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C h a p t e r  1  

I N T R O D U C T I O N  

Proteins are not static, they are flexible and sample a large ensemble of 

conformations around the average structure. Therefore a complete description of 

proteins requires, in addition to sequence and structure information, the 

knowledge of the multidimensional energy landscape that defines the different 

conformational states, their relative probabilities and the energy barriers between 

them. The most recent view of protein dynamics indicates that the dynamic 

landscape is an intrinsic property (or 'personality') of a protein. It is encoded in its 

fold and a ligand that interacts with the protein does not induce the formation of a 

new conformation but, instead, leads to a redistribution of the relative populations 

of conformational substates that already pre-exist in solution. This theory is called 

“conformational selection model” (1; 2)*. 

The deep relation between dynamics, in terms of both global and local flexibility, 

and function of proteins is now widely acknowledged (1; 3-6). Flexibility is 

involved in protein binding to small molecules where, in many cases, only a 

conformational change in the binding site permits accommodation of the ligand. 

Large conformational changes, usually domain motions, are commonly observed 

in enzymatic catalysis and they are generally coupled to the interchange between 

the enzyme active and inactive forms, which can be triggered e.g. by substrate 

binding or phosphorylation. Protein dynamics is also at the basis of signal 

transduction processes and allosteric interactions. Moreover, there is growing 

evidence that intrinsic mobility is important in regulating protein-protein 

interactions. The hypothesis of the “conformational selection model”, i.e. that 

proteins that exhibit substantial conformational change upon complexation have to 

                                                 
* = see also the references therein 
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be intrinsically flexible, has been confirmed, and in many studies the unbound 

protein was found to sample conformations close to the bound form (7). A 

fascinating feature of many proteins is multispecificity, i.e. the ability to bind 

several partners with good affinity. This implies that each interacting protein 

chooses a favourable counterpart as binding partner from the conformational 

ensemble of the receptor. In this framework, particular interest has raised on the 

dynamical properties of hub proteins and their transient complexes (8).  

Moreover, it was recently suggested that intrinsic protein dynamics also defines 

the ability of proteins to adapt and evolve new functions (9). This idea motivated 

many studies in the last years, aimed at studying conservation and specialization 

of dynamic properties in protein families and superfamilies (10 -16). Another 

consequent implication is the possibility of using similarity between protein 

flexibilities to detect distant homologues (11).  

In terms of timescale, it is possible to divide the dynamic processes into two 

categories:  “fast” motions and “slow” motions. The “fast” motions include ps–ns 

dynamics of side chains and ns–μs loop and local hinge motions . The “slow” 

motions include μs–ms larger motions like collective domain motions and 

allosteric transitions. Furthermore, the shorter-timescale dynamics can influence 

and be influenced by longer timescale motions (1).  

Dynamics on a “slow” timescale defines fluctuations between kinetically distinct 

states that are separated by energy barriers of several kT (the product of the 

Boltzmann constant and the absolute temperature). These larger-amplitude 

collective motions between relatively small numbers of states are involved in many 

biological processes, including enzyme catalysis, signal transduction and protein–

protein interactions. Nowadays both experimental and computational techniques 

can detect, and be used to describe, motions at these timescales. X-ray 

crystallography, nuclear magnetic resonance (NMR) spectroscopy, cryo-electron 

microscopy and small-angle X-ray scattering provide atomic-resolution, or near-
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atomic-resolution, snapshots of substates. At these timescales, the clear advantage 

of NMR methods is that they deliver the timescale of transitions, together with 

atomic resolution. The classical biophysical techniques, like fluorescence, circular 

dichroism, UV, IR and Raman spectroscopy, may provide kinetic information that 

is complementary to higher-resolution methods. Unfortunately, protein dynamics 

on the microsecond-to-millisecond timescale is currently out of reach for 

conventional Molecular-Dynamics (MD) simulations. To overcome this restriction, 

a large variety of approaches, like normal mode analysis and gaussian network 

models, have been developed to simplify force fields (17)*. 

In the “fast” timescale dynamics, a large ensemble of structurally similar states that 

are separated by energy barriers of less than 1 kT result in more-local, small-

amplitude ps- to ns- fluctuations at physiological temperature. Also at this 

timescale experimental and computational techniques can be used to describe 

protein dynamics. An example of these descriptors are the B factors from X-ray 

diffraction, that may be associated to the mean-square atomic displacement, but it 

has to be considered that both true intramolecular motions and lattice disorder 

contribute to them. In the NMR relaxation methods, ps-to-ns dynamics are 

characterized in terms of the amplitude and the timescale of bond fluctuations. In 

solid-state NMR spectroscopy, motions on a broader timescale (low microsecond 

and faster) can be detected. At this timescale computational methods, and in 

particular Molecular-Dynamics simulations, are widely applied in the 

investigation of a wide range of dynamic properties and processes. Particularly in 

the last years, with advances in computational power, improved algorithms and 

reduced costs, MD simulations have become potent tools to investigate protein 

dynamics. 

By means of MD simulations a large ensemble of molecular structures can be 

generated to sample the accessible conformational space of a protein. This allows 

                                                 
* = see also the references therein 
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the production and recording of time related configurations of the system as 

frames of a classical trajectory (18). After a stage of equilibration in the solvent, 

the system reaches an equilibrium state where,  if a representative sampling of 

the phase space has been performed (19), the sampled structures describe a 

statistical ensemble that can be employed to derive average properties.  

Recently, to help in obtaining new insights into protein function, simulations 

have been applied on a large scale. For example, in the context of a project called 

„Dynameomics' (20), a database of c.a. 11000 molecular dynamics simulations of 

the native states and high-temperature unfolding pathways for over 2000* 

proteins has been built up. Another available database is MoDEL (Molecular 

Dynamics Extended Library) (21) in which more than 1700* trajectories of 

monomeric soluble structures are stored. 

Drawbacks in the use of MD are that, on one side, some properties of interest are 

computationally time-consuming to evaluate and, on the other side, recurrence of 

transitions between conformations is difficult to extract from the raw ensemble 

data (22). For these reasons grouping the conformations becomes a necessity. The 

most desirable strategy would be to use kinetic clustering (23 - 28), where 

conformations are grouped according to their transition probabilities during the 

simulation and the identified clusters are directly related to the free energy 

landscape. A limitation to this approach arises from the need of an exhaustive 

sampling with convergence of all pairwise transition probabilities (28). A more 

affordable solution is to use geometrical clustering, because only a representative 

sampling of the accessible conformations is required. The underlying assumption 

is that structurally similar conformations lie in the same basin of the free energy 

surface. While often this is an acceptable approximation, a recent study suggested 

caution in interpreting the clustering results (28). 

                                                 
* = data updated on November 2010 
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Geometrical clustering for conformational analysis was introduced when simulation 

time increased up to nanoseconds generating tens of thousands of structures (29 - 

31) and has been extensively used since then (22; 28). Several data-mining 

algorithms have been adopted but, according to a recent survey (22), no general 

strategy is available: clustering results are often influenced by the type of 

algorithm and the choice of optimal parameters is mostly left to the user 

experience and the specific case. 

Originally adapted to analyze protein folding simulations (29) these algorithms 

were mainly implemented for multiple trajectories of the same system. However, 

in the last years a great interest has emerged in the comparison of protein 

flexibility of different proteins, with the main focus on comparing functionally 

related proteins or studying the evolutionary conservation and specialization of 

protein dynamics across distant homologous proteins (10 - 16). This new interest 

emphasises the need of more advanced tools to compare conformational 

ensembles of different protein domains especially when derived from extensive 

MD simulations.  

For these purposes, data mining techniques, in particular neural network 

approaches can be interesting candidates. Nowadays computer technology has 

simplified the complexity in analyzing scientific data; visualizing data as colour-

coded images that undergo qualitative changes to convey information for better 

pattern recognition many times provides a better understanding of the results, 

especially in studies for inferring inter-relationships (32). Within these techniques, 

the Self-Organizing Maps (SOMs or Kohonen maps) are an invaluable data mining 

tool (33). The SOM algorithm belongs to the unsupervised learning processes and 

it is based on similarity comparisons in a continuous space, which results in a 

system that associates similar inputs close to each other in the two-dimensional 

grid called “the map” . In principle, even if no explicit clusters exist in the data set, 

the output map reveals “ridges” and “ravines”. The former are open zones with 
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irregular shapes and high cluster tendency, whereas the latter separate data sets 

that have a different statistical nature.  If data are close together in a “ridge” and 

they are connected, then they are similar. If they are not connected and they are 

separated by a “ravine”, then they are different. This mapping complements the 

information on the grouping and opens possibility of further tool development. 

SOMs were recently applied to conformational analysis of bio-molecules. A first 

application concerned the analysis of lipid molecules, where they resulted very 

effective in easily highlighting structural features, and distinguishing the main 

transitions from the minor conformational changes (34; 35). SOMs were also used 

to automatic clustering of protein-ligand docking poses (36).  

While still not widely used in the analysis of conformational ensembles, SOMs 

are more accurate and provide more consistent results than traditional clustering 

algorithms (22). Moreover, they allow a topological mapping of the 

conformational space embedded in a simple 2D visualisation. 

Aim of this thesis was the development of a novel and general approach to 

analyse and compare conformational ensembles of different protein domains 

using SOMs. The novelty of the approach concerns the application of this 

particular neural network algorithm to analyze data obtained by MD 

simulations. Once defined how to extract the data from MD trajectories and how 

to analyze them with a SOM, our effort was the definition of a general “rule” for 

the use the SOMs in this field.  

First, we encoded the representation of the conformations extracted from the MD 

simulations as a proper input data for the SOM analysis.  

Second, we studied the effect of the typical SOM learning and topological 

parameters in the analysis of these data, to define how to obtain reproducible and 

stable maps, by using an experimental design approach. This is a widely used 

technique to find out the best combination of design parameters and to reduce 

the variation for quality (37).  
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Third, concerning the non-solved problem of clustering a SOM, we proposed the 

use of a rule to define the optimal number of clusters that best summarizes the 

information in the map. 

Finally, to evaluate the performance of the method in different comparisons of 

protein flexibility, we applied this protocol for the conformational and functional 

analysis of two study cases:  

A group of single-site mutants of the α-spectrin SH3 (Spc-SH3) domain. This is an 

interesting case of a small intra-cellular signaling domain where ligand binding 

activity is modulated by single-mutations that greatly affect the conformational 

dynamics (38).  

The bound and unbound states of a group of protein-protein complexes 

involving proteins of the RAS superfamily. These systems allowed to study 

transient complexes which show large conformational changes at the interface 

upon binding, along with the promiscuity of binding characteristic of hub 

proteins (8). 
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C h a p t e r  2  

M E T H O D S  

2.1 Molecular Dynamics simulations and analysis 

2.1.1 Molecular Dynamics 

Molecular Dynamics allows the production and recording of time related 

configurations of the system as frames of a classical trajectory. After an 

equilibration time the system reaches an equilibrium state and the sampled 

structures describe a statistical ensemble that can be employed to derive average 

properties. This condition is strictly related with the presence of a representative 

sampling of the phase space and it is expressed by the condition of ergodicity. 

Unfortunately, assessing extension and convergence of sampling for biomolecular 

simulations is not a trivial problem; it requires careful investigation and often an 

increase in computational efforts near to the limits of small laboratory resources 

(19). 

In Molecular Dynamics the system is described as a collection of classical particles 

interacting via potentials with mainly pairwise components. Sets of coordinates are 

generated in a time sequence fashion through integration of Newton's equation of 

motion. The equation E1 presents the law of motion for a system of   particles: 

  

    

   
                                                                                                                            

where    are the positions and    the forces acting on them. 

Forces acting on the system particles are the negative derivatives of the potential 

function of   (E2). This commonly takes an additive form composed by bonded 

and non-bonded terms (E3). As an example, the analytical form of the single terms 

of the GROMACS force field (39) are reported in equations E4-E8. 
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Electrostatic interactions can be calculated through Coulomb's law (E4): qi and qj 

are point charges on atom i and j, while rij is their distances and    and    are in 

vacuum and relative dielectric constants. Van der Waals contributions can be 

described by a 12-6 Lennard-Jones potential (E5) where Aij and Bij are parameters 

depending on the pair of atoms i and j.  

Bond and angle potentials (E6, E7) can take an harmonic form where bij and     
  

are reference values and    
  and     

  are force constants relative to the atom pairs 

or triplets.  

Torsional interactions are calculated through a periodic function (E8) with a 

reference value       
  , a parameter (     

 
  that gives a qualitative indication of the 

relative barriers to rotation, and a multiplicity (nijkl) to include the number of 

minima in the function. 

     
  

   
                                                                                                                 

                                                                                                 

           
 

      

    

   
                                                                                                       

       
   

   
   

   

   
                                                                                                                    

         
 

 
   

          
 

     

                                                                                                

          
 

 
    

           
  

 

      

                                                                                       

                  
 

         

                       
                                                      

The potential form and the collection of parameters for each equation are usually 

referred as Force Field (FF). Different types of Force Field are available, each 

designed for specific aims and with a specific scope of application. Biomolecular 

simulations are performed with Force Fields that include optimised parameters for 
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amino acids, nucleic acid bases and small molecules of biological interest.   

In the majority of cases potential terms for non-bonded interactions are described 

by pair-potentials while bonded interactions involve also three and four body 

terms. All interactions are short-ranged except electrostatic ones: these are 

computationally expensive and are usually approximated in the long range in 

different ways, ranging from brutal cut-off methods to more sophisticated 

procedure like Particle Mesh Ewald method (40).  

Different versions of the GROMACS program (39; 41-44) were used for the 

simulations in this work  (see Chapters 3 and 4 for the specific choices). 

GROMACS supports a number of different Force Fields (43), including the  

GROMOS96 (45; 46), with different kind of parameterization (43a1, 43a2, 43b1, 

43a3, 53a5, 53a6). GROMOS96 is a further development of the GROMOS87 FF, on 

which the GROMACS FF is based. It is a united atom FF, i.e. without explicit non-

polar hydrogens. 

The choice for this work was to employ the GROMOS96 43a2 FF (47), that is 

widely employed for protein simulations in water and is an improvement of the 

43a1 (48), with a better description of alkanes. 

2.1.2 System setup 

Protein structures are described in GROMACS with two kind of properties: static 

properties and dynamical properties.  

The static properties are the Force Field parameters associated to atom types 

through a topological description of the system on a residue base. These properties 

are recorded in the topology file and remain unchanged for both simulation and 

analysis steps. 

Positions and velocities of atoms are function of time. These dynamical properties 

are recorded in trajectory files and are the main output of the simulation process. 
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Starting positions are in a separated coordinates file. Topology file, coordinates file 

and a simulation parameter file are pre-processed in a binary file that constitutes 

the starting point for simulation. 

A general protocol for system preparation was applied to all the proteins studied. 

The details of the protocol that were specifically set for each system will be 

described in Par 3.2.1, for the SH3 system, and in Par 4.2.1, for the RAS domains.  

The main steps are: 

1. topology and coordinates generation from the .pdb structure; 

2. water box generation; 

3. solvent equilibration; 

4. ions addition; 

5. short minimization. 

The system topology and the description of the force field are read at the 

beginning and they are never modified during the simulation.  

A cubic or octahedral box was generated around each protein, setting a minimum 

distance between solvent and box edges (see Fig. 2.1). This allowed the use of 

Periodic Boundary Conditions and minimum image convention during the 

simulations, with explicit description of solvent molecules. This is the classical way 

to minimize edge effects in a finite system. The atoms of the system to be simulated 

are put into a space-filling box, which is surrounded by translated copies of itself 

(Fig. 2.2). Thus there are no boundaries of the system; the artefact caused by 

unwanted boundaries in an isolated cluster is replaced by the artefact of periodic 

conditions. A simple point-charge (SPC) model (49) was used to describe the water 

molecules. 
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Figure 2.1 – Example of protein immersed in a water cubic box. The structure of the protein is in 

black cartoons, the white and red spheres represent the water molecules, and the blue spheres the 

Na+ ions added in the box to balance the overall charge of the system. 

The GROMACS algorithm replicates the box and deletes water molecules that can 

clash with the protein. This usually leads to a bad-description of water box that 

requires a further step of relaxation. This was reached through a short Molecular 

Dynamics simulation of  few ps with positional restraints on the proteins. It is 

usually enough to remove the last clashes. During the molecular simulations the 

internal degrees of freedom of the solvent molecules are kept constant with the 

SETTLE algorithm (50).  
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Figure 2.2 – Periodic boundary conditions in two dimensions.  

Because often the structures of the proteins to simulate are negatively or positively 

charged, the addition of cations (e.g. Na+) or anions (e.g. Cl-) as counter-ions was 

required. This is necessary to avoid bad behaviour of charged group during 

neighbour list updates, like generation of fictitious dipoles.  

The last step to prepare the system for simulation was a short Molecular 

Mechanics minimisation. Treatment of long-range interactions during 

minimisation was chosen to be consistent with that used in the next simulation 

step, i.e. the Particle Mesh Ewald method (40). 

2.1.3 Molecular simulations  

Simulations and analysis of the data were conducted with reference to the starting 

point obtained through the setup steps described in the previous Paragraph. Each 

protein analysis was driven by comparison to this structure. This was aimed to 

gain a consistent start for all the proteins without regard to any lacks in the crystal 

structure. Protein motion timescales range from ns to s and most of the functional 

motions are visible only on order of ms. This leads to a obvious restriction in the 

ability to investigate these systems, because actual computational power allows 
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order of simulations up to 100s of ns for average proteins (100-200 amino acids). 

Everyday laboratory facilities usually restrict this to 10s of ns.  

In the aims of this thesis there is the comparison of the dynamic properties of 

different domains, so each simulation was designed to achieve an efficient 

sampling of the energy landscape for the neighbourhood of starting structure (see 

Par. 3.2.1 and Par 4.2.1 for the details of the specific choices for each system).  

Increase of experiment time required introduction of some computational methods 

to speed up the simulations. Regarding this, GROMACS allows a pretty stable way 

of reducing computational costs retaining effective and correct sampling.  

Main time saving is gained through increase of timestep. This is dependent on 

ability of keeping an integration frequency accurate for monitoring force changes. 

This is easily achieved if the fastest degrees of freedom are uncoupled from the 

other motions and they do not have information that can be useful for the problem 

under investigation. In this case the really high frequency motions, as bond 

stretching, can be removed.  

GROMACS way to achieve system simplification passes through use of 

constrained distances and removal of light particle motions. Main constrained 

distances methods are SHAKE (51) and LINCS (52). The latter is usually employed 

in GROMACS for bond constraints. It is a non-iterative two steps algorithm that 

resets bond length after an unconstrained step. It is usually more stable than 

SHAKE and account for increase in timestep up to 2fs.  

Non-bonded interactions and especially electrostatic interactions are important in 

description of complex systems, such as biomolecules. GROMACS supports fast 

but still remarkably accurate algorithms for this class of interactions. 

With Periodic Boundary Conditions a grid-based neighbour list search allows a 

dynamically update of pair-lists. For each particle two cutoff distances are defined, 

to identify which contributions must be calculated at each step and which are 

updated only every n (usually set to 10) steps with the neighbour list itself. Long-
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range electrostatic interactions are supported with different level of 

approximation: single and double cutoffs, Reaction Field, Ewald summation and 

Particle Mesh Ewald method.   

In all the simulations of this thesis the Particle Mesh Ewald (PME) method (40) was 

employed. It is based on the Ewald summation method developed originally for 

crystal systems. The original method allows to transform the slow convergent 

summation of electrostatic pairwise contributions over the whole space to three 

fast convergent terms: a constant term and two sums, one in the direct space and 

one in the reciprocal space. Particle Mesh Ewald improves the performance of the 

calculation in the reciprocal space. The results is the possibility to retain relatively 

short cutoffs with higher accuracy in the electrostatic contribution. 

Initial atomic velocity for all proteins were generated from a Maxwellian 

distribution at T = 300K (E9), where       is the probability for velocity   ,     is 

the particle mass and k is the Boltzmann's constant. The program indeed 

implement the generation of this set of velocities consistent with an absolute value 

of temperature. 

       
  

    
  

    
 

                                                                                                                   

During the simulation the centre of mass of the system was removed and the 

system was weakly coupled with a thermal bath. The temperature was coupled 

groupwise,  both protein and solvent are reset to 300K every 0.1 ps. The choice of 

the Berendsen thermostat is motivated by a more correct description of kinetics 

and higher stability of temperature coupling. Another enhancement of stability for 

long timestep is achieved by the specific implementation of the leap-frog (53) 

Molecular Dynamics integrator in GROMACS (54).  

Leap-frog needs positions r at time t and velocities v at time   
  

 
. From the 

positions, forces F(t) are updated and used to compute     
  

 
  and then 

       : 
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2.1.4 Sampling Analysis 

Sampling analysis was aimed to identify the extension of sampling in the 

simulation. The efficiency of computer simulation in sampling the minima of 

proteins is still a problem, particularly evident if the analysis is directed to discover 

collective motions that can be related to biological functions. In fact, previous 

reports demonstrated that insufficient sampling can lead to mistake patterns of 

random diffusion for functional motions (19). To address this problem, different 

approaches can be adopted.  

The most employed tool to evaluate the sampling is the Root Mean Square 

Deviation (RMSD) of a set of atoms with respect to a reference structure. The 

procedure requires a least-square fitting to the reference structure and then the 

calculation of RMSD: 

               
 

 
                 

 

   

                                                                             

For a system of N atoms,        is the position of atom i at time   . For proteins the 

fitting is usually done only on the backbone (N,Cα,C) and the RMSD values are 

computed on all the protein atoms. If the reference is the starting structure (t2 = 0), 

the information can give an idea of the time of equilibration and the presence of 

big conformational changes. Anyway the simple RMSD is always a measure 

strongly affected by the presence of small set of atoms with high differences from 

the reference structure and the fitting is not a problem with exact solution.  
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A more informative tool is the RMSD matrix. This reports the RMSD value for all 

the pairs of frames in the trajectory. From this picture one can highlight the re-

sampling of the same substructure and the presence of transitions. 

The overlap between the conformational space spanned by different parts of the 

simulation is also frequently used as an index for sampling convergence (19). This 

can be extracted directly from the information contained in the covariance matrix 

of the atomic coordinates (see Par. 2.1.5). In general, the overlap between two 

matrices A and B, s(A,B), can be defined as: 

         
                 

        
                                                                                         

where tr is the trace of the matrix. When s(A,B) is equal to 1 the two spanned 

subspaces are identical, whereas a value of 0 indicates complete orthogonality. In 

this thesis, the overlap between the covariance matrix of each half of a simulation 

and the overall trajectory was evaluated for each protein studied. 

2.1.5 Essential Dynamics 

Essential Dynamics (ED) is a widely applied technique based on principal 

component analysis (PCA) of conformational ensembles (55), aimed to extract 

informative directions of motion in a multidimensional space. It allows to both 

reduce the overall complexity of the simulation and isolate the important motions 

with a putative functional meaning.  

The method is rooted on the basic assumption that the dynamics of a protein 

structure can be decomposed in this two contributions: an essential informative 

motion with possible biological interest and a constrained useless noise-like 

vibration. The Essential Dynamics, or Covariance analysis, requires the following 

steps:  

1. Covariance matrix is constructed to describe atomic motions correlation. The 

element Cij for the i and j couple of coordinates is: 
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Over-lines denote averages over all the data. In the case of a protein 

simulation, 

those can be frames of a trajectory while the coordinates are the 3N coordinates 

of the system or a subset of them; 

2. The covariance matrix can be diagonalised with an orthonormal 

transformation matrix R: 

                                                                                                                      

The column of the R rotational matrix are the eigenvectors defining principal 

modes. The relative eigenvalues      are the variance of the data set in the new 

directions. They are usually sorted in decreasing order. For molecular 

simulations the eigenvalues contain the amount of fluctuations described by 

each new spatial direction. Indeed the sum of the eigenvalues describes the 

total positional fluctuation of atoms included in the covariance analysis: 

        

 

      

 

                                                                                                         

Projection of original data on the eigenvectors generates the principal 

component: 

                                                                                                                                  

Where p are the 3N principal components for the set of data x; 

3. Evaluation of the amount of variance contained in the first eigenvectors leads 

to a separation of the new p space in two subspaces: 

                                                                                                                      

                                                                                                             

4. The data set can be described in a lower dimensional space. For protein 

simulations the dynamics can be analyzed in a subspace that is usually smaller 

than 5% of the original space. 
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It was demonstrated that the analysis can be performed only on the Cα atoms, 

because in most of the cases this reduction can retain the relevant information 

about functional protein dynamics (55). 

In order to separate Essential from Constrained Subspace, it is necessary to identify 

the number of eigenvectors necessary to describe the protein system. This can be 

assessed looking at two measures: the amount of motion included in the Essential 

Subspace and the distribution of motion along the directions of the Essential 

subspace.  The sum of eigenvalues for the eigenvectors defining Essential Subspace 

is a good index of the amount of motion included in the subspace. If this is 

compared to the total displacement fluctuation in the system it is possible to assess 

also the extent of separation between the two subspaces. In Essential Dynamics 

applied to Molecular Dynamics trajectories the amount of eigenvectors needed to 

explain around 70-80% of motion is usually around 20-30. The distribution of 

motion along the eigenvectors tends to be anharmonic with two or more peaks on 

the first directions and with a shaped of narrow gaussian on the last ones. The 

amplitude is usually broad on first and becomes more and more narrow on the 

following directions. Defining a number of directions is important to extract a 

filtered description of MD simulation, but also to compare information from 

different simulations. 

In this thesis, all the analysis of conformational flexibility of protein domains were 

performed, after ED analysis, in the essential subspace. 

2.1.6 Analysis of conformational flexibility 

To analyze the local flexibility of each domain the root mean square fluctuation 

(RMSF) on the positions of the Cα atoms, as obtained from the coordinate of the 

system in the essential subspace, was calculated. The RMSF of the Cα atom i is a 

measure of the mean deviation between its positions during the trajectory (      ) 

and its time-averaged position     : 



 ___________________________________________________________________________________________ Chapt e r  2  

20 
 

       
 

 
            

 
 

   

                                                                                             

where N is the number of conformation analyzed in the trajectory. 

Only Cα atoms were included in the analysis. 

When the interest is to analyse the fluctuation of specific region of the domain (for 

example, the binding site) other indices can be employed. In this thesis the 

geometry of the protein binding site was described by a selected set of pairwise 

atomic distances, and its conformational changes were measured by the distance 

root mean square deviation (dRMSD) between the average conformation in the 

MD trajectory, a, and a reference structure, b:  

         
      

     
  

 
  

 
                                                                                             

(d is the distance value, i and j the indices of the selected atoms, and N is the total 

number of distances). 

This index has the advantage that, at difference to the standard RMSD, no fit is 

needed. 
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2.2 Self-Organizing Maps (SOMs) 

2.2.1. Unsupervised Competitive learning 

A self-organizing map (SOM) (33), also called self-organizing feature map (SOFM) 

or Kohonen map, is a type of artificial neural network that is trained using 

unsupervised learning to produce a low-dimensional (typically two-dimensional), 

discretized representation of the multidimensional input space of the training 

samples. This bidimensional representation is called map. In the unsupervised 

learning there is no teacher;  i.e. no feedback is allowed from the environment to 

say what the output should be or whether it is correct. The network must discover 

for itself patterns, features, regularities, correlations or categories in the input data 

and code them in the output space. The patterns which can be detected through an 

unsupervised learning network depend on the architecture; there are a number of 

possibilities, such as: familiarity, PCA (principal components analysis), clustering, 

prototyping, encoding, feature mapping. This is not an exhaustive classification of 

network architectures, basic architectures can be combined in several ways. In 

principle the unsupervised learning architectures are fairly simple, the 

complications and subtleties come mainly from the learning rules. 

In particular, SOMs are unsupervised competitive learning methods; all output 

units compete for being the one to fire, only one fires and it is usually called the 

winner-take-all unit. The general aim of this network is to cluster the input data. 

The rationale is that similar input should be classified as being in the same 

category, and so should fire the same output unit. 

A closely related topic is feature mapping, that is distinguished by the 

development of significant spatial organization in the output layer. In these 

networks the location of the winning output convey some information, nearby 

output correspond to nearby input patterns. More technically, if ξ1 and  ξ2 are two 

input vectors, and r1 and r2 are the locations of the corresponding winning output 
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neurons, then r1 and r2 should get closer and closer, eventually coinciding, as ξ1 

and  ξ2 are made more similar and similar. What we are asking for is a topology 

preserving map from the space of possible inputs to the line, or plane, of the 

output units. A topology preserving map is essentially a map that preserve the 

neighborhood relations. A complete and exhaustive review of this topic can be 

found in tow books: Introduction to the theory of neural network computation (56) and 

in Neural Network Design (57). 

2.2.2. The SOM algorithm 

A SOM consists of neurons organized on a regular low-dimensional, usually 

bidimensional, grid. The number of neurons may vary from few units up to 

thousands. Each neuron is represented by a d-dimensional weight vectors, 

            , where d is the dimension of the input data vectors. The neurons 

are connected to adjacent neurons by a neighborhood relation (Fig. 2.3), which 

dictates the topology of the map (Fig. 2.4). The learning algorithm could be divided 

in five steps: 

1) Randomize the initial weight vectors of the map‟s nodes 

2) Grab an input data 

3) Traverse each node in the map 

4) Update the best match unit (BMU) and its neighborhoods by pulling them 

closer to the input vector 

5) Repeat from 2 for each of the data for a number of epochs to reach a 

convergence of the map. 

In this work, the practical applications of these step was performed using the SOM 

Toolbox 2.0 for Matlab (58). The details of each step are the following. 
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Figure 2.3: SOM discrete neighborhood and lattice: the black dots represent the neurons of the map 

with hexagonal (on the left) and rectangular (on the right) lattice. The polygons between the 

neurons correspond to different neighborhood radius (from 0 to 2). 

 

Figure 2.4: SOM shapes:  sheet (on the left), circular (in the middle) and toroid (on the right). 

 Randomize the initial weight vectors of the map’s nodes 

Before the training starts, initial values are given to the prototype vectors    . 

Typically one of the three following initialization procedures is used: 

 random initialization, where the weight vectors are initialized with small 

random values; 

 sample initialization, where the weight vectors are initialized with random 

samples drawn from the input data set; 

 linear initialization, where the weight vectors are initialized in an orderly 

fashion along the linear subspace spanned by the two principal eigenvectors 

of the input data set. 

 Grab an input data 

Each input data vector is presented to the map. To avoid that the order in which 

the data are presented influence the resulting output map, in each epoch the data 

are randomly selected. 
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 Traverse each node in the map 

In this step two sub-processes are involved.  

First, a function     is used to find the similarity/distance between the input 

vector ( ) and the map's node's weight vector ( ).  

To evaluate the distance, different approaches can be used. In the SOM toolbox the 

Euclidean distance (E21) is given as default. 

                    
                                                (E21) 

Second, the tracking of the node that produces the smallest distance (this node is 

the best matching unit, BMU).  

Once evaluated the distances between the input data (    and each node of the 

map, the BMU is the neuron which satisfies the following criteria: 

                                                                  (E22) 

 Update the BMU and its neighborhoods by pulling them closer to the input vector  

The neighbourhoods can be defined using four different functions (see Fig. 2.5); 

bubble (E23), gaussian (E24) , cutgauss (E25)and ep (E26). 

To briefly describe each function, we have to define the neighbourhood radius at 

time t     , the distance between two unit of the map a and b        and the step 

function       . 

The step function is equal to 0 if     and to 1 if    . 

Using these definitions, the functions are: 

                                                                            (E23) 

             
     

 
                                                                (E24) 

             
     

 
                                                            (E25) 

                        
                                                  (E26) 

During the training phase, the learning rate       , i.e. the weight applied to the 

update process during the training, is a decreasing function which ranges between 

1 and 0. A value of    close to 1 is used to implement fast learning, while more 
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conservative values of    are used in the final steps of the learning process. Also 

for this parameter multiple decreasing functions are available: linear (E27), power 

(E28), and inv (E29) 

           
 

 
                                                                (E27) 

         
     

  
 

 

 
                                                               (E28) 

      
  

      
 

 
 
                                                                (E29) 

Where   is the length of the training, in terms of epochs, and   is the initial 

learning rate. 

The update process can be done using two algorithms: sequential and batch. 

In the sequential algorithm after finding the BMU, the prototype vectors of the SOM 

are updated. The prototype vectors (      and its topological neighbors are 

moved closer to the input vector in the input space (see Fig 2.6). The update 

process is described by the following formula (E30): 

                                                                       (E30) 

In the batch algorithm, the whole training set is gone through at once and only after 

this the map is updated with the net effect of all the samples (E31): 

           
         

 
   

        
   

                                                            (E31) 

 
All the steps above described will be repeated for a given number of epochs     

sufficient to ensure a convergent training of the map (33). 

 

 

Figure 2.5: SOM neighborhood functions: different neighborhood functions on a 2D map grid. 

From the left “bubble”, “gaussian”, “cutgauss” and “ep” (σt = 2 is used as example). 
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Figure 2.6: SOM updating process of the BMU: the updating process of 

the BMU, in the sequential algorithm, and its neighborhoods after the 

learning of the input vector X. The solid line represent the starting 

situation, the dashed line the situation after the updating. The lines 

between the neurons (black dots) represent the distance between them. 
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2.3 Development of a protocol to optimize the SOMs for structural ensemble 

analysis 

The major aim of this thesis is the development of a novel approach for 

conformational analysis of structural ensembles using SOMs. In particular, a 

protocol was designed to compare MD trajectories of protein domains (59). 

The protocol consists of three steps. First, the SOM‟s parameters optimization is 

performed by experimental design. Then, the optimal sampling rate of the MD 

trajectory is calculated. Finally, the representative conformations projected onto 

the SOM‟s output are clustered. A diagram of the protocol is shown in Fig. 2.7. 

In the next paragraphs the detail of the protocol is discussed, i.e. how to derive 

SOM input vectors from ensembles of conformations extracted from MD 

trajectories of one or more domains; how to find the optimal SOM, i.e. the SOM 

model which “best characterizes” the underlying input space structure; how to 

define the minimum number of structures to be selected and given as input data to 

the SOM, while maintaining a reliable picture of the protein dynamics; how to 

automatically define the number of clusters that best summarize the map obtained. 

Numerical experiments concerning a study case composed by the α-spectrin SH3 

(Spc-SH3) protein domain and a group of its single mutants will be presented in 

Par 2.3.7. The dynamical properties of these systems and their role in the SH3 

functionality will be presented and discussed in Chapter 3. 
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Figure 2.7 - Optimization of a Self-Organising Map for structural ensemble analysis: diagram of 

the proposed protocol to optimise SOMs for structural ensemble analysis. 
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2.3.1 Input data: from MD trajectory to SOM input vectors 

As described in Par. 2.2, the SOM is a neural network able to represent high-

dimensional data onto a low dimensional lattice in a topology-preserving manner. 

Instead, as described in Par 2.1, Molecular Dynamics allows the production and 

recording of time-related configurations of a molecular system as frames of a 

classical trajectory. 

Therefore, it should be clear that the first problem to deal with is to create a 

representation of the conformations produced with an MD simulation that is 

suitable to be learned by a SOM. 

The steps proposed to this aim are: 

1. To produce a MD trajectory of a given system for a given time length; 

2. To evaluate the completeness of the sampling (see Par. 2.1.4); 

3. To define the Essential Space (ES), useful to describe the most informative 

motions (see Par. 2.1.5 for details); 

4. To extract the conformations from the trajectory, with a given sampling rate, 

and to record the Cartesian coordinates of the Cα, projected in the ES, in 

.pdb files; 

5. To transform each .pdb file into a vector. The vector       , is associated with 

the ith frame of the trajectory          , formed by the Cartesian 

coordinates of the n Cα of the system; 

6. To create a matrix     

    

 
    

   , where each vector        is labeled using the 

progressive number of the ith frame; 

7. To input   to the SOM; during each learning epoch, the vectors        are 

randomly extracted from  . 
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2.3.2 Design of experiments 

The result of the SOM learning process depends on several design parameters and 

the problem to find the optimal SOM, i.e. the SOM model which “best 

characterizes” the underlying clusters, is extremely complex. It is an ill posed 

problem (33) and several efforts have been devoted to provide an efficient and 

effective solution (60; 61). The problem consists of selecting the value of the SOM 

design parameters which bring to the optimal SOM. This problem is time 

consuming. Indeed, it is known that Neural Networks are affected by the Curse of 

Dimensionality (62). Analysts can reduce the impact of the Curse by several 

strategies, including design of experiments, extracting low-dimensional features, 

imposing parsimony, or aggressive variable search and selection.  

Using the SOM toolbox 2.0 for Matlab (58), the following SOM design parameters 

are available:  

 Topological parameters: map size, lattice type, shape; 

 Parameters associated to the learning process: learning algorithm, 

neighborhood function, alpha type, radius, training length and starting 

alpha.  

The ranges of the SOM parameters are summarized in Table 2.1. 

To briefly describe each parameter: 

 Map size: the number of neurons, usually disposed in a square grid; 

 Lattice type: the local lattice structure. A rectangular neuron borders with 

four other neurons, an hexagonal one with six (see Fig. 2.3); 

 Shape: the global shape of the map (see Fig. 2.4).  

 Learning algorithm: the update process used to learn the input output 

mapping; 

 Neighbor function: the shape of the neighborhood function on the map 

(see Fig. 2.5); 
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 Alpha type: the decreasing function of the alpha values, as described in 

Par 2.2.2; 

 Radius: the neighborhoods‟ kernel, as described in Par 2.2.2; 

 Training length: the number of epochs of the training process; 

 Starting alpha: the value of   , as defines in Par 2.2.2. 

Table 2.1: SOM design paramater: SOM’s design parameters together with allowed ranges 

Design parameter Range 

Map size [100, 400] 

Lattice type {hexagonal, rectangular} 

Shape {sheet, cylinder, toroid} 

Learning algorithm {batch, sequential} 

Neighbour function {gaussian, bubble, ep} 

Alpha type {inverse, linear, power} 

Radius {1, 2, 3} 

Training length [1000, 5000] 

Starting alpha [0.01, 0.09] 

In this work, design of experiments (37) is used to model the unknown mapping 

between the design parameters and the performance function. Once such mapping 

has been built it is possible to find the optimal value of the SOM design 

parameters, i.e. to discover the optimal SOM. There are numerous design criteria 

that have been studied: D-Optimality, which minimizes the variance of the 

parameters estimates, G-Optimality, which minimizes the maximum prediction 

variance. However, in this case the particular nature of design parameters does not 

allow the implementation of an experimental design plan based on one of the 

above criteria.  

Therefore the Taguchi robust design plan (63) has been implemented. Such design 

plan, arranges variables or factors in an orthogonal array. The orthogonal array 

properties are such that between each pair of columns each combination of levels 



 ___________________________________________________________________________________________ Chapt e r  2  

32 
 

(or variables) appears an equal number of times. Due to an orthogonal layout, the 

effects of the other factors can be balanced and give a relative value representing 

the effects of a level compared with the other levels of a given factor. In orthogonal 

array experiments, the number of test runs is minimized, while keeping the pair-

wise balancing property. The principle is that statistically planned experiments are 

essential for a successful parameter design. Taguchi methods utilize two-, three-, 

and mixed level fractional factorial designs, and are used for maximizing 

robustness of products and processes, thereby achieving high quality at a low cost 

(63). 

The experimental design plan that was used in the work consists of 36 runs with 3 

replicas each, thus an overall number of experiments equal to 108 for each training 

dataset. The values of design parameters included in the Taguchi design plan are 

summarized in Table 2.2. 

Table 2.2: Set of the 36 experiments defined using the Taguchi method. Each row of the table 

contains the specific values used in the experiment. 

Map 
size 

Lattice type Shape 
Learning 
algorithm 

Neighbour 
function 

Alpha 
type 

Radius 
Training 

length 
Starting 

alpha 

100 hexagonal sheet batch Gaussian inverse 2 1000 0.01 

225 hexagonal cylinder batch Bubble power 3 3000 0.05 

400 hexagonal toroid batch Ep linear 1 5000 0.09 

100 hexagonal sheet sequential Gaussian linear 3 1000 0.09 

225 hexagonal cylinder sequential Bubble inverse 1 3000 0.01 

400 hexagonal toroid sequential Ep power 2 5000 0.05 

100 rectangular cylinder sequential Gaussian linear 1 5000 0.05 

225 rectangular toroid sequential Bubble inverse 2 1000 0.09 

400 rectangular sheet sequential Ep power 3 3000 0.01 

100 rectangular toroid batch Gaussian power 1 3000 0.01 

225 rectangular sheet batch Bubble linear 2 5000 0.05 

400 rectangular cylinder batch Ep inverse 3 1000 0.09 
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100 hexagonal toroid sequential Bubble power 1 1000 0.05 

225 hexagonal sheet sequential Ep linear 2 3000 0.09 

400 hexagonal cylinder sequential Gaussian inverse 3 5000 0.01 

100 rectangular toroid sequential Bubble inverse 3 3000 0.09 

225 rectangular sheet sequential Ep power 1 5000 0.01 

400 rectangular cylinder sequential Gaussian linear 2 1000 0.05 

100 rectangular sheet sequential Bubble linear 3 5000 0.01 

225 rectangular cylinder sequential Ep inv 1 1000 0.05 

400 rectangular toroid sequential Gaussian power 2 3000 0.09 

100 rectangular cylinder batch Bubble power 2 5000 0.09 

225 rectangular toroid batch Ep linear 3 1000 0.01 

400 rectangular sheet batch Gaussian inverse 1 3000 0.05 

100 hexagonal cylinder batch Ep power 2 1000 0.01 

225 hexagonal toroid batch Gaussian linear 3 3000 0.05 

400 hexagonal sheet batch Bubble inverse 1 5000 0.09 

100 hexagonal cylinder batch Ep linear 1 3000 0.09 

225 hexagonal toroid batch Gaussian inverse 2 5000 0.01 

400 hexagonal sheet batch Bubble power 3 1000 0.05 

100 hexagonal toroid sequential Ep inverse 3 5000 0.05 

225 hexagonal sheet sequential Gaussian power 1 1000 0.09 

400 hexagonal cylinder sequential Bubble linear 2 3000 0.01 

100 rectangular sheet batch Ep inverse 2 3000 0.05 

225 rectangular cylinder batch Gaussian power 3 5000 0.09 

400 rectangular toroid batch Bubble linear 1 1000 0.01 
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2.3.3 Objective function: the distance minimum. 

The parameters which are detected to be relevant by design of experiments are 

used to fit a linear regression model which links their values to a clustering 

performance measure (objective function), and thus to select the optimal values of 

the SOM design parameters. The selected objective function (64) is: 

   
                

    
                                                           (E32) 

where j and Cj are the jth cluster of neurons and the set of associated neurons;     is 

the weight vector associated with the ith neuron of the jth cluster;    is the centroid 

of the jth cluster (the mean vector whose components are the arithmetic averages of 

the components of       and   is the centroid of the overall map (the mean vector 

whose components are the arithmetic averages of all the weight vectors of the 

map). The distance (d) is Euclidean and      is a normalization factor equal to: 

      
                              

   
 

As shown in Table 2.2, in the experiments here performed the number of neurons 

was set to 100, 225, and 400, so      is 1, 2.25, and 4. 

This normalization factor affects only the first addend of the original equation (64), 

making possible the comparison of maps with different number of neurons. In fact, 

the first term in (E32), that is the sum of the distances of each neuron to the 

centroid of its cluster, increases with the number of neurons. The effect of the 

normalization factor is shown for a case study in Fig. 2.8, where the two terms in 

(E32) are calculated with and without     . The second term of (E32), that compute 

the inter cluster distance (in the middle of Fig. 2.8), is not influenced by the number 

of neurons in  
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Figure 2.8 – Objective function: on the left the graphs without the normalization factor, on the right 

the graphs with the normalization factor. The data are divided with respect to the number of 

neurons of the experiment (blue = 100, red = 225, green = 400). Each member of the objective 

function E32 is represented: at top the decreasing intra cluster distance, in the middle the increasing 

inter cluster distance, at bottom the sum of the terms. 
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the experiment. On the contrary, the intra cluster distance, evaluated by the first 

term of (E32) (at the top of the Figure), is influenced.  

The motivation for the choice of the objective function (E32) is twofold; first it has a 

unique minimum and second it has been empirically shown that it is capable to 

deal with the subjective assessment of clusters (64). 

2.3.4 The SOM parameter optimization.  

The numerical experiments are used to fit a linear regression model of the 

performance measure (E32) as function of the SOM‟s most relevant parameters. 

The linear regression model allows to select the optimal values of the SOM‟s 

design parameters. The linear regression analysis is performed in two stages: a 

stepwise regression (65) to select the relevant parameters, and a linear regression 

model fitting to model the unknown mapping between such parameters and the 

performance measure (E32). 

The Stepwise regression parameters were set to Prob to Enter = 0.05, Prob to Leave = 

0.05 and Direction = Mixed and Rules = No Rules.  

In particular, Prob to Enter is the significance probability that must be attributed to 

a regressor term for it to be considered as a forward step and entered into the 

model; Prob to Leave is the significance probability that must be attributed to a 

regressor term in order for it to be considered as a backward step and removed 

from the model; Direction lets you choose how you want variables to enter the 

regression equation and Rules can change the rules that are applied when there is a 

hierarchy of terms in the model. The choice Direction = Mixed, alternates the 

forward and backward steps. It includes the most significant term that satisfies 

Prob to Enter and removes the least significant term satisfying Prob to Leave. It 

continues removing terms until the remaining terms are significant and then it 

changes to the forward direction. Rules = No, gives the selection routine complete 

freedom to choose terms.  

JMP software was used for data analysis and linear regression (66).  
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2.3.5 Optimal sampling rate of MD trajectories.  

When dealing with a nanoseconds MD trajectory it is desirable to train the SOM 

with a minimum number of selected structures while maintaining a reliable 

picture of the protein dynamics. To this extent, the effect of the sampling rate on 

the SOM learning process was assessed and the “minimum” number of frames to 

extract from a trajectory was identified.  

To describe the sampling rate analysis the following notation is required. Let Qi(n) 

be the ith random sample for a trajectory consisting of n points (conformations) and 

SOMi(n) be the SOM trained on the dataset Qi(n) with the optimal parameters as 

determined through the SOM optimization procedure. Furthermore, let   
   

 and 

Hi(n) be respectively the hits vector of the SOMi(n) when the dataset Qi(n) and the 

dataset Q  are submitted. Finally, let χi(n) be the Chi-square statistic computed on 

non null cells of hits vector Hi(n) and cells of hits vector   
   

. The single time-step 

analysis procedure, for a given number of points n and for a given number of 

samples k, is depicted in Figure 2.9 and summarized as follows: 

1) extract k random samples from the trajectory dataset Q; 

2) train a SOM for each sample Qi(n), i=1, …, k, to obtain SOMi(n); 

3) assign points in Qi(n) to the neurons of SOMi(n) to obtain the hits vector   
   

; 

4) assign points in Q to the neurons of SOMi(n) to obtain the hits vector Hi(n); 

5) compute the Chi-squared statistic χi(n), i=1, …, k; 

6) perform k Cressie-Read Chi-square tests (67) ; 

7) if no test is rejected, then accept the hypothesis that a number of sampling 

points equals to n does not produce a hits vector significantly different from 

the one obtained when using the full set of data points, i.e. the dataset Q. 

The single sampling rate analysis procedure is applied to different number of 

points n to find the minimum value n* such that the null hypothesis is not rejected. 
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This value ensures that the clusters extracted from SOM learning are not 

influenced by the sampling rate applied to the dataset Q. 

 
Figure 2.9 – Optimal sampling rate of MD trajectories: diagram of the procedure to test the 

reliability of SOM clustering at different sampling rates 
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2.3.6 SOM clustering for structural ensembles. 

This task is devoted to give an interpretation of the learning process applied to the 

SOM. The SOM algorithm, when presented with an ensemble of structures, learns 

the features of the protein dynamics and consequently adapts the weights of its 

neurons. Therefore the neurons‟ weights      become the coordinates of 

representative geometries and the problem of performing cluster analysis on the 

original ensemble is reduced to clustering only the representatives. To this aim we 

used an algorithm which combines hierarchical complete linkage clustering (68) 

with the following instance of the Mojena‟s rule (E33) (69). 

                          (E33) 

Where   is the mean of the sequence of distances of the dendrogram             , 

   is the standard deviation of  , 2.75 is the coefficient applied for the complete 

linkage and    is the value of   that define the optimal number of cluster. The 

value of    is the first value of               which satisfies the inequality in (E33) 

(see Fig. 2.10). 

The procedure can be summarized as follows, taking as reference a SOM of 100 

neurons: 

1. Run the hierarchical complete linkage clustering on the set   

             to obtain the dendrogram                    , where   is the 

clustering tree while             is the corresponding sequence of distance 

values. By definition                where       represents the value 

of the maximum distance between weight vectors belonging to the cluster, 

obtained as the results of the 100th joining operation. The hierarchical 

clustering has been performed by using the MATLAB Statistics Toolbox 

(70); 

2. Use the Mojena‟s rule to find the optimal number of clusters   , i.e. the 

optimal number of clusters while   , i=1, …,   consists of the set of indices 
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for the neurons belonging to the ith cluster. Use the tree    together with    

to compute the optimal segmentation                . The Mojena‟s rule 

is applied by using the MATLAB code made available by the courtesy of 

Prof. Josep Antoni Martín Fernández (http://ima.udg.edu/~jamf/). 

 
Figure 2.10 – Mojena stopping rule. In the graph each blue triangle represent the distance for the 

aggregation of increasing number of clusters and the bigger triangle corresponds to the optimal 

number of clusters. In red the line corresponding to the cutoff value as defined in E33. 

Once defined the optimal number of clusters it is possible to extract the 

conformations that belong to each cluster.  

Moreover it is possible to extract the centroid of each jth cluster,   . The centroid    

and the weight vector of each neuron “i”,    , are vectors with the same dimension 

of the input data       . As described in Par 2.2.2, the update process of the weight 

vector     produces vector that are made similar to the data “won” during this 

phase. This means that at the end of the learning process these vectors are very 

similar to the original data but in principle the values that compose this vector can 

be different from any original data. In our case this means that, often they do not 

represent real conformations. We can extract the real conformation that best 

describes each neuron searching for the input data vector closest to    . Similarly 



 ___________________________________________________________________________________________ Chapt e r  2  

41 
 

we can define the real conformation closest to the centroid   , and we can use this 

conformation to provide the maximum summarization of the cluster. This means 

that it is possible to extract information at three different levels: 

a) cluster level; i.e. to summarize each cluster with the conformations “won” 

by its neurons; 

b) neuron level; i.e. to summarize each cluster by means of its most 

representative neuron; 

c) centroid level; i.e. to summarize each cluster by using only the conformation 

that best describes its centroid. 

2.3.7 Optimization of the protocol for the study case of the SH3 protein domains 

The SOM protocol was optimized by using the MD trajectories of the Spc-SH3 

domain and its six mutants as a study case (see Cap. 3 for the description of the 

system).  

As presented in Par 2.3.1, each sampled conformation was described by the 

Cartesian coordinates of the Cα atoms. In these study cases, the number of Cα in 

structurally equivalent positions in all the domains is 55. Therefore, the input data 

vectors         presented as inputs to the SOM were vectors consisting of 165 

elements (55 Cα x 3 Cartesian coordinates). 

The experimental plan, defined in Par 2.3.2, consisting of 36 runs with three 

replicas for each run, was used for the following four datasets; the wild-type SH3 

(WT) dynamic, the R21G mutant dynamic, the combined trajectories of WT and 

R21G (called WT+R21G case), and the combined trajectories of WT and its six 

mutants (R21A, R21G, N47A, N47G, A56G, A56S, called ALL case). These datasets 

have been selected to optimize the SOM both for the analysis of a single trajectory 

and for multiple comparisons of trajectories. Among the SH3 mutants, the ones 

that cause a relevant increase of flexibility with respect to the wild type have been 

selected (see Cap. 3 for more details).  
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Therefore, a total of 432 runs have been performed. 

   
           

       
    

    

           
                     

The dimensions of the matrices given in input to the SOM     are different for the 

different datasets. In the analyses of a single trajectory the dimension (row x 

column) of the matrices is 400 x 165, in the analyses of pair of trajectories is 800 x 

165 and in the analyses of the seven trajectories is 2800 x 165.  

The response variable is the minimum normalized distance as defined in equation 

(E32). 

The summary of the linear regression model fitting are reported in Table 2.3 and 

Table 2.4, and the regression curve is reported in Fig. 2.11. The regression model 

was satisfactory, with similar values of R2 and R2adj (R2 = 0.937 and R2adj = 0.936). 

 
Figure 2.11 – Regression curve of the experiments: the figure illustrates the actual versus predicted 

plot of the linear regression model which links the following SOM design parameters:  Map size, 

Radius, Training length and Neighbour function, to the response variable, i.e. the minimum 

distance normalized (E32). 
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Table 2.3: Linear regression, summary of fit. R2 measures the proportion of the variation around the 

mean explained by the linear or polynomial model; R2Adj adjusts the R2 value to make it more 

comparable over models with different numbers of parameters by using the degrees of freedom in its 

computation. RMSE (Root Mean Square Error) estimates the standard deviation of the random 

error; Mean of Response is the sample mean (arithmetic average) of the response variable; 

Observations is the number of observations used to estimate the fit 

Parameter Value 

R2 0.937 
R2

adj 0.936 
RMSE 27.61 
Mean of Response 395.01 
Observations 432 

Table 2.4: Linear regression, effect tests. Source, lists the names of the effects in the model; Nparm is 

the number of parameters associated with the effect; DF is the degrees of freedom for the effect test; 

Sum of Squares is the sum of squares for the hypothesis that the listed effect is zero; F Ratio is the F-

statistic for testing that the effect is zero; Prob>F is the significance probability for the F-ratio.  

Source Nparm DF Sum of Squares F Ratio Prob > F 

Map size    1 1 1,022,810.9 1,341.853 <0.0001 

Radius    1 1 39,779.1 52.187 <0.0001 

Training length    1 1 17,056.8 22.377 <0.0001 

Neighbor function    2 2 2,935,552.0 1,925.615 <0.0001 

TYPEMOL    3 3 805,604.4 352.298 <0.0001 

The following design parameters have been judged to have statistical significance 

at the p-value cutoff of 0.01: Map size, Radius, Training length, Neighbour function 

and TYPEMOL (see Table 2.4), the latter being a categorical variable, which can 

take the following values: WT, R21G, WT+R21G and ALL. 

The optimal settings of the SOM design parameters, for each value of the 

categorical variable TYPEMOL, were: Map size=100, Radius=3, Training 

length=5,000 and Neighbour function=gaussian. Table 2.5 reports the results of a 

validation test on the regression model. The difference between the predicted and 

the actual optimal values is small, confirming that the regression model can 

reliably predict the value of the performance measure (E32). 

Interestingly the parameters found to be the only relevant for the analysis of this 

specific kind of data are the same in the four datasets studied and, more 
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interestingly, in the four cases the optimal value of each parameter is the same. 

This is not so straightforward by considering the different nature of the four 

datasets. They are different not only in terms of their dimensions (from 400 to 2,800 

vectors) but, more relevant, in terms of amplitude of the conformational changes.  

Even if it is not possible to state that the value of these parameters will be optimal 

for the analyses of all the possible datasets composed by data extracted by the MD 

simulations, we can say that these are the most relevant parameters that have to be 

optimized for the considered cases. 

Table 2.5: Optimal SOM’s design parameter values. For each parameter the value that optimizes the 

objective function is reported. Using these parameters: Actual is the result of the experiment 

performed; Predicted is the result obtained using the regression model. 

Case 
Map 
size 

Radius 
Training 

length 
Neighbor 
function 

Actual Predicted 

WT 100 3 5,000 gaussian 158 156 
R21G 100 3 5,000 gaussian 265 270 
WT+R21G 100 3 5,000 gaussian 259 238 
ALL 100 3 5,000 gaussian 254 246 

Each system was simulated for 40 ns (see Chapter 3). At first, a sampling rate equal 

to 0.01 was set, i.e. out of the available 40,000 trajectory points (one each ps), 400 

were randomly selected to describe each trajectory. A different sampling rate could 

have been resulted in a different trajectory clustering. Therefore, the 

appropriateness of the sampling rate was checked by the method described in Par. 

2.3.5. The analysis was performed with three replicas for each sampling rate: 1/2 

ps, 1/4 ps, 1/8 ps, 1/16 ps, 1/25 ps, 1/50 ps, 1/100 ps, 1/500 ps and 1/1,000 ps 

(corresponding to sampling size from 20,000 to 40 conformations): 20,000, 10,000, 

5,000, 2,500, 1,600, 800, 400, 80, and 40 conformations. Three cases were selected to 

study the different sampling rate: the WT, an example of a trajectory without 

relevant conformational changes, the R21G mutant, the case with the highest 

conformational changes during the simulation, the N47A mutant, to describe an 

intermediate situation.  
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The results, reported in Table 2.6, show that the null hypothesis is not rejected for 

samples larger than 400 conformations. Thus, at a rate of 1/100 ps or greater the 

results of the SOM analysis are not influenced by the sampling rate. It means that 

using this sampling rate a complete picture of the dynamics, in terms of 

representation of the conformations sampled, is obtained. 

The optimal SOM obtained for each dataset, consisting of 100 neurons, is 

summarized by the set of neuron‟s weights               , where each    
  is a 

vector with the same dimension of the input pattern       .  

After application of the cluster analysis algorithm described in Par 2.3.6 to the 

obtained neurons, information useful for conformational and functional analysis of 

the SH3 domains were extracted from the maps of both the single and the 

combined trajectories. Results will be presented and discussed in Chapter 3. 
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Table 2.6: Test on the effects of different sampling rates for the WT SH3 and the R21G and N47A 

mutants: Sampling rate analysis for the WT SH3 and the R21G and N47A mutants. Statistic, p-

value and the output of the hypothesis test are reported; (-) means that the null hypothesis cannot be 

rejected while (*) means that the null hypothesis is rejected. 

  statistic p-value result 

frequency sample WT R21G N47A WT R21G N47A WT R21G N47A 

 
20,000  

  

1 25 27 16 1.00 1.00 1.00 - - - 

2 17 28 17 1.00 1.00 1.00 - - - 

3 19 29 22 1.00 1.00 1.00 - - - 

 
10,000  

  

1 29 35 34 1.00 1.00 0.98 - - - 

2 28 37 36 1.00 1.00 0.98 - - - 

3 33 36 21 0.99 1.00 1.00 - - - 

 
5,000 

  

1 30 33 30 1.00 1.00 0.98 - - - 

2 49 49 28 0.91 0.98 0.98 - - - 

3 34 37 30 0.99 1.00 0.99 - - - 

 
2,500  

  

1 63 53 23 0.26 0.92 0.99 - - - 

2 51 48 56 0.76 0.99 0.22 - - - 

3 39 44 34 0.92 0.99 0.98 - - - 

 
1,600  

  

1 43 49 31 0.82 0.93 0.96 - - - 

2 42 63 28 0.86 0.74 0.95 - - - 

3 45 48 41 0.90 0.97 0.77 - - - 

 
800  

  

1 40 57 73 0.92 0.89 0.06 - - - 

2 57 43 49 0.52 0.99 0.47 - - - 

3 54 44 36 0.48 0.98 0.80 - - - 

 
400  

  

1 48 73 39 0.63 0.11 0.49 - - - 

2 50 49 55 0.55 0.93 0.16 - - - 

3 34 39 46 0.96 0.99 0.47 - - - 

 
 80 
  

1 40 83 54 0.28 0.00 0.02 - * * 

2 63 64 38 0.00 0.00 0.08 * * - 

3 81 46 50 0.00 0.43 0.04 * - * 

 1 167 84 67 0.00 0.00 0.00 * * * 

40 2 105 62 95 0.00 0.00 0.00 * * * 

 3 101 60 67 0.00 0.00 0.00 * * * 
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C h a p t e r  3  

M O D U L A T I O N  O F  F L E X I B I L I T Y  B Y  M U T A G E N E S I S :  

S P C - S H 3  D O M A I N  M U T A N T S  

3.1 Selection of the study case 

As anticipated in Chapter 1, we were interested in studying the modulation of 

flexibility given by mutations, and its effects on ligand binding.  

The study case selected for this analysis is composed by the α-spectrin SH3 (Spc-

SH3) domain and a group of its single-site mutants. The MD trajectories of this 

group of mutants were also used for the optimization of the SOM protocol for the 

analysis of structural ensembles (59), reported in Chapter 2. 

As shown in Figure 3.1a, the crystal structure of the wild-type Spc-SH3 domain (62 

residues, PDB code: 1SHG) is characterized by five antiparallel β-strands that form 

two orthogonal β-sheets. A long 19-residue loop that includes three isolated β-

bridges (RT loop), connects the first two strands, while two loops (commonly 

termed n-src and distal loop) connect the β2 - β3 and the β3 - β4 strands, 

respectively, and a short 310 helix joins the β4 and β5 strands (71).  

The Spc-SH3 domain binds the decapeptide APSYSPPPPP (p41), although with 

moderate affinity (Kd = 83 ± 7 μM) (38). Proline-rich polypeptides usually bind SH3 

domains in a polyproline II (PPII) helical conformation, and the typical SH3 

binding surface comprises two hydrophobic grooves lined mainly by aromatic 

residues, and a specificity pocket flanked by the RT and n-src loops (72; 73). 

Several studies have demonstrated that the conformational dynamics of these 

loops plays an important role in determining the binding specificity (74). The 

structure of the R21A Spc-SH3:p41 complex (PDB code: 2JMA, (75)) was obtained 

by solution NMR and HADDOCK simulations (76). As the R21A mutant is 
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structurally very similar to the wild-type Spc-SH3 (Figure 3.1b), the structure of 

this complex confirms that the binding mode of p41 reproduces the general 

features of the SH3 domains' binding. The group of residues that generate 

hydrophobic contacts and hydrogen bonds with p41 (75) are highlighted in the 

figure. The core SH3 interaction surface is formed by aromatic residues that 

interact with proline and hydrophobic residues of the ligand, while the specificity 

pocket is constituted by residues in the RT and n-src loops and in the β4 strand.  

 
Figure 3.1: Cartoon representations of the Spc-SH3 domain.  A) X-ray structure of  WT Spc-SH3 

(PDB code: 1SHG). Secondary structures are attributed according to the DSSP program (β-

strands: yellow; 310 helix: red; loops: green) and labeled according to the generally adopted 

nomenclature for SH3 domains. The three mutated residues are shown as blue sticks. B) Structure 

of the R21A Spc-SH3:p41 complex (PDB code: 2JMA), in blue, superimposed to the WT Spc-SH3 

structure in grey. Residues that interact with the ligand are shown as sticks. The structure of p41 is 

shown in cyan 

The six mutants of the Spc-SH3 domain here analysed (and their PDB codes) are: 

R21A, R21G, A56G and A56S (2F2W, 2F2X, 2F2V and 2CDT, (38)), N47A and 

N47G (1QKX, 1QKW, (77)). These mutants had been designed to explore how the 

local perturbations produced by single-point mutations affect both the stability 

and the p41 affinity of this domain (38).  
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In particular, it was observed that both mutations of R21, at the tip of the RT loop 

that flanks the binding specificity pocket (Figure 3.1a), had favourable effects on 

the p41 affinity, due to the replacement of the bulky arginine side chain by a small 

side chain. However, the change in affinity was smaller for the R21G mutant, and 

it was hypothesized that this may be caused by the increased conformational 

freedom of the RT loop. Both mutations of N47, in the distal loop (about 10 Å from 

the binding site, Figure 3.1a), produced significant changes in the stability of the 

domain and a reduction of p41 affinity, which suggested the idea of a cooperative 

pathway between the distal loop and the binding site (78). This was supported by 

the identification of a stabilizing salt-bridge between the distal and the RT loops 

(R49 and E17) in the wild-type X-ray structure, that was not evidenced in both the 

mutants in the N47 position (78). Finally, while mutation of A56, in the 310 helix 

belonging to one of the hydrophobic binding grooves (Figure 3.1a), to Ser did not 

alter significantly the p41 affinity, the mutation to Gly produced a great reduction 

in affinity, that was attributed to the increase of conformational freedom induced 

by this mutation.  

3.2 MD simulations of the SH3 mutants  

3.2.1 Simulation protocol 

The atomistic dynamics of the set of proteins under study was simulated using the 

GROMACS package (version 3.3.3) (39; 42; 43) with the GROMOS96 43a2 force 

field, by following the general protocol described in Par. 2.1.2 and 2.1.3. The 

specific details set for this group of domains is outlined in the following. 

All structures were inserted in an octahedral box with explicit solvent and 

simulated with periodic boundary conditions. Water molecules were described by 

a simple point charge (SPC) model (49) and the box size was set to ensure a 

distance of at least 1.2 nm between the protein and the box boundaries. The solvent 

was relaxed with a 5 ps MD simulation, then the systems were neutralized by 
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insertion of counter ions, and a short minimization with steepest descent was 

performed up to convergence on maximum force lower than 1000 kJ/mol nm. The 

resulting systems were simulated for 40 ns in the NPT ensemble. Long-range 

electrostatic interactions were calculated with the particle mesh Ewald (PME) 

summation method (40). A thermal bath was independently coupled with protein 

and solvent using a Berendsen thermostat at 300 K with coupling period of 0.1 ps. 

The internal degrees of freedom of water were constrained by the Settle algorithm 

(50), while all bond distances in the protein were constrained by the LINCS 

algorithm (52). The integration step was set to 2 fs. 

The conformational dynamics of the X-ray structures of the wild type (WT) and the 

six mutated Spc-SH3 domains were analysed by 40 ns MD simulations. 

3.2.2 Analysis of the trajectories 

The analysis of the root mean square deviation (RMSD) to the starting structure 

confirmed a general stability of all trajectories, with an equilibration time around 1 

ns and a temperature around 300K during the simulation (see Fig. 3.2). As shown 

in Figure 3.2 different behaviours are observed during the simulations. The 

dynamics of the WT SH3 (Fig 3.2a) and of the R21A mutant (Fig 3.2b) show low 

flexibility of the domains, with an average RMSD of 0.10 nm, and are characterized 

by the absence of relevant conformational transitions. All the other simulations 

have higher average values of RMSD and show significant transitions. The R21G 

mutant (Fig. 3.2b) shows a significant conformational change between 15 and 30 

ns, with average RMSD of 0.25 nm. In the other mutants the transitions are shorter 

and the RMSD has average values of about 0.20 nm. 
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Figure 3.2: RMSD computed on Cα for the wild-type SH3 and the six mutants. 

A test on the completeness of conformational sampling was performed by using 

the overlap between the conformational space spanned in each half of the 

simulation and that of the overall simulation as a convergence index, as described 

in Par. 2.1.4. The results, reported in Table 3.1, clearly indicate an overlap of more 

than 70% with the whole trajectory in both the halves of the simulation for all the 

systems, suggesting a good convergence of sampling. 

The most informative directions of motion were extracted by Essential Dynamics 

analysis (see Par. 2.1.5) and the fraction of total motion described by different 

subspaces was evaluated to identify the extent of the essential space for each 

domain. Results reported in Table 3.2 indicate that in all cases more than 79% of 

the motion is described by the first 20 eigendirections (corresponding to 12% of the 

total space), while the first 30 directions (18% of total space) can explain more than 

85% of the conformational flexibility of all domains. Therefore a 30 dimensional 

essential space was selected for the following analyses. 
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Table 3.1: Overlap of sampling in the MD simulations of the SH3 domains. Values represents the 

overlap between the conformational space spanned by each half of the simulation and that of the 

overall trajectory. 

 1 - 20 ns 20 - 40 ns 

WT 0.87 0.86 

R21A 0.76 0.77 

R21G 0.82 0.78 

N47A 0.70 0.75 

N47G 0.72 0.78 

A56G 0.71 0.71 

A56S 0.83 0.80 

Table 3.2: Distribution of motion in different subspaces for each MD simulation. Values refer to the 

percentage of total space described by the eigenvectors. 

Eigenvectors WT R21A R21G N47A N47G A56G A56S 

1 - 10 65.2 69.9 81.5 73.5 77.1 80.0 80.3 

1 - 20 79.3 82.1 89.4 85.2 87.0 88.8 88.6 

1 - 30 86.3 88.0 92.8 90.4 91.4 92.5 92.3 

1 - 60 95.0 95.5 97.3 96.5 96.7 97.1 97.1 

1 - 165 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

The comparison of the local flexibility on a residue base was performed by using 

the RMSF, a traditional index for MD simulation analysis (Par. 2.1.6). A set of 

comparative plots of the RMSF on the positions of the Cα atoms in the essential 

space is shown in Figure 3.3, where only equivalent residues in the preliminary 

structure-based alignment are included and the secondary structures are reported 

in the bottom part of each graph for reference.  
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Figure 3.3 - Plot of RMSF versus residue position in the essential space. MD simulations of: a) WT 

SH3; b) R21A and R21G mutants, compared to the WT; c) N47G and N47A mutants, compared to 

the WT; d) A56G and A56S mutants, compared to the WT. Residue numbers are modified 

according to the structure-based alignment. Secondary structures are attributed according to the 

DSSP program (β-strands: black squares; 310 helix: white square) and labeled according to the 

nomenclature generally adopted for SH3 domains 

The WT SH3 structure is rather constrained (fluctuations around 0.1 nm), with 

only a region of flexibility in the n-src and the distal loops (Fig. 3.3a), while the 

effects of single-point mutations in each of the three positions, R21, N47 and A56 

(see Fig. 3.1a), can be clearly observed in Figures 3.3b, c and d, where the RMSF of 

each group of mutants is superimposed on the WT plot.   

The R21A mutation does not affect significantly the overall domain flexibility, with 

only a slight increase in the distal loop peak. On the contrary, the R21G mutation 

causes a relevant increase of flexibility, mainly in the long RT loop (with the 

highest fluctuation around 0.3 nm at tip of the loop, near the mutated residue) and 
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in the region including β3, the distal loop, β4 and the helix 310 (Figure 3.3b). This 

result confirms the hypothesis on the role of conformational flexibility in reducing 

the binding affinity for this mutation (38).  

The mutation to Ala at position 47 has little effect on flexibility, while a change to 

Gly in the same position causes an increased flexibility of all the region around this 

position (distal loop and nearby strands) as well as in the whole RT loop (Figure 

3.3c). These last findings confirm the hypothesis that the N47G mutation causes a 

reduction in the p41 affinity through a long-range propagation of the local 

perturbation to the binding site (78). 

Differently from the previous cases, a mutation to Gly in position 56, in the 310 

helix, does not alter significantly either the local or the global flexibility of the 

domain;  an increase of flexibility in the distal loop region is observed for the A56S 

mutant (Figure 3.3d). From these results, the conformational freedom of these two 

mutants does not seem to be related to the p41 binding affinity (38). 

3.3 Conformational and functional analysis by SOM clustering 

In this paragraph the role of flexibility of the SH3 domain in binding the p41 

decapeptide is analyzed.  

The SOM approach developed in this thesis (see Par. 2.3) was applied for 

clustering both the single trajectories of the wild type and the SH3 mutants and 

multiple trajectories of different mutants. The WT and R21G trajectories are 

presented as examples of single trajectory analysis. For describing the analysis of 

multiple trajectories, the map obtained by combining the trajectories of WT and 

R21G (WT+R21G) as well as that obtained by the trajectories of the seven mutants 

(ALL) are presented. 

From a methodological point of view, the SOM analysis of these trajectories 

allowed us to answer three questions about the use of the SOM protocol described 
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in Par. 2.3: 1) are the SOMs obtained using the optimized parameters able to cluster 

both trajectories with high conformational fluctuations and trajectories with slight 

fluctuations, and is it possible to cluster data obtained from different trajectories, 

characterized by different fluctuations, using one map? 2) are the Cα coordinates a 

good descriptor in both the above cases? 3) once defined the ability of the map to 

cluster these data, are the obtained clusters meaningful from a functional point of 

view?  

3.3.1 SOMs of single trajectories: R21G, WT 

The map of the R21G conformational ensemble is shown in Figure 3.4 as an 

example of analysis of a single trajectory where the domain shows the largest 

conformational flexibility (see Figure 3.3b). Each hexagon of the map represents a 

neuron and the black area is proportional to the number of hits (classified 

conformations). Four clusters (Figure 3.4A) were extracted applying the Mojena‟s 

rule (69) after hierarchical clustering. The ensembles of conformations in each 

cluster are shown as ribbon in Figure 3.4B, superimposed on the X-ray structure of 

the WT SH3 (in black). Cluster 1 (green) contains a large group of representative 

conformations with limited fluctuations mostly localised in the n-src loop. Clusters 

2 (blue) describes a small displacement of the distal loop towards the RT loop, 

while cluster 3 (violet) comprises conformations with a more extended motion of 

the same loop, a consequent perturbation of the n-src loop, and a motion of the RT 

loop tip back towards the distal loop. Conformations in cluster 4 (red) greatly 

deviate from the WT structure, with a concerted closure motion of the distal and 

RT loops. 
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Figure 3.4 - SOM analysis of the R21G mutant dynamics. A) Self Organizing Map: the number of 

hits in each neuron are indicated by the black hexagon area; the four clusters obtained by 

hierarchical clustering of the neurons are indicated by different colors. B) Ribbon representation of 

the ensembles of hit conformations in each cluster; the representative conformation (see text) is 

highlighted by a larger ribbon; the X-ray structure of the WT SH3 at t=0 at the trajectory is 

reported in black for comparison 

As an opposite example, i.e. the analysis of a single trajectory where the domain 

shows a reduced conformational flexibility, the map of the WT SH3 ensemble is 

shown in Figure 3.5. Also in this case four clusters (Figure 3.5A) were extracted 

applying the Mojena‟s rule (69) after hierarchical clustering. The ensembles of 

conformations in each cluster are shown as ribbon in Figure 3.5B, superimposed to 

the X-ray structure (in black). As indicated from the RMSF plot (Fig 3.3a), the most 

flexible zones are the n-src and the distal loops. The four clusters describe little 

fluctuations around the equilibrium position, but each cluster slightly differs from 

the others: cluster 3, in purple in Figure 3.5B, describes conformations close to the 

starting position of the simulation; cluster 2, in blue, describes little fluctuations of 

the distal loop; both in cluster 1 (green) and in cluster 4 (red) fluctuations involve 

the distal and the n-src loops.  
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Figure 3.5 - SOM analysis of the WT SH3 dynamics. A) Self Organizing Map (see Figure 3.4 for 

the details). B) Ribbon representation of the ensembles of hit conformations in each cluster; the 

representative conformation (see text) is highlighted by a larger ribbon; the X-ray structure is 

reported in black for comparison. 

3.3.2 SOM of a pair of trajectories: WT and R21G 

Once analysed all the single trajectories of the WT and its mutants, the subsequent 

step was the analysis of two combined simulations to detect similarities and 

differences. The results for the WT SH3 and the R21G mutant are discussed. As 

previously shown, the cluster analysis of the two single trajectories produced 

clusters with different meaning. In the R21G map the clusters described large 

conformational changes and fluctuations around the equilibrium position, in that 

of the WT the cluster described only fluctuations around the equilibrium position. 

Four clusters of neurons were extracted from the map trained on the WT and R21G 

sets of conformations. A table of cluster compositions is reported, along with the 

map, in Figure 3.6A and the representative conformation of each cluster (i.e. the 

representative of the neuron that is nearest to the centroid) is shown in Figure 3.6B. 

The WT ensemble, characterized by low fluctuations, contributes to 78% of cluster 

1, that includes conformations similar to its equilibrium structure, and part of 

cluster 2, whose conformations present small fluctuations in the distal and n-src 
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loops. On the contrary, cluster 3 and 4 are almost exclusively populated by 

conformations from the R21G trajectory. Cluster 3 describes more extended 

fluctuations in the distal and n-src loops and in part of the RT loop, and cluster 4 

large concerted motions in the distal and the faced RT loop. 

Figure 3.6 - SOM analysis for the WT SH3 and the R21G mutant dynamics. A) Self Organizing 

Map (see Figure 3.4 for the details); the percentage distribution of conformations of each domain in 

the clusters is reported in the table. B) Ribbon representation of the representative conformation in 

each cluster, superimposed to the X-ray structure of the WT SH3 (in black). 
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3.3.3 SOM of WT and the six mutants 

The final step was the analysis of the whole set of trajectories. The clusters 

obtained with this analysis were studied to describe the functional differences of 

the mutants correlated with their flexibility. 

The SOM of the whole set of ensembles and the resulting five clusters are shown in 

Figure 3.7. The representative conformations of cluster 1 and 5 (Figure 3.7B) closely 

resemble those of cluster 1 (low fluctuations) and 4 (large concerted motion of the 

distal and RT loops) also observed in the SOM of WT and R21G (Figure 3.6B). 

Clusters 2, 3 and 4 describe intermediate situations with a moderate flexibility of 

the distal loop (cluster 2) or a large flexibility of the same loop associated with 

medium to high perturbation of the n-src and the RT loops (clusters 3 and 4).  

Figure 3.7 - SOM analysis of the dynamics of the WT SH3 and the six mutants. A) Self Organizing 

Map (see Figure 3.4 for the details); the percentage distribution of conformations of each domain in 

the clusters is reported in the table. B) Ribbon representation of the representative conformation in 

each cluster, superimposed to the X-ray structure of the WT SH3 (in black). 
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To complement and confirm this analysis, the dRMSD (Par 2.1.6) between the 

average distances of four selected points in the conformational ensemble of each 

cluster and in the X-ray structure of the WT SH3 was calculated. The selected 

points (see Figure 3.8) are the Cα atoms of a constrained residue at the N-term of 

the RT loop (A = L12), and three residues in the most flexible regions of the protein 

(B = S36 in the n-src loop, C = D48 in the distal loop, D = P20 at the tip of the RT 

loop).  

Figure 3.8 - Distances (dRMSD) among four selected points in each cluster. Dotted lines are 

colored according to clustering reported in Figure 3.7. The same distances in the WT SH3 structure 

are reported in black dotted lines. The X-ray structure of the WT SH3, taken as a reference, is 

represented by grey cartoons and superimposed onto each graph. Points A, B, C, D, are the Cα atom 

positions in the representative conformation of each cluster of the following residues: A = L12; B = 

S36 in the n-src loop; C = D48 in the distal loop; D = P20 at the tip of the RT loop.  

Table 3.3: Distances (dRMSD) among four selected points in each cluster: dRMSD values between 

points A, B, C, D, in Figure 3.8. The dRMSD are calculated as the average distance of the selected 

points in the conformational ensemble of each cluster and the same distance in the WT SH3 

structure. 

 dRMSD (Å) 

 ABD ACD ABC ABCD 

Cluster 1 1.7 0.9 1.4 1.4 

Cluster 2 1.0 1.5 1.6 1.4 

Cluster 3 2.2 2.3 2.7 2.4 

Cluster 4 2.0 2.1 1.6 2.2 

Cluster 5 3.8 2.9 2.4 3.5 
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Both the visual analysis of the inter-point distances in Figure 3.8 and the ABCD 

dRMSD values (Table 3.3) indicate that clusters 1 and 2 slightly deviate from the 

WT structure, where clusters 3 and 4 have more relevant deformations (around 2 

Å) and cluster 5 departs more than 3 Å from the WT structure. In detail 

deformations in the average structure of cluster 3 mainly affect the distal and n-src 

loops' distances (ABC), while in clusters 4 and 5 the distances of the RT loop from 

both the other loops and the reference point A (ACD and ABD) depart from the 

WT geometry. 

A closer look at the cluster composition shows the ability of the SOM to group 

conformations common to all domains, as well as to correctly separate the typical 

dynamics of each of the three domains with higher flexibility. The contributions of 

each mutant ensemble to the five clusters (Figure 3.7A) highlights that clusters 1 

and 2 are populated by conformations from all the mutants. The larger 

contributions to cluster 1 are from the WT SH3 and the mutants with reduced 

conformational flexibility (R21A, N47A and A56G), while cluster 2 is more 

representative of R21G and N47G ensembles. Each of the remaining three clusters 

is dominated by one contribution: cluster 3 mainly by A56S, cluster 4 by N47G and 

cluster 5 is almost completely populated by conformations from the R21G 

ensemble. 

An interesting feature arises from the topological nature of the SOM. 

Conformational transitions that occur in consecutive times along the MD trajectory 

involve conformations assigned to neighbour clusters on the map. This can be 

shown by annotating the clusters detected by the SOM on the RMSD plots. An 

example for three trajectories is reported in Figure 3.9 where cluster attributions 

are shown in colour. In the first part of the WT RMSD plot, frequent transitions 

occur between conformations in the green and blue clusters, that are neighbour in 

the SOM. More clearly, in the A56S plot, transitions between conformations in the 

green and yellow clusters, that in the SOM are separated by the violet cluster, 
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always occur in the trajectory through sampling of conformations in the violet 

cluster. In the R21G plot, while some transitions occur between conformations in 

neighbour clusters (blue and green), others (green to yellow or red to yellow) are 

separated by the violet cluster in the map and occur only through brief sampling of 

conformations of this type. 

 
Figure 3.9 - Plot of RMSD versus time during the MD simulations. From top to bottom, MD 

trajectories for the WT SH3, A56S and R21G mutants. Conformations attributed to the five 

clusters obtained from the SOM trained on the entire group of trajectories are colored according to 

Figure 3.7 

Previous studies suggested an hypothesis on the role of conformational flexibility 

in reducing the binding affinity (38). To verify this we studied the effects of 

flexibility on the binding site geometry. As previously described, the binding 

pocket of the p41 peptide is flanked by the RT and n-src loops (Figure 3.1B), whose 

dynamics affects the binding specificity. Therefore, the inter-residue distances in 

the binding site of the SH3:p41 complex (all the heavy atoms in the residues 

interacting with p41, shown in Figure 3.1B) were compared to the corresponding 

distances in the representative conformations of each cluster. The dRMSD values 

confirmed that the increase of conformational freedom induced by the N47G and 

R21G mutations (mainly described by clusters 4 and 5) produces a significant 

distorsion of the binding site geometry (dRMSD = 1.7 and 1.8 Å), while other 

mutations did not produce comparable effects (dRMSD around 1 Å). 
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3.4 Conclusions 

The results of the application of the proposed approach to compare 

conformational ensembles of protein domains to the SH3 domain and its mutants 

highlighted the specific advantages of a SOM approach in conformational and 

functional analysis.  

The major benefit is the possibility of providing a topological mapping of the 

conformational space embedded in a simple 2D visualisation. This simplifies the 

identification of differences in the conformational dynamics of each domain (see 

Figures 3.4-3.7). Moreover, the map can adapt to record differences in both large 

and small fluctuations, as well as to group conformations associated to different 

directions of the same motion. 

The combination of SOMs and complete linkage clustering on the neuron vectors 

showed good performance in the analysis of single trajectories of the test case. 

For example, for R21G (Figure 3.4) clusters containing conformations that deviate 

from the WT equilibrium structure and are associated with loop motions that 

affect ligand binding were clearly detected. More interestingly, the method 

resulted in a very efficient comparison of multiple trajectories. In this case, low 

fluctuations, large concerted motions and intermediate dynamic perturbations 

were clearly and correctly detected (Figures 3.7 and 3.8, and Table 3.3). The 

comparison of inter-residue distances in the binding site (75) among the cluster 

representative conformations led to a functional interpretation of the observed 

differences. The increase of conformational freedom induced by the N47G and 

R21G mutations induces a distortion of the binding site geometry that explains 

the decreased ligand binding ability, while other mutations do not produce 

comparable effects. 

Interestingly, as shown by the annotation of the cluster identity on the RMSD 

plots of the MD trajectories (Figure 3.9), conformational transitions during the 
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MD simulations are indirectly recorded on the map: neurons describing 

conformations involved in a transition are adjacent on the map. 



 ___________________________________________________________________________________________ Chapt e r  4  

65 
 

C h a p t e r  4  

T H E  R O L E  O F  F L E X I B I L I T Y  I N  P R O T E I N  B I N D I N G :  

T R A N S I E N T  C O M P L E X E S  O F  R A S  P R O T E I N S  

4.1 Selection of the study case 

As anticipated in Chapter 1, we were interested in the investigation of  the role of 

flexibility in protein binding and in particular its effects on: the bound and 

unbound forms of transient complexes which show large conformational changes 

at the interface; the 'promiscuity' in binding in proteins with multiple partners, 

termed hub proteins  

To select complexes that are appropriate study-cases for these purposes, we 

inspected the Mintsteris databases of transient complexes (79) and the PiSite 

database (80). In this last one, proteins from the PDB are clustered in families with 

high sequence identity and the number of binding partners and binding modes is 

recorded. From this analysis it emerged that the members of the Ras superfamily 

are good candidates.  

The Ras superfamily of small guanosine triphosphatases (GTPases)  comprises over 

150 human members, with evolutionarily conserved orthologs found 

in Drosophila, C. Elegans, S. cerevisiae, S. pombe, Dictyostelium and plants. Even if a 

definitive classification of these GTPases is not yet possible, the Ras superfamily 

has traditionally been divided into five different major branches: Ras sarcoma 

(Ras),  Ras homologous (Rho), Ras-like proteins in brain (Rab), Ras-like nuclear 

(Ran),  ADP-ribosylation factor (Arf).  This classification is based on structure, 

function, or both (81). 

To summarize the characteristics of the Ras signaling pathway three main features 

can be reported. First the Ras family of proteins is ubiquitously expressed in brain, 
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regulating information processing in many brain regions. They are also 

interconnected with a large molecular network of upstream and downstream 

signaling elements. Second, the apparent complexity of this pathway is associated 

with an excellent organization: a) multi-domain interaction with Guanine 

nucleotide Exchange Factor (GEFs) and GTPase-Activating Protein (GAPs) is 

driven by specific signaling messengers and structural proteins, b) clustering of 

multiple signaling elements by scaffolding proteins. Third, the activity of Ras 

family proteins is highly dynamic (82). 

These evidences allow the classification of this superfamily in the “sociable hubs 

proteins” (8). The main features of  this group of proteins are: a) the ability of 

interact with multiple partners, changing dynamically the partners; b) a general 

absence of many disordered regions in the binding interface; c) an high degree of 

global flexibility. 

The basic structure of the GTPase domain in these proteins was first observed in 

the human protein, H-Ras, and consists of a central six stranded β-sheet (β1-β2-β3 

antiparallel, β4-β5-β6 parallel) and five α-helices (Fig. 4.1). The domain is also 

characterized by five conserved sequence motifs (G1 - G5). Close to G1 and G2, 

there is a structural region designated as “switch region”, including the Switch I, 

Switch II and P-loop elements (see Fig 4.1). The name “switch” comes from a 

comparison of the structures of Ras in the GTP- and GDP-bound forms, where it 

was seen that these are the areas that change most significantly on GTP hydrolysis. 

Ras proteins always cycle between an active conformation (GTP binding) and an 

inactive conformation (GDP binding). These two different conformations are 

shown in Fig. 4.1 for the H-Ras, and in the following they will be named “open” 

and “close”, respectively, with reference to the switch region arrangement. These 

conformations are also important in defining different binding modes in the 

formation of transient complexes with other proteins (82). 
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Figure 4.1: Basic structure of H-Ras: A) in “close” conformation; B) in “open” conformation. 

Conserved sequence motifs: G1 - often referred as P-loop with the consensus sequence Gx4GKS/T 

which is involved in a number of backbone interactions with the nucleotide phosphates; G2 -  in the 

so-called switch I loop; G3 in the so-called switch II region. G4 and G5 are involved in interactions 

with the guanine base and are responsible for the discrimination against other nucleotides such as 

ATP/ADP (82)  

 

Among the Ras complexes identified by the database analysis, four were selected 

on the basis of the following criteria: 

- The crystal structure of the Ras protein involved in the complex is available 

for both the bound and the unbound forms. 

- Large conformational changes are observed between the bound and the 

unbound forms at the protein-protein interface. 
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The selected complexes are listed in Table 4.1. 

Table 4.1: Complexes chosen for the analysis: PDB code of the bound and unbound forms of the Ras 

proteins and of the effectors*; RMSD on Cα for the whole domain and for the residues involved in 

the interface. 

Protein complexes 
PDB 

code_chain 
(Effector) 

PDB 
code_chain 
(Ras bound) 

Ref 
PDB code_chain 
(Ras unbound) 

Ref 
RMSD  

Cα (nm) 

RMSD 
interface 
Cα (nm) 

Ran / Regulator of 
chromosome condensation 
(RCC1) 

1I2M_B 1I2M_A (83) 1QG4_A (84) 0.11 0.03 

Ran / Importin Beta 1IBR_B 1IBR_A (85) 1QG4_A (84) 0.40 0.08 

H-Ras / Son of sevenless  
(SOS-1) 

1BKD_S 1BKD_R (86) 1CTQ_A (87) 0.32 0.19 

Rab21 / Rabex-5 catalytic 
core 

2OT3_A 2OT3_B (88) 1YZU_A (89) 0.31 0.17 

*The missing residues in the PDB structures were modeled by using Modeller 9v7 (90)  

 

 
 
 
 

Figure 4.2: Multiple structural 

superimposition of the selected 

complexes. The structure of H-Ras 

(1BKD_R) is shown as reference for all 

the complexes. The effectors are: Son of 

Sevenless (SOS-1) in magenta 

(1BKD_S), Regulator of chromosome 

condensation (RCC1) in red (1I2M_ B), 

Importin beta in blue (1IBR_B), Rabex-5 

catalytic core in green (2OT3_ A). 

 

 

 
Figure 4.3: Multiple sequence alignment of the selected cases. 
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As expected from the “sociable hub” properties of Ras proteins, an interesting 

characteristic of these complexes is that different regions in the Ras surface have 

the role of interface in the different complexes (Fig 4.2).  

Comparing the members of this group of Ras domains, it can be observed that the 

sequence is not so well conserved (Fig 4.3) (sequence identity c.a. 20%) but, as 

expected, the general fold is more conserved.  

A structural comparison between the bound and the unbound structures was 

performed. Moreover, a structural analysis of the interfaces was performed with 

the parameter optimized surface (POPS) method (91) by calculating the solvent 

accessible surface area (SASA) that is buried upon complex formation. 

The overall conformational change of each system is summarized in Table 4.1 by 

the RMSD value on the Cα for the whole domain, and by the same parameter for 

the residues involved in the interface. A more detailed comparison is illustrated by 

Fig 4.4. In the upper part, the plot of the RMSD on the Cα atoms between the 

bound and the unbound structures versus residue position is shown. The residues 

involved in the interface are highlighted in the plot. In the lower part of the Figure, 

the superimposition of the bound and unbound structures is shown, with interface 

residues highlighted.  

This analysis indicates that these Ras proteins undergo a large conformational 

change upon binding in all the selected complexes. Referring to the numbering 

attributed after sequence alignment (Fig 4.3), the switch region lies at the N-term in 

the range of residues 9 - 74. In particular, the P-loop includes residues 9-16, the 

Switch I residues 25-37, and the Switch II residues 57-74. It is evident from the 

RMSD plots in Fig 4.4 that the largest conformational changes observed (RMSD to 

9 Å) are in the switch region. In two cases (H-Ras and Rab) this region adopts the 

“open” state in the bound form (grey in the bottom part of Fig 4.4) and the “close” 

state in the unbound one (cyan). For one of the Ran proteins (1IBR_A) the opposite 

behaviour is observed, while for the other Ran (1I2M_A) both the bound and 

unbound forms are in the “open” state. As previously observed in Fig 4.2, where 
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the 3D structure of the four complexes are shown, in the  H-Ras/SOS-1 (magenta), 

Rab21/Rebex-5 (green) and  Ran/Importin β complexes the protein-protein 

interface is located in the switch region or includes a large part of it, while in the 

Ran/RCC1 complex the switch region is not directly involved in the binding 

interface. 

Following the outcomes of the application of our SOM protocol to the previous 

case described (Chapter 3), it appears interesting to analyse cases in which relevant 

conformational changes occur during the simulations. In the selected systems, 

large conformational differences are observed comparing the bound to the 

unbound forms. If the MD simulations will be able to sample these changes, it is 

expected that both the global flexibility of the domains and the local flexibility at 

the interface will be highlighted by the SOM analysis, thus allowing the detection 

of interesting features connected to the binding to the various effectors. 

The employment of the SOM analysis for these study cases, also involves some 

interesting methodological aspects. The same protocol that was optimized by 

using the SH3 study case (Par. 2.3) was employed also in the analysis of these 

domains. This allowed to test the applicability of the proposed protocol to systems 

with higher dimensions and with different dynamical characteristics. 
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Figure 4.4: Structural comparison between the bound and the unbound forms of the four Ras 

proteins. For each protein; Upper part: graph of RMSD on Cα vs. residue position (residues 

involved in the interface are highlighted with red dots). Lower part: superimposed structures of the 

bound (grey) and unbound (azure) forms (for the bound structures the residues involved in the 

interface are shown as red sticks) 
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4.2 MD simulations of the Ras proteins 

4.2.1 Simulation protocol 

For each complex four different MD simulations were performed (Fig. 4.5): 

 Simulation of the complex,  starting from its crystal structure (“bound”); 

 Two separated simulations of the partners of the complex, starting from the 

single structures of the two partners extracted from the complex (“separated”); 

 Simulation of the unbound domain of the Ras superfamily member, starting from 

the crystal structure of the not complexed domain (“unbound”). 

In the following, each simulation will be labelled with the PDB code_chain (see 

Tab. 4.1) and a lower-case letter indicating the state: b= bound, s= separated, 

u=unbound (see the example in Fig. 4.5) 

 
Figure 4.5: Schematic representation of the simulations performed for each complex. 1BKD complex 

is used as example.  

 

Each simulation of a Ras bound form will be compared a) to that of the unbound 

one, with the aim to analyse the large conformational changes involved in the 
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binding process; b) to that of the separated form, to analyse the changes in 

flexibility specifically related to the association/dissociation to the partner, while 

keeping the common initial structure. As the main focus of this discussion are the 

changes in flexibility of the Ras proteins, associated to binding, the simulations of 

the effectors will be briefly presented  at the end of the Chapter (Par. 4.4).  

The conformational dynamics of the selected systems was analysed by 25 to 75 ns 

MD simulations.  

All the simulations and the subsequent analysis were performed with GROMACS 

4.0.1 (44), using the GROMOS96 43a2 force field. The general protocol for system 

preparation and simulation described in Par. 2.1.2 and 2.1.3 was applied, by setting 

some parameters specifically for these systems.  

Each structure was immersed in a cubic box with SPC water molecules (49) and the 

box size was set to ensure a distance of at least 1.2 nm between the protein and the 

box boundaries. Counterions were added to balance the charge of the systems.  

The systems were simulated in the NPT ensemble (constant number of atoms, 

pressure P, and temperature T), and the Berendsen algorithm was employed for 

temperature (T = 300 K) and pressure (p = 1 bar) regulation, with coupling 

constants of 0.2 and 1 ps, respectively.  Periodic boundary conditions were 

imposed during the simulations. The equations of motion were integrated using 

the leap-frog method with a 2-fs timestep. All the bonds in the protein were frozen 

with the LINCS method (52), while SETTLE (50) was used for water molecules. 

Long range electrostatic interactions were calculated with the Particle Mesh Ewald 

(PME) method (40). A 14-Å cutoff was used for all the non-bonded interactions.  

Before starting the simulation, the system was minimized with 1000 steps of 

steepest descent. Then harmonic positional restraints (with a force constant of 4.8 

kcal∙mol-1∙Å-2) were then imposed onto the protein heavy atoms and gradually 

turned off in 180 ps, while the temperature was increased from 200 to 300 K. 

Finally the system was equilibrated for 2 ns without restraints. 



 ___________________________________________________________________________________________ Chapt e r  4  

74 
 

4.2.2 Analysis of the trajectories 

The plots of the RMSD values from the starting structure of the simulation, 

computed on the Cα, versus the simulation time are reported in Fig. 4.6.  

No relevant global conformational changes and limited average deviation 

(between 0.2 and 0.3 nm) from the starting structure are observed for all the 

systems. 

For the first Ran protein (1I2M_A), the three simulations show an average RMSD 

of 0.2 nm. For both the bound and the unbound simulations the first 2 ns were 

needed to complete the equilibration of the system. The other Ran system 

(1IBR_A) shows: a) an higher average RMSD (0.3 nm) in the bound and the 

separated simulations than in the unbound one, b) the need of 2 ns to complete 

the equilibrations, c) a possible lack of convergence of the sampling in the 

separated simulation.  

Also for H-Ras both the bound and separated simulations have higher average 

RMSD compared to that of the unbound one that, after 4ns of equilibration, 

shows an average RMSD of 0.2 nm. Again in the separated simulation the plot is 

drifting toward higher values, indicating a possible lack of convergence of the 

sampling.  

For the Rab protein, the three simulations show similar average values and 

tendencies and all of them show a slight drifting toward higher values of RMSD. 
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Figure 4.6: RMSD computed on Cα. For each case, in green the “separated” simulation, in blue the 

“bound” simulation, and in brown the “unbound” simulation. For each trajectory, the structure 

used as reference to compute the RMSD values is the conformation of the system at t=0 of the 

simulation. (to make the comparison easier, in the RMSD plot of 1CTQ_Au the first 50ns of the 

75ns of simulation are shown) 

A test on the completeness of conformational sampling was performed by using 

the overlap between the conformational space spanned in each half of the 

simulation and that of the overall simulation as a convergence index, as 

described in Par. 2.1.4. The results, reported in Table 4.2, indicate different levels 

of overlap with the whole trajectory in the two halves of the simulation for all 

systems. In particular, in four cases (1I2M_Ab, 1IBR_As, 1BKD_Rs and 

1CTQ_Au) there‟s a high difference between the overlap values evaluated in the 

two halves: the overlap of the first half is always higher than 60% (values 

between 0.64 and 0.71), while that of the second half is lower than 60% (0.48 - 

0.59). In two of these cases (1BKD_Rs and 1IBR_As) a possible reason of this 

incomplete sampling could be the shorter length of the simulations (25 ns) 

compared to the other cases (50 to 75 ns). For these two cases also the analysis of 
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the RMSD (Fig. 4.6) indicated a not complete convergence of the trajectories. In 

all the other cases the overlap is higher than 60% (0.60 - 0.76) in both the halves of 

the simulation.  

Table 4.2: Overlap of sampling in the MD simulations of the Ras domains: overlap between the 

conformational space spanned by each half of the Ras simulation and that of the overall trajectory. 

In the last column the length of the simulation. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3: Ras Essential space: Percentage of total space described using increasing number of 

eigenvectors  

   Ran    H-Ras   Rab  

PC 1I2M_Ab 1I2M_As 1IBR_Ab 1IBR_As 1QG4_Au 1BKD_Rb 1BKD_Rs 1CTQ_Au 2OT3_Bb 2OT3_Bs 1YZU_Au 

1 29.5 26.9 28.1 37.7 20.6 21.3 31.3 29.2 26.3 28.6 30.2 
1-2 42.6 36.0 49.1 45.4 33.3 34.8 44.8 46.0 42.2 40.4 47.6 

1-3 49.6 43.6 55.1 51.7 39.9 41.6 52.5 53.1 48.0 48.6 52.8 
1-5 58.0 53.8 62.8 60.1 48.8 51.0 61.3 63.0 56.8 57.3 60.9 

1-10 68.3 65.3 71.5 70.6 62.4 63.6 73.6 73.6 68.3 69.1 71.6 
1-15 74.6 72.0 76.8 76.3 70.4 71.1 79.5 79.4 74.5 75.3 77.3 

1-20 78.6 76.4 80.2 80.1 75.3 75.8 83.2 83.2 78.6 79.4 81.1 

1-50 89.1 87.9 90.0 89.9 87.9 88.2 92.1 92.6 89.7 89.9 90.9 
1-all 100 100 100 100 100 100 100 100 100 100 100 

The most informative directions of motion were extracted by Essential Dynamics 

analysis (see Par. 2.1.5) and the fraction of total motion described by different 

subspaces was evaluated to identify the extent of the essential space for each 

domain. Results reported in Table 4.3 indicate that in all cases more than 70% of 

the motion is described by the first 15 eigenvectors (corresponding to about the 

3% of the total space). Therefore a 15 dimensional essential space was selected for 

the following analyses.  

Domain Case 1st half 2nd half Time (ns) 

Ran 1I2M_Ab 0.71 0.55 50 

 1I2M_As 0.62 0.65 25 

 1IBR_Ab 0.60 0.60 50 

 1IBR_As 0.70 0.48 25 

 1QG4_Au 0.76 0.67 50 

H-Ras 1BKD_Rb 0.67 0.68 50 

 1BKD_Rs 0.68 0.59 25 

 1CTQ_Au 0.64 0.53 75 

Rab 2OT3_Bb 0.65 0.62 50 

 2OT3_Bs 0.62 0.64 25 

 1YZU_Au 0.63 0.61 50 
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4.3 Conformational and functional analysis of Ras proteins by SOM clustering 

In this paragraph the role of flexibility in the binding of the four selected Ras 

proteins will be described, first by using the traditional techniques for MD 

simulation analysis (described in Par. 2.1.5 and 2.1.6): the RMSF on the positions of 

the Cα atoms, calculated in the essential space; and the analysis of the first 

principal component derived from the ED analysis. For each Ras protein, the three 

simulations described in Fig. 4.5 will be discussed and compared.  

Then, the SOM approach developed in this thesis (see Par. 2.3) will be applied: for 

each case, the clustering of both single trajectories and multiple trajectories of the 

same domain, in the different conditions of simulation (“bound”, “separated”, 

“unbound”), will be presented. From a methodological point of view, the SOM 

analysis of these trajectories allowed us to answer two questions about the 

exportability of the protocol to domains different from the case used for its 

development: 1) a question regarding the SOM learning, i.e. are the parameters 

designed for a domain of 55 residues appropriate also in the analyses of domains 

three times bigger? 2) a more general question about the representation chosen: are 

the Cα coordinates a good descriptor also in these cases?  

The results for the four Ras domains will be grouped according to some 

characteristics of the binding interface that greatly influence the dynamic behavior. 

As described in Par. 4.2, the Ran (1I2M_A) domain differs from the other domains, 

as the switch region is only partially involved in the binding interface with RCC1 

and, as a consequence,  it maintains the same “open” arrangement both in the 

bound and in the unbound forms (Fig 4.4a). The role of its typical flexibility in 

binding will be discussed in Par. 4.3.1. On the contrary, the other three proteins, 

Ran (1IBR_A), H-Ras and Rab (Fig 4.4b-d), constitute a group where the switch 

region is in part (Ran(1IBR_A)) or entirely (H-Ras and Rab) involved in the 

binding interface with the effectors. Therefore, this region adopts different 
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arrangements in the bound and the unbound forms of these domains. The results 

will be summarized in Par. 4.3.2. 

4.3.1. Ran (1I2M_A) dynamics 

The trajectories used in this case are: 1I2M_Ab,  1I2M_As and 1QG4_Au.  

The first analysis includes the comparison of the local flexibility per residue 

through the RMSF plots of the three simulations (Fig. 4.7), and the analysis of the 

most relevant collective motions, as described by the first principal component 

(PC1) (Fig. 4.8). For this domain, the PC1 describes at least the 20% of the overall 

motions in all the three simulations (Tab 4.3).  

The flexible regions in the 1I2M_A simulation (fluctuations higher than 0.1 nm) 

include some connecting loops (around residue 50, 110, and 145) along with four 

regions that are the most interesting for the comparison with the other simulations: 

p-loop, switch I, switch II and residues in the range 120-140. To make the 

interpretation of the differences in flexibility easier, these regions are highlighted 

both in Fig 4.7 and in Fig 4.8 by using the same color code in all the 

representations: p-loop in blue, switch I in magenta, switch II in green, residue 120- 

140 in cyan. 

The comparison between the RMSF plots of the bound and unbound simulations 

(blue and brown profiles in Fig. 4.7) highlights different dynamical behaviours 

associated to binding, but also reflects the differences in the initial X-ray structures. 

In this case, structural differences (of about 0.4 nm) were observed only in the 

region including the small helix around the position 130 (see Fig. 4.4a), that in the 

bound structure (1I2M_A) is more disordered than in the unbound one (1QG4_A). 

As a consequence, the flexibility of the region including residues 120-140 is higher 

for the bound system than for the unbound, with the exception of a higher peak 

near the interface residues in the unbound simulation. For the rest of the domain, 

the unbound simulation profile presents more pronounced peaks than the bound 

one in the regions including interface residues (p-loop, switch II and the long 
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central helix). This behaviour can be associated to the effects of the lack of the 

binding partner on the domain flexibility.  

 
Fig 4.7: Ran (1I2M_A) RMSF analysis. On the left, the 3D structure of the bound domain with the 

most interesting flexible regions highlighted (blue = p-loop, magenta = switch I, green = switch II, 

cyan = residues 120-140). On the right, the RMSF profiles of the three simulations (“bound” in 

blue, “separated” in green, “unbound” in brown); at bottom, the secondary structure of the 

“bound” conformation at t=0 of the simulation, attributed by the DSSP program (92) (red = 

helixes, yellow = sheets); at top, bar showing the most interesting flexible regions, colored using the 

same color-code of the 3D structure. Both in the 3D structure and in the RMSF plot the residues 

involved in the interface are highlighted with red dots. 

The comparison of the RMSF plots of the bound and the separated simulations 

(blue and green profiles in Fig. 4.7) allows to highlight the differences in flexibility 

caused by the removal of the partner protein, while maintaining the same starting 

structure. It can be observed that in two regions that are partially involved in the 

binding interface, the C-term part of the switch II and residues in the range 125-

140, the domain flexibility is higher in the separated than in the bound form. On 

the contrary, the switch I region, that doesn‟t include interface residues, results 

much more flexible in the bound simulation and in two loops (around position 50 

and 145) that are far from the bound region. 
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Fig 4.8: Ran (1I2M_A) PC1 analysis of the three simulations. In the upper part, the projections of 

the first PC during the simulations. In the lower part, the projection of the motion described by PC1 

on the 3D structure. The average conformation during the simulation is represented as tube, with 

the most interesting flexible regions highlighted (blue = p-loop, magenta = switch I, green = switch 

II, cyan = residues 120-140); the residues involved in the interface are shown as red dots. The yellow 

line associated to some residues, describes the direction and the amplitude of the displacement 

described by PC1 during the trajectory for that residue. 

The principal motions described by the PC1 (Fig. 4.8) are different for the unbound 

state with respect to the other simulations. For 1QG4_Au the PC1 describes the 

high amplitude concerted motion of the switch II and the 120-140 regions (as 

described by the length of the yellow needles in Fig. 4.8). For 1I2M_As it mainly 

represents a motion of the 120-140 region that gradually moves away from the 

binding zone. In 1I2M_Ab the PC1 describes an overall slight fluctuation of the 

whole domain, constrained by the presence of the binding partner, and an higher 

amplitude motion in the switch I. 

Once described the flexibility of the domain using both the RMSF profiles and the 

PC1 analysis, the simulations were studied using the SOM approach. For this 

purpose, following the protocol presented in Par. 2.3, each sampled conformation 

was described by the Cartesian coordinates of the 162 C atoms corresponding to 
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structurally equivalent positions in all the domains (see the alignment in Fig. 4.3). 

Therefore, the input data presented to the SOM were vectors of 486 elements. As 

shown in Table 4.2, these simulations have different length, from 25 to 50 ns. Using 

the sampling rate of 1/100 ps (Par. 2.3.5) a different number of input data vectors is 

obtained for each simulation (250 vectors for 1I2M_As, 500 vectors for 1I2M_Ab 

and 1QG4_Au). 

First we analyzed the single trajectories to describe the conformations that best 

summarize the conformational sampling of each simulation. 

By applying the Mojena‟s rule (69) after hierarchical clustering of the obtained 

neurons, all the maps of the single trajectories were divided in four clusters (Fig. 

4.9).  

For the unbound system (1QG4_Au), the previous analyses suggested that the 

region with the highest fluctuation is the switch II. In fact, the comparison of the 

conformations of the centroids of the clusters in the obtained map (the upper part 

of Fig. 4.9), with respect to the reference structure, indicates that clusters 1 and 2 

describe the progressive motion of this region toward the switch I. In both the 

centroids (red and brown) it is possible to see that the two switches are closer one 

to the other compared with the reference structure (black).  The other two clusters, 

clusters 3 and 4 (in the upper part of Fig 4.9), in which the switch region has the 

same conformation of the reference structure, mainly describe the different 

conformations of the region between residues 120 and 140 on the opposite side of 

the domain. 
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Figure 4.9: Ran (1I2M_A) SOM analysis – In each section: on the left, the representation of the 

bidimensional output SOM: the black hexagon in each neuron represents its number of hits, the 

clusters obtained by hierarchical clustering of the neurons are indicated by different colors. On the 

right, the ribbon representation of the conformation of the centroid of each cluster superimposed to a 

reference structure (conformation at t=0 of the MD simulation), reported in black. The residues 

involved in the interface are highlighted by grey spheres. 

In the SOM analysis of the separated simulation (1I2M_As) (in the middle part of 

Fig. 4.9), the different conformations of the switch II sampled during the trajectory 

are described by cluster 2. The other three clusters are needed to describe the 

different arrangements of the domain in the region between the residues 120 and 

140. Interestingly the p-loop conformation is different to the reference 

conformation in the centroids of all the clusters. 

From the SOM analysis of the bound simulation (1I2M_Ab) (in the lower part of 

Fig. 4.9) it emerges that, within the region involved in the interface, both the switch 

II and the p-loop have conformations different to the reference structure in all the 

clusters. The motions of these two elements seem to be correlated, in fact their 
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relative conformations in the four centroids describe a progressive separation, 

from cluster 1 to 4. Moreover, also the conformations of the region between 

residues 120 and 140 is an important driving force in the conformational learning 

process of the SOM (see clusters 3 and 4). Another relevant source of 

conformational changes is the fluctuation of the N-term of the switch I (see clusters 

1 and 2 in the lower part of Fig 4.9). 

The next step was the analysis of multiple trajectories, to detect similarities and 

differences in the conformational sampling. A first comparison between the 

conformations sampled during the unbound and the others simulations suggested 

us that the conformational basin sampled during the unbound trajectory is not 

directly comparable with those of the separated and the bound simulations. 

Remembering that the starting structure of the unbound system (1QG4_A) was 

different from the bound one (Fig. 4.4a), in particular around position 130, this 

difference seems to be maintained during the simulations. 

This condition is not present in the comparison between the separated and the 

bound simulations, that both start from a common structure (1I2M_A). 

The dimension of the matrix given in input to the SOM for analysing the combined 

trajectories was of 750 vectors (each composed by 486 elements), 250 of the 

conformations extracted from the separated simulation plus 500 of those extracted 

from the bound simulation. 

The cluster analysis of the obtained map (Fig. 4.10) indicates three clusters and, 

interestingly, one of them (cluster 2) is populated by conformations belonging to 

both the bound and the separated simulations. The analysis of the other two 

clusters indicates that the presence/absence of the partner (RCC1) seems to 

produce the sampling of different conformational regions in the two trajectories.   



 ___________________________________________________________________________________________ Chapt e r  4  

84 
 

 
Figure 4.10: Ran (1I2M_A) SOM analysis: comparison between separated and bound simulations. 

On the left, the representation of the bidimensional output SOM (see Fig. 4.9 for the details) and, at 

bottom, the percentage distribution of conformations of each simulation in the clusters. On the 

right, the ribbon representation of the conformation of the centroid of each cluster, superimposed 

with a reference structure (conformation of 1I2M_As at t=0 of the MD simulation), reported in 

black. The residues involved in the interface are highlighted as grey spheres. 

In particular, the effect of the absence of the partner is described by the 

conformations in cluster 1, that is populated only by conformations of the 

separated simulation. On the contrary, the effect of the presence of the partner is 

described by cluster 3, in which there are only conformations of the bound 

simulations. Analysing the conformation of each centroid, cluster 1 slightly differs 

from the reference structure only for the conformations of switch II and p-loop, 

therefore describing the fluctuations around the equilibrium position of the 

separated simulation (Fig. 4.9). In cluster 2 the differences in those two region are 

more evident, and there is also a different arrangement of the region between 

residues 120 and 140, whose flexibility is characteristic of both the bound and 

separated simulations. Cluster 3, that describes the typical conformations sampled 

in the bound simulation, includes, along with different conformations of p-loop 

and switch II, a different local arrangement of switch I at its N-term. This cluster 

summarizes the fluctuations observed for this domain in the SOM analysis of the 

single trajectory (lower part of Fig. 4.9). 

Therefore, from the analysis of the combined trajectories the characteristic features 

of the two domains emerge in cluster 1 and 3, i.e. the switch II – p-loop motion for 

the separated simulation and the flexibility at the N-term of switch I for the bound 



 ___________________________________________________________________________________________ Chapt e r  4  

85 
 

one. Moreover a common conformational basin is identified and described by the 

cluster 2. 

4.3.2. Ran (1IBR_A), H-Ras and Rab dynamics 

The trajectories used in this case are: 1IBR_Ab,  1IBR_As and 1QG4_Au for the Ran 

domain, 1BKD_Rb, 1BKD_Rs and 1CTQ_Au for H-Ras and 2OT3_Bb, 2OT3_Bs, 

1YZY_Au for Rab. 

As described above, these domains differ from the previous case (Ran – 1I2M_A) 

for the difference between the bound and the unbound form, especially in the 

switch region (Fig 4.4b-d). 

Also for this group of domains the first analysis is the comparison of the three 

simulations (“bound”, “separated”, “unbound”) of each domain, to describe the 

local flexibility on a residue base. Instead the analysis of the first principal 

component (PC1) and the SOM analyses of the single trajectories is reported only 

for H-Ras, taken as an example of the behavior of the motions for this group of 

cases. 

The results will be discussed following this schema: first, the RMSF comparison 

between the bound and unbound simulations of each case, to discuss the different 

flexibility due to both the binding and the different crystal structure; second, the 

RMSF comparison between bound and separated simulations, to highlight the 

differences in flexibility coupled with the presence/absence of the effectors; third, 

the PC1 analysis of H-Ras to describe its principal motion (this PC allows to 

describe at least the 21% of the overall information, see Table 4.3);  fourth, the SOM 

analyses of the single trajectories of H-Ras; and finally the SOM analyses of the 

combined trajectories of the bound and separated simulations of all the cases. 

For all the cases in Fig. 4.11 and 4.12, to make the interpretation of the differences 

easier, the same color code is used to describe the most interesting flexible regions: 

p-loop in blue, switch I in magenta, switch II in green, residues 102-105 in orange 
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and regions 120-130 in cyan (this last region in Ran - 1IBR_A includes more 

residues, 120-140). 

From the analysis of the RMSF in the essential space (Fig. 4.11) it emerges that for 

all the systems the highest fluctuations in the switch regions reach about 0.30 - 0.35 

nm, thus indicating that in all the simulations the systems do not sample the 

conformational change required to pass from the open to the close conformation or 

vice versa. In fact, the expected amplitude of the motion from the bound to the 

unbound forms of the starting crystal structures is between 0.7 and 0.9 nm, as 

shown in Fig 4.4. On the contrary, the switches fluctuate around their starting 

conformations. 

The flexible regions of Ran (1IBR_A) include, in addiction to the most interesting 

regions highlighted by colors: the connecting loop between switch I and switch II 

around position 50, the long helix around position 80 and the following loop 

around position 100; all of them include some interface residues. 

In the comparison between the bound and the unbound simulations, we have to 

consider also the relevant conformational differences between the two initial 

crystal structures (see Fig. 4.4b), that mainly involve the switch I (0.9 nm) and the 

switch II (0.2 - 0.3 nm). 

Despite these clear differences, the overall RMSF profile, in terms of location of the 

peaks, is conserved (brown and blue plots in Fig 4.11). However, locally the 

amplitudes of some peaks are different. 

The relative flexibilities of the p-loop and the switch I are inverted: the p-loop is 

more flexible in the unbound simulation, the switch I in the bound simulation. In 

fact in the starting crystal structure of the bound Ran (1IBR_A) the switch I is in 

“close” conformation, faced to the p-loop, whereas in its unbound structure  

(1QG4_A) the switch I is “open” and there are no interactions with the p-loop. 

Also the switch II is more flexible in the unbound simulation. This region is 

involved in the interface of the crystal structure of the complex Ran/Importin β 
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,thus reducing its freedom, and is more disordered in unbound form of Ran 

(1QG4_A), thus increasing its freedom (Fig 4.4b). 

The comparison of the separated (green) and bound (blue) profiles of Ran (upper 

part of Fig 4.11) indicates that, as expected, the differences are located in regions 

involved in the interface with Importin  β. In fact, the flexibility between residue 

120 and 140 is clearly higher in the separated simulation. More slight differences 

involve the long helix around position 100. 

In the Rab RMSF profile (in the middle part of Fig 4.11), the regions listed as 

relevant for this group of domains are confirmed. In the comparison between the 

bound and unbound forms, the regions with the highest displacement between the 

two crystal structures (Fig. 4.4d) are the switch I (0.60 nm), the switch II (0.30 nm) 

and the helix around position 100. The interface with Rabex5 involves both the 

switches and the p-loop regions. 

Differences in these regions are also evident in the RMSF profile (middle part of 

Fig. 4.11) with different relative flexibilities (brown and blue plots). As expected, 

the flexibility is higher in the unbound simulation in the switch I region and in the 

loop around position 105 (orange region). Interestingly the bound simulation 

shows an higher flexibility in the switch II, that is totally involved in the interface. 
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Fig 4.11: Ran (1IBR_A), Rab and H-Ras RMSF analysis. For each domain: on the left, the 3D 

structure of the bound domain, with the most interesting flexible regions highlighted (blue = p-loop, 

magenta = switch I, green = switch II, cyan = residues 120-130, orange = residues 102 -105) On 

the right, the relative RMSF profiles of the three simulations (“bound” in blue, “separated” in 

green, “unbound” in brown); at bottom, the secondary structures of the “bound” conformation at 

t=0 of the simulation, attributed by the DSSP program (92) (red = helixes, yellow = sheets); at top, 

a bar showing the most interesting flexible regions, colored using the same color-code of the 3D 

structure. Both in the 3D structure and in the RMSF plot the residues involved in the interface are 

highlighted with red dots 
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The comparison between the bound (blue line) and the separated (green line) 

indicates that the regions with the most relevant differences are the switches. In the 

switch I region even if the amplitude of the highest peak is the same (0.25 nm) the 

shape of the profile seems is different. Unexpectedly, in the switch II that is 

completely involved in the interface with Rebex-5, the RMSF profile is not 

conserved and the maximum fluctuation has highest values in the bound 

simulation. 

The main flexibility of H-Ras (lower part of Fig. 4.11) is in the regions listed above 

and also in some connecting loops (around residues 50, 80 and 150). The interface 

of the complex with SOS-1 directly includes the switches and the p-loop. In these 

regions the crystal structures of the bound and the unbound forms (Fig 4.4c) are 

consequently different, with displacements of c.a. 0.20 nm in the p-loop and switch 

II, 0.60 nm in the switch I, 0.30 nm in the loop around position 120. 

In the RMSF comparison (lower part Fig 4.11) between the bound (blue) and the 

unbound (brown) plots, a general higher flexibility of the domain is observed in 

the unbound simulation, including all the interface regions.  

The comparison between the RMSF profiles (lower part of Fig. 4.11) of the 

separated (green) and  bound (blue) forms indicates that the removal of the partner 

(SOS-1) causes an higher flexibility. Focusing the attention on the region involved 

in the interface,  in the switch II the difference is higher, with a peak of 0.30 nm in 

the separated simulation. The only exception, in which the bound simulation has 

higher flexibility compared with the separated is around position 105 (cyan 

region). 

For H-Ras also the PC1 analysis is reported (Fig 4.12). As in the case of Ran 

(1I2M_A) the first principal components of the three simulations explain at least 

the 20% of the overall flexibility. The principal motions described by PC1 in the 

unbound are different to the other simulations.  
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Fig 4.12: H-Ras PC1 analysis of the three simulations. In the upper part, the projections of the first 

PC during the simulations. In the lower part, the projection of the motion described by PC1 on the 

3D structure. The average conformation during the simulation is represented as tube, with the most 

interesting flexible regions highlighted (blue = p-loop, magenta = switch I, green = switch II, cyan = 

residues 120-140, orange = residues 102-105); the residues involved in the interface are shown as 

red dots. The yellow line associated to some residues, describes the direction and the amplitude of the 

displacement described by PC1 during the trajectory for that residue. 

Also in this case the different starting conformations of the simulations play an 

important role. In 1CTQ_Au the motions are mainly localized in two regions, the 

residues 120-140 and the switch I. More interestingly, the analysis of the separated 

simulation in the switches region indicates as once the partner is removed the 

domain seems to “open” the interface pocket. In fact the direction of the motion in 

these regions (indicated by the yellow lines in Fig 4.12) indicates that the switch II 

is moving toward the p-loop and the switch I is changing in the opposite direction. 

On the contrary in the bound simulation, the PC1 mainly describes the motion of 

the residues 120-140 at the other side of the domain with respect to the binding 

interface.  
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The tendency of the switches to change the starting conformation of the complex 

once removed the partner, in the separated simulation, is evident also in the other 

cases where the switch region is involved in the interface (see Fig 4.4b-d). On the 

contrary, in these systems the bound form, both in the open and in the close state, 

shows a more constrained dynamics. 

Once described the flexibility of the Ran, Rab and H-Ras domains, using both the 

RMSF and the PC1 analyses, the simulations were studied using the SOM 

approach developed in this thesis (Par 2.3). The simulations were described using 

the Cartesian coordinates of the Cα. The length of the sequences in these three 

cases is different (see the alignment in Fig. 4.3), producing a different length of the 

input data vectors presented to the SOM (Ran (1IBR_A) = 486, H-Ras = 489, Rab = 

492 elements). As shown in Table 4.2 the simulations have different length, from 25 

to 75 ns producing a different number of data vectors. Using the sampling rate 

defined in Par 2.3.5 of 1/100 ps the resulting number of conformation extracted 

were: 250 for the 25 ns simulations of, 500 for the 50 ns simulations, and 750 for the 

75ns simulation.  

First we analysed each single trajectory to describe the conformations that best 

summarize the conformational sampling of each simulation. Only the analyses of 

the single trajectories of H-Ras are reported, as an example, to present the general 

trends. The Mojena‟s rule (69) applied after clustering of the output SOM obtained 

in the analyses of 1CTQ_Au, 1BKD_Rs and 1BKD_Rb produced a division of each 

map in 4 clusters (Fig 4.13). 
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Figure 4.13: H-Ras SOM analysis – In each section: on the left, the representation of the 

bidimensional output SOM (see Fig. 4.9 for the details. On the right, the ribbon representation of 

the conformation of the centroid of each cluster, superimposed with a reference structure 

(conformation at t=0 of the MD simulation), reported in black. The residues involved in the 

interface are highlighted as grey spheres. 

For the unbound simulation (1CTQ_Au) the previous analyses (RMSF and PC1) 

(Fig 4.11 and 4.12) suggested that the regions with the highest conformational 

changes are the switch region and residues 120-130. Analysing the centroids of the 

cluster obtained (upper part of Fig 4.13) this indication is confirmed: clusters 1 and 

2 describe similar conformations with differences located in the switch I; clusters 3 

and 4 have arrangements of the residues 120-130 different from 1 and 2 and differ 

for the arrangement of the switch I. 

The SOM analysis of the separated simulation (1BKD_Rs) (middle part of Fig 4.13) 

is mainly driven by the big conformational changes of the switch I. Therefore all 

the four clusters are characterized by different arrangements of this region. But, 

with the exception of cluster 2, all the other clusters describe also a different 
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arrangement of the residue 130-140 with respect to the other two clusters. The 

conformations of these clusters allow us to clearly understand what suggested by 

the PC1 analysis (Fig 4.12): the conformations of the switch I describe a progressive 

opening of the switch I in the different clusters, with respect to the reference 

structure. 

From the SOM analysis of the bound simulation (1BKD_Rb) (lower part of Fig 

4.13) it emerges that the conformations of the cluster centroids describe a more 

constrained dynamics of the switch region, involved in binding. The regions with 

the most relevant conformational changes, that drive the learning process of the 

SOM, are the residues 102-105 and 120-130. Interestingly all the centroids, 

compared with the reference structure, do not show superimposition  in the switch 

I region. Remembering that the reference structure is the structure of 1BKD_Rs at 

t=0 of the simulation (i.e. after the equilibrations steps of the MD protocol) this 

suggests that the conformational basins of the two simulations, bound and 

separated, have some differences. 

This is confirmed by the SOM analysis of the combined separated and bound 

simulations (Fig 4.14). The analysis of the centroids allows to detect the specific 

conformations that best summarize the conformational sampling of each trajectory 

compared with the other. In fact each cluster obtained is populated by 

conformations of only one simulation: clusters 1 and 2 only by conformations of 

the separated simulations and cluster 3 only by conformations of the bound one. 

Clusters 1 and 2 re-confirm the analysis of the separated simulation, where the 

regions with the highest flexibility were the switch I and the residues 120-130. The 

centroid of cluster 3 confirms the different conformational arrangement of switch I 

and residues 120-130 during the bound simulation. 
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Figure 4.14: H-Ras SOM analysis: comparison between separated and bound simulations. On the 

left, the representation of the bidimensional output SOM (see Fig. 4.9 for the details) and, at bottom, 

the percentage distribution of conformations of each simulation in the clusters. On the right, the 

ribbon representation of the conformation of the centroid of each cluster, superimposed with a 

reference structure (conformation of 1BKD_Rs at t=0 of the MD simulation), reported in black. The 

residues involved in the interface are highlighted as grey spheres. 

Also in the other simulations the dynamical behaviour of the switches involved in 

the interfaces leads to a different conformational sampling between the bound and 

the separated simulations. This was confirmed by the analyses of the centroids of 

the clusters obtained with the SOM analyses of the single trajectories (data not 

shown) and it can be highlighted discussing the SOM results obtained with the 

combined analyses of the bounds and separated simulations. 

The SOM obtained for Ran (1IBR_A) is divided in five clusters (Fig. 4.15). As a 

confirmation that different conformational basins were sampled during the two 

simulations, there are not shared clusters between the two simulations. Clusters 1, 

2 and 5 describe the bound simulation, clusters 3 and 4 the separated one. An 

interesting feature of the map obtained is that the border between the clusters that 

describe the bound simulation and those that describe the separated one are 

composed by empty neurons. This means that there are no conformations 

described by that space of information. Clusters 1, 2 and 5 mainly differ from 

clusters 3 and 4 by the conformation of the switch II. Within these two groups of 

clusters there are differences that reconfirms the characteristics of each simulation 

(not shown): clusters 1, 2 and 5 contain different arrangement of the switch II and 

cluster 5 differ to clusters 1 and 2 for a different conformations of the residues 130-



 ___________________________________________________________________________________________ Chapt e r  4  

95 
 

140, differences that were observed in the bound simulation; clusters 3 and 4 

describe the different conformations of the residues 102-105 and 120-140, sampled 

during the separated simulations. 

 
Figure 4.15: Ran (1IBR_A) SOM analysis: comparison between separated and bound simulations. 

On the left, the representation of the bidimensional output SOM (see Fig. 4.9 for the details. On the 

right, the ribbon representation of the conformation of the centroid of each cluster, superimposed 

with a reference structure (conformation of 1IBR_As at t=0 of the MD simulation), reported in 

black. The residues involved in the interface are highlighted as grey spheres. At bottom, the 

percentage distribution of conformations of each simulation in the clusters. 

The SOM analysis of Rab (Fig. 4.16) produced 4 clusters and, once again, none of 

them shared conformations within both of the simulations. In fact clusters 1 and 2 

contain conformations of the bound simulation and clusters 3 and 4 of the 

separated one. Moreover, also in this case there is the presence of empty neurons 

in the border between the clusters of the bound and of the unbound simulations. 

Also in this complex the switch II is involved in the interface (Fig 4.4d) and as 

indicated by the RMSF plot (Fig 4.11) this region is the one with the highest 

flexibility. This evidence is confirmed by the SOM analysis, as the conformations of 

each centroid permit to identify different conformations of the switch II during the 

two simulations.  
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Figure 4.16: Rab SOM analysis: comparison between separated and bound simulations. On the left, 

the representation of the bidimensional output SOM (see Fig. 4.9 for the details. On the right, the 

ribbon representation of the conformation of the centroid of each cluster, superimposed with a 

reference structure (conformation of 2OT3_Bs at t=0 of the MD simulation), reported in black. The 

residues involved in the interface are highlighted as grey spheres. At bottom, the percentage 

distribution of conformations of each simulation in the clusters. 

4.4 MD simulations and analysis of the effectors dynamics 

The simulations used for this analysis are 1I2M_Bs and 1I2M_Bb for RCC1, 

1IBR_Bb and 1IBR_Bs for Importin β,  1BKD_Ss and 1BKD_Sb for SOS-1 and 

2OT3_As and 2OT3_Ab for Rebex-5 (see Table 4.1). 

The study of the flexibility of these domains were not in the main aim of this study, 

but by a methodological point of view it was interesting to verify the exportability 

of the SOM protocol developed here to domains with different dimension. The 

dimensions of these domains are: 394 residues for RCC1, 456 residues for Importin 

β, 477 residues for SOS-1 and 253 residues for Rebex-5. 
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Figure 4.17: RMSD computed on Cα. For each case, in green the “separated” simulation and in 

blue the “bound” simulation. For each trajectory, the structure used as reference to compute the 

RMSD values is the conformation of the system at t=0 of the simulation. 

Concerning the results of the MD simulations, the plots of the RMSD values from 

the starting structure of the simulation, computed on the Cα, versus the 

simulation time are reported in Fig. 4.17. The average deviation observed in these 

cases changes from 0.2 nm in the RCC1 simulation to 0.6 nm in that of SOS-1. 

Also the comparison between the bound and the separated simulations is not 

univocal. In two cases (Importin β and Rebex-5) the average deviation is the same 

in the two simulations. In RCC1 a slight increase is observed in the separated and 

this difference is more evident in the SOS-1 simulation in which the separated 

simulation is characterized by values between 0.4 and 0.7 nm, while the bound 

one by values in the range 0.2 – 0.4 nm. In all  the graphs all the simulations are 

drifting toward higher values of RMSD suggesting a possible poor convergence 

of the sampling. 
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To verify the completeness of conformational sampling, the overlap between the 

conformational space spanned in each half of the simulation and that of the 

overall simulation was calculated, as described in Par 2.1.4. The result in Table 

4.4 confirm the indications given by the RMSD plot. In fact in all the cases the 

overlap between one half and the whole trajectory is below 0.6. Moreover, in 

general the overlap of the first half is higher (0.59 – 0.71) than the overlap in the 

second half (0.46 – 0.68). 

Table 4.4: Overlap of sampling in the MD simulations of the effectors domains: overlap between the 

conformational space spanned by each half of the effectors simulation and that of the overall 

trajectory. In the last column the length of the simulation. 

 

 

To extract the most informative directions of motion the Essential Dynamics 

analysis (see Par. 2.1.5) was performed. The fraction of total motion described by 

different subspaces was evaluated to identify the extent of the essential space for 

each domain. The results reported in Table 4.5 indicate that, in all the cases, more 

than 70% of the motion is described by the first 15 eigenvectors. Considering the 

dimensions of the systems, this means that it is possible to describe the 70% of the 

information of the simulations by using less than 1% of the total space. Therefore 

a 15 dimensional essential space was selected for the following analyses. 

  

Domain Case 1st half 2nd half Time (ns) 

RCC1 1I2M_Bs 0.68 0.53 50 

 1I2M_Bb 0.71 0.52 50 

Importin β 1IBR_Bs 0.65 0.54 50 

 1IBR_Bb 0.59 0.68 50 

SOS-1 1BKD_Ss 0.71 0.53 50 

 1BKD_Sb 0.63 0.46 50 

Rebex-5 2OT3_As 0.59 0.53 50 

 2OT3_Ab 0.66 0.56 50 
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Table 4.5: Effectors Essential Space: Percentage of total space described using increasing number of 

eigenvectors  

 RCC1 Importin β SOS-1 Rebex-5 

PC 1I2M_Bb 1I2M_Bs 1IBR_Bb 1IBR_Bs 1BKD_Sb 1BKD_Ss 2OT3_Ab 2OT3_As 

1 29.8 27.7 36.1 38.3 46.2 38.5 30.8 47.2 
1-2 39.5 37.4 55.8 56.3 58.4 51.9 46.7 58.9 

1-3 45.5 43.0 62.4 66.0 66.9 62.5 54.1 64.3 
1-5 52.1 52.1 71.6 75.1 73.6 70.9 62.8 71.3 

1-10 61.2 62.6 80.7 83.7 81.3 80.7 73.3 79.4 
1-15 70.1 71.5 84.5 87.8 84.8 85.0 78.5 83.6 

1-20 80.6 82.1 86.8 89.9 87.0 87.4 81.9 86.2 

1-50 87.9 92.9 92.3 94.5 92.8 92.9 90.5 92.9 
1-all 100 100 100 100 100 100 100 100 

 

Using the same structural representation used until now, i.e. the Cartesian 

coordinates of the Cα, the number of elements in the input data vectors for the 

SOM is significantly higher compared with the case used ad test (SH3 domain, 55 

residues corresponding to 165-dimensional vectors). The corresponding length of 

the vectors is 1182 elements for RCC1, 1368 elements for Importin β, 1431 elements 

for SOS-1 and 759 elements for Rebex-5.  

For each domain, both the SOM analyses of the single trajectories and the analyses 

of the combined separated and bound simulations were performed. In the analysis 

of the single trajectories we were able to define the conformations that best 

summarize each trajectory. As examples, in Fig 4.18 the SOM results for 1BKD_Ss, 

and in Fig 4.19 the results for the combined simulations for 1BKD_S are reported.  

In general, the SOM analyses indicate that the region involved in the interface 

shows the highest difference between the bound and the separated dynamics. 

Moreover, also other regions not directly involved in the interface show relevant 

differences when their motion are correlated with that at the interface. 

As shown for the example in Fig. 4.19 (1BKD_S), the comparison between the 

separated and the bound simulations in all the studied cases indicates that the 

conformational spaces sampled in the bound and in the separated trajectories do 

not show common conformations. 
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Figure 4.18: SOS-1 SOM analysis: On the left, the representation of the bidimensional output 

SOM (see Fig. 4.9 for the details). On the right, the ribbon representation of the conformation of the 

centroid of each cluster, superimposed with a reference structure (conformation of 1BKD_Ss at t=0 

of the MD simulation), reported in black. 

 
Figure 4.19: SOS-1SOM analysis: comparison between separated and bound simulations. On the 

left, the representation of the bidimensional output SOM (see Fig. 4.9 for the details) and, at bottom, 

the percentage distribution of conformations of each simulation in the clusters. On the right, the 

ribbon representation of the conformation of the centroid of each cluster, superimposed with a 

reference structure (conformation of 1BKD_Ss at t=0 of the MD simulation), reported in black. 
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4.5 Conclusions 

As described in Par 4.2.2, the MD simulations performed for the Ras proteins 

were strongly influenced by the large structural differences between the starting 

crystal structures of the bound and the unbound systems. In fact, it resulted that 

these simulations were not able to sample the conformational changes between 

the starting structures. This first evidence was also confirmed by the SOM 

analysis where, due to the differences in the two conformational basins spanned,  

the bound and unbound trajectories could not be compared by a unique 

combined map. As a consequence, the unbound simulations were not used for 

further comparisons. 

The MD results of the bound and separated simulations, on the contrary, 

indicated that a direct comparison between the two conformational ensembles 

was possible. These simulations started from the same conformation and the 

artificial separation from the effectors had the aim to study the differences,  in 

terms of flexibility, due to its presence or absence.  

In both the RMSD and the RMSF analyses (Par. 4.2.2 – 4.3.2) no general relative 

behaviours between these simulations emerged. From these results it was 

expected that the SOM analysis could highlight both the conformational space 

common to the bound and separated systems and the specific space sampled by 

the Ras protein only in the presence of the effector. This was confirmed only in 

one case, Ran (1I2M_A) (Par. 4.3.1). Analyzing the specific dynamical behaviour 

of this domain, this seems to be connected with the fact that the binding interface 

only partially involves the switch region. In this case the comparison between the 

bound and the separated simulations produced a SOM with a cluster containing 

conformation from both the trajectories. Interestingly, the shared cluster contains 

conformations sampled during the first nanoseconds of the simulations; after 
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that, the presence/absence of the partner led the simulations toward different 

conformational basins. 

In all the other cases (Par 4.3.2) the arrangement of the switches seems to be 

strongly regulated by the interactions with the partner. In these cases, in fact, the 

interface mostly involves the switch region. Once the partner is removed, the 

conformations of the switches undergo large conformational changes, that make 

the trajectories not directly comparable. The equilibration stage of the simulations 

(Par 4.2.1) was enough to allow the domain to re-arrange this region. 

The features of the SOMs obtained in these cases highlighted this behaviour (Fig 

4.14 - 4.16). First, the clustering of the maps did not produce any shared clusters 

between the separated and bound simulations; the conformational analysis of the 

centroids of the clusters allowed us to detect the differences that made the 

comparison not possible. Second, the maps were clearly divided in two regions, 

one containing the conformations of the separated simulation and one the 

conformations of the bound one. Within these two regions the clusters described 

the most interesting conformations of each simulation but the borders between 

the two regions were mainly composed by empty neurons (see maps in Fig 4.14 – 

4.16). This fact must be related with the neighbourhood property of the SOM 

learning process. The presence of empty neurons between two regions means 

that the information learned by each regions is so different from the other that 

the space described by the neurons in the middle does not describe any real data. 

Both the MD results and the SOM analyses confirmed that these preliminary MD 

simulations were not able to give the conformational sampling needed to study 

the role of flexibility in the formation of these complexes. 

Finally, concerning the exportability of the SOM protocol developed with the 

SH3 domain, these analyses gave some useful insight. 
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Using the same parameters set for a case with a dimension of 55 residues, the 

SOM approach was appropriate to analyze both the Ras proteins (c.a. 160 

residue) and the effectors (from 250 to 480 residues). In particular, this means that 

a map composed by 100 neurons is sufficiently wide to describe systems up to 

ten times bigger compared with the test case. 

It can be concluded that the SOM approach could be used to compare the 

trajectories of the Ras proteins in the bound and unbound forms. However SOM 

is just an analysis of what has been sampled and cannot predict essential motions 

that would lead to conformational changes. Therefore appropriate strategies have 

to be studied to more effectively sample the conformational landscape, 

overcoming the energy barriers among minima.  
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C h a p t e r  5  

C O N C L U S I O N S  

We studied a novel approach to compare conformational ensembles of protein 

domains with the goal of highlighting similarities and differences in functional 

motions.  

The novelty of the approach concerns the development of a methodology to 

analyse data obtained via MD simulations with a specific neural network, the 

Self-Organizing Maps (SOMs), that has recently been shown to be suitable for the 

analysis of individual MD trajectories (22). 

When dealing with large datasets of conformations, a major issue is the 

computational cost of the analysis. Two possible strategies to overcome this 

problem are to compare only the average geometrical properties of subgroups of 

data or to apply a two-stage selection.  

An example of the former strategy is the comparison of the ensemble RMSF on 

atom positions of functionally related proteins. While the analysis is relatively 

informative and fast, small fluctuations are difficult to detect, the direction of 

motion associated to each peak is not considered, and comparisons are only pair-

wise. These limitations clearly appeared in our analysis of the RMSF profiles of 

the study-cases (Par 3.2.2 and 4.3). On the contrary, the results presented in this 

thesis highlighted that the proposed SOM approach retains high sensitivity, is 

able to differentiate motions with similar average fluctuation and is not restricted 

to pairwise comparisons. 

The second strategy involves using geometrical clustering methods in a two-

stage or sieved approach (22) by initially clustering only part of the data and then 

in a second step by adding the missing ones into existing clusters. This decreases 
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the computational time significantly but can lead to the loss or distortion of the 

topological relations among the original data and eventually to a biased 

grouping, if the selection at first stage is not representative. Similarly during a 

SOM training each data vector is compared only to the neuron vectors 

representing all the data already presented to the map, but the topological 

relations are intrinsically recorded and the representative geometries are 

dynamically updated avoiding a bias. These advantages come at increased 

computational cost in the training stage. However, once a map is trained on a 

group of representative protein domains, it can be used for fast classification of 

conformational ensembles of similar systems. 

As described in Chapters 3 and 4, the protocol here developed was applied to two 

study cases. In the first case we were interested in studying the modulation of the 

flexibility by mutagenesis, in the second one the role of flexibility in protein 

binding. 

To study the effects of mutagenesis on a domain flexibility we selected the Src-SH3 

domain and its six mutants as a test case (Chapter 3). The same systems had also 

been used to develop and test the method (59). To test the performance of the SOM 

approach we studied the systems at three levels: single trajectories, pairs of 

trajectories, the whole Src-SH3 data set. At all the levels the method showed its 

ability in the extraction of the flexibility information (Par. 3.3). In the analyses of 

the single trajectories it effectively described the most relevant conformations 

sampled during each MD simulations. Interestingly the representative 

conformations extracted from each map after clustering of the neurons were able 

to describe both cases in which large conformational changes occurred during the 

simulation (e.g. the R21G mutant) and cases in which the simulation had opposite 

behavior (e.g the wild-type SH3 domain). By analysing multiple simulations the 

SOM approach was able to detect similarities and differences in flexibility of the 

mutants with high sensitivity. Moreover, the analysis of the representative 
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conformations in the clustered map confirmed a relation between the dynamical 

behavior of the domain, associated with the specific point-mutation, and the 

biological function, i.e. the binding affinity with the p41 decapeptide.  

To study the role of flexibility in protein binding we selected a group of complexes 

in which one of the partners belongs to the Ras superfamily of sociable hubs 

proteins (Chapter 4). The dynamics of the domains was studied via MD 

simulations in three different conditions: in presence/absence of the partner 

(bound and separated forms), and starting from a different crystal structure 

(unbound forms). The MD simulations performed were insufficient to sample the 

large conformational changes occurring between the starting structures of the 

bound and the unbound Ras systems, that mainly involves the “switch region” 

(Par. 4.1). Therefore the two trajectories could not be compared by a unique 

combined SOM. On the contrary, it was possible to study the effect of the 

presence/absence of the partner by comparing the bound and separated 

simulations in one of the system studied (the Ran domain in complex with the 

RCC1), in which the binding interface only partially involves the switch region. 

Using the SOM approach it was possible to detect both the common 

conformational space sampled during the two simulations and the peculiar 

conformations of each simulation, thus detecting the dynamical features connected 

to the binding to the effector (Par. 4.3.1). In the other complexes, in which the 

interface mostly involves the switch region, this comparison was not possible. In 

fact the simulations with and without the partner diverged, starting from the first 

steps of the MD simulations, in two different basins, and this caused an output 

map divided in two regions with no overlap between them. In these cases we have 

to consider that the length of the simulations could be not enough to obtain a 

convergent conformational sampling, or that different techniques could be more 

appropriate to effectively sample these conformational landscapes characterized 

by high energy barriers among minima. These hypotheses are under study. 
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By a methodological point of view, the analysis of the Ras complexes was also 

useful to test the exportability of the protocol developed with the Src-SH3 domain 

to domains of different size. In particular, the SOM protocol was successfully 

applied the trajectories of the effectors of Ras proteins (Par. 4.4), demonstrating 

that a SOM composed by 100 neuron is able to describe the conformational 

changes of domains up to c.a. ten times the Src-SH3 domain.  

The analysis of the results obtained in this thesis underlines additional 

interesting aspects regarding the application of the proposed SOM approach that 

deserve specific attention and suggest future research directions.   

An interesting feature of the output SOMs that clearly emerged from the SH3 

study case (Chapter 3) is that the conformational transitions during the MD 

simulations are indirectly recorded on the map: neurons describing 

conformations involved in a transition are adjacent on the map. This is not a 

trivial outcome because the simulation time of a given conformation is not given 

as input information to the SOM. This feature is connected with the preservation 

of the topology of the data in the final map, obtained by using the 

neighbourhood properties during the training phase. If the extension of the 

protocol to several study cases will confirm the generality of this observation, a 

future direction will be the use of a trained map for fast stochastic simulations. 

The approach here presented is independent from the method used to generate 

the structural ensemble and is reliable to describe both small and large 

differences. It is therefore suitable to also analyse combinations of ensembles 

from computational methods with a more extended sampling of the 

conformational space and from experiments (NMR ensembles or multiple X-ray 

depositions of the same structure). 

The test-cases here presented regard the comparison of a same domain in 

different forms (with or without an associated partner protein) or of mutants of a 



 ___________________________________________________________________________________________ Chapt e r  5  

108 
 

single domain, that can easily be aligned. A future development of this study is 

the identification of alternative representations of protein conformations, that do 

not require the preliminary definition of structurally equivalent positions by 

structural alignment. This will allow an extension on the comparison of different 

domains, including distant homologous proteins. 
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