two real cutoff surfaces are not perfectly concentric and hence intersect at a

certain point, depending on N‖.

have been performed assuming both optimal (see Figure 5.16) and non-optimal aiming

of the beam to the conversion region, in order to estimate the entity of the asymmetries

predicted by such a model and not expected in a mono-dimensional description. It must be

noted that, according to the results of the 2D model presented in Section 3.6, the change of

either the beam propagation, or the toroidal field sign or the poloidal injection/detection

point symmetrically with respect to the equatorial plane, implies a change of the sign of

the α angle, between the two cutoff surfaces. Therefore, since all of them are equivalent

from the point of view of the resulting power conversion efficiency, an odd number of these

changes with respect to the optimal configuration of signs imply a non-optimal conversion

(see equation 3.45). The two-dimensional model reduces to a mono-dimensional one, in

the limit of α going to zero (i.e. when the O- and X-mode cutoff surfaces become parallel,

like in a slab description). Such a reduced mono-dimensional approach has been then
7Despite not the curvature of the phase front
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applied using the typical parameters of the overdense plasma of FTU. As expected, the

Figure 5.18: O-X conversion evaluations based on the 2D model versus different values of waist

sizes wz (toroidal direction) and wy (vertical direction), for an incident Gaussian electric field

distribution E ∝ exp(−z2/w2
z − y2/w2

y). Green and blue lines represent the cases of optimal

and non-optimal directions of the beam respect to the magnetic field, i.e. different signs of N‖
or, equivalently, symmetric poloidal launching points with respect to the equatorial plane of the

machine. Red lines show the results of the 2D model reduced to 1D (α→ 0), where the influence

of the beam spectrum on the conversion is considered. The case of FTU (wy ≡ wz =1.2 cm)

is represented by the red dots and yellow arrows, showing an agreement with the results of the

previous Section.

resulting asymmetries of the 2D description applied to FTU, using typical real values of

the α angle, turn out to be very small, while the results of the reduced 1D case (in the

limit of null α) are in the middle of the two-dimensional asymmetries predicted for the

power conversion efficiencies [134]. The results of these computations are shown in Figure

5.18, where green and blue lines represent the asymmetric conversions predicted by the

2D model applied with a typical finite α angle of FTU plasma, while the red lines show

the results for the case α→ 0.

According to what are the expectations typical of a 2D approach [99], the scaling of the

coupling efficiency as function of the wz of the beam waist, at a fixed wy (left side of

Figure 5.18), is slightly different from the scaling predicted by varying wy, at a fixed wz

(right side of Figure 5.18). The dimensions wy and wz here reported are intended as

the dimensions of the minimum waist of the incident beam on the two orthogonal y−
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and z−directions; hence, the dimensional parameters originating the k−spectrum of the

Gaussian beam. The expected differences in the power conversion efficiency, for optimal

and non-optimal launching configurations, are just some percent (below 5%) around the

conversion region of the circular waist of the typical beam launched in the ECRH system

of FTU (wy ≡ wz =1.2 cm). For this reason, from an experimental point of view, the

effects of a 2D treatment are not easily detectable in EBWH experiments, which involve

the application of the direct O-X-B mode conversion scheme. Nevertheless, the detection

at the proper view angle, of the EBE radiation originating from a reverse B-X-O scheme,

performed at two poloidally symmetric positions with respect to the plane of the machine,

will be of great interest. In fact, the more stable configuration of a purely ohmic overdense

plasma target (namely, when no active heating occurs), together with the possibility to

detect two different signals, by performing a contemporaneous measure during the same

shot interval, are expected to give chances of measuring such small asymmetries.

The 2D average conversion efficiency (red lines in Figure 5.18) for an O-polarized Gaussian

beam with circular waist w0 =1.2 cm to SX-mode is predicted around 42%. Such result

is in agreement with the value TO−SX,G ≈ 0.43 found in Section 5.3.3, by using the 1D

model with the beam-mode analysis developed in the same Section.



Chapter 6

The New Front-Steering EC

H&CD Launcher

6.1 Introduction

The results of the evaluations of O-X mode conversion performed with the FTU plasma

parameters presented in Chapter 5 show that with the ECRH antenna now available the

wave can not be launched with the conditions required to perform O-X-B mode conversion

experiments in FTU.

The first predictive evaluations of this Thesis have been carried out in coincidence with

the beginning phase of the design of a new front-steering EC H&CD launching/receiving

antenna, to be installed in FTU, as an additional launcher (a description of the present

EC system and its limitations for EBWH experiments will be given in Sections 6.2 and

6.2.1 of this Chapter).

This fact allowed to perform the design taking into account the needs of the foreseen

experiments on O-X-B heating, presented in Chapter 5. The contribution given to the

design and construction of this new EC millimeter-waves launcher for FTU, presented in

Section 6.4, has been part of the experimental work of this Thesis. Such a contribution has

been focused to the realization of the project, with an interest which has been beyond the

focus on the O-X-B experiments. Some effort has been spent on technical issues, like the

ones presented in Sections 6.4.3, 6.4.5 and 6.4.6, which are not directly related to the aims

of the Thesis but concern the functionality of the system. However, the work carried out

for the new launcher will allow to perform the O-X-B coupling and the overdense plasma

111
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heating experiments.

6.2 The Present ECRH Launcher of FTU

The present ECRH system of FTU tokamak (R0 = 0.935 m, a = 0.30 m, B0 68 T, Ip 6 1.6

MA, pulse length tpulse ≈ 1.5 s, in Figure 6.1) is composed by four 0.5 MW gyrotron

sources, each one generating Gaussian shaped microwave beams at the output [135]. Four

matching optic units, formed by a focusing mirror and two corrugated polarizing optics,

acting on the beams emitted by the four gyrotrons, provide for spurious modes filtering

full polarization control and alignment for proper injection into the transmission lines.

The waveguides sections are circular, with a 88.9 mm diameters and the input shaping

optics produce a beam with a 28.6 mm waist at the entrance of the line, for maximum

coupling of the HE11 mode in the waveguide1, with around 98% efficiency. The lines,

connecting the sources to the tokamak hall, are 40 m long each and are truncated at the

end, to let the beam reach the matching mirrors of the optics of the launcher.

The electron cyclotron launching/receiving system, is constituted by four launching mir-

rors (one for each line) and their mountings, put under vacuum but on the external side

of the vessel. The four mirrors are shaped in such a way to provide a Gaussian beam with

Figure 6.1: View of FTU tokamak in the torus hall (left) and visible light detection from a plasma

discharge, from inside the vessel (right).

waist in the plasma region in the range of 20-21 mm. The peak power density on the beam

axis at the plasma edge is ' 60kW/cm2 for each line, giving the possibility to reach an
1The HE11 mode features the more Gaussian-like electric field distribution among the propagation

modes.
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average heating power densities up to 100W/cm3, with all the beams depositing power in

the same plasma volume [136].

Since at the time of the installation of the system no real-time control on the movements

of the steering mirrors was needed for experiments, the system was designed such that

the launching mirrors can be moved only shot by shot, with no real-time control system

able to regulate automatically the injection angles on the basis of plasma parameters, and

with a rotational speed of the mirror not sufficient to move them during the ECRH pulse

length (0.5 s). This fact, together with the narrow port dimensions of 80 mm in width

and 428 mm in height and the need to launch the four beams from a single port, led

to the use of large launching mirrors located outside the port, thus far from the plasma,

able to launch the beams with the smallest size in the plasma. This launcher is mounted

at equatorial position, in correspondence of the 12th port of the machine vessel, which

is composed by 12 identical sectors. The beams, coming out from the truncated waveg-

uides, reach the matching mirrors, which are positioned into two vacuum vessels (upper

and lower), each one provided with RF windows. The beams coming from two lines are

coupled to the optics located in the upper box, while the other two lines are matched to

the second (lower) box. The whole antenna is rigidly fixed to the camera of the machine,

preserving the capability to follow either radially or vertically the contractions (typically

of 5 mm) caused by the temperature variation due to the liquid nitrogen cooling during

the operations of the machine.

The beam steering is performed by four mirrors, with 250 mm diameter ellipsoidal shaped

surfaces, tilted independently one from the others, in both toroidal and poloidal directions.

The different poloidal scanning capabilities for two of the four mirrors at the vessel center

are showed in Figure 6.2.

While the poloidal scan can be continuous, due to the port narrowness in the horizontal

direction, a continuous toroidal beam steering in a reasonable angular range is not achiev-

able. For this reason the toroidal scan is performed by exploiting the reflections of the

beam at the internal port walls. This has been made possible by inserting two reflecting

plates (3 mm thick) on the lateral sides of the port, covered with 1 µm thick gold plates, in

order to enhance their reflectivity while reducing power losses (and hence thermal stresses

during the pulse). In such a system, different toroidal tilts on the launching mirrors imply

a different number of reflections at the inner port walls experienced by the beam, which

hence penetrates the plasma with a corresponding toroidal injection angle, at the end of
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Figure 6.2: Poloidal view of the ECRH launching system, presently installed on FTU. The angular

ranges of one of the central (green) and external (red) steering mirrors are shown.

the port. For a discrete number of reflections, ranging from 0 to 3, each line can corre-

spondently inject EC beams into the plasma with respectively 0◦, ± 10◦, ± 20◦ and ± 30◦

toroidal angles2, in such a way that the poloidal injections is still possible independently

from the toroidal one.

For the sake of simplicity in the calculations, when simulations are performed using a

ray tracing code (i.e. when the divergence of the Gaussian beam is neglected), the ray

path in vacuum with reflections inside the port can be replaced with a linear propagation,

starting from the actual launching point at the mirror center and with a remote injection

angle corresponding to the real one of the ray at the plasma edge. These angles have been

calculated for the four mirrors and for the possible launching angles of the launcher, and

are shown in table 6.1. The correct tilt3, which is performed using calibrated encoders, is

firstly transmitted to the actuators and subsequently to the mirrors, through the vacuum

2We will show that the discrete toroidal steering capability of the present EC launcher of FTU, together

with its limited possibility given by a maximum injection angle of ±30◦, represent a crucial limitation in

view to perform experiments on O-X-B conversion.
3Which takes into account also a 7◦ 35

′
angle between the two reflective walls inserted in the port.
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Corresponding Injection Angles

? ±10◦ ±20◦ ±30◦

M1 −M4 ∓4.54◦ ±8.95◦ ∓13.2◦

M2 −M3 ∓4.73◦ ±9.35◦ ∓13.8◦

Table 6.1: Steering angles for the linear propagation from the remote position of the four mirrors to

the plasma, corresponding to the injection angles from the end of the port, after the ray bouncings

at the port walls. These values have been used for performing calculations with the ray tracing

code for propagation in the present launcher of FTU.

flange, with the use of bars and bellows which convert rotation to a linear movement at

the mirrors (and vice-versa). For all the steering angles, the tilts are such that the beam

comes out at the center of the port, in order to minimize its interactions with the port

edges.

6.2.1 Limitations of the Present Launcher for Experiments on O-X-B

Mode Coupling

The present ECRH launcher of FTU was installed on a single equatorial port of the ma-

chine and was designed to inject four independent (140 GHz) beams, steerable continuously

in poloidal direction but just in a set of fixed toroidal angles. The limitation to ± 30◦ in

the maximum toroidal steering and the discrete capability of the system in the launch,

are not compatible with the fine regulations needed to perform O-X-B experiments and

demonstrate EBWH in FTU. As shown in Chapter 5, the required toroidal angles pre-

dicted for the typical plasma parameters of FTU turn out to be in the range 38◦ - 40◦.

Such steering angles can not be reached with the present launching system, which is then

capable to provide a parallel component of the wave refractive index which is too low

for the O-SX coupling. Geometrical computations were performed, in the beginning, in

order to evaluate the increase of N‖ along its path towards the plasma center (see Figure

6.3). Also the possibility to launch the beams not exactly from the center of the port exit

(slightly changing the toroidal angle of the launching mirror) was considered, to enhance

the N‖ of the launched wave. A simplified model was developed to evaluate these launching

conditions (see Figure 6.4), using Mathematica R© software. Several alternative launching

configurations could be studied, where the beam passes from a non-central point of the
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Figure 6.3: Increasing of the N‖ that, in principle, can be obtained at given circular surface

(represented with the blue circle on the left) by using a poloidal component in the ray injection,

versus the central angle γ. The computations are performed assuming a fixed toroidal component

of the refractive index, a straight path of the ray and a purely toroidal magnetic field scaling as

1/R.

port exit. Nevertheless, since the maximum toroidal injection angle that can be reached

with this technique is not higher than ≈ 31.5◦, while a more risky launch is performed,

from the point of view of the interaction of the beam with the side-walls at the port exit,

also this option had to be rejected.

In addition to the limitation in the maximum injection angle, also the discrete capability

of the system does not enable to provide the correct direction of the beam for conversion

at cutoff. The O-X (X-O) conversion window to be reached with the ray launch has been

demonstrated to be very narrow (∼ 2◦× 2◦) and centered around couples of very precise

(toroidal and poloidal) angles. Such a discrete launching capability, with a 10◦ step, can

not satisfy the needed injection fine tuning, at all. For these reasons, an O-SX mode

coupling (and consequently EBWH at the plasma center) can not be performed in FTU

tokamak, using the present ECRH system.

6.3 Motivations for a New ECRH Launcher

In addition to the limitations of this launcher in view of EBWH experiments, recently its

features were not suitable for other applications conceived for modern tokamak, like ITER,

despite the present system has been used with success for a large number of experiments,

up to now. The limitations in the toroidal injection of the beam, together with a launch

control performed not in real-time during the shot and the remote-steering configuration

of the optics, prevent experiments aimed to validate schemes, techniques, and algorithms
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Figure 6.4: Real scale model of the present FTU launcher, made using Mathematica R© software.

The two oblique side walls of the launcher, used for beam bouncing, and the FTU camera are

represented. In the picture, an example of wave injection at −30◦ is shown, exploiting three

bounces of the beam at the internal gold-covered walls of the launcher. In the example, the beam

axis passes from the center of the port aperture. Such condition is usually chosen in FTU, to

minimize the interactions of the beam sides with the port walls. This geometrical model have been

used to evaluate other possible launching configurations, able to increase the N‖ of the beam in

the plasma, in view of O-X-B experiments.

to control MHD instabilities with EC H&CD so important for ITER. These experiments

require fast-steerable mirrors in the launcher of course, in addition to an increased toroidal

capabilities needed for the O-X-B experiments. The NTM stabilization requires algorithms

developed to detect and stabilize magnetohydrodynamic instabilities [47], [48], [137]. The

possibility to change the location of the power deposition following the magnetic island

in real-time is necessary, in order to test such an ITER-relevant NTM control system in

present devices, like FTU. This requires, for instance, that the poloidal steering mirror

drive is controlled automatically by a feedback control loop.

Finally, other important experiments, already carried out in FTU during the past cam-

paigns, could not be implemented without a time-dependent current profile shaping, ob-

tainable performing local ECCD whose location is controlled in real-time during the evo-

lution of the plasma. Indications of crucial importance for ITER may derive also from

repetition of such experiments with a feedback controlled current drive.

Therefore, the interest in demonstrating EBWH at 140 GHz in the FTU plasma, via O-X-
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B mode conversion, together with the other scientific motivations described above, with

particular attention to the test and validation of several strategies proposed for ITER,

aimed to control MHD instabilities, brought to the design and construction of a new EC

H&CD front-steering launcher, at IFP/CNR Milano. This new system is characterized by

an extended versatility in term of either beam injection or dimension control, with respect

to the present one. Its installation on FTU tokamak is scheduled for the beginning of

2011. The active participation to the work carried out for the design and construction

of this new launcher represents the main technical aspect of the effort put into this PhD

Thesis.

6.4 Design of the New EC H&CD Launching System

Two ECRH transmission lines, now feeding the present ECRH launcher, could be switched

to a different equatorial position in order to feed the new launcher being installed in

FTU [138], [139] (see Figure 6.5). The system is designed with two identical antennas

Figure 6.5: Top view of FTU. Two (lines #1 and #4) of the four transmission lines of the present

launcher (top-right) are switched from port #12 to port #8, to feed the new system (bottom).

in a front-steering configuration. A picture of the system and a couple of schematic

representations of it are shown in Figure 6.6 and 6.7. The system presently installed on

the machine will be left unchanged. The installation of the new launcher is foreseen in

correspondence of a different equatorial port of FTU (port #8), in such a way that an
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Figure 6.6: Picture of the final version of the launcher, in the laboratories at IFP-CNR Milano (up)

and a schematic representation of the system (down), where the positions of the steering mirrors,

the zooming optics and the vacuum flange are shown (red arrows).

easy plugging in (and out) of the system on (from) FTU can be carried out easily. In this

way, in case of necessity, it could be fully extractable for maintenance or refurbishment

of components, with a low impact on the plant. Port #8 is located at a toroidal angular

position of 120◦ with respect to the port dedicated to the present ECRH launcher (port

#12). Four ECRH lines of the six that will be available on the present and the new

launcher, will be matched to the four gyrotron sources and will become useful to launch

EC waves, while the two spare lines can be used for millimeter-wave diagnostics, since

the new antennas will also be switchable to receiving lines. In the future, a seventh line

could be available, since place has been reserved in the design of the new launcher for the

future insertion of a square waveguide, to be used as a remote-steering antenna. Despite
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each gyrotron of FTU is capable to deliver 500 kW and 500 ms as maximum power and

pulse length, the lines of the new launcher are designed such that a doubled power can be

handled, in a way that the radiation coming from all the four gyrotrons might be combined

in future experiments, making use of combiner devices being developed also at IFP-CNR

Milano [140], in collaboration with other associations [141] [142] [143]. When not directed

into the plasma, the total power delivered to the end of the transmission will be absorbed

and measured with calorimetric matched spherical loads, [19] [144], realized at IFP-CNR

Milano.

The new system is capable to launch two beams into the plasma, by using small movable

mirrors put in the plasma proximity, in a front-steering configuration. The two beams

can be steered independently and, unlike the present system, the launching angles will

be changed during the ECRH pulse length, in real-time, in both toroidal and poloidal

directions, using a control system operating on a closed feedback loop algorithm, based

on precise reference plasma parameters. The feasibility of an independent beam injection,

in real-time, is of crucial importance in view to perform experiments with an ITER-

relevant approach. As already said, one of the main scientific purposes for the design and

Figure 6.7: 3D drawing of the overall new system. The two symmetric lines are shown (upper

and lower), with the respective components: vacuum windows, zooming systems, shafts for the

transmission of the toroidal-poloidal movements and internal optics. The ray path in the lines of

the launcher are indicated with the two thick red arrows.

construction of a new ECRH launcher for FTU is the demonstration of EBWH in the
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Figure 6.8: Left: view of the upper line of the new launcher, in a simulation relevant for O-X-B

mode conversion experiments. Ray tracing computations of some rays (blue) steered towards the

1st harmonic ordinary mode (O1-mode) cutoff layer with slightly different injection angles, centered

around the optimal ones for O-SX coupling (red ray), are shown. The cutoff surface, nested by

the magnetic sheared field lines (yellow curves), is calculated from the real plasma parameters of

a typical high density discharge of FTU. Right-down: zoomed view in the proximity of the cutoff

region where the blue rays (non-optimal) are back-reflected and the red ray (optimal) is converted

to SX-mode beyond the cutoff layer (such a SX-polarixed ray is not visible in the picture). Right-

up: the region of conversion further zoomed, in a top view. The ray racing calculations show how

the phase velocity of the red ray, which is the only one with optimal aiming, is parallel to the

magnetic field lines (thin blue lines) at cutoff.
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tokamak-like plasma of FTU, at the 140 GHz frequency. The stimulus in doing that was

born from the high density regimes reachable in this device with the use of Liquid Lithium

Limiter, as shown in Chapter 4. The new launching system, which is capable to satisfy

the toroidal requests in the launch, in order to enable optimal coupling between O- and

X-mode. Such features are a toroidal injection up to ± 40◦ and a fine continuous scanning

capability, in both the directions. The angular range of the poloidal steering at the plasma

center ranges approximately from - 25.5◦ to + 25.5◦, ensuring the scan of more than 75%

of the plasma volume.

6.4.1 Real-Time Control of the Steering Mirrors

For the precise definition of the dynamic of the system, the typical plasma target for MHD

stabilization experiments was considered. In particular, the dynamic of the poloidal feed-

back control has to follow the magnetic island movement during the shot, in absence of

any feedback on plasma position. The position of the island will be tracked with the beam

in real-time, controlling the injection angle at the mirrors, with the dynamics required in

the FTU plasma, so that the power can be deposited in the island even when it moves

following the Shafranov shift. This will open the possibility to improve MHD stabiliza-

tion techniques, already tested in FTU during past campaigns [47] [145], in which fixed

launching angles have been used.

The requirements on acceleration, speed, and position precision on the wave injection,

given by the experimental needs, are very stringent, since the required scanning dynamic

for tracking the rational surfaces in the plasma is estimated, from experimental observa-

tions, to be 1 cm in 10 ms in poloidal direction [47]. In fact, the evidences (shot #27714)

showed a poloidal displacement of the magnetic island of 4 cm in 40 ms. The maximum

instantaneous error of the deposition must remain limited to 0.5 cm, which provides a

minimum limit in the required angular steering accuracy, that must be < 0.5◦. The dy-

namic requested in the FTU case are faster than the one expected for ITER, because of

the faster time of MHD instability growth rate4. Given the geometry of the system, such

a dynamic means a poloidal angular velocity of approximately 1◦ / 10 ms.

Despite the fact that the precise speed request for the design of the launcher was chosen

considering the MHD stabilization experiments, a fast dynamic, together with a real-time

control of the system in feedback on the plasma parameters, turns out to be useful for

4The time between the appearance of the island and its maximum development is ≈ 20 ms.
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experiments on EBWH, if an automatic control of the wave injection angle could be per-

formed. In principle, in this case, the faster is the dynamic of the steering, the higher is

the efficiency of the tracking, since, as already said, some phenomena, like density fluctua-

tions and the stability of a tokamak-like plasma configuration, may affect the fine angular

tuning of the injection. Such phenomena can not be predicted completely a-priori and

may change the plasma parameters very quickly, on the time scale of a typical launch-

ing dynamic. For this reason, the minimum target level for the velocity of the system

considered in the design was defined on the basis of the typical development dynamics of

the tearing modes in FTU; and actually, such a minimum request turns out to be already

challenging, as well.

The main parameter to be considered for the feedback control, in case of EBWH, is the

amount of stray radiation detected in the vessel by the sniffer probes, during the opera-

tions. In fact the level of stray radiation is complementary to the launched power which

is absorbed by the plasma. In the O-X-B scheme, such a power is the one coupled to

EBWs and then absorbed at the cyclotron harmonics. Thus, the correct algorithm to be

inserted in the feedback control loop should allow to inject the wave while keeping the

minimum level of the stray radiation signal. Such a control, may allow to perform first

an identification and then a tracking in real-time of the angular conversion window at

the launch, in order to inject the wave with the direction that allow the maximum power

conversion efficiency at cutoff. Despite not included in the first step design, also a toroidal

feedback control is being considered in the final design for this aim, in addition to the

poloidal one. Only acting on both directions, in fact, a fine tuning of the optimal launch

can be performed.

Concerning the algorithm for tracking the conversion window, different preliminary so-

lutions are now under discussion. The differences between the approaches under study

concern mainly the different exploitation of the launcher dynamics, when different typolo-

gies of spatial scans are performed with the launched beam around the (presumed) initial

optimal direction, while measuring in real-time the signal of the sniffer probes, propor-

tional to the stray radiation in the camera. Such techniques will be implemented and

tested with preliminary simulations in the next future.

Other important objectives of the newly proposed system, in addition to the overdense

plasma heating via O-X-B scheme and the TM stabilization, are, for instance, the au-

tomatic control of the driven current profile and the Electron Cyclotron-assisted plasma
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start-up. The system will in principle enable a real-time control of all the plasma pa-

rameters affected by local EC power deposition, like the transport barriers formation and

temperature profile shaping, including control of sawteeth crashes frequency. Finally, the

antenna can be alternatively used for diagnostics. For instance, to detect the perpen-

dicular and oblique ECE signal, to perform reflectometry measurements and Collective

Thomson Scattering diagnostics.

6.4.2 The Steering Mirror and the Driving Mechanism

The fast dynamics required for the experiments, led to the choice of movable parts with

the minimum possible momentum of inertia, in particular for the last steering mirrors.

This request adds to the geometrical limits imposed by optical needs and thermal loads

on the surface of the mirror, which increase with the inverse square of the spot size.

Additionally, strong physical limitations are given by the reduced dimensions of the port

(90 mm in width and 428 mm in height, to be shared by both the mirrors of the two lines)

in the plasma proximity.

Additional constraints for an efficient O-X conversion are very stringent on the choice of

the launching mirror size. They consist in a toroidal launching angle up to around ±40◦

with respect to the beam axis5, together with a toroidally symmetric injection.

The final dimension and shape of the mirrors is the result of a trade-off between the re-

quirements and the geometrical constraints. The final shape that was chosen, consists in a

81.4 mm height, 52.1 mm width surface, elliptically shaped on the plasma edge and with

a parabolic profile elsewhere (see Figure 6.10).

The material selected for constructing the fast steering mirrors is the Glidcop R© DS cop-

per, chosen after an accurate analysis of the thermal stresses during the operational con-

ditions [138] [139], in order to lower its inertia, the backside of the steering mirror is

constructed with a decreasing thickness, ranging from 5 mm, at the central region, where

the thermal stresses are higher, to 1 mm at the edges, since lower power density is expected

in this region. This structure will be sufficient to prevent possible damages to the mirror,

given by power accumulation. Additionally, to enhance radiative cooling of the copper

body from shot to shot, its backside has been covered with a thin plasma sprayed Cr2O3

thin layer, used as a ceramic cover with high emissivity.

The mirror is connected to the driving mechanism on the backside, shown in Figure 6.11.

5Corresponding to a range ±60◦ for the actual rotation of the mirror around its own axis.
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Figure 6.9: Tridimensional view of the front part of the new EC launching system of FTU, in

a simulation performed with Mathematica R© software, in a relevant operation for O-X-B mode

conversion. The upper and lower lines are shown, while launching several rays with opposite sign

of the N‖ ad from opposite poloidal points, as will be possible to do with the new system (top

right). The O1-mode cutoff surface and the magnetic field lines on it (yellow lines), are calculated

with the real plasma parameters of FTU. In the figure on top, the side of port #8 closest to the

plasma is represented. The picture on the bottom left is a more detailed view of the upper line

(zoom of the white dotted region). Despite all the rays are injected approximately with the same

toroidal and poloidal angles, only the red ray represents the beam axis for optimal O-X conversion.

All the others (represented by blue rays) are reflected partially or totally at cutoff, since they

propagate with non-optimal aiming to the conversion region. In the picture on the bottom left,

the last two mirrors of the line and the path of the ray internal to the launcher are shown.
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Figure 6.10: Drawing (on the left) and picture (on the right) of the back side of the steering mirror,

before the deposition of the plasma sprayed Cr2O3 layer, used to enhance the thermal emissivity.

The particular shaping of the back side is shown, together with the dimensions of the mirror,

indicated in the drawing on the left.

This choice derives from the need to minimize weights and moments of inertia of the overall

system. Both poloidal and toroidal motions are transferred to the mirror through the same

axis and coaxially in the mechanism. The motions is transferred to the outside with shafts

connected to worm-wheels with low reduction ratio and backlash minimization, mounted

in the driving mechanism on one side and to the motors located outside of the vacuum

flange thanks to the use of rotary vacuum feedthroughs.

The coupling of toroidal and poloidal movement has to be considered during operations

with the launcher and it must be accordingly corrected, when toroidal dynamics are in-

volved, since no toroidal coupling exists when the mirror is moved only poloidally (at a

fixed toroidal angle).

6.4.3 Motors and their Control

The fast dynamics required to perform MHD stabilization and O-X-B mode conversion

experiments, exploiting a tracking in real-time of the tearing modes and of the O-SX con-

version window, respectively, has been taken into account for the choice of all the main

components, in particular the motors to be used to move the steering mirrors. The overall

mechanical inertia of the system has been modeled estimating in a simplified way [146] the

torque due to the eddy currents induced in the complex structure of the steering mirrors
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Figure 6.11: The inner structure of the moving mechanism of the last mirrors is shown in the

picture, on the left; the real mechanism, with the mirror attached, is show on the right.

put in the region of high tokamak field.

Motors with maximum rotational speed capability of 10000 rpm and the peak torque (±
10%) of 1.44 Nm where selected. Predictive evaluations on dynamics have been performed

also in order to insert the proper motor drives, to control the motion of the motors. Digital

drive inverter model [147] provided with a PI speed controller [148] where selected.

To move the steering mirrors of the launcher in real-time during operations without cross-

ing the safe boundary of the permitted angular workspace6, an antenna position controller

and a predictive software protection system [149], based on a real-time algorithm, have

been implemented, in collaboration with the University Politecnico di Milano. Such a

protection system is important in particular in view of operations performed in the prox-

imity of the extreme angular regions of the launcher, like the ones expected for O-X-B

experiments. In fact, the highest values of the toroidal injection angles, up to the maxima

allowed values of ±40◦, are foreseen during these kind of experiments, while performing a

real-time control of the steering mirrors position in feedback with the plasma parameters.

This position is then compared with the region of available angles that will have been

fixed in the control system before the operations on the plasma. In case of intervention of

the protection system, the speed reference is set immediately to zero and a motor brake,

fed by the drive with a 24 V DC power supply, intervenes on the shafts.

6In particular, this may happen in case of a fault in the controller.
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The control system to be used in FTU is implemented on a PXI PC-based platform7, in

which two Digital Signal Processor and five I/O Field Programmable Gate Array (FPGA)

boards useful for parallel processing are mounted on the communication buses. FPGA

boards collect the fast analog channels coming from the FTU plasma8 and implement

the plasma shape and the ray tracing code, while the last one implements two Bayesian

filters, used to match plasma shape and ray tracing [132] predictions, with the observed

quantities. The tests performed so far, led to an optimization of the proportional, integral

and derivative gains of the PID controller, to the best compromise between rising time,

overshoot and settling time in the motor response, demonstrating that the system is ca-

pable to reach the dynamics of ' 1◦ poloidally at the mirror in 10 ms, required in the

design phase.

6.4.4 The Influence of Different Beam Size on O-X-B Mode Coupling

In order to have a control on the deposited power density, also the possibility to change

the beam radius in the plasma is included in the design of the launcher. Such a zooming

system, shown in Figure 6.12 is obtained with a couple of mirrors in a dog-leg configuration,

installed under vacuum. The position of the mirrors, one of which has a focal length f

= 510 mm, can shift ±100 mm with respect to a zero reference position, providing a

beam waist of 12 mm in different positions around the steering mirror region (see Figure

6.13), for different positions of the zooming optics, thus providing a range of different local

spot sizes at the plasma center, in the range 17 - 27 mm. Measurements carried out at

IFP/CNR Milano [151], using one of the two lines of the system, confirmed the design

goals.

Despite the plane wave spectrum of the launched beam depends only by the waist at the

reference plane w0 (and hence, in our case, it is fixed by the value w0 =12 mm), also the

curvature of the phase front at the cutoff layer is expected to have an influence on the

mode coupling. Such an influence, when not negligible, might affect the optimal value

of power transmission efficiency. In fact, since in the FTU case the reference plane of

the launched Gaussian beams are always external to the overdense plasma region for all

7During the test phase the PXI was generally substituted by a NI Compact-RIO [150] as a control and

data acquisition system.
8The signal detected by the sniffer probes, in the case of the real-time control that will be performed

for EBWH experiments.
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Figure 6.12: One of the sliding optics mounted in the two lines, used as zooming systems. One of

the mirror (green) is flat, the other one (yellow) is focusing.

Figure 6.13: Beam radius, at different distances from the last waveguide aperture and for central

and extremes positions of the sliding mounting of the zooming optics. The positions of the focusing

mirror (FM) and of the steering mirror (SM) are shown (picture taken from [151]).
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the position of the sliding mounting9 the curvatures of the beam phase front and of the

O-mode cutoff surface, are always one the opposite with respect to the other. This implies

a sort of curvature mismatching that was not considered in the frame of the models of

mode conversion described in the previous Chapter. Thus, the zooming system available

in the new launcher will offer the possibility to test the actual influence of different spot

dimensions (i.e. of different phase front curvature radii) at the conversion region.

6.4.5 Low Power Tests with the Launcher at Angles Relevant for O-X-B

Mode Conversion

The low power tests at 140 Ghz have been performed at IFP/CNR Milano [152] [151], in

order to define the optical performances launcher. An input beam waist w0 = 28.6 mm

was reproduced in correspondence of the waveguide aperture.

Several beam patterns have been acquired with the VNA, at different output (injection)

angles and for different shifts of the inner zooming optics (a couple of pattern measure-

ments are shown in Figure 6.14). In some tests, also a metallic side-walls mock-up of the

real FTU port was used, to reproduce realistic conditions from the point of view of either

reflections and interactions of the beam with the walls or diffraction and beam truncation

effects at the exit of the launcher. Estimates of the beam dimensions at the distance of

the vessel center where performed in order to evaluate the beam shape and astigmatism.

Further measurements were performed then, at fixed injection positions and at the refer-

ence or extreme positions of the zooming optics. Patterns have been measured also for

the case of toroidal injection angle β = 39.5◦ and a poloidal angle α ≈ 26◦, relevant for

O-X-B experiments.

Beam pattern were taken with the mock-up of the FTU port surrounding the launcher,

in order to measure the effects of the tight closeness between the mirror and the port, in

particular for high values of the toroidal angle. The observed pattern corresponds to a

well shaped Gaussian beam, which shape is acceptable either from the point of view of

the symmetry or for the presence of side lobes, despite some diffraction effects are visible,

due to the expected partial interception of the beam edge by part of the port mock-up.

9The design of the launcher is such that the waist w0 of the beam corresponds approximately to the

region near the exit of the port, in order to have the narrower beam spot size on the last steering mirror.
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Figure 6.14: On the left, the beam pattern at the output of one of the lines is shown, measured

at plasma center, with null toroidal angle (α = 26◦ , β = 0◦ ). In the example, the zooming

mounting was put at the minimum distance 600 mm from the waveguide end (i.e. configuration

for the largest spot in the plasma). On the right, a beam pattern acquired at plasma center, with

a typical angular position of the steering mirror foreseen for O-X-B experiments. The poloidal and

toroidal angles are α = 18◦ and β = 39.5◦ with respect to the mirror axis. The distance of the

zooming system from the waveguide exit is the nominal one (700 mm) in this case. The elongation

of the spot is a geometrical implication of the measure, performed with a scan of the receiver on a

plane perpendicular to the port axis, while the beam is incident on this plane with an angle 6= 90◦.

6.4.6 Dynamical Tests on a Real Scale Mock-up of the New System

The preliminary tests on the dynamics of the fast EC launcher for FTU have been per-

formed on a real-scale mock-up, reproducing one of the two lines of the system. Two of

the motors have been mounted on the launcher mock-up and a prototype control system,

selected in collaboration with Politecnico di Milano, was assembled, including brakes, en-

coders and controlling hardware. The response of the system (i.e. antenna, gears, shafts,

motors and drive inverters) has been obtained for different reference steps. In particular,

the dynamics foreseen in the real-time controlled operations of the future O-X-B exper-

iments, could be tested in a preliminary phase. The main aim was the optimization of

the proportional, integral and derivative gains (PID) of the motors controller, taking into

account the constraints of the rising time, overshoot and settling time required by the

experiment. The resulting proper PIDs, for both toroidal and poloidal movements of the

antenna have been selected, to be included in the control algorithm.
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Figure 6.15: On the left, the toroidal response of the positioning system (purple lines) of the

launcher mock-up to 0.5◦ and 1◦ steps (blue lines), with the launching mirror connected to the

shaft. These kinds of request on the movement are the typical ones requested during an automatic

tracking in real-time of the conversion window. In this example, the PID parameters of the

controller where regulated in such a way to have a fast response (rise time near 5 ms) and a higher

overshoot and settling times. On the right, a similar 1◦ step request is showed, but this time

starting from a 39◦ toroidal angle to 40◦, in the typical angular range for O-X-B experiments.

In the tests results obtained on the mock-up, also the steering speed required on the

launching mirror for MHD stabilization experiments, corresponding to a scan speed of 1

cm to be scanned at plasma center in 10 ms, on the vertical axis (corresponding to an

angular velocity of 1◦/10 ms in the poloidal direction), turns out to be satisfied. Actually,

the system is capable to reach even faster dynamics, but this is obtained to the detriment

of the precision in reaching the proper position, due to the larger overshoot for faster

movements. For instance, the results reported in Figure 6.15 show how both a 0.5◦ and

1◦ angular movements can be performed in t ≈ 5 ms, namely shorter than the design

specifications, but with a consequent overshoot, such that the final positioning is reached

steadily only after t ≈ 20 ms. Hence, the proper balance in the choice of the best PID

parameters for the controller, to be used for O-X-B experiments, is linked to the choice

of the optimal algorithm to be used for the experiments. More precisely, the requests

and the allowed tolerances on the rising time, on the overshoot and on the settling time

of the system response will be closely related to the technique considered for the control

of the wave injection angle. Since such an algorithm is still under study now, the final

optimization for O-X-B experiments will have to be carried out once the kind of control

to be used for the tracking of the conversion window will have been conclusively defined.
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The dynamics of the brushless motors was tested also in presence of an external magnetic

Figure 6.16: Example of a poloidal map of the absolute value of the stray magnetic field, calculated

with real FTU parameters, at the shot time of maximum value (≈ 0.05 T, in red) at the position

of the motors in the torus hall (indicated with the two stars). The regions of maxima values of

the field (in white) correspond to the poloidal field coils of FTU, including the plasma current (1.1

MA in the example considered in the figure). The FTU camera and the launcher are drawn in

orange, together with some local absolute values of the stray field (yellow), in correspondence of

several points of the hall.

field (Bmax=0.1 T) expected in the FTU hall during the operations. In particular, the

main aim was the inspection of possible delays or reduction of precision in the operations

of the positioning system, in presence of the external field interacting with the internal

fields of the brushless motors or of the position resolvering system. Such an influence

should be considered when choosing of the proper algorithm for O-X-B operations in the

real-time controller. To have an idea of the level of external magnetic field to be applied
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to the motors during the tests, thus, the expected value of the stray magnetic field in the

FTU hall was estimated, first, at the location foreseen for the motors in the hall. This

calculation was performed by assuming the real conditions of typical plasma operations in

FTU.

A 3-D model was developed, by using the formalism of the 1st and 2nd order complete

elliptic integrals [153], able to provide maps of the local value and sign of the stray field

surrounding FTU during the shot, while considering the real spatial distributions of all

the poloidal field coils (including the plasma current), together with the typical values of

the currents in the coils during the shot time, taken from the data of real FTU discharges.

A map of the field in the tokamak hall computed with this model is shown in Figure 6.16.

Such a model gave a maximum limit of ≈ 0.058 T for the stray magnetic field expected

during typical plasma discharges, at the point where the motors are being installed in the

FTU hall. This value has been considered for tests on the motors. A permanent magnetic

field source, able to produce 0.1 T as a maximum field at its poles was used. Since the

field provided by this magnet in the air gap, is ≈ 0.05 T, such a source could be used to

immerse the motors of the launcher in approximately the same field intensity expected in

the FTU hall during the operations. The results of these tests confirmed that the external

stray magnetic field does not affect the correct operations of either the brushless motors or

the resolver, confirming the validity of the results obtained in the dynamical measurements

performed with no external field.



Chapter 7

Conclusions

The results of the predictive work presented in Chapter 5 confirm that the required preci-

sion in the injection of the wave into the FTU plasma is very high in order to obtain the

optimal O-X coupling.

The simulations on conversion efficiency performed using a first model in which an in-

cident plane wave is assumed, show that angular deviations of ±1◦ with respect to the

optimal injection, in either vertical or horizontal direction, imply a 50% drop in the power

transmission efficiency.

A second model which accounts for a more realistic shape of the incident beam has been

developed using the Gaussian beam-mode decomposition, valid in case of paraxial prop-

agation. The model was used to evaluate the expected coupling of a real beam in the

FTU plasma in the frame of a mono-dimensional slab description at the conversion region,

and showed that the maximum reachable efficiency under optimal wave injection does not

exceed 45% and that a larger angular O-X conversion window is expected at the cutoff

surface. This derives from the fact that the drop in the conversion efficiency of a spectral

component of the incident field distribution should be partially compensated by a higher

conversion efficiency of other components. For the same reason, also the degradation of

the coupling efficiency caused by the plasma density fluctuations predicted assuming an

incident real beam distribution is lower than the one expected assuming an incident plane

wave.

Also a 2D model of mode conversion, available in literature since recent years and taking

into account a more realistic description of the plasma, has been applied to evaluate the

O-SX coupling efficiency in the FTU plasma. The effects in the power conversion efficiency

135
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implied by a two-dimensional description of the plasma turn out to be small (< 5%) for

the considered EC-wave frequency of 140 GHz. The results of the application of this model

to the FTU case, predicting a power conversion efficiency around 42%, are in agreement

with the ones found using the model based on the paraxial propagation of a real beam.

A dedicated experimental activity, aimed to the search of an optimal target for the exper-

iments on O-X-B mode conversion, has been performed during the last campaigns of FTU

and has been presented in Chapter 4. Proper procedures have been developed, in order

to obtain with reliability the optimal plasma parameters for the conversion of the O-wave

at cutoff. A detailed study of the density profiles and gradients, which characterize the

overdense plasma regimes, has been carried out. The best reproducible plasma has been

experimentally defined in FTU during the last experimental campaigns, with 5.2 T of

central magnetic field and 500 kA of plasma current.

The technical limitations of the present EC antenna for the O-X-B experiments, due to

the discrete toroidal steering capability (with a step of 10◦) limited by a maximum angle

(±30◦) which is below the one request for O-X coupling in the FTU case (ranging between

38◦ and 40◦), led to the realization of a new ECRH launcher, designed and constructed

during last years and now ready to be installed in the FTU tokamak.

The present work led to the choice to include as design goals the steering capability re-

quired for O-X-B experiments, which means a controlled injection in real-time in both

directions with a continuous scan capability and with a maximum toroidal launching an-

gle of 40◦.

The characteristics and the first tests on the operation of both the new launching system

and its steering control have been presented in Chapter 6, showing a good agreement with

the design specifications, in particular with the ones needed to perform experiments on

mode conversion in FTU.
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Future Prospects:

• The fine definition of the optimal plasma target for the O-X-B experiments will

continue during the next campaigns. Discharges with 5.2 T of magnetic field and

360 kA of plasma current will be repeated with lithium-coated vessel walls, in order

to study the density peaking factor of the profiles in plasma regimes given by the

presence of Lithium and with low current, in the same operational conditions used

to test the configurations of currents and magnetic fields presented in Chapter 4.

For the same reasons also plasma currents in the range 360 kA < Ip < 500 kA will

be tested in overdense regimes, to investigate the possibility to find an even better

compromise between the presence of an overdense central plasma region and a high

density gradient at the cutoff surface in the plasma density profiles.

Other shots will be dedicated to the pellet injection (see Appendix B), in order to

verify if this technique turns out to be useful in the optimization of the plasma

parameters of interest, since the results obtained so far are not sufficient to evaluate

the usefulness of this technique in the reproduction of the optimal plasma target for

the aims of this Thesis.

• A proposal for a first step phase of experiments on mode conversion will be the

detection of the Electron Bernstein Emission (EBE) radiation at the optimal an-

gles expected for the wave injection for the overdense plasma heating experiments.

This would allow to obtain a first experimental verification of the optimal launching

conditions predicted in this Thesis for the O-X-B mode conversion, being this a re-

versible scheme, at least at a first step.

Moreover, the measurement of the EBE radiation from the overdense plasma per-

formed from the two poloidally symmetric detection points available in the new

launcher of FTU, is expected to enable to reach the measure precision required to

test the small effects predicted by the 2D models of O-X conversion in the FTU case,

more likely than heating the plasma through a direct O-X-B scheme.

• Since the maximum reachable O-X power transmission with optimal wave injection

is expected to be lower than 45%, the development of a control system operating

in real-time and in feedback on the plasma parameters turns out to be important,
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in order to perform an overdense plasma heating with acceptable efficiency. For

this reason, a dedicated algorithm for O-X-B experiments is under study, to be

implemented in the automatic control system of the new launcher and operating in

feedback on the stray radiation signal detected by the sniffer probes of FTU. Such

an algorithm will enable to track the conversion window in real-time during the

shot and might ensure the maximum heating efficiency during the experiments, by

adapting the optimal injection to the changes of the plasma parameters during the

shot.



Appendix A

EBWs Absorption

Electron Bernstein Waves are strongly damped (absorbed) near the cyclotron harmonic

resonance. The absorption mechanism can be differently described in the two different

cases [27], of quasi-perpendicular propagation, defined when N‖ < β = vth/c, and the

more general case N‖ > β. In the first case the absorption is dominated by the relativistic

electron cyclotron interaction, and relativistic effects, like mass increase, make the depo-

sition become broadened. In the other case, instead, a non-relativistic Doppler-broadened

absorption can be assumed to be valid. As an example, the absorption coefficient for

obliquely propagating EBWs first harmonic [115] [62] and X-wave second harmonic [27],

which can both reach plasma regions where the local parameters are the same, can be

calculated and compared, starting from the radiative transfer equation [154]:
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where the symbols are referred to the quantities already introduced in Chapter 3, while s

is the coordinate along the ray1 and G is the following geometrical factor:
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sin2 ϑ
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)
,

being ϑ the angle between B and N. Considering that the refractive index N is usually

large, because of the shortness of the EBWs wavelength, while N‖ ' 1 and β <1, it can be

1The multiplicative factor s/s⊥ is introduced to re-define in radial units (radial direction of the torus)

the absorption coefficient α (from which the subscript r) which is generally defined as a decay rate, per

unit length, in the propagation direction s.
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noticed that the Bernstein Waves power absorption takes place in a much smaller region

than the one of the electromagnetic waves.



Appendix B

Preliminary Tests with the Pellet

Injection System

Among the procedures put into action for the ’construction’ of the optimal plasma target

for O-SX conversion in FTU, also the pellet injection system was considered. The pellet

injection features the possibility to reach the highest densities in a very fast way, since the

plasma density obtained in this case is the effect of ablation of a pellet directly injected

in the central region of the plasma, differently from what happens using the gas puffing

with injection valves located outside. Hence, the pellet injection technique is such that the

density peak is not influenced by the wall conditioning of the machine or by the recycling

at the edge and no diffusive times scale of the particles have to be taken into account in

the density control process. In this sense the increase of the density can be considered

instantaneous with respect to the other typical time scales of the plasma. The first idea

to use pellets was born from the interest in testing the overcoming of the Greenwald limit

(for instance ≈ 2.0 ·1020 m−3, for 500 kA of the plasma current), in lithized discharges,

in the swiftest possible way and then to test the possibility to sustain the higher density

plateau reached with pellet, by a strong gas puffing with valves. For example, in shot

#33727, which integrated line density is shown in the left side of Figure B.1, a single

pellet injection was performed at 0.6 s. The gas puffing had been regulated in such a way

to start from a medium-level density plateau before the injection of the pellet (to avoid

possible disruptions at its injection) and a subsequent sustained puffing from 0.6 s on, but

the plateau could not be sustained after the injection of the pellet, despite the critical

threshold of the Greenwald limit could be overcome without any problem. After having
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Figure B.1: Line density of two shots, at 5.2 T and 500 kA, in which one (left) and two (right)

deuterium pellet injections where performed at 0.6 s. The pellet is injected when the regulation of

the density plateau is not too high (≈ 1.2·1020 m−3) not to induce a disruption of the plasma at

the arrival of the pellet. The critical Greenwald threshold is overcome (≈ 2.0·1020 m−3) but the

density plateau could not be sustained, neither with the sole use of gas puffing nor with the use of

multiple injections. Both plasmas disrupt around 0.7 s.

reached a very high level, the line density decreases and the plasma disrupts, like in Figure

B.2. Only a second attempt could be made, in shot #33729, using a similar regulation of

valves for the gas puffing before and after the pellet injection, but making use of repeated

injections of pellet, from 0.6 s, every 0.05 s. Also in this case very high densities could be

reached, at first, but the density plateau could not be sustained, even with the synergy

between pellet and gas puffing. Unlike the expectations, at the second pellet injection the

density did not increase more than after the first injection, and does not even reach the

same density value. The second peak was lower and the density was still decreasing, like

in shot #33727, until the disruption of the plasma occurs, about 80 ms after the second

pellet was injected.

The regulation of a stable density plateau is an important key point, in order to consider

a certain technique to create a suitable plasma target for mode conversion. Without a

stability of the overdense plasma region, it is difficult to envisage a satisfactory demon-

stration of the O-X-B scheme. However, since the slope of the density profile just after

the pellet injection is very steep, such a high density peaking obtainable for a few tens of

milliseconds after pellet, may be used for some preliminary experiments aimed to verify



Figure B.2: Comparison between the line densities of shot #33727, where a single pellet injection

has been performed at 0.6 s, and the gradual ramp-up from zero to the disruption for density limit,

performed in shot #33719. It is evident how the regime given by the pellet is completely different

from the one obtained with a more standard ramp-up of the density, being field and current the

same. The regime with pellet allows to reach higher densities (green dotted line) than in a standard

ramp (orange dotted line). Nevertheless, the density is not sustained with the gas puffing alone

after its initial peaking.

the real conversion window by receiving EBE radiation, at the correct oblique view angle,

in correspondence of the proper ramp-down of the density, after the pellet injection.

The results obtained so far with this technique are still very preliminary and the use of

pellet will be broadened in the next campaigns of FTU.
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the MARFE instability, that can be recognized from the strong oscillations

on the interferometer signal and which typically ’start’ at a certain time

during the discharge, has the same starting point in the two traces, showing

a behavior independent on the magnetic field. . . . . . . . . . . . . . . . . . 76

4.12 Density limits found for three discharges, with the same 5.2 T field but

500 kA plasma current (shot #33719, red) and 700 kA (shot #33722, light

purple, and shot #33731, violet). Despite the Greenwald limit is higher at

700 kA (brown line) than at 500 kA (green line), the disruption occurs at

identical densities for the two currents. . . . . . . . . . . . . . . . . . . . . . 77



4.13 Two representative discharges, performed at the same field 5.2 T, but at

different currents 500 kA and 700 kA. Both shots have a sustained line

density plateau, at the same density value (top left). At 0.9 s, when the

two signals indicate exactly the same integrated density (blue dotted arrow),

the inverted density profiles have been calculated (bottom left). It is evident

how the density peaking of shot #33717, performed at 500 kA, is higher

than in shot #33721, at 700 kA. This is a typical difference found between

500 kA and higher fields lithized discharges. On top and bottom right,

the local density of the two shots, versus major radius (abscissa) and time

(ordinate), and calculated on the magnetic equilibrium, are shown. The

density peaking factor is higher for shot #33717 than in #33721, that

means steeper slope of the density profiles, more suitable for O-X power

transmission. In the two plots the colors are normalized to different peak

density values: 3.42·1020 m−3 for shot #33717 and 2.77·1020 m−3 for shot

#33721. The red and purple arrows indicate the time at which the profiles

in the bottom left have been calculated. . . . . . . . . . . . . . . . . . . . . 78

4.14 Local density (top) and normalized density profiles (bottom), at different

time between 300 ms and 900 ms, of shots #33719, at 5.2 T, 500 kA (on

the left) and #33731, at 5.2 T, 700 kA (on the right). It is clear that the

stronger density peaking given by the lower 500 kA plasma current than

700 kA, at any time. In particular, from the normalized profiles, it can be

seen how the peaking factor rises with the time during the shot. The light

blue arrows indicate the profile change with the time. The cutoff density is

also shown with the green dotted lines. . . . . . . . . . . . . . . . . . . . . . 79

4.15 Some discharges with different combinations of field and currents, having

typical values of the safety factor at the edge, are considered. The value

q ≈ 5 seem to be confirmed in the experiments as the threshold between

discharge which density limit is under the respective Greenwald limit (for

lower q indicated with the grey area) and the ones that overcome it (for

higher q, white area). discharges with 5.2 T and 500 kA are near this

threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



4.16 Line density profiles of several discharges, performed for different experi-

mental programs at 5.2 T, 360 kA, then taken into consideration for the

analysis aimed to find the plasma target for O-X-B experiments (left). The

lower Greenwald limit, calculated for the 360 kA current, is showed (black

trace). From the oscillations of the measurements it is evident that a strong

MARFE instability establishes at this low current and noisily affects the

control of a stable plateau. On the right, the comparison between a typical

360 kA and 500 kA is shown. The plateau obtained at 500 kA is more

stable and the high density results maintained during the shot. . . . . . . . 82

4.17 Density peaking factor, calculated in real time with the real parameters

of two different typical shots, at 360 kA and 500 kA, both with 5.2 T of

the magnetic field. The trend of the peaking factor is showed just for the

initial ramp-up phase of the density, when the EC power was not injected

in the plasma of shot #32085 yet, in order to compare two identical ohmic

conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.18 3D reconstruction of the real density profile of a typical 5.2 T, 500 kA

discharge (shot #33717), selected as one of the best target obtained for

O-X-B experiments. The calculation of the density distribution is based on

the real magnetic equilibrium of the discharge. The slope of the profile is

steep and a considerable overdense plasma region for the 140 GHz frequency

(region above the cutoff density level indicated by the blue plane) is centered

near the O1-mode resonance (yellow line), which corresponds at 5 T of the

magnetic field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Dispersion relation branches of O- and X-mode, calculated with typical

parameters of FTU. For the sake of simplicity, the considered density profile

has been written using an analytical form. It is shown how a ≈ 39◦ launch is

needed to make the O- and X-branches coalesce, thus obtaining O-X mode

conversion. The blue branch on the right is the one of the FX-polarized

wave, which plays no role in the conversion scheme. . . . . . . . . . . . . . . 88



5.2 Left: variation of the optimal N‖,opt for different values of the central mag-

netic field (from 3 T to 7 T) and of the actual N‖ of the ray for a 30◦ and

40◦ injection into the vessel, calculated with geometrical calculations on a

straight path in vacuum (N = 1). A purely toroidal magnetic field, varying

spatially as 1/R, has been supposed. Right: preliminary calculations of the

O-X power transmission efficiency, calculated at the equatorial plane of the

machine, for an analytical density profile of FTU and for some different

central fields, from 5.0 T (dark purple curve) to 5.8 T (pink curve). . . . . . 89

5.3 Poloidal view of a typical ray path (in red) in an over-dense plasma. The

O-polarized wave propagates inside the plasma until the X = 1 cutoff is

reached. At that point, the wave is back-reflected, since the center of the

plasma is prevented (overdense) for a general injection angle. In the picture,

also the magnetic flux surfaces of the FTU shot (taken from the magnetic

equilibrium of the plasma) are represented with the dotted circular blue

lines. In this case, the z−coordinate is the perpendicular one and R in the

major radius of the device. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 First results obtained with preliminary ray tracing calculations performed

from the launching point of the EC launcher presently installed in FTU.

These calculations were performed to obtain a first evaluation of the wave

paths at different poloidal and fixed toroidal ±30◦ steering angles, using

real high density plasma parameters. The poloidal view of the simulations

is on the left, with y being the vertical component; the toroidal one is on the

right of the picture, with z being the toroidal coordinate. Thanks to this

first simulations, it was demonstrated that no poloidal component could be

used in the wave injection to increase the N‖ of the wave, since only the

rays aiming the center of the plasma can reach the O-mode cutoff. . . . . . 92



5.5 The optimal launch for O-SX mode conversion (green) is represented in this

simplified representation of a slab geometry plasma, together with several

other non-converting launched O-waves (red and yellow arrows). If the N‖
becomes too high along the ray path (yellow arrows), the wave does not

even reach the X = 1 layer and the corresponding cutoff becomes the one

reported in Section 3.5.2, re-written again here in the picture, on the right.

The only wave which reaches X = 1 with the optimal value of the parallel

refractive index N2
‖ = Y/(Y + 1) is the green one, which couples SX-mode

in the conversion region (blue area). . . . . . . . . . . . . . . . . . . . . . . 93

5.6 The three different regions, resulting from the ray tracing calculation per-

formed with real FTU parameters and explained in detail in the text, are

shown in the toroidal-poloidal injection angle map. The region of interest

for O-SX coupling is indicated here with the green area. The purple oblique

dashed line indicates a sort of ’section’ of this graphics, which representa-

tion is Figure 5.5, where a correspondence between the colors have been

kept for clearness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 Left: values of N2
‖ and Y/Y + 1 versus minor radius. Right: N‖, and N⊥

versus minor radius. The computations are performed with the ECWGB

code, at optimal launch for O-X conversion and plasma parameters of shot

#30583, where a central field scaled down from the 5.9 T of the shot to

5.3 T has been used for the simulation. Since the injection performed with

the ray tracing is close to the optimal one, at the 140 GHz cutoff radius

N2
‖ = Y/Y + 1 (left) and N⊥ ≈ 0. . . . . . . . . . . . . . . . . . . . . . . . . 95

5.8 O-mode cutoff position in the plasma versus parallel refractive index, cal-

culated with the parameters shot #28510. The optimal N‖ for conversion

(green) corresponds to the ’knee’ of the curve (green arrow). . . . . . . . . . 96

5.9 Angular transmission window, centered on the optimal launching angles, in

the case of two different high density plasma discharges of FTU, calculated

with a single ray tracing simulations, starting from the launching point of

the new ECRH launcher. Each level corresponds to 10% of transmission ef-

ficiency. The angular window diameter, defining 50% of power transmission,

is around 2◦ in both poloidal and toroidal directions. . . . . . . . . . . . . . 97



5.10 Conversion efficiency versus relative density fluctuation amplitudes and den-

sity scale length Ln, calculated with the statistical model introduced in

Section 3.5.3. The region defined by the FTU parameters, obtained so far

with experiments, is shown (orange area). . . . . . . . . . . . . . . . . . . . 98

5.11 Power transmission efficiency at cutoff, in a slab geometry, weighted with a

statistical description of the turbulences at the conversion region, versus the

density scale length Ln, calculated for a single ray propagation. A poloidal

correlation length of 3 cm has been assumed. The three curves corresponds

to different relative fluctuation amplitudes ∆ne/ne. The typical range of

Ln for FTU is indicated with the orange region. . . . . . . . . . . . . . . . . 98

5.12 Normalized power content in the O-mode versus the angle ϑkB between

the wavenumber and the magnetic field, for a linearly polarized wave. The

different curves corresponds to different values of the normalized electron

cyclotron wave Y . In the case of FTU, the red curve (Y = 0.8 at the

plasma-vacuum threshold) is the one aiming at the cutoff with the angle

between k and B 50◦ 6 ϑkB 6 55◦, corresponding to the launch angle

35◦ 6 ϑl 6 40◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.13 Poloidal view of the wave accessibilities of the X-mode, where the green

regions are the prevented ones. The O-mode had no problem with accessi-

bility during the performed tests on the plasma, since the density was well

below the one of cutoff. Thus, it was completely absorbed at the resonance.

The FX-mode, instead, was completely reflected at its low density cutoff

(green region on the right) and became stray radiation in the vessel. . . . . 100

5.14 Signal detected by the sniffer probe #1 (located at the port #12 of the

FTU camera), proportional to the stray radiation amount in the vessel. It

is evident that the signal is lower in shot #30603 than in the other two shots,

during which the encoder controllers of the polarizating optics where slightly

changed, in two opposite directions, with respect to the nominal encoder,

that has been used for the wave polarization control in shot #30603. The

mean values of the noisy signals are marked with the three horizontal lines,

with a color correspondence with the stray signal traces. . . . . . . . . . . . 101



5.15 On the left: reconstruction of the O- and X-mode cutoff surfaces, respec-

tively ε‖ = 0 (red) and ε+ = N2
‖ (blue), at the conversion region, performed

with the real parameter of a typical FTU discharge. The camera of the

machine is the thick orange circle. The grey rectangular region around the

intersection of the two layer is zoomed in the picture on the right. The

angle 2α between the two cutoffs is indicated in the picture on the right. . . 106

5.16 Contour plot of power transmission efficiency versus the vertical (y) and

toroidal (z) beam waist, calculated for two discharges of FTU, using the

2D model of O-SX conversion presented in this Chapter. Optimal aiming of

the beam to the conversion region has been considered for the plots. Each

level corresponds to 10% of power transmission efficiency. . . . . . . . . . . 107

5.17 Scaling of the α angle with the magnetic field, at different poloidal positions,

defined by the central γ angle of Figure 5.15 (left). On the right: circularity

of the two cutoff surfaces ε‖ = 0 and ε+ = N2
‖ , calculated with real FTU

parameters, at different γ angles, defined by the ratios between the x and y

components of the radial unitary vectors perpendicular to the surfaces. It

is shown that the two real cutoff surfaces are not perfectly concentric and

hence intersect at a certain point, depending on N‖. . . . . . . . . . . . . . 108

5.18 O-X conversion evaluations based on the 2D model versus different values of

waist sizes wz (toroidal direction) and wy (vertical direction), for an incident

Gaussian electric field distribution E ∝ exp(−z2/w2
z − y2/w2

y). Green and

blue lines represent the cases of optimal and non-optimal directions of the

beam respect to the magnetic field, i.e. different signs of N‖ or, equivalently,

symmetric poloidal launching points with respect to the equatorial plane

of the machine. Red lines show the results of the 2D model reduced to 1D

(α → 0), where the influence of the beam spectrum on the conversion is

considered. The case of FTU (wy ≡ wz =1.2 cm) is represented by the

red dots and yellow arrows, showing an agreement with the results of the

previous Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 View of FTU tokamak in the torus hall (left) and visible light detection

from a plasma discharge, from inside the vessel (right). . . . . . . . . . . . . 112



6.2 Poloidal view of the ECRH launching system, presently installed on FTU.

The angular ranges of one of the central (green) and external (red) steering

mirrors are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Increasing of the N‖ that, in principle, can be obtained at given circular

surface (represented with the blue circle on the left) by using a poloidal

component in the ray injection, versus the central angle γ. The computa-

tions are performed assuming a fixed toroidal component of the refractive

index, a straight path of the ray and a purely toroidal magnetic field scaling

as 1/R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4 Real scale model of the present FTU launcher, made using Mathematica R©

software. The two oblique side walls of the launcher, used for beam bounc-

ing, and the FTU camera are represented. In the picture, an example of

wave injection at −30◦ is shown, exploiting three bounces of the beam at

the internal gold-covered walls of the launcher. In the example, the beam

axis passes from the center of the port aperture. Such condition is usually

chosen in FTU, to minimize the interactions of the beam sides with the

port walls. This geometrical model have been used to evaluate other pos-

sible launching configurations, able to increase the N‖ of the beam in the

plasma, in view of O-X-B experiments. . . . . . . . . . . . . . . . . . . . . . 117

6.5 Top view of FTU. Two (lines #1 and #4) of the four transmission lines of

the present launcher (top-right) are switched from port #12 to port #8, to

feed the new system (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.6 Picture of the final version of the launcher, in the laboratories at IFP-CNR

Milano (up) and a schematic representation of the system (down), where

the positions of the steering mirrors, the zooming optics and the vacuum

flange are shown (red arrows). . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.7 3D drawing of the overall new system. The two symmetric lines are shown

(upper and lower), with the respective components: vacuum windows,

zooming systems, shafts for the transmission of the toroidal-poloidal move-

ments and internal optics. The ray path in the lines of the launcher are

indicated with the two thick red arrows. . . . . . . . . . . . . . . . . . . . . 120



6.8 Left: view of the upper line of the new launcher, in a simulation relevant

for O-X-B mode conversion experiments. Ray tracing computations of some

rays (blue) steered towards the 1st harmonic ordinary mode (O1-mode) cut-

off layer with slightly different injection angles, centered around the optimal

ones for O-SX coupling (red ray), are shown. The cutoff surface, nested by

the magnetic sheared field lines (yellow curves), is calculated from the real

plasma parameters of a typical high density discharge of FTU. Right-down:

zoomed view in the proximity of the cutoff region where the blue rays

(non-optimal) are back-reflected and the red ray (optimal) is converted to

SX-mode beyond the cutoff layer (such a SX-polarixed ray is not visible in

the picture). Right-up: the region of conversion further zoomed, in a top

view. The ray racing calculations show how the phase velocity of the red

ray, which is the only one with optimal aiming, is parallel to the magnetic

field lines (thin blue lines) at cutoff. . . . . . . . . . . . . . . . . . . . . . . 121

6.9 Tridimensional view of the front part of the new EC launching system of

FTU, in a simulation performed with Mathematica R© software, in a relevant

operation for O-X-B mode conversion. The upper and lower lines are shown,

while launching several rays with opposite sign of the N‖ ad from opposite

poloidal points, as will be possible to do with the new system (top right).

The O1-mode cutoff surface and the magnetic field lines on it (yellow lines),

are calculated with the real plasma parameters of FTU. In the figure on top,

the side of port #8 closest to the plasma is represented. The picture on the

bottom left is a more detailed view of the upper line (zoom of the white

dotted region). Despite all the rays are injected approximately with the

same toroidal and poloidal angles, only the red ray represents the beam

axis for optimal O-X conversion. All the others (represented by blue rays)

are reflected partially or totally at cutoff, since they propagate with non-

optimal aiming to the conversion region. In the picture on the bottom left,

the last two mirrors of the line and the path of the ray internal to the

launcher are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



6.10 Drawing (on the left) and picture (on the right) of the back side of the

steering mirror, before the deposition of the plasma sprayed Cr2O3 layer,

used to enhance the thermal emissivity. The particular shaping of the back

side is shown, together with the dimensions of the mirror, indicated in the

drawing on the left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.11 The inner structure of the moving mechanism of the last mirrors is shown

in the picture, on the left; the real mechanism, with the mirror attached, is

show on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.12 One of the sliding optics mounted in the two lines, used as zooming systems.

One of the mirror (green) is flat, the other one (yellow) is focusing. . . . . . 129

6.13 Beam radius, at different distances from the last waveguide aperture and

for central and extremes positions of the sliding mounting of the zooming

optics. The positions of the focusing mirror (FM) and of the steering mirror

(SM) are shown (picture taken from [151]). . . . . . . . . . . . . . . . . . . 129

6.14 On the left, the beam pattern at the output of one of the lines is shown,

measured at plasma center, with null toroidal angle (α = 26◦ , β = 0◦ ).

In the example, the zooming mounting was put at the minimum distance

600 mm from the waveguide end (i.e. configuration for the largest spot

in the plasma). On the right, a beam pattern acquired at plasma center,

with a typical angular position of the steering mirror foreseen for O-X-B

experiments. The poloidal and toroidal angles are α = 18◦ and β = 39.5◦

with respect to the mirror axis. The distance of the zooming system from

the waveguide exit is the nominal one (700 mm) in this case. The elongation

of the spot is a geometrical implication of the measure, performed with a

scan of the receiver on a plane perpendicular to the port axis, while the

beam is incident on this plane with an angle 6= 90◦. . . . . . . . . . . . . . . 131



6.15 On the left, the toroidal response of the positioning system (purple lines) of

the launcher mock-up to 0.5◦ and 1◦ steps (blue lines), with the launching

mirror connected to the shaft. These kinds of request on the movement are

the typical ones requested during an automatic tracking in real-time of the

conversion window. In this example, the PID parameters of the controller

where regulated in such a way to have a fast response (rise time near 5 ms)

and a higher overshoot and settling times. On the right, a similar 1◦ step

request is showed, but this time starting from a 39◦ toroidal angle to 40◦,

in the typical angular range for O-X-B experiments. . . . . . . . . . . . . . 132

6.16 Example of a poloidal map of the absolute value of the stray magnetic field,

calculated with real FTU parameters, at the shot time of maximum value

(≈ 0.05 T, in red) at the position of the motors in the torus hall (indicated

with the two stars). The regions of maxima values of the field (in white)

correspond to the poloidal field coils of FTU, including the plasma current

(1.1 MA in the example considered in the figure). The FTU camera and

the launcher are drawn in orange, together with some local absolute values

of the stray field (yellow), in correspondence of several points of the hall. . . 133

B.1 Line density of two shots, at 5.2 T and 500 kA, in which one (left) and

two (right) deuterium pellet injections where performed at 0.6 s. The pellet

is injected when the regulation of the density plateau is not too high (≈
1.2·1020 m−3) not to induce a disruption of the plasma at the arrival of

the pellet. The critical Greenwald threshold is overcome (≈ 2.0·1020 m−3)

but the density plateau could not be sustained, neither with the sole use of

gas puffing nor with the use of multiple injections. Both plasmas disrupt

around 0.7 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI



B.2 Comparison between the line densities of shot #33727, where a single pellet

injection has been performed at 0.6 s, and the gradual ramp-up from zero to

the disruption for density limit, performed in shot #33719. It is evident how

the regime given by the pellet is completely different from the one obtained

with a more standard ramp-up of the density, being field and current the

same. The regime with pellet allows to reach higher densities (green dotted

line) than in a standard ramp (orange dotted line). Nevertheless, the density

is not sustained with the gas puffing alone after its initial peaking. . . . . . VII
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