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2: Dep. of Decision Sciences - Università Comm. L.Bocconi - nadia.accoto@unibocconi.it
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Summary. The problem of estimating the power of the multivariate Intersection

Union test (IUT) is studied. Four classical parametric solutions and a bootstrap non-

parametric one, providing statistical lower bounds (i.e. one directional confidence

intervals) for the power, are considered. The performances of these techniques in

several bivariate IUT settings are compared through a simulation study. All solu-

tions are biased, since their actual coverage probabilities are higher than the nominal

one. The bootstrap solution shows the smallest bias, and the variability of its es-

timates is the lowest. Moreover, the bias of the bootstrap solution reduces faster

than those of the other techniques when the pilot sample size, or the correlation,

or the rate between the two noncentrality parameters increases. Also, the nonpara-

metric bootstrap solution can be improved by calibration, with a considerable bias

reduction.

Keywords. Sample size estimation; conservative approach; bootstrap solution.
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1 Introduction

In the last decade multiple endpoint statistical problems have received increasing

attention. On many occasions, indeed, clinical research aims to demonstrate the

efficacy of a new drug on more than one endpoint. Related techniques for statis-

tical analysis (Sankoh et al., 2003, Dmitrienko et al., 2003) and for sample size

computation (Dilba et al. 2006, Senn and Bretz, 2007) have then been developed.

For certain disorders, indeed quite a few, a new treatment is required by regu-

latory agencies to demonstrate efficacy on multiple co-primary endpoints, all sig-

nificant at the one-sided 2.5% level. The adequate statistical test for treating this

latter problem is the so-called (Gleser, 1973, Lehmann, 1952) Intersection Union

Test (IUT). Berger (1982) has proposed the use of IUT for acceptance sampling

problems. Recently, many authors provided interesting contributes on IUT and its

applications to biomedical statistics. Among others, Chuang-Stein et al. (2007)

proposed an approach based on the notion of controlling the maximum false posi-

tive rate over the restricted null space in order to use a higher significance level to

test individual endpoints; Offen et al. (2007), who formed a team of experts from

the Pharmaceutical Research and Manufacturers of America, provided medical and

statistical solutions for multiple co-primary endpoints.

As regards power and sample size computation for the IUT, a conservative ap-

proach based on a mathematical sharp lower bound for the power function can

be found in Eaton and Muirhead (2007); these authors obtained the lower bound

induced under no correlation and showed other interesting results. Song (2009) pro-

vided sample size formulas for IU testing of rate differences in non-inferiority trials.

Considering a mathematical lower bound for the power, Yeo and Qu (2009) adopted

the plug-in pointwise sample size estimation for the IUT , but they did not take the

variability of pilot data into account.

In biomedical statistics further experiments are usually planned on the basis of

the results of previous studies available in literature. In particular, phase III clinical

trials are planned referring to phase I and II results. This kind of sample size com-

putation technique falls under Sample Size Estimation methodology (SSE), which

is often adopted in many different applied research contexts (see, for example John-

ston et al., 2009, Eng, 2003, Devane et al., 2004). In these situations, if one forgets
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to take the variability of pilot data into account, wrong experimental planning may

occur. Conservative approaches to sample size estimation (CSSE) have, therefore,

been proposed (Chuang-Stein, 2006, Wang et al., 2006, De Martini, 2010).

It is worth noting that the core of CSSE is the estimation of the unknown true

power of the test, i.e. the power function computed in correspondence to the un-

known true value(s) of the parameter(s). One sided confidence intervals, i.e. statis-

tical lower bounds, for the true power are then needed.

In this paper the problem of estimating the true power (or, simply, the power)

of the IUT, and consequently its sample size, on the basis of a set of pilot data is

considered, accounting for the variability of these latter. The aim is, therefore, to

provide tools to compute statistical lower bounds for the power of the IUT. It is

anticipated that technical difficulties will be due to the multidimensional nature of

the parameter, which is the argument of the power function, and to the bias of IUT.

In Section 2, the theoretical framework of IUT, together with its power, are

recalled. In Section 3, some different approaches for estimating the power of IUT

are introduced. A comparison of the performances of the different techniques is

shown in Section 4 and in Section 5, where the best estimation technique is refined

through calibration. In Section 6 a numerical example of CSSE for IUT is presented

and in Section 7 the conclusions are reported. Computational details follow in

appendix (i.e. Section 8).

2 Theoretical framework of IU test and power

Let X = (X1, . . . , Xℓ) be the observations of the ℓ endpoints for an individual receiving

the new drug and Y = (Y1, . . . , Yℓ) be those for an individual who received the control

drug. Furthermore, assume that X ∼ Nℓ(µX ,ΣX) and that Y ∼ Nℓ(µY ,ΣY ), where Σ•

are the covariance matrices.

The correlation coefficients are the off diagonal elements of the matrices Σ•, i.e.

Σ•,ij = ρ•,ij with i 6= j. Without loss of generality we can assume that the diagonal

elements of Σ• are all equal to 1. Being δ = (δ1, . . . , δℓ) = µX − µY the vector of the

effect sizes, the statistical hypotheses for the non-inferiority multiple test are:






H0 : δj ≤ 0 for at least one j

H1 : δj > 0 for all j
(1)
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In practice, the multivariate null hypothesis is rejected if, and only if, all univariate

null hypotheses are rejected.

Now, consider drawing a sample of m individuals from each group, that is Xi

and Yi, i = 1, . . . ,m, are i.i.d. with common distribution function Nℓ(µX ,ΣX) and

Nℓ(µY ,ΣY ), respectively. Then, compute the vector of the test statistics Tm =
√

m
2 (X̄m − Ȳm) = (T1,m, . . . , Tℓ,m), where X̄m =

∑

i=1,m Xi/m, and Ȳm is analogous.

Moreover, α ∈ (0, 1) is the type I error probability, z1−α = Φ−1(1 − α) and Φ is the

cumulative distribution function of the standard Normal law.

In accordance with (1), the so-called Intersection-Union Test (IUT) introduced

by Berger (1982) is the following:

Ψm(Tm)=







0 if Tj,m ≤ z1−α for at least one j

1 if Tj,m > z1−α for all j = 1, . . . , ℓ
(2)

Berger (1982) showed that if all the ℓ univariate tests are α-level tests, then the

global test too is α-level. In fact, under the null hypothesis the Sup of the power is

α and is achieved when δī = 0 and δj tends to +∞ with j = 1, . . . , ℓ, j 6= ī.

Nevertheless, it is very important to note that the IUT is biased, because under

the alternative hypothesis the power can be lower than α. Indeed, when δj = ǫ > 0

∀ j, we fall under H1 and if ǫ is “very small” then the power of each univariate test is

≈ α; consequently, when ρ•,ij = 0, the power of the IUT turns out to be ≈ αℓ, which

is lower than α since α < 1.

Through simple algebra we obtain that Tm = (T1,m, . . . , Tℓ,m) ∼ Nℓ(
√

m/2δ,ΣT ),

where ΣT,ii = 1 and ΣT,ij = (ρx,ij + ρy,ij)/2, 1 ≤ i, j ≤ ℓ. Then, the power of (2) is

E[Ψm(Tm)] = P (T1,m > z1−α, . . . , Tℓ,m > z1−α) (3)

and this can be computed as a function of δ, ΣX , ΣY , m and α.

We begin studying power estimation techniques for IUT under the simplest non-

trivial situation, that is the bivariate case (i.e. ℓ = 2) with equal dependence structure

in the treatment and control groups.This implies ρx,12 = ρy,12 = ρ so that ΣX = ΣY = Σ.

Hence, the power function in (3) simplifies to:

π(δ1, δ2, ρ,m, α) = P (T1,m > z1−α, T2,m > z1−α) (4)

and this can be computed as a function of the effect sizes δ1 and δ2, of the correlation
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ρ, of m and α, becoming:

π(δ1, δ2, ρ,m, α) = 1− Φ
δ1
√

m/2,1
(z1−α)− Φ

δ2
√

m/2,1
(z1−α) +Φ

δ
√

m/2,Σ
(z1−α, z1−α) (5)

Given α, and being 1− β the power to achieve, the ideal sample size is:

MI = min{m|π(δ1, δ2, ρ,m, α) > 1− β} (6)

Note that ρ plays the role of a nuisance parameter in the power function and, conse-

quently, in sample size computation. In some papers tables showing how MI varies

with different ρs are presented (Chuang-Stein et al., 2007, Yeo and Qu, 2009), and

differences are not negligible.

In practice, δ1, δ2 and ρ are unknown and so is MI . If pilot samples are available,

then MI can be estimated and the conservative approach is suggested. So, let us

suppose two samples of size n are drawn from the treatment and the control group,

respectively, i.e. Xi, i = 1, . . . , n, i.i.d., Xi ∼ N2(µX ,Σ), and Yi, i = 1, . . . , n, i.i.d.,

Yi ∼ N2(µY ,Σ). The challenge is now to estimate π(δ1, δ2, ρ,m, α) given m and α and,

so, indirectly to estimate MI given 1− β.

3 Some different approaches for estimating IUT power

3.1 The parametric approach and related techniques

Being ρ a nuisance parameter in this testing context, the power does not depend

primarily on ρ. Consequently, the conservative estimation approach is here applied

to the vector (δ1, δ2) and its lower bounds are plugged-into the power function for

obtaining conservative estimates of the true power. As regards the correlation coef-

ficient, two solutions are considered: the first one consists in plugging-into the power

function the pointwise estimate of ρ, say rn, using the pooled estimator proposed by

Donner and Rosner (1980); the second one adopts the mathematical lower bound

for the power proposed by Eaton and Muirhead (2007), which considers ρ = 0.

Specifically, considering a confidence region Dγ
n for (δ1, δ2) where γ is the amount

of conservativeness, i.e. P ((δ1, δ2) ∈ Dγ
n) = γ, the lower bound of the power is given

by minDγ
n
{π(δ1, δ2, •,m, α)}, where • stands for the generic solution adopted for substi-

tuting the unknown value of ρ in the power function.
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Remark 1. Unusefulness of IUT inversion. The logical direct way for conser-

vatively estimating (δ1, δ2) is by inverting the IUT at a level γ (see also Wilson,

1927). In practice, when the point estimate dn = X̄n − Ȳn = (dn,1, dn,2) is observed,

the confidence region is given by the points (δ̄1, δ̄2) for which the IUT with null

hypothesis H0 : {δ1 ≤ δ̄1 or δ2 ≤ δ̄2} is non significant. This region turns out to be

Dγ
n = R2−{(δ1, δ2) < (dn,1−zγ

√

2/n, dn,2−zγ
√

2/n)}, i.e. the entire plane without an open

square in the low-left part. Consequently, we have that minDγ
n
{π(δ1, δ2, •,m, α)} = 0,

so that this region is not useful for conservatively estimating the power.

Two different approaches for Dγ
n are here adopted: the first one consists in the

classical elliptical confidence region for (δ1, δ2) (see for example Morrison, 2005);

the second is based on two simultaneous lower bounds for δ1 and δ2, according to

Anderson (1958) and Roy & Bose (1953). In the following of this section both are

briefly recalled.

3.1.1 The elliptical confidence region

This region is based on the joint distribution of the sample difference mean vec-

tor with the sample covariance matrix of the bivariate normal distribution, given

by the pooled within-groups covariance estimators, i.e. the distribution of (dn,Sn),

where dn = X̄n − Ȳn ∼ N2(δ,
2
nΣ) and Sn = [(n − 1)Sn,1 + (n − 1)Sn,2]/2(n− 1)). Being

τ2 = n
2 (X̄n − Ȳn)

′S−1
n (X̄n − Ȳn), in consequence of the Hotelling and Wishart distri-

bution properties, it is obtained that τ2 ∼ T 2
2

(

2(n− 1); ζ2
)

, where ζ2 = n
2 δ

′Σ−1δ is

the noncentrality parameter. If δ = 0, then ζ2 = 0 and τ2 ∼ T 2
2 (2(n − 1)), that is

(2n − 3)τ2/4(n− 1) ∼ F (2, 2n − 3). Hence, the boundary of the elliptical region for δ,

centered at dn, with 100(γ) per cent (approximated) confidence, is given by the fol-

lowing equation: n
2 (δ − dn)

′S−1
n (δ − dn) = 4(n − 1)F−1

2,2n−3(1 − γ)/(2n − 3). Note that the

confidence region has, in this case, only approximated confidence level, since the

diagonal elements of Σ (i.e. the variances σ2
i ) are supposed to be known and equal

to 1.

We will refer to the techniques stemming from the elliptical shape of Dγ
n as ELLP

and ELLM, when ρ is either estimated pointwise or set, according to the mathemat-

ical Minoration, equal to zero, respectively.
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Remark 2. Inversion of UIT. It can be noted that the elliptical region corresponds

to the inversion of the Union Intersection Test (UIT), not the IUT in study. Indeed,

this confidence region is given by the points (δ̄1, δ̄2) for which the UIT with null

hypothesis H0 : (δ1, δ2) = (δ̄1, δ̄2) (versus H1 : (δ1, δ2) 6= (δ̄1, δ̄2)) is non significant.

3.1.2 The simultaneous bounds region

The simultaneous bounds are obtained through simultaneous one-directional con-

fidence intervals. Recall first that bi-directional simultaneous confidence intervals

for the mean of a bivariate Normal distribution are: (X̄i −K 1−γ

2

√

s2
i

n ; X̄i +K 1−γ

2

√

s2
i

n ),

i = 1, 2, where s2i are the estimated variance and K 1−γ

2

=
√

2(n− 1)F−1
2,n−2(1− γ)/(n− 2).

Then, supposing σ2
i = 1 to be known, the pivotal distribution simplifies to a χ2

2, and

the 100(γ) per cent conservative estimate for the effect size δ is (dn,1−
√

c2,2(1−γ)/n, dn,2−
√

c2,2(1−γ)/n), where c2,2(1−γ) is such that P (χ2
2 ≤ c2,2(1−γ)) = 2γ − 1.

We will refer to these techniques as SIMP and SIMM, when ρ is either estimated

pointwise or set equal to zero, respectively.

3.1.3 Parametric computational algorithm

As regards the calculations, minDγ
n
{π(δ1, δ2, rn,m, α)} is obtained through an algorithm

detecting the level curve of the power (say the iso-power curve), which is tangent

to the low-left part of the (elliptical or rectangular) confidence region. Note that

iso-power curves behave almost like hyperboles (see also Section 8 for related compu-

tational details). In practice, the problem consists in detecting the curve tangent to

the ellipse/open-rectangle centered in (dn,1, dn,2) among the family of “hyperboles”.

Since we use the elliptical confidence region for computing just a lower bound for

(δ1, δ2), note also that the real coverage probability of the ellipse is γr = γ+1
2 , with

γ ∈ [0, 1].

3.2 The nonparametric approach and the bootstrap technique

Sometimes, quite severe technical difficulties arise within parametric frameworks.

On these occasions, nonparametric methods might be useful to solve parametric

problems. As has just been shown in Subsection 3.1, the task of providing bounds
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for the power of the IUT is, actually, problematic. It is widely known that Efron’s

bootstrap is a highly versatile nonparametric method. Recently, a nonparametric

bootstrap technique for estimating the power of statistical tests (even conserva-

tively) has been presented by De Martini (2011), where applications to sample size

estimation for the Wilcoxon rank-sum test are shown. We, therefore, adopt this

bootstrap technique for conservatively estimating the power of the IUT and we here

provide a brief reminder.

Let us denote the bivariate empirical distribution functions of the treatment group

and of the control group FT,n and FC,n, respectively. Note that these functions contain

information both on the shifts (δ1, δ2) and on the correlation ρ. Then, when the power

is viewed as a functional of the distributions (i.e., π = π(N2(µX ,Σ), N2(µY ,Σ),m, α)),

the simple bootstrap plug-in estimate of the true power is π(FT,n, FC,n,m, α).

Now, in order to provide a lower bound for the true power, draw two samples

of size n from FT,n and FC,n respectively, and let F ∗

T,n and F ∗

C,n be the empirical

distribution functions so obtained. Hence, π(F ∗

T,n, F
∗

C,n,m, α) is the bootstrap esti-

mator of the true power. Finally, denote with πγ(FT,n, FC,n,m, α) the 1 − γ p-tile of

this latter estimator: this is the (approximated) γ-lower bound for the true power:

P (πγ(FT,n, FC,n,m, α) ≤ π(N2(µX ,Σ), N2(µY ,Σ),m, α)) ≃ γ. A theoretical justification of

this bootstrap solution, which will be denoted by BO, can be found in De Martini

(2011).

4 Simulation Study

In this Section we evaluate and compare the performances of the five different es-

timation techniques for the power of IUT introduced in the previous Section (viz.

ELLP, ELLM, SIMP, SIMM and BO).

4.1 Design of the Study

In order to evaluate the performances of different techniques we vary δ1, k = δ1/δ2, ρ

and also the ideal sample size MI in such a way that the power is always 90%. We

consider a small sample situation, with MI = 60, and a larger one, with MI = 180.

For each MI we consider k = 1, 1.5, 2 and ρ = 0.2, 0.4, 0.5, 0.6, 0.8. However, we do not
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evaluate estimation performances in all the 15 possible cases (i.e. 3 ks × 5 ρs): we

just consider the 8 couples (k, ρ) that are reported in Table 1, together with the

corresponding values of δ1 for each MI (see Appendix A for computational details).

As regards the size n of pilot samples, recent works on CSSE (Wang et al.,

2006, De Martini, 2010) indicate that, in order to obtain sufficiently accurate power

estimates, n should be of the same order of magnitude as MI . So, for every setting

here considered, we evaluate the performances of our techniques with pilot samples

of size around MI . Specifically, we set n = 2MI/3, 4MI/3. Hence, the total number

of experimental points is 32 (2 MIs × 8 δ1s × 2 ns). In Table 2 the 32 Scenarios so

obtained are defined in detail.

For every Scenario we simulate the behavior of our techniques by generating

B0 = 5000 samples from the bivariate normal distributions of the treatment and the

control groups. We, thus, obtain 5000 conservative estimates of the power for each

one of the 5 techniques, for each conservative level γ = 0.5, . . . , 0.99, with step 0.01.

The resulting estimates are evaluated by considering the correctness of conservative

levels and the variability of the estimates.

As regards the former point, for every γ the bias is intended to be the difference

between the actual coverage probability (ACP) and the nominal one (NCP, viz. γ);

hence, the average bias is computed.

As regards the variability of the estimates, the weighted average of the means of

the absolute standardized differences between the γ-conservative estimators πγ and

the true power π, namely I2, is adopted in accordance with De Martini (2011). In

practice, being Dγ = (πγ − π)/(1− π) if πγ > π, and Dγ = (π− πγ)/π otherwise, we have

that I2 is the weighted average of E[Dγ ] over the set of γs considered, that is:

I2 =

4
∑

i=0

w.5+.1iE[D.5+.1i]

Since π50% is merely pointwise (and not conservative) and γ = 90% may be too severe

a conservativeness, in practice the most used conservative levels are around 60−80%.

Consequently, we used w50% = w90% = 0.125 and w60% = w70% = w80% = 0.25.

4.2 Results

Our five techniques present a clear bias, since they all are, in most Scenarios, too

conservative.
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As regards parametric techniques, those based on the so-called mathematical

lower bounds (viz. ELLM and SIMM) provide results similar to the respective ones

obtained with the pointwise estimate of ρ (the former approach is a little more

conservative than the latter). Since all parametric techniques were too conservative,

estimating ρ pointwise provides less biased (i.e. better) results. Moreover, SIMP

lower bounds are less biased than ELLP ones in all Scenarios, leaving SIMP the best

parametric performer.

In general, the bias of the nonparametric BO is somewhat lower than that given

by SIMP in all settings. The nonparametric BO should, therefore, be preferred.

The bias of all techniques decreases as n, ρ, and k increase. To show these

behaviors, we focus on small sample settings (i.e. MI = 60); moreover, Scenario #1

represents the basic setting, whereas Scenarios #2, #5 and #21 show the behavior

of power estimation techniques as n, ρ and k increase, respectively. In particular, for

the above settings the ACPs of the different techniques against NCP are plotted in

Figures 1-4. The average bias of the five techniques under these Scenarios, together

with the rate of improvement, and the I2 index are reported in Table 3.

In Scenario #1 the biases of the different techniques are quite similar, around

15%, and the lowest is BO (13.84%). As n increases passing from 2MI/3 = 40 to

4MI/3 = 80, all techniques improve, albeit marginally (see Figures 1-2); nevertheless,

the improvement of BO is the highest (12.3%). As ρ passes from 0.2 to 0.8, the bias

of all techniques clearly decreases, and the average bias of BO remains somewhat

lower than the others (see Figures 1 and 3); once again the improvement of BO is

the highest (59.3%). Finally, the highest bias reductions of all five techniques can be

observed comparing Figures 1 and 4, i.e. when k passes from 1 to 2: in practice, the

bias of BO disappears (average bias 0.34%, i.e. 97.5% improvement).

As far as the variability of the estimates is concerned, under Scenarios 1, 2, 5

and 21 BO presented lower I2s than those of the parametric techniques in all cases

but one. Moreover, the values shown by BO are very similar to those observed in

estimating the power of the widely used Wilcoxon rank sum test, with the same ns

and MI (see De Martini, 2011, Table 2 and 3).

Focusing now on BO (i.e. the best conservative power estimator among those

here considered), the most interesting results from the practical point of view are

those with n = 2MI/3. In fact, BO performances under the eight Scenarios with
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MI = 60 are reported in Table 4 (2nd and 6th columns). It can be noted that the

highest biases are observed with k = 1 and small values of ρ (viz. Scenarios 1 and

3), whereas bias is very small when k = 2 (viz. Scenarios 21, 23 nd 25). On the

contrary, the variability index I2 shows small differences among these 8 settings.

When n passes to 80, the average bias decreases a little, where I2 decreases signif-

icantly. For example, in Scenarios 4 and 14 (to be compared with Scenarios 3 and

13) the average bias is 8.62% and 2.72%, where the values of I2 are 0.3771 and 0.3862,

respectively.

Finally, biases and variabilities observed under large sample settings (i.e. MI =

180) are similar to the corresponding ones with small samples: the bias is a little

larger, where I2 is a little smaller. For example, Scenarios 7 and 27 (to be compared

with Scenarios 1 and 21) provide average biases of 14.13% and 1.43%, and I2 values

of 0.5081, 0.5006, respectively.

4.3 Discussion

The clear improvement shown by the techniques increasing ρ or k is due to the fact

that the IUT becomes univariate when ρ tends to 1 or when k diverges. In these

cases, indeed, the test is unbiased, as are power estimation techniques (BO only

approximately). When n diverges power estimators theoretically converge, and in

fact the variability index I2 decreases; the bias also decreases, just a little.

In parametric techniques, the bias is mainly due to the different shapes of iso-

power and confidence region curves. The former are quite similar to hyperboles,

whereas the latter (i.e. Dγ) are either elliptical or rectangular. This implies that a

certain amount of probability mass lies between Dγ and the tangent iso-power curve.

Consequently, the resulting γ-conservative power estimate, i.e. the level of the iso-

power curve tangent to Dγ, is more conservative than its actual nominal coverage

(i.e. γ).

The cause of BO bias is mainly the biasedness of IUT. In particular, even if

the two n sized samples fit N2(µX ,Σ) and N2(µY ,Σ), respectively, well, many re-

sampled n sized samples can fall close to each other, generating a couple of empirical

distribution still under H1, but in reality close to H0. These re-samples inherit

the bias of IUT and carry it into bootstrap estimation. For large MIs analogous

estimation problems do exist.
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5 Improving bootstrap performances through calibration

Calibration is usually adopted for correcting the bias of asymptotic confidence in-

tervals. The NCP (viz. γ) of asymptotic confidence intervals is achieved when the

sample size n tends to ∞. In practice, with finite ns the ACP is different from γ.

Nevertheless, there exists a correct coverage, say γc, which provides the confidence

interval with the desired NCP of γ.

Practical calibration at first makes use of the available sample to estimate γc.

Once the estimate γ̂c is calculated, it is adopted to compute a confidence interval

with nominal coverage γ̂c. The ACP of the confidence interval so obtained is, then,

closer to γ than that of the simple confidence interval with NCP= γ.

For an introduction to calibration see Efron and Tibshirani (1993). Here, we

adopt calibration in the context of IUT power estimation. Moreover, since the bias

of BO is lower than those of parametric techniques, we apply calibration to BO.

From the results of the simulation study in the previous Section, it is worth noting

that the ACP of BO presents a parabolic shape. So, we evaluate here if a parabolic

model for ACP fits the bias well. It is natural to assume that there is no bias with

extreme coverage probabilities, i.e. setting the bias at zero when NCP = 0 or 1. The

following model for the ACP of BO is, hence, derived:

ACP = aNCP 2 + (1− a)NCP (7)

The values of a are, then, computed with the classic least squares method for all the

32 scenarios of Section 4 (a subset of a values is reported in Table 4). The model (7)

fits the ACP data very well: the correlation between the observed ACP and those

provided by the model is, approximately, 100% in all 32 scenarios.

The parabolic behavior of ACP can be exploited in our calibration: γc should not

be computed separately for every single γ, but it can be provided in a general way by

inverting the parabola in (7). In practice, the bias is at first estimated on the basis of

the pilot sample by estimating the parameter a; once â is obtained, γ̂c is computed

through the inversion of (7) at the given γ (i.e. γ̂c = (â − 1 +
√

(1− â)2 + 4âγ)/2â);

finally, the γ-conservative estimate of the power is computed by adopting γ̂c.

Remark 3. Bias smoothing. It is worth noting that the use of (7) for modelling

the bias can be viewed as a kind of bias smoothing, which also allows considerable
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saving of computational time.

5.1 Simulation Study

The aim is to evaluate the performances of this BO calibrated technique (namely

BOC). Although computing power estimates with calibration for a single practical

case can be completed in a few minutes, to perform a simulation study becomes,

computationally, quite heavy. In order to evaluate the improvement given by cali-

bration we, therefore, consider just 8 scenarios among the 32 of the previous Section,

i.e. only those with MI = 60 and n = 40. The number of power estimates is also

decreased to B0 = 1000, and γ varies from 0.5 to 0.98 with a step of 0.02.

The results are most favorable: the global average of the absolute values of mean

biases provided by BO (i.e. 4.86%) is reduced by calibration to 2.11%, with an

improvement rate higher than 50%. The improvement rate is around 70% for the two

highest average biases in particular (viz. those under Scenarios 1 and 3). Detailed

results are reported in Table 4. The bias of BOC can also be observed in Figures 1,

3 and 4, where the ACP of BOC is shown.

It should be noted that calibration can sometimes invert the sign of the bias, since

it tends to balance the bias itself. Moreover, when BO bias is small that of BOC can

be a little higher (viz. Scenarios 21 e 23), but on these occasions calibration is not

needed. These biases of BOC may be reduced by increasing B0 and the Monte Carlo

parameters of bootstrap calibration. It should also be remembered that calibration

can be iterated to obtain further reductions of the bias (Hall and Martin, 1988).

Finally, the variability I2 index of BOC is substantially equal to that of BO (only

slightly smaller).

Hence, calibration improves BO bias significantly, but not estimation variability.

6 An example of conservative sample size estimation

The problem of estimating the sample size for a clinical study on sleep disorders

is studied. In the phase II trial two groups of n = 48 patients are recruited; these

same undergo the drug and placebo treatment, respectively. Two clinical parameters

concerning the quality of sleeping are recorded before and after the treatment period,
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and the post-pre differences represent the clinical variables of statistical interest. In

practice, ℓ = 2 and Xi, Yi, i = 1, . . . , 48 are observed.

In order to show the efficacy of the treatment drug the statistical significance of

the differences between groups of both variables should be obtained. Consequently,

the IUT should be used.

The values of the standardized differences between the means are d48,1 = 0.827

and d48,2 = 0.553, and those of the correlation coefficients result ρX = 0.358 and ρX =

0.396. Since the research team considers these results to be scientifically relevant,

the phase III trial is launched. The sample size can, then, be computed on the basis

of preliminary data and the conservative approach is adopted.

In the light of the above results, the bootstrap calibrated technique (BOC) is

used. The conservative estimated power curves are shown in Figure 5, where four

conservative γ levels are considered, i.e. γ = 50% (viz. pointwise approach), 60%,

70% and 80%. In order to achieve a power of 90% the conservative estimates of the

sample size are: 65, 78, 98 and 129.

Moreover, the simple bootstrap conservative power estimates (BO) are computed,

and are also reported in Figure 5. With the same conservative γ levels and power to

be achieved, the resulting sample size estimates are: 76, 95, 117 and 161. It can be

noted that these estimates are higher than BOC ones, in keeping with simulation

results of Sections 4 and 5.

7 Conclusions

The parametric techniques we considered have provided poor performances, both

when ρ is estimated pointwise and when it is set, conservatively, equal to 0. In our

opinion, instead of studying other estimation or bounding solutions for ρ, it would be

better to focus on confidence regions of the same (or similar) shape as the iso-power

IUT curves. Although such curves are defined by complicated equations, providing

analytical solutions of this kind is an interesting challenge for the future.

Conversely, a general nonparametric solution for power estimation was avail-

able, and it can be applied to univariate or multivariate tests. This technique is

based on bootstrap, it has already provided satisfactory results when applied to

the Wilcoxon rank-sum test, and it can also be useful when applied to complex
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parametric situations. Here, this bootstrap technique has been applied to the IU

test and yielded favorable performances; it presented a certain amount of coverage

probability bias merely in some circumstances. Nevertheless, its performances can

be improved through calibration, obtaining a considerable bias reduction. Finally,

bootstrap power estimation of IUT can be applied in the same way even when dif-

ferent correlations within groups or deviations from normality of data distributions

arise.

8 Appendix A: computational details

8.1 Computation of effect sizes and of iso-power curves

As shown in section 2, the power of the test depends on δ1, δ2, ρ, m and α. For

every value of ρ, MI and α there are infinite couples (δ1, δ2) providing a given power

1−β. For this reason, we built the iso-power curves starting from the couples where

δ1 = δ2 and used an algorithm with subsequent approximations which recalls the

multivariate normal distribution. The curves so obtained turn out to behave almost

like hyperboles and the maximum error with respect to the chosen value of 1− β is

0.000001. Finally, a bisection method is applied to compute the values of δ1 and δ2

for which the ratio k = δ1/δ2=1, 1.5, 2.

8.2 Computation of the bounds for the parametric approaches

In order to build elliptical confidence regions some functions have been implemented

in R package (R Development Core Team, 2005), but many of them do not corre-

spond to the inversion of the UIT. For this reason, we preferred to build our elliptical

confidence region ex-novo. As stated in section 3.1.1, the boundary of the elliptical

region for δ=(δ1, δ2) is given by the equation:

n

2
(δ − dn)

′S−1(δ − dn) = 4(n− 1)F−1
2,2n−3(1− γ)/(2n− 3)

which can be written as:

F−1
2,2n−3(1− γ) =

n(2n− 3)

8(n− 1)
[δ − dn]

′S−1
n [δ − dn]
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where dn = (dn,1, dn,2). If we consider n(2n−3)
8(n−1) = λ and [δ − dn] = ψ we have:

F−1
2,2n−3(1− γ) = λ

(

ψ1 ψ2

)





S−1
11 S−1

12

S−1
21 S−1

22









ψ1

ψ2





where S−1
.. are the elements of the inverse of the covariance matrix. After appropriate

algebraic and matricial operations, we obtained this second degree equation:

λS−1
22 ψ

2
2 + 2λS−1

12 ψ1ψ2 + λS−1
11 ψ

2
1 − F−1

2,2n−3(1− γ) = 0

whose solution provides the boundary of the ellipse centered in (dn,1, dn,2). The power

lower bound can be found by looking for the iso-power curve that is tangent to the

low-left part of the elliptical confidence region. Then, we considered the point of

the ellipse that has the minimum value on the x-axis, we calculated the power at

this point and considered the corresponding iso-power curve. If the curve did not

intersect the ellipse at other points, then this point represented the lower bound for

the power, otherwise we moved on the ellipse and we repeated the operation until

we found the tangent curve.

For the simultaneous confidence intervals the computation of the lower bound of

the power was obtained considering simply the power estimated through (2) at the

point (dn,1 −
√

c2,2(1−γ)/n, dn,2 −
√

c2,2(1−γ)/n).

8.3 Bootstrap computational details

The distribution of π(F ∗

T,n, F
∗

C,n,m, α) was approximated with B1 = 500 points gener-

ated with the Monte Carlo technique. Each point was computed on the basis of a

couple of samples of size n drawn from FT,n and FC,n, whose empirical distribution

functions, namely F ∗

T,n, F
∗

C,n, provided π(F ∗

T,n, F
∗

C,n,m, α). This latter power value was

computed by generating B2 = 500 couples of samples of size m from F ∗

T,n and F ∗

C,n

which underwent the IUT, and by considering the rate of statistically significant

tests.

To implement calibration, we first computed the simple plug-in estimate of the

power, i.e. π(FT,n, FC,n,m, α). Then, assuming this latter value to be the true power,

we generated Bc = 500 estimates of the power for each conservative level γ ∈ (0, 1)

and we computed the ACP. Finally, through least squares formulas, we computed

the parameter a in (7) and the related corrected level γc for each γ-level of interest

was obtained by inverting (7). Hence, πγc(FT,n, FC,n,m, α) was computed.
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Table 1 Distributional parameters δ1s providing 90% power
MI = 60 ρ

0.2 0.4 0.5 0.6 0.8
k = 1 .65315 .64576 .63044
k = 1.5 .88916 .88835
k = 2 1.18366 1.18363 1.18363
MI = 180 ρ

0.2 0.4 0.5 0.6 0.8
k = 1 .37710 .37283 .36399
k = 1.5 .51336 .51289
k = 2 .68337 .68337 .68339

Table 1. Design of the simulation study and shift parameters.
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Table 2 All Scenario settings
scenario # n m δ1 ρ k
1 40 60 0.65315 0.2 1
2 80 60 0.65315 0.2 1
3 40 60 0.64576 0.5 1
4 80 60 0.64576 0.5 1
5 40 60 0.63044 0.8 1
6 80 60 0.63044 0.8 1
7 120 180 0.3771 0.2 1
8 240 180 0.3771 0.2 1
9 120 180 0.37283 0.5 1
10 240 180 0.37283 0.5 1
11 120 180 0.36399 0.8 1
12 240 180 0.36399 0.8 1
13 40 60 0.88916 0.4 1.5
14 80 60 0.88916 0.4 1.5
15 40 60 0.88835 0.6 1.5
16 80 60 0.88835 0.6 1.5
17 120 180 0.51336 0.4 1.5
18 240 180 0.51336 0.4 1.5
19 120 180 0.51289 0.6 1.5
20 240 180 0.51289 0.6 1.5
21 40 60 1.18366 0.2 2
22 80 60 1.18366 0.2 2
23 40 60 1.18363 0.5 2
24 80 60 1.18363 0.5 2
25 40 60 1.18363 0.8 2
26 80 60 1.18363 0.8 2
27 120 180 0.68339 0.2 2
28 240 180 0.68339 0.2 2
29 120 180 0.68339 0.5 2
30 240 180 0.68339 0.5 2
31 120 180 0.68339 0.8 2
32 240 180 0.68339 0.8 2

Table 2. All Scenario settings.
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Table 3 Average bias
Scenario #1 #2 #5 #21
ELLP 16.88% 15.86% 13.64% 12.06%
ELLM 16.93% 16.02% 14.88% 12.07%
SIMP 14.09% 13.40% 8.68% 5.21%
SIMM 14.26% 13.66% 10.47% 5.25%
BO 13.84% 12.13% 5.63% 0.34%

Rate of improvement
w.r.t. n w.r.t. ρ w.r.t. k

ELLP 6.1% 19.2% 28.5%
ELLM 5.4% 12.1% 28.7%
SIMP 4.9% 38.4% 63.0%
SIMM 4.2% 26.6% 63.2%
BO 12.3% 59.3% 97.5%

Values of I2 index
ELLP 0.5906 0.4145 0.5756 0.5743
ELLM 0.5971 0.4224 0.6300 0.5747
SIMP 0.5484 0.3923 0.5209 0.5171
SIMM 0.5593 0.4035 0.5612 0.5178
BO 0.5176 0.3706 0.5252 0.5132

Table 3. Average biases of ACP of the five techniques with respect to NCP
and I2 values under four Scenarios with MI = 60.
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Table 4 Average biases I2 values
scenario BO (a) BOC % of impr. BO BOC

1 13.84% (-0.8690) 4.56% 67.0% 0.5176 0.4772
3 9.79% (-0.6163) 2.67% 72.8% 0.5207 0.5169
5 5.63% (-0.3576) 3.69% 34.5% 0.5252 0.5231
13 4.89% (-0.2743) -2.53% 48.2% 0.5030 0.5034
15 2.41% (-0.1442) -0.27% 88.9% 0.5132 0.5182
21 0.34% (-0.0277) -2.10% -512.7% 0.5132 0.5028
23 -0.69% (0.0476) 1.04% -51.0% 0.5114 0.5157
25 -1.24% (0.0663) -0.04% 96.5% 0.5178 0.5189

Table 4. Average biases of ACP of BO with respect to NCP and I2 values
under the eight Scenarios with n = 40, in comparison with those of BOC.
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Figure 1. Bias of ACPs of the five techniques, together with that of BOC,
under Scenario 1.
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Figure 2. Bias of ACPs of the five techniques under Scenario 2.
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Figure 3. Bias of ACPs of the five techniques, together with that of BOC,
under Scenario 5.
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Figure 4. Bias of ACPs of the five techniques, together with that of BOC,
under Scenario 21.
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Figure 5. Conservative power estimates for the IU test obtained with BOC
and BO, with γ = 50%, 60%, 70%, and 80%, based on the n = 48 phase II data
of the example in Section 6.
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