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9 Preface 

Preface 

―Many atoms disintegrate themselves spontaneously  through the emission of an electron or an alpha particle 

(i.e. He nucleus).  This is what we usually call the phenomenon of radioactivity discovered by H. Becquerel  in 

1896  [57]. The disintegration rate  is governed by a statistical law that states that given Ni atoms at the time i , 

the number of surviving atoms at time t is N(t) = Ni exp(-λt) . The λ constant  is a characteristic of the intended 

atom (or  nucleus). This law provide us with an useful model to predict radioactivity intensity in the future (or in 

the past,  thinking to the C14 dating method used by anthropologists) and  to anticipatory know what will be the 

quantity of remained atoms of a radiating matter in close or far future (something of interest  to every scientist 

of atoms).  For example  we  know  that  atoms will be the half exactly at the time T = (1 / λ) ln(2).  Once 

calibrated the parameter  λ  everything  is known.‖ 

 

 In  movement science we do not have any generic model that could be considered as precise nor accurate for 

movement classification. Many different explanations of specific aspects of movement have been proposed. 

They are very interesting, but none of them are generally explicative of what is going on in a semantic sense 

[6,7,8,10,11,15,20,21, 22,25,27,34,47].    When we deal with the movement recognition/classification area we 

do not even have a satisfying model of specific aspects that can be considered  generally predictive 

[3,23,26,28,29,33,35,37,38,39].  And  in the area of movement recognition with inertial sensors, many 

technological questions arise: technological diversity, calibration matters, sensors errors, sensor models, 

orientation and position of sensor in space, and a lot of numerous specificities that, with all the above aspects, 

and the lack of sufficiently generic and semantically rich public Test Set, contribute to create a strong barrier to 

any generic approach to a movement classification with wearable sensors at the moment (so far) 

[3,4,5,23,26,29,30,37]. 

We have also to note that  a movement is  a phenomenon explicitly or implicitly (voluntary or involuntary) 

controlled by brain. The  human and the individual free-will introduce a further problem when  we want to 

temporary predict the movements looking at the close past [1,23,26].  Any patterns can change when you can 

change situation, ambient, psychological context, age, physiological o pathological changes in the body,  

attitude and will of the subject. 

On the other hand machine learning techniques seems quite promising [3,  37], but for some reasons they still  

lack generality, as far I can see, and are not intended to solve the specifical matters that arise in movement 

classification area with  inertial sensor even in works and research of area specialists [5, 23].   
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Also a movement, an action, is something that is semantically  undefined. Everyone intuitively  knows what is a 

movement, or an action  but when we have to observatively say what a person is doing, when we naturally 

speaking classify a movement, we have to define well what is a movement, when it starts when it ends, and 

when  - this is a difficult  problem – we can consider two movements different, in the sense they pertains to 

different movements classes [16,17,18,19,23,24].  

To a normal eye two people walking straight in an aisle for 10 steps are doing the same actions. But  slight 

differences appear (can be evident)  to the eye of a physicians or a physiotherapist, that mark a difference 

between a physiological movement and  a pathological one [12,13,31,36,56],  and the two actions that we so far 

considered to pertain to to same class, suddenly  happened to fall in two distinctively different categories.   

Semantics matters, engineering questions,  quality of outcome information, quality of incoming data, lack of 

general models and the necessity to give a generic explanation,  or method,  valid in the information  area, are 

the questions that have  been considered, and faced, that in my opinion create a factual and conceptual barrier to 

any  innovative approach  (scientific improvements)  in the area. The lack of generality is the main barrier, the 

lack of a model extends the problem and arise some interesting question like what is the  semantics  of a 

movement,  and the technological question does not help to search for a generic solution useful in different 

domains or situations. 

For all these reasons I considered that a semantical/lexical approach to movement recognition with sensors, 

using on instance based machine learning  techniques could be a  promising way to solve some of these 

challenges and problems. And so it was. 

I was initially inspired  the by works of G.Guerra-Filho and Y.Aloimonos that -  going  through other works  in 

the field of  medicine and biology and neurology -  propose a correlation between the motor grammar and the 

natural language grammars [17,18,24,28,40]. Their work is specific to a programmatic grammar (something that 

could be mechanically handled) and does not try to understand how this grammar could be created in the human 

brain, nor how it could be present and why,  but the idea behind  was connaturate  to my first direct observation 

and seems interesting.  

A language is a complex object, with  information about future and past, where relations between subject and 

objects are described,  and  where emotions and metaphors are present.  And a lot of other questions that are still 

behind our comprehension. 

The main idea is that people share a common representation of the reality through the language.  But what do 

they share?  What they are talking about: information,  emotions,  facts or what else? A conceptual space is 

possibly involved?  And if something like ―a grammar of movements‖ really exists what correlations are present 

between this grammar and  the natural language, and which are the differences? 

Talking about semantic of movements you can represents – and consequently share –  information about 

actions. You can classify things like ―taking something‖, ―moving through a space‖, ―shaking hands‖,  and 
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maybe even you can classify information like ―to act as an happy person‖, ―to appear sad‖,  ―to be nervous‖. 

Connecting them you can create a sequence of phrases,   like in a natural language that represents what is going 

on in the reality, a concrete representations of reality.  You cannot depict  anything like ―huge as the ocean‖ or 

―larger than life‖: methaphors are absent in the ―movement language‖. Metaphors are probably a specifity of the 

natural language. But some aspects  are common to movements and the natural language. For example the 

lexicon. 

Before creating a grammar of movement it is important to understand – i.e. to acquire –  a  lexicon of 

movements [1,2,37]. The dictionary creates the common space of information, the basic brick of any 

representation of the reality:  ―what am I doing now‖.  In  recent literature, actions are acquired using diverse 

technologies, all equally good or bad dependently from the situation. 

In this thesis wearable inertial sensors has been  used to classify movements, the choice has been driven by  

technological and practical advantages, they are cheap, light,  and  - differently from video cameras -  are not 

prone to the hidden face problems, or  luminance problems,  and so on [42,43,46,53,54].  The main idea is to use 

inertial sensors to understand what a person is doing  for ambient-intelligent, healthcare, medical and sport 

applications. 

A lot of literature has been written about the use of inertial sensors to classify movements, with different results;  

many of the proposed methodologies are very specific to problems or applications or to the given technology, 

sometimes are difficult  to translate into practice,  use minimal dictionaries (3-6 actions).  Moreover, they  do 

not  give a general representation or explanation of the classification space [3,37]. 

In this thesis,  my principal concern is  to propose a method that is not centered on technology but on data,  that 

could be a general framework and could also give a general representation of movement space, useful in other 

areas of research, e.g. in reasoning [1].  Inertial sensors are treated just as an example of sensors,  a particular 

type of sensors not different from others, the method  is new, reusable, simple, neat,  and the accuracy  results 

very interesting [2,4]. 

I  used a traditional machine learning method  where data coming from sensor have been represented like 

vectors, then  I wheighted the features,  introducing a transformation of this space,  driven by two simple 

concepts: give the features a weight related to their ability to discriminate and generalize[1,2]. 

Thanks to this transformation, vectors representing an action are grouped in more  dense and separated clusters,  

classification results are accurate even with ―great dictionaries‖ (up to 21 actions). 

The method is generic, freed of an a priori semantic  in order not to fall into the problem of semantic  questions 

(What is a movement?  What is this movement? In what it differs from others?);  and,  finally, it is technological 

independent, and highly accurate. The thesis contains, I believe, a new and interesting  general representation of 

the movement space, useful also for other area of research [1,4]. This  is the general context of this thesis.  
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Summary 

The goal of the thesis is to recognize activities, interpreting data generated by wearable inertial sensors.  

To this aim it is possible to develop specific algorithms able to identify the most specific characteristic of a set 

of actions, executed by one or more people. The idea is to automatically identify movements and activities,  

avoiding the use of videocameras, or any direct intervention of a person for all the applications where 

movements  recognition is required.  

Movement recognition with inertial sensors proved to be useful for social surveillance applications [4], in 

neuroscience [12] and for tracking activities [3,37,40]. Inertial sensors can also be used for sport analysis, for 

gait and posture analysis, for human computer interaction and in motion recognition and capture 

[3,23,27,37,41,45,58]. To classify movements with inertial sensors could also be an important step to recognize 

human emotions from body movements and posture [16,19]. 

On the one hand, inertial sensors require a certain amount of user cooperation and could be considered invasive 

and cumbersome. On the other hand, since hardware is becoming smaller and smaller the user acceptability of 

body-worn sensors has improved and will continue to improve [4,58,60]. Moreover, inertial sensors have many 

advantages since they can be directly placed on specific body segments or in clothes. This has many 

implications: we know with certainty to which segment of the body the data collected by the sensors refers to, 

we do not have to solve ―hidden parts‖ problems created by video cameras, nor solve color and luminance 

issues. Also, we do not have to interpret/understand the surrounding environment, for example separate the body 

information from the background information, and identify people [46,52,54]. 

In this work attention is focused on movement recognition with inertial sensors for movement classification, 

using a generic method, semantically flexible, and technological independent. The method was tested with two 

very different technologies and vocabularies of actions and in all cases it performed with very high accuracies. 

[1,2]. I will show that the given methodology is not only general, an technological flexible, but also improves 

intracluster and intercluster similarity reaching a very high accuracy, with a simple method of classification. 

 

The Methodology 

To create a test set,  a given set of actions is  executed by a set of people, then  features are extracted from the 

generated data, action by action, sample by sample; the given features values are filed in a vector. The set of 

features-vectors of a action executed by a population constitutes the pattern of the given action.  Some features 

are more frequent within the population, others can be less frequent inside the vocabulary’s actions. In order to 
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take into account this aspects, two weights have been introduced: the FF (―Feature Frequency‖) and the IVFF 

(―Inverse Vocabulary Feature Frequency‖). Values are quantized, and FF and IVFF are calculated.  

The FF takes into account how frequent a feature is in the given population class by rising the importance of the 

features that appear in the same class of movements. The IVFF  takes into account how frequent a feature is in 

the dictionary. A feature that is present in more actions is considered less discriminative, and its weight is 

lowered. 

We have to note that FFxIVFF space is different than the original values space: some dimensions can be 

canceled or enhanced depending on the role of features in the dictionary and population.  The FFxIVFF 

transform the original space in a space where clusters appear to be more dense and more separated. This 

approach will allow to reach high accuracy (the highest in literature as far as I know), using very simple 

algorithms of similarity. The algorithmic costs of the similarity algorithms are low, the accuracies are 

interestingly high, giving to the methodology a promising appeal for real time applications. 

 

The Datasets 

In order to test the proposed method,  I used two different database: NIDA 1.0  (Nomadis internal Database of 

Actions) the internal of  the Nomadis Laboratory of the University of Milano-Biccoca used for this thesis and 

other tests, and the  WARD 1.0  (Wearable Action Recognition Database) created at  UC Berkeley by [A.Y. 

Yang et al. 2009]. These two databases are quite representative of a typical database of actions, are big  in 

dimensions (270 and 1200 samples) and in number  of actions (13 and 21), compared to most databases known 

in literature. Also, the two databases are quite different for sensors technology, dimension of the vocabulary of 

actions,  number and type of samples, and the granularity of low level data. 

A great number of classification algorithm has been tested  in different conditions, using  the Leave One Out 

Croos Validation (LOOCV) methodology, and results are very interesting. 

 

Test and Results 

The methodology  has been applied -  as is  - without significant changes to both the databases, and accuracies  

are very high in both cases. Results are the highest in literature, as far as I can know. The accuracy of our 

methodology on the U.C. Berkely WARD 1.0  database outperforms the results of the U.C. Berkeley 

researchers, reducing by four times the error rate (from 6.6% to 1.57%) using their dataset. 

Also,  a lot of tests has been done to test the accuracy reducing the number of wearable sensors, to check the 

sensitivity to sensor numbers, and results still are very interesting. With the U.C. Berkeley database WARD 1.0 

using 3 sensors on the pelvis, the right wrist and ankle I reached an accuracy of 97.63%,  higher than the 93.4% 
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obtained at UC Berkely with all the 5 sensors using the same database. And I reached 93.62% of accuracy using 

only one sensor, against the 93.4 % of U.C. Berkeley obtained on the same database with all the 5 sensors. 

 

Further Analysis 

Both the WARD 1.0  and NIDA 1.0  multidimensional  space have been reduced to a three dimensional space 

representation using Principal Component Analysis methodology. The analysis of three dimensional reduction 

confirm the peculiar ―lexical‖ characteristic of this space (similar and opposite actions are very close) . Finally, 

the Intracluster and Intercluster measures confirm that the FFxIVF transformation creates a space where clusters 

are more dense and well separated, justifying the higher accuracies obtained in the tests sections with the 

LOOCV methodology. 

Conclusions 

Conceptual clearness,  high accuracy, technology independency, low sensitivity to the number of sensor 

variation, and the use of fast algorithms, gives this new methodology a great appeal. Also, the FFxIVFF 

generating a space where clusters are more dense and separated, allow the use of very simple algorithms.  The 

method opens an  interesting path to activity recognition with inertial sensors, which is general, flexible, 

technologically independent, accurate, and creates a bridge between the instance based techniques, the 

applications and the semantic domains. 
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State of the art 

Many different approaches were used in the movement recognition area with inertial sensors, we can roughly 

divide them in two different types:  the approaches where researchers use a specific set of features that have 

heuristically been proven to be suitable for characterizing a chosen set of movements [4, 37, 39, 49, 53] andthe 

approaches where machine learning techniques are used to recognize a movement [5, 23, 26, 37, 45, 52]. An 

interesting survey can be found in [3,37].  There are also approaches that interpret a movement as a sequence of 

hidden states utilizing Hidden Markov Models (HMM) to predict movement from observables [26, 39]. HMM 

works well in some situations, but we have to note that for HMM to work at their best they need a great quantity 

of information, every single change in the chain of observables needs a new statistically significant quantity of 

samples. Also you have to train a different HMM  for every single action: the introduction of a new action 

forces a long process of retraining; changing the whole vocabulary of actions requires a great quantity of work.  

Finally, simple actions that are not composed by a chain of observables, are not well recognized [23,26]. 

Many different technologies and sensors have been used, both in quality and quantity: some prefer to use 

different mono dimensional sensors [37], others a single inertial unit mounted at a specific place on the body 

[4,37]. Others researchers prefer multimodal approaches, conjunctly using audio and inertial sensors [23,26]. 

Recently, a new technique was proposed by A.Y. Yang et al. of the U.C. of Berkeley called Distributed Sparsity 

Classifier [5]. For this research a public database of movement has been made available, the WARD 1.0 

database. I used  the U.C. Berkeley  WARD 1.0 database to test the accuracy of my  proposed methodology and 

to compare my results with the interesting results of the U.C.Berkeley researchers.  

If a general defect could be found in  these approaches is that they often are specific to the chosen technology 

and problem (the dictionary of actions). The lack of a flexible and general approach, that could be useful in 

different situations or with different technologies, and different vocabularies, is – in my opinion – the open issue 

of the area.  Given the great differences of technologies and dictionaries,  at the moment the methodolgies  are 

quite opportunistics, and this is an impediment to reach ―definitive‖ and general progresses in this field [3,37]. 

Also, even if great accuracies are sometimes described in literature, the results are related to tests  done with 

limited vocabularies (three to five actions), and above all public database are never used (as far as I know): there 

is no a  direct confrontation and that sometimes makes it difficult to compare the proposed methods. 

Finally, some of the proposed methodologies focus  on the ability to discriminate, not on the importance of the 

features, hence they use very complex machine learning technology,  with high computational costs 

[5,23,26,45,52].  And this is an impediment to use them in real time application.    
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In the next sections, I give a synthetic overview pinpointing the differences of approaches  in the activity  

recognition area using inertial sensors: far to be exhaustive it shows some  interesting and representative results 

in the field from a methodological point of view (cfr. also [5,37]).  None of these research use a public database 

to tests results, and unfortunately this is quite common. 

Many different methodologies are used, sometimes they are applied to not a great  number of subjects (usually 

they does not exceed the number of ten subjects), use different technologies with different approaches,   and 

above all often use a limited vocabulary: for example some research tries to recognize just threeactions. It comes 

easily that accuracies must be ―normalized‖ by the number of actions we want to recognize. An accuracy of 

50% in a vocabulary of two actions is not significative at all: a random choice has an accuracy of 50%. 

In every listed reference has been indicated the Recognized activities, Accuracy, used algorithms or 

Methodology, and Numerosity of the population. 

 

Reference: [41] 

Activities: Walking, Ascending stairs, Descending stairs  

Accuracy: 92,85 % - 95,91%  

Method: fuzzy sets of Gaussian distributions based on feature for each activity; samples classified as activity 

with the highest likelihood given activity distribution 

Number of subjects: 8 (6 male , 2 female) 

 

Reference: [45] 

Activities: Standing, Walking, Climbing stairs 

Accuracy: 83% - 90% 

Method: 3 Multiplayer Percepton Neural Network trained for 3 activities using back  propagation. 10-fold cross 

validation used to test classifiers. 

Number of subjects: 6  

 

Reference: [52] 

Activities: Walking, Ascending stairs, Descending stairs, Sitting, Standing, Lying supine, Sitting-Talking, 

Bicycling, Typing 

Accuracy: 95,8% (subjects perform a scripted sequence of activities), 66,7% (naturalistic data). 

Method: weighted sum of absolute differences between feature values and activity reference patterns; sample 

classified as nearest activity reference using distance metric. 

Number of subjects: 24 
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 Lying Sitting Sitting-

Talking 

Typing Standing Walking Descending 

stairs 

Ascending 

Stairs 

Cycling 

Lying 16 0 0 0 0 0 0 0 0 

Sitting 2 6 2 0 2 0 0 0 0 

Sitting-

Talking 

0 3 2 0 1 0 0 0 0 

Typing 0 16 3 2 1 0 0 0 0 

Standing 0 0 0 0 114 3 1 0 0 

Walking 0 0 0 0 6 107 4 4 0 

Descending 

Stairs 

0 0 0 0 2 80 26 1 0 

Ascending 

Stairs 

0 0 0 0 3 20 1 25 0 

Cycling 0 0 0 0 0 0 0 0 13 

Table  1 Confusion Matrix relative to reference 52 

The Confusion Matrix in  Table  1 shows that it is difficult to discriminate similar actions like ―walking‖, 

―walking downstairs‖; similarly, it is difficult to discriminate ―sitting‖, ―sitting-talking‖ e ―sitting-typing‖. 

 

 

Reference: [51] 

Activities: Lying, Sitting, Standing, Locomotion 

Accuracy: 89,30% 

Method: Decision Tree using feature set 

Number fo subject: 5 

 

Reference: [39] 

Activities: 3 types of karate martial arts movemetns:  cuts, elbows and punch blocks 

Accuracy: 96,77% 

Method: 9  Hidden Markov Models to identify 9 sub-gestures; 3 Markov Model on sequence of sub-gestures  

used to for each of the 3 major gestures. 

Number of subject: 1, a Martial Art Instructor 

 

Reference: [44] 

Activities: Walking, Ascending stairs, Descending  stairs 

Accuracy: 83% – 96% 
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Method: Nearest neighbor classification using Euclidean Distance between feature vector and personalized 

reference feature vector for each avtivity; referenced vectors calculated as average of trainig samples feature 

vectors. 

Number of subjects: 6 

 

Reference: [50] 

Activities: Walking, Running, Ascending stairs, Descending stairs, Sitting, Standing, Bicycling  

Accuracy: 42% - 96%. In particolare: walking ( 75% ), running ( 78%), ascending stairs ( 42%), descending 

stairs ( 64%). 

Method: bidimensional Kohonen Map with 20 x 20 neurons, trained on the feature set. 

Number of subjects: 1, researcher. 

 

Reference: [49] 

Activities: Walking, Running, Ascending stairs, Descending stairs, Sitting, Standing. 

Accuracy: 85% – 90% 

Method: Single layer neural network trained using 4 features 

Number of subjects: 10 

 

Reference: [37] 

Activities: Walking, Walking carrring, Sitting and relaxing, Working on computer, Standing still, Eating or 

drinking,  Watching TV, Reading, Running, Bicycling, Stretching, Strenght training, Folding laundry, Laying 

down, Brushing teeths, Climbing stairs, Riding elevator, Riding escalator. 

Method and Accuracy: ―Decision table‖, accuracy 49.95%. IBL (―Instance based learning‖ or ―Nearest 

Neighbor‖), accuracy 70,33%. ―Decision Tree C4.5‖, accuracy 73.69%. Naive Bayes, accuracy 32.22%. 

Number of subjects: 20 

 

Reference: [29] 

Activities: Standing, Walking, Running, Ascending stairs, Descending stairs, Sit-ups, Vacuuming, Brushing 

teeth.  

Method and Accuracy: (settings 4: leave one out) ―Decision table‖, accuracy  46,33%. ―Decision Tree‖, 

accuracy 57%. ―Plurality voting‖, accuracy 65%. ―Boosted Support Vector Machine‖, accuracy 73,3%. ―Naive 

Bayes‖, accuracy 64% 

Number of subjects: 2 
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Reference: [26] 

Activities: Sitting, Standing, Walking, Jogging, Walking upstairs, Walking downstairs, Driving a car, Riding a 

bicycle, Riding elevator down, Riding elevator up. 

Accuracy: Overall accuracy 95% 

Method: Decision stumps and Hidden markov models  

Number of samples:  about an hour of data per activity and around 100 instances per activity. 

 

 

 Sitting Stand Walking Jogging Walking 

upstairs 

Walking 

downstairs 

Riding 

Bicycle 

Driving 

car 

Riding 

elevator 

down 

Riding 

Elevator 

up 

Sitting 89.8% 38.5% 0.5%    0.4% 33.4%   

Standing 10.1% 50.8% 1.4%        

Walking 0.1% 7.4% 97.7%  5.2% 2.5%     

Jogging    100%       

Walking 

upstairs 

    94.8%      

Walking 

downstairs 

  0.5%   97.5%     

Riding 

bicycle 

 3.3%     99.6%    

Driving car        66.6%   

Riding 

elevator 

down 

        100%  

Riding 

elevator up 

         100% 

Table  2 Hmm classifier accuracy 
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Reference: [5] 

Activities: Stand, Sit, Lie down, Walk forward, Walk left-circle , Walk right-circle, Turn left, Turn right, Go 

upstairs, Go downstairs, Jog, Jump, Push wheelchair. 

Accuracy: 93.5% 

Method: Distributed Sparsity classifier, an important operation of feature projection is needed to work 

Number of subjects: 20 (7 female, 13 male)  

 

 Stand Sit Lie 

Down 

Walk 

forward 

Walk 

left-

circle 

Walk 

right-

circle 

Turn 

left 

Turn 

right 

Up 

stairs 

Down 

stairs 

Jog Jump Push 

wheel 

chair 

Stand 87.2 10.2 0.7 0 0 0 0.1 1.8 0 0 0 0 0 

Sit 25.2 66.8 6.8 0 0 0 0.1 0.1 0 0.1 0 0.1 0.7 

Lie down 2.6 5.1 91.8 0 0 0 0 0 0 0 0 0.1 0.3 

Walk 

forward 

0 0 0 92 2.5 1.6 0.2 0.2 0.4 0.7 0 0.2 0.3 

Walk left-

circle 

0.1 0 0 0.2 97.3 0 0.6 0.3 0.3 0.1 0.1 0.2 1 

Walk 

right-circle 

0 0 0 0.1 0.1 95.7 0.2 0.4 0.4 0.4 0.5 0.2 2 

Turn left 0 0 0 0 0.6 0 97 2.3 0 0 0 0 0.1 

Turn right 0 0 0 0 0 1.6 3.1 95.2 0 0 0 0 0 

Upstairs 0 0 0 0 0 0 0 0 98 0.1 1.6 0.1 0.2 

Downstairs 0 0 0 0.2 0.1 0 0 0 0.1 98.3 0 0.5 0.8 

Jog 0 0 0 0 0 0 0 0 0.5 0 99.3 0.1 0.1 

Jump 0.1 0 0 0 0 0 0 0 0.3 0.6 0.5 97.9 0.5 

Push 

wheelchair 

0.3 0.1 0 0.1 0.2 0.1 0.1 0.1 0 0.2 0.2 0.1 98.6 

Table  3 Confusion Matrix  for  Distribute Sparsity Classifier. Values are in percent. 
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Single Action Analysis  

The main idea of this thesis is to create a recognition mechanism  the could be  as  generic as  possible. The goal 

is  of being able to recognize any type of action with a high degree of accuracy regardless of the type of action 

executed (an athletic gesture, a daily life acitivity, etc.) and this has to be done in different contests regardeless 

of the used thechnology. Before starting to analyze a set of different type of actions we have to identify a 

process to transform data related to a single sample to more useful actions. The idea is at first to filter data  to 

eliminate noise, and to identify other aspects of the movement like the change of velocity, change of 

accelerations; than, to extract features from the filtered information.  

Hence, for every  single action data has been filtered and features have been extracted. 

 

Filters 

Filters have a role in the feature extraction process, to clean the signal from micro-changes that bring in the 

signal background noise that affects the information. In addition, filters are useful to enhance some of features 

that are not evident in the raw signal. The used filters are: 

 

- Smoothing 

- Low Pass Filter 

- Variance 

- Newton’s Difference Quotient (First Derivative) 

- Newton’s Difference Quotient (SecondDerivative) 

 

Appendix B contains a detailed description of the filters used in the feature extraction process. 

Features 

To catch specific aspects of movement very generic features has been used. The idea is that the reweighting 

process will help to understand which of these generic features is more helpful, avoding the burden to analyze 

every action for the most promising one.  The features used in the feature extraction  process are: 
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- Maximum value 

- Minimum value 

- Starting value 

- End value 

- Mean  

- Variance 

- Zero Crossing Rate 

- Mean Crossing Rate 

- Skewness 

- Kurtosis 

 

In Appendix C a detailed description of the filters used in the feature extraction process. 

 

Body Sensor Profiling 

In human movement analysis, the position and number of sensors is of great  importance. 

In line of principle, we can think that we should position an inertial unit on every single segment of the body to 

capture a very significant useful amount of information for actvity recognition. For example, with enough 

sensors we could capture the movement of the forearm in respect to the arm, or the movement of the head and 

neck in respect of the torso, or even the fine movements of every single finger. 

In sport activities, the sensors’ combination that will give more information is the one where sensors are 

attached to the body segment that carries out these actions.  For example, if you want  to recognize karate moves 

like a punch, a front kick or side kick we could ignore the limbs on the left side of the body (if the person is not 

left-handed of course), and focus on the right side wrist, shoulder, hip, knee and ankle. 

If you want  to recognize generic movents of daily life, it would be more useful to place the sensors on all the 

arms, using both the left and right side of the body. 

Nontheless, there is no a clear evidence in literature – as far as I know -  if we really need  all these sensors, and 

of how many sensors are really necessary to accurately classify and identify a movement (e.g., an activity of 

daily living, or a sport activit)y. As we will see there is no a necessity to place sensors on every segment of 

body, for an accurate recognition. In general we will see that with the proposed methodology, three sensors 

work as well as five sensors, even if thery are placed on the left side and the action is right-handed. Still with a 
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single sensor we have very interesting results that improve on the results presented in literature (see Test Results 

p.59). 

The choice to use  five sensors, one for every limb and one for the hip according to a X scheme (right wrist, left 

wrist, pelvis, right ankle, ankle left) as shown in Fig. 1, was driven by the need to create a profile useful in many 

different situations, and test it. Tests will also verify the accuracy of the recognition varying the number of 

sensors. 

 

Fig. 1 – Position of sensors on the body. 

 

Body Profile and Human Profile 

Another aspect to consider is the ―Body Profile‖. This term refers to the physical characteristics of the person. 

The idea is that we have a uniform population in term of body characteristics, so the profiling should be 

―modeled‖ on the basis of age, weight and height.  

Once clarified the scope of use of sensors, it is important to divide the subjects considering the motor skills 

(―Human Profile‖).  A young  healthy person with no physical problems,  and an elderly person with difficulties 

to move, execute the same action in a very different way.  

Our research tests have been applied to people of age between 19 years and 79 years old with normal motor 

skills, but users have different heights and weights. In other words,  our group of people is formed by people 

quite etherogeneous for body profile, but contains only healthy people, with normal motor skills.  
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Vocabulary of Actions – The Methodology 

The goal is  to propose a method  flexible, technology independent, and as general as possible. The main idea is 

to analyze features using a method  able to enhance the most important ones, and diminuish or invalidate the 

less important, using an approach  that is not specific of a single domain,  and that could be reused in multiple 

contexts.  To this aim I will operate on the features using a method that could be  reusable in many different 

context and as general as possible. 

In an domain specific approach you want to identify the type of action to be recognized in its specific context 

for a specific purpose. In sports activities like  karate, there may be actions that differ just in the way you can hit 

your opponent, for example by kicking and/or using punches. On the other side, the actions we want to 

recognize in neurology and the rehabilitation fields are completely different and can vary depending on the type 

of disease of which the person is suffering (neurology, post-traumatic, post-surgery)  that we want to recognize 

or measure. Daily activities are obviously the more generic and probably the more studied type of actions with 

inertial sensors, and have completely different characterizing features, and a different application context. 

Many of the current approaches are based either on a long work of feature analysis [4, 37, 39, 49, 53] in search 

for the best feature for each specific domain; others use sophisticated classification methodologies, or 

methodolgies that are domain specific, or are specific for the particular movement that is being acquired and 

recognized [4, 23, 26, 41, 45, 52]. 

The method here proposed is domain indifferent, does not use biomechanical models of the body, nor require an 

apriori knowledge  of the movement-domain science aspects, focusing on the analysis of the value of features 

within a set of actions that we call vocabulary or dictionary of actions. 

The first step of the proposed method requires the construction of a vocabulary of actions.  A series of actions is 

executed by a group of individuals belonging to a population that has similar Human Profile (motor ability) and 

a different Body Profile (different ages, wheights, and heights). Sensors are positioned according to the more 

appropriate sensory profile for our  goals, that is the more generic profile possible. Specifically, sensors have 

been placed according  to a X scheme (right wrist, left wrist, pelvis, right ankle, ankle left) as shown in Fig. 1. I 

proceeded to acquire the raw data an store them into the file system. These data constitute the vocabulary of 

data, the NIDA 1.0  database, which subsequently will be used for the recognition phase. In a second phase the 

public database WARD 1.0  was used for confrontation with results present in literature. 
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Feature Extraction 

Roughly speaking, there are ―two ways‖ to select features: one can select - ―a priori‖ - the most promising 

feature for a specific set of actions,  that means that you have to study the problem and identify the most useful 

feature for the given domain; otherwise you can use some very generic  features and exploit criteria to reweight 

their role in  given application domain (in the given vocabulary of actions).  

The  proposed approach is to use very generic features, usually considered helpful in literature. The major 

advantage is to keep the mechanism as general as possible, and to eliminate the problem to consider what 

features are more suitable each time you change the application domain (the vocabulary of actions). On the 

other hand, it is necessary to generate a large number of features,  in order to be ―statistically certain‖  that 

among the many values it could be possible to find some very distinctive features useful for the analysis and 

recognition process. The more are the features, the more difficult it is to efficiently classify activities. In 

particular  if we want to create a methodology useful also at runtime. Hence, there is a tradeoff between 

generality of the methodology, technology indipendence, and accuracy and efficiency of recognition. As we will 

see, the proposed methodology can deal well both with the two competing parts of the problem: generality and 

accuracy.  

 

The feature extraction proposed here is a process that iteratively applies at every level all the filters and features 

described in the section Single Action Analysis. An action in order to be recognized can by acquired by the 

database or directy executed. From every inertial sensorraw data are extracted. Then their 2D and 3D magnitude 

is calculated.  The obtained data are  transformed using the filters presented before obtaining a great number of 

distributions. Finally  features are extracted (Fig. 2).  

The result is a series of real values (7350 in the example of Fig. 2) that represent the feature values of the 

executed action. Then values are quantized in order to make easier the re-weighting process.  In Fig. 2 the 

schema of features extraction process used with  MTxsensors . 
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.  

 

Fig. 2 -  The iterative process of feature extraction  
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Feature Quantization 

Feature values of every  single action constitute a pattern and we want to compare it with the classes pattern. 

Hence, these values should be used  during the analysis and also during the recognition process. To use these 

data,  values have been quantized,  to make the comparison between the values much easier (computational 

quick) as they can be compared using intervals . 

The intervals in which to divide the features can not be chosen at random, for example they cannot be too small, 

to avoid the risk that any pattern could be self specific,  and this will  give not a reliable significance the data. 

On the other side, intervals  cannot be too large, because otherwise it will be highly likely that too many feature 

values will be quantized within the same interval. 

The interval dimensions may not be equal for all the observed distributions, because every component's sensor 

has its own scale of values which is often very different from the others. But roughly speaking it has been 

decided to divide the domains into 20+2 intervals. For example, for the Skewness this is the interval 

quantization: 

 
>> 5 

4.5 << 5 

4 << 4.5 

3.5 << 4 

3 << 3.5 

2.5 << 3 

2 << 2.5 

1.5 << 2 

1 << 1.5 

0.5 << 1 

0 << 0.5 

-0.5 << 0 

-1 << -0.5 

-1.5 << -1 

-2 << -1.5 

-2.5 << -2 

-3 << -2.5 

-3.5 << -3 

-4 << -3.5 

-4.5 << -4 

-5 << -4.5 

<< -5 

 

When the value exceeds the maximum (or minimum) it is simply represented with either  the values                

>> 5, << -5. 
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Features Extraction - Data Dimensions 

The number of features exctracted from every action depend on some factors. The number of sensors  on the 

body,  the number of devices  in the sensor, the number of  components, the number of filters used for 

the analysis, the number of  features choose for the analysis.  The  total  number of generated features is: 

  

 

 

For example, the MTx sensors  used in the dataset NIDA 1.0 are technologicaly different from the sensors of 

dataset WARD 1.0, that have only a 3D accelerometer and a 2D gyroscope, the total number of extracted 

features for a single actions in the two dataset is different. 

The number of intervals is not easily calculated, since for each feature there are a number of sub-varying 

intervals. As said before, in average the intervals are 22.  

 

Weighting Features: Population and Dictionary 

The recognition phase is quite simple if the vocabulary of actions consists of a very small set of actions 

performed by one person. When the number of actions (classes) grows and the number of individuals grows, 

good results are not easily  obtained. Therefore, we would like a feasible way and an efficient mechanism that 

should be able to tell us which features are more suitable to distinguish an action by another (discriminative 

power of the feature), and which features are characteristics of a specific action for the given population, and are 

not specific of an individual (generalization power of the feature). 

The solution proposed to this problem is to weigh the features, using an approach very similar to what is done in 

Information Retrieval and in Text Mining [9]. 

In the first phase I will extract the feature values of  every action and every person of the given population. 
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Fig. 3 – Feature-Action representation. Actions have different feature values 

―All features have been created equal‖, but effectively they are not equal. They do not play the same role in 

different actions, and that dipends on two different competitive contexts: the ―population‖ (intraclass 

distribution) and the ―dictionary‖ (interclass distribution). Given an Action (class),  some features  are more 

frequent, others are  more  frequent in the Dictionary of actions,  not all the features have the same 

discriminative or generalization power. A value of a feature  that appears only in one specific action (class) in 

the vocabulary is certainly very important in terms of its discriminative capability, but if it is infrequent in the 

population, it has  not  a “generalizing ability‖. Vice versa, if a feature value appears quite often in the given 

Action (class), it may  have a strong “power of generalization”, but if it is present in every action of the 

vocabulary, it is completely useless to separate one action (class) from another. These two factors have been 

taken into account to reweight features using a simple methodology inspired by Text Mining techniques 
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Fig. 4 – Vocabulary  relevance of features:   value is specific of the “open the door” action,  its discriminative power is very high.     
The  value of the feature 1 is present in every action of the Dictionary, its discriminative power is null. 

In order to capture population relevance and vocabulary relevance of features,   two wheights have been 

introduced. The first is called Feature Frequency (FF) and the second Inverse Vocabulary Feature Frequency 

(IVFF),  these weights are inspired by Text Mining methodology [9].  Feature Frequency indicates how 

frequent is the value of a feature in the population class by class, and it is calculated using the following 

formula: 

 

 

where  is the number of occurrences of the feature in the action  , and   is the population cardinality. 

The values of the FF go  from a value close to zero, to a maximum of 1.  

Inverse Vocabulary Feature Frequency indicates the general importance of the feature in the dictionary, if the 

the feature  has the  ability  to discriminate an action (class) in  the vocabulary. The formula is  as follows: 

 

 

 

where  represents the cardinality of the vocabulary, and  the number of actions where feature  

 assumes values.  

The values of the IVFF goes  from zero (if the feature in appears in all the Actions) to a maximum of  

which indicates that the features potentially have a great power to discriminate the actions in which they appear. 

The overall weight of a single feature is given by the product:    

 

 

 

Hence, our actions are represented as N-dimensional feature vectors in an N-dimensional vector space.  
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In Fig. 5 an example of the space of features. The F1, F2 axes represent the features-intervals  (in this case, we 

have only two features for simplicity), and actions are vectors of this space (three actions A1 A2 A3 are 

represented). The coordinates of the A1, A2, A3, vectors are given by the FFxIVFF  weights of the action on the 

feature-intervals F1, F2. 

 

 

                                 

 

 

 

It is important to say that the FF xIVFF formula transform the original values vector space into a different 

space. The FF takes into account how frequently a feature-interval is hit action by rising the importance of the 

values that appear in the same class of movements (Eq.1.1). The IVFF takes into account how frequent is a 

feature-interval in the dictionary. A feature value that is present in more actions is considered less 

discriminative, and its weight is lowered according to the formula (Eq. 1.2.).  Note that distances in the interval-

frequency space (the FF x IVFF space ) could be very different than in the feature value space: in the FFxIVFF 

space dimensions can be canceled or enhanced depending on the role and frequency of features in the dictionary 

and in the actions (classes).  

The expected behavior that similar actions will be close in the feature space. Similar actions will be ―parallel‖,  

i.e. will share the same subspace. Mutually orthogonal actions  will be  dissimilar: the orthogonality between 

two vectors is maximum when two actions  have no dimensions in common. 

F1 

F2 

A1 

A2 

A3 

Fig. 5 – Conceptual representation of the actions in the feature space 
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 In FFxIVFF  space what is taken into account are  not the feature values, but the frequency a feature-interval is 

hit. That means that in the FFxIVFF  space, actions are close when have similar FFxIVFF  values, i.e. if they 

have same frequency, on the same intervals. 

The expected effect of the FFxIVFF operation is to modify the dimensions and separability of the cluster of data 

representing an Action (class) (see Intracluster and Intercluster Similarity, p.136).  As we will see, this will 

grately improve the accuracies (see Test Results, p.59, p.100). 

In this space where cluster are more separated and more dense, it is possible to use simple classifiers like 

distance and similarity classifiers to recognize actions with great accuracy (see  Conclusions, p.132). Simpler 

classifiers have low computational costs (see Computational Costs, p.42) . 

Also, FFxIVFF values are context dependent, they depend from  Dictionary and Popoulation. But given the 

database their values can be  automatically calculated. This assures that the methodology is usable in different 

domains, and with vocabularies of different dimensions. 
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Recognition Process 

The samples are retrieved from the database class by class,  features are extracted with the previously explained 

method (see Features Extraction, p.28) and stored in vectors. 

 

Fig. 6 – Here a part of the array of features representing an action 

 

Given the feature vectors of every person and every action,  it is possible to build the Training Set table that 

contains the collection of information created during the operation of feature extraction. 
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Fig. 7 - Portion of the Training Set table 

The results are stored  in  a table with a number of rows equals to the number of extracted features (in our case 

161,700) and a number of columns equal to the number of Actions (classes) (see Fig. 7) . In this table, for each 

pair of information (―FeatureInterval‖ , ―Action‖)  are represented both the  FF value and an  value, (see Eq. 

1.1). In addition, for each interval the IVFF value of all the actions is calculated and stored on the last column. 

By analogy with Text Mining terminology, the action to be recognized is called ―Query‖. An action to be 

recognized  is executed at runtime, or retrived from the database. The query action is an n-dimensional vector 

member  of the same space of the Training Set (see Fig. 9).  

Since we assume that similar actions  will be metrically close, to recognize what action is the most similar to the 

given action (the query), we  should measure which action is the nearest in the FFxIVFF space  

To this aim different similarity, distance and correlation functions have been used, the  recognition accuracy has 

been calculated. During this phase we have to ―operate‖  action by action (class by class), on the FF values hit 

by the query in the Traing Set table. 

Not all the interval are represented in every action of the Traing Set table. If the interval hit by the query is in 

the given action (class), an  FF values is present,  in the opposite case, no FF is associated with the interval: this 

is marked using an n value (null) (See Fig. 8). 
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Fig. 8 – Portion of the Training Set Table. The execution of a query. 

We can see represented in Fig. 24  the results of a possible execution of a query on the Training Set.  The term 

“n” (null) indicates that an interval is present in the query but not in the given Action  (class) of the Training 

Set.. If an  “n” value is present it is not possible calculate the  FFxIVFF and the similarty of a given Action 

(class)  in respect to the given query. 

To deal with the “n” interval problem,  different policies  can be adopted that lead to very significant variations 

in accuracy. The used  policy is as follows: 

 

 

 

 

 

 

 

Where    e  vary on the number of N features and D  actions (classes) present in the 

vocabulary.  is the cardinality of the vocabulary of actions (the number of classes);    represents the 

weight of the feature of the  action of the Training-Set;   is the IVFF value of the correlated  interval- 

feature.  
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In short, if the value of FF is missing, the value  approaches zero, while the   value is set equal to the 

maximum possible value of IVFF. The role of    and   in the calculus of similarity has been  explained in 

detail in the next section (see also Appendix D - Classifiers).   

 

 

Fig. 9 - A to-be-recognized sample is called query, this is a vector in the feature-interval space. 

 

The Training Set table (shown in Fig. 8) can be viewed as a set of column vectors. The algorithm compares the 

query vector with each of these vectors, applying a classification function and returning a sorted result. 

  

F1 

F2 

A1 

A2 

Query 
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Classifiers 

A large number of classifiers that belong to the following categories has been tested: 

 

• Similarities 

• Distances 

• Correlation 

 

That was done in order to understand which differences are present and what could be the role of these 

classifiers. Different measures of distance or similarity are convenient for different types of analysis. As we will 

see (Test Results, p. 59) some important differences in term of results are present in some cases, but usually the 

average results are quite similar. In fact, the operation of  FFxIVFF feature weighting has the effect to change 

the density and distance of the clusters (see Intracluster and Intercluster Similarity, p. 127).  Given that in the 

FFxIVFF space clusters are more dense and separated, it is possible to use computationally quick classifiers, 

with very good results.  The complete list of  classifiers is:  

 

For a detailed description of the given classifiers see Appendix D - Classifiers  

 

  

- Similarity: 

 Ranking 

 Cosine Similarity  

 Tanimoto  

 Simpson 

 Braun-Blanquet  

 Kulczynski 1 

 Kulczynski 2 

 Dice 

 Otsuka  

 MountFord  

 Nclassifier  

 Nweightclassifier  

 Entropy  

- Distance: 

 Euclidean  

 Manhattan 

 Camberra  

 Chi-Quadro 

 Hellinger-Quadro  

 Hamming  

 Bray-Curtis  

 Min variance 

 
- Correlation: 

Pearson  
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Computational Costs 

The given classifiers operate on a data structure organized as follows:  

 

 

Fig. 10  - Training Set and Query data structures 

 

Where f1,  f2 ... fN  are the  features, T1, T2 … Tk are the interval-features e A1 , A2 .. AM are the Actions of the 

Training Set;  N is the number of features,  M the number of actions. 

Given a query Q, and an action Aj,  the classifiers check if the interval TS  of the feature  fi   is in the Training 

Set. Then, it executes a simple mathematical operation (sum, product, subtraction, division) using the FF and 

IVFF weights. One compared the query with all the Actions of  Training Set, the algorithm order the obtained 

values.  

In first approximation, assuming that mathematical operations have costant complexity of O(1), the 

computational cost of the classifier is: 

 

 

 

where  is the cost to run through the bidimensional Training Set table and  is the cost of 

sorting the results. 

f1 
T1 

A1 

T2 

Tk 

f2 

fN 

AM Q 

T1 

T2 

Tk 

f1 

f2 

fN 

A2 
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There is no reason to think that the number of features should indefinitely grow, actually the number of features 

is usually reduced with the operation of features reduction. Under this condition we can consider N as a costant, 

and  become , hence the prevailing cost is the sorting cost .    

On the other side, for small values of M,  when , the prevailing cost is  .  

Given that some classification algorithms like the Pearson correlation, Min variance run through the Training 

Set  table more than one time, the computational cost of these algorithms  is higher for a constant factor. 

In general we can say that the described similarity and distance classifier have low computational costs, and  

correlation classifier have a higher computational cost.  

From a computational point of view, we can hardly imagine situations in which M  (the number of actions’class) 

has an order of magnitude really high. In some particular contexts, such in professional karate, we can imagine 

to have a number of actions of  the order of 10
3
. 

In principle,  we could imagine a situation in which every action is a combination of two (or more) basic 

gestures, performed by different subjects. In this way we could create a set of  basic gestures to expand the 

actual size of the dictionary of actions that could be recognized.  In this case, since  we are providing the 

Cartesian product of the given basic gestures of the training set, the actual number of recognizable actions may 

rise to really important dimensions, even using relatively small Training  Set tables. 

The next chapter gives a description of the two databases used to test the performance of the described 

classification algorithms. 

  



 

 

 

44 Classifiers 
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NIDA Database 

The NIDA 1.0 (Nomadis Internal Database of Actions) database contains movements acquired by the 

NOMADIS Laboratory of the University of Milano-Bicocca. These acquisitions have been obtained using 5 

MTx sensors positioned on the pelvis, on the right and left wrist, and on the right and left ankle. NIDA includes 

21 types of actions performed by 7 people (5 males and 2 females) ranging from 19 to 44-year-old, repeated 

twice time, for a total of 273 actions. The database has a rich vocabulary. The complete list is the following: 

 

1. Get up from bed.  

2. Get up from a chair.  

3. Open a wardrobe.  

4. Open a door.  

5. Fall.  

6. Walk forward  

7. Run.  

8. Turn left 180 degrees. 

 9. Turn right 180 degrees.  

10. Turn left 90 degrees.  

11. Turn right 180 degrees.  

12. Karate frontal kick.  

13. Karate side kick.  

14. Karate punch.  

15. Go upstairs.  

16. Go downstairs.  

17. Jump.  

18. Write.  

19. Lie down on a bed.  

20. Sitting on a chair  

21. Heavily sitting on a chair 
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WARD Database 

WARD 1.0 (Wearable Action Recognition Database) was created at UC Berkeley. Acquisitions have been 

obtained positioning 5 sensors on the pelvis, on the right and left wrist, and on the right and left ankle. Each 

sensors has a 3-axial accelerometer and a 2-axial gyroscope,  magnetometers are not present.  

Data have been calibrated and normalized (mapped) to their appropriate unit of measure before using them for 

the training phase, as suggested by the creators of the database [5].  

WARD contains 13 types of actions performed by 20 people (13 men and 7 women) ranging from 20 to 79-

years-old with 5 repetitions per action, for a total of 1300 samples. The complete list of actions is given in the 

next section. 

 

Warable sensor network 

WARD acquisitions has been done through a  wearable sensor network. This network of sensors is based on a 

platform called DexterNet (see [5]). DexterNet is an open-source platform for sensors that adopts a three-tier 

architecture to control a group of heterogeneous sensors mounted on the body. The three levels are: body sensor 

layer, global personal network layer and network layer.   

In terms of body sensor layer, the platform is able to integrate and control various types of sensors including 

MICAz, SHIMMER and GPS.   In terms of personal network layers, a mobile station (eg a PDA or 

SmartPhone) is used to communicate and to process the sensor data of a single subject. In terms of global 

network layer, subjects are interconnected via the Internet, to provide wireless coverage for the monitoring of 

both indoors and outdoors activities. 

The Five sensors have been postioned with the same Sensor Profile used in our database  (see Fig. 1). Sensors 

communicate with the mobile station connected to a computer server through a USB port. Each sensor has a 

triaxial accelerometer and a dual-axial gyroscope. For each axis the values vary in the range of  and  

  respectively for accelerometers and gyroscopes. 
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Fig. 11 – The sensor board of U.C. Berkeley  

 

WARD database 

The WARD database respects the following criteria: 

 

1. The database contains a significant number of subjects with people of different ages. 

2. The given activities cover typical actions of daily life. 

3. The Sensor Profile used for WARD is identical to the Body Sensor profile of the NIDA database 

 

 

The WARD database can be downloaded at: http://www.eecs.berkeley.edu/~yang/software/WAR/ 

Data are related to 20 subjects (7 men, 13 women) ranging from 19 to 75 years and includes the following 13 

categories of actions: 

 

1. Rest at Standing   - (at least 10 sec) 

2. Rest at Sitting  - (at least 10 sec) 

3. Rest at Lying - (at least 10 sec) 

4. Walk forward -  (at least 10 sec) 

5. Walk forward left-circle -  (at least 10 sec) 

6. Walk forward right-circle  -  (at least 10 sec). 

7. Turn left - (the subject remains on place truning right for more than 10 seconds). 

8. Turn right - (the subject remains in place and turning left for more than 10 seconds) 

http://www.eecs.berkeley.edu/~yang/software/WAR/
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9. Go upstairs - (the subject goes up a flight of stairs) 

10. Go downstairs - (the subject goes down a flight of stairs) 

11. Jogging - (at least 10 sec). 

12. Jumping – (the subject remains on place and jumps more than 5 times) 

13. Push wheelchair – (the subject is seated in a wheelchair and moves for more than 10 seconds). 

 

For the acquisitions 5 sensors were used in an X configuration (see Figure 1). The sensors were respectively 

placed: 

 

• sensor 1 and 2 on the left wrist and right; 

• 3 sensor on the side; 

• sensor 4 and 5 on the right and left ankles. 

 

Given 13 types of actions, 20  subjects, and that each subject executes the same action 5 times (trial)  the total 

number of samples is  20 * 5 * 13 = 1300. The acquistion has been stored in MATLAB format.  Each file 

contains a MATLAB structure that stores the data of the  five sensors. Each sensor contains 5 * t , where t 

represents the length of the sequence. 

The database contains some actions with a loss of information caused mainly by insufficient battery power or 

packet loss in the transmission network. These files are indicated in MATLAB with "Inf". The total  number of 

these corrupted samples is 27 and they were not used for the analysis.  MATLAB data were converted to CSV 

files and acquired into our analysis server for training and recognition 
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WARD Data Analysis 

The ―wearable sensors used by U.C. Berkely are subject to the drifting problem.  Even in the same type of 

action in subsequent trials of the same subject, using  the same sensor a shift can be observed in the mean values 

of accelerations and gyroscopes.  

It was necessary  to appropriately map the data on the  range of values used by the MTx sensors, in order to start  

the recognition process, without change any part of the architecture used for MTx. The process is described in 

details in Appendix E – Calibration 

 

Fig.  12 – Magnitude of accelerometer, trial 4 of Subject  9, left wrist, “Rest at standing”,  

 

 

Fig.  13  – Magnitude of accelerometer, trial 5 of Subject  9, left wrist, “Rest at standing”,  

In fig. 12 and Fig. 13 it is possible to see the magnitude of the accelerometers of two different trials, they differs 

in average by about 100 values. This should not happen in actions like Rest at Standing, Rest at Sitting and Rest 

at  Lying,  where magnitude of the accelerometers should be similar.  
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Fig.  14 – Trial  1,  X axis of the giroscope, subject 4, left wrist,  “Rest at standing”.  

 

Fig.  15– Trial  1,  X axis of the giroscope, subject 4, left wrist,  “Rest at standing”. 

Since the gyroscope measures the rate of turn, we expect that in the first three measures the average value of the 

gyroscope in the X and Y should be close to zero.  As we can see in Fig.  15,  this is not always true. To resolve 

this problem,  it was used a procedure of calibration and normalization (mapping). Data must be calibrated and 

appropriately mapped on the  range of values used by the MTx sensors, in order to start  the training and 

recognition process, without changing any part of the architecture used for MTx. The process is described in 

details in Appendix E - Calibration . 
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Testing Methods  

To check the effects of the FFxIVFF operation and to test the performarnce of the given  classification functions 

in the FFxIVFF space for the movement recognition, several tests have been performed. Test were done with an  

"off-line" analysis approach using the two formerly described databases (NIDA 1.0  and WARD 1.0, p.44).  

Two type of approaches has been used for tests: Leave One Out Cross-Validation (LOOCV) and Majority 

Voting Combinations (MVC)..  

 

Leave One Out Cross-Validation (LOOCV) 

The Leave One Out Cross-Validation (LOOCV)  leave one sample in the Test Set  and all the others sample in 

the Training Set. In our tests we leave all the sample of a person in the TestSet, and all the other people’s sample 

in the Training Set. LOOCV was preferred to other approaches because of the relatively low number of samples 

present in the two dabasases. 

For every action of the Test Set  (query), the classification function returns at first what is considered the most 

similar action in the given Training Set, then all the other actions in order of importance (from the most to the 

least similar). 

The results given by different classification function during the recognition phase are plausibly comparable 

when classification function performs well. 

For example, if the Training Set contains the following actions: 

 

Action Identifier 

Walk 0 

Run 1 

Going Downstair 2 

Jump 3 

Going Upstair 4 

 

 Table 4 – example of Training Set 
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A classification will produce a similar output: 

 

Test Set 1 

Executed Action Recognized      

0 0 4 1 3 2 

1 1 3 4 0 2 

2 2 4 0 3 1 

3 3 1 0 4 2 

4 4 0 3 1 2 

                                                      Table 5 – example of results of a classification on Test Set 1 

Test Set 2 

 

 

 

                          

                                    Table 6 – example of results of a classification on Test Set 2 

 

In Table 6 and 7 we can see in the first column the label relative to executed actions (the Ground Truth), in the 

second column (blue) the labels of the recognized actions. In this example the classifier has correctly recognized 

all the actions of the two Test Sets. Finally, all the results are collected in a so called Confusion Matrix that 

displays how many times a particular action has been recognized for all the run. 

The Confusion Matrix has the advantage to represent the tests result in a synoptic way. 

 

 0 1 2 3 4 

0 2 0 0 0 0 

1 0 2 0 0 0 

2 0 0 2 0 0 

3 0 0 0 2 0 

4 0 0 0 0 2 

                        Table 7 –   example of Confusion Matrix of Tes Set 1 Tes tSet2 

Executed Recognized     

0 0 1 4 3 2 

1 1 3 0 4 2 

2 2 4 0 1 3 

3 3 1 0 4 2 

4 4 0 1 3 2 
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Given the Confusion Matrix of the classifier, then the accuracy is calculated as follows: 

 

 

 

where  indicates the i ,j, element of the matrix,  N  is the number of rows (and columns) 

of the matrix. 

 

Majority Voting  

In line of principle, if we have different classifier with a good accuracy that gives different results it is possible 

to decide which is the most similar action through a Majority Voting.  For example given the three classifiers:   

 

 

Classifier 1 

 

Execued Recognized     

0 0 0 2 1 3 

1 1 3 4 0 2 

2 2 4 0 3 1 

3 3 1 0 4 2 

4 4 2 0 3 1 

 

 

Classifier 2 

 

Executed Recognized     

0 2 4 0 1 3 

1 1 3 4 0 2 

2 4 2 0 3 1 

3 3 1 0 4 2 

4 4 2 0 3 1 



 

 

 

56 Testing Methods 

Classifier 3 

 

Executed Recognized     

0 4 2 2 1 3 

1 1 3 4 0 2 

2 2 4 0 3 1 

3 0 1 3 4 2 

4 4 2 0 3 1 

 

The Majority Voting returns: 

 

Executed Recognized     

0 4 

1 1 

2 2 

3 3 

4 4 

                                             

                                                    Table 9  - Majority Voting of  the given results 

 

In case of parity, for example when all the classifiers recognize different actions,  the choice is done giving a 

preference  to  a specific classifier. In Tab. 9  Majority Voting has been applied with a preference for 

Classifier1.  

This method produces good results only if the most part of the classifiers have a good accuracy, and if the 

classifiers make errors in different regions of the space, i.e. on different actions. 
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Majority Voting Combinations 

The Majority Voting Combinations is an extension of the LOOCV test. It performs all the possible combinations 

of Majority Voting among all the classifiers, varying at every run the classifier of preference. 

The purpose of this test is to find the best combination of algorithms that maximize accuracy. 

Since it is possible that different combinations of classifiers give the same accuracy, in case of parity, has been 

preferred the combination with the lower computational costs. The method find the combination that minimizes 

the time of execution and maximizes the accuracy.  

For example, given 3 generic classifiers A1, A2 e A3  the number of Ci combination with preference is 6. 

 

       

         

 

     

 

 

Combinations with preference of cardinality 2, gives  the same results of the combinations with cardinality 1, so 

they are not taken into account. 

The method evaluates the accuracy of each combination, create the Majority Confusion Matrix and if there are 

combinations with same accuracy, results are ordered by computational cost. 

The total number of combinations is given by the formula: 

 

 

 

Where  is the total number of classifiers,   are the combinations without repetition, and 

because at each execution we have a classifier of  preference is set,  the binomial factor is multiplied by i . As 

already said, combinations with cardinality 2 are not used. 
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Classifiers 

Number 

Total 

combination 

3 6 

4 20 

5 60 

6 162 

7 406 

8 968 

9 2.232 

10 5.030 

11 11.154 

12 24.444 

13 53.092 

14 114.506 

15 245.550 

16 524.048 

17 1.113.840 

18 2.358.990 

19 4.980.394 

20 10.485.380 

21 22.019.676 

22 46.136.882 

Table 10  - The exploding number of tests using combinations of classifiers in  Majority Voting Combination 

Performing this test is computational expensive, in fact the number of combinations increases very quickly, 

increasing the number of used classifiers (see Table 10). 

To decrease the number of combinations you can select only the classifiers that performs best as a single 

classifiers (this can be easily established) or exclude the classifiers that give the same false positives on the same 

actions.  
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Test Results NIDA 

Tests have been done using both WARD 1.0 and NIDA 1.0  databases in order to understand the effects of the 

FFxIVFF operation and to test the accuracy of the given classification functions, and their combined use in the 

FFxIVFF space.  

As we saw in previous chapters, the two databases differ in the number of acquisitions (the size of WARD 1.0  

is almost 5 times the dimension of NIDA 1.0) and the type and number of actions (WARD 1.0 contains 13 

actions against the 21 of NIDA 1.0). Tests has also been performed varying the number of sensors in order to 

see how vary the accuracy of recognition.  

These tests are important because they show us how a body part is involved in recognition of a particular 

movement, and can tell us how many sensors are actually necessary to recognize an action and where they can 

be positioned. Tests results gives the Confusion Matrix and Accuracy of every single test.  

For tests with a reduced number of sensors, has been used the classifier that has the highest accuracy for the 

given dataset.. 

Test using NIDA database  

The tests performed on the NIDA database are as follows. At first all the formerly described classifiers have 

been taken and tested one at the time (Test 1), then they have been tested combining them (Test 2):  

 

 Test 1 – LOOCV: all classifiers with all the sensors 

 Test 2 - Majority Voting Combinations of all classifiers with all the sensors 

 

Then the single classifier with the best accuracy  has been taken,  the Bray-Curtis,  and the accuracy has been 

tested varying the number and position of sensors on the body: 

 

 Test 3 - LOOCV with hip, right wrist, right ankle sensors 

 Test 4 - LOOCV hip,  left wrist, left ankle sensors 

 Test 5 - LOOCV right wrist, right ankle sensors 

 Test 6 - LOOCV left wrist left ankle sensors 

 Test 7 - LOOCV hip, right wrist, left ankle sensors 

 Test 8 - LOOCV hip, left wrist, right ankle sensors 
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 Test 9 - LOOCV right wrist, left ankle sensors 

 Test 10 - LOOCV left wrist, right ankle sensors 

 Test 11 - LOOCV hip sensor 

 Test 12 - LOOCV right wrist sensor 

 Test 13 - LOOCV right ankle sensor 

 

 

The legenda to identify the actions is as follows: 

 

Action Identifier 

Get up from bed 0 

Get up from a chair 1 

Open a wardrobe 2 

Open a door 3 

Fall 4 

Walk forward 5 

Run 6 

Turn left 180 degrees 7 

Turn right 180 degrees 8 

Turn left 90 degrees 9 

Turn right 180 degrees 10 

Karate frontal kick 11 

Karate side kick 12 

Karate punch 13 

Go upstairs 14 

Go downstairs 15 

Jump 16 

Write 17 

Lying down on a bed 18 

Sitting on a chair 19 

Heavily sitting on a chair 20 
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Test 1 – LOOCV: All Classifiers with All the Sensors 

Ranking classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 

4 0 0 0 0 11 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 12 0 1 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 4 6 0 3 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 1 0 2 0 0 0 0 0 10 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 12 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 10 
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Cosine Similarity classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 10 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 2 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 12 
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Tanimoto classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 9 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 1 0 0 0 0 0 12 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 11 
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Simpson classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 0 0 0 0 3 0 0 0 0 0 0 1 8 0 0 1 0 0 0 0 0 

1 0 0 0 0 4 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 11 0 0 0 0 0 

3 0 0 0 0 4 0 0 0 0 0 0 0 8 0 0 1 0 0 0 0 0 

4 0 9 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 1 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 7 

6 0 6 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 3 0 

7 0 0 0 0 11 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

8 0 0 0 0 10 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 

9 0 0 0 0 12 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 9 0 0 0 0 0 0 1 2 0 0 1 0 0 0 0 0 

11 0 0 0 0 0 1 0 0 1 0 0 0 0 6 0 0 0 0 0 0 5 

12 0 6 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 5 

13 0 0 0 0 0 8 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 

14 0 1 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 1 

15 0 10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 

16 0 2 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 1 

17 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 9 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 1 0 0 0 0 0 

19 0 0 0 0 4 0 0 0 0 0 0 0 5 0 0 4 0 0 0 0 0 

20 0 0 0 0 0 1 0 0 0 0 0 0 11 0 0 1 0 0 0 0 0 
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Braun-Blanquet classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 9 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 1 0 0 0 0 0 12 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 11 
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Kulcynski 1 classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 9 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 1 0 0 0 0 0 12 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 11 
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Kulcynski 2 classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 0 0 0 0 3 0 0 0 0 0 0 1 8 0 0 1 0 0 0 0 0 

1 0 0 0 0 7 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 11 0 0 0 0 0 

3 0 0 0 0 4 0 0 0 0 0 0 0 8 0 0 1 0 0 0 0 0 

4 0 9 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 1 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 

6 0 6 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 3 0 

7 0 0 0 0 11 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

8 0 0 0 0 10 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 

9 0 0 0 0 12 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 9 0 0 0 0 0 0 1 2 0 0 1 0 0 0 0 0 

11 0 0 0 0 0 1 0 0 1 0 0 0 0 6 0 0 0 0 0 0 5 

12 0 6 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 5 

13 0 0 0 0 0 8 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 

14 0 1 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 1 

15 0 10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 

16 0 2 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 1 

17 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 9 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 1 0 0 0 0 0 

19 0 0 0 0 4 0 0 0 0 0 0 0 5 0 0 4 0 0 0 0 0 

20 0 0 0 0 0 1 0 0 0 0 0 0 11 0 0 1 0 0 0 0 0 
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Dice classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 9 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 1 0 0 0 0 0 12 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 11 
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Otsuka classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 10 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 2 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 12 
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Mountford classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 

1 0 4 0 0 0 0 0 0 0 0 0 1 8 0 0 0 0 0 0 0 0 

2 0 0 1 0 0 0 0 0 0 0 0 1 11 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 

4 0 7 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 1 

5 0 0 0 0 5 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 6 

6 0 8 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 2 

7 0 0 0 0 0 0 0 5 7 0 0 1 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 1 9 0 0 2 1 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 2 10 0 1 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 3 0 3 2 5 0 0 0 0 0 0 0 0 

11 0 0 0 0 1 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 9 

12 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 

13 0 0 0 0 0 0 0 0 0 0 0 10 3 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0 0 0 0 0 8 

15 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 4 0 0 0 7 

17 0 0 0 1 0 0 0 0 0 0 0 3 8 0 0 1 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 2 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 2 8 0 0 0 0 0 0 3 0 

20 0 0 0 0 0 0 0 0 0 0 0 3 6 0 0 0 0 0 0 0 4 
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NClassifier classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 10 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 1 0 11 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 1 0 12 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 11 
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NWeightClassifier classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1   0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2  0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 12 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 12 0 1 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 2 9 1 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 1 0 12 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 3 1 9 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 3 10 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 
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Entropy classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 12 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 12 0 1 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 10 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 1 0 12 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 2 0 0 0 0 0 0 1 10 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 8 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 
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Euclidean Distance classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 9 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 1 0 11 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 2 0 11 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 
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Manhattan classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 9 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 1 0 11 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 2 0 11 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 1 12 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 
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Camberra classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 12 0 1 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 2 8 1 2 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 1 0 12 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 3 10 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 11 
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Chi-Square classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 9 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 1 0 11 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 2 0 11 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 
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Hellinger-Square classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 9 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 1 0 11 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 2 0 11 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 
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Hamming classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 9 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 1 0 12 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 3 1 9 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 3 10 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 
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Bray-Curtis classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 9 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 1 0 0 0 0 0 12 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 
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Min variance classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 9 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 1 0 12 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 2 1 10 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 3 10 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 11 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 
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Pearson correlation classifier Confusion Matrix 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 10 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 2 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 12 
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Test 1 – Results and First Considerations 

The best classifier is Bray-Curtis with an accuracy of 96.70%. Then  Tanimoto, Dice, Kulczynski 1, Nclassifier 

and Chi-square with 95.60%. Then Cosine Similarity, Braun-Blanquet, Otsuka, Euclidean Distance, Manhattan 

Distance, Hellinger-square and Pearson correlation with 95.23%. 

In general, we see most of the classifiers recognize more than 90% of actions, except for the Ranking and 

Entropy. A special case is the Mountford classifier with 20.14% , then  Kulczynski 2 and Simpson that reach zero 

accuracy. Most classifiers confuse sometimes 180˚ and 90˚ turns, but even if not correctly classified these  

errors fall in an area "semantically close" with respect to the Ground Truth. 

We have to note that in  the FFxIVFF space thi classifiers are very good to distinguish very similar actions like 

"going upstairs", "going downstairs" and "walking" performed by physically different people. We have also to 

consider that the presence of a relatively great number of types of actions in the Dictionary, usually tend to 

―confuse‖ the classifiers lowering the general accuracy, nonetheless the obtained accuracies are very high. 
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Test 2 - Majority Voting Combinations of All Classifiers with All the Sensors 

The Majority Voting Combinations has been done usign the following classifiers: 

 

 Ranking       

 Cosine Similarity 

 Tanimoto 

 Braun-blanquet 

 Kulczynski 1 

 Dice 

 Otsuka 

 NClassifier 

 NWeightClassifier 

 Entropy 

 Distanza Euclidea 

 Manhattan 

 Camberra 

 Chi-Quadro 

 Hellinger-Quadro 

 Hamming 

 Bray-Curtis 

 Min variance 

 Sum variance 

 Pearson correlation 

 

 

Best results use the following combinations: 

 

1) Cosine Similarity, Manhattan, Dice,Camberra e Bray-Curtis, preference for Cosine Similarity 

2) Cosine Similarity, Manhattan, Braun-Blanquet,Camberra e Bray-Curtis , preferenza Cosine Similarity 

3) Cosine Similarity, Manhattan,Kulczynski 1,Camberra e Bray-Curtis, preferenza Cosine Similarity 
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With  the following Majority Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 2 10 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 

 

 

 

Then:  

1) Camberra, Bray-Curtis e Nclassifier, preference Camberra 

2) Tanimoto, Bray-Curtis e Nclassifier, preference Tanimoto 

3) Dice, Bray-Curtis e Nclassifier, preference Dice 
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Here the Majority Confusion Matrix of the case 1): 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 9 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 
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Here the Majority Confusion Matrix of the cases 2) and 3): 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 2 10 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 1 0 0 0 0 0 12 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 

 

 

 

From the results,  we note that using combinations the accuracy increases of about one percent compared to the 

best single classifier results. Clearly, we must find the right compromise between accuracy performance and 

computational costs. 

The following tests show the results obtained using the best classifier (Bray-Curtis), varying the number and 

positioning of sensors on the body.  
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Test 3 –LOOCV hip, right wrist, right ankle 

Bray-Curtis classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 4 8 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 1 0 12 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 2 11 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 

 

 

 

From the results we see that with this configuration of sensors (three sensors), the accuracy decreases by about 

2.5 percent points compared to the best results obtained  using Bray-Curtis with all the sensors. In this case, the 

Bray- Curtis classifier tends to make more mistakes in recognizing actions as ―rise from a chair‖, ―turn right 

90˚‖, ―left turn 180˚‖, ―right turn 90˚‖ and ―karate side kick‖. Despite these errors, the performances are still 

very high. 
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Test 4 - LOOCV with hip, left wrist, left ankle sensors 

Bray-Curtis classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 12 0 1 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 2 9 0 2 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 1 0 12 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 10 1 2 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 1 0 0 0 0 0 12 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 1 1 11 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 

 

 

 

With this configurations (three sensor) the accuracy decreases by  about 2.7 percent compared to the best result 

obtained with Bray-Curtis and all the sensors. The Bray-Curtis classifier tends to make more mistakes in 

recognizing the actions  ―right turn 180˚‖, ―karate front kick‖, ―karate punch‖ and ―sitting on a chair‖ 

  



 

 

 

90 Test Results NIDA 

Test 5 - LOOCV right wrist, right ankle 

Bray-Curtis classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 10 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 4 8 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 1 12 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 1 0 0 0 0 0 0 4 8 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 12 

 

 

 

With this configurations (three sensor) the accuracy  decrease by about 5.5 percent points compared to the best 

result obtained with Bray-Curtis and all the sensors. The Bray-Curtis classifier tends to make more mistakes in 

recognizing actions "rising from the chair", "fall", "karate side kick", and  ―heavy  sitting" 
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Test 6 - LOOCV left wirst, left ankle 

Bray-Curtis classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 

2 0 0 12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 11 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 2 9 0 2 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 1 12 0 0 0 0 0 0 0 0 0 0 0 

10 0 1 0 0 0 0 0 0 0 1 11 0 0 0 0 0 0 0 0 0 0 

11 0 2 0 1 0 0 0 0 0 0 0 7 0 3 0 0 0 0 0 0 0 

12 0 0 0 0 1 0 1 0 0 0 0 0 10 0 0 1 0 0 0 0 0 

13 0 0 0 0 1 0 0 0 0 0 0 1 0 10 0 0 0 0 0 0 1 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 10 

 

 

 

With this configuration (two sensor) the performance decreases by about 7.5 percent points compared to the best 

result obtained with Bray-Curtis and  all the sensors. The classifier tends to make more mistakes in recognizing 

actions "turn left 90˚", "karate front kick," "karate side kick", and "karate punch." 
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Test 7 - LOOCV hip,  right wrist, left ankle  

Bray-Curtis classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 8 0 2 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 1 0 12 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 11 1 0 0 0 0 0 0 0 1 

12 0 0 0 0 2 0 1 0 0 0 0 0 10 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 

 

 

 

With this configuration (three sensors) accuracy decreases by about 2.8 percentage points than the best   results 

with Bray-Curtis using all the sensors. The classifier tends to make more mistakes in recognizing the action 

"turn left 90 ˚", "karate front kick" and "karate side kick." 
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Test 8 - LOOCV hip, left wrist, right ankle 

Bray-Curtis classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 4 9 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 1 12 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 

 

 

 

With this configuration (three sensors) the performance decreases by about 0.4 percentage points compared to 

the best results obtained with Bray-Curtis using all sensors. With this configuration, the accuracy is very close 

to the results obtained using all the sensors. 

 

 

 

  



 

 

 

94 Test Results NIDA 

Test 9 - LOOCV right wrist, left ankle 

Bray-Curtis classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

2 0 0 12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 11 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 7 1 2 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 1 12 0 0 0 0 0 0 0 0 0 0 

11 0 1 0 0 0 0 0 0 0 0 0 9 2 0 0 0 0 0 0 0 1 

12 0 0 0 0 2 0 1 0 0 0 0 0 10 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 10 

 

 

 

With this configuration (two sensors)  accuracy decreases by about 5.3 percent  points compared to the best 

result obtained with Bray-Curtis using all sensors.The classifier tends to make more mistakes in recognizing 

"rise from the chair", "turn right 90˚", "karate front kick," "karate side kick" and " heavily sitting on a chair." 
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Test 10 - LOOCV right wrist, left ankle.  

Bray-Curtis classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 11 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 8 0 2 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 2 11 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 1 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 11 

 

 

 

With this configuration (two sensors) the accuracy decreases by about 3.3 percent  points compared to the best 

result obtained with Bray-Curtis using all sensors. The Bray Curtis classifier tends to make more mistakes in 

recognizing the actions "rise from the chair", "turn right 180˚", "turn right 90 ˚", "turn left 90˚" and "heavily 

sitting on a chair". 
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Test 11 - LOOCV hip  

Bray-Curtis classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 1 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 1 10 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 

6 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

7 0 0 0 0 0 0 0 9 2 2 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 4 8 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 2 0 10 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 2 1 10 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 1 0 1 0 0 0 0 8 2 1 0 0 0 0 0 0 0 

12 0 0 0 0 2 0 0 0 0 0 0 1 8 2 0 0 0 0 0 0 0 

13 0 0 0 0 1 0 1 0 0 0 0 2 1 8 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 3 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 10 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 

20 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 

 

 

 

With this configuration (one sensor) the accuracy decreases by about 15 percent  points compared to the best 

result obtained with Bray-Curtis using all sensors. The Bray Curtis classifier here tends to make more mistakes 

in almost every action, however, considering the dimensions of the dictionary of actions and that the test was 

run with only the sensor on  the pelvis, the accuracies are still good. 
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Test 12 - LOOCV right wrist  

Bray-Curtis classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 10 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 

2 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 10 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 

5 0 0 0 0 0 10 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 

6 0 0 0 0 0 0 12 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 12 0 1 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 2 8 0 3 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 1 0 11 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 1 1 11 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 9 3 0 0 0 0 1 0 0 0 

12 0 0 1 0 3 0 0 1 0 0 0 3 4 1 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 1 0 0 0 0 1 0 4 0 7 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 13 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 11 0 

20 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 8 

 

 

 

With this configuration (one sensor) the accuracy decreases by about 14 percent points compared to the best 

result obtained with Bray-Curtis using all sensors. The Bray Curtis classifier here tends to make more mistakes 

in almost every action, however, considering the dimensions of the dictionary of actions and that the test was 

run with only the sensor on  the wrist, the accuracies are still interesting. 
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Test 13 - LOOCV right ankle 

Bray-Curtis classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 5 1 

2 0 1 7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 0 1 0 

3 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 

4 0 0 0 0 9 0 0 0 0 0 0 2 1 0 0 1 0 0 0 0 0 

5 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 

6 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 11 2 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 3 8 0 2 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 1 0 11 1 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 2 2 9 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 11 2 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 3 10 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 2 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 12 0 0 0 0 0 

16 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 12 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 

19 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 

20 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 

 

 

 

With this configuration (one sensor) the accuracy decrease by about 14 percentage points than the best result 

obtained using all sensors. The Bray Curtis classifier here tends to make more mistakes in almost every action, 

however, considering the dimensions of the dictionary of actions and that the test was run with only one sensor, 

the accuracies are still good. 
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NIDA Tests - First Considerations 

Given the series of tests done using the NIDA dataset we can say that:  

 

1. The accuracy is very high on several single classifiers using all the sensors: e.g. the Bray-Curtis with  

96.70%  (see Test 1)   

 

2. The Majority Voting Combination with the best accuracies (e.g. Cosine, Manhattan, Dice, Camberra, 

with preference Cosine) enhance the results of about 1 percent point (97.43%) compared to  Bray-Curtis 

(see Test2 ). 

 

3. The results obtained with Bray-Curtis classifier using fewer sensors are really  interesting  because in 

fact, despite the size of the dictionary of actions, the performance of recognition remain high. For 

example, using only three sensors positioned on the right side of the body, the accuracy is high 

(94.87%)  . 
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Test Results WARD 

The publicly availabe Database WARD1.0  contains 1300 actions (see [5]).  The tests performed on the WARD 

1.0 database are as follows. At first all the described classifier has been taken and tested one at the time (Test 1) 

and then they are tested combing them  (Test 2): 

 

 Test 1 – LOOCV all classifiers with all the sensors 

 Test 2 - Majority Voting Combinations of all classifiers with all the sensors 

 

Then the single classifier with the best accuracy,  the Braun-Blanquet,  has been taken and its accuracy varying 

the number and position of sensors on the body has been tested: 

 

 Test 3 - LOOCV with hip, right wrist, right ankle sensors 

 Test 4 - LOOCV hip,  left wrist, left ankle sensors 

 Test 5 - LOOCV left wrist, keft ankle sensors 

 Test 6 - LOOCV right wrist, right ankle sensors 

 Test 7 - LOOCV hip, right wrist, left ankle sensors 

 Test 8 - LOOCV hip, left wrist, right ankle sensors 

 Test 9 - LOOCV right wrist, left ankle sensors 

 Test 10 - LOOCV left wrist, right ankle sensors 

 Test 11 - LOOCV hip sensor 

 Test 12 - LOOCV right wrist sensor 

 Test 13 - LOOCV right ankle sensor 
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The legenda to identify the actions is as follows: 

 

Action Identifier 

Rest at standing 0 

Rest at sitting 1 

Rest at lying 2 

Walk forward 3 

Walk forward left-circle 4 

Walk forward right-circle   5 

Turn left 6 

Turn right 7 

Go upstairs 8 

Go downstairs 9 

Jog 10 

Jump 11 

Push wheelchair 12 
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Test 1 – LOOCV All Classifiers with All the Sensors 

Ranking classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 96 0 0 0 0 0 0 1 2 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 98 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 97 0 0 0 0 1 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 85 0 0 11 0 

9 0 0 0 0 0 0 0 0 0 79 2 13 0 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 1 0 0 0 0 0 0 0 0 0 0 97 

 

 

 

Cosine Similarity classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 96 0 0 0 0 0 0 1 2 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 97 0 0 0 0 0 1 0 

6 0 0 0 0 0 0 96 0 0 0 0 2 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 85 0 0 11 0 

9 0 0 0 0 0 0 0 0 0 81 0 13 0 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 98 
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Tanimoto classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 96 0 0 0 0 0 0 0 3 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 98 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 98 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 87 0 0 9 0 

9 0 0 0 0 0 0 0 0 0 86 0 8 0 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 98 

 

 

 

 

Simpson classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 0 0 0 0 0 0 88 11 0 0 0 0 0 

1 0 0 0 0 0 0 78 20 0 0 0 0 0 

2 0 0 0 0 0 1 2 0 0 0 10 86 0 

3 0 0 0 0 0 0 0 0 71 27 1 0 0 

4 0 0 0 0 0 2 0 1 0 2 83 1 10 

5 0 0 0 0 0 0 0 0 36 17 0 0 45 

6 0 0 0 0 0 0 0 1 3 0 80 14 0 

7 0 0 0 0 0 0 4 0 66 0 0 0 29 

8 0 0 1 0 0 10 0 0 0 0 34 51 0 

9 0 0 0 2 0 10 0 0 0 0 77 4 1 

10 0 0 0 0 0 0 0 0 14 81 0 0 0 

11 0 0 0 0 0 0 0 0 24 74 0 0 0 

12 0 0 0 0 0 42 1 8 0 1 46 0 0 
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BraunBlanquet classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 96 0 0 0 0 0 0 0 3 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 98 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 98 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 87 0 0 9 0 

9 0 0 0 0 0 0 0 0 0 86 0 8 0 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 98 

 

 

 

 

Kulczynski 1 classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 96 0 0 0 0 0 0 0 3 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 98 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 98 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 87 0 0 9 0 

9 0 0 0 0 0 0 0 0 0 86 0 8 0 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 98 
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Kulczynski 2 classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 2 0 0 0 0 0 88 9 0 0 0 0 0 

1 0 0 0 0 0 0 78 20 0 0 0 0 0 

2 0 0 0 0 0 1 2 0 0 0 10 86 0 

3 0 0 0 0 0 0 0 0 79 20 0 0 0 

4 0 0 0 0 1 3 0 1 0 4 78 1 11 

5 0 0 0 0 0 0 0 0 45 20 0 0 33 

6 0 0 0 0 0 0 38 2 3 0 46 9 0 

7 0 0 0 0 0 0 5 9 60 1 0 0 24 

8 0 0 1 0 0 7 0 0 0 0 27 61 0 

9 0 0 0 5 0 6 0 0 0 0 74 9 0 

10 0 0 0 0 0 0 0 0 12 83 0 0 0 

11 0 0 0 0 0 0 0 0 23 72 0 3 0 

12 0 0 0 0 0 40 1 8 0 2 47 0 0 

 

 

 

 

Dice classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 96 0 0 0 0 0 0 0 3 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 98 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 98 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 87 0 0 9 0 

9 0 0 0 0 0 0 0 0 0 86 0 8 0 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 98 
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Otsuka classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 96 0 0 0 0 0 0 1 2 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 97 0 0 0 0 0 1 0 

6 0 0 0 0 0 0 96 0 0 0 0 2 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 85 0 0 11 0 

9 0 0 0 0 0 0 0 0 0 81 0 13 0 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 98 

 

 

 

 

Mountford classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 97 0 0 0 0 0 1 1 0 0 0 0 0 

1 0 78 0 0 0 0 15 2 3 0 0 0 0 

2 0 0 0 0 0 1 8 1 17 0 0 72 0 

3 0 0 0 24 0 0 0 0 68 7 0 0 0 

4 0 0 0 0 56 0 0 2 38 3 0 0 0 

5 0 0 0 0 0 1 0 0 92 5 0 0 0 

6 0 0 0 0 0 0 74 7 17 0 0 0 0 

7 0 0 0 0 1 0 11 39 47 0 0 0 1 

8 0 0 0 6 0 0 0 0 62 12 0 13 3 

9 0 0 0 5 0 0 0 0 18 54 0 17 0 

10 0 0 0 0 0 0 0 0 11 84 0 0 0 

11 0 0 0 0 0 0 0 0 36 39 0 23 0 

12 0 0 0 0 0 0 1 0 32 1 0 0 64 
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Nclassifier classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 97 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 91 0 0 0 0 7 1 0 0 0 

4 0 0 0 0 95 0 0 0 2 2 0 0 0 

5 0 0 0 0 0 93 0 2 1 0 0 2 0 

6 0 0 0 0 1 0 94 0 2 0 0 1 0 

7 0 0 0 0 0 0 0 98 1 0 0 0 0 

8 0 0 0 0 0 0 0 0 87 0 0 9 0 

9 0 0 0 2 0 0 0 0 5 80 0 7 0 

10 0 0 0 0 0 0 0 0 0 3 92 0 0 

11 0 0 0 0 0 0 0 0 2 0 0 96 0 

12 0 0 0 0 0 0 0 0 2 0 0 0 96 

 

 

 

 

NWeightclassifier classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 97 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 98 0 0 0 0 0 1 0 0 0 0 

3 0 0 0 87 0 0 0 0 11 1 0 0 0 

4 0 0 0 0 93 0 0 0 5 1 0 0 0 

5 0 0 0 0 0 85 0 3 8 2 0 0 0 

6 0 0 0 0 2 0 93 0 3 0 0 0 0 

7 0 0 0 0 0 4 0 93 2 0 0 0 0 

8 0 0 0 0 0 0 0 0 88 0 0 8 0 

9 0 0 0 0 0 0 0 0 10 81 0 3 0 

10 0 0 0 0 0 0 0 0 0 5 90 0 0 

11 0 0 0 0 0 0 0 0 5 0 0 93 0 

12 0 0 0 0 0 0 0 0 4 0 0 0 94 
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Entropy classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 98 0 1 0 0 0 0 0 0 0 0 0 0 

1 19 0 79 0 0 0 0 0 0 0 0 0 0 

2 0 97 0 0 0 0 0 0 0 0 0 2 0 

3 0 0 0 92 0 0 0 0 0 4 1 2 0 

4 0 0 0 45 26 1 19 0 3 2 0 3 0 

5 0 0 0 57 7 0 0 23 1 6 0 4 0 

6 0 0 0 0 33 0 1 60 1 0 0 3 0 

7 0 0 0 0 2 19 77 0 0 0 0 1 0 

8 0 0 0 14 2 0 3 0 49 11 0 16 1 

9 0 0 0 15 0 0 0 0 10 58 5 15 1 

10 0 0 0 0 0 0 0 0 0 3 88 4 0 

11 0 0 0 0 0 0 0 0 0 1 0 97 0 

12 0 0 0 0 0 0 0 0 5 0 0 0 93 

 

 

 

 

Euclidean Distance classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 97 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 91 0 0 0 0 7 1 0 0 0 

4 0 0 0 0 95 0 0 0 2 2 0 0 0 

5 0 0 0 0 0 92 0 1 3 1 0 1 0 

6 0 0 0 0 1 0 94 0 2 0 0 1 0 

7 0 0 0 0 0 1 0 97 1 0 0 0 0 

8 0 0 0 0 0 0 0 0 87 0 0 9 0 

9 0 0 0 0 0 0 0 0 6 81 0 7 0 

10 0 0 0 0 0 0 0 0 0 3 92 0 0 

11 0 0 0 0 0 0 0 0 2 0 0 96 0 

12 0 0 0 0 0 0 0 0 2 0 0 0 96 
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Manhattan classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 97 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 98 0 0 0 0 0 1 0 0 0 0 

3 0 0 0 92 0 0 0 0 6 1 0 0 0 

4 0 0 0 0 95 0 0 0 2 2 0 0 0 

5 0 0 0 0 0 94 0 1 2 0 0 1 0 

6 0 0 0 0 1 0 94 0 2 0 0 1 0 

7 0 0 0 0 0 0 0 98 1 0 0 0 0 

8 0 0 0 0 0 0 0 0 86 0 0 10 0 

9 0 0 0 0 0 0 0 0 7 80 0 7 0 

10 0 0 0 0 0 0 0 0 0 3 92 0 0 

11 0 0 0 0 0 0 0 0 2 0 0 96 0 

12 0 0 0 0 0 0 0 0 2 0 0 0 96 

 

 

 

 

Camberra classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 96 0 0 0 0 0 0 1 2 0 

4 0 0 0 0 92 0 5 0 1 1 0 0 0 

5 0 0 0 0 0 89 0 6 0 0 0 3 0 

6 0 0 0 0 0 0 95 0 0 0 0 3 0 

7 0 0 0 0 0 1 0 98 0 0 0 0 0 

8 0 0 0 0 0 2 0 0 83 0 0 11 0 

9 0 0 0 10 0 0 0 0 4 64 2 13 1 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 98 
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Chi-Square classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 97 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 98 0 0 0 0 0 1 0 0 0 0 

3 0 0 0 91 0 0 0 0 5 3 0 0 0 

4 0 0 0 0 95 0 0 0 2 2 0 0 0 

5 0 0 0 0 0 94 0 1 2 0 0 1 0 

6 0 0 0 0 1 0 94 0 2 0 0 1 0 

7 0 0 0 0 0 0 0 98 1 0 0 0 0 

8 0 0 0 0 0 0 0 0 85 0 0 11 0 

9 0 0 0 0 0 0 0 0 6 81 0 7 0 

10 0 0 0 0 0 0 0 0 0 3 92 0 0 

11 0 0 0 0 0 0 0 0 2 0 0 96 0 

12 0 0 0 0 0 0 0 0 2 0 0 0 96 

 

 

 

 

Hellinger-Square classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 97 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 91 0 0 0 0 5 3 0 0 0 

4 0 0 0 0 95 0 0 0 2 2 0 0 0 

5 0 0 0 0 0 94 0 1 2 0 0 1 0 

6 0 0 0 0 1 0 94 0 2 0 0 1 0 

7 0 0 0 0 0 0 0 98 1 0 0 0 0 

8 0 0 0 0 0 0 0 0 85 0 0 11 0 

9 0 0 0 0 0 0 0 0 6 81 0 7 0 

10 0 0 0 0 0 0 0 0 0 3 92 0 0 

11 0 0 0 0 0 0 0 0 2 0 0 96 0 

12 0 0 0 0 0 0 0 0 2 0 0 0 96 
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Hamming classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 97 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 98 0 0 0 0 0 1 0 0 0 0 

3 0 0 0 91 0 0 0 0 6 2 0 0 0 

4 0 0 0 0 95 0 0 0 3 1 0 0 0 

5 0 0 0 0 0 91 0 1 4 2 0 0 0 

6 0 0 0 0 1 0 94 0 3 0 0 0 0 

7 0 0 0 0 0 4 0 94 1 0 0 0 0 

8 0 0 0 0 0 0 0 0 87 0 0 9 0 

9 0 0 0 0 0 0 0 0 6 82 0 6 0 

10 0 0 0 0 0 0 0 0 0 5 90 0 0 

11 0 0 0 0 0 0 0 0 3 0 0 95 0 

12 0 0 0 0 0 0 0 0 2 0 0 0 96 

 

 

 

 

Bray-Curtis classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 96 0 0 0 0 0 0 1 2 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 97 0 0 0 0 0 1 0 

6 0 0 0 0 0 0 95 0 0 0 0 3 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 85 0 0 11 0 

9 0 0 0 0 0 0 0 0 1 82 0 11 0 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 98 
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Min variance classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 97 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 98 0 0 0 0 0 1 0 0 0 0 

3 0 0 0 91 0 0 0 0 7 1 0 0 0 

4 0 0 0 0 94 0 0 0 3 2 0 0 0 

5 0 0 0 0 0 87 0 3 7 1 0 0 0 

6 0 0 0 0 2 0 93 0 3 0 0 0 0 

7 0 0 0 0 0 4 0 94 1 0 0 0 0 

8 0 0 0 0 0 0 0 0 87 0 0 9 0 

9 0 0 0 0 0 0 0 0 8 80 0 6 0 

10 0 0 0 0 0 0 0 0 0 5 90 0 0 

11 0 0 0 0 0 0 0 0 4 0 0 94 0 

12 0 0 0 0 0 0 0 0 2 0 0 0 96 

 

 

 

 

Pearson correlation classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 96 0 0 0 0 0 0 0 3 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 97 0 0 0 0 0 1 0 

6 0 0 0 0 0 0 98 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 86 0 0 10 0 

9 0 0 0 0 0 0 0 0 0 83 0 11 0 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 98 
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Test 1 – Results and First Considerations 

The classifiers with the best accuracy are Braun-Blanquet, Tanimoto, Dice and Kulczynski 1 with 98.43% 

accuracy. Then  Bray-Curtis, Ranking, Cosine Similarity and Pearson correlation with an accuracy ranging 

from  97.7%  to 98%. In general we can say most of the classifiers recognizes more than 95% of the actions.  

A special case is the Mountford classifier with 64.02%, and Entropy with 47.40%, and finally Kulczynski 2, 

Simpson that both reach accuracy zero.  

Most of the classifiers commit a few errors in recognizing "Go downstairs" and "Go upstairs,"  confusing these 

actions with "Jump." 

 

Test 2 - Majority Voting Combination of All  Classifiers with All the Sensors 

These series of  tests was run with the same classifiers described in Test 2 of ―Test Results NIDA, p. 59‖. The 

test shows that combinations does not improve the accuracy, because classifiers make mistakes on the same 

Actions, making fruitless the policy of Majority Voting.  Generally speaking,  the classifiers tend to commit  

errors in the recognition of the following actions: "go downstairs" and "go upstairs". Accuracy is the same 

obtained using single classifiers. Hence,  BraunBlanquet, Tanimoto, Dice,  Kulczynski 1 used as single 

classifiers give the best performance on the WARD database with an accuracy of 98.42%.  
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Test 3 - LOOCV hip, right wrist, right ankle. 

BraunBlanquet classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 96 0 0 0 0 0 0 1 2 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 98 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 98 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 87 0 0 9 0 

9 0 0 0 0 0 0 0 0 0 84 1 9 0 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 98 

 

 

 

We see that with this configuration of sensors (three sensors), the accuracy remains pratically unchanged 

compared to the results obtained using  the best classifier (BraunBlanquet)  with all the sensors (98.42%.)  In 

this case, the classifier tends to make more mistakes in recognizing "go upstairs" and "go downstairs." 

 

 

 

 

 

 

 

 



 

 

 

116 Test Results WARD 

Test 4- LOOCV hip, left wrist, left ankle 

BraunBlanquet classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 96 0 0 0 0 0 0 1 2 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 98 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 98 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 87 0 0 9 0 

9 0 0 0 0 0 0 0 0 0 84 1 9 0 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 98 

 

 

 

This configuration of sensors is similar to the former configuration but wrist and ankle sensors are on the left 

part of the body. Again with this configuration of sensors (three sensors), the accuracy remains practically  

unchanged compared to the results obtained using  the best classifier (BraunBlanquet)  with all the sensors 

(98.42%.) In this case, the classifier tends to make more mistakes in recognizing "go upstairs" and "go 

downstairs." 
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Test 5- LOOCV  right wrist, right ankle 

BraunBlanquet classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 95 1 0 0 0 0 0 0 3 0 

4 0 0 0 2 97 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 98 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 97 0 0 0 0 1 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 88 0 0 8 0 

9 0 0 0 0 0 0 0 0 8 81 0 5 0 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 98 

 

 

 

This configuration of sensors is the same of the Test 3 configuration but without the hip sensor. With this 

configuration of sensors (2 sensors) accuracy decreases only by about 0.6 percent points than the result obtained 

using  the best classifier (BraunBlanquet)  wirth all sensors. If we compare the results of this test with Test 3, to 

eliminate the hip sensor costs only 0.4 percent points in accuracy. 
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Test 6- LOOCV left wrist, left ankle 

BraunBlanquet classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 94 0 0 0 0 0 1 0 4 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 97 0 0 0 0 0 1 0 

6 0 0 0 0 0 0 98 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 86 0 0 10 0 

9 0 0 0 0 0 0 0 0 8 84 0 9 1 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 1 0 0 0 0 0 0 0 0 97 

 

 

 

This configuration of sensors here is the same of the Test 4 configuration but without the hip sensor. With this 

configuration of sensors (2 sensors) accuracy decreases only by about 0.6 percent points compared to the result 

obtained using  the best classifier (BraunBlanquet)  using all sensors. If we compare the results of this test with 

Test 3, eliminating  the hip sensor costs only 0.4 percent points in accuracy. 

 

 

 

 

 

 

 



 

 

 

119 Test Results WARD 

Test 7- LOOCV hip, right wrist, left ankle 

BraunBlanquet classifier Confusion Matrix: 

 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 96 0 0 0 0 0 0 1 2 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 98 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 98 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 88 0 0 8 0 

9 0 0 0 0 0 0 0 0 0 83 0 11 0 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 98 

 

 

 

Again we see that with this configuration of sensors (three sensors) accuracy remains pratically unchanged 

compared to the results of BraunBlanquet classifier using all the sensors (98.42%.) 

The classifier tends to make more mistakes in recognizing "go upstairs" and "go downstairs." 
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Test 8 - LOOCV hip, left wrist, right ankle 

BraunBlanquet classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 96 0 0 0 0 0 0 0 3 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 98 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 97 0 0 0 0 1 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 86 0 1 9 0 

9 0 0 0 0 0 0 0 0 12 69 1 12 0 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 98 

 

 

 

With this configuration of sensors (two  sensors) accuracy decreases by about 1.5 percent points compared to 

results of the best single classifier (BraunBlanquet)  using all the sensors. The classifier tends to make more 

mistakes in recognizing the actions "go upstairs" and "go downstairs." 
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Test 9 - LOOCV right wrist, left ankle  

BraunBlanquet classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 96 0 0 0 0 0 0 0 3 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 98 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 97 0 0 0 0 1 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 86 0 1 9 0 

9 0 0 0 0 0 0 0 0 12 69 1 12 0 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 98 

 

 

 

With this configuration of sensors (two sensors) accuracy decreases by about 1.5 percent points compared to the 

results obtained using the best single classifier (BraunBlanquet) using all the sensors. The classifier tends to 

make more mistakes in recognizing the actions "Go upstairs" and "Go downstairs."  Recognition gives the same 

results of Test 8. 
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Test 10 - LOOCV left wrist, right ankle 

BraunBlanquet classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 95 0 0 0 0 0 0 1 3 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 97 0 0 0 0 0 1 0 

6 0 0 0 0 0 0 96 0 0 0 0 2 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 85 0 0 11 0 

9 0 0 0 0 0 0 0 0 0 85 0 9 0 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 1 0 0 0 0 0 0 0 0 97 

 

 

 

From the results we see that the accuracy decreases only by about 0.6 percent points compared to the results 

obtained using the best single classifier (BraunBlanquet) with all the sensors. 
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Test 11 - LOOCV hip 

BraunBlanquet classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 95 0 0 0 0 1 0 3 0 0 

4 0 0 0 0 99 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 97 0 0 0 0 1 0 0 

6 0 0 0 0 2 0 94 0 0 0 0 1 0 

7 0 0 0 0 0 1 0 98 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 71 12 4 8 1 

9 0 0 0 0 0 0 0 0 16 59 12 7 0 

10 0 0 0 0 0 0 0 0 0 0 86 9 0 

11 0 0 0 0 0 0 0 0 0 0 2 96 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 98 

 

 

 

Using only hip sensors accuracy decreases by about 4.8 percent points compared to the result obtained using  

the best classifier (BraunBlanquet) with all the sensors. The classifier tends to make more mistakes in 

recognizing "go upstairs," "go downstairs," and "jog". 
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Test 12 - LOOCV right wrist 

BraunBlanquet classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 99 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 95 1 0 0 0 0 0 0 3 0 

4 0 0 0 19 79 0 0 0 0 0 0 1 0 

5 0 0 0 12 0 84 0 0 0 0 0 2 0 

6 0 0 0 1 3 0 92 0 0 0 0 2 0 

7 0 0 0 0 0 18 0 81 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 70 21 0 5 0 

9 0 0 0 0 0 0 0 0 19 71 0 4 0 

10 0 0 0 0 0 0 0 0 0 0 95 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 98 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 98 

 

 

 

Using only the right wrist sensors accuracy decreases by about 7 percent points compared to the results obtained 

using  the best classifier (BraunBlanquet) with all the sensors. The classifier tends to make more mistakes in 

recognizing ―walk forward left-circle‖, ―walk forward right-circle‖, ―turn right‖ ,―go upstairs‖ ,―go downstairs‖.  
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Test 13 - LOOCV right ankle 

BraunBlanquet classifier Confusion Matrix: 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 92 7 0 0 0 0 0 0 0 0 0 0 0 

1 45 53 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 99 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 74 0 0 0 0 14 2 2 0 7 

4 0 0 0 0 96 0 3 0 0 0 0 0 0 

5 0 0 0 0 0 98 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 98 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 99 0 0 0 0 0 

8 0 0 0 0 0 1 0 0 71 0 0 18 6 

9 0 0 0 0 0 0 0 0 5 70 2 16 1 

10 0 0 0 0 0 0 0 0 1 4 87 3 0 

11 0 0 0 0 0 0 0 0 7 0 0 91 0 

12 0 2 0 10 0 0 0 3 20 0 1 2 60 

 

 

 

Using only the right ankle sensors accuracy decreases by about 12 percent points compared to the results 

obtained using  the best classifier (BraunBlanquet) with all the sensors.  The classifier tends to make more 

mistakes in recognizing ―rest at sitting‖, ―walk forward‖, ―walk forward‖, ―go upstairs‖ ,―go downstairs‖, ‖push 

wheelchair‖. 
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WARD DatabaseTest – First Considerations 

The WARD 1.0 database was created at UC. Berkeley by Yang. et al. in 2009,  the reason to use this database is  

mainly to compare our test results with the results of Berekely  researchers on the same database. 

 

From the tests we see that the accuracy is very high,  achieving an accuracy 98.43% with the BraunBlanquet, 

Tanimoto, Dice and Kulczynski 1 classifiers. Using  Majority Voting  combination the accuracy remains 

unchanged. 

If we compare the best accuracy obtained at U.C. Berkeley (see "State of the art" reference [2])  i.e. 93.4%,  

with the accuracy here measured 98.43%,   these  results are about 5 %  higher using the same database. The 

error rate has been lowered from 6.6% to 1.57%, i.e. more than 4 times. 

 

The results obtained with fewer sensors say that even with one sensor we can recognize more than 85% of the 

actions. In particular,  with three sensors  the accuracy here measured is 98.26% (Test 7),  that is just 0.17% 

less then best result obtained with 5 sensors.  Using only one  sensor on the hip and BraunBlanquet  the 

accuracy of  93.62% was obtained, that is sligthly higher than 93.4 % obtained by [A.Y.Yang et al.] with all the 

five sensors using this database. 

In addition, in the Test 5 and Test 6 we see that the right and the left side of the body are involved in the same 

way in the recognition process;  using just three sensors in both cases accuracy is very similar to that obtained 

when using all the 5 sensors. 
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Intracluster and Intercluster Similarity 

The high accuracy obtained with classifiers that do not use discrimination surface to classify, suggests that the 

FFxIVFF operation affects dimension, density and distance of the clusters of data. Hence, the Intracluster and 

Intercluster similarity has been calculated on both databases before and after the FFxIVFF operation. 

Intracluster and Intercluster similarity has been measured in the values space,  in the FF space and finally in the 

FFxIVFF space; results have been compared (Table 11). The cosine similarity has been used as a similarity 

measure. 

 

 

 

 

 

 

 

  
Table 11 – Intracluster Extracluster Similarity before and after FFxIVFF  

Generally speaking, it is possible to note that FF and IVFF actually enhance cluster density and cluster 

separation. In particular using the NIDA database we can note that: 

 

 the IVFF enhance the Intercluster similarity 5.96 times respect to FF, and 12.23 times respect to the 

values space 

 FF enhance the Intracluster similarity, while thanks to FFxIVFF Intracluster similarity passes the 

critical threshold of  .9 

 

using WARD  database we can note that: 

 

 the IVFF enhance the Intercluster similarity 4.08 times respect to the values space 

 the FF enhance the Intracluster similarity, while thanks to FFxIVFF Intracluster similarity passes the 

critical threshold of  .9 

Database  Type  Value Space  
(Cos)  

FF space  
(Cos)  

FFxIVFF space  
(Cos)  

Nida  Intercluster  0,3506425  0,1710151  0,0286604  

 Intracluster  0,7077682  0,8759209  0,9260479 

Ward  Intercluster  0,2476419  0,2367639  0,0605941  

 Intracluster  0,6038969  0,8455223  0,9311265  
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WARD and NIDA Dataset Representation 

The former results show that FF and IVFF enhance clusters density and clusters separation. These results are 

also confirmed by a visual analysis of the WARD and NIDA datasets. 

To see the effects of the FFxIVFF  on the WARD and NIDA dataset the original dimension of the space has 

been reduced to a three dimension space using a Principal Componente Analysis (PCA) technique. The three 

dimensional vectors obtained have been represented using Matlab. 

In Fig. 16  and Fig. 17 we can see the WARD dataset before the FFxIVFF operation: centroids and variances of 

the clusters of actions have been calculated and represented.  It is possible to note that the centroids are very 

close (Fig. 16) and the clusters are intersected  (Fig. 17).  

In Fig. 18  we can see the WARD dataset after the FFxIVFF operation: centroids are well separated, and 

clusters are further apart and more dense as suggested by Intracluster and Intercluster similarity values 

In Fig. 19 we can see  the NIDA dataset before the FFxIVFF operation:  centroids and variances of the cluster 

of actions have been calculated and represented.  Again it  is possible to note that the centroids are very close 

and the clusters are quite mixed. In Fig. 20 and Fig. 21  we can see the NIDA  dataset after the FFxIVFF 

operation:  centroids are well separated and clusters are further apart and more dense as suggested by 

Intracluster and Intercluster similarity values. 

 

 
Fig. 16 – WARD dataset before the FFxIVFF operation 
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Fig. 17 – WARD database:  before the FFxIVFF operation clusters are intersected 

 
Fig. 18  – WARD database: after the FFxIVFF operation clusters are well separated  
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Fig. 19– NIDA dataset: before the FFxIVFF operation clusters are intersected 

 
 

 
 

 
 

Fig. 20 – NIDA dataset: after  the FFxIVFF operation centroids are further apart 
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Fig. 21 – NIDA dataset:  after the FFxIVFF operation clusters are well separated  
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Conclusions 

In this chapter I summarize the results of the tests done on both NIDA and WARD datasets in order to compare 

the accuracy and perfomance, I show and compare the most interesting results, varying the number of sensors, 

and I show the Intracluster Intercluster similarity values before and after the FFxIVFF .  Finally, the 

conclusions. 

Tests with NIDA and WARD Databases 

Using the NIDA 1.0 database with 21 actions, executed 13 times (10 male, 3 female) with similar ―Human and 

Body Profile‖, for a total of 273 actions, the best results are: 

 Single classifier 

o Bray-curtis: accuracy 96.70 % 

o Tanimoto, Dice, Kulczynski 1, NClassifier, Chi-Square: accuracy 95.60 % 

o Cosine accuracy:  95.23% 

 Majority Voting: 

o Cosine Similarity, Manhattan, Dice, Camberra, Bray-Curtis: accuracy 97.43 % 

 

Using the WARD 1.0 databse created at U.C.Berkeley with 13 Actions 5 ripetitions each; 20 People (13 male, 7 

female) ranging from 20 to 79 year-oldSensor Profile similar to NIDA; calibration and normalitation done as 

suggested by the authors; the best results are: 

 Single classifier: 

o Braun-blanquet, Tanimoto, Dice, Kulczynski 1: accuracy 98.43 %.  Error Rate: 1.57% 

o  Bray-Curtis, Ranking, Cosine Similarity, Pearson correlation: Accuracy 97.6-98.0 % 

 Majority Voting: 

o Identical accuracy of single classifiers, in the best case. 

 

Comparing these with the results of [A.Y. Yang et al. 2009] on the WARD 1.0 database, their best result is: 

 Distributed Sparsity Classifier:  accuracy 93.4 %. Error rate 6.6% 

 

We can see the error rate was lowered by more than 4 times.  
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We have to note that in the literature related to activity recognition with inertial sensors it is not usual to test and 

confront results using public datasets. Given the diversity of the domains (dictionaries), test approaches are 

usually quite specific. Hence, sometimes it is very difficult to evaluate and compare the results.  

As my  proposed  methodology is ―technology independent‖ it becomes natural to test these methods on both 

databases. The accuracies obtained are very interesting. In fact,  the FFxIVFF  method perform much better than 

the DSC method proposed by A.Y.Yang et al..  using the same dataset. Moreover, these results have been 

obtained using classifiers that are very simple from a computational point of view.  

The accuracy results  obtained using the WARD database clearly shows that the FFxIVFF improves the 

accuracy. That suggests that the FFxIVFF could affects dimension and reciprocal distances of the cluster, as 

confirmed by the Intracluster Intercluster similarity values, and by PCA analysis. 

Tests Varying the Number of Sensors 

Table 12  shows a synoptic view of the most interesting results obtained using both databases varying the 

number of sensors. The Bray-Curtis classifier has been used for the NIDA database,  and the BraunBlanquet 

classifier has been used for the WARD database.  

 

# of 

sensors  

Sensors  NIDA accuracy  WARD accuracy  

5 hip, left/right wrist, left/right ankle  97. 43 %  98.43 %  

3 hip, right wrist, right ankle  94.87 %  98.26 %  

3 hip, left wrist, left ankle  94.13 % 98.26 % 

3 hip, letf wrist, right ankle  96. 33 %  98.26 % 

3 hip, right wrist, left ankle  91.20 % 96.92 % 

1 hip  81.31 % 93.62 % 

1 right wrist  82.78 %  91.25 % 

1 right ankle  83.15 %  85.66 %  

5 A.Y .Yang, et al. (UC Berkeley)  - 93.4 %  

 

Table 12 – Accuracy of FFxIVFF varying the number of sensors compared.  

On both databases we can observe that using 3 sensors (left or right side of the body) results are quite accurate 

and comparable with the same results using  5 sensors.  That is particularly true for the WARD  dataset where 

with 3 sensors the accuracy is lowered by only 0.17  percentage points.  
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Note that using the WARD dataset  the accuracy obtained with the FFxIVFF with 3 sensors (98,26 % ) and 

with 1 sensor (93,62 % ) is better  than [A.Y. Yang et al. 2009]  with all the 5 sensors (93,4 % ) on the same 

dataset. 

 

NIDA and WARD Results Compared 

The tests clearly demonstrate that the classifiers which have the highest accuracy on databases are Bray-Curtis  

for NIDA and BraunBlanquet for WARD 1.0. To compare these results we must consider them also in relation 

to the number of types of actions present in the dictionary.  An accuracy of 50% on a database with only 2 types 

of actions, does not have the same value than an accuracy of 50% on a database containing 100 types of actions.   

To compare the obtained accuracies, first we calculate the  value for WARD  dictionary: 

 

 

 

then the  value for NIDA dictionary : 

 

 

 

Now the two quantities are compared: 

 

 

 

where Q indicates the ratio of the accuracy obtained with NIDA and WARD in the best cases. 

The Q factor shows that the quality of test results on the NIDA is greater by a factor of 1.60 compared to the 

results of tests on the WARD database. Since the number of type of actions in the NIDA database are more 

numerous respect to the number of types of actions of the WARD database, we can say that the accuracy 

obtained for NIDA are more accurate and reliable. 
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Intracluster and Intercluster Similarity 

The high accuracy obtained with classifiers, suggests that the FFxIVFF operation affects dimension, density and 

distance of the clusters of data. This is confirmed by the values of Intracluster and Intercluster similarity 

calculated on both the databases before and after the FFxIVFF operation (see Table 11). Generally speaking is 

possible to note that FF and IVFF actually enhance cluster density and cluster separation. In particular, using 

NIDA database we can note that: 

 

 the IVFF enhance the Intercluster similarity 5.96 times respect to FF, and 12.23 times respect to the 

values space 

 FF enhance the Intracluster similarity, while thanks to FFxIVFF Intracluster similarity passes the 

critical threshold of  .9 

 

using WARD  database we can note that: 

 

 the IVFF enhance the Intercluster similarity 4.08 times respect to the values space 

 the FF enhance the Intracluster similarity, while thanks to FFxIVFF Intracluster similarity passes the 

critical threshold of  .9 

 

Final Conclusions 

The Goal was  to create a general methodology that could be used on different technologies, and domains 

without changing the given framework for activity reconigtion with inertial sensors. 

Given a set of action samples, an interative  process of feature extraction that uses very generic transformations 

and very generic features transforms the executed actions in their vector representation in  the value space. 

Quantization transforms the feature-value vectors, in binary feature-interval vectors.  

 

In order to create a flexible methodology usable in different domains, the features have been weighted using two 

different criteria, the generality of a feature in the Population (intra-class frequency), the ability to discriminate 

the Actions of  the Dictionary (inter-class frequency). This has been done by  the FFxIVFF weighting operation 

of the features.  FFxIVFF values are context dependent: they depend both on Dictionary and Population. 

However,  given the database,  their values can be very easily automatically calculated. This assures that the 
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methodology is usable in different domains, with vocabularies of different dimensions using an automatic 

operation. 

The FFxIVFF  transforms the original space, into a different space where clusters are denser and more 

separated, as the measure of Intracluster and Intercluster similarity suggests. Thanks to this operation the 

accuracy is greatly increased and we can use very simple classifiers which have  low computational costs. 

Twentytwo classifiers have been chosen (e.g. Cosine, Euclidean Distance, Tanimoto, etc). 

 

I used two different databases to  tests the effects of the FFxIVFF,  and the accuracy of given classifiers: the 

NIDA 1.0 database, with 21 types of actions that use the XSensor Technolgy, 5 inertial unit with 3-axial 

accelerometers, 3-axial gyroscopes, and a 3-axial magnetometers.  The WARD 1.0 is a public database created 

at U.C.Berkeley with 5 wireless inertial unit with  3-axial accelerometers, 2-axial gyroscopes and no 

magnetomers. 

   

The  results show  that accuracy is very high on both databases (96.70% NIDA, 98.43% WARD)    

outperforming similar results present in the literature on the same database (see  [A.Y. Yang et al. 2009]). The 

method was tested in both the databases without changing the architecture,  the feature extracting procedure, the 

testing methodology, obtaining high accuracies. That confirms that the method is technology independent. 

With the given the methodology you do not need to be a domain expert, or an inertial sensors expert. In 

particular,  a biomechanics competence on movements or posture for the given domain is not needed.    

Also, the  method does not have a strong dependency on the position of sensors or on their number, a very high 

accuracy has been achieved using just 3 sensors on both database, in particular on the WARD database (having 

only 3 accelerometers, and 2 gyroscopes per sensor) outperforming the results given in literature with 5 sensors 

in the same dataset [2].  It  has been obtained an high accuracy by placing sensors in diagonal (pelvis, right wrist 

and left ankle). Good results have been obtained using just one inertial sensor on  the hip. 

 

Conceptual clearness, high accuracy, technology independency, low sensitivity to the number of sensor 

variations, and the use of fast algorithms, give this methodology a great appeal. Also, the FFxIVFF operation 

generates a space where clusters are denser and  well separated, allowing the use of very simple algorithms.  

The method opens a new and interesting approach to activity recognition with inertial sensors, which is general, 

flexible, technologically independent, accurate, and also creates a bridge between the instance based techniques, 

the application domain and the semantic domain.  



 

 

 

138 Conclusions 

  



 

 

 

139 Appendix A - Instrumentation 

Appendix A - Instrumentation 

The instrumentation used for movements acquisition  is the X-Bus Kit, produced by the X-Sens company that 

contains an X-Bus Master and 5 MTx Sensors ([3]). TheMTx Sensor are inertial unit with three mounted 

devices on board, a 3 dimensional accelerometer, a 3 dimensional gyroscope and a 3 dimensional 

magnetometer. When positioned on the body, the inertial units returns data about the movements of the body 

segments where the inertial units have been positioned.  

The Xbus Master is a device that can control up to 10  inertial units with  two different buses (maximum 5 units 

per bus). It can be connected via  serial port or Bluetooth to a personal computer (PC) or to a mobile device (e.g. 

a Personal Digital Assistant), where data can be analyzed and interpreted. As we can see in Fig. 38, sensors are 

connected in serial configuration using a cable, than they are  connected to the X-Bus Master. Thanks to this 

configuration and using the two buses we can place inertial units practically on every segment of the body. A 

Hewlett Packard Personal Digital Assistant with a Bluetooth and a Wifi  device is  used to send the data from 

the Xbus to the personal computer for runtime analysis (see Fig.47). A specifically developed software called 

Motus has been used to drive the acquisition process,  and to send data to the Personal PC (see Fig. 39). 

 

Fig. 38 - “XBus Master”  and the  “MTx” sensors 

 

The reason to develop this application is the need to have a lightweight device that can be worn on body to 

acquire and store the data. The second reason is to create a common interface for data analysis: the server 

acquires data on a specific port, if we want to change the sensor technology, we just have to rewrite part of the 

Motus code if necessary, then we just have to direct data from the new sensors to the given TCP/IP port  to start 

the analysis process on the server side, without changing the server side architecture. 

Also, Motus is used to send configuration messages to the  XBus Master (e.g. to set the sample frequency), to 

start/stop the data reading process, and generically to manage low level messages. 
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We can see in Fig. 39 the Motus application running, and three of its ―navigation‖ interfaces. 

 

 

Fig. 39 – Motus and its navigation interfaces 

MTx Sensors 

The MTx Sensor are inertial sensors units. Every unit comes with three mounted  devices: an  accelerometer, a 

gyroscope, and a magnetometer. Every single device has three degree of freedom and  gives information 

respectively about change of velocity (m/sec
2
) , rate of turn (rad/sec), intensity of the magnetic  north pole 

vector (milliTesla).  

The inertial unit and the embedded devices 

Every MTx  inertial unit contains three sensors devices. Here  a specific description of the devices, the output 

data and a first explanation of how to interpret data. 

 

Fig. 40 - “MTx” sensor and its reference system (S) 
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In Fig. 40 has been represented the coordinate system of the sensor (S) . This reference system (S) is 

conventionally related to a fixed  reference system (G). In the (G) reference system, the X axis is positive when 

it is parallel the magnetic north and point to it,  Z is positive when parrallel to the gravity acceleration vector  g 

and opposite to it, and conventionally Y is positive when ponting to west. In  Fig. 41  we can see repesented the 

two reference systems (S) and (G). 

 

 

Fig. 41 The reference systems (S) and the fixed reference system (G) 

It is possibile to pass from the (S) to  (G) coordinates system using a rotation matrix that is calculated using 

quaternions, but as pinpointed before quaternions were avoided in order to test the classification method in the 

most general way.  

We have to note that even if it is possible to obtain  the Euler angles of MTx  sensor in respect to the (G), and to 

know the tilting orientation of sensors, it is not possible to know the position of the MTx Sensor in respect to the 

the fixed triple of coordinates (0,0,0)  of the reference system (G). Consequently the information we will use for 

the recognition are relative only to change of velocity, rate of turn, and  north pole direction in the  three-

dimensional reference system (S) of to the sensors itself.  

Accelerometer 

The accelerometer is an instrument that measures the acceleration of a body, the operating principle is based on 

the inertia of a mass when subjected to acceleration. The device contains a mass attached to an elastic element, 

which detects the displacement relative to the fixed structure that supports it.  

What we measure is three spatial components X, Y and Z of the sum of the acceleration of  sensor and the force 

of gravity, expressed in . 
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Due to the sensitivity of the MTx sensors, we can see important information about the movements. 

In the Fig. 5 we can see the X, Y, Z components of acceleration, and magnitude, of a person walking wearing a 

single sensor placed on the hip.  

In this example the Y axis is parallel to spinal cord, the X axis is parallel to the direction of walking, the Z axis 

is external to the saggital plane. The subject walks three times, and remains sit before  every walking activity. 

The magnitude of the three components (yellow), is very close to the values of  the Y component, since the 

other two spatial components tend to reciprocally eliminate. 

The Y component (in blue), gives probably the most significant information to ―categorize‖ this type of 

movement. But also the other two components, X and Z depict a repetitive pattern. It is easy to see also that 

when the person is sitting,  there is a significant change in the relative value of the three components.  This first 

simple example gives at a glance the power, and the problems of detecting an activity using an inertial sensor. 

The information is  simple, but obviously is not very intuitive.  In order to understand what is going on,  we 

should know very well the a priori pattern we are searching for, where to search it. Also there is a lot of ―noise‖ 

in the information given by physiological and pathological differences in the ability to move of people. Also, the 

position and number of sensor, change greatly the type, importance and interpretation of the given data. 

 

Fig. 42 – Accelerometer data about 3  walking 

Gyroscope 

 

The gyroscope provides the angular velocity of the sensor along the three spatial axes expressed in . A  

gyroscope contains a spherical shape, mounted on a gimbal that can rotate in any direction. Due to the law of 

conservation of angular momentum, it tends to maintain its axis of rotation oriented in a fixed direction. 

The high inertia keeps  the axis of rotation orthogonal to the plane formed by the rotation axis itself and the 

applied force. These properties are common to any body in rotation around an axis of symmetry, including 

Earth. 

When steady, the gyroscope values tend to stay close to zero, if the gyro is rotated  a peak appears in the 

positive or negative values (depending on the direction of rotation). The higher is the rate of turn, the more 

significant is the peak.  

In Fig. 43 we see an output sample of the gyroscope. The  executed action is a person rotating on itself 6 times. 
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In this example,  one sensor has been placed on the right side of hip: the X axis is parallel to spinal cord, theY 

axis is parallel to the direction of walking, the Z axis is external to the saggital plan (no filters were applied to 

the curve).  

 

 

Fig. 43 – Gyroscope data,  6 turns 

You may notice that the red component (rotation around the X axis) is the most significant, because the sensor 

was positioned with the X axis pointing up.  The result is a postive peak when the person turns 

counterclockwise, and negative if the rotation is clockwise (our reference plane is |YZ|, the floor) 

 

Magnetometer 

The magnetometer measures the Earth's magnetic field, i.e.  the values of the vector pointing to the Earth's 

magnetic north, in the three axial sensor reference system (S). 

While the magnetic north does not move in respect to an ideal fixed reference system (G), the body (or a 

segment of the body) moves in respect to the north pole, and since the reference frame of the sensor is in solid 

with the body, when the subject turns on itself you can observe the variation of the vector pointing the north 

magnetic pole into the three-axial reference system (S). 

In Fig. 44, we see the three components of the magnetometer relative to the phenomenon described in the 

former section (Gyroscopes) 

 

 Fig. 44 - 3 axial data of the magnetometer during turns 



 

 

 

144 Appendix A - Instrumentation 

This graphical representation  may appear  less intuitive to be understood at a first glance, but we may consider  

the data more interesting when represented in the X-Y, Y-Z, X-Z planes. For example, if you need to know  the 

rate of turn of a person and specifically his/her  angle of rotation, we can consider the plan Y-Z data and 

calculate the turn angle in this plan using the antitangent function (tan
-1

) and the Y and Z axis information. 

 

    

 

 

 

    

 

 

 

 

 

 

Is well know by trigonometry that  

 

       

 

 

 

 

so it is also useful to represent the heading of the sensor using the  angle. Note thar since the tangent is defined 

just in the domain , if  the angle θ becomes greater than   the function has a discontinuity 

and value passes form   to  and vice versa (the tangent funcion tends to +/- ∞ when domain values 

approaches +/-   values or  its multiples). 

Other Useful Data Representations 

As explained above, each device generates data for each axis of the sensor system. It has been noted that the 

information generated by the magnitude of the axs provides additional information. For example, if a person 
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Fig. 45 – North pole vector in the |YZ| plane of the sensor framework 
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turns he generates data that are more probably related to the orizontal plan, this plan can contain suitable 

information indicative of the phenomenon. Not only magnitude representation can increase the amount of data 

useful for analysis, but also could provide information that are less dependent on the physical disposition of the 

sensors, because magnitude is a scalar quantity. For this reason it was chosen to introduce the magnitude of the 

two-dimensional planar informations and the magnitude of the three-dimensional space information for each 

device and sensor.  

The formula to calculate the component magnitude is trivial and is as follows: 

 

 

 

Where  are the n component values of the vector V.   

 

In summary, each sensor returns the three dimensional values of each components, than their magnitude plan 

representation |XY|, |XZ|, |YZ| and the magnitude of spatial representation |XYZ| . 

The total number of data generated by every sensor can be calculated using the following formula: 

 

                                                        SignalsNumber = S * D * C 

 

Where S is the number of sensors worn on  the body, D is the number of devices mounted on inertial units and  

C  is the number of  information given by each device. The formula implies that each sensor has the same 

number of devices and that each device generates information about the same number of components. 

In our test, for every action the generated  information are 105 (45 ―physically‖ generated, 60 ―derived‖). 

 

Low level description of data 

The MTx sensors are able to provide data in different way. They can be configured to send accelerometer, 

gyroscope and magnetometer data in "Calibrated mode" (i.e. single-precision floating-point values of 4 bytes 

each), or  in "Un-Calibrated mode‖ ( unsigned integer, 2 bytes each). They can also provide Euler angles (roll, 

pitch, yaw, single-precision floating-point values of 4 bytes each), quaternions (single precision floating point 

values), or the rotation matrix (floating point values single precision). 
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The Calibrated mode was prefereed for its generality, in this mode data are represented as a "strip" of 13 values 

of 4 bytes each for each sensor connected to Xbus Master. Three record of three values each are used for 

accelerometer, gyroscope, magnetometer, and four values are used for quaternions. 

Packets sent by X-Bus Master use  a format that depends not only on the selected output mode (e.g. 

―Calibrated‖ ―Uncalibrated‖), but also by the number of sensors connected to X-Bus Master. 

Each transmission  begins with a series of data that provides information about the sender, the number of 

connected sensors, and then the inertial data. The format is as follows: 

 

Field Description 

Preamble Starting packet 

BID 

 (Bus identifier) 

The address of the device  

 

MID 

(Message identifier) 

Type of message sent by “XBus Master” 

Length Amount of data contained in a single data packet 

Extended Length Used only if the number of sensors connected to “Xbus 

Master”  is grater than four, and is used to count the 

number of additional data sent from "Xbus Master" 

Data It contains the serialized data sent by the sensors in the 

format specified in the MID. 

Checksum Checksum for sent data 

Table 5  

 

The Fig. 46 gives a schematic representation of data  packet sent by the XBus Master. 

 

 

Fig. 46 - “XBus Master” packet 
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The expected format of the data is the following. 

 

Field Dimension  Comment 

Preamble 1 byte Constant values 0xFA 

BID 1 byte Constant value 0XFF 

MID 1 byte Expected 0x32 

Length 1 byte If the value is grater than 0xFF, more than 4 

sensor has been connected to  Xbus Master 

Extended 

Length 

2 byte Length of the additional data sent from "Xbus 

Master" (this field may not be present) 

Data  Not fixed Formatted data 

Checksum 1 byte Checksum 

 

As already mentioned, the format of the data in ―Data‖ field depends on the type of MID field. The MID has the 

expected value ―0x32‖ which specifies that the sensors are ready for measurements and X-Bus Master is ready 

to send data. The values in the ―Data‖ can have different configurations: the used mode is the forementioned 

"Calibrated mode" with  quaternions. Each sample consists of 13 single precision floating-point data, following 

the "IEEE 754" standard that uses 4 bytes each (see [4]).  Fig. 47 we can see represented the communication 

architecture. 

 

 

Fig. 47  - “XBus Master”  communication chain 
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XBus Simulator 

Xbus Simulator is a C# application that emulates the Xbus Master. The purpose of this emulator is to send data 

to the server for analysis,  using the previously acquired sample of movements  saved into files. This allows to 

run the acquisition, whenever it becomes necessary  instead of wearing  the sensors and repeat over and over 

again the same motions. Fig. 48 shows the program running. 

 

 

Fig. 48  - “XBus Simulator” running 
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Appendix B - Filters 

Here is a detailed description of Filters used for the process of feature extraction. 

Smoothing 

This filter is designed to flatten signal variations usually correlated to signal noise. The defect of this function is 

that it also flattens the peaks, even those who do not represent noise in the signal. 

The function calculates the arithmetic mean of values over a mobile window, which means that the window is 

shifted one value at a time on the set of values to be filtered. The greater the window the greater is the 

smoothing effect of the filtered signal. For the feature extraction process the correct dimension of the window 

has been choosen with heuristically.  Below in Fig. 49, an example of a raw signal (red) and a smoothed signal 

(blue) with a window of 20 values.  

 

 

 

Fig. 49  - In blue data smoothed with a windows of 20 values 

In Fig. 50 an example of a signal (red) with a smoothin filter (blue) with a window of 100 values. In the second 

example, the smooth effect is excessive. 

 

 

 

Fig. 50 - In blue data smoothed with a windows of 100 values 
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Low Pass Filter  

This filter has been implemented using using the Discret Fourier Transforms (DFT).  The purpose of this filter is 

to eliminate the noise in signals without altering the height of the most significant peaks. This is achieved by 

moving the signal from time domain to the frequency domain, and cutting the frequencies above a certain 

threshold. In Fig. 51 we can see an example of an acquisition where frequencies above 3 Hz have been 

eliminated (in blue). Peaks are flattened but mostly preserved. 

 

 

Fig. 51 - Signal filtered cutting the frequencies above 3  Hz 

 

The Fig. 52 represent  a signal filtered using  a low-pass filter with a cut frequency of 10 Hz. For the feature 

extraction process the cut frequency has been choosen using  an heuristic, and has been set to 4 Hz. 

 

Fig. 52  – Signal filtered cutting the frequencies above 10 Hz 

Variance 

The variance is a measure of statistical dispersion useful to understand how the values of a population deviate 

from the mean. In the analysis of sensory data it is very useful to identify the start of an event, because a change 

in the value of variance indicates a change of a certain intensity in the signal [4]. 

The implementation of the filter uses the same logic used in the smoothing filter, i.e. the variance is calculated 

on a sliding window. For each value it identifies n samples (where n is the size of the window), then calculates 

the variance of this interval and repeats the procedure for all samples of the signal. What you will get is a curve 

whose values is function of the variance of each window. 
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Newton’s Difference Quotient (First Derivative) 

The Newton’s Difference Quotient of a function is calculated as the ratio of the increment of the dependent 

variable (the increment of the values of the function) and the increment of the independent variable. 

The well known formula of Newton’s Difference Quotient is the following: 

 

 

 

The formula is used as a numerical approximation of  the first derivative of the original function. Formally, the 

derivative of the function ƒ at x is the limit  of the Newton’s Difference Quotient  when h tends to zero. 

Obviously a numerical approximation is necessary when the function  ƒ is not a formula, but a set of values. 

The implementation calculates the quotient of each sample returning a function that closely approximates the 

first derivative of the signal.  

Newton’s Difference Quotient (Second Derivative) 

Applying the difference quotient of  the prevously described function  it is possible to approximate the second 

derivative. 
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Appendix C  - Features 

Here is a detailed description of features used for the process of feature extraction. 

 

Maximum/Minimum Values Starting and Ending Values 

 

Usually an acquisition (a sample) lasts for less than a couple of seconds. Given a sample, we simply extract the 

maximum, the minimum value, the first and the last value of the given sample. 

Skewness 

Skewness is a statistical measure of the asymmetry of the probability distribution of a real-valued random 

variable. It is able to quantify if data are ―distributed‖ on one side or the other of the arithmetic mean. 

Qualitatively, a negative (positive)  skew indicates that the tail on the left (right) side of the probability density 

function is longer than the right (lieft) side and the bulk of the values  including the median lie to the right (left) 

of the mean.  A zero value indicates that the values are relatively evenly distributed on both sides of the mean, 

typically but not necessarily implying a symmetric distribution. The formula of Skewness is as follows: 

 

 

 

where  is the third moment of the mean  μ, and   is the standard deviation. 

 

 

Fig. 16 - “Skewness”  in a Gaussian distribution 
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Kurtosis 

In probability theory and statistics, kurtosis (from the Greek word κσρτός) is a measure of the "peakedness" of 

the probability distribution of a real-valued random variable. Higher kurtosis means the variance is the result of 

infrequent extreme deviations from mean. The formula of Skewness is as follows: 

 

 

 

where  is the fourth moment about the mean  μ , and   is the standard deviation. 

Zero Crossing Rate 

Zero Crossing Rate (ZCR) is the number of times a signal crosses the zero value, normalized  by the number of 

samples contained in the acquired set. The formula is as follows: 

 

 

 

Where  is the set of samples,  is the cardinality of , and  is the number of samples  

equal to zero. 

 

Mean Crossing Rate 

The Mean Crossing Rate (MCR) represents the number of times a signal crosses the value of the arithmetic 

mean of its values, normalized with the number of samples contained in the acquired set. The formula is as 

follows: 

 

 

 

Where  is the set of samples,  is the cardinality of , and   is the number of samples  

equal to the mean . 
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Mean 

The "Mean" feature  is  the arithmetic average of the window of data on which the analysis is carried out. The 

average formula is: 

 

 

Unlike the mean  and smoothing filters where a mobile windows  is used to filter the signals, this feature is 

applied to the complete set of signal values. 

 

Variance 

The "Variance" is computed exploting the definition of statistical variance. Statistical Variance is a dispersion 

index indicating the statistical measure of variation from the average. The formula for the variance is as follows: 

 

 

where   represents the average of the complete set of values, and   is the standard deviation. 

Unlike the variance filter, which calculates the variance on a window of values, this function calculates the 

extent of variance of all samples that are present in the acquisition.   
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Appendix D  - Classifiers 

Here is a detailed description of the used classifiers. 

Similarity Classifiers  

Rank Classifier 

The Rank classifier assigns a degree of similarity summing up the feature values of the given vectors and sorting 

the results.  In this case, the degree of similarity depends on the value of FF and IVFF. The formula used to 

calculate the similarity of every action is as follows: 

 

 

where  is the i-th interval-feature hit by the query, of the j-th Action in the Training Set table. 

The obtained  values are ordered from greatest to smallest. The j action that has the highest 

  value is the action that is considered more similar to the given  "query",. The function cost  is linear 

in time, the main algorithmic costs of the Rank classifier is the cost of ordering,  that prevails on the others (see 

Computational Costs, p.42).   

Cosine Similarity Classifier 

Cosine Similarity calculate the cosine of the angle between the query vector and each Actions class  (each 

column vector)  of the Training-Set table.  The j-th Action that has a ―smaller angle‖ is considered the most 

similar to the query [9].  

The formula used to calculate the Cosine Similarity is the following: 

 

 

Hence: 
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Where   represent the dot product 

 

 

 

 

 are the magnitudes calculated as follows  

 

 

 

 

 

where  A and  B generically represent two column vectors;  Aj  is the j-th colum vector of the Training-Set table 

and B is the query vector.  Bj  is the query vector  that dipends on  the “n” intervals problem that depends on . 

Here  is the i-th interval-feature of the j-th Action in the Training Set table, and   is the i-th interval-feature 

hit by the query.  

We have to note that  ,  are positive values given that   are positive, hence the calculated  

similarity values are in the domain [0,1] .  

The algorithm calculates similarity values of every actions of the Training Set to the given query and returns  

the results in ascending order. 

Tanimoto Classifier 

The Tanimoto classifier is a variant of the Cosine Similarity classifier and is an extension of the Jaccard 

coefficient that is usually related only to binary vectors. 

The formula is as follows: 
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Hence: 

 

 

 ,  e  are calculated according to the equations  Eq 1.2.3 , Eq 1.2.4 e Eq 1.2.5.  

The algorithm calculate similarity values, and orders the actions in ascending order. 

 

Note:  Many similarity functions are defined on  binary vectors; if  used with real numbers they can loose metric 

properties.  Therefore,  a transformation of the formulas is necessary to be used by algorithms that operate with 

non-binary vectors.  

 

For example, given the two vectors  , with   and   , where   , 

and  is the number of  elements of  and  .  We can write the formula of Jaccard coefficient for binary 

vectors  as following: 

 

 

Where   is the number of times the pair  = (1,1) ,  is the number of times the pair  = (0,1), and  

 is the number of times the pair  = (1,0). 

 

We can generalize the above expression to non binary cases redifining , ,  terms of the equation as follows: 

 

                                        

          

                                                                  

 

Using the above equations, is possibile to trasform many similarity algorithm from binary  to non-binary vectors 

cases (see [16]).   
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Simpson Classifier  

Simpson classifier measure the similarity between two vectors in an N-dimensional space. The similarity is 

calculated between the query vector and each vector column of the table of the Training-Set. The formula used 

to calculate Simpson classifier is as follows: 

 

 

 

Using the transform equation      the formula becomes: 

    

 

 

Given   and    ,     then             

where   e , and  N is the number of features, M is the number of actions. 

It follows: 

 

    

 

 

Hence  the Simpson classifier can be simplified as follows: 

 

   

 

 

The algorithm calculates the similarity using Simpson function, and returns the results in descending order. 

Braun-Blanquet Classifier 

The formula of  BraunBlanquet  classifier is as follows: 
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Using the usual transform equations the formula becomes: 

 

 

 

According to Eq.  and simplifying: 

 

 

 

 

The algorithm calculates the BraunBlanquet similarity and returns the results in descending order. 

Kulczynski 1 Classifier  

The formula of  Kulczynski 1 classifier is as follows: 

 

 

 

Using the transform equations the formula becomes: 

 

 

 

The algorithm calculates the Kulczynski 1 similarity and returns the results  in descending order. 

Kulczynski 2 Classifier  

The formula of Kulczynski 2 classifier is as follows: 
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Using the transform equations the formula becomes: 

 

 

 

The algorithm calculates the Kulczynski 2 similarity and returns the results in descending order. 

Dice-Sorensen Classifier  

The formula of Dice-Sorensen classifier is as follows:  

 

 

 

using the transform equations the formula becomes: 

 

 

 

The algorithm calculates the Dice-Sorensen similarity and returns the results in descending order. 

 

Otsuka Classifier 

The formula of Otsuka classifier is as follows: 

 

 

 

using the transform equations the formula becomes: 

 

 

 

The algorithm calculates the Otsuka similarity and returns the results in descending order. 
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Mountford Classifier 

The formula of Mountford classifier is as follows: 

 

 

 

using the transform equations the formula becomes: 

 

 

 

 

The algorithm calculates the Mountford similarity and returns the results in descending order. 

 

N-Classifier 

This classifier measures the similarity between the query vector and the j-th vector of Training Set, counting 

how many intervals the query and action have in common. Given a  query, the algorithm sum the number of  

interval set to “n‖ (null),  for  every actions of Training Set and then sorts the actions from the smallest to 

largest values. The action with the smallest value is the more similar. The higher the value, and the more an 

action is dissimilar from the query, conversely, the smaller the value, and the more the action is similar to the 

query. Roughly speaking this classifier take into account how much subspace the query have in common with 

the actions. 

 

NWeight-Classifier 

The  NweightClassifier is a variant of the  above described NClassifier. For each interval of the training set, this 

classifier calculates the ―horizontal frequency‖ of  the null ―n‖ interval  (nFrequency), interval by interval. For 

each Action  of the Training Set,  given a query, the algorithm counts how many terms set to ―n‖ are present in a 

given Action and instead of take an increment of 1, uses  an increment of  nFrequency value: 
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where   is the number of occurrences of the n terms in the interval-feature i, while  is the 

cardinality dictionary.  

The formula used to calculate NWeightClassifier is as follows: 

 

 

 

The algorithm calculates the NWeightClassifier similarity and returns the results in ascending order. 

 

Entropy Classifier 

In information theory, Entropy is defined as measure of the uncertainty of  random variable associated with a 

probability distribution  having observed a set of symbols           

.  

Here the distribituion of probability is   having observed 

the  features  , where N is the number of given features. 

Hence, the used formula of Entropy is as follows: 

 

 

 

When , we sum to  the quantity   

Given the query, agorithm calculate the Entropy of every action of the Traing Set table then returns the result in 

descending order. 
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Distance Classifiers 

These classifiers use the distance in N-dimensional space of features to measure the similarity between the 

query vector and a specific vector column of Training Set. The algorithms calculate the distance between the 

query vector with each column vector of the table of the Training-Set and the the action with the shortest 

distance is considered the most probable action to be performed. 

All the algorithms calculate the distance of the query with all the vector of the Training Set then order the results 

in ascending order (smaller to greater). 

 

Euclidean Distance Classifier 

The formula of euclidean distance is as follows 

 

 

 

Manhattan Distance Classifier 

The formula of Manhattan distance is as follows: 

 

 

Camberra Classifier 

The formula of Camberra distance is as follows: 

 

 

 

Where   must not be zero. 
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Chi-square Distance Classifier 

The formula of Chi-square distance is as follows: 

 

 

 

Where   must not be zero. 

 

Hellinger-square Distance Classifier 

The used formula of Hellinger-square distance is as follows: 

 

 

 

Hamming Distance Classifier 

The Hamming  distance for binary values has been defined as follows: 

 

 

 

Using the transform equation      the formula becomes: 

  

 

 

Where N is the number of analyzed features and is used as a normalization factor for  the calculated distance. N 

is not necessary to classify, as only relative ordering is important to say which action is closest  to the query. 
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Bray-Curtis Classifier 

La formula of  Bray-Curtis is as follows: 

 

 

 

 

Min-variance Classifier 

This classifier has been introduced as an  alternative method to caluclate the distance between two vectors in our 

context. The formula of the  min variance is as follows: 

 

  

 

 

Where  is the i-th interval-feature of the j-th Action in the Training Set table, and   is the i-th interval-

feature hit by the query, and where    e  vary on the number of N features and M  Actions 

(classes) present in the vocabulary. 

Given the  j-th Action Aj, with feature values xi,j and the Bj query with feature values yi,  the min variance takes 

into account the variance of the features values, in respect to the ―vertical average‖, i.e. the mean of the 

FFxIVFF of the given action and query. Then these values are respectively subtracted.  
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Correlation Classifier 

Pearson Correlation Classifier 

Only one correlation classifier has been used, the Pearson correlation to test if relevant differences arise. This 

classifier measures the correlation between the query vector and each column vector (Action class) of the 

Training Set table. The Pearson correlation has values in the interval [1, -1], and in particular: 

 

 If the query vector and the action class of the Training Set are directly correlated, the Pearson 

correlation value is 1 

 If the query vector and the action class of the Training Set are uncorrelated, the Pearson correlation 

value is 0. The inverse implication is not generally true. 

 If the query vector and the action class of the Training Set are inversely correlated, the Pearson 

correlation value is -1 

 

The formula of Pearson correlation  is as follows: 

 

 

 

The algorithm return the action in descending order (greater to smaller). 

The action directly correlated to  query vector with the best value, is considered the most probable executed 

action.  
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Appendix E  - Calibration 

Calibration of WARD Data 

As suggested by the U.C. Berkely researchers, the WARD database was Calibrated and Normalized (i.e. 

mapped to to correct useful range of values). Calibration requires to―center the data‖ on a general average (mean 

shifting). 

 

 

 

      Fig.  54  – Averages of accelerometer and magnetometer data component by component.  

 

In Fig. 54  we can see that in every sensor the averages of each component (Accelerometer X, Accelerometer Y, 

Accelerometer Z, Gyroscope X, Gyroscope Y) have different values. 

To align the averages, given the action a, the  sensor s, and component c the general average is  calculated, then 

is calculated the difference between the obtained average and the average  given component by component. 

Finally,  the difference is added to each sample in order to shift the samples of the right quantity. 
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In particular: 

1. For every sensor s , action  a  and component c, the general mean  is calculated  as 

follows: 

 

 

   

Where  is the avarage fixing the subject  S,  action a, trial t, sensor s and componente c, 

and where  and are respectively the number of subjects and the number of 

trials.  

 

2. For every subject  S, action a, trial t, sensor s and componente c  the shifting factor    is 

calculated as follows: 

 

 

 

3.The values of every component  is shifted using the following formula: 

  

 

 

Where   is the single i data sample given the subject S , action a,   trial t, sensor s of the 

component c. 

 

In Fig. 55  we can see an example of the results of the operation.  
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Fig.  55  – Averages of accelerometer and magnetometer data after the shifting component by component 

 

Normalization of the Calibrated Data. 

Normalization (mapping of the data to a correct codomain of values) of WARD data is necessary as we need the 

data to be within the  correct  range of values before to start the feature extraction process.  If this is not done we 

would  have a discretization thta could get incorrect results. The normalization and mapping of data  is different 

for accelerometers and gyroscopes. This is consistent since the two devices works differently. 

Accelerometer 

For each subject, action, trial and sensor, the average of the magnitude of accelerometer is calculated. Although 

the X, Y and Z averages are all aligned to the accelerometer sensor-action, the average of the magnitude may be 

not 9.81 m/sec
2
, as the formual of magnitude is a non-linear operation.  

Data are normalized as follows: 
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1. For every action a and sensor s the action-sensor mean of the average of magnitude of 

accelerometer is calculated as follows: 

   

 

 

where    is the average of the magnitude of accelerometers calculate from 

the calibrated data given  the subject S, action a, trial t e sensore s, and where   e 

sono rispettivamente il numero dei soggetti e il numero dei trial.  

 

2. Given the subject S, action a, trial t e sensor s, to every sample  i of the component c of 

accelerometer has been applied the formula: 

  

 

 

Where   is the single i data sample given the subject S , action a,   trial t and sensor s. 

of the component c. 

. 

Gyroscope 

The normalization (mapping) of calibrated data of the Gyroscope is done in the following way. 

For each sample of the X and Y gyroscope, given the subject S, action a, trial t, sensor s, the following  formula 

is applied: 

 

 

 

Where  and   are respectively the X axis and Y axis average of the calibrated 

data given subject S, action a, while   e  are the i-th data respectively of  

X and Y axes of the given acquisition, and 200 is a normalization parameter heuristically choosen.  
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