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Chapter 1

Introduction

The study of cancer etiology is one of the most interesting and difficult
tasks in medical-related disciplines: unravelling the biology of such severe
diseases has been one of the primary aims of medicine. Understanding the
biological mechanisms that lead to the development of a tumor is, though,
often not trivial, due either to our lack of knowledge on the matter or to the
extreme complexity of the relationships among the involved factors.

Statistical methodology can provide useful tools to help improving our un-
derstanding of such intricate connections, thus making epidemiology a pow-
erful instrument to integrate medical research.
In this project we will target the problem of correctly assessing and quantify-
ing the causal effect of an exposure (Hormone Replacement Therapy, HRT)
on the onset and the progression of breast cancer in post-menopausal women.

Evidence has been found in the literature that sex hormones play a central
role in the etiology of breast cancer. Treatments such as HRT (a combina-
tion of estrogen/progestin) are known to be a possible cause for this kind of
tumors, but confusion arose in the field when some studies reported women
who underwent HRT and developed breast cancer to be having a better
prognosis than those who did not take the treatment. Possible reasons have
been investigated (see for example [1] for a summary) and hypotheses have
been formulated, even though still lacking a strong evidence in their sup-
port. One confirmative analysis proposal is the one by Sjölander [10], who
developed a model to assess differences in prognosis by contrasting HRT-
induced (i.e. caused by hormon replacement therapy) cancer cases against
non HRT-induced ones; his methods, despite being formally and mathe-
matically convincing, are quite complicated for a non-statistician who is
interested in applying them, moreover the conclusions on the strength of
the link between HRT and prognosis do not have a causal interpretation.
Furthermore the cancer sub-type distinction is not observable, thus requir-
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CHAPTER 1. INTRODUCTION 2

ing many working assumptions.

In this project another kind of analysis is proposed, which may offer more
flexibility and clarity, shifting from the semi-parametric methodology em-
ployed in [10] to a fully parametric setting. The problem of sub-type dis-
tinction is tackled through a clustering technique relying on additional in-
formation (i.e. covariates) on the women in the sample. Our method allows
also, under proper assumptions, to approximately estimate the strength of
the causal effect of HRT on breast cancer prognosis.
The need for distributional assumptions (not present in [10]) may here be
a strength or a weakness, depending on our level of previous knowledge of
the phenomenon under investigation. It induces more computational weight
through more parameters we have to estimate, but may also help providing
a more flexible and adherent-to-reality explanation if we can motivate our
choices.

This work is structured as follows:

� Chapter 2 deals with breast cancer epidemiology; notions on the
biology of this kind of tumor are given, and the role of sex hormones
is presented.

� In Chapter 3 we summarize the topic of principal stratification in
causal inference, first introducing potential outcomes and counterfac-
tuals, then reviewing the seminal paper by Frangakis and Rubin [2]
and the work by Gilbert [3]. A short introduction to a very useful
graphical instrument, the DAGs, is given.

� Chapter 4 contains a review of the approach developed by [10] to eval-
uate the association between HRT and breast cancer aggressiveness.
In section 4.1 we summarize the basic concept behind the approach
and in section 4.2 we describe the assumptions which where made to
address the subgroups identifiability issue.

� In Chapter 5 we develop an alternative approach to the problem,
which aims at estimating the causal effect of HRT on the outcome of in-
terest, reformulating the estimation procedures from a semi-parametric
(as in [10]) into a full parametric setting.

� Applications of our methodology are presented in Chapter 6. We
analyze data from the case-cohort study of swedish post-menopausal
breast cancer “CAHRES”, which was also considered by [10]. We
analyze both a continuous (the Nottingham Prognostic Index, NPI)
and a dichotomous outcome (5-years survival).
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� In Chapter 7 we describe the simulations we have carried out to
compare our approach with the one by [10] and with the standard
analysis, focusing on the issue of estimates’ bias and how interpretation
of results may go wrong if the model we decide to use is misspecified.

� Chapter 8 contains the conclusive remarks about this work.



Chapter 2

Breast Cancer and HRT

2.1 Breast Cancer Epidemiology

Breast cancer is the most commonly occurring cancer in women world-
wide, accounting for more than 20% of all cancer diagnoses among female
individuals. During the last decades thousands of research papers have been
published describing risk factors for this tumor.
There are at least twelve well established risk factors that influence breast
cancer risk, plus many that either have been reported only inconsistently
in the literature or have received only limited study to date; the following
table summarizes the established factors, reporting direction and qualitative
strength of the effect:

Risk factor Direction of effect

Family history in first-degree relative ++
Height ++
Benign breast disease ++
Mammographically dense breasts ++
Age at first birth > 30 years vs < 20 ++
Menopause at > 45 years vs < 45 ++
High endogenous estrogen levels ++
Postmenopausal hormone use +
Ionizing radiation exposure ++
Menarche at < 12 years vs > 14 +
High body mass index (postmenopausal) +
High body mass index (premenopausal) -

Table 2.1: Well-confirmed risk factors for breast cancer. + indicates a slight
to moderate increase in risk, ++ a moderate to large increase in risk and -
a slight to moderate decrease in risk.

4
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Age incidence curves for breast cancer are generally similar in shape across
countries, but there are big differences in terms of absolute rates at every
age. Overall, rates substantially increase with age, the diagnosis is rare in
women less than 40 years old and there is a slowing of the rate growths near
the age of menopause, strongly suggesting a role of reproductive hormones
in the etiology of the disease. The highest rates are observed in Europe
and North America, whereas the lowest mainly in Asia (China and Japan in
particular); studies have been carried out which indicates that international
differences in breast cancer rates are due, at least in part, to environmental
and lifestyle differences.

Moreover, a steady increase in breast cancer rates during the last decades
(with a peak in the 80s) has been observed, the reasons being not com-
pletely clear, but likely attributable also to changes in reproductive pat-
terns, increasing obesity in postmenopausal women, use of post-menopausal
hormones and improvements in tumor detection for small sized (< 2 cm)
cancers. Together with this came a decrease in cancer mortality, for which
the growing use of screening mammography (leading to earlier detection of
preexisting cancers) most certainly played a major role. Earlier causes do
also exist, but we will focus on post-menopausal breast cancer only.

2.2 The Role of Hormones and HRT

Evidence has been found that sex hormones play a central role in the
etiology of breast cancer. Several reproductive factors are consistently as-
sociated with breast cancer risk (for example age at menarche, age at first
birth and parity, brest feeding, spontaneous and induced abortions and age
at menopause) and higher levels of endogenous estrogen are reported to be
associated with a higher risk. The effect of hormones intake has also been
studied in detail, contraceptives and postmenopausal hormone use being the
principal sources.

Improved survival among females with breast cancer has meant that more
women are going through menopause, which for some women can cause
severe symptoms such as vaginal atrophy, skin drying, hot flashes, night
sweats, and loss of sexual desire. For many years, HRT (Hormon Replace-
ment Therapy, usually a combination of the hormones estrogen and pro-
gestin) was widely prescribed to women to relieve these menopausal symp-
toms. It was also thought that HRT might reduce the risk of breast cancer,
heart disease, and other conditions.

However, since more than half of breast cancers are fueled by estrogen, sev-
eral trials were started in the 1990s in order to evaluate the potential risk
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of breast cancer relapse in women using HRT.
A notable case was the HABITS trial that, although designed to have a
follow-up time of five years, was stopped after only two years: recurrent or
de novo breast cancer had developed in a number of women in the HRT
group and in some in the non-HRT group. All women with a breast cancer
event in the HRT group and two of those assigned to the no-HRT group had
received HRT, and most had their tumor event while receiving treatment.

In July 2002, a large randomized clinical trial of estrogen and progestin in
healthy postmenopausal women (part of the Women’s Health Initiative) was
stopped early when researchers found that women who took the hormones
had an increased risk of developing breast cancer and heart disease.
The U.S. Food and Drug Administration has since recommended that women
discuss with their doctors whether the benefits of taking estrogen and pro-
gestin outweigh the risks and that, if used, the hormones should be taken
“at the lowest doses for the shortest duration to reach treatment goals.”

2.3 HRT and Prognosis

Several studies have reported that women who undergo hormonal therapy
and develop breast cancer tend to have a better prognosis than women with
breast cancer who do not.
One reason for this could be that HRT-induced cancers are less aggressive
than those caused by other factors, although this is debated [1].

This topic poses an interesting (and difficult) task: quantifying differences in
prognostic factors across subtypes of breast cancer, a problem which turns
out to be of non trivial solution.
In the first place there are identifiability issues: due to the fact that tumors
which occur among women who are treated with HRT are a mixture of
HRT-induced and other tumors, the sub-types are not identifiable without
additional information or without making additional assumptions. To rule
this out, a framework based on principal stratification has been proposed
[10], which can lead to identifiable population’s strata reflecting the afore-
mentioned sub-types.
In the second place a “näıve” methodology (i.e. classic conditional linear or
logistic regressions) is likely to incur in bias problems with respect to the
estimand of interest, i.e. the direct effect of HRT on prognosis or survival.
We will show how to approximately reach the situation where no such bias
occur, thanks to the principal stratification framework.

Summarizing:
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� Quantifying differences in prognosis and being able to assess to which
factors such differences may be due is difficult, handling this problem
is the topic of this thesis.

� The “näıve” approach consider cases only and regress prognosis on
HRT duration, i.e. completely ignores heterogeneity among the sub-
jects.

� We employ principal stratification (a technique developed in causal
inference studies) to tackle the identifiability problem.

Before going further with the problem of estimating the HRT-prognosis re-
lationship, we first review principal stratification in Chapter 3.



Chapter 3

Causal Inference and
Principal Stratification

3.1 Review

In 2002 Frangakis and Rubin (FR) [2] proposed a new framework to deal
with the problem of how to compare treatments effects adjusting for a post-
treatment variable, which is known to be inducing the so called “posttreat-
ment selection bias”. Avoiding such bias is important if the focus of the
analysis is the estimation of the causal effect of the treatment on an outcome
of interest; the authors present as a solution the creation of a stratification
based upon the posttreatment variables, in such a way that effect estimates
within these “strata” will alway have a causal interpretation. FR make use
of the notions of “potential outcome” and “counterfactual”, originally intro-
duced by Neyman (1923) [5] and later extended by Rubin in the ’70s [7], [8]
and [9].
Another remarkable work that is of interest to us is the 2003 article by
Gilbert, Bosch and Hudgens (GBH) [3], in which the authors address the
problem of evaluating the impact of vaccination on HIV viral load and other
surrogate endpoint measures of infection; observing that a standard test that
compares the distribution of viral load between the infected subgroups of
vaccine and placebo recipients does not assess a causal effect of vaccine (be-
cause the comparison groups are selected after randomization), they make
use of FR principal stratification method to obtain causal estimands. They
introduce, moreover, a class of logistic selection bias models in order to iden-
tify the estimands in a correct way.
We quickly review the basic causal inference concepts and then summarize
FR and GBH’s articles.

8
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3.2 Potential Outcome and Counterfactuals

Imagine that we have information on a binary (for simplicity) exposure X
and an outcome of interest Y ; for example X is assignment to either treat-
ment (1) or placebo (0) and Y is survival after 5 years (1 alive, 0 deceased).
The definition of a causal effect of X on Y for a certain subject requires
a comparison between the outcome for that individual if treated and the
outcome if not treated.
We use the notation Y (x) to indicate the potential value that the outcome
Y would assume if X were forced to x, so Y (1) is the survival (0, 1) we
would observe were the subject treated and Y (0) the survival were the sub-
ject assigned to placebo. These quantities are called potential outcomes and
we obviously cannot simultaneously observe both Y (1) and Y (0) for the
same individual, what we observe is the factual realization of the variable
Y , i.e. Y (1) if the subject has been treated and Y (0) if not; the comple-
mentary potential outcome is then called counterfactual. Individual causal
effects are not computable except under extremely strong (and often unrea-
sonable) assumptions, because we cannot observe the same subject under
both exposure levels.

If we want to analyze a population of individuals, rather than only one, the
same reasoning applies: the definition of a population causal effect calls for
a comparison between the whole population under exposure and the whole
population under non-exposure. But as for separate individuals, those as-
signed to treatment yeld a factual outcome Y (1) and for them we do not
observe Y (0), whereas those assigned to placebo yeld the value Y (0) and we
do not observe their Y (1).
A tentative approach could be to use association as a surrogate for cau-
sation, i.e. using the group of those who have been factually exposed as
a surrogate for the hypothetical population “had everybody been exposed”
and thus considering Pr(Y = 1|X = 1) as a proxy for Pr[Y (1) = 1]; similarly
for the “had nobody been exposed” hypothetical population we may use the
data on those subjects with X = 0, i.e. Pr(Y = 1|X = 0) for Pr[Y (0) = 1].
Comparisons on such distributions does not, in general, yeld a causal ef-
fect (although randomization to treatment could simplify estimation), due
to the problem of non-exchangeability (see [6] for details); a formal defi-
nition of such a concept may be given using potential outcomes, assessing
that “exposed and unexposed are exchangeable if Y (1) and Y (0) are jointly
independent of X”, which implies the following equalities:

Pr[Y (1) = 1|X = 0] = Pr[Y (1) = 1|X = 1] = Pr[Y (1) = 1]

Pr[Y (0) = 1|X = 1] = Pr[Y (0) = 1|X = 0] = Pr[Y (0) = 1]

(3.1)
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or, in short, [Y (0), Y (1)] q X. This means that if exchangeability holds,
contrasting, for example, E(Y |X = 1) and E(Y |X = 0) yelds the same
results as contrasting Y (1) and Y (0), which is precisely what required to
obtain a causal effect. It is important to note that observed data can never
tell us whether exposed and unexposed are exchangeable or not, in order to
judge the plausibility of such assumption we have to rely on subject matter
knowledge.

There are different reasons why the exchangeability condition may not hold,
the most important of which is the presence of a third factor which affects
both X and Y . If so then there will be an association between X and Y
even if X has no causal effect on Y , we call this common cause a confounder
and show in this work a way to properly take into account such variables in
order to avoid the bias they induce in an analysis.

3.3 Principal Stratification - Frangakis and Rubin

A crude analysis such as contrasting the two groups of treated and not
treated does only, in general, yeld an association measure because we are
comparing different sets of individuals, while the definition of causal effect
requires a comparison to be made on a common set (i.e. the same individ-
uals under both treatment and no treatment). FR propose to structure the
analysis focusing on subgroups of units defined by measured pretreatment
variables values, thus creating a stratification such that a comparison within
each of this subgroups yeld a causal effect.
Let us consider a binary treatment X = 0, 1, an outcome Y and a post-
treatment variable S; an example could be the HIV vaccine trial, where X
is assignment to either vaccine or placebo, Y survival and S is compliance
to the trial.

Definition

� The basic principal stratification P0 with respect to posttreatment vari-
able S is the partition of units i = 1, ..., n such that, within any set of
P0, all units have the same vector [Si(0), Si(1)].

� A principal stratification P with respect to posttreatment variable S
is a partition of the units whose sets are unions of sets in the basic
principal stratification P0.

For clarity, a possible principle stratification P is the partition of individu-
als into the set whose posttreatment variable is unaffected by treatment in
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this study (i.e. with Si(0) = Si(1)) and the remaining subjects (i.e. with
Si(0) 6= Si(1)); given the HIV trial example, the first set would be formed
by the “always compliers and never compliers regardless of treatment”, and
the second would include those whose decision to comply or not is influenced
by the treatment they have been assigned to (here we assume the trial is
not blinded).
FR observe that, generally, it is impossible to directly observe the princi-
pal stratum to which a subject belongs, because we can observe only either
Si(0) or Si(1) for each individual, nonetheless they proceed by assuming the
strata belongings as known to present their method.

Definition Let P be a principal stratification with respect to the posttreatment
variable S and let SPi indicate the stratum of P to which unit i belongs. Then
a principal effect with respect to that principal stratification is defined as a
comparison of potential outcomes under X = 0 versus X = 1 (in this case
placebo vs vaccine) within a principal stratum ς in P , i.e. a comparison
between the ordered sets

{Yi(0) : SPi = ς} and {Yi(1) : SPi = ς}. (3.2)

The key is in the fact that the value of the ordered pair [Si(0), Si(1)] is, by
definition, not affected by treatment (although the potential variable Si(0)
generally differs from Si(1)). Therefore the following properties are valid:

1. The stratum SPi , to which unit i belongs, is unaffected by treatment
for any principal stratification P .

2. Any principal effect, as defined in (3.2), is a causal effect.

Which is to say, if memberships to strata were known, stratification of the
individuals by SPi would adjust for personal characteristics reflected in the
posttreatment variable without inducing treatment selection bias for any
principal stratification P .

As stated already, belonging to a stratum is something which is in general
not directly observable, nevertheless FR remark that it is often possible to
build plausible restrictions for such an assignment, for example using covari-
ates to predict each individual’s membership, and using sensitivity analysis
techniques for the causal effects, exploring possible ranges of unobserved
quantities.
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3.4 Principal Stratification - Gilbert, Bosch and
Hudgens

GBH develop a method, based on FR’s principal stratification, which aims
at obtaining a causal effect of HIV vaccine on viral load that adjusts for the
posttreatment selection bias. They define the estimand causal vaccine effect
on viral load as a comparison of potential viral loads under the two random-
ization assignments (either vaccine or placebo) for a subgroup of subject
with a common pair of potential infection status outcomes (i.e. a principal
stratum in the sense of FR), in particular they consider those subjects in
the “always infected” stratum, i.e. those who would be infected regardless
of randomization to vaccine or placebo. The authors state that drawing
inference on such stratum addresses a a practical question for individuals
vaccinated in a public health program: “If I acquire HIV despite vaccina-
tion, what is the viral load compared to if I had forgone vaccination?”.

The causal estimands are not identified, because membership of an infected
placebo recipient to the “always-infected” principal stratum is unknown (we
do not observe the counterfactual variable “infection status had the subject
been randomized to vaccine”). To address this problem GHB make use
of models for the probability that an infected placebo recipient is in the
“always-infected” stratum as a function of the potential viral load under
randomization to placebo. Earlier works (see for example [4]) implicitly
took this approach, by defining two selection models that express bounds
for the maximum plausible levels of selection bias and allow for identifica-
tion of the estimands. GBH remark that it is important to also consider
selection models that reflect intermediate degrees of selection bias, which
may be more realistic and will allow for more powerful statistical tests, and
develop a method for sensitivity analysis that explores a continuous range
of possible selective effects betweem the two extreme situations of no bias
and maximal plausible bias that [4] consider.

Under Rubin’s [9] SUTV (stable unit treatment value) and FR [2] as-
sumptions, GBH derive a testing procedure that contrasts the distribution
F alw.inf(v) (y) (potential viral load for the “always-infected” had all of them

been randomized to vaccine) with F alw.inf(p) (y) (the same distribution had all

of them been randomized to placebo), which always yelds a causal effect.
This way, the null hypothesis of no causal effect of vaccination on viral load
in the “always-infected” principal stratum can be expressed as:

H0 : F alw.inf(v) (y) = F alw.inf(p) (y),∀y. (3.3)
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Neither of the two distributions in (3.3) is identifiable, hence requiring GBH
to make two further assumptions

1. treatment assignment of each subject is independent of his/her poten-
tial outcome

2. no subject would be simultaneously infected if randomized to vaccine
or uninfected if randomized to placebo

which they find justifiable due to the nature of the trial (randomized and
blind) and to subject matter considerations.

Let Si(·) denote the potential outcome for subject i of the variable indicating
whether the subject would be infected (Si(·) = 1) or not (Si(·) = 0) given
treatment · (either vaccine (v) or placebo (p)). Consider moreover a partition
of the whole population into three principal strata:

� always-infected, for which {Si(v) = Si(p) = 1}

� never-infected, for which {Si(v) = Si(p) = 0}

� protected, for which {Si(v) = 0, Si(p) = 1}.

A fourth possible stratum would be formed by subjects having the pair
{Si(v) = 1, Si(p) = 0}, but this set is, by assumption 2, empty. A subject
with S(p) = 1 may then belong to either the always-infected or the protected
stratum, thus making such distinction unidentifiable. GBH define the level
of vaccine efficacy (V E) against infection, determining the proportion of
subject with S(p) = 1 in each of such strata, as

V E = 1−RR = 1− Pr{Si(v) = 1}
Pr{Si(p) = 1}

, (3.4)

and remark that it is a causal estimand measuring the relative reduction in
infection risk conferred by randomizing to vaccine versus placebo. Under all
the assumptions the authors write then the density f(p)(y) of potential viral
load in subject infected under randomization to placebo as a mixture of the
densities for the protected (fprot(p) (y)) and the always-infected (falw.inf(p) (y))
strata as follows:

f(p)(y) = V E ∗ fprot(p) (y) + (1− V E) ∗ falw.inf(p) (y). (3.5)
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With some calculations, the density in (3.5) can be rewritten as a biased
sampling model as follows:

falw.inf(p) (y) = W−1w(y)f(p)(y), (3.6)

where w(y) = Pr{Si(v) = 1, Yi(p) = y, Si(p) = 1} andW =
∫∞
−∞w(y)f(p)(y)dy

is a normalizing constant equal to 1 − V E = RR. The weight function
w(y) = RR(y) = 1 − V E(y) is the probability that a subject infected with
viral load y if randomized to placebo would be infected if randomized to
vaccine. GBH show that it follows that testing (3.3) is equivalent to testing

H0 : Fv(y) = (1− V E)−1

∫ y

−∞
w(z)dFp(z),∀y. (3.7)

By assumption 1, V E is identified from the observed data, so if w(·) were

known, then both F alw.inf(v) (·) and F alw.inf(p) (·) would be identified, and the

hypothesis (3.3) could be tested. Being w(·) unknown, and being not possi-
ble to test whether the chosen w(·) is correctly specified, the authors assume
it as known, and test (3.7) for a variety of fixed choices of w(·). In particu-
lar they choose a logistic model, indexed by an interpretable bias selection
parameter β; for a finite β, eβ is the odds ratio of infection under random-
ization to placebo with viral load y versus viral load y−1. GBH remark the
importance of choosing an interpretable model for w(·), so to be guided by
beliefs about plausible degrees of selection bias in the choice of β.
The authors conclude deriving testing procedures which would allow to ad-
just for selection bias, if the model for w(·) has been correctly specified, and
presenting a simulation study in which they investigate the power of differ-
ent tests for a variety of correct and incorrect choices of the β parameter, i.e.
what and how much can go wrong if the selection bias model is improper.

3.5 A Short Introduction to DAGs

As stated already, exchangeability may not hold; knowing this we may
consider it more plausible if we adjust for some additional (set of) known
variable(s) L in our analysis. Nonetheless, even conditional exchangeabil-
ity remains untestable (we may have unmeasured/unadjusted confounders)
and must be justified by subject matter knowledge. It is possible to obtain
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exchangeability by adjusting, but it is also possible to “destroy” it, there-
fore it is of primary importance to epidemiologists involved in observational
studies to determine which the correct set of variable to adjust for is. An
important tool that can be useful in such a process are the DAGs, namely
Directed Acyclic Graphs.

In mathematics, a graph is an abstract representation of a set of objects
where some pairs of objects are connected by links. The interconnected
objects are represented by mathematical abstractions called vertices, and
the links that connect some pairs of vertices are called edges. Typically,
a graph is depicted in diagrammatic form as a set of dots for the vertices,
joined by lines or curves for the edges. In causal inference (and in statisti-
cal modelling in general) the vertices are variables, and the edges represent
causal links between pairs of such variables. It is worth noting that formal
relationships exist with counterfactuals through non-parametric structural
equations, even if this is beyond the subjects of this work.

L

����
��

��
�

��@
@@

@@
@@

A // Y

Figure 3.1: A Simple DAG With 3 Variables

Each of the arrow in Fig.3.1 represents a causal effect: A causes Y , L causes
both A and Y . This graph is directed since each connection between two
variables is an arrow, and acyclic, because it contains no directed cycles, i.e.
following the arrows it is not possible to come back to the starting point,
whichever it was.
Direction of arrows has a precise meaning, giving the direction of the (causal)
link from one variable to another: in Fig.3.1 for example, A affects Y but
not the other way around. Presence of arrows encodes assumptions, if an
arrow from, say, L to A is present then we believe L may or may not affect
A, while if the same arrow is absent then we believe that L does not affect A.

A set of graphical rules allows us to assess whether two variables on a graph
are independent (d-separated in graph terminology) or not, and this will
help us determine what variables we need to adjust for; we first introduce
some notation.

� The ancestors of a variable, V , are all other variables which affects V
either directly or indirectly. In the DAG in Fig.3.1 A has one ancestor,
L, which in turn has no ancestors.
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� The descendants of a variable, V , are all other variables affected by
V , either directly or indirectly. A has a single descendant Y , L has
two descendants, A and Y .

� A path is a route between two variables passing through the arrows
(not necessarily following the direction of them). For example, there
are two possible paths from A to Y in the DAG above: A → Y and
A← L→ Y .

� A path can be either blocked or open according to two very simple
rules.

I A path is blocked if it contains a “chain” → L→ or a “fork” ← L→
and we have conditioned on the middle variable.

II A path is blocked if it contains an “inverted fork”→ L← and we have
not conditioned on the middle variable or on any of its descendants

else, a path is open; the middle variable in an inverted fork is usually called
a collider. If all paths between, say, A and Y are blocked by conditioning on
a (set of) variable(s) L, then we say that A and Y are conditionally indepen-
dent given L or, using graph terminology, that A and Y are d-separated by
L. If at least one path is open, then A and Y are (most likely) conditionally
associated. Note that L may be the empty set, in this case then A and Y
are unconditionally independent.

Consider again the DAG in Fig.3.1 and assume it describes the true causal
structure. Suppose we desire to test the existence of the arrow from A to
Y , i.e. the existence of a causal effect of A on Y , should we adjust for L
in our analysis or not? The first step is to draw the graph under the null
hypothesis of no causal effect, that is, we redraw it deleting the arrow from
A to Y .

L

����
��

��
�

��@
@@

@@
@@

A Y

Figure 3.2: Simple DAG Under the Null Hypothesis of no Causal Effect

Making use of the graphical rule I we verify that conditioning on L blocks
all possible paths from A to Y . Hence, any evidence of an association be-
tween A and Y given L would prove that there is a causal effect of A
on Y , i.e. that the arrow we have deleted is actually there. In this sim-
plified (and unrealistic) situation exposed and unexposed are conditionally
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exchangeable, given L, and we can not only test the presence of a causal
effect, but also estimate it using an observed (conditional) association, for
example employing a simple linear or logistic regression model (clearly de-
pending on the nature of the variables and the estimand of interest). Now
consider a different situation, depicted in Fig.3.3.

L

A

??�������
// Y

__@@@@@@@

Figure 3.3: Another DAG Axample

Here L is jointly caused by A and Y , suppose, again, that this describes the
true causal structure; we draw the same graph under the null hypothesis of
no causation of A on Y and apply the graphical rules to verify if and when
A and Y are d-separated.

L

A

??�������
Y

__@@@@@@@

Figure 3.4: Another DAG Axample, Null Hypothesis

It is immediate to note that, by rule II, conditioning on the collider L would
open the path A → L ← Y . Evidence of an association between A and Y
conditional on L would then not prove the existence of a causal effect of
A on Y , and an estimate obtained via a simple conditional analysis would
be biased. The only way to obtain exchangeability, and then being able to
both test the existence of a causal effect and estimate its magnitude, would
here be not to condition on L; this way the path A→ L← Y would be, by
rule II, blocked.



Chapter 4

A P.S. Approach to HRT
and Breast Cancer

4.1 Doomed vs Healthy

Consider, for simplicity, a scenario where each woman is classified either as
treated or untreated (thus ignoring, for the time being, the possible duration
of the estrogen/progestin therapy); suppose that we can think of women as
belonging to one of three categories:

� those who do not develop cancer in any case, regardless of whether
they are treated or not, we call them “healthy”

� those who develop cancer if treated, but would not have had they not
been treated, we call them “sensitive”

� those who develop cancer in any case, regardless of treatment status,
we call them “doomed”

According to the literature we exclude the possibility of a fourth strata,
i.e. women that would only develop cancer if not treated and would not if
treated. This classification can be easily summarized in a table for clarity:

cancer healthy sensitive doomed

untreated no no yes
treated no yes yes

Table 4.1: Classification into “healthy”, “sensitive” or “doomed”

Upon development of breast cancer we find ourselves in a difficult situation:
has the woman been treated with HRT? if the answer is no, then there is no
doubt (in this simplified scenario) that she belongs to the “doomed” group.
But what if the woman has been treated? we find ourselves in an unclear

18
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situation, since she could belong either to the “doomed” or to the “sensitive”
group; if she is “sensitive” then the tumor is HRT-induced (i.e. caused by
the hormonal therapy), if she is “doomed” then the tumor could be either
HRT-induced or have other causes. We are therefore not able to distinguish
between HRT-induced and other subtypes of cancer, since we cannot “as-
sign” a woman who developed breast cancer to one of the two groups.

If we want to consider (and eventually maybe quantify) an association be-
tween HRT and breast cancer prognosis, we need then to compare the prog-
nosis for untreated women with tumors not caused by HRT (doomed) against
a mixture of treated women with HRT-induced tumors (sensitive) and not
caused by HRT tumors (doomed). This is not possible unless we make some
assumptions in order to overcome the unidentifiability issue we mentioned;
the framework of potential outcomes and principal stratification offers a way
to address this problem and set up a model which is suitable for estimating
the quantities of interest [10].

4.2 Assumptions and Estimands of Interest

Methods have been developed to solve the issue of unidentifiability, re-
lying on the assumptions typical to the framework of potential outcomes.
Two of these methods are presented in [10] as an application of the princi-
pal stratification techniques to the HRT problem. A scenario where HRT is
defined on a continuous scale (previous literature focused mainly on binary
covariates) and with additional information on covariates is considered, the
aim being to estimate, under a set of reasonable assumptions, the difference
in prognosis for women with different tumor subtype.

Following [10] and the potential outcomes notation in FR [2]:

� Z denotes disease status, Z = 1 for cancer and Z = 0 for no cancer

� X denotes duration of past HRT use, we assume X continuous in
[0,∞), where X = 0 indicates no past HRT use

� C denotes baseline covariates, allowed to be measured on any mixture
of scales

� Y is a prognostic factor, allowed to be measured on any scale, and for
convenience defined as ‘not defined’ when Z = 0

� Z(x) and Y (x) denote the potential outcomes of Z and Y at HRT
level X = x
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� Z(·) denotes the entire potential outcome function {Z(x),∀x}, and we
say that two women belong to the same principal stratum if they have
the same Z(·)

� we call non HRT-induced a breast cancer which is not caused by HRT

[10] make the following assumptions:

I Z(X) = Z;Y (X) = Y
This consistency assumption states that the potential outcomes corre-
sponding to the factual (observed) HRT level are equal to the observed
outcomes Z and Y ; those corresponding to other (counterfactual) levels
are unobserved, thus considered as missing.

II Z(x) ≥ Z(x′) if x ≥ x′
HRT could hypothetically prevent breast cancer for some women, but
this is highly unlikely. Assumption II states therefore that a woman
who develops cancer at one level of HRT, would also have developed
it had she been treated longer; Z(·) is then a monotonically increasing
step function, thus (given the dichotomous nature of Z and II) straight-
forwardly summarizable into a scalar R, defined as the minimum level
of x for which Z(x) = 1 (i.e. the cancer occurs).

III {Y (x), R} qX|C,∀x
This is a conditional independence statement, and assumes that X can
be considered randomized within levels of C.

For this analysis, we consider the principal strata as representing women
with different types of cancer, i.e. we distinguish between HRT-induced and
non HRT-induced cancers. We can ‘label’ these strata using the scalar R
(which summarizes the potential outcome function Z(·)) as follows:

cancer
subtype R = 0 R > 0

X = 0 non HRT-induced no cancer
X > 0 HRT-induced/non HRT-induced HRT-induced

Table 4.2: Cancer subtypes strata

R could be seen as some sort of ‘resistance’ each woman may have against
breast cancer, keeping into account HRT. R = 0 would mean ‘no resistance’
at all, whereas R > 0 would mean not to develop the tumor until a cer-
tain duration of the hormonal therapy has been reached. Again we can see



CHAPTER 4. A P.S. APPROACH TO HRT AND BREAST CANCER21

how there is an ‘overlapping’ of tumor subtypes among treated women: if
(R = 0, X > 0) then the tumor could either be caused by HRT or by other
factors. [10] makes the additional assumption that since for most women
(moderate levels of) HRT does not cause cancer, then most of the observed
cancer within R = 0 should be bound to be non HRT-induced, thus reducing
the partition into:

cancer
subtype R = 0 R > 0

X = 0 non HRT-induced no cancer
X > 0 non HRT-induced HRT-induced

Table 4.3: Cancer subtypes strata with the non HRT-induced assumption

or, similarly:

� Z = 1, R > 0→ HRT-induced tumor

� Z = 1, R = 0→ non HRT-induced tumor.

The target estimand of interest is the difference in prognosis between women
with HRT-induced tumors and women with non HRT-induced tumors, which
[10] formalizes as

m(x,C) := g[E{Y (x)|0 < R ≤ x,C}]− g[E{Y (x)|R = 0, C}], x > 0 (4.1)

where g(·) is a known, smooth, monotone link function, and m(0, C) := 0.
Note that m(x,C) is not a measure of the HRT effect on prognosis (but this
does not mean it cannot be influenced by an existing HRT effect). One last
assumption is made in this general setting:

IV Pr{Y (x)|R = 0, C} = Pr{Y (0)|R = 0, C},∀x
If a woman develops an HRT-induced cancer, then it’s likely that her
prognosis depends to some extent on the duration of the therapy (for
example, a larger dosage could cause a more aggressive cancer). If a
woman, instead, develops a non HRT-induced cancer, then there is no
reason to believe that her prognosis can be affected by her dosage (du-
ration) of HRT, which is what this assumption states (for a justification
of this see [10]).
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4.3 Identification and Estimation

Based on assumptions I-IV [10] develops a structure which permits to
model, through a mixture distribution, the prognostic factor Y both in the
cohort and in the case control settings (for the case control studies one more
assumption will be needed).

Cohort study
A cohort study generates an i.i.d. sample from Pr(Y, Z,X,C).
Define π(X,C) := Pr(Z = 1|X,C). Under I-III it can be shown that

Pr(R ≤ x|C) = π(x,C) (4.2)

In particular Pr(R = 0|C) = π(0, C) holds. Equation (4.2) implies that
Pr(R|C) (i.e. the conditional distribution of the principal strata) is identi-
fied under cohort sampling. Moreover it is possible to write the conditional
distribution of Y , given (Z = 1, X,C) as a mixture of potential outcomes for

women with HRT-induced and non HRT-induced cancers. Let πH = π(0,C)
π(x,C) ,

then:

Pr(Y |Z = 1, X = x,C) =πH ∗ Pr{Y (x)|R = 0, C}+
+(1− πH) ∗ Pr{Y (x)|0 ≤ R ≤ x,C}

(4.3)

Assumption IV allows identifiability of the mixture components. Combining
it with (4.3) and (4.1) yelds:

m(x,C) =g

{
E[Y |Z = 1, X = x,C)]− E[Y |Z = 1, X = 0, C)] ∗ πH

1− πH

}
+

−g{E[Y |Z = 1, X = 0, C)]}
(4.4)

Equation (4.4) shows that m(x,C) is identified if πH 6= 1 or, equivalently, if
π(x,C) 6= π(0, C).

Case control study
A case control study generates two samples: one i.i.d sample of size n1 from
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Pr(Y,X,C|Z = 1) and one i.i.d. sample of size n0 from Pr(Y,X,C|Z = 0).
Assumptions I-IV alone do not guarantee identifiability in the case control
setting, since under this sampling scheme π(X,C) is not identified (hence
neither is P (R|C)). We need then to introduce:

V π(x, c) ' 0,∀x, c
this is the ‘rare disease’ assumption, which is often reasonable as it
forms the basis for choosing case controls designs in practice. Since
case control studies don’t follow patients over time, a relative risk can’t
be evaluated; it is possible, however, to calculate the exposure-odds ra-
tio, which approximates the RR when prevalence is close to zero.

Define the odds ratio

η(X,C) :=
π(X,C)[1− π(0, C)]

π(0, C)[1− π(X,C)]
(4.5)

which by Bayes rule is trivially identified from case-control sampling, and
equal to Pr(X|Z=1,C)Pr(X=0|Z=0,C)

Pr(X|Z=0,C)Pr(X=0|Z=1,C) .

Given V (i.e. when π(x, c) ' 0), it is easy to show that πH ' η−1(X,C).
This way we can obtain an ‘approximate’ identification in this setting as well.

Two approaches are proposed in [10] in order to estimate m(x,C):

� The implicit method specifies models for E(Y |Z = 1, X,C) and
π(X,C) (η−1(X,C) for the case control study), and use the relation in
(4.4) to obtain a model for m(x,C). A quite straightforward choiche
can be to model the mean level with a linear relationship and the
π(X,C) (η−1(X,C)) with a simple logistic regression, both employing
the additional covariates C as regressors. The implicit model turns
out to be computationally light, but could be quite hard to interpret
in terms of the involved parameters, which may make it difficult to
formulate scientifically relevant questions about m(x,C). Standard
errors for m(x,C) can be obtained from the delta method.

� The explicit method models m(x,C) directly (and works when the
g(·) function is the identity link or the log-link) and involves fitting
one main model, for example m(x,C) = ψ0 +ψ0x, together with other
nuisance sub-models involving covariates and the mixture weights πH .
This procedure makes use of semi-parametric estimating techniques



CHAPTER 4. A P.S. APPROACH TO HRT AND BREAST CANCER24

(namely the GEE, Generalized Estimating Equations), yelding estima-
tors which, under regularity conditions, have good asymptotical prop-
erties and possess an analytical expression for their variance-covariance
matrix. One drawback is some ‘rigidity’ this model implies, not being
possible to extend it to handle more than two strata (which could be
of interest in other settings).

Appropriateness of assumptions I-III can be tested to a certain extent,
thanks to restrictions which are directly obtainable from such statements
(see [10]).

4.4 Different approaches comparison

Some remarks can be made about what, in this particular setting, could
drive the choiche of using a semi-parametric approach rather than a full
parametric one for estimation. Our intent is to propose a different way of
modelling (call it B) parametrizing unobservable quantities (i.e. potential
outcomes) as opposed to the procedure [10] developed (call it A).

A B√
Testing

√
√

Computational Weight ×
× Flexibility

√

× Understanding
√

Table 4.4: A vs B Estimation Methods

� Testing: both methods allow a quite straightforward parameters test-
ing

� Computational Weight: the B method could turn out to be computa-
tionally heavier than the A, depending on our choiche of distributional
assumptions

� Flexibility: B allows a good flexibility without impacting too much
neither on the estimation procedure complexity nor restricting the
choiche of the functional form of the estimand of interest

� Understanding: semi-parametric procedures can be quite difficult to
be fully understood and implemented for non-statisticians, whereas
full parametric ones may be more intuitive to many.



Chapter 5

A Modeling Proposal

5.1 Focusing on Causality

The models reviewed in 4.3 deal with the question “how can we assess
the differences in prognosis between women with cancers caused by HRT
and women with cancers caused by other factors?” and try to quantify such
differences through the estimand in equation (4.1). If we are interested in
inferring into causality, then we need a different approach and two important
steps are to be considered:

� assessment of the presence (or absence) of a causal link between vari-
ables (here in particular from X to Y )

� estimation of the magnitude of such connection.

The first step can be achieved with a simple analysis after some reasoning
which can be supported by the use of DAGs, whereas the second will require
more assumptions to be feasible.

Let the following DAG represent the simplest possible situation, still keeping
in mind that in a realistic setting the presence of unmeasured confounders
U is unavoidable:

U

��~~
~~

~~
~

��
X // 77Z // Y

Figure 5.1: Simplest Possible Structure with Unmeasured Confounders

Fig.5.1 graphically represents what follows: X may affect Y directly or
through Z, U summarizes supposed unmeasured confounders which affect
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both Z and Y but not X. If we think of X as HRT, Z as the disease status
and Y as the prognosis then U could represent some sort of personal char-
acteristics, possibly genetic traits, that are likely to influence the onset of
the tumor and the prognosis, but do not have any impact on the physician’s
decision to prescribe HRT or not to a particular woman.

Following what presented in Section 3.5, in order to assess the presence (or
absence) of a causal link from X to Y we should first draw the graph under
the null hypothesis of no effect of X on Y :

U

��~~
~~

~~
~

��
X // Z // Y

Figure 5.2: Null Hypotesis: No Effect of X on Y

If no unmeasured confounders were present, evidence of association between
X and Y through a näıve analysis (regressing Y on X given Z) would both
confirm the presence of the causal link X → Y and yeld an estimate of such
effect (it would be equal to the regression coefficient for X). The reason for
this being that, in this case, conditioning on Z would block every possible
path from X to Y .
This is however, as said, not realistic, since we will always be in the presence
of unmeasured confounding factors which may affect the involved variables
opening paths (X → Z ← U → Y in this case, Z being a collider) and
thus inducing a component of heterogeneity which we would not be able to
explain through the informations at our disposal, and eventually resulting
in a biased (confounded) estimation of the true effects. In such a situation,
then, a simple näıve model (a linear or a logistic regression, for example) is
not indicated if our aim is to estimate a causal effect.

Let us now consider a more complex scenario, depicted in the DAG in
Fig.5.3. R indicates the unknown “resistance” to developing breast can-
cer with respect to HRT; if both R and X were known, then we would
know whether a particular woman were to be classified as either “healthy”,
“doomed” or “sensitive”, i.e. which stratum she belongs to, thus uniquely
determining that woman’s disease status Z and the cause of a cancer event
(Z = 1).
Again, if we draw the DAG under the null hypotesis (i.e. deleting the arrow
from X to Y ), it is easy to see that conditioning on Z and R would block
every possible path from X to Y , allowing us to assess the presence of a
causal effect if we find evidence of association between such variables even
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after having adjusted for the disease status and the strata belonging.

R

��

Uoo

��
X // 77Z // Y

Figure 5.3: Strata Structure

If we could observe R then we may still want to use a simple linear or
logistic regression to perform the analysis and include strata belonging as
a covariate. Unluckily R is an unobservable variable, thus requiring some
more sofisticated modelling; our choice has been to build a selection model
which could cluster women who developed breast cancer (i.e. cases) into
two groups: “doomed” and “sensitive”. This will be presented in detail in
Section 5.2. The rationale behind this choice is that if we build a good
enough selection model, then we may think we have approximately correctly
placed each woman into the right subgroup, thus obtaining an approxi-
mately correct adjustment for R, which in turn could allow to consider the
X → Z ← R← U → Y path as blocked.

Under assumptions I-IV (Section 4.2) and assuming that women with R = 0
experience non HRT-induced cancers only, the following DAG (Fig.5.4) is
mathematically redundant with respect to the one in Fig.5.3, but may be
more useful to explain the biology which we believe drives the situation we
are exploring. The tumor subtypes (TS) (i.e. no tumor, HRT-induced tu-
mor or non HRT-induced tumor) appears then explicitely in the graph; in
this interpretation Z becomes a sort of proxy for TS (which actually incor-
porates the information on disease status together with the tumor subtype
distinction).

R

��

Uoo

��

TS

�� !!B
BB

BB
BB

B

X

=={{{{{{{{
77Z Y

Figure 5.4: Tumor Subtypes Structure
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5.2 Model Formulation in a Case-Control Study
Design

Our aim is to directly parametrize unobservable variables, making a nor-
mality assumption on the potential outcomes of Y distribution in the two
groups of cases “doomed” (Z = 1, R = 0) and “sensitive” (Z = 1, R > 0);
this is the main difference of our approach as compared to the one proposed
by [10]. The normality assumption we are going to make is supported mainly
by exploratory data analysis in real datasets from the CAHRES study: the
prognostic index has an approximately normal distribution in subpopula-
tions which may be considered somewhat representative of the “doomed”
and the “sensitive” groups.

Let K = K0 ∪K1 be the set of all individuals, formed by the disjoint union
of those who are cases (K1) and those who are not (K0). Suppose that our
sample is the entire population.

Then the joint likelihood (now for simplicity without any covariate) is:

L =
∏
K1

Pr(Y |Z = 1, X)
∏
K

Pr(Z|X) (5.1)

In a more realistic setting, where we do not observe the entire population
but only a sub-group of it, we must keep into account the way this sample
has been drawn from it. This means we need to know the so called ascer-
tainment probabilities, i.e. the probability with which each person entered
the sample. Our approach will assume known ascertainment probabilities.

This results in a further step in modeling Pr(Z|X), which should now be
written as Pr(Z|X,A = 1), where A is a dichotomous variable whose value 1
indicates that a particular subject from the population was chosen to belong
to the sample. It is easy to show that:

Pr(Z|X,A = 1) =
P (Z|X)P (A = 1|Z)∑

z=0,1 P (Z|X)P (A = 1|Z)
. (5.2)

Suppose we know the proportions with which cases (Z = 1) and controls
(Z = 0) have been randomly drawn out of a certain population, say p1 for
the cases and p0 for the controls. Then we have that
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P (A = 1|Z) =

{
p1 Z = 1

p0 Z = 0.
(5.3)

Substituting in (5.2) yelds:

Pr(Z = z|X,A = 1) =
zp1P (Z = 1|X) + (1− z)p0P (Z = 0|X)

p1P (Z = 1|X) + p0P (Z = 0|X)
(5.4)

Let now K̄ = K̄0 ∪ K̄1 denote the sample, where K̄0 are the controls and
K̄1 the cases, i.e. K̄ = K ∩ {A = 1}.

We assume a normal distribution for the outcome Y in both subgroups, al-
low for equal variance but model the mean level in a different way, i.e.

Y |Z = 1, X,R = 0 ∼ N(µ0, σ)

Y |Z = 1, X,R > 0 ∼ N(β0 + β1X,σ).
(5.5)

Such choice also reflects the assumption that HRT duration (X) does not
affect breast cancer prognosis if a woman belongs to the “doomed” group.

Let πα,X := expit(α0)
expit(α0+α1X) , then the likelihood function results in:

lnL =
∑
K̄1

ln

πα,x e− (y−µ0)
2

2σ2

σ
√

2π
+ (1− πα,x)

e−
(y−β0−β1x)

2

2σ2

σ
√

2π

+

+
∑
K̄

ln
zp1expit(α0 + α1x) + (1− z)p0[1− expit(α0 + α1x)]

p1expit(α0 + α1x) + p0[1− expit(α0 + α1x)]
.

(5.6)

This expression can be easily extended to the case when we have covariates
if we assume that A is independent of such covariates, i.e. P (A|Z,C) =
P (A|Z) and equation (5.2) can be rewritten as
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Pr(Z|X,A = 1, C) =
P (Z|X,C)P (A = 1|Z)∑

z=0,1 P (Z|X,C)P (A = 1|Z)
. (5.7)

The full joint likelihood, including covariates can then be expressed as:

L =
∏
K̄1

Pr(Y |Z = 1, X,C)
∏
K̄

Pr(Z|X,C) Pr(A = 1|Z)∑
z=0,1 Pr(Z|X,C) Pr(A = 1|Z)

. (5.8)

Equation (5.7) holds as long as the choice of including a subject in the sam-
ple is made completely at random or depends on factors that do not enter
the model as covariates; if this were not the case, then we would have to
consider such factors and build a more complicated model for P (A = 1|Z,C).

5.3 Remarks

There is an important remark that must be done: the estimated HRT ef-
fect β1 for the group of sensitives (as defined in equation (5.6)) may not, in
this case, be a causal effect, even if we have blocked all the paths by condi-
tioning on the correct variables and thus we are within the correct principal
stratum. The reason for this is that the sensitive stratum belonging is de-
pendent on X, being defined as “those women with 0 < R ≤ X”; under all
our assumptions β1 represents what follows:

E[Y (x+ 1)|Z = 1, 0 ≤ r ≤ x+ 1, C]− E[Y (x)|Z = 1, 0 ≤ r ≤ x,C], (5.9)

i.e., the variation in the potential outcome Y (·) for a one unit variation of X,
at the same level of C. The problem is that if X changes then the definition
for the sensitive group does as well, and the assessment of a causal effect re-
quires comparison of the same group of units under different interventions.
Assumption II in Section 4.2 ensures that a woman who would develop an
HRT-induced cancer at a certain level of HRT would also do if treated for a
longer period (i.e. for a larger value of X). This grants that if we consider
increments in HRT duration, then the group of already sensitive women
does not change, but, still, women who previously did not develop the tu-
mor (R > X) could enter the group as cases: for example, a particular
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woman has a value of R = 5, is treated for X = 4.5 years and does not
develop breast cancer. If we ask ourselves the question “what if she was
treated for x+1 = 5.5 years?” then we see that the women enters the group
of sensitive, thus modifying the stratum. On the other hand, if we consider
a decrement of HRT duration we could observe women leaving the sensitive
stratum to enter either the group of the “protected”, i.e. those women that
have a sufficiently high value of R not to develop HRT-induced cancers, or
the group of “non-HRT-induced cancers”. Assigning such individuals to the
doomed group is not in line with the group definition “women with R = 0”,
thus creating some confusion.

If we could define the principal strata of interest without making use of the
treatment variable X, and believed we have correctly placed every woman
in its own stratum through our selection mechanism, then all the results of
FR [2] about causality would hold, and β1 would always be the causal direct
effect of HRT duration on prognosis for sensitive women. With the current
definition of principal strata that we have introduced in Section 4.2 following
[10], β1 would be a causal effect only “locally”, i.e. for particular ranges of
values of X such that HRT duration is “far enough” from the value of R for
each woman not to induce a group belonging change with a variation of X.
Such regions could not be derived from observed data using the procedure
whe have proposed, since we are approximating stratum belonging through
our logistic selection models, and not directly estimating R magnitude for
each individual.



Chapter 6

Applications

6.1 The CAHRES Study

The Cancer and Hormones Replacement in Sweden (CAHRES ) study is a
nationwide, population-based case-control study of breast cancer occurrence
among women, aged 50 to 74, without previously diagnosed breast cancer,
born in Sweden and resident there between October 1, 1993, and March
31, 1995. Incident cases of invasive breast cancer were identified through
the 6 Swedish regional cancer registries, and patients were asked through
their physicians for written consent to accept a mailed questionnaire. Con-
trols, frequency-matched to the expected age distribution of the cases, were
randomly selected during the entire period of study from a continuously up-
dated registry which provides national registration number, name, address
and place of birth of all people residing in Sweden; women with a previous
diagnosis of invasive cancer (other than non-melanoma skin cancer) were
excluded from all analyses. For statistical reasons postmenopausal women
only were included in the analyses, where age at menopause is defined as age
at last menstrual period or age at bilateral oophorectomy, if one year or more
prior to data collection (if later, women were considered premenopausal).

In Section 6.2 a subset of the original dataset consisting of 5929 individu-
als (2818 cases and 3111 controls) is considered, for which 6 variables are
recorded:

� case, dichotomous, 0 if control, 1 if case

� tumor grade, polytomous 1− 3

� tumor size in cms, continuous

� age in years, continuous

� bmi in kg/m2, continuous
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� hrt duration in days, continuous.

We decided to use only complete data records, and this led to a total of 986
cases and 3009 controls, for which a continuous outcome variable, NPI, is
constructed as explained in Section 6.2.

In Section 6.3 we present a similar analysis aiming, this time, to a discrete
outcome, namely 5-years survival. After cleaning the dataset from missing
values we have a total of 5092 individuals with complete data, 2351 of which
are cases and 2741 controls, and we consider 7 variables:

� death, dichotomous, 0 if alive after 5 years, 1 if deceased

� case, dichotomous, 0 if control, 1 if case

� age class, continuous, five equally large classes from age 50 to 74

� bmi in kg/m2, continuous

� parity, discrete

� menarche, continuous, age at first menstruation

� hrt duration, continuous.

6.2 Continuous Outcome: Nottingham Prognostic
Index

We consider here a continuous outcome, the Nottingham Prognostic Index
NPI, defined as ln(size+ grade) of the cancer, where:

� size is the size of tumor in cms

� grade is a 1−3 severity score based on the modified Bloom-Richardson
grading,

the higher the index value, the worse the condition.

Our models, as presented in Section 5.2, are fitted to the observed data from
the CAHRES study, employing both a plain logistic and a quadratic logistic
selection mechanism (more on this can be found in Chapter 7). HRT dura-
tion, Age and BMI for each woman in the study are considered as covariates.

A comparison is made, with respect to a standard linear regression, aimed
at assessing goodness of fit of the various models. A plain linear regression,
or näıve analysis, fits the mean value of the NPI conditional on HRT, Age
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and BMI, not considering possible differences due to the existence of a group
distinction in the population. Such a model shows here a better fit, in terms
of both correlation and residual variance, to the observed prognosis data.
Our two models perform overall in the same way, with a slightly better fit for
the one with the more complete selection model (quadratic logistic), albeit
very small.

HRT effect estimates for the three models:

� PS Model, Plain Logistic Selection: β1 = −0.0430241

� PS Model, Quadratic Logistic Selection: β1 = −0.0587184

� Näıve Model: −0.0225993.

Summary of fit statistics for the three models:

Goodness of Fit Correlation Residual Variance

Plain Logistic 0.0820283 0.2639186

Quad.Logistic 0.0820442 0.2639178

Näıve 0.1066138 0.2626862

Table 6.1: Goodness of Fit - Continuos Outcome Application

The expression of the likelihood for the model with a quadratic logistic se-
lection mechanism can be written down as follows:

πα,X,C := expit(α0+α3Age+α4BMI)

expit(α0+α1HRT+α2HRT2+α3Age+α3BMI)

lnL =
∑
K1

ln

πα,X,C e− (NPI−µ0−µ1AGE−µ2BMI)
2

2σ2

σ
√

2π
+ (1− πα,X,C)

e
− (NPI−β0−β1HRT−β2AGE−β3BMI)2

2σ2

σ
√

2π

+

+
∑
K

ln expit(α0 + α1HRT + α2HRT2 + α3Age + α4BMI)

(6.1)

We have allowed for AGE,BMI to have a different effect in the two groups,
and did not employ ascertainment probabilities (which were not known).
Estimates for such model are presented in Table 6.2.

Problems arise when trying to obtain the standard error estimates for these
parameters from the hessian matrix computed by the optimization routine
(using a Nelder-Mead method). Such matrix happens to be indefinite in sign,
thus indicating the estimate to be a saddle point in the parameter space;
different optimization methods did not give different results, and a deeper
investigation of the outputs revealed that the selection model assigned all
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the women to the first group (the doomed). This could either indicate that
the covariates we have considered (HRT duration, AGE,BMI ) do not bring
relevant information for our selection mechanism to discriminate between
the groups, or that there is no detectable effect of HRT on prognosis, which
in turn leads to assignment of all women to the stratum where the therapy
does not actually affect the outcome.

α0 -0.6281073847 µ0 2.6574134337 β0 2.9479989324
α1 0.4069481028 µ1 -0.0008324058 β1 -0.0587183965
α2 -0.0992194920 µ2 0.0104455145 β2 0.0217099265
α3 0.2749661877 β3 0.0139408707
α4 0.0544716150

Table 6.2: Estimates for the model with quadratic logistic selection

The following output summarizes the results for the näıve analysis:

glm(formula = index ~ hrt1000 + age + bmi1)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.796423 -0.346899 -0.008588 0.323511 2.127771

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.7141979 0.1861384 14.582 <2e-16 ***

hrt1000 -0.0225993 0.0105323 -2.146 0.0321 *

age -0.0009448 0.0025683 -0.368 0.7130

bmi1 0.0091708 0.0040786 2.249 0.0248 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The standard analysis detects a significant effect of HRT duration on prog-
nosis, showing a somewhat protective effect (the coefficient for therapy du-
ration is negative); AGE does not appear to have a significant effect on NPI,
whereas, albeit weakly, BMI seems to play a role.

Following the standard analysis interpretation one would conclude that there
seems to be a protective effect of hormonal therapy duration on patients
conditions after developing breast cancer, while a larger body mass index
apparently pushes towards the opposite direction, i.e. a worsening of the
prognosis.
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It must be remarked, however, that BMI can be of difficult interpretation,
since identical values of such measure could indicate very different situations
from the medical point of view: a particular value of BMI could be attained
either by being, say, not very tall and slightly overweight or by being very
tall and well fit.

Figure 6.1: NPI versus HRT in thousands of days

Figure 6.1 represents a plot of NPI versus HRT, with fitted data from the
näıve model and the quadratic logistic selection one overimposed. As afore-
mentioned, our model assigns all the women to the first group, where no
HRT effect on prognosis is present, we then see a fairly constant trend (not
decreasing nor increasing) in NPI as duration grows (blue balls): variations
are due to AGE and BMI effect. The red balls, representing fitted values
from a standard analysis, show a decreasing trend in prognosis as HRT du-
ration increases, as we expected from the previous output.
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Figure 6.2: NPI versus AGE

Figure 6.2 shows that both the quadratic logistic selection based model and
the standard model do not detect an appreciable effect of the age of the
women with respect to their breast cancer prognosis, as measured with the
NPI. This means that being older or younger appears not to affect the sever-
ity of the breast cancer for the women in this dataset.

It appears, moreover, that both models detect a small, but significant, effect
of BMI on prognosis (lower plot), as can be seen in Figure 6.3. Still, as re-
marked before, BMI is not an unambiguous measure and should, therefore,
be carefully evaluated when trying to draw conclusions (or possibly infer-
ence).
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Figure 6.3: NPI versus BMI

6.3 Discrete Outcome: 5-Years Survival

A dichotomous (0/1) outcome is considered, i.e. 5-years survival (Y ), for
which models with plain and quadratic logistic selection mechanism are fit-
ted and compared to a standard logistic regression. The dataset consists
of 5092 individuals with complete data, 2351 cases and 2741 controls, for
which the following covariates are measured (together with Y ): HRT (X),
BMI (C1), Age at Menarche (C2), Age Class (C3), Parity (C4).

In order to compare our model to a standard logistic regression in terms of
performance we predict the outcome using both models, build two contin-
gency tables of fitted against observed values, and calculate sensitivity and
specificity values for each such table.
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Such analysis has been carried out both with and without covariates, yeld-
ing slightly different results in terms of HRT effect estimate and goodness
of fit. Exploratory investigations suggested that a quadratic term for HRT
in the standard logistic model was not to be considered, while it has been
included as a regressor in the sensitive component of the mixture in both
settings and for the selection model in the covariates case.

Sensitivity turns out to be higher for the PS model prediction in both cases,
whereas we observed a certain improvement in specificity for this model from
the no covariates situation (where it’s slightly lower) to the one involving
covariates (slightly higher).

The likelihood for the PS (Principal Stratification) model with a quadratic

logistic selection, letting πα,X,C := expit(α0+α3C1+α4C2+α5C3+α6C4)
expit(α0+α1X+α2X2+α3C1+α4C2+α5C+α6C4)

,
is:

lnL =
∑
K1

ln[πα,X,C
eY (β0+β1C1+β2C2+β3C3+β4C4)

1 + eβ0+β1C1+β2C2+β3C3+β4C4
+

+(1− πα,X,C)
eY (γ0+γ1X+γ2X2+γ3C1+γ4C2+γ5C3+γ6C4)

1 + eγ0+γ1X+γ2X2+γ3C1+γ4C2+γ5C3+γ6C4
]+

+
∑
K

ln expit(α0 + α1X + α2X
2 + α3C1 + α4C2 + α5C+α6C4)

(6.2)

A choice has been made, to keep the baseline log-odds-ratio of being a case
(α0) constant and equal to a fixed value, specifically α0 = −6.0. This
choice should reflect possible previous knowledge about the study popula-
tion, therefore we decided not to estimate it together with the other pa-
rameters. A small sensitivity analysis has been carried out, showing little
difference in sensitivity and specificity values for values of α0 in the range
[−7.0,−4.0].

The HRT-related parameters’ estimates we obtained are:

HRT Effect No Covariates With Covariates

PS Model γ1 0.1716152 0.29960684
PS Model γ2 -0.3005484 -0.03214295
Näıve Model -0.14793 -0.144746

Table 6.3: HRT effect on 5-years survival, PS vs Näıve, with and without
covariates

Tables follow, which summarize predicted versus observed survival for a
plain logistic model (Table 6.3) and for our model with quadratic logistic
selection mechanism.
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(a) No Covariates

Pred. Alive Pred. Dead

Obs. Alive 1677 308
Obs. Dead 308 58

(b) With Covariates

Pred. Alive Pred. Dead

Obs. Alive 1678 307
Obs. Dead 307 59

Table 6.4: Näıve model predicted vs fitted

(a) No Covariates

Pred. Alive Pred. Dead

Obs. Alive 1667 318
Obs. Dead 306 60

(b) With Covariates

Pred. Alive Pred. Dead

Obs. Alive 1682 303
Obs. Dead 305 61

Table 6.5: PS model predicted vs fitted

The following tables present the specificity and sensitivity results. These
measures are widely used in statistics applied to the medical field, usually
to evaluate the power of a new test (a new screening technique, for example)
as opposed to the standard methods in use in terms of correct classification
of, say, healthy and unhealty patients. In this case, the observed values are
thought as being the standard method, and the model prediction as the new
one. Specificity measures the proportion of correct predictions of survival
over the actual survived, whereas sensitivity measures the proportion of
correct predictions of death over the actual non-survivors; clearly, the higher
these two values, the better the model’s fit.

(a) No Covariates

Sensitivity Specificity

Näıve Model 0.1585 0.8448
PS Model 0.1639 0.8398

(b) With Covariates

Sensitivity Specificity

Näıve Model 0.1612 0.8453
PS Model 0.1667 0.8473

Table 6.6: Sensitivity and Specificity Comparison

Overall, our model shows a slight improvement in terms of fit based on these
two indexes.
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Simulation Studies

7.1 Rationale

In order for our simulation studies to take place we first of all need to set
up the mechanism that will generate the data we will be fitting our models
to. Such structure is required to be to a certain extent flexible, since we
will need to be able to simulate data under different “scenarios”, and will
therefore depend on parameters which we will tune. This notwithstanding,
the mechanism will of course reflect our beliefs about what the relationships
among the involved variables could be like.

The focus is on a continuous outcome, say Y , which can be regarded as a
prognostic index and the effect of a covariate X, which mimics HRT du-
ration; for clarity and simplicity all simulations will be carried out in the
absence of covariates other than HRT. We also need to generate a value
for R to be able to let people in different groups (“healthy”,“sensitive”,
“doomed”, when we believe this distiction exists) have different character-
istics, thus creating (or eliminating) a group induced heterogeneity in the
outcome.

The first simulation study, which is presented in section 7.3, will address the
issue of correct targeting of the true parameters’ values through estimation
with the model proposed in equation (5.6). The aim is to show the benefits
of putting some effort in the development of the selection model (the πα,X)
and to underline the intepretational difficulties of which [10]’s implicit model
suffers.

In section 7.4 we will present the results from an intensive simulation study
aimed at comparing our proposal to a standard approach modeling. The
main issue we address is “when is one of the two approaches better than
the other in terms of explanatory power?”; in order to give an answer to
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such question we tune our generating mechanism so to be able to investigate
various scenarios and evaluate goodness of fit measures (namely correlations
between observed and predicted values and models’ residual variances).

To depict in a clear way which situations we are going to simulate we make
use of graphs, in order to better show the connections we believe may exist
among variables. Figure 7.1 presents a setting in which the following effects
exist:

� direct effect of X on Y

� direct effect of Z on Y

� joint effect of R and X, one independent of the other, on Z

� direct effect R on Y
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Figure 7.1: Underlying Truth: Strong Group Effect on Prognosis

In this situation our model, which assumes the presence of heterogeneity
induced by sub-groups of people on the outcome, is therefore correct, and
we would expect it to perform better than a standard analysis in predicting
the outcome.
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Figure 7.2: Underlying Truth: No Group Effect on Prognosis

Figure 7.2 shows the opposite situation, i.e. the total absence of a group
effect on the outcome, thus making a standard model, which does not take
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group belonging into account, the most correct tool for an analysis.

To be able to study with more accuracy the adequateness of our model we
propose to analyze various intermediate situations between the two we just
presented. Trying to gradually “shift” from 7.1 to 7.2, we make our compar-
isons on scenarios that can be represented with Figure 7.3 by tuning, time
by time, the strength of the direct association of R and Y .
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Figure 7.3: Underlying Truth: Intermediate Group Effect on Prognosis

The aim is to study the behaviour of our model, compared to the standard
one, analyzing datasets which are gradually moving away from our assump-
tion of different sub-groups, until the point in which such assumption is
completely wrong (i.e. no groups). We need to do this since in reality R is
unobservable, we are estimating its effect via our selection mechanism πα,X ,
and we would like to feel comfortable using our model also when we do not
have any clue on what the underlying truth could be.

7.2 Simulation Structure

Code has been written in R 2.10.1 language running under UBUNTU
10.04 LTS - Lucid Lynx for these simulations. The function that generates
the datasets and estimate the models accept the following inputs:

� number of simulations

� size of each simulated dataset

� proportion of “doomed” p

� proportion of not-treated p′

� minimum and maximum value for R if “sensitive” (a, b)

� prognosis mean value for the “non HRT-induced” tumors µ0
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� prognosis mean value for the “HRT-induced” tumors β0

� HRT gradient for the mean prognosis of the “HRT-induced” tumors
β1

� prognosis standard deviation for the “non HRT-induced” tumors σ0

� prognosis standard deviation for the “HRT-induced” tumors σ1

� a 3-elements vector defining the scenario, namely weights for µ0, β0

and β1 called A.

The default values are tuned so to yeld 2% of Z=1 (cases) (1% doomed +
1% HRT induced), a balanced (number of cases=number of controls) sam-
ple is then drawn accordingly to fixed ascertainment probabilities and the
estimation procedure applies. The parameters matrix is stored and possible
convergence issues are recorded at each loop (see the code for details).

The stochastic mechanism generating values for R,X,Z and Y is structured
as follows:

ϕR =

{
0 p

U(a, b) 1− p.
(7.1)

A uniform distribution is chosen as no direct information is available on
the unobservable variable R in the absence of covariates, leading to a sim-
ple way of splitting the women in the two subgroups without inducing any
dependence with the X variable; R is in fact something we may call an “in-
trinsic” characteristic, and should not be affected by anything but random
variation in this simplified setting. Applying our model to real data will
require instead that we formulate some associational assumption linking R
to the available covariates, so to allow the selection mechanism to assign
each woman to one of the two strata.

ϕX =

{
0 p′

λe−λx 1− p′.
(7.2)

The choice for a zero-inflated exponential is motivated by exploratory analy-
sis of real datasets, and mimics quite well the real HRT duration distribution
in such data with an estimated λ of 0.422594, thus fixed in the code at such
a level.
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ϕZ|R=r,X=x =

{
0 r > x

1 r ≤ x.
(7.3)

As in Section 4.2, assumption II and further considerations lead us to struc-
ture the probability of actually developing breast cancer contrasting the val-
ues for R and X for each woman. If r > x this mean that the subject has an
intrinsic resistance to developing HRT-induced cancer which protects her,
thus keeping her safe; if this is not the case then a woman could either be a
case because she is doomed (R = 0) or because her resistance is lower than
what required not to develop the tumor. Generating data in this way ensures
that a woman with R = 0 will always be a case (X can never be less than 0).

ϕY |Z=1,R=r,X=x =

{
N(µ0, σ) r = 0

N(β0 + β1x, σ) r > 0.
(7.4)

As stated already, the choice for a normal distribution in the two subgroups
is motivated by real data analysis; moreover, the distributional assumptions
reflect the belief that if a woman develops a non HRT-induced cancer, then
HRT shouldn’t have any effect at all on the prognosis (a justification for this
can be found in the medical literature). This is encoded by the absence of X
in the mean prognosis level for the doomed group, assumed to be constant
(in real data application we may want to let it vary accordingly to measured
covariates, as already seen in Chapter 6, but still not to HRT duration).

7.3 Modeling m(x,C): Parameters Targeting and
Implicit Model Limitations

The simulation study we present in this section is aimed at comparing es-
timate properties for our model with respect to those for the implicit model
mentioned in 4.3 and proposed by [10], in a case/control setting with no
covariates. The estimand of interest is the quantity in equation (4.1), re-
expressed, under [10]’s implicit model assumptions, using the identity link
g(·) = · and through equation (4.4) as:

m(x; ξ, α) =
ξ1X

1− expit(α0)
expit(α0+α1X)

(7.5)
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assuming simple linear and logistic models for E(Y |Z = 1, X) and π(X) as
follows

E(Y |Z = 1, X, ξ) = ξ0 + ξ1X

logitπ(X;α) = α0 + α1X.
(7.6)

As opposed to such model, our proposal estimates m(x) as a difference in
the mean levels (again, the identity link g(·) = · has been chosen) of the two
subgroups of doomed and sensitive women, defined as in (5.5); following
(4.1) we then have:

m(x) = E{Y (x)|0 < R ≤ x} − E{Y (x)|R = 0} =

= β0 + β1X − µ0 =

= (β0 − µ0) + β1X =

= ψ0 + ψ1X.

(7.7)

The ψ parameters have a direct interpretation, ψ0 being an intrinsic, non-
HRT-dependent difference in prognosis between women with different tumor
subtypes and ψ1 the x-gradient on m(x); analogous parameters in the case
of the explicit model would be ξ1/α1 (resulting from limx→0+ m(x; ξ, α))
and ξ1, which is also the coefficient for X in the classic linear regression
E(Y |Z = 1, X).

500 to 1000 samples of 200000 units each have been generated, out of which
all of the cases and an approximately equivalent number of controls for each
sample were drawn. With the default settings this leads to about 4000 cases
and a similar number of controls at each step. This has been done three
times, once for each of the following possible scenarios:

1. strong group effect on difference in prognosis, as in Fig.7.1

2. weak group effect on difference in prognosis, as in Fig.7.3

3. no group effect on difference in prognosis, as in Fig.7.2

In scenario 1. data are generated so that the underlying true mechanism
is correctly described by our model, whereas in scenario 3., where no dis-
tinction exist between doomed and sensitives, the correct model would be
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a simple linear regression E(Y |Z = 1, X). Scenario 2. recreates a half-way
situation, the strength of the group effect being still present, but weaker
than in Scenario 1.. What we want to show is the ability of the two models
to correctly (unbiasedly) target the true parameter values (that we fix in the
generating mechanism) indexing the true model for m(x; ψ̃) = ψ̃0 + ψ̃1X.
The generating mechanisms and the true models for the three scenarios are:

1.

Y |Z = 1, X,R = 0 ∼ N(µ0, σ)

Y |Z = 1, X,R > 0 ∼ N(µ′0 + µ′1X,σ)

m(x; ψ̃) = ψ̃0 + ψ̃1X, with ψ̃0 = µ′0 − µ0, ψ̃1 = µ′1

2.

Y |Z = 1, X,R = 0 ∼ N(µ0 +
µ′1
k
X, σ)

Y |Z = 1, X,R > 0 ∼ N(µ′0 + µ′1X,σ)

m(x; ψ̃) = ψ̃0 + ψ̃1X, with ψ̃0 = µ′0 − µ0, ψ̃1 = µ′1(1− 1/k), k > 1

3.

Y |Z = 1, X,R = 0 ∼ N(µ0 + µ1X,σ)

Y |Z = 1, X,R > 0 ∼ N(µ0 + µ1X,σ)

m(x; ψ̃) = 0, i.e. no direct group effect nor difference in prognosis
imputable to HRT.

At each simulation step, parameters are estimated for our model and the
implicit one, values are stored and eventually sample distributions are ob-
tained. Histograms of such distributions are plotted, together with confi-
dence intervals (at a 95% confidence level) for the estimates; a vertical red
line on the histograms represents the true parameter value we have fixed for
each scenario. In addition, R2 statistics are computed at each step for our
model and for a simple linear regression, sample distributions are plotted
and the R2 mean values considered, to assess which model has the best fit
to the simulated data.

Different choices for the equations in (7.6) have been considered, but more
complex models did not show better performance than these. As for our
proposal, two different way of modelling the selection model πδ,X have been
investigated:
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1. a plain logistic selection, logitπδ,X = δ0 + δ1X

2. a quadratic logistic selection, logitπδ,X = δ0 + δ1X + δ2X
2.

This effort in the modelization of πδ,X is aimed at showing whether, having
(hopefully) improven the selection mechanism, such additional knowledge
could result in a reduction of the bias in our model’s estimates.
The actual generating value in each situation have been chosen as follows:

1.

Y |Z = 1, X,R = 0 ∼ N(2.5, 0.5)

Y |Z = 1, X,R > 0 ∼ N(1.9 + 0.053X, 0.5)

ψ̃0 = 1.9− 2.5 = −0.6, ψ̃1 = 0.053

2.

Y |Z = 1, X,R = 0 ∼ N(2.5 +
0.053

4
X, 0.5)

Y |Z = 1, X,R > 0 ∼ N(1.9 + 0.053X, 0.5)

ψ̃0 = 1.9− 2.5 = −0.6, ψ̃1 = 0.053(1− 1/4) = 0.03975

3.

Y |Z = 1, X,R = 0 ∼ N(1.9 + 0.053X, 0.5)

Y |Z = 1, X,R > 0 ∼ N(1.9 + 0.053X, 0.5)

m(x; ψ̃) = 0.

Results for Scenario 1.
Fig.7.4 shows the sample distributions for the estimates of ψ0, ψ1 under the
two proposed models (plain logistic and quadratic logistic selection) and of
ξ1/α1, ξ1 under the implicit model; the vertical red lines represent the true
target values, ψ̃0 = −0.6, ψ̃1 = 0.053 in this scenario. As stated before, the
implicit model parameters appear not to have a straightforward interpreta-
tion, also being quite far away from the values of a simple linear formulation
of the difference in prognosis m(x; ψ̃). The non linearity of the model brings
uncertainty on how to read ξ1/α1 and ξ1 in terms of m(x); ξ1 is, moreover,
the X coefficient we obtain in the linear regression E(Y |Z = 1, X), thus not
being eligible as informative of an x-gradient on m(x) if a group difference
actually exists (as in this scenario).

As can be seen, neither of the implicit model estimates lies on a range of
value that makes it comparable with the true ψ̃ parameters, indicating that
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Figure 7.4: Sample Distributions of Parameters Estimates - Scenario 1.

they are estimating something different. The ψ estimates from our model
appear to correctly target the estimand of interest, also showing a modest
improvement in terms of bias if we use the quadratic logistic selection model;
keep in mind that in this scenario a difference due to group belonging does
actually exist, so we expected our model to perform better with respect to
the implicit one or to a simple linear regression, as can also be seen from
the R2 statistics in Fig.7.5 (red lines are their mean values, also plotted over
each histogram).

Quadratic Logistic Plain Logistic Implicit Model
ψ0 -0.6192 (-0.8127, -0.4257) -0.6451 (-0.8253, -0.4649) ×
ψ1 0.0567 (0.0272, 0.0862) 0.0607 (0.0375, 0.0838) ×

ξ1/α1 × × 0.0101 (-0.0225, 0.0427)
ξ1 × × -0.0054 (-0.0227, 0.0119)

Table 7.1: Confidence Intervals of Parameters Estimates - Scenario 1.

Table 7.1 contains the confidence intervals for the parameters estimates:
employing the quadratic logistic model reduces a little bit (though not in
a statistically significant way) the bias with respect to the plain logistic
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one, and they both appear to be on target. The implicit model estimates,
however, detect no difference in prognosis at all, the confidence intervals for
both parameters contains the zero at a 95% confidence level, thus making
the estimated m(x; ξ, α) not significantly different from zero.

Figure 7.5: R2 Sample Distributions and Their Mean Values - Scenario 1.

Results for Scenario 2.
Sample distributions are plotted for the parameters estimates and for the
R2 as in the previous scenario. A table with confidence intervals follows.

Figure 7.6: Sample Distributions of Parameters Estimates - Scenario 2.
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The weakness of the link between group and prognosis (induced by intro-
ducing a small effect of HRT on prognosis in the doomed group), makes it
more difficult for our model to correctly asses the group membership, re-
sulting in a slightly increased bias in the estimates of ψ̃1, while the baseline
non-group-dependent difference ψ̃0 is still well targeted.

Quadratic Logistic Plain Logistic Implicit Model
ψ0 -0.6195 (-0.8493, -0.3897) -0.6438 (-0.8682, -0.4194) ×
ψ1 0.05832 (0.0245, 0.0922) 0.0620 (0.0346, 0.0895) ×

ξ1/α1 × × 0.0074 (-0.0292, 0.0440)
ξ1 × × -0.0040 (-0.0239, 0.0160)

Table 7.2: Confidence Intervals of Parameters Estimates - Scenario 2.

Again, the implict model fails to detect any effect at all on difference in
prognosis, and so does a simple linear regression, not detecting (ξ1 ' 0) an
existing direct HRT effect on prognosis.

Figure 7.7: R2 Sample Distributions and Their Mean Values - Scenario 2.

Figure 7.7 shows, nonetheless, that in such a mid-way situation between
Scenario 1. and 3. the goodness of fit of our models, albeit slightly higher,
is not statistically different from the näıve model’s one.

Results for Scenario 3.
The mixture model fails most of the times to reach convergence, the rea-
son for this being the fact that there actually is no group effect, thus X is
not a predictor of belonging to a stratum or another (there exist no such
distinction). Whenever this happens in a real analysis, the advice should
be to either spend more efforts on the selection model parameterization and
try different predictors, or to consider that there could actually be no group
distinction as we are trying to model. When the model converges the results
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appear to be in line with the underlying true scenario for what concern ψ̃0,
while the estimates for ˜psi1 exhibit a somewhat stronger than before bias,
as can be seen from the sample distributions plots 7.8,7.9 and the confidence
intervals table 7.3.

Figure 7.8: Sample Distributions of Parameters Estimates - Scenario 3.

Quadratic Logistic Plain Logistic Implicit Model
ψ0 0.0530 (-0.1844, 0.2904) 0.0781 (-0.1744, 0.3305) ×
ψ1 0.0498 (0.0198, 0.0797) 0.0461 (0.0157, 0.0764) ×

ξ1/α1 × × -0.0948 (-0.1432, -0.0463)
ξ1 × × 0.0529 (0.0337, 0.0722)

Table 7.3: Confidence Intervals of Parameters Estimates - Scenario 3.

ψ0 correctly estimates, under both the quadratic and the plain logistic se-
lection model, the true magnitude of ψ̃0, whereas the analogous baseline
value for the implicit model detects a significant intrinsic difference in prog-
nosis which is of difficult interpretation. ψ1 shows now a larger bias than
what obtained in the previous two scenarios, and it appears clear here that
including the quadratic term in the selection model did not bring any im-
provement. Note that the näıve model parameter, ξ1 correctly detects an
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existing effect of HRT on prognosis (not on thmulticolumne difference), this
being the scenario in which this model is actually the correct interpretation
of such association, also yelding a good estimate of its magnitude.

Figure 7.9: R2 Sample Distributions and Their Mean Values - Scenario 3.

The R2 sample distributions and their mean value show, moreover, that a
plain linear regression performs slightly better (though the difference is not
statistically significant) than both our models.

7.4 Goodness of Fit Comparison with the Stan-
dard Approach

The aim of this simulation study is to compare our models with a standard
(näıve) analysis, i.e. a simple linear regression, in terms of goodness of fit to
the simulated data. The comparison is made on the basis of statistics such
as the correlation coefficient ρ (between observed and fitted outcome data),
and the residual variance. Various scenarios are considered and indexed by
the vector A as defined in Section 7.2:

Scenario A

I. (1,0,0)
II. (1,0,1/4)
III. (1,0,1/2)
IV. (1,0,3/4)
V. (1,0,1)
VI. (0,1,1)

Table 7.4: Scenarios for Goodness of Fit Comparison Simulation

Scenario I. is exactly the Scenario 1. from Section 7.3, generating data
with a strong group effect on prognosis, and Scenario VI. is the former Sce-
nario 3. of no group effect at all. Scenarios II. to V. represent a range
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of possible intermediate situation between the latter two; a gradual shift is
induced introducing an effect of HRT on prognosis in the doomed group of
increasing strength until the point (V.) where its magnitude is equivalent
in both groups, and thus any discrepancy is imputable only to an intrinsic
(and constant over levels of HRT) baseline difference.

Under scenarios I. to V. the simulating mechanism has been tuned in order
to generate different proportions of sensitives in the population, in particular
four situations have been considered: 1%, 0.7%, 0.01% and 0.002% of sensi-
tives generated. Our aim was to test whether, even with a population with
a very low number of sensitive individuals, our models would be still able
to assign people to their stratum and retain an overall good fit. The statis-
tics indicating the best fitting model are, from time to time, highlighted in
the tables, and plots of ρ and residual variance against the percentage of
sensitives are shown. 2000 runs with populations of size 200000 have been
generated for each combination of scenario and sensitive percentage, and
samples of approximately 4000 cases and a similar number of controls have
been drawn for analysis out of each generated dataset.

Eventually, a particular analysis is presented, which investigate more deeply
Scenario I., both varying the sensitives proportion and the baseline mean
prognosis level in the two groups, providing graphical evidence of the be-
haviour of our models as compared to a standard linear regression. The
same number of runs and population dimensions as before apply.

Results for Scenario I. - A = (1, 0, 0)

Correlation Residual Variance
% of Sensitive Logistic Q.Logistic Näıve Logistic Q.Logistic Näıve

1% 0.62743 0.63530 0.57662 0.40416 0.39680 0.43566
0.7% 0.67910 0.68110 0.62718 0.37283 0.36956 0.40454
0.01% 0.61782 0.61881 0.60447 0.29617 0.29489 0.30090
0.002% 0.34952 0.35395 0.29242 0.25561 0.25270 0.26544

Table 7.5: Correlation and Residual Variance Results for Scenario I.

Under this scenario data are generated with a strong group effect on prog-
nosis and no effect at all of HRT on the doomed group outcome. This is
the situation where our models are the correct tool for interpretation of the
underlying truth. As can be seen from Table 7.5 and from Figure 7.10 our
models (and in particular the quadratic logistic one) perform better than a
näıve analysis in terms of goodness of fit, as measured through the corre-
lation coefficient ρ (the higher, the better) and the residual variance (the
lower, the better). The differences between the fit of the two models employ-
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ing the selection mechanism appears to be very small, still always favouring
the quadratic logistic selection procedure. The plots show, moreover, a sort
of “fork”, an increasing difference in goodness of fit between our models and
the standard one as the sensitive percentage in the population increases: we
could think of such trend as indicating a better functioning of the selection
models due to a greater presence of information, which allows for a more
precise assignment. It is not clear, however, why the correlation coefficient
shows a peak at 0.7% and then decreases at 1% of sensitives for all three
models; more simulations (considering a broader range of values for such
percentage), could help gaining more insight on this issue.

Figure 7.10: Correlation and Residual Plots for Scenario I.

Results for Scenario II. - A = (1, 0, 1/4)

Correlation Residual Variance
% of Sensitive Logistic Q.Logistic Näıve Logistic Q.Logistic Näıve

1% 0.63151 0.64516 0.56965 0.40401 0.39015 0.43893
0.7% 0.67709 0.67910 0.63738 0.34947 0.34761 0.37474
0.01% 0.59586 0.61056 0.59517 0.30769 0.29852 0.29976
0.002% 0.30084 0.31038 0.28585 0.26543 0.26495 0.26736

Table 7.6: Correlation and Residual Variance Results for Scenario II.

Scenario II. introduces a small effect of HRT on prognosis in the doomed
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group (1/4 of the effect in the sensitive group). This induces some difficulties
for the selection models, that assign women to groups using the assumption
that HRT affects the prognosis for the sensitive group only. This notwith-
standing the very same comments for Scenario I. apply: the two models
using the selection mechanism still perform better than the standard one
(apart at 0.01%, where the näıve model appears to be slightly better than
the plain logistic one, but still not than the quadratic logistic) and the fork
is still evident from the plots in Figure 7.11.

Figure 7.11: Correlation and Residual Plots for Scenario II.

Results for Scenario III. - A = (1, 0, 1/2)

Correlation Residual Variance
% of Sensitive Logistic Q.Logistic Näıve Logistic Q.Logistic Näıve

1% 0.62190 0.63267 0.57237 0.40364 0.39323 0.42874
0.7% 0.64901 0.65388 0.61775 0.38607 0.38086 0.40003
0.01% 0.62510 0.63099 0.61984 0.30102 0.29691 0.30133
0.002% 0.33393 0.34767 0.32124 0.27523 0.27353 0.27604

Table 7.7: Correlation and Residual Variance Results for Scenario III.

The strength of the effect of HRT on the doomed group prognosis, intro-
duced in Scenario II., is increased, reaching half of the magnitude in the
sensitive group. No evident differences from the results in the previous sce-
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nario is found, with the model employing the quadratic logistic selection still
performing better than the other two.

Figure 7.12: Correlation and Residual Plots for Scenario III.

Results for Scenario IV. - A = (1, 0, 3/4)

Correlation Residual Variance
% of Sensitive Logistic Q.Logistic Näıve Logistic Q.Logistic Näıve

1% 0.63353 0.63871 0.58053 0.34829 0.34247 0.37952
0.7% 0.69669 0.70192 0.65219 0.38607 0.38086 0.40003
0.01% 0.61126 0.61451 0.60811 0.27998 0.27818 0.27894
0.002% 0.43310 0.43700 0.41858 0.25387 0.25227 0.25509

Table 7.8: Correlation and Residual Variance Results for Scenario IV.

HRT effect on doomed group prognosis is further increased to 3/4 times
the effect among the sensitives. We are approaching a situation in which
no difference in prognosis for the group will be imputable to HRT effect,
thus depriving the selection mechanism of a valuable source of information
to work well. The differences in goodness of fit at low levels of sensitive
percentage is now less clear, the values being very close, but the fork still
remains at higher levels. Again, the quadratic logistic selection allows for
the best overall fit.
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Figure 7.13: Correlation and Residual Plots for Scenario IV.

Results for Scenario V. - A = (1, 0, 1)

Correlation Residual Variance
% of Sensitive Logistic Q.Logistic Näıve Logistic Q.Logistic Näıve

1% 0.66352 0.67029 0.64641 0.35420 0.34786 0.37205
0.7% 0.68397 0.68778 0.66678 0.34993 0.34614 0.35307
0.01% 0.63055 0.63329 0.63280 0.28442 0.28311 0.28059
0.002% 0.41097 0.41164 0.41294 0.24809 0.24796 0.24719

Table 7.9: Correlation and Residual Variance Results for Scenario V.

This is a limit situation where the only group difference in prognosis is
imputable to baseline non-HRT-dependent characteristics; the strength of
HRT effect is, indeed, the same in both groups (the proportionality coeffi-
cient being equal to 1 in this case). At low percentage of sensitives levels a
näıve analysis appears to perform slightly better than our models, and the
fork we have observed in the previous scenarios is now less evident. The
selection mechanism is clearly having some difficulties assigning women to
the correct stratum because of the lack of HRT-induced prognosis difference
in the two groups; group distinction, though, does still exist thanks to a
different baseline effect, which our models manage to detect, for the two
groups. A better performance of our models in presence of more sensitive
individuals is then still present.
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Figure 7.14: Correlation and Residual Plots for Scenario V.

Results for Scenario VI. - A = (0, 1, 1)

Correlation Residual Variance
Logistic Q.Logistic Näıve Logistic Q.Logistic Näıve
0.32054 0.32120 0.32239 0.25487 0.25476 0.25449

Table 7.10: Correlation and Residual Variance Results for Scenario VI.

In this scenario the selection mechanism is superfluous, since the dataset are
generated with no group-induced difference in prognosis, i.e. we have the
same baseline mean value and the same magnitude of HRT effect in the two
groups, the only differences we can observe in terms of doomed and sensitive
women are due to randomness. The standard analysis is here the correct
tool, as Table 7.10 shows, yelding better fitting values as compared to the
other two models. This is exactly what we expected, nonetheless the differ-
ence is very small, and we may regard at this as an indication of some sort
of robustness our models show with respect to wrong initial assumptions.
Next, we propose a more insightful analysis for Scenario I. for a more
complete evaluation of our models’ performances, as opposed to the stan-
dard analysis; this is done analysing various sub-scenarios of the situation
A = (1, 0, 0).
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Deeper investigation of Scenario I.
In this paragraph we present the result of a simulation study, on the line
of those discussed until now, based entirely on Scenario I. and some of its
sub-scenarios. Looking for a deeper understanding of our models’ ability
to describe the data, we propose goodness of fit measures along with plots
showing, from time to time, the generated sample units together with the
fitted models; in particular, the best performing model (the one employing
the quadratic logistic mechanism) will be plotted over the data, together
with the regression line from a standard analysis.

This study is structured as follows:

� datasets are generated following the scenario A = (1, 0, 0)

� three sensitive percentage values are considered, 1%, 0.1%, 0.01%

� three “distances” between mean non-HRT-dependent baseline values
in the two groups are considered, i.e. (following the notation of equa-
tion (7.4)) β0 − µ0 = 1, 2, 3.

Hence, a total of nine sub-scenarios is considered and 2000 datasets is gen-
erated for of each of such situations. Actual values used for the generating
mechanism follow, where D stands for doomed and S for sensitive group:

1. β0 − µ0 = 1

YD ∼ N(3, 0.5)

YS ∼ N(2 + 0.053X, 0.5)

2. β0 − µ0 = 2

YD ∼ N(4, 0.5)

YS ∼ N(2 + 0.053X, 0.5)

3. β0 − µ0 = 3

YD ∼ N(5, 0.5)

YS ∼ N(2 + 0.053X, 0.5)

Table 7.11 reports the mean correlation coefficient and the mean residual
variance over the 2000 simulation runs for each of the models under the nine
different sub-scenarios. Once again, the model employing the quadratic lo-
gistic selection mechanism appears to be the best fitting one, and the same
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considerations as for Scenario I. analysis apply; it is interesting to note that,
as the distance between the groups increases, our models yeld improving
performances (i.e. the “fork” broadens), confirming a better functioning
of the selection model in presence of a more marked distinction between
doomed and sensitives.

Distance= 1 Correlation Residual Variance
% of Sensitive Logistic Q.Logistic Näıve Logistic Q.Logistic Näıve

1% 0.60869 0.61594 0.57205 0.40869 0.39594 0.43205
0.1% 0.67168 0.67847 0.64094 0.37166 0.35896 0.38683
0.01% 0.33338 0.33499 0.28825 0.26395 0.26355 0.27101

Distance= 2 Correlation Residual Variance
% of Sensitive Logistic Q.Logistic Näıve Logistic Q.Logistic Näıve

1% 0.67984 0.68451 0.59088 0.91994 0.91282 0.98500
0.1% 0.74160 0.75571 0.68038 0.75311 0.68222 0.79262
0.01% 0.44527 0.44578 0.36795 0.29358 0.29228 0.30969

Distance= 3 Correlation Residual Variance
% of Sensitive Logistic Q.Logistic Näıve Logistic Q.Logistic Näıve

1% 0.70944 0.71905 0.61348 1.62333 1.58392 1.78042
0.1% 0.78264 0.78310 0.71633 1.29746 1.19909 1.39495
0.01% 0.54228 0.56238 0.45431 0.32333 0.30804 0.34459

Table 7.11: Mean Correlations and Mean Residual Variances

Nine plots follow, every of them showing one randomly chosen simulated
sample among those for each sub-scenario they represent, together with the
related fitted model with quadratic logistic selection mechanism (in green)
and the regression line from a näıve analysis (in red); on the x-axis we con-
sider HRT duration in thousands of days (about 3 years time) while the
y-axis represents the prognostic index.
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Figure 7.15: Plot for Sub-Scenario with Distance= 1, S = 1%
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Figure 7.16: Plot for Sub-Scenario with Distance= 2, S = 1%
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Figure 7.17: Plot for Sub-Scenario with Distance= 3, S = 1%
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Figure 7.18: Plot for Sub-Scenario with Distance= 1, S = 0.1%
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Figure 7.19: Plot for Sub-Scenario with Distance= 2, S = 0.1%
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Figure 7.20: Plot for Sub-Scenario with Distance= 3, S = 0.1%
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Figure 7.21: Plot for Sub-Scenario with Distance= 1, S = 0.01%
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Figure 7.22: Plot for Sub-Scenario with Distance= 2, S = 0.01%
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Figure 7.23: Plot for Sub-Scenario with Distance= 3, S = 0.01%



Chapter 8

Conclusions

In my thesis I have used mixture modelling and clustering techniques
within the framework of principal stratification in order to assess the possi-
ble causal link between Hormone Replacement Therapy (HRT) and Breast
Cancer. HRT has been a widely prescribed medical treatment to relieve
post-menopausal symptoms and protect women against heart diseases and
osteoporosis during the last decades; by 2001, 15 million women were under
annual treatment. Starting from 1998, with a clinical trial called HERS
(Heart and Estrogen-progestin Replacement Study), faith in the protective
power of HRT began to fade, since the study concluded that estrogen ther-
apy increased, rather then decreased, the likelihood that women who had
heart disease already would suffer a heart attack; in 2002, with the W.H.I.
study (Women’s Health Initiative) evidence was found that HRT constituted
a strong risk factor for breast cancer (see [1]). While HRT might protect
women against post-menopausal symptoms (osteoporosis and colorectal can-
cer among the worsts), these benefits are definitely outweighted by increased
risks of heart disease, stroke, blood clots, breast cancer and perhaps even de-
mentia. The New England Journal of Medicine, though, assessed that HRT
may indeed protect women against heart disease if they begin taking early
after menopause, but it is still decidedly deleterious for those women who
begin later in life. The question of how many women have died prematurely
or suffered strokes or breast cancer while they were taking a pill that their
physicians had prescribed to protect them against heart disease remains still
unanswered. There is therefore a need to detect causal mechanisms.

My work aims at providing an extension to the methods proposed by Sjölander
[10], and is closely related to the works by Frangakis and Rubin [2] and
Gilbert, Bosch and Hudgens [3]. As in [10], we focus on a continuous expo-
sure (HRT duration) rather then on a binary treatment variable (as usually
is in literature on this topic) and develop a modelling setting aimed at esti-
mating the causal effect of the treatment on an outcome of interest (breast
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cancer prognosis or survival), in observational studies, such as a case-control
design. The main difference between our approach and Sjölander’s lies on the
fact that we do not use semi-parametric estimating methods, but rather di-
rectly parametrize potential outcomes in the two groups of women defined as
“doomed” and “sensitive”, i.e. those women who experience a cancer which
is not HRT-induced and those who wouldn’t have developed the tumor if
not treated; this allows to use maximum likelihood estimation techniques
and grants more modelling flexibility than the semi-parametric approach.
Moreover, as opposed to [10], it could be possible with our approach to
find actual causal effects (at least locally, see Section 5.3), even if at the
expense of a somewhat heavier estimating procedure; greater flexibility may
imply more parameters and a possibly more complex structure for the model
(which could, however, reflect a deeper knowledge of the phaenomenon of
interest). Maximum likelihood estimation also allows for a straightforward
parametric assumptions testing.

Applications to real data from the CAHRES study (Chapter 6) deal with
both a continuous (the Nottingham Prognostic Index, NPI) and a discrete
(5-years survival) outcome. Comparison of the proposed model against stan-
dard regression techniques is made through goodness of fit measures and
graphic representations for the NPI outcome, and lead to a very small im-
provement in fit using our method, the main problem being that the discrim-
inatory power of the logistic selection model is not sufficient to assign women
to different groups (assuming such distinction actually exists). Estimated
covariates (age, BMI) effect on prognosis are comparable to those obtained
through a standard linear regression. As for the discrete outcome, better
results for our model are obtained, possibly thank to a larger complete-data
set and a greater number of additional covariates (BMI, age at menarche,
age class, parity). In order to compare our model with an ordinary lo-
gistic regression in terms of performance we predict the outcome (5-years
survival) using both models, build the corresponding contingency tables of
fitted against observed values, and calculate sensitivity and specificity val-
ues for each such table. Our method results in a better predictive power in
terms of both indexes.

An important part of my work is devoted to simulation study (Chapter 7):
various analyses have been made to compare our proposal to Sjölander’s
and to the classic analysis approach (mainly against standard regression
models), in order to gain a deep insight of when and how results could be
wrong and misleading when the model in use is not correctly specified. In the
first part (Section 7.3) models for difference in prognosis in the two groups
are compared in terms of bias in parameters’ estimates through analysis
of such estimates’ sample distributions. Evidence is found that particular
attention on the logistic selection model helps to improve correct targeting
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of the true parameters’ values, and that Sjölander’s implicit model yelds
estimates which are of difficult interpretation, biologically speaking. The
second part (Section 7.4) dealt with assessing the goodness of fit of our
model as compared to a standard linear regression for a continuous outcome
under several possible scenarios; there is evidence of an overall slightly better
fit in all the situations we considered, except for the one where our model is
completely wrong with respect to the underlying truth (and even in this case,
the performance is not so far from that of the right modelling structure).
Possible future extensions of the work may include the re-definition of the
principal strata not in dependence of HRT duration, so not to have to deal
with only-locally-causal effects, and the implementation of different estima-
tion methods, such as the EM algorithm. Also considering the possibility of
letting covariates to affect in the same way the two groups of women may
lead to a somewhat simpler modelling structure, allowing for cleansing the
outcome from their effect, focusing, for example, on residuals only.

In any case, to better address the causality issue, there is need for more data,
possibly genetic-specific data of the patients, given the nature of the clus-
tering we have considered, which we think could be almost entirely related
to gene configuration. If this were the case, then refining our model, keeping
into account such genetic information, could lead to something more sensi-
ble than what we found at the present stage of the work, i.e. quite a small
difference in terms of model fit as compared with the standard approach
(see Chapter 6).
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