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3 

 If we begin with certainties, we shall end in doubts, 

but if we begin with doubts, and are patient in them, we shall end in 

certainties. 

 Francis Bacon 

 

The analysis of transcriptional data has become increasingly populating 

in the last decade due to the advent of new high-throughput technologies in 

genome research, since the reported invention by the Pat Brown laboratory 

in 1995 (Schena et al., 1995) and by Affymetrix in 1996 (Lockhart et al., 

1996). DNA microarray is a multiuse technology, in fact different 

technologies are employed to produce the microarray chips and different 

technical approaches are used for analyzing microarray data, ranging from 

statistical models of the decision process to machine-learning methods for 

identifying class predictors. The underlying technology is extremely 

complex. In fact, DNA microarrays generate large amounts of numerical 

data that should be analyzed effectively. Therefore the chosen of an 

appropriate analysis for DNA microarray experiments is the most important 

key to perform the assay and utilize the data correctly.  

Genome wide expression profiling is a powerful tool for the 

investigation of novel gene ensembles in cellular mechanisms of health and 

disease. In fact, the DNA microarray expression analysis can be used to 

study complex multigenic diseases such as cancer. The great challenge in 

understanding the genetics of such disorders is the identification of 

susceptibility genes, which are genes that increase a person's risk of 

developing the disease. Decades of molecular genetics researches have 

shown that cancer is a heterogeneous cellular disorder caused by the 

deregulation of many interacting cellular pathways that converge to generate 

tumor formation and growth. Since the draft sequence of the human genome 

was published in 2001 (Lander et al., 2001) the Cancer Genome Anatomy 

Project index of tumor genes has classified more than 40000 genes directly 

or indirectly involved in one or more cancers (Strausberg, 2001; Strausberg 
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et al., 2000). The rapid accumulation of high-resolution cancer genetic data, 

now promises to enable far more comprehensive and unbiased inference of 

uncharacterized cancer genes linked to complex tumor traits such as 

metastasis and angiogenesis (Vogelstein and Kinzler, 2004).  

During the last three years, I focused the attention on the analysis and 

the interpretation of GeneChip data, with the aim of setting up workflows 

useful to characterize different cellular physiological and pathological (i.e., 

cancer) conditions, to dissect the effects of nutrient perturbations on cell 

culture models, to interpret time-dependent gene expression fluctuations as 

well as to identify, by orthologous comparisons, phylogenetic conservation 

of promotorial regulative sequences and cancer cells signatures.  

Taking into consideration that the development of efficient methods that 

facilitate the biological interpretation of these data is crucial, in this thesis 

the work has been focused on some new ideas and analytical methods in 

order to get an efficient identification of cancer regulatory mechanisms. In 

this regard my thesis work proposes the use of several approaches for 

analysis and interpretation of gene expression data, based on the integration 

of different types of related biological information and software tools for 

efficient data analysis.  

The most important contribution of this thesis to the scientific 

community is the proposal of integrating different “omic” approaches for the 

study of systemic disease as cancer. It is worth pointing that the proceeding 

in this way requires gathering information from several fields, such as 

molecular biology, biochemistry, mathematic, informatics, statistic ect., 

which altogether provide fundamental knowledge to establish the 

contextualized study’s framework. 
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1. What is bioinformatics? 

Life sciences are currently at the center of informational devolution. 

Dramatic changes are begin registered as a consequence of the development 

of techniques and tools that allow the collection of biological information at 

an unprecedented level of detail and in extremely large quantities. The 

human genome project is a compelling example. The project was developed 

from an idea discussed at scientific meetings in 1984 and 1985 and a pilot 

project was begun by the Department Of Energy (DOE) in 1986 (Waterston 

et al., 2002). Initially, the plan to map the human genome was considered 

extremely ambitious, on the border of feasibility, but the entire genome was 

mapped in less than 3 years, at a much lower cost than initially expected. 

The nature and amount of information now available open directions of 

research that were once in the realm science fiction. Pharmacogenomics 

(Roses, 2000), diagnostic (Ross et al., 2000; Wellmann et al., 2000) and drug 

target identification (Marton et al., 1998) are just few of many areas that 

have the potential to use this information to change dramatically the 

scientific landscape of life sciences. 

Bioinformatics is an emerging discipline situated at the interface 

between computer science and biological sciences, such as molecular 

biology and genetics. Initially, the term bioinformatics was used to denote 

very specific tasks such as the activities related to the storage of data of 

biological nature in databases. As the field evolved, the term has started to 

encompass also algorithms and techniques used in the context of biological 

problems. Today the field of bioinformatics supports a broad spectrum of 

research including determination of the significance of vast biological data, 

provides the expertise to organize it, and develops practical computational 

tools needed to mine the data for the new information. The definition 

submitted to the Oxford English Dictionary, represents as well the no clear 

universally definition of bioinformatics. 
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(Molecular) bio-informatics: bioinformatics is conceptualizing 

biology in terms of molecules (in the sense of physical chemistry) 

and applying "informatics techniques" (derived from disciplines 

such as applied math, computer science and statistics) to understand 

and organize the information associated with these molecules, on a 

large scale. In short, bioinformatics is a management information 

system for molecular biology and has many practical applications. 

In other word, the bioinformatics is a discipline that stores all the 

information and turns it into understandable trends and facts that users can 

readily understand. 
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2. DNA Microarray Technology 

Although all of the cells in the human body contain identical genetic 

material, the same genes are not active in every cell. Studying which genes 

are active and which are inactive in different cell types helps scientists to 

understand both how these cells function normally and how they are affected 

when various genes do not perform properly. In the past, scientists have only 

been able to conduct these genetic analyses on a few genes at once. DNA 

microarray is a technology which enables the researchers to investigate and 

address issues which were once thought to be non traceable as the expression 

of many genes in a single reaction quickly and in an efficient manner. With 

the development of DNA microarray technology, however, scientists can 

now examine how active thousands of genes in a single experiment are 

(Schena et al., 1995), in order to understand, for instance, the fundamental 

aspects underlining the growth and development of life as well as to explore 

the genetic causes of anomalies occurring in the functioning of the human 

body. DNA microarrays are a significant advance because they contain a 

very large number of genes and because of their small size. Therefore, DNA 

microarrays are useful when there is the need to survey a large number of 

genes quickly or when the study sample is small. These technologies may be 

used to assay gene expression within a single sample or to compare gene ex-

pression in 2 different cell types or tissue samples, such as in healthy and 

diseased tissues. Because a DNA microarray can be used to examine the ex-

pression of hundreds or thousands of genes at once, it promises to revolu-

tionize the way gene expression is examined. 

2.1 The principle core  

Array technology was in use as early as the 1980s (Augenlicht et al., 

1984; Augenlicht et al., 1987) but did not come into prominence until the 

mid 1990s when cDNA microarrays emerged as an exciting new biomolecu-
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lar tool capable of probing the entire transcriptome of the cell (DeRisi et al., 

1996; Lockhart et al., 1996). As mentioned previously, the DNA microarrays 

technology (sometimes called DNA chips) is an assay for quantifying the 

types and amounts of mRNA transcripts present in a collection of cells. All 

microarray experiments rely on the core principle that the number of mRNA 

molecules derived from transcription of a given gene is an approximate es-

timation of its level of expression.  

Microarrays chip are microscope slides on which strands of polynucleo-

tides have been attached in specified positions. We refer to the polynucleo-

tides immobilized on the solid surface as probes. The probes consist either of 

cDNA printed on the surface or shorter oligonucleotides synthesized or de-

posited on the surface. The labeled targets bind by hybridization to the 

probes on the array with which they share sufficient sequence complemen-

tarity. The property of nucleic acid sequences of specifically build hydrogen 

bonds with the complementary nucleotide base pairs is the core technique 

principle of microarrays. A high number of complementary base pairs in a 

nucleotide sequence mean tighter non-covalent binding between the two 

strands. After washing off of non-specific bound sequences, only strongly 

paired strands will remain hybridized. Fluorescently labeled target sequences 

bind to a probe sequence that generate a signal that depends on the strength 

of the hybridization determined by the number of paired bases. Total 

strength of the signal, from a spot, depends upon the amount of target sample 

binding to the probes present on that spot.  

 2.2 GeneChips technologies 

The microarray platforms used to generate the raw data, known as the 

image file, are different and are closely related to the nature of study and 

consequently the experimental design. These various platforms were opti-

mized and validated during their development to maximize the accuracy of 

data. Each of them has a demonstrated efficiency with respect to its signal 
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dynamic range, discrimination power, reproducibility of raw data and fold 

change or expression level values. In this section the most commonly mar-

keted GeneChip platforms, used in every work of this thesis, will be briefly 

presented, for a detailed description and comparison of different platforms 

refer to (Hardiman, 2004). 

The new microarray technology is in situ-synthesized oligonucleotide 

arrays that use a photolithographic technique. Affymetrix pioneered this 

field, and, consequently, their GeneChips have gained increasing acceptance 

as the optimal method for determining transcriptional profiles with high lev-

el of reproducibility. The GeneChip platform consists of short single-

stranded DNA segments, oligonucleotides or oligos, which are built by 

chemical synthesis (Chee et al., 1996) and in this case the array is not a glass 

slide (as traditional microarray), but a silicon chip (Fodor et al., 1991). The 

oligonucleotides at all locations on the chip, are synthesized in parallel. 

Light-directed DNA synthesis is employed to construct high-density array 

using a combination of two techniques, photolithography and solid-phase 

DNA synthesis. Synthetic linkers containing photochemically removable 

protecting groups are attached to silicon substrate. Light is subsequently di-

rected through a photolithographic mask to specific areas on the chip sur-

face, producing localized photodeprotection. Chemical building blocks are 

incubated with the surface, and chemical coupling occurs at those sites that 

have been illuminated in the preceding step. The subsequent step requires 

light to be directed to different regions of the substrate using new masks and 

the chemical cycle is repeated. Arbitrary polynucleotides can thus be synthe-

sized in a highly specific manner at defined locations (Hardiman, 2004). Ge-

neChips are designed in silico, each gene target is probed by a number of 

distinct probes (10-25) collectively termed probe set. Some probes within a 

set are multiple independent oligonucleotides, in other word they hybridize 

to different regions of the same RNA (see Figure 1).  
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Figure 1: Example of image obtained by hybridizing the Affymetrix HG-

U133 GeneChip. Each gene is measured with one or several probe sets. 

Each probe set contains 11 probes which are 25 mer short oligonucleotides 

designed to match selected segments of exonic sequences of the gene, 

according to available data of gene sequences and annotations at the time 

the chip was designed (photolithography and in situ combinatorial 

chemistry-based synthesis). Accompanying each PM probe is a MM probe 

that is different from the PM probe only at the center base of the 25 mer. The 

probe pairs (the PM probes and their corresponding MM probes) are 

arranged on the chip at randomized locations to avoid systematic bias due to 

the chip layout. The basic unit in expression profiles obtained with such 

chips is probe set. For a gene with a single probe set on the chip, like gene 

A, the expression level of the probe set is the observed expression level of the 

gene. Genes with multiple probe sets, like gene B, will have multiple (not-

necessarily consistent) observations of expression levels in the profile. A 

single-color labeling strategy was employed. The array contained ~ 45000 

probes. The feature size is 18µm. 

A microarray experiment consists of the following components: a set of 

probes, an array on which these probes are immobilized at specified loca-

tions, a sample containing a complex mixture of labeled biomolecules that 
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can bind to the probes, and a detector that is able to measure the spatially re-

solved distribution of label after it has bound to the array. 

The expense of fabrication and frequency of sequence errors for Gene-

Chips increase with the length of the oligonucleotide probes employed, 

therefore relatively short 25 mer (25 bases in length) oligonucleotides are 

generally used. In order to obtain sufficient binding strength from 25 mer 

oligonucleotides, the hybridization conditions must be made less strict than 

for cDNA arrays or longer spotted oligonucleotide arrays. Consequently, 

substantial cross hybridization is possible. Probes are designed within 500 

base pairs of the 3’ end of each gene to hybridize uniquely in the same, pre-

determined hybridization conditions. Also an additional level of redundancy 

comes from the use of mismatch (MM) control probes identical to the per-

fect match (PM). In fact on high-density expression microarrays, a gene is 

usually interrogated using probes that either perfectly match the sequence in 

a segment of the target gene (PM probes), or contain a single mismatched 

nucleotide in the middle position of the corresponding perfectly matched 

probe (MM probes). The MM probes serve as controls for specific hybridi-

zation and they facilitate the direct subtraction of background and cross-

hybridization signals (in order to minimizing cross-hybridization effects). 

Some housekeeping genes are represented as three probe sets, one set de-

signed to the 5’ end of the gene, the second set to the middle of the gene and 

the third to the 3’end. They serve as controls for the quality of the hybridized 

RNA. In addition to species-specific genes, some spiked-in control probe 

sets are introduced to facilitate the control of the hybridization. Biotinylated 

cRNA derived from a biological sample is hybridized onto the microarray, 

after allowing sufficient time for the hybridization, the excess sample is 

washed off the solid surface, stained and scanned for fluorescence at a single 

wavelength. Finally, the arrays are scanned, images are acquired and CEL 

files generated, which are then used for data analysis. At that point, each 
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probe on the microarray should be bound to a quantity of labeled target that 

is proportional to the level of expression of the gene represented by probe 

sets. Figure 1 shows an example of the fluorescence intensities on the chip 

recorded by an imaging device.  

There are three principal differences between the Affymetrix GeneChip 

system and “traditional” cDNA microarrays in the study of gene expression. 

First, instead of hybridizing two RNAs labeled with different fluorophores 

competitively on one cDNA microarray, a single RNA is hybridized on the 

array in the Affymetrix system, and the comparisons are then made compu-

tationally. Second, GeneChip is not a competitive hybridization method and, 

in order to compare two samples, two separate microarrays are required. 

Third, in the Affymetrix arrays each gene is represented as a probe set of 10-

25 oligonucleotide pairs instead of one full length or partial cDNA clone.  

2.3 Bioinformatics work 

A general approach to perform gene expression profiling experiments is 

indicated as a work flow diagram in Figure 2 (Gibson, 2003) and includes 

multiple steps, each of which created several specific bioinformatics 

challenges. The first four steps can be grouped together and define is the so-

called “Experimental Design”, then there are two levels of statistical 

analysis: the former constitutes the low-level investigation, that provides 

quality experiment and the removal of background noise while the latter, 

high-level analysis, includes the development of methods designed to answer 

to biological questions, in other words, the purpose is the extrapolation of 

the information. 
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Figure 2: Example of gene expression profiling workflow (Gibson, 2003). 

Experimental design 

Due to the biological complexity of gene expression, microarray have 

multiple sources of variation, and experimental plans should ensure that 

effects of interest are not misunderstood with ancillary effects. The simplest 

microarray experiment looks for changes in gene expression across a single 
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factor of interest (class comparison analysis). Class comparison analysis 

focuses on determining whether gene expression profiles differ among 

samples selected from predefined classes and identifying which genes are 

differentially expressed among classes. For example, the class may represent 

different tissue types, the same tissue under different experimental 

conditions, or the same tissue type for different class of individuals. In 

cancer studies, the class often represents distinct categories of tumors 

differing with regard to stage, primary site, genetic mutations present, or 

with regard to response to therapy, the specimens may represent tissue taken 

before or after treatment or experimental intervention. In other word, the first 

step in choosing a good design is to identify which effects might possibly 

contribute to variation in the data between classes. 

The initial task is to define the objectives of the experiment. Each 

experimental design should optimize the chances of answering to a key 

hypothesis. There is a natural temptation to test all of the interesting 

questions in a single experiment, but this approach is dangerous, as overly 

complex experiments may be un-testable, meaning the data are not 

statistically powerful enough to answer to all questions. In practice, this is 

the direct result of too few replicates or too little experimental controls.  

There are three main elements to consider when designing a microarray 

experiment. First, replication of the biological samples is essential for 

drawing conclusions from the experiment. Second, technical replicates (two 

RNA samples obtained from each experimental unit) help to ensure 

precision and allow for testing differences within treatment groups. The 

technical replicates may be two independent RNA extractions or two 

aliquots of the same extraction. Third, spots of each cDNA clone or 

oligonucleotide are present as replicates (at least duplicates) on the 

microarray slide, to provide a measure of technical precision in each 

hybridization. Repeated spotting of the same clone on an array increases 
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precision (Lee et al., 2000; Lipshutz et al., 1999). It is critical that 

information about the sample preparation and handling is discussed, in order 

to help to identify the independent units in the experiment and to avoid 

inflated estimates of statistical significance (Churchill, 2002). 

Statistical analysis: low-level investigation  

Microarray data sets are commonly very large, and analytical precision is 

influenced by a number of variables. To properly compare summary 

measures of expression in terms of bias, variance, sensitivity and specificity, 

data for which we know the “truth” is required. Statistical challenges include 

taking into account effects of background noise and appropriate 

normalization of the data. For GeneChip data, some different models to 

normalize signal values or normalize probe pair values have been proposed 

(Bolstad et al., 2003; Geller et al., 2003; Irizarry et al., 2003a; Irizarry et al., 

2003b; Li and Hung Wong, 2001; Stuart et al., 2001). 

In order to be combined across studies, quantitative estimation must address 

the same measure or quantity, be standardized to the same scale, and include 

some measure of variability (Geller et al., 2003; Knudtson et al., 2006; 

Tusher et al., 2001). Moreover with the increasing awareness and usage of 

GeneChip technology and willingness to continue to use GeneChip software 

among many biologists, it is worth improving the performance or correcting 

the problems of the software.  

The normalization method used in GeneChip software is called scaling and 

is defined as an adjustment of the average signal value of all arrays to a 

common value, the target signal value, in order to make the data from 

multiple arrays comparable (Affymetrix, 2002; 

http://www.affymetrix.com/index.affx). Bolstad and Jonssson reviewed 

these methods and find quantile normalization to perform best (Bolstad and 

Jonsson, 2002). The goal of quantile normalization is to make the 

distribution of probe intensities the same for arrays. The normalization maps 
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probe level data from all arrays i = 1, … , I so that an I-dimensional quantile-

quantile plot follows the I dimensional identity line. The risk to remove 

some of the signal in the tails could be a problem of this approach. However, 

empirical evidences suggest this is not a problem in practice (Bolstad et al., 

2003). In general, algorithms that affect statistical analysis include:  

1. Image analysis: gridding, spot recognition of the scanned image 

(segmentation algorithm), removal or marking of poor-quality and 

low-intensity features (called flagging). 

2. Data processing: background subtraction (based on global or local 

background), determination of spot intensities and intensity ratios, 

visualization of data (i.e. see MA plot), and log-transformation of 

ratios, global or local normalization of intensity ratios. 

Statistical analysis: high-level investigation 

After removing the bad quality data, it is the time of exploration of reliable 

data. Because a typical microarray experiment contains a large number of 

hypotheses and a limited number of replicates, high false-positive rates are a 

common problem in the identification of Differential Expressing Genes 

(DEGs). An important factor in minimizing false positives is to incorporate 

an appropriate error model into the signal/noise metric. Therefore, the good 

quality data are further filtered so that only the genes that show some 

changes in the expression during the experiment are preserved in the dataset. 

There is a number of novel and very complex tests that are available or are 

being developed for analysis of large data sets, such as microarray data, that 

are sufficiently robust to accurately determine statistical significance.  

Most common statistical methods can be divided into one of these two 

categories: parametric statistics, which uses the numerical data, such as the 

arithmetic mean, standard deviation and other parameters to determine 

significant differences between sets of data; and non-parametric approaches, 
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such as Mann-Whitney U test (two groups) or Kruskal-Wallis test (two or 

more groups), that use ranks of numerical data rather than the data 

themselves. In the parametric tests assumptions regarding the normal 

distribution of the data and the quality of variance among the groups must be 

made. These assumptions are often sufficiently satisfied to make parametric 

statistics extremely useful and a feasible starting point for analysis. 

However, if data are generated from populations that do not meet these 

assumptions, these methods become unreliable because the mean and 

variance will no longer completely describe the population, therefore 

skewing of the data from non-normal variances will lead to false conclusions 

regarding the data set. Some series of high-level analysis that are commonly 

used are: T-test, ANOVA, Bayesian method or Mann-Whitney test, PCA, 

Clustering and other statistical methods that take the underlying structure of 

gene networks into account, representing either associative or causative 

interactions or dependencies among gene products (Dehmer et al., 2008; 

Dehmer and Emmert-Streib, 2008). 

2.4 Advantages and Disadvantages 

One of the biggest advantages of DNA microarray technology is that it 

can evaluate simultaneously the relative expression of thousands of genes by 

using small amounts of materials, providing gene signatures for particular 

physiological or pathological situations. In addition, the procedures can be 

easily automated. Furthermore, the capacity of measurement of gene 

expression by DNA microarray is huge, allowing researchers to take the 

expression of all genes from an individual into consideration i.e., for disease 

analysis in so called “personalized medicine”. One of the major 

disadvantages of DNA microarray technology is that it only evaluates gene 

expression at a transcriptional level, but often in the regulation of protein 

functions, other mechanisms as posttranscriptional modifications (i.e., 

phosphorylation) are involved. Moreover, a “hot” list is often provided by 
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statisticians to researchers, to describe which genes are mostly upregulated 

or downregulated, and those genes with minor or no changes in mRNA 

expression are often considered as not involved or not important by the 

researchers. However, there are numerous examples showing a 

disassociation between the abundance of mRNA and the level of translated 

protein for a gene of interest, and between the abundance of mRNA and the 

effect of the gene of interest on a particular biological process. 
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3. Methodologies 

3.1 Data pre-processing and normalization 

Microarrays measure the target quantity indirectly by measuring another 

physical quantity, the intensity of the fluorescence of the spots on the array 

for each fluorescent dye (see Figure 1). These images should be later trans-

formed into the gene expression matrix (image processing). This task is not a 

trivial one because: 

1. the spots corresponding to genes should be identified; 

2. the boundaries of the spots should be determined; 

3. the fluorescence intensity should be determined depending on the 

background intensity.  

Following image processing, the data generated for the arrayed genes 

must be normalized before the identification of interesting genes. This 

process is necessary to adjust the variability that depends on the nature of the 

experimental design. In fact, different non-biological sources of variability 

must be identified and mitigated, before to consider the sources of biological 

variability that we need to estimate. In particular, in the GeneChip experi-

mental process, the sources of variability are induced by the biological na-

ture of experimental (interesting genes), the sample preparation (total RNA 

isolation, as well as labeling) and the system (instruments and arrays). As a 

result of the standardization of the hybridization, staining, washing, and 

scanning, as well as the quality controls built into manufacturing processes, 

system noise is not a significant source of technical variation and does not 

need to be addressed (Sherlock, 2001). However, without careful technique 

and planning, sample preparation can be a large, unexpected, and unneces-

sary source of variation. The objective of normalization is to adjust the gene 

expression values of all genes on the array so that the genes that are not real-

ly differentially expressed have similar values across the arrays. 
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Data pre-processing steps, which
 
combine multiple probe signals into a 

single absolute call, are
 
known as normalization procedures. They usually 

involve three
 
steps: (a) background adjustment, (b) normalization and (c)

 

summarization (Gautier et al., 2004). The background adjustment is defined 

as the process of correcting probe intensities on an array using information 

only on that array. The normalization steps is the process of removing non 

biological variability between arrays and the summarization is the process of 

combining the preprocessed PM probes together to compute an expression 

measure for each probe set on the array. Different methods have been
 
de-

vised for each of the three steps and thus a great number
 
of possible combi-

nations exist, facing the microarray user community
 
with a complex and of-

ten daunting set of choices. 

The performance of a normalization
 
method would then be ranked based 

on the overall error estimate
 
in the prediction of the concentration of these 

mRNAs (Bolstad et al., 2003; Liu et al., 2005). Among the normalization 

methods used for the common Affymetrix GeneChip (see Figure 3), the Ro-

bust Multiarray Average (RMA) method and the statistical algorithm imple-

mented in Affymetrix's Microarray Suite (MAS5) program are considered the 

gold standard to control for systematic variation in samples of unrelated in-

dividuals (Bolstad et al., 2004; Chesler et al., 2005; Irizarry et al., 2003b).  
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Figure 3: Normalization strategies for Affymetrix GeneChip data. A) 

MAS5 normalizes the value of probe-set summary by linear scaling based on 

a reference array. B) RMA (robust multi-array average) normalizes the 

value of each probe by quantile normalization in multiple arrays (Do and 

Choi, 2006). 

3.1.1 MAS5 method 

Affymetrix Microarray Suite 5.0 (MAS5) is a program created by 

Affymetrix and it determines gene expression intensity by applying a 

Tukey’s Biweight algorithm (Hoaglin DC, 1983) to determine probe set 

intensity. This algorithm combines signals from the multiple PM and MM 

probes that target each transcript into a single value that sensitively and 

accurately represents its concentration, based on the p-value. MAS5 does 

this by calculating a robust average of the (logged) PM-MM values (Hubbell 

et al., 2002), increased variation is observed at low signal strengths and is at 

least in part due to the extra noise generated by subtracting the MM values 

from their PM partners (Irizarry et al., 2003b). MAS5 normalizes by picking 

specific regions within the GeneChip and adjusting the signal intensities for 

each probe to a user defined value. 
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Background correction 

MAS5 performs background correction using neighboring probe sets. The 

entire array area is divided into 16 rectangular zones and the lowest 2nd per-

centile of the probe values are chosen to represent the background value in 

given zones (Draghici et al., 2003). Then, the background value is computed 

as a weighted sum of the background values of the neighboring zones with 

the weight being inversely proportional to the square of the distance to a giv-

en zone. The negative value by subtraction of the position specific back-

ground is avoided with a small threshold value. 

Summarization, Normalization and Detection of Call 

MAS5 returns two values, the first, an estimate of transcript concentration, 

and the second, a measure of how much the software “believes” the first. 

This value is referred to as the detection p-value and it is subsequently used 

to generate a detection call, which flags the transcript as “Present”, 

“Marginal” or “Absent” (P/M/A). Probe intensities for each probe set should 

be summarized to define a measure of expression representing the amount of 

the corresponding mRNA species. Specifically the MAS5 signal (measure) 

is defined as  

signal = Tukey Biweight [log(PMij − CTij)]            (Eqn.1) 

with CTij a quantity derived from MM, that is never bigger than its PM pair 

(represent Change Threshold), on array i. Each of these measures relies upon 

the difference PM − MM with the intention of correcting for nonspecific 

binding. In more detail it is defined a error term as 

 log�PM�	 
  CT�	 �  log θ� �  ε�	          (Eqn.2) 

where εij and θi, represent random error term and expression quantity, re-

spectively. It is calculated as the anti-log of a robust average (Tukey bi-

weight) of the values of log (PMij - CTij). To avoid taking the log negative 

numbers, CT is defined as a quantity equal to MM when MM < PM, but CT 
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is replaced with PM x Tb (MM/PM), where Tb is the function of Tukey’s bi-

weight. See (Hubbell, 2001) for more details. 

MAS5 uses, for the normalization among multi-array experimental datasets, 

a simple linear scaling not on the probe level intensity but on the summa-

rized gene-level intensity. This approach is not effective on the dataset 

whose probe level intensity distribution contains large chip by chip differ-

ences (Zhang, 2004). This software gives the user the ability either to choose 

a particular target signal value or to choose a particular baseline array 

against which to normalize. Based on this choice, the normalization signal 

log values (SLV) are calculated as follows: 

����	 
 log�����                  (Eqn.3) 

where SLV denotes the signal log value for gene j on array i given by Eqn. 2 

and sfi is the scaling factor for array i. The signal value reported by the 

MAS5 software is 2 raised to the power of normalized signal log value. Af-

fymetrix software computes the scaling factor as 

��� �  log���� 
  log�� TrimMean!�2����!#                   (Eqn.4) 

where Sc is the target constant used for normalizing all arrays. The “Trim-

Mean” notation denotes the mean of the signal values on array i for the 

housekeeping genes, excluding outliers in the upper and lower 2% of the dis-

tribution. Affymetrix computes the trimmed mean on the absolute intensity 

scale. Because SLV is a log2 transformed value, the value is raised to the 

power 2 before taking the trimmed mean. If no housekeeping genes are iden-

tified, then the trimmed mean uses the signals for all of the genes on the ar-

ray. 

In addition to expression summaries, the Call information is also generated. 

Detection calls are used to determine whether the transcript of a gene is de-

tected (present) or undetected (absent), and it is make up by the intensity dif-

ference of PM and MM probe cells. The original approach to data analysis, 
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proposed by the manufacturer, was to use the MAS5 expression summary to 

provide an estimate of transcript concentration, alongside detection calls to 

filter out unreliable probe sets. Despite the fact that the expression summary 

algorithm has been shown to perform poorly on the test datasets described 

above, many researchers have continued to use this combined strategy to 

process their data. Several different methods have been used to make detec-

tion calls (Liu et al., 2002; Lockhart et al., 1996). The most widely used and 

robust results to use a signed rank test to consider the significance of the dif-

ference between the PM and MM values for each probe set (Liu et al., 2002). 

3.1.2 RMA method 

Robust Multichip Average (RMA) is one of the most popular algorithms 

for pre-processing probe level data from oligonucleotide arrays. In the RMA 

model, it is assumed that the observed PM intensities are the sum of noise 

(considered to be normally distributed) and signal (exponentially distri-

buted), and the information of the MM intensities is ignored, which cause 

more variance (Cope et al., 2004). RMA provides a greater than five-fold re-

duction of the within-replicate variance as compared to other methods, pro-

vides more consistent estimates of fold change, and provides higher specific-

ity and sensitivity when using fold change analysis to detect DEGs (Irizarry 

et al., 2003a). RMA is unique in that it adjusts for background noise, per-

forms a quantile normalization, transforms data into a log2 and then summa-

rizes the multiple probe into one intensity (Bolstad et al., 2004; Bolstad et 

al., 2003; Cope et al., 2004; Irizarry et al., 2003a; Irizarry et al., 2003b). 

Background correction 

Irizarry (Irizarry et al., 2003b) conducted a global background correction by 

signal and noise (background) convolution model. The background is as-

sumed to be additive, so that the intensity of PM probe is a sum of back-

ground and foreground (spot) intensities. In particular, PM intensity distribu-

tion is modeled by an exponentially distributed signal component S with pa-
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rameter λ, and a normally distributed background component B with mean µ 

and standard deviation σ. E(S|PM) represents background corrected value of 

each PM. φ and Φ are the normal density and cumulative density, respective-

ly. Positive signal components are estimated after adjustment of the back-

ground components. It is also assumed that error in intensity values is mul-

tiplicative, i.e., the larger the absolute intensity value, the larger the error. 

$% � � � &             (Eqn.5) 

� ~ ()*�+                  (Eqn.6) 

& ~ ,�-, /             (Eqn.7) 

0��|$% � $% 
  - 
  +/�          (Eqn.8) 

 / �  23456 76 89:9 ;<23 7= 89:9 ;
>3456 76 89:9 ;<>3 7= 89:9 ;                     (Eqn.9) 

Normalization 

After background correction, the normalization of GeneChip data can be ap-

plied onto probe levels as well as onto gene expression measures depending 

on normalization strategies. RMA adopted probe level quantile normaliza-

tion that makes the distribution of probe intensities for each array in a set of 

arrays by taking the mean quantile and substituting it as the value of the data 

item in the original dataset. The goal of the quantile method is to make the 

same distribution of probe intensities for each array in a set of arrays. A 

quantile-quantile plot shows that the distribution of two data vectors is the 

same if the plot is a straight diagonal line and not the same if it is other than 

a diagonal line. Also the quantile normalization has been shown to have the 

best performance and works by making the distribution of intensities at the 

probe level (Bolstad et al., 2003). The quantile normalization algorithm ap-

pears to more performance and also is less noisy than all other methods 

(Bolstad and Jonsson, 2002; Irizarry et al., 2003b). Quantile normalization 
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method assumes that the distribution of intensity values is similar on every 

chip.  

One possible problem of this method is that it forces the quantile values to 

be equal. This would be most problematic in the tails where it is possible that 

a probe could have the same value across all the arrays. However, since 

probe set expression measures are typically computed using the value of 

multiple probes (Bolstad et al., 2003). 

Summarization of probe set 

Expression values are calculated from rearranged mean (normalized) values 

using median polishing. Median polishing is an iterative method, which aims 

to centralize both column medians and row medians to one. The 

summarization used is motivated by the assumption that observed log-

transformed PM values follow a linear additive model containing a probe 

affinity effect, a gene specific effect and an error term. In the case of RMA, 

median polishing works on a matrix were every row corresponds to one gene 

and every column to one chip. The median for every row is calculated and 

the median is subtracted from the intensity values so that the row median 

becomes one. Next, the median for every column is calculated and the 

median is subtracted from the intensity values so that the column median 

becomes one. RMA implementations work with log-transformed data, so at 

the median polishing phase the row and column medians are actually 

centered to zero. A common early step in microarray data analysis is log 

transformation. Log transformation has several important effects: a) allows 

normalization of data even though error in Signal intensity increases as the 

magnitude of Signal intensity increases; b) makes data more symmetrical; 

and c) reduces the influence of a single measurement (Durbin et al., 2002). 
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3.2 Analysis of Variance (ANOVA) 

Microarray data can be interrogated using ANalysis Of VAriance (ANO-

VA), a powerful and general method of data analysis that has been extensive-

ly developed and studied for more than 75 years (Fisher, 1925). Analysis of 

Variance is one of the most commonly used multivariate statistic method, 

and its purpose is to test for significant differences between the means of 

several groups (Gelman, 2005). The ANOVA will give the same result as the 

t-test, when two means are compared. However, unlike the t-test, ANOVA 

does not specify which of the groups are significantly different from each 

other, but it only determines that there are significant differences. In the 

ANOVA, the effect size is the difference between the two populations di-

vided by estimated population standard deviations. Subsequently a p-value is 

generated and can be used to determine the significance of results. 

3.2.1 Problem definition and model assumptions  

Let us consider an experiment measuring the expression level of a given 

gene in a number of k conditions. Each gene i is measured n times for a total 

of measurements of  

∑
k

i=1 ni                                                                            (Eqn.10) 

The basic question is to decide whether there is any difference in the 

expression level of the given gene between the k conditions. Under the null 

hypothesis that the different conditions are not really different and, therefore, 

all measurements actually come from a single distribution. In these 

conditions, all means would be the same: 

H0 : µ1 = µ2 = … = µk                                       (Eqn.11) 

The alternative hypothesis is that there are at least two means that are 

different from each other. This particular data layout and set of hypotheses is 

characteristic to a Model I (or fixed effects) ANOVA. In this model, the 

specific interest is the differences between any pair of the specific conditions 
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considered. If such differences exist, it is of interest to identify which are the 

elements that differ from each other. Furthermore, in this data layout, each 

measurement belongs to single group. In other words, the data was factored 

one-way. This analysis is called a one-way ANOVA and it is a parametric 

test, that involve a number of assumptions as follows: 

1. The k samples are independent random samples drawn from k specific 

populations with means µ1, µ2, …, µk;  

2. All k populations have the same variance σ
2 
(homoscedasticity); 

3. All k populations are normal. 

The strictest assumption, for which the test is not robust, is the 

assumption of independence (Boneau, 1960). Another main problem is that 

the statistical hypothesis testing does not provide absolute conclusions. 

Instead, each time a null hypothesis is rejected, there is a non zero 

probability of the null hypothesis being actually true. This is the probability 

of a Type I error (or significance level). When many of such tests are carried 

out for purpose of drawing a single conclusion, a single mistake in each one 

of the individual test is sufficient to invalidate the conclusion. Thus, the 

probability of a Type I error increases with the number of tests even if the 

probability of Type I error in each test is bounded by the chosen level of 

significance.  

Briefly summarizing, ANOVA is a statistical tool used to identify 

differences between experimental group means. ANOVA is commonly used 

in experimental designs with one dependent variable that is a continuous 

numerical parametric outcome measure and multiple experimental groups 

within one or more independent (categorical) variables. These independent 

variables are called factors and groups within each factor are also referred to 

as levels. Depending on the number of factors included in the model, it is 

possible distinguish one way and n-way ANOVA. One-way ANOVA can be 
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used when the researcher wants to examine the influence of only one 

independent variable (factor) on the dependent variable. At its simplest, a 

one-way ANOVA can be used to test the hypothesis that some variable of 

interest differs among groups (one factor); two-way ANOVA can test for 

differences among groups while controlling for other categorical variables 

(two factors); and thus extending (n-factors). 

3.2.2 One-way ANOVA 

The null hypothesis tested by one-way ANOVA is that two or more 

population means are equal. The question is whether (H0) the population 

means may equal for all groups and that the observed differences in sample 

means are due to random sampling variation, or (Hn) the observed differenc-

es between sample means are due to actual differences in the population 

means. The general idea behind one-way ANOVA in microarray experiment 

is every measurement in a microarray experiment is associated with a partic-

ular combination of an array in the experiment, a variety, and a gene. The 

measurements of each array (condition) vary around their mean. This is a va-

riability within group and will be characterized by a corresponding within 

group variance. At the same time, the means of each treatment will vary 

around an overall mean. This is due to an inter-group variability. Finally, as 

result of two above, each individual measurement varies around the overall 

mean. These mean that ANOVA is to study the relationship between the in-

ter-group and within-group variabilities (or variances) (Nickerson, 2000). 
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Figure 4: Representative example of ANOVA. It tests if the central tendency 

(mean) is different between samples. In the figure, there are two 

subpopulations representing two hypothetical samples with the normality 

assumption (normal bell-shaped curve). The y-axis measures the variable 

(given by frequency) and the x-axis the mean of samples. 

Figure 4 shows two samples with means µ as 5 and 7. In this case, the 

variability within groups is much smaller than the overall variability. Thus 

this may allow to reject the hypothesis that the two samples were drawn 

from the same distribution and so to accept that there is a significant 

difference between the two samples. In general, the ANOVA method seeks 

to detect sources of variation in the values of dependent variable and divide 

the total variability into components associated with each source. The total 

variability is the sum of squared deviations of each measurement from the 

overall mean and can be decomposed into a sum of squares (SS) due to 

suspected sources of variation (model sum of squares) and a sum of squares 

(SS) resulting from the error: 

SS (Total) = SS (Model) + SS (Error)                                 (Eqn.12) 

The first step is to check the data to make sure that the raw data are 

correctly assembled and that assumptions have not been violated in a way 
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that makes the test inappropriate. From the assumption 2, the variance is the 

same within the two populations. An unbiased estimate of this common 

population variance can be calculated separately from each sample. The 

numerator of the variance formula is the sum of squared deviations around 

the sample mean, or simply the sum of squares for sample j (abbreviated as 

SSj). The denominator is the degrees of freedom for the population variance 

estimate from sample j (abbreviated as dfj). 

Unbiased estimate of  /	�=  ∑ �@AB< @CB#:A �DB< E# �  FFBGHB �  �	�             (Eqn.13) 

To pool two or more sample estimates of a single population variance, 

each sample variance is weighted by its degrees of freedom. This is 

equivalent to adding together the sums of squares for the separate estimates, 

and dividing by the sum of the degrees of freedom for the separate estimates. 

Pooled estimate of  /@�=  �DI<EFI:J �D:<EF::
�DIJ D:< � �  FFIJ FF:GHIJ GH: �  �@� 

(Eqn.14) 

Subsequently, it is necessary to examine a second approach to testing 

two means for equality. The logic of this approach extends directly to one-

way analysis of variance with k groups. These two estimates are expected to 

be equal if the population means are equal for all k groups (Equation 11), but 

the estimates are expected to differ if the population means are not all the 

same. In ANOVA terminology, the numerator of Equation 14 is called the 

Sum of Squares Within Groups (SSWG) and the denominator is called the 

degrees of freedom Within Groups (dfWG). The estimate of the population 

variance from Equation 14, SSWG/dfWG, is called the Mean Square Within 

Groups (MSWG). Equation 15 is an equivalent way to express and compute 

MSWG as 
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Within-groups estimate of /@� =   ∑ �@AB< @CB#:AB∑ �DB< E#B �  FFKLGHKL �  %�MN    

(Eqn.15) 

 If the null hypothesis is true and the assumptions are valid (random, 

independent sampling from normally distributed populations with equal 

variances), then a second independent estimate of the population variance 

can be calculated. As is stated by the Central Limit Theorem, if independent 

samples of size n are drawn from some population with variance, an 

unbiased estimate of the variance for the distribution of all possible sample 

means (for samples of size n) are calculated as:  

est /	�  �  �@� �  ∑ �@CB< @C..#:B �P< E              (Eqn.16) 

Calculation of this second estimate of the population variance using 

ANOVA notation is shown in Equation 17. The MSBG is the best estimate of 

the population variance based only on knowledge of the variance among the 

sample means. Equation 17 allows for unequal sample sizes and it is 

computed as  

Between-groups estimate of /@� =   ∑ DB�@CB< @C..#:B �P< E �  FFQLGHQL �  %�RN    

(Eqn.17) 

The ANOVA is performed using F statistic based on the ratio of between-

group to within-group variance estimates: 

F = MS(Model) / MS(Error)                                                (Eqn.18) 
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The F ratio is designed as 

S�T�RN , T�MN �  &(UV((W 
 XYZ[*� (�U�\]U( of /_2`�Ua�W 
 XYZ[*� (�U�\]U( of /_2 �  %�`b%�&b  

(Eqn.19) 

When more than two group means are compared in ANOVA (i.e. there 

are three treatment groups in the study), the F statistic will only tell us 

whether there are significant differences in the group means as a whole. It 

will not tell us what are the differences between each groups and which 

group means differ from each other. Thus, ANOVA is usually followed up 

with a multiple comparison procedures with the purpose of identifying 

which group means differ from each other. 

3.2.3 Two-way ANOVA 

In a one-way ANOVA, the effects of various levels or treatment 

conditions of one independent variable on a dependent variable are 

examined. Many experimental designs can be established to test the effect 

that two variables may have on a data set. For example, it may examine 

normal vs. tumor cells, along with the effect of two different drugs, making a 

total of four different sample sets. In this case a two-way ANOVA can be 

used to investigate differences in gene expression between the different 

conditions, as well as type of cells differences within and between each 

condition. In this case, two separate ANOVAs cannot adequately examine 

the possible interactions that can be generated between the two variables, 

and, so, a two-way analysis of variance is the best methodology. A two-way 

ANOVA consists of three significance tests: a test of each of the two main 

effects and a test of the interaction of the variables. 
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3.3 Principal Component Analysis (PCA) 

In gene expression experiments each gene and each experiment may be 

represented as dimension. For example, a set of 10 experiments involving 

20000 genes may be conceptualized as 20000 data points (gene) in a space 

with 10 dimensions (experiments) or also 10 points (experiments) in a space 

with 20000 dimensions (genes). This simple example gives a clear 

visualization of the problem of the large number of dimensions that lies into 

the nature of microarray experiments. Different approaches try to reduce the 

number of dimensions and also the complexity of problem. A common 

statistical approach is to pay attention to those dimensions that account for a 

large variance in the data and to ignore the dimensions in which the data do 

not vary much. This is the approach used by Principal Component Analysis 

(PCA) (Ringner, 2008). 

PCA is an exploratory multivariate statistical technique for simplifying 

complex data sets (Basilevsky, 1994; Hoaglin et al., 1983). Given m obser-

vations on n variables, the goal of PCA is to reduce the dimensionality of the 

data matrix by finding r new variables, where r is less than n. Termed prin-

cipal components, these r new variables together account for as much of the 

variance in the original n variables as possible while remaining mutually un-

correlated and orthogonal. Each principal component is a linear combination 

of the original variables, and so it is often possible to ascribe meaning to 

what the components represent. Therefore, the principal components are li-

near combinations of random or statistical variables which have special 

properties in terms of variance. Principal components analysis has been used 

in a wide range of biomedical problems, including the analysis of microarray 

data in the search of outlier genes (Hilsenbeck et al., 1999) as well as the 

analysis of other types of expression data (Craig et al., 1997; Vohradsky et 

al., 1997) and also in the cluster analysis of data (Peterson, 2003). A PCA 

analysis of DNA microarray data can consider either the genes or the expe-
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riments as variables. When genes are variables, the analysis creates a set of 

“principal gene components” that indicate the features of genes that best ex-

plain the experimental responses they produce. When experiments are the 

variables, the analysis creates a set of “principal experiment components” 

that indicate the features of the experimental conditions that best explain the 

gene behaviors they elicit. When both experiments and genes are analyzed 

together, there is a combination of these effects, the utility of which remains 

to be explored. By using a few components, each sample can be represented 

by relatively few numbers instead of by values for thousands of variables. 

Samples can then be plotted, making it possible to visually assess similarities 

and differences between samples and determine whether samples can be 

grouped.  

Descending in more detail, PCA calculates a new system of coordinates 

(principal components). To compute they, the n eigenvalues and their cor-

responding eigenvectors are calculated from the nxn covariance matrix of 

conditions. Each eigenvector defines a principal component (PC). A compo-

nent can be viewed as a weighted sum of the conditions, where the coeffi-

cients of the eigenvectors are the weights. The projection of gene i along the 

axis defined by the jth principal component is: 

 ]�	′ �  ∑ ]�cDcdE ec	            (Eqn.20) 

Where vtj is the tth coefficient for the jth principal component; ait is the ex-

pression measurement for gene i under the tth condition. A’ is the data in 

terms of principal components. Since V is an ortho normal matrix, A’ is a ro-

tation of the data from the original space of observations to a new space with 

principal component axes. The variance accounted for by each of the com-

ponents is its associated eigenvalue; it is the variance of a component over 

all genes. Consequently, the eigenvectors with large eigenvalues are the ones 

that contain most of the information; eigenvectors with small eigenvalues are 

uninformative. 
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In intuitive terms, the covariance matrix captures the shape of the set of 

data points. In Figure 5A is illustrated an n-dimensional hyper-ellipsoid 

which includes the data. The eigenvectors of covariance matrix, or the direc-

tions found by the PCA, will be the directions of the main axes of the ellipse 

and most of the variability in the data lies along a one-dimensional space that 

is described by the first principal component (PC1). In this example the 

second principle component (PC2) can be discarded because the first prin-

ciple component captures most of the variance present in the data. The es-

sential aspect of the PCA is related to the fact that the absolute value of ei-

genvalues are directly proportional to the dimension of the multidimensional 

ellipse in the direction of corresponding eigenvector. Deciding how many 

and which components to use in the subsequent analysis is a major challenge 

that can be addressed in several ways (Khan et al., 2001; Landgrebe et al., 

2002; Saal et al., 2007). In general, as shown in Figure 5B the first principal 

components are able to capture the most of the variance of the data. 

 

Figure 5: Example of PCA analysis. A) In this data set most of the variance 

is along the first Eigenvector (PC1) with a small variance along the second 

direction (PC2) being probability due to the noise. The PCA will find a new 

coordinate system in which the first coordinate is the direction on which the 

data have maximum variance (the first eigenvector), the second coordinate 

is perpendicular on the first and captures the second largest variance, etc. 

B) The variance of the principal components. 
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The first application of PCA is to explore high-dimensional data sets, as 

outlined above. Most often, three-dimensional visualizations are used for 

such explorations, and samples are either projected onto the components, as 

in the examples here, or plotted according to their correlation with the com-

ponents (Alter et al., 2000). The principal components are uncorrelated and 

they may represent different aspects of the samples. This suggests that PCA 

can serve as a useful first step before clustering or classification of samples, 

and more in general PCA can potentially provide insights into different 

choices of pre-processing and variable selection.  

In spite of its usefulness, PCA has also drastic limitations. Those limita-

tions are mainly related to the fact that PCA only takes into consideration the 

variance of the data that is a first order statistical characteristic of the data. 

Another major limitation is that PCA takes into account only the variance of 

the data and completely discards the class of each data point. In some cases, 

such handling of the data will not produce the required results as the classes 

would not be defined by the PCA. Furthermore, PCA may fail to distinguish 

between classes when the class variance is the same. PCA’s limitations may 

be overcome by alternative approaches by using higher order statistical de-

pendencies as Skew and Kurtosis (Hyvarinen and Oja, 2000).  

3.4 Clustering Algorithms 

Clustering is a classification of patterns (observations, data items, or 

feature vectors) into groups (clusters). The clustering problem has been ad-

dressed in many contexts and by researchers in many disciplines; this re-

flects its broad appeal and usefulness as one of the steps in exploratory data 

analysis. However, clustering is a difficult combinatorial problem, and dif-

ferences in assumptions and contexts in different communities has made the 

transfer of useful generic concepts and methodologies slow to occur. Cluster 

analysis is currently the most frequently used multivariate technique to ana-

lyze gene sequence expression data. Clustering has become so popular in 
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this field, (Ben-Dor et al., 1999; Claverie, 1999; Zhang, 1999) and it is so 

great that sometimes clustering is mistakenly taken as a very fuzzy and all-

inclusive ultimate goal of microarray data analysis. In fact, clustering is the 

process of grouping together similar entities and it can be done on any data: 

genes, samples, time points in a time series, etc. This kind of statistical infe-

rence is particularly important in the context of analyzing high-dimensional 

genomic data sets. The particular type of input makes no difference to the 

clustering algorithm, in fact all inputs are a set of n numbers or an n-

dimensional vector. It is obviously unquestionable the great strength of this 

approach, that has the ability, for example, to identify without a priori know-

ledge about the data gene sets that show similar patterns of expression. 

Therefore it is possible to exploit this potential only after making several de-

signing choices carefully. Before comparing the clustering methods, it is im-

portant to start to define the meaning of similarity. 

3.4.1 Measure of similarity 

In the mathematical language a measure of similarity is called distance 

or metric. A distance is a formula that takes two points in the input space of 

the problem and calculates a positive number that contains information about 

how close the two points are to each other. The input space of the problem is 

a n-dimensional space so the two points can be for instance two measured 

across n experiments, each represented by the expression values of n genes. 

In other words, we define an “expression vector” for each gene that 

represents its location in the “expression space”. Any function d that satisfies 

the following tree properties is termed a distance: 

1. no-negativity d(x,y) ≥ 0; 

2. symmetry d(x,y) = d(y,x); 

3. identification mark d(x,x) = 0. 
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There are many different ways in which such a measure of similarity can be 

calculated. Because there are many different types of data (i.e., ordinal, 

nominal, continuous) and approaches for analyzing these data, the literature 

on distances is quite broad. References that considerer the application of 

distances in either clustering or classification include: (Kaufman and 

Rousseeuw, 1990) and (Duda et al., 2001). In the following paragraphs the 

common principal distances used in the analysis of gene expression data are 

introduced (Johnson, 1998).  

Euclidean distance 

The Euclidean distance (De Smet et al., 2002; Wang et al., 2002) between 

two n-dimensional vectors, x = (x1, x2, ... , xn) and y = (y1, y2, ... , yn), is:  

Tf �x, y �  i�)E 
 _E � � �)� 
 _� � � j � �)D 
 _D� �
 kl �)� 
 _� �D�dE                      (Eqn.21) 

This is the useful distance that is used for most of the practical purposes. Its 

numerical value comes from Pythagorean Theorem, where xi and yi are the 

measured expression values, respectively for gene X and Y in the 

experiment i, and the summation runs over the n-experiments under analysis. 

It works well when a data set has “compact” or “isolated” clusters (Mao and 

Jain, 1996). 

Standardized Euclidean distance 

All the distances so far considered give exactly the same importance to all 

dimensions. The idea behind standardized Euclidean distance is that not all 

directions are necessarily the same relevance. The standardized Euclidean 

distance takes this into consideration by dividing the distance of each 

dimension by the standard deviation of each dimension. The standardized 

Euclidean distance between two n-dimensional vectors, x = (x1, x2, ... , xn) 

and y = (y1, y2, ... , yn), is:  
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Tf �x, y �  k EmI: �)E 
 _E � � j � Emn: �)D 
 _D � �  op EmI: �)� 
 _� �D
�dE    

         (Eqn.22) 

Manhattan distance 

The Manhattan distance between two n-dimensional vectors,                         

x = (x1, x2, ... , xn) and y = (y1, y2, ... , yn), is:  

Tf �x, y � |)E 
 _�| � |)E 
 _�| � j �  |)D 
 _D|  �  ∑ |)� 
 _�|D�dE   

                             (Eqn.23) 

where |)� 
 _�|  represents the absolute value of the difference between xi 

and yi . The Manhattan distance (also called city-block) is the distance that 

one needs to travel in an environment in which one can move only along 

directions parallel to the x and y axes, in other words no diagonal 

movements are possible. The Manhattan distance is independent on the path 

travelled between the two points. 

Chebychev distance 

The Chebychev distance between two n-dimensional vectors,                        

x = (x1, x2, ... , xn) and y = (y1, y2, ... , yn), is:  

Tqrs �x, y � max�|)� 
 _�|              (Eqn.24) 

The Chebychev distance simply picks the largest difference between any two 

corresponding coordinates. For instance if the vectors  x = (x1, x2, ... , xn) and 

y = (y1, y2, ... , yn) are two genes measured in n-experiments each, the 

Chebychev distance will pick the experiment in which these two genes are 

more different and will consider the distance between them as the effective 

value of distance between the genes. It is used when the goal is to reflect any 

big difference between any corresponding coordinates. 
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Correlation distance 

The Pearson correlation distance (D'Haeseleer, 2005; Jiang, 2003; Yang, 

2002) between two n-dimensional vectors,                                                      

x = (x1, x2, ... , xn) and y = (y1, y2, ... , yn), is:  

Tt �x, y � 1 
  Ys@                                   (Eqn.25) 

where rxy  is the Pearson correlation coefficient of vectors x and y:  

Ys@ �  mvwimvimw �  ∑ �sA<sx�@A<@CnAyIkl �sA<sx: nAyI kl �@A<@C: nAyI
                      (Eqn.26) 

The Pearson correlation coefficient varies only between -1 and 1, so the 

distance (1- rxy) will take values between 0 and 2. The Pearson correlation 

focuses on whether the coordinates of two points change in the same way. 

The magnitude of coordinates is less important since the denominator will be 

proportional to the magnitude of the vectors. If the vector is a set of 

measurements of given genes in a particular experiment and two such 

experiments are compared, the Pearson distance will be high if the genes 

vary in a similar way in the two experiments even if the change in the 

magnitude of the coordinates differs greatly. One drawback of Pearson’s 

correlation coefficient is that it is not robust with respect to outliers (Heyer et 

al., 1999).  

Distances are an integral part of all machine-learning algorithms and 

hence play a central role in the analysis of most experimental data. The 

distance that is used for any particular task can have a profound effect on the 

output, in fact the clustering procedure by a given algorithm is highly 

dependent on the distance metric used. Changing the distance metric may 

affect dramatically the number and membership of the clusters as well as the 

relationship between them. Both Euclidian distance and Pearson’s 

correlation coefficient seem to work well as distance measure. In additional 

Euclidian distance may be more appropriate for log ratio data, while 



Introduction  

 

44 

Pearson’s correlation coefficient may be better for absolute vaulted data 

(Gibbons and Roth, 2002). 

3.4.2 Algorithms 

Various clustering techniques have been applied to the identification of 

patterns in gene expression data, here are described only the methods used in 

this thesis. In general the clustering techniques can be described and 

classified in different ways (Jain and Dubes, 1988) for instance, as divisive 

or agglomerative. A divisive method begins with the clusterization of all 

elements in one cluster that is gradually broken down into smaller and 

smaller clusters. Agglomerative techniques start with single-member clusters 

which are gradually fused together. Further, clustering can be either 

supervised or unsupervised. Supervised methods use existing biological 

information about specific genes that are functionally related to “guide” the 

clustering algorithm. More in general supervised methods assign some 

predefined classes to a data set, whereas in unsupervised methods no prior 

assumptions are applied. 

The principal clustering techniques used are Hierarchical clustering, K-

means, Self-Organizing maps (SOMs) and Principal Component Analysis 

(PCA). This last will be only briefly described here, because it will be 

treated in more detail in a separate paragraph. Moreover, the existing 

literature is very rich in papers concerning alternative clustering methods 

and algorithms as well as their applications (Cho et al., 2001; Getz et al., 

2000; Hastie et al., 2000; Herrero et al., 2001; Michaels et al., 1998; Yeung 

et al., 2001).  

Hierarchical clustering 

Starting from hierarchical clustering algorithms derive a nested series of par-

titions of data points. It has been used since the very beginning of microarray 

field (Eisen et al., 1998; Heyer et al., 1999) its major advantage is that it is 



 Introduction 

 

45 

simple and the result can be easily visualized (Eisen and Brown, 1999). In 

fact the result of hierarchical clustering is a complete tree with individual 

patterns (gene or experiments) as leaves and the root as the convergence 

point of all branches which is also known as dendrogram. Example dendro-

grams are presented in Figure 6.  

 

Figure 6: Hierarchical clustering analysis obtained by using the breast and 

lung carcinoma data sets from the publicly Stanford Microarray Database 

(Chung et al., 2002). 

A dendrogram is a branching diagram representing a hierarchy of categories 

based on degree of similarity. In more detail, the hierarchical clustering is 

either an iteratively joining of the two closest clusters starting from single 

clusters (agglomerative, bottom-up approach) or an iteratively partition of 

clusters starting from the complete set (divisive, top-down approach), in 

which in the first step, the pair wise distance matrix is calculated for all of 
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the genes to be clustered. In the second step, the distance matrix is searched 

for the two most similar genes (or clusters) and each cluster consists of a 

single gene. This is the first true stage in the “clustering” process. If several 

pairs have the same separation distance, a predetermined rule is used to de-

cide between alternatives. In the third step, the two selected clusters are 

merged to produce a new cluster that now contains at least two objects while 

in the fourth passage, the distances are calculated between this new cluster 

and all other clusters. There is no need to calculate all distances as only those 

involving the new cluster have changed. Last, steps 2-4 are repeated until all 

objects are in one bigger cluster. There are various hierarchical clustering 

algorithms that differ in the manner in which distances are calculated be-

tween the growing clusters and the remaining members of the data set (inter-

cluster distance), including other clusters. The specification of distance be-

tween clusters is determined by the linkage method (Gibbons and Roth, 

2002; Gordon, 1999): 

1. Single-linkage clustering. The distance between two clusters is calcu-

lated as the minimum distance between a member of one cluster and a 

member of a second cluster. Consequently, it measures the distance 

between each member of one cluster to each member of the other clus-

ter and takes the minimum of these. This technique produces trees 

with many long, single-addition branches representing clusters that 

have grown by aggregation. 

2. Complete-linkage clustering. The distance between two clusters is 

calculated as the greatest distance between members of the relevant 

clusters (it calculates the distance between the furthest neighbors). 

This method tends to produce very compact clusters of elements and 

the clusters are often very similar in size.  
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3. Centroid linkage. Defines the distance between two clusters as the 

squared Euclidean distance between their centroids or means. This 

method tends to be more robust to outliers than other methods.  

4. Average-linkage clustering. The distance between clusters is calcu-

lated using average values. This is calculated from the distance be-

tween each point in a cluster and all other points in another cluster. 

The two clusters with the lowest average distance are joined together 

to form a new cluster. 

The selection of the linkage method to be used in the clustering greatly af-

fects the complexity and performance of the clustering. Single or complete 

linkages require the less computations of the linkage methods. However, 

single linkage tends to produce stringy clusters that are not performance re-

sults. The centroid or average linkage methods produce better results regard-

ing the accordance between the produced clusters and the structure present in 

the data. However both these methods require much more computations. 

K-means 

The k means algorithm is one of simplest and fastest partitional clustering 

method. As a consequence, it is widely used because of its simple 

implementation. It can be more effective than hierarchical methods 

(Tavazoie et al., 1999) if there is advanced knowledge about the number of 

clusters. However, it has a major drawback. The basic algorithm, as 

described by (MacQueen, 1967) begins with either an initial partition of the 

objects into k subgroups or an initial specification of k cluster centroids. As a 

result, the researcher has to assess the quality of the obtained clustering. In 

particular, in k means clustering, objects are partitioned into a fixed number 

k of clusters, such that the clusters are internally similar but externally 

dissimilar (see example in Figure 7). 
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Figure 7: Cluster profiles obtained with K

x point, the standard deviation and the minimum and maximum values for 

each cluster are shown. Blue lines represent expression profiles for 

individual genes. Yellow lines are mean expression profile of clusters 

al., 2004). 

The process involved is conceptually simple, but can be computationally 

intensive: first, all initial objects are randomly assigned to one of 

it is also possible to estimate 

mixture density estimation p

then calculated for each cluster and this is used to compute the distances 

between clusters; third, using an iterative method, objects are moved 

between clusters and intra

each move. Objects are allowed to remain in the new cluster only if they are 

closer to it than to their previous cluster; fourth, after each move, the 

expression vectors for each cluster are recalculated; and in the last step, the 

shuffling proceeds until moving any more objects would make the clusters 

more variable, increasing intra
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Cluster profiles obtained with K-mean cluster method. For each 

x point, the standard deviation and the minimum and maximum values for 

each cluster are shown. Blue lines represent expression profiles for 

individual genes. Yellow lines are mean expression profile of clusters 

The process involved is conceptually simple, but can be computationally 

intensive: first, all initial objects are randomly assigned to one of k 

it is also possible to estimate k from the data, taking the approach of a 

mixture density estimation problem; second, an average expression vector is 

then calculated for each cluster and this is used to compute the distances 

between clusters; third, using an iterative method, objects are moved 

between clusters and intra- and inter-cluster distances are measured with 

each move. Objects are allowed to remain in the new cluster only if they are 

closer to it than to their previous cluster; fourth, after each move, the 

expression vectors for each cluster are recalculated; and in the last step, the 

eeds until moving any more objects would make the clusters 

more variable, increasing intra-cluster distances and decreasing inter
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individual genes. Yellow lines are mean expression profile of clusters (Lin et 
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; second, an average expression vector is 
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between clusters; third, using an iterative method, objects are moved 
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closer to it than to their previous cluster; fourth, after each move, the 

expression vectors for each cluster are recalculated; and in the last step, the 

eeds until moving any more objects would make the clusters 

cluster distances and decreasing inter-cluster 
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dissimilarity. More in general during the course of iterations, the program 

tries to minimize the sum, over all groups, of the squared within-group 

residuals, which are the distances of the objects to the respective group 

centroids. Convergence is reached when the objective function cannot be 

lowered any more. The obtained groups are geometrically as compact as 

possible around their respective centroids. 

There are many way to assess the goodness of fit of a given clustering out-

put, the principal is to compare the size of the clusters versus the distance to 

the nearest cluster. In this case if the inter-cluster distance is much larger 

than the size of the clusters, the cluster is deemed to trust worthier. Another 

possible quality indicator is the average of the distances between the mem-

bers of a cluster and the cluster center or also the diameter of the smallest 

sphere including all members of a given cluster, but the last method can be 

more disadvantageous because the diameter of the smallest sphere including 

all members of the cluster is determined by the furthest pattern from the 

cluster. In consequence, this measure is sensitive to cluster outliers. 

A major advantage of nonhierarchical clustering methods such as k-means is 

the computational feasibility. Unlike hierarchical methods, there is no need 

to compute or store all pairwise distances (or similarities) between objects. 

This makes possible to cluster a larger number of objects in less time. In the 

context of microarray data, this is particularly important for clustering genes, 

where they number may be of the tens of thousands. Many computer imple-

mentations of hierarchical clustering can not handle clustering of more than 

a few thousand genes. Disadvantages of k-means are that the method does 

require specification of a number of clusters and an initial partitioning, and 

the final results can be very sensitive to these choices. 
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Self-Organizing Maps (SOMs) 

A self-organizing maps (SOMs), developed and studied by Kohonen is a 

neural net divisive clustering approach (Kohonen, 1995; Toronen et al., 

1999) that uses unsupervised learning for which no prior knowledge of 

classes is required. A SOM assigns genes to a series of partitions on the basis 

of the similarity of their expression vectors to reference vectors that are de-

fined for each partition. It is the process of defining these reference vectors 

that distinguishes SOMs from k-means clustering. SOMs are usually used to 

visualize and interpret large high-dimensional data sets. In SOM, every input 

is connected to every output via connections with variable weights. Also, the 

output nodes are highly interconnected. SOM tries to learn to map similar 

input vectors (gene expression profiles) to similar regions of the output array 

of nodes (Figure 8A).  

 

Figure 8: The sample structure of the SOM (Tamayo et al., 1999). A) 

Principle of SOMs. Initial geometry of nodes in 3 3 2 rectangular grid is 

indicated by solid lines connecting the nodes. Hypothetical trajectories of 

nodes as they migrate to fit data during successive iterations of SOM 

algorithm are shown. Data points are represented by black dots, six nodes of 

SOM by large circles, and trajectories by arrows. B) Example of genechip 

time course experiment (from 0 to 24 hours) and expression levels of more 

than 567 genes were grouped by a 4 3 3 SOM. 
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Before initiating the analysis, it is necessary to define a geometric configura-

tion for the partitions (2-dimensional rectangular or hexagonal grid), subse-

quently random vectors are generated for each partition, but before genes 

can be assigned to partitions, the vectors are first “trained” using an iterative 

process that continues until convergence so that the data are most effectively 

separated. At the same time, the models become ordered on the grid so that 

similar models are close to each other and dissimilar models far from each 

other. So the order and organization of the nodes (tentative clusters) contain 

more information than just the actual partition of genes to clusters. In choos-

ing the geometric configuration for the clusters it also specified the number 

of partitions into which the data is to be divided.  

Figure 8B displays the results of the SOM fit. A multi panel figure of plots 

such as this is one of the most commonly employed display techniques for 

SOMs. In this experiment, gene expression profiles were measured on cRNA 

samples prepared from HL-60 cell line cultures at 0, 0.5, 4, and 24 hours af-

ter exposure to the phorbol ester PMA. (Tamayo et al., 1999). For each node 

of the final SOM, an average time course (over the four time points) for the 

genes mapped to that node was computed. The arrangement of panels in the 

figure corresponds to the arrangement of nodes on the grid. The line plot 

displayed in each panel is the average time course for the genes mapped to 

that node, and the error bars at each time point indicate one standard devia-

tion where the standard deviation is computed from the values recorded at 

that time point for those genes. For example, the Figure 8B shows that the 

genes mapping to the nodes in the last row all exhibit expression levels that 

are relatively constant from baseline (time 0) through 4 hours, but then their 

expression levels decrease by 24 hours. 

SOMs and k-means clustering share many of the same advantages as the 

computational feasibility when large numbers of objects (i.e., genes) are be-

ing clustered. In other hand, the principal disadvantage is that it is necessary 
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to have other source of information, such as PCA, to determine the number 

of clusters that best represents the available data. 

Principal Component Analysis (PCA) 

The PCA as previously describe is viewed as a method of reducing data size, 

then used in the initial step of data filtering. In recent years, is taking up 

more and more ground using this technique as cluster methods (see example 

in Figure 9) and then have been implemented software for its application in 

this area (Peterson, 2003). 

 

Figure 9: Principal Component Analysis. In this case can be observed that 

malignant and progressive lesions (purple and green, respectively) and 

normal and non-progressive leukoplakias (red and blue, respectively) are 

grouped separately (Cervigne et al., 2009). 

Briefly summarizing, the task of clustering analysis is to find groups of 

gene with similar expression profile across a number of experiments and/or 

to find groups of individuals with similar expression profile within popula-

tion. Clustering methods provide a relatively easy way to organize the clus-

ter information. Together with visualization methods they allow for the user 

an intuitive way of looking at, understanding and analyzing the data. Differ-

ent clustering methods and the same method with different premises produce 

different end results, so the user has to try to find out a useful result. In fact 

each method and distance has certain properties that can be to emphasize 
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certain characteristic of the data. Cluster analysis for gene expression data is 

performed after the original gene expression data is preprocessed. Therefore, 

the clustering result may be affected by pre-processing procedures such 

standardization, missing value handling, and flat pattern filtering 

(D'Haeseleer, 2005). The best way to cluster gene expression data is to use 

more than one clustering algorithms that may give different results based on 

different initial conditions should be run several time to find the best solu-

tion.  
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4. GeneChip Technology in Cancer Research 

The Affymetrix GeneChip is a popular microarray platform for genome 

wide expression profiling and has been widely used in functional genomics 

especially in the classification and characterization of cancers. Indeed, ex-

pression microarrays have become a standard tool for cancer study and many 

microarray data have been generated from different types of cancers (Alon et 

al., 1999; Chen et al., 2002; Dave et al., 2004; Dhanasekaran et al., 2001; 

Dyrskjot et al., 2003; Garber et al., 2001; Golub et al., 1999; Irgon et al., 

2010; Melis et al., 2010; Meunier et al., 2010; Meyniel et al., 2010; Mikula 

et al., 2010; Ramaswamy et al., 2003; Saghir et al., 2010; Yamaguchi et al., 

2010). Characteristic patterns of gene expression have emerged,
 
reflecting 

molecular differences between previously known as
 
well as newly discov-

ered characteristics of cancer. Many of the obtained results have been shown 

to correlate with clinical features,
 
such as survival, prognosis, and treatment 

sensitivity, as well
 
as traditional histopathological parameters (Gruvberger-

Saal et al., 2006). 

Gene expression arrays show a great promise by allowing clinicians to 

stratify cancers by classifying them in subgroups having distinct biological 

properties and prognoses. For example, the expression of a cohort of several 

dozen of genes by a tumor may suffice to serve as a strong predictor of its 

degree of progression or its association with one or another subtype of can-

cer. Given it, many examples show the application of DNA microarray tech-

nology in identifying molecular targets and establishing diagnostic molecu-

lar signatures for cancers, here we report two representative works. 

A DNA microarray study from Pantel’s group showed molecular signa-

ture associated with bone marrow micro metastasis in human breast cancer 

(Woelfle et al., 2003). In this study, gene expression profiles in metastasized 

breast tumor cells in bone marrow were compared with those in primary tu-
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mor cells, and expression analysis showed distinct profiles between these 

two groups of cells (Figure 10). The differentially expressed genes were re-

lated to extracellular matrix remodeling, adhesion, cytoskeleton plasticity, 

and signal transduction (in particular, the Ras and hypoxia-inducible factor 1 

pathways). The array data were confirmed by RT-PCR, which is consistent 

with immune histochemical analysis of breast tumor tissues. The findings 

from this study indicate that metastasized breast tumor cells exist as a selec-

tive process associated with a specific molecular signature. Study of the 

functional relevance of this molecular signature will shed light on the mole-

cular diagnosis and therapy of human breast cancer. 

 

Figure 10: Cluster analysis of differentially expressed genes (Woelfle et al., 

2003) 
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Another example for using DNA microarray technology to study human 

blood cancers is the molecular classification of human acute myeloid leuke-

mia (AML) and acute lymphoblastic leukemia (ALL) (Golub et al., 1999). In 

this study, bone marrow mononuclear cells from 11 AML and 27 ALL pa-

tients diagnosed pathologically were used as an RNA source for DNA mi-

croarray analysis, from which 50 gene predictors that distinguish AML from 

ALL were derived. These 50 gene predictors were tested and validated on 38 

new samples from AML or ALL patients. As a result, 36 of the 38 predic-

tions agreed with the patients’ clinical diagnosis (the remaining two were 

uncertain). This high prediction rate (95%) strongly suggests that DNA mi-

croarray technology may be used in the diagnosis of human blood cancers, 

although the improvement to a 100% prediction rate is the ultimate goal 

(Figure 11). 

 

Figure 11: Prediction strengths (Gouble et al., 2002). 

Moreover, the recent introduction of specific arrays (including exon-

specific arrays and arrays for chromatin immunoprecipitation) together with 
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technical advancements of established platforms, presents a variety of op-

tions to conduct basic as well as translational cancer research. The use of 

gene expression profiling to address clinical issues clearly illustrates that the 

molecular signatures of tumors contain information regarding clinical beha-

vior. It is important to remind the fact that transcriptional events only partial-

ly correlate with protein levels (Canales et al., 2006; Morey et al., 2006; Ra-

jeevan et al., 2001; Waghray et al., 2001), this means that all the regulatory 

events downstream gene transcription may need to be taken into account, 

and also that certain events associated with malignant phenotypes are re-

flected on the protein levels. However, studies evaluating the overall con-

cordance between protein and RNA expression levels have found wide va-

riability. For example, transcript and protein concordance in the LNCaP 

prostate cancer cell line has been reported to vary from 32% (Waghray et al., 

2001) to 83.5% (Lin et al., 2005). Highly significant correlations in mRNA 

changes and protein expression levels were found by Orntoft et al. in human 

carcinomas (Orntoft et al., 2002). Studies such as these suggest that external 

factors as well as actual biological differences between mRNA and protein 

abundance might affect the relationships between the two data types. 

For accurate study, researchers need to employ a range of different 

technologies and utilize the whole spectrum of biological and clinical data 

available in order to elucidate and clarify the complexity of cancer, but the 

GeneChips are still key analytical tools of functional genomics science. 
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The Computational methods have become indispensable to biological 

investigations with the current increase of high-trough up data. Two 

principal approaches underpin all studies in bioinformatics. First is that of 

comparing and grouping the data according to biologically meaningful 

similarities and second, that of analysing one type of data to infer and 

understand the observations for another type of data. These approaches are 

reflected in the main aims of the field, which are to understand and organise 

the information associated with biological molecules on a large scale. 

Integration achieves one of the most important imperatives of the new 

field of the so called Systems Biology, because it reduces the dimensionality 

of global data needed to deliver useful information about the networks active 

in the system of interest. The integration of data from different sources 

provides an effective means to deal with this issue by reinforcing bona fide 

observations and reducing false negatives. Moreover, because different 

experimental technologies provide different insights into a system, the 

integration of multiple data types offers the greatest information about a 

particular cellular process (Alberghina et al., 2004; Li et al., 2008; Zhu et al., 

2007). For example, gene perturbation experiments (i.e., knockouts or RNA 

interference) and microarrays analysis can reveal relationships between 

genes that may imply direct physical interactions or indirect logical 

interactions. Indeed, microarray experiments permit us to look at overall 

patterns of gene expression in order to understand the architecture of genetic 

regulatory networks, a global approach that could ultimately lead to 

complete description of the transcription-control mechanisms in a cell.  

Several recent methods have addressed the problem of heterogeneous 

data integration and network prediction by modeling the noise inherent in 

high-throughput genomic datasets, especially by using statistical methods, 

which can significantly improve specificity and sensitivity and allow the 

robust integration of datasets with heterogeneous properties (Kwoh and Ng, 



GeneChip analysis application to cancer knowledge  

 

62 

2007; Srinivasan et al., 2007). Nevertheless, the computational tools 

necessary to analyse the data are rapidly evolving and no clear consensus 

exists as to the best method for revealing patterns of gene expression. 

Indeed, it is becoming increasingly clear that there might never be a “best” 

approach and that the application of various techniques will allow different 

aspects of the data to be explored. Furthermore, without a more complete 

understanding of the underlying biology, particularly of gene regulation, 

there might never be a single technique that will allow us to find all the 

relationships in the data. Consequently, choosing the appropriate algorithms 

for analysis is a crucial element of the experimental design. 

Taking into consideration that the development of efficient methods that 

facilitate the biological interpretation of these data is crucial, in the present 

work we focus on efficient identification of regulatory mechanisms of 

cancer, and propose different approaches for analysis and interpretation of 

gene expression data based on the integration of various types of related 

biological information and software tools for efficient data analysis. 
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5. Metabolism and Cancer  

Cancer is a disease of uncontrolled cell growth in which cells acquire 

genetic alterations that allow them to proliferate outside the context of 

normal tissue development. In the evolution of this transformation, cells 

acquire mutations that confer selective advantages for the growth of the 

tumour. Genetic alterations in many of the known oncogenes are selected to 

adapt cellular metabolism to meet the requirements of rapid cell proliferation 

as well as autonomous growth and survival in an environment absent of 

contact with extracellular matrix. In order to divide, a cell needs both to 

increase its size, and to replicate its DNA, processes that are metabolically 

demanding, requiring large quantities of proteins, lipids and nucleotides as 

well as energy. In order to support such large-scale anabolism in rapidly-

dividing cancer cells, substantial amounts of metabolic building blocks, 

particularly glucose and amino acids, must be made available to the tumour. 

Therefore, tumour cells develop a remarkably different metabolism 

compared to the normal tissues from which they are derived. The different 

metabolic requirements of cancer cells from their normal counterparts, 

involves aberrant activation of most important metabolic pathway as 

Glycolysis, Lipid biosynthesis, Oxidative Phosphorylation and other 

important metabolic pathway for cell growth, proliferation and energy 

production. Accumulating evidence indicates that almost every known 

oncogene regulates downstream targets that are directly connected to 

metabolic regulation (Locasale et al., 2009). A detailed biochemical and 

systems-level understanding of how oncogenes rewire metabolism is 

essential to understand tumour biology, but concomitantly requires an 

assessment of the metabolic adaptations required to support the proliferation 

of cancer cells. 

The proliferation and many factors within the tumor microenvironment 

(as carbon sources) can influence cellular metabolism, resulting in 
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heterogeneous metabolic activity. Our interest in tumor cells as discussed 

here involves the metabolic activities that promote their growth and 

proliferation. In particular, in this chapter we discuss the genetic alterations 

of metabolic genes and their advantages for the growth of tumor, 

implemented in two principal works: Gene expression profiles comparative 

analysis of immortalized and K-Ras transformed mouse fibroblasts grown in 

different glucose availability and Data recovery and integration from public 

databases uncovers transformation-specific transcriptional downregulation 

of cAMP-PKA pathway-encoding genes. 

Increasing attention has been given in recent years to the connection 

between metabolism and cancer. Under aerobic conditions, normal cells use 

oxidative phosphorylation as a predominant method for ATP generation. In 

sharp contrast to normal cells, a common feature to most solid tumors is a 

major use of glycolysis as ATP source. It has been proposed that the 

selection of the glycolytic phenotype in cancer cells may be owing to 

adaptation to hypoxia, a condition characterizing the slowly dividing cancer 

cells found in large portions of solid tumors not supported by a functional 

blood supply. Alternatively, the hypoxic adaptation and following glycolytic 

phenotype could depend on activation of oncogenes (i.e. ras), or loss of 

antioncogenes, mitochondrial dysfunctions. 

To better address both causes and consequences of the different 

metabolism observed in normal and cancer cells, in the first report a detailed 

transcriptional analysis upon alteration of glucose availability is presented. 

In particular in this report is specifically addressed the role played by K-Ras 

oncoprotein in the induction and stabilization of tumor specific metabolic 

alterations. To this end we have used two cell lines: NIH3T3 mouse 

immortalized fibroblasts (Normal) and NIH3T3 fibroblasts transformed by 

an activated form of the K-ras oncogene (Transformed) (Kahn et al., 1987; 

Yamamoto and Perucho, 1984). (Chiaradonna et al., 2006b). By using these 
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two cell lines in more recent studies we have shown that the enhanced 

proliferation potential of transformed cells requires a high initial Glucose 

(Glc) concentration as well as Glutamine (Gln) in the medium (25 mM Glc 

and 4 mM Gln, standard cell culture concentrations) since the selective 

advantage of transformed cells is lost upon growth in sub-optimal Glc (1 

mM) or Gln (0.5 mM). Such a requirement correlates with an altered 

metabolic pattern, as shown by the increased Glc utilization, lactate 

production, increased expression of glycolytic genes, altered expression of 

mitochondrial genes, altered mitochondrial morphology, altered activity and 

reduced capacity to produce ATP of transformed cells (Chiaradonna et al., 

2006a; Chiaradonna et al., 2006b). Moreover we could show that in low Glc, 

transformed cells produce large amount of ROS, due to a specific 

malfunctioning and assembling of mitochondrial Complex I (Baracca et al., 

2010), that may participate to increase the percentage of cell death 

(Chiaradonna et al., 2006b). Alternatively, reduction of Gln availability in 

transformed cells causes a strong decrease of their proliferation ability, 

occurrence largely due to a reduced supply of DNA precursors, as shown by 

the fact that the growth potential of transformed cells is restored by adding 

the four deoxyribonucleotides (Gaglio et al., 2009). These responses, 

consequent to Glc or Gln shortage, are induced by Ras activation, as they are 

specifically reverted by the expression of the GEF-DN, a Guanine Exchange 

factor specific for ras that is able to strongly reduce the oncogenic activation 

of Ras (Bossu et al., 2000) indicating that activation of the Ras pathway 

strikingly impacts on energy and metabolic aspects of mitochondria 

functionality (Baracca et al., 2010; Chiaradonna et al., 2006a; Chiaradonna 

et al., 2006b; Gaglio et al., 2009).  

Therefore, to evaluate the relevance of the transcriptional events in such 

metabolic alterations, time-dependent changes in transcriptome of normal 

and transformed cells growing in media supplemented with either high (25 
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mM) or low (1 mM) initial glucose concentration has been performed. Since 

gene expression profile analysis may help to elucidate the metabolic 

alterations of cancer cells as well as their inability to react to glucose 

depletion, we report an overall bioinformatics analysis that indicate a 

directly link between ras activation and the metabolic alterations of some 

metabolic pathways in cancer cells.  

The second work of this first part of my thesis try to address, at least at 

transcriptional level, the role of the crosstalk between Ras and cAMP-PKA 

signaling pathways in the metabolic alterations of cancer cells. In fact the 

cAMP-PKA signaling pathway is an important regulator of cell fate that 

controls the activity of metabolic enzymes, transcription factors and 

cytoskeleton proteins and is strongly associated with the onset of several 

endocrine and non-endocrine tumors. A fundamental characteristic of cAMP 

is its ability to stimulate cell proliferation in many cell types while inhibiting 

in others. Such ability has been related to the fact that cAMP regulates the 

Ras/Raf/ERK pathway, whose role in cancer onset is well known (about 

25% of human cancers have a Ras mutation). Indeed the cAMP pathway is 

able to suppress ERK signaling through its ability to target C-Raf and 

conversely, to activate ERK signaling through its ability to target B-Raf 

(Dumaz and Marais, 2005).  

On the other hand cAMP-PKA signaling pathway has an important role 

in regulation of cellular metabolism. An important role for the metabolic 

switch observed in cancer cells, has been recognized to mitochondrial 

dysfunctions impinging their bioenergetics activity, due to mitochondrial 

DNA mutations, altered mitochondrial enzymes expression and more 

recently also alterations of respiratory chain complexes composition, 

stability and activity caused by post-translational events, i.e., 

phosphorylation, of mitochondrial proteins (Alchanati et al., 2006; Isidoro et 

al., 2004; Lee and Wei, 2009; Lu et al., 2009), given that these modifications 
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appear to be essential for physiological regulation of mitochondria activity 

(reviewed in Regulation of mitochondrial oxidative phosphorylation by 

second messenger-mediated signal transduction mechanisms. Boneh A. Cell. 

Mol. Life Sci. 63, 2006). Moreover, numerous findings have been collected 

indicating that such mitochondrial alterations do play a relevant role in the 

etiology of cancer and in the appearance of an altered glycolysis in cancer 

cells and tumor tissues. However, only few reports identified a strict 

association between metabolic changes in cancer cells and mitochondrial 

complexes composition and activity (Simonnet et al., 2003). Recently, it has 

been shown that proteins belonging to PKA pathway are localized both on 

the external membrane and inside of mitochondria, where they are able to 

control mitochondrial activity by a phosphorylation mechanism (Acin-Perez 

et al., 2009). Moreover, it has been shown that activation in vivo of the 

cAMP/PKA cascade promotes Complex I activity, decreases ROS cellular 

levels, regulates mitochondrial morphology and activity and modulates, in 

cell specific manner, the apoptotic process by specific phosphorylation of 

apoptotic proteins (Bellis et al., 2009; Chang and Blackstone, 2007; Cribbs 

and Strack, 2007; Harada et al., 1999; Piccoli et al., 2006; Robinson-White 

et al., 2009). Connection between PKA pathway and cell transformation has 

been widely observed (Tortora and Ciardiello, 2002) and recently such a 

connection has been also demonstrated in terms of transcriptional regulation.  

Therefore, the comparison between the transcriptional profiles of PKA 

related pathway encoding genes, recovered from several normal tissues and 

from the NCI60 transformed cells collection (Ross et al., 2000), can be 

useful for understanding the activity of oncogenic Ras on the transmission 

signal activated by cAMP-PKA axis (Balestrieri et al., 2009; Chiaradonna et 

al., 2008).  
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5.1 Gene expression profiles comparative analysis of immortalized 

and K-Ras transformed mouse fibroblasts grown in different glucose 

availability. 

Increasing attention has been given in recent years to the connection 

between metabolic alterations and cancer (DeBerardinis et al., 2008). Under 

aerobic conditions, normal cells use oxidative phosphorylation as a 

predominant source for ATP generation. In sharp contrast to normal cells, a 

common feature of most cancer cells is a major use of glycolysis to produce 

ATP (Mazurek and Eigenbrodt, 2003; McFate et al., 2008; Ramanathan et 

al., 2005; Warburg, 1956). It has been proposed that the selection of the 

glycolytic phenotype in cancer cells may be owing to adaptation to hypoxia. 

Alternatively, the hypoxic adaptation and following glycolytic phenotype 

could depend on activation of oncogenes (i.e., ras), or loss of antioncogenes 

given the fact that the consequences of glucose deprivation have been 

extensively described in several cancer cells and tissues, for more detail see 

(Dang and Semenza, 1999; Gatenby and Gillies, 2004). 

In order to critically analyze the molecular basis of the change of carbon 

metabolism in cancer cells, we compared the transcriptional profiles of 

normal and transformed cells grown in 25 mM glucose (normal cell culture 

condition) and 1 mM glucose (hypoglycemic condition) along a time course 

of 72 hours. NIH3T3 cells are a genetically well defined immortalized cell 

line that has long established as a model parental cell line for the study of 

cell transformation (Yamamoto and Perucho, 1984). Ras proteins are 

intracellular switches whose activation state (i.e., their binding to GDP or 

GTP) controls downstream pathways leading to cell growth and 

differentiation. The activation state of Ras proteins is governed through the 

competing action of GTPase Activating Proteins (GAP) and Guanine 

nucleotide Exchange Factors (GEF). Mutation of the ras gene, identified in 

about 25% of all human tumors, is a critical event in the onset of different 
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malignant phenotypes. Also deregulation of either GAP or GEF activity may 

result in hypo- or hyper-activation of downstream pathway(s), so that for 

instance over-expression of a GEF or inactivation of a GAP may both result 

in cell transformation (Dupuy et al., 2001; Vogel et al., 1999). 

5.1.1 Results 

Selection of differentially expressed genes  

We used mouse normal NIH3T3 mouse fibroblasts (normal cells) and 

NIH3T3 cells transformed by an activated form of the K-ras oncogene 

(transformed cells). Total RNA was harvested from cells cultured in two 

different concentration of glucose for various times, in particular cells grown 

in 25mM glucose (standard culture condition) and 1mM glucose (suboptimal 

culture condition) during a time course 0, 24, 48 and 72 hours (see 

experimental design in Figure 12). Labeled probes synthesized from cellular 

mRNA were hybridized to oligonucleotide microarray (array Mouse 403 

2.0) that detect the expression of more than 45000 probe sets representing 

over 34000 well-substantiated mouse genes. Gene expression data were 

subjected to normalization and filtering procedures as described in Methods. 

We obtained a list of ~ 20000 probe sets, all probe sets were used as input 

for the algorithm of screening and a list of statistically well-characterized 

9351 unique genes was obtained, and called working list (see details in 

Methods). 

 

Figure 12: Experimental design. 
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The differentially expressed genes of the working list were identified by 

Welch one-way ANOVA analysis. P-values were calculated for each gene 

over the time courses at time 0, 24, 48 and 72 hours. The analyses were 

performed on the log2-fod change in gene expression for time n versus time 

0, for every time course separately. To reduce the detection of false 

positives, the p-values were adjusted by Benjamin and Hochberg false 

discovery rate method (MTC) by using a cut-off of 0.001 and a cut-off level 

of 1.5 fold increase or decrease of time n versus time 0. This procedure 

produced a list of 1210 genes shown in hierarchical cluster in Figure 13. 

 

Figure 13: Unsupervised hierarchical clustering of 1210 unique genes 

selected with Welch's ANOVA. The heat red color indicates higher 

expression and green color indicates lower expression. Hierarchical 
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clustering of the expression levels was performed by using the Euclidean 

measure for the similarity and the centroid linkage for clustering. 

Enrichment analysis 

Ontological and KEGG pathway analysis of the differentially regulated 

genes over the time were performed using GeneCodis tool 

(http://genecodis.dacya.ucm.es/). The program computes a significance 

significant p-value using hypergeometric test and FDR method with a cut-off 

of 0.05 (see Methods). Gene ontology analysis focusing on the biological 

processes recognized by the 1210 genes, identified several processes 

including Transcription Regulation, Transport, Multicellular Organismal 

Development, Cell Cycle as well as Metabolic Processes (Table 1). In 

particular in Table 1 we reported a list of 13 statistically biological processes 

identified and ranked in order to the decrease of number genes present in the 

class (N° genes). Moreover in the Table 1 also have been reported the p-

value and the correct p-value (FDR method). In particular the Metabolic 

processes comprised a total of 483 genes of which 46 genes were modulated. 

Table 1: Functional classification of significantly expressed genes over the 

four time courses. 

N° genes p-value 

Correct  

p-value Biological Process (GO term) 

120 1.77E-11 2.48E-10 transcription  

109 5.80E-10 5.42E-09 transport  

64 5.32E-08 3.72E-07 multicellular organismal development  

50 6.40E-12 1.79E-10 cell cycle  

46 9.18E-06 3.67E-05 metabolic process  

41 9.43E-07 5.28E-06 protein transport  

35 1.13E-03 3.52E-03 ion transport  

31 6.51E-03 1.82E-02 cell differentiation  

15 1.02E-03 3.56E-03 carbohydrate metabolic process  

14 1.57E-06 7.32E-06 response to stress  

5 1.91E-02 4.11E-02 cytoskeleton organization  

4 9.53E-03 2.43E-02 cell death  

3 1.66E-02 3.88E-02 cellular component organization  
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To further detail the analysis, the identification of regulated pathways was 

performed. In particular, by using GeneCodis tool that collect information 

from Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we 

identified the most important KEGG pathways (41 pathways) identified in 

our working list (Figure 14). In the Figure 14 the pathways are represented 

in accord increased  p-value (the first x-axis, maximum p-value of 0.05), and 

the number of genes (the second x-axis, maximum value 35) for each 

pathway (y-axis). The results showed that among these pathways, several 

metabolic pathways were altered in transformed cells, as i.e., Glutathione 

metabolism, Sulfur and Fructose and Mannose metabolism, further 

confirming the relevant role of metabolic alterations in K-ras dependent 

transformation. However several other statistical relevant pathways were 

identified, including one called “Pathway in cancer”. 

The Pathway in cancer comprises 321 protein-encoding mouse genes that are 

already shown to be implicated in oncogenesis 

(http://www.genome.jp/kegg/pathway.html). Among these genes, 32 are 

modulated in their expression along the time course analyzed (10% of genes 

belonging to the pathway). This pathway includes different cancer-related 

pathways as Cell cycle, Wnt signaling pathway, ECM receptor, MAPK 

signaling pathway, Apoptosis, ect. We have to underline that most of these 

pathways were already identified in the previous KEGG analysis with a 

significant of p-value (Figure 14). 
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Figure 14: KEGG significantly altered over the time. KEGG pathways were 

identified as significantly altered by using a hypergeometric test and FDR 

with a p-value cut-off of 0.05. The first x-axis represent the p-value and the 

second x-axis represent the number of genes for each KEGG pathway shown 

in y-axis. 
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Figure 15: Hierarchical clusters of the genes present in A) Pathway in 

cancer and B) Metabolism processes. Genes are represented on rows and 

the experimental samples are represented on columns. Genes with high 

expression levels are in red, intermediate-level expression in black and low-

level expression in green. In the bottom of the figure is shown the color scale 

used to represent the log2 transformed values. 

In Figure 15 has been shown the Heat map of 32 regulated genes in the 

Pathway in Cancer (Figure 15A) and 46 regulated genes in Metabolic 

Process (Figure 15B), the complete list of genes and their description are 

reported in Tables 2 and 3 respectively.  

25 mM 1 mM

0  24 48 72 24 48 72

TransformedNormal

25 mM 1 mM

0  24 48 72 24 48 72

Absolut expression value (log2)

<-1.0            0.0                >1.0

25 mM 1 mM

0  24 48 72 24 48 72

TransformedNormal

25 mM 1 mM

0  24 48 72 24 48 72

A B

Hif1a

Arnt2

Traf5

Pias1

Lamc1

Arnt

Akt3

Casp3

Map2k1

Runx1

Lamb1-1

Vegfc

Fzd5

Crkl

Fzd1

Frap1

E2f2

Crk

Tpm3

Cycs

Ccne2

Jun

Lamb2

Stat5a

Runx1t1

Egfr

Fzd2

Fzd7

Cdk6

Pik3r5

Prkcb

Ralgds

Impdh2

Pfkfb1

Dph5

Mthfd1l

Pdhx

Psat1

Sae1

Dhrs4

Ptgr1

Ireb2

Dip2b

Aldh9a1

Qdpr

Hsd17b1

Acsbg1

Gsto2

Acadm

Sord

Naga

Aasdh

Hexb

Acox1

Aldh7a1

Echdc1

Oxct1

Ids

Athl1

Lpcat2

Smpd1

Arsa

Mmp14

Eya1

Nadk

Pdha1

Gmpr

Dhrs3

Gsta1

Lpgat1

Agpat5

Acsl6

Gstm1

Aldh6a1

Aldh1a1

Aldh1a7

Sulf2

Cenpv



 GeneChip analysis application to cancer knowledge 

75 

Table 2: Genes involved in Pathway in Cancer (32 genes.) 

Gene  

Symbol Description 

Hif1a hypoxia inducible factor 1, alpha subunit 

Arnt2 aryl hydrocarbon receptor nuclear translocator 2 

Traf5 TNF receptor-associated factor 5 

Pias1 protein inhibitor of activated STAT 1 

Lamc1 laminin, gamma 1 

Arnt aryl hydrocarbon receptor nuclear translocator 

Akt3 thymoma viral proto-oncogene 3 

Casp3 caspase 3 

Map2k1 mitogen-activated protein kinase kinase 1 

Runx1 runt related transcription factor 1 

Lamb1-1 laminin B1 subunit 1 

Vegfc vascular endothelial growth factor C 

Fzd5 frizzled homolog 5 (Drosophila) 

Crkl v-crk sarcoma virus CT10 oncogene homolog (avian)-like 

Fzd1 frizzled homolog 1 (Drosophila) 

Frap1 FK506 binding protein 12-rapamycin associated protein 1 

E2f2 E2F transcription factor 2 

Crk v-crk sarcoma virus CT10 oncogene homolog (avian) 

Tpm3 tropomyosin 3, gamma 

Cycs cytochrome c, somatic 

Ccne2 cyclin E2 

Jun Jun oncogene 

Lamb2 laminin, beta 2 

Stat5a signal transducer and activator of transcription 5A 

Runx1t1 runt-related transcription factor 1 

Egfr epidermal growth factor receptor 

Fzd2 frizzled homolog 2 (Drosophila) 

Fzd7 frizzled homolog 7 (Drosophila) 

Cdk6 cyclin-dependent kinase 6 

Pik3r5 phosphoinositide-3-kinase, regulatory subunit 5, p101 

Prkcb protein kinase C, beta 

Ralgds ral guanine nucleotide dissociation stimulator 
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Table 3: Genes involved in Metabolism process (46 genes). 

Gene  

Symbol Description 

Impdh2 inosine 5'-phosphate dehydrogenase 2 

Pfkfb1 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 

Dph5 DPH5 homolog (S. cerevisiae) 

Mthfd1l 

methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 

1-like 

Pdhx pyruvate dehydrogenase complex, component X 

Psat1 phosphoserine aminotransferase 1 

Sae1 SUMO1 activating enzyme subunit 1 

Dhrs4 dehydrogenase/reductase (SDR family) member 4 

Ptgr1 prostaglandin reductase 1 

Ireb2 iron responsive element binding protein 2 

Dip2b DIP2 disco-interacting protein 2 homolog B (Drosophila) 

Aldh9a1 aldehyde dehydrogenase 9, subfamily A1 

Qdpr quinoid dihydropteridine reductase 

Hsd17b1 hydroxysteroid (17-beta) dehydrogenase 1 

Acsbg1 acyl-CoA synthetase bubblegum family member 1 

Gsto2 glutathione S-transferase omega 2 

Acadm acyl-Coenzyme A dehydrogenase, medium chain 

Sord sorbitol dehydrogenase 

Naga N-acetyl galactosaminidase, alpha 

Aasdh aminoadipate-semialdehyde dehydrogenase 

Hexb hexosaminidase B 

Acox1 acyl-Coenzyme A oxidase 1, palmitoyl 

Aldh7a1 aldehyde dehydrogenase family 7, member A1 

Echdc1 enoyl Coenzyme A hydratase domain containing 1 

Oxct1 3-oxoacid CoA transferase 1 

Ids iduronate 2-sulfatase 

Athl1 ATH1, acid trehalase-like 1 (yeast) 

Lpcat2 lysophosphatidylcholine acyltransferase 2 

Smpd1 sphingomyelin phosphodiesterase 1, acid lysosomal 

Arsa arylsulfatase A 

Mmp14 matrix metallopeptidase 14 (membrane-inserted) 

Eya1 eyes absent 1 homolog (Drosophila) 

Nadk NAD kinase 

Pdha1 pyruvate dehydrogenase E1 alpha 1 

Gmpr guanosine monophosphate reductase 
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Dhrs3 dehydrogenase/reductase (SDR family) member 3 

Gsta1 glutathione S-transferase, alpha 1 (Ya) 

Lpgat1 lysophosphatidylglycerol acyltransferase 1 

Agpat5 1-acylglycerol-3-phosphate O-acyltransferase 5 

Acsl6 acyl-CoA synthetase long-chain family member 6 

Gstm1 glutathione S-transferase, mu 1 

Aldh6a1 aldehyde dehydrogenase family 6, subfamily A1 

Aldh1a1 aldehyde dehydrogenase family 1, subfamily A1 

Aldh1a7 aldehyde dehydrogenase family 1, subfamily A7 

Sulf2 sulfatase 2 

Cenpv centromere protein V 

Protein-Protein Interaction analysis 

Another level of investigation involves a Protein-Protein Interactions map 

(PPI’s) by using the gene expression data. In this regard, to extract gene 

related information from literature, the GeneSpring Natural language 

processing algorithm was used. In particular different type of relations 

(interaction between entities) have been analyzed from GeneSpring database, 

like binding, expression, metabolism and each relation has been considered 

significant if characterized by two or more entities or nodes (proteins). In 

this kind of analysis, the degree of a node, that give the measurement of its 

role in the network, can be defined as the number of its non-redundant 

interactions with other proteins in the network. Proteins with high degree are 

central proteins (or hub) and are critical to the integrity of the network. As 

shown in Figure 16A, the network obtained applying the GeneSpring 

algorithm was a layout of 248 proteins (node) and 519 PPI’s (interaction). 

The top central proteins with high degree are AHR, RUNX2, CCL2, 

MAP3K1, EGFR, JUN, KRT14 and EDN1. The Figure 16B also shows the 

change in expression profile of hub genes. 

Notable several of these genes show opposite behavior in the different 

conditions compared. Examples of these behaviors are the AHR gene (low 

values of expression in normal cells and high value of expression in 
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transformed cells, both grown in 25 mM glucose), and RUNX2 and KRT14 

genes (high expression in normal cells and low expression in transformed 

cells, both grown in 25 mM glucose). 

 

Figure 16: Protein-Protein interaction network. A) the layout network of 

248 proteins and 519 PPI’s. The principal hubs are colored in purple; B) 

Expression profiles of 8 principal hub of networks. 
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1.5). Another example is the oncogene JUN that has a low level of 

expression at time 72h of normal and transformed cells grown in 25mM 

glucose and in transformed cells grown in 1mM.  

5.1.2 Discussion 

In this study we address, in normal and transformed mouse fibroblasts, 

the relation between nutrient-sensitive signaling pathways and cancer. By 

comparing the transcriptional profiles regulated by the oncogene and 

glucose, we have shown that a significant number of pathways are 

deregulated at transcriptional level, in particular we have observed pathways 

involved in Cellular Metabolism, Cell Cycle, Signal Transduction and 

Apoptosis, that are pathways well-known related to cancer and hence 

components of more global macro-pathway called Pathway in Cancer. In the 

future the role of some of these genes in both positive and negative 

regulation of the pathways to which they belong will be investigated. 

Interestingly, as briefly described above, the 8 hubs identified in this study 

are known to have a close relation with the tumorigenesis. 

The oncogene JUN is the putative transforming gene of avian sarcoma 

virus 17. It encodes a protein highly similar to the viral protein that interacts 

directly with specific target DNA sequences to regulate gene expression. Jun 

is believed to be an oncogene (Vogt and Bos, 1990). 

The aryl hydrocarbon receptor (AHR), a ligand-activated member of the 

basic-region helix-loop-helix/period-aryl hydrocarbon nuclear translocator-

simple-minded (bHLH/PAS) family of transcription factors, controls a 

variety of developmental and physiologic events, including induction of drug 

metabolizing enzymes, xenobiotic detoxification, neurogenesis, tracheal and 

salivary duct formation, circadian rhythms, response to hypoxia, and 

hormone receptor function (Pocar et al., 2005). Historically, studies of AhR 

pathway have focused on the transcriptional regulation of genes encoding 

xenobiotic metabolizing enzymes such as cytochrome P450 enzymes 
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(Hillegass et al., 2006). Recent studies demonstrated a close relation between 

AhR and mammary gland tumorigenesis (Marlowe and Puga, 2005; 

Schlezinger et al., 2006). The AhR gene polymorphisms have been linked to 

an increased risk of lung and breast cancers (Kim et al., 2007; Long et al., 

2006). Increased expression of AhR has been reported in lung, breast, and 

pancreatic cancers in humans (Lin et al., 2003; Schlezinger et al., 2006). 

These data indicated a close relationship between AhR and tumorigenesis. 

However, the relation between AhR and tumor progression is not yet 

completely clear. 

RUNX2 gene is a member of the RUNX family of transcription factors 

and encodes a nuclear protein with a Runt DNA-binding domain. In 

particular Runx2 is a master regulator of bone formation, reviewed in 

(Barnes et al., 2003; Pratap et al., 2006), and it is abnormally and highly 

expressed in MDA-MB-231 breast cancer cells that metastasize to bone and 

form osteolytic lesions (Pratap et al., 2008). Notably, Runx2 is not 

significantly detected in normal breast or prostate epithelial cells (Barnes et 

al., 2004a; Inman and Shore, 2003). Runx2 functions in many regulatory 

processes of osteoblast including epigenetic control of genes during mitosis 

(Young et al., 2007), suppression of cell growth (Pratap et al., 2003), cellular 

senescence (Zaidi et al., 2007) and bone turnover. A unique property of 

Runx2 is its sub nuclear targeting to foci recruiting co-regulatory factors that 

mediate transduction of Wnt, Src, BMP and TGFβ signaling. These 

pathways are activated in tumor cells (Hall et al., 2006; Kingsley et al., 

2007).  

Monocyte chemoattractant protein 1 (CCL2) is a member of the CC 

chemokine family and is known to promote monocyte chemotaxis to sites of 

inflammation. CCL2 is an important determinant of macrophage and 

monocyte infiltration in breast, cervix, and pancreatic carcinomas (Balkwill 

and Mantovani, 2001). Other studies have demonstrated that CCL2 localizes 
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to tumor epithelial cells (Negus et al., 1995), and that the levels of CCL2 

expression have been correlated with the involvement of lymphocyte and 

macrophage localization in secondary sites of tumor formation (Negus et al., 

1997). Other findings suggest that CCL2 may act directly on the epithelial 

cells of several human carcinomas and may regulate the migration and 

invasive properties of tumor cells, resulting in enhanced metastatic potential. 

Mitogen activated protein kinase kinase kinase (MAP3K1) is a 

serine/threonine protein kinase of the MAP3K super family. Compelling 

evidence indicates that MAP3K1 is involved in the regulation of diverse 

functions in a tissue- and cell-type-specific manner. Most effects of 

MAP3K1 depend on its kinase activity, which upon induction by upstream 

cues leads to the phosphorylation and activation of the MAP2K-MAPK 

cascades. In most cases, MAP3K1 preferentially activates MAP2K4 and 

MAP2K7, which are upstream activators for the c-Jun N-terminal Kinases 

(JNKs) and/or p38 MAPKs (Davis, 2000; Xia et al., 2000; Xia et al., 1998), 

but also can regulate the extracellular signal-regulated kinase (ERK) MAPKs 

Mek1 and Mek2 (Karandikar et al., 2000; Lu et al., 2002; Witowsky and 

Johnson, 2003). Furthermore, some reports suggest that MAP3K1 can 

phosphorylate the IκB kinases IKKα and IKKβ and induce activation of 

nuclear factor-κB (NF-κB) downstream of tumor necrosis factor-α (TNF-α) 

(Lee et al., 1997). Moreover, MAP3K1 might participate in several 

pathological processes. In fact, is required for Bcr-Abl-induced STAT3 

activation and LIF-independent self-renewal, suggesting a role in Bcr-Abl-

mediated leukemogenesis (Nakamura et al., 2005); it is required for the 

induction of cardiac hypertrophy (Minamino et al., 2002); and finally, in 

mammary glands, MAP3K1 contributes to polyoma middle T antigen 

(PyMT)-mediated primary mammary tumor cell dissemination and lung 

metastasis (Cuevas et al., 2006). Moreover, MAP3K1 plays also role in anti-

apoptotic and pro-apoptotic process (Faris et al., 1998; Yujiri et al., 1998). 
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Apart from its role in the MAPK signaling, MAP3K1 has been found to 

directly interact with and/or phosphorylate transcription factors, such as 

STAT3, and co-factors, such as transducer of regulated CREB activity 1 

(TORC1) and p300 (Siu et al., 2008).  

Endothelin-1 (EDN1) is a growth factor and plays a key role in cell 

growth and differentiation, as well as in vascular homeostasis in mammals. 

EDN1 is primarily expressed in vascular epithelial cells where it plays an 

important role in maintaining proper vascular tone (Kedzierski and 

Yanagisawa, 2001). EDN1 is frequently secreted by many solid tumors, 

including prostate, colorectal, liver, breast and ovarian cancers (Kusuhara et 

al., 1990). In these tumor cells, EDN1 has been shown to promote cell 

proliferation, suppress apoptosis, promote metastasis, and facilitate 

angiogenesis (Bagnato and Spinella, 2003). EDN1 exerts its diverse 

functions through two cell-surface receptors, EDNRA and EDNRB 

(Kedzierski and Yanagisawa, 2001) In animal tumor models, endothelin 

receptor antagonists have demonstrated remarkable effects in suppressing 

tumor growth (Bagnato et al., 2002). In clinical trials, these antagonists 

significantly delay the progression of metastasis in hormonal-refractory 

prostate cancers. These observations implicate abnormal expression of 

EDN1 to be a key step in tumorigenesis of many solid tumors. 

The epidermal growth factor receptor (EGFR) regulates the intracellular 

effects of ligands such as EGF and transforming growth factor-α (TGFα) 

(Carpenter and Cohen, 1990; Wells, 1999; Yarden and Sliwkowski, 2001). 

EGFR regulates a number of cellular functions, including proliferation and 

survival, that are also crucial in tumorigenesis, thus making EGFR a 

promising target for the cancer therapies (Jorissen et al., 2003). 

KRT14 gene encodes a member of the keratin family, the most diverse 

group of intermediate filaments. This gene product, a type I keratin, is 

usually found as a heterotetramer with two keratin 5 molecules, a type II 
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keratin. Together they form the cytoskeleton of epithelial cells. Dominant 

mutations in the genes encoding these proteins were shown to disrupt the 

keratin filament cytoskeleton (Corden and McLean, 1996).  

Integration of results presented in this work is an example of genome-

wide computational approaches that can be able to lead to a system-level 

understanding of the links between K-Ras-induced transformation and 

carbon metabolism. 

5.2 Data recovery and integration from public databases uncovers 

transformation-specific transcriptional downregulation of cAMP-PKA 

pathway-encoding genes. 

As previously described, the Ras pathway is able to crosstalk with the 

cAMP-PKA pathway by some typical signal transduction mechanisms (i.e. 

protein-protein interaction, protein phosphorylation). Moreover, through its 

ability to regulate the activity of a large number of transcription factors 

(Bader et al., 2005; Treisman, 1996), the Ras pathway is able to control 

several transcriptional programs leading to proliferation, differentiation, 

metabolism, cytoskeletal reorganization and immune response. Such 

transcriptional programs are the result of ras-specific effectors stimulation 

(Malumbres and Barbacid, 2003). Until now more than ten distinct 

functional classes of proteins have been involved as effectors of the small 

GTPase Ras, but the best studied are Raf kinases, type I phosphoinositide 

(PI) 3-kinases, Ral-guanine nucleotide exchange factors (Ral-GEFs), the Rac 

exchange factor Tiam1, and phospholipase C (Downward, 2003). 

Raf and phosphatidylinositol 3-kinase (PI3K) were the first two 

identified Ras effectors and the main focus of research investigating Ras 

functions (Marais et al., 1998). Raf promotes cell proliferation and 

differentiation through the MAP kinase (MAPK) pathway (McKay and 

Morrison, 2007), at the same time as PI3K generates anti-apoptotic 

signaling, directly or through Akt pathway activation (Anderson et al., 
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1999). Both signaling pathways can activate two different signals distinct for 

their response timing. Indeed both MAPK and PI3K are able to activate 

phosphorylation cascades that lead, as primary effect, to post-translational 

modification of several substrates (membrane targets, cytosolic targets, 

cytoskeletal targets and nuclear targets), which rapidly activate functional 

processes. Early response to Ras signaling is quite fast: for instance in 

resting cells stimulated with mitogens, Ras-GTP level increases within 2 

minutes from stimulation with serum (Marais et al., 1998). Raf-1 undergoes 

transient activation within 2-3 minutes, and rapidly activates the mitogen-

activated protein kinase (MAPK) cascade whose most downstream 

component, ERK, rapidly moves into the nucleus. Here it phosphorylates 

nuclear proteins, notably transcription factors (Davis, 1995) whose activity 

can be controlled by regulating their sub-cellular localization, expression, 

stability, ability to bind to other components of transcriptional complexes 

and to DNA, and their ability to remodel chromatin structure (Hazzalin and 

Mahadevan, 2002). Transcription factors are under the control of MAPK 

pathway, including members of the ETS family (i.e. Ets-1, Ets-2, PU-1), 

MADS box family (i.e. MEF2A, MEF2C, Sp1), Zinc Finger family (i.e. 

GATA-2 and GATA-4), bZip family (i.e. Fra-1, c-Jun, JunB, JunD, ATF-2, 

c-Fos and CREB), bHLH family (i.e. c-Myc, MITF), Nuclear Hormone 

Receptor (i.e. PR, GR and ER) as well as other transcription factors (i.e., 

SMAD1, STAT1) and co-regulatory proteins (i.e., CBP, p300) (Davis, 1995; 

Treisman, 1996). 

Like ERKs, Akt and other targets of PI3K signaling can phosphorylate 

and activate transcription factors (Chang et al., 2003). Akt protein can 

control several transcription factors directly or indirectly. Direct targets are 

the forkhead box proteins, FOXO, and the cell cycle inhibitor, MIZ1, which 

are both inhibited upon AKT-mediated phosphorylation. AKT-dependent 
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regulation of p53, nuclear factor B (NFkB), c-MYC, activator protein 1 

(AP1) and beta-catenin is indirect (Bader et al., 2005). 

Such an observation led us to re-analyze, by using a generalized 

workflow for data recovery and integration, available data from multiple 

global assays and several databases (genomics, transcriptomics, promoter 

analysis and literature). In particular we searched for information for genes 

encoding proteins of the downstream branch of the PKA pathway (starting 

from adenylyl cyclase and downstream) in tumor cell lines (NCI60 cells) as 

a function of mutational activation of different pathways (notably the Ras 

and PI3K pathway) in comparison with the corresponding normal tissues, 

with the aim to define better the connection between these pathways in 

cancer cells (Oda et al., 2005). 

The integration of data from multiple genome-wide assays is essential 

for understanding dynamic spatio-temporal interactions within cells. Such 

integration, which leads to a more complete view of cellular processes, of-

fers the opportunity to rationalize better the high amount of "omics" data 

freely available in several public databases. In particular, integration of mi-

croarray-derived transcriptome data with other high-throughput analyses 

(genomic and mutational analysis, promoter analysis) may allow us to unra-

vel transcriptional regulatory networks under a variety of physio-

pathological situations, such as the alteration in the cross-talk between signal 

transduction pathways in transformed cells (Balestrieri et al., 2009). 

Here we sequentially apply web-based and statistical tools to a case 

study: the role of oncogenic activation of different signal transduction path-

ways in the transcriptional regulation of genes encoding proteins involved in 

the cAMP-PKA pathway. Through its ability to regulate the activity of a 

large number of transcription factors, the Ras pathway is able to control sev-

eral transcriptional programs leading to proliferation, differentiation, meta-

bolism, cytoskeletal reorganization and immune response. Cyclic AMP 
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(cAMP) is a ubiquitous intracellular second messenger whose major intracel-

lular target in eukaryotes is protein kinase A (PKA). Wide evidence for cross 

talk between the Ras and cAMP-PKA pathways is available. After reviewing 

some features of Ras and PKA signaling that are relevant for cancer biology, 

we re-analyze available genome-wide expression data for genes encoding 

proteins of the downstream branch of the PKA pathway in human tumor cell 

lines as a function of the mutational state of the Ras pathway. The observed 

Ras-dependent pattern of regulation of the analyzed genes may contribute to 

explain how the cAMP/PKA axis is involved in oncogenic processes in-

duced by Ras (Chiaradonna et al., 2008). 

Genome-wide, large-scale "omics" experimental technologies give dif-

ferent, complementary perspectives on the structure and regulatory proper-

ties of complex systems. Even the relatively simple, integrated workflow 

presented here offers opportunities not only for filtering data noise intrinsic 

in high throughput data, but also to progressively extract novel information 

that would have remained hidden otherwise. In fact we have been able to 

detect a strong transcriptional repression of genes encoding proteins of 

cAMP/PKA pathway in cancer cells of different genetic origins. The basic 

workflow presented herein may be easily extended by incorporating other 

tools and can be applied even by researchers with poor bioinformatics skills 

(Balestrieri et al., 2009). 

5.2.1 Results 

Gene-expression profiling has been applied extensively in cancer 

research. As a first step to identify regulatory mechanisms underlining gene-

expression profiles it is necessary to extract, filter, cross-reference and 

structure information from cancer-related data sets (Lander, 1999). The aim 

of this work has been the identification of cancer-specific specific gene 

expression signatures in genes encoding proteins involved in the cAMP-

PKA pathway. In particular we wished to identify, if present, differences 
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between primary normal tissues and cancer cells and search for correlation 

with the pathway mutationally activated in any given transformed cell line 

by integrating an accurate analysis of recovered data from several databases 

with the application of different statistical tests. 

Transformation-dependent, transcriptional remodeling of the PKA pathway 

encoding genes in 60 human cancer cell lines (NCI60) 

The NCI60 cell collection includes cell lines derived from colorectal, renal, 

ovarian, breast, prostate, lung and central nervous system cancers, as well as 

leukaemias and melanomas (Table 4), that are most commonly used in 

cancer research and drug screening (Wang et al., 2006). A good correlation 

between transcriptional profiles of the cell lines and their tumor cancer of 

origin (Ross et al., 2000; Wang et al., 2006) has been found for 51 out of 59 

cell lines. NCI60 transcriptional profiles are available in public databases. 

Table 4: The cancer cell lines in the NCI60 collection sorted by tissue of 

origin. 

Tumor Type Cell lines 

Breast HS578T, MDA-MB231, MD-MB435, MCF7, T47, 

MDA-N, BT549 

CNS SF295, SF359, SNB19, U251, SF268, SNB75 

Colon HCC2998, HCT116, HCT15, SW620, COLO205, 

HT29, KM12 

Leukaemia CCRF-CEM, RPMI-8226, HL60, MOLT4, K562, SR 

Melanoma SK-MEL2, LOXIMVI, M14, MALME-3M, SK-

MEL28, SK-MEL5, UACC257, UACC62 

Lung A549, HOP62, NCI-H23, NCI-H460, EKVX, NCI-

H226, NCI-H322, NCI-H522, HOP92 

Ovarian OVCAR5, OVCAR8, SKOW3, IGROV1, OVCAR3, 

OVCAR4 

Prostate PC3, DU145 

Renal 786-0, RXF-393, A498, ACHN, CAKI-1, SNC12C, 

TK10, U031  

Unknown ADR-RES 

Since the stabilized cell lines within the NCI60 collection represent a 

physiological model to study gene profiles in cancer cells, with features 
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strongly similar to cancer tissues, we reviewed information present in public 

databases about the 60 cell lines and 21 normal tissues, in order to identify 

transformation-dependent transcriptional signatures for PKA pathway-

encoding genes (Table 5). 

Table 5 : Gene expression profiling datasets of NCI60 cell lines and nor-

mal tissues analyzed in this study. 

Gene expression profiles retrieved from the GEO Database. Dataset A (60 

profiles) is made up of the NCI60 cell lines (Wang et al., 2006). Dataset B 

(13 profiles) is a subset of transcriptional profiles of a diverse array of tis-

sues, organs, and cell lines from a normal human physiological state (Su et 

al., 2002). Dataset C (4 profiles) encompasses the normal human adult sam-

ples derived from colonoscopic biopsy present in a database comprising 

samples of patients with Crohn’s disease or ulcerative colitis (Wu et al., 

2007). Dataset D (4 profiles) contains normal control samples present in a 

database containing transcriptional profiles of peripheral blood mononuc-

lear cells (PBMC) obtained by juvenile arthritis patients and healthy con-

trols (Barnes et al., 2004b).  

We identified and gathered the transcriptional profile for 41 genes encoding 

proteins involved in the PKA pathway (adenylyl cyclases -ADCY-, 

phosphodiesterases -PDE-, A-kinase anchor proteins -AKAP-, cAMP-

dependent transcriptional factors -TF-, PKA catalytic subunits -PRKAC- and 

PKA regulatory subunits -PRKACR-, Table 6) and compared expression 

Reference Tissue of 

origin 

Number of tran-

scriptional pro-

files  

GEO  

Number 

(Wang et al., 2006) NCI60 cells 60 GSE5949 

- Breast 0 - 

(Su et al., 2002) CNS 2 GSE96 

(Wu et al., 2007) Colon 4 GSE6731 

(Barnes et al., 2004b) Blood 4 GSE1402 

(Su et al., 2002) Lung 2 GSE96 

- Skin 0 - 

(Su et al., 2002) Ovary 3 GSE96 

(Su et al., 2002) Prostate 3 GSE96 

(Su et al., 2002) Kidney 3 GSE96 
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profiles of cancer cell lines with those of primary normal tissues, collected 

from different datasets (Table 6).  

Table 6 : PKA related genes identified in all the datasets shown in Table 5 

and used in this study. 

Probeset Unigene Symbol Description 
33353_at Hs.192215 ADCY1 Adenylate cyclase 1 (brain) 
34686_at Hs.481545 ADCY2 Adenylate cyclase 2 (brain) 
33134_at Hs.467898 ADCY3 Adenylate cyclase 3 
39383_at Hs.525401 ADCY6 Adenylate cyclase 6 
40585_at Hs.513578 ADCY7 Adenylate cyclase 7 
36246_at Hs.414631 ADCY8 Adenylate cyclase 8 (brain) 
33800_at Hs.391860 ADCY9 Adenylate cyclase 9 
37698_at Hs.463506 AKAP1 A kinase (PRKA) anchor pro-

tein 1 
36633_at Hs.462457 AKAP10 A kinase (PRKA) anchor pro-

tein 10 
34657_at Hs.105105 AKAP11 A kinase (PRKA) anchor pro-

tein 11 
37680_at Hs.371240 AKAP12 A kinase (PRKA) anchor pro-

tein (gravin) 12 
554_at Hs.459211 AKAP13 A kinase (PRKA) anchor pro-

tein 13 
41075_at Hs.98397 AKAP3 A kinase (PRKA) anchor pro-

tein 3 
37087_at Hs.97633 AKAP4 A kinase (PRKA) anchor pro-

tein 4 
32421_at Hs.532489 AKAP5 A kinase (PRKA) anchor pro-

tein 5 
40747_at Hs.509083 AKAP6 A kinase (PRKA) anchor pro-

tein 6 
41703_r_at Hs.486483 AKAP7 A kinase (PRKA) anchor pro-

tein 7 
35138_at Hs.199029 AKAP8 A kinase (PRKA) anchor pro-

tein 8 
37886_at Hs.399800 AKAP8L A kinase (PRKA) anchor pro-

tein 8-like 
36506_at Hs.527348 AKAP9 A kinase (PRKA) anchor pro-

tein (yotiao) 9 
36297_at Hs.435267 ATF1 Activating transcription factor 

1 
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37535_at Hs.516646 CREB1 cAMP responsive element 

binding protein 1 
32066_g_at Hs.200250 CREM cAMP responsive element 

modulator 
35522_at Hs.487129 PDE10A Phosphodiesterase 10A 
36311_at Hs.416061 PDE1A Phosphodiesterase 1A, calmo-

dulin-dependent 
38921_at Hs.530871 PDE1B Phosphodiesterase 1B, calmo-

dulin-dependent 
32418_at Hs.487897 PDE1C Phosphodiesterase 1C, calmo-

dulin-dependent  
666_at Hs.89901 PDE4A Phosphodiesterase 4A, cAMP-

specific 
33705_at Hs.198072 PDE4B Phosphodiesterase 4B, cAMP-

specific 
38860_at Hs.437211 PDE4C Phosphodiesterase 4C, cAMP-

specific 
38526_at Hs.117545 PDE4D Phosphodiesterase 4D, cAMP-

specific 
37676_at Hs.9333 PDE8A Phosphodiesterase 8A 
37249_at Hs.78106 PDE8B Phosphodiesterase 8B 
33709_at Hs.473927 PDE9A Phosphodiesterase 9A 
438_at Hs.194350 PRKACA Protein kinase, cAMP-

dependent, catalytic, alpha 
36215_at Hs.487325 PRKACB Protein kinase, cAMP-

dependent, catalytic, beta 
36359_at Hs.158029 PRKACG Protein kinase, cAMP-

dependent, catalytic, gamma 
226_at Hs.280342 PRKAR1A Protein kinase, cAMP-

dependent, regulatory, type I, 

alpha 
1091_at Hs.550753 PRKAR1B Protein kinase, cAMP-

dependent, regulatory, type I, 

beta 
116_at Hs.517841 PRKAR2A Protein kinase, cAMP-

dependent, regulatory, type II, 

alpha 
37221_at Hs.433068 PRKAR2B Protein kinase, cAMP-

dependent, regulatory, type II, 

beta 

To identify differences between normal and cancer samples, we performed 

an ANOVA analysis on the entire data set. As shown in Figure 17, 
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distributions of expression values of genes encoding proteins of the 

cAMP/PKA pathway were statistically different between normal and 

transformed cells (p-value <0.0001), indicating that in transformed cells the 

PKA pathway-related genes are differentially expressed as compared to 

normal cells. Namely, the box plot indicates that, overall, the distribution of 

expression of values of transformed cells is shifted towards lower expression 

values. Dispersion of the distribution in transformed cells is much reduced 

compared to that observed in normal tissues, as if transformation events 

superimpose a negative regulation that largely abrogates tissue-specific 

regulation (i.e., the major factor responsible for dispersion of expression in 

normal tissues, see next paragraph). 

 

Figure 17: Statistical analysis of the 41 PKA pathway-encoding genes 

expression in normal and transformed samples. 81 transcriptional profiles 

from normal tissues and from the NCI60 cancer cell line collection- were 

recovered from the GEO database. After normalization (see Methods), the 

expression values of 41 PKA pathway-encoding genes were used to perform 

an ANOVA analysis (p-value 0.0001) to evaluate the statistical significance 

of the differences between normal and transformed samples. IQR: Inter-

quartile Range. Outliers are also shown. 
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The same data-set was then analyzed through unsupervised hierarchical 

clustering (as implemented in the GeneSpring platform) that organizes genes 

according to the similarity or dissimilarity in expression profile, placing the 

cases with similar expression profiles together as neighbouring columns in 

the dendrogram (Figure 18).  

Six different classes corresponding to the main arms of the dendrogram 

derived from clustering according to Tissue and cell lines (classes I to III 

correspond to the left main branch of dendrogram, IV to VI to the right 

branch) were identified. Each cell line is color-coded at the bottom 

according to its condition (i.e., normal, blue, or transformed, red) or the 

tissue of origin. Notably, classes II and V contain only transformed cells, 

while only one transformed cell line clusters in class VI. In most cases 

clustering effectively separates normal and transformed cell lines of the 

same histological origin: for instance, normal and transformed cell lines 

derived from kidney cluster to class I and III, hemopoietic normal and 

transformed cell lines to IV and II, colon cancer cells are in class II while 

normal colon in class IV, respectively (Table 7). Class I and IV contained 

cancer lines of several histological origin, while class II was enriched for 

cancer cells from colon and blood, class III for ovary and kidney and class V 

for lung, respectively (Table 7). 

These results indicate that regulation of the PKA pathway is tissue-

dependent, in keeping with the pleiotropic and tissue-specific phenotypes 

regulated by intracellular cAMP. They also suggest that transformation 

transcriptionally remodulates the PKA pathway, so that in most cases 

expression profiling of genes encoding proteins of the cAMP-PKA pathway 

is quite different in cancer cells as compared to their normal counterparts. 
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Figure 18: Hierarchical clustering of the 41 PKA pathway-encoding 

genes analyzed in this work. Two-way (gene, column and cell line, 

row) hierarchical clustering (see Methods) of the same profiles 

analyzed in Figure 17. Normalized expression is colour-coded from 

green (poor expression) to red (strong expression). The name of each  
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gene is color-coded according to family to which it belongs. The 6 main 

classes described in the text (red lines on the top of the dendrogram and 

roman number bottom of the dendrogram) are shown. The distance function 

is based on Pearson correlation and complete linkage clustering. Legends 

for expression, condition, gene family and tissue of origin are shown on the 

right of the dendrogram. 

Interestingly in class IV, which comprises all the colon and hemopoietic 

normal samples, we observe strong expression of few genes (AKAP9-11; 

PDE4D; PRKCB and PRKAR2B; CREB1- colon sample- and AKAP9-11; 

PDE4B and PDE8A; PRKCB and PRKAR1A; CREB1 and CREM- 

hemopoietic sample-) as compared to their transformed counterparts, in 

which the same genes appeared poorly expressed (class II). In human colon 

carcinoma cells it has been reported that PRKAR2B over expression 

suppresses neoplastic cell growth (Nesterova et al., 1996), consistently with 

the notion that abnormal expression of isoforms of PKA regulatory subunits 

may be involved in neoplastic transformation. Moreover in several models of 

hemopoietic malignancies, it has been shown that induction of cAMP/PKA 

pathway stimulates leukemia cell differentiation (event associated to the 

relapse of the disease) or lymphoma cells apoptosis (Guillemin et al., 2002; 

Lerner et al., 2000). 
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Table 7: Correlation between PKA related gene patterns and tissues. 

Class Normal Transformed 

I 

 

 

 

Kidney 3/3 

Breast 2/8 

Lung 1/9 

CNS 1/6 

Kidney 2/8 

Prostate 1/2 

Ovary 2/6 

II 

 Colon 6/7 

Prostate 1/2 

Lung 1/9 

Hemopoietic 6/7 

III 

Ovary 3/3 Ovary 4/6 

Breast 1/8 

Kidney 5/8 

IV 

 

 

 

Colon 4/4 

 

 

Hemopoietic 4/4 

Breast 2/8 

Kidney 1/8 

CNS 4/6 

 

Lung 2/9 

Skin 1/8 

V 

 Breast 3/8 

CNS 1/6 

Colon 1/7 

Skin 7/8 

Lung 4/9 

VI 

CNS 2/2 

Prostate 3/3 

Lung 2/2 

 

 

Lung 1/9 

Six different classes, corresponding to the main arms of the dendrogram de-

rived from clustering according to “Tissue and cell lines”, were identified. 

Each cell line is color-coded according to its tissue of origin. The number on 

the right of each tissue represents the number of samples belonging to a 

class as compared to the total sample analyzed. 

Analysis of mutational status of the NCI60 cell lines and correlation with 

tissue-specific PKA pathway gene regulation 

In the previous paragraph we have shown that a different and a tissue-

specific pattern of expression of the PKA pathway encoding genes between 

normal and transformed samples does exist. Moreover, we observed that a 
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similar pattern is common to different tissues, both in normal and 

transformed samples. While in normal tissues such a finding may be justified 

by a common histological origin or by the PKA pathway regulating a 

common intracellular process (i.e. differentiation, metabolism), in 

transformed samples, in which the correct regulation of the PKA pathway is 

lost, such similar gene regulation can suggest a transformation or a mutation-

dependent gene regulation. 

For this aim, we determined the mutation status of the NCI-60 panel of 

human cancer cell lines, identified the pathway in which such mutations 

were involved and correlated the mutation status and pathway altered in the 

transformed cells with transcriptional profiling data. The 60 cell lines were 

sorted according to mutational status, using the information provided by 

Catalogue Of Somatic Mutations In Cancer 

(http://www.sanger.ac.uk/genetics/CGP/cosmic/), and divided into four 

groups based on the carried mutation as follows (Table 8): 

1) Cell lines carrying mutations able to interfere with the Ras pathway 

(i.e., mutations in genes encoding Ras, B-Raf, ERBB2, PDGFRA, 

referred to as Ras), 29 cell lines; 

2) Cell lines carrying mutations able to interfere with PI3K-Akt pathway 

(i.e., mutations in genes encoding PI3KCA, PTEN and Lkb1, referred 

to as PI3K), 13 cell lines. 

3) Cell lines carrying no somatic mutations interfering with the two 

above pathways (i.e., mutations in genes encoding CDKN2A, p53, 

referred to as Other Mutation), 14 cell lines; 

4) Cell lines for which the presence of somatic mutations interfering with 

the above pathways has not been searched, referred to as Not Tested), 

4 cell lines. 
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Table 8: NCI60 cell lines with predicted active pathways by mutational 

analysis. 

Tumor 

Type 

Ras PI3K Other Mu-

tation 

Not 

Tested 

Breast HS578T, MDA-

MB231, MD-MB435 

MCF7, 

T47, 

- MDA-

N, 

BT549 

CNS - SF295, 

SF359, 

SNB19, 

U251 

SF268, 

SNB75 

- 

Colon HCC2998, HCT116, 

HCT15, SW620, 

COLO205, HT29 

KM12 - - 

Leukaemia CCRF-CEM, RPMI-

8226, HL60, 

MOLT4, K562 

- - SR 

Melanoma SK-MEL2, LOXIM-

VI, M14, MALME-

3M, SK-MEL28, SK-

MEL5, UACC257, 

UACC62 

- - - 

Lung A549, HOP62, NCI-

H23, NCI-H460 

- EKVX, 

NCI-H226, 

NCI-H322, 

NCI-H522 

HOP92 

Ovarian OVCAR5, OVCAR8 SKOW3, 

IGROV1 

OVCAR3, 

OVCAR4 

- 

Prostate - PC3, 

DU145 

- - 

Renal - 786-0, 

RXF-393 

A498, 

ACHN, 

CAKI-1, 

SNC12C, 

TK10, 

U031 

- 

Unknown ADR-RES - - - 

The 60 cell lines reorganized in 4 categories, as described in the text, on the 

basis of the most representative mutation of each cell line: Cell lines carry-

ing mutations able to interfere with Ras-Raf-MAPK pathway (i.e., mutations 

in genes encoding Ras, B-Raf, ERBB2, PDGFRA, referred to as Ras); Cell 

lines carrying mutations able to interfere with PI3K-Akt pathway (i.e., muta-

tions in genes encoding PI3KCA, PTEN and Lkb1, referred to as PI3K) Cell 
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lines carrying no somatic mutations interfering with the two above pathways 

(i.e., mutations in genes encoding for CDKN2A, p53, referred to as Other 

Mutation); Cell lines for which the presence of somatic mutations interfering 

with the two above pathways has not been searched, referred to as Not 

Tested. 

To assess overall data quality and visualize relations and differences 

between the aforementioned transformed and normal samples, we applied 

dimensional reduction through principal component analysis (PCA). A three-

dimensional PCA plot of all expression data (accounting for 91% of 

variance) is shown in Figure 19A. PC1 (x-axis) effectively separates the 

normal group from the four groups of transformed cells. PC2 (y-axis) 

effectively separates the Ras group from the others, while PC3 (z-axis) best 

separates the Other Mutation group from the others. Overall, the Ras group 

appeared to segregate the most from the other groups. 

In Figure 19B, the 41 genes encoding proteins involved in the PKA pathway 

were sorted according to their relative level of expression and color-coded in 

the graph according to expression: strong (red, value >1), average (black, 

value=1) and low (green, level <1). These three series were crossed with the 

groups described above, namely Normal, Ras, PI3K, Other Mutation and 

Not Tested. In Normal tissues, expression of 83% of the genes was classified 

as Strong, a value 2-3 fold higher than those observed in the different 

transformed groups (27-41%). Overall, in the transformed groups, 

expression of most PKA pathway-encoding genes was classified as Average 

or Low, with the exception of the Ras group, in which only one gene was 

scored as low. 

Expression of PKA pathway-encoding genes was further classified as 

follows (Figure 19C): genes with similar level of expression between normal 

and at least one transformed group (blue color), genes whose expression 

level is different between the normal and transformed groups (yellow color) 

and genes with similar expression level among the different transformed 
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groups (grey color). Such a classification allowed us to pinpoint genes, such 

as ADCY2 and AKAP13 whose expression is strong only in the Normal 

group. More interestingly, expression of a few genes, such as ADCY3 and 

AKAP8 was strong only in members of the transformed groups, despite 

overall reduction in expression of the PKA pathway-encoding genes 

observed in transformed samples. 

These results were further confirmed by pair-wise ANOVA analyses (Figure 

19D), in which the distribution of expression values of genes encoding 

proteins of the cAMP/PKA pathway were found to be statistically different 

between normal and each group of transformed cells (p-value between 

0.0001 and 0.0003). Notably, the difference in distribution between the Ras 

group and the PI3K and Other Mutation groups was also statistically 

significant, unlike the difference with the Not Tested group. This suggests 

that cells in this group may be biased for mutations within genes encoding 

proteins of the Ras pathway. 



GeneChip analysis application to cancer knowledge  

 

100 

 

Figure 19: Identification of differentially regulated genes in normal and 

transformed samples. A) Samples were sorted in five groups according to 

mutational activation: green, normal; yellow, Ras; red, PI3K; blue, Other 

Mutation; cyan, Not Tested. Principal Component Analysis (PCA) per-

formed on 41 PKA pathway-encoding genes for normal samples and the four 

classes of mutation-dependent samples. Each sphere represents the compar-

ative averaging of the 41 genes for each pathway identified by mutational 

analysis. B) For each of the 5 groups described in (A), the 41 PKA–encoding 

genes were clustered, relative to their level of expression, in three sub-

groups: Strong (>1, red), Average (=1, black) and Low (<1, green). C) 

Gene list according to expression level and mutational group of the three 

subgroups previously indicated, divided for each sample. Color-coding is as 

follows: blue, common between normal and at least one transformed sample; 
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yellow, specific for normal samples; grey, specific for transformed samples. 

Percentage of regulated genes for each subgroup is shown at the bottom. D) 

ANOVA analysis to evaluate the statistical significance of the differences be-

tween the five classes of samples described in (A). The right inset shows p-

value of the pair-wise comparisons. Statistically significant differences are 

indicated in red. IQR: Inter-quartile Range. Outliers are also shown. 

To reveal gene expression changes relate to mutation status of the 60 

cell lines, and better interpret the results of PCA and ANOVA, a hie-

rarchical clustering was performed. The resulting dendrogram is 

shown in Figure 20, in which each cell line is color-coded at the bot-

tom according to its tissue of origin -row labeled tissue-, mutated gene 

-row labeled mutation-, inferred pathway activated by mutation -row 

labeled pathway-. A robust association between the transcriptional 

profiles and mutations in the Ras pathway was observed (indicated as 

Ras, red color). Two cell lines of the Not Tested group were interdis-

persed within the Ras group, indicating that these two lines are most 

likely responsible for the lack of statistical difference between the Ras 

and the Not Tested group (see above). Comparison of the Tissue and 

Pathway categories indicated that within the two Ras sub-clusters, 

some tissue-specificity is conserved. Indeed, the left cluster, compris-

ing a total of 18 cell lines, was characterized by 6 colon cancers and 6 

leukemias of which 5 on 6 were mutated in Ras pathway. Similarly 

the right cluster, comprising a total of 19 cell lines, was characterized 

by 8 melanomas and 5 lung cancers of which 7 on 8 were mutated in 

Ras pathway for melanoma and 4 on 5 for lung cancer. 
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Figure 20: Hierarchical clustering of the 41 PKA pathway-encoding genes 

in transformed samples. Two-way (gene, column and cell line, row) 

hierarchical clustering (see Methods) of the profiles from the NCI60 

collection only. Normalized expression is color-coded from green (poor 

expression) to red (strong expression). The distance function is based on 

Pearson correlation and complete linkage clustering. The name of each gene 

is color-coded according to the family to which it belongs. Legends for 

expression, condition, gene family and tissue of origin are shown on the 

right of the dendrogram. The data have been organized on the basis of the 
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tissue of origin of the cancer (Tissue), the specific oncogenic mutations 

identified in each cell line (Mutation), the putative altered pathway by the 

specific mutations (Pathway) and the gene family. 

The other sub-clusters, comprising all the remaining cell lines and the other 

three groups of mutations and consequently of pathways, were more 

dispersed along the clustergram. Together, these results indicate that 

transformation events modulate transcriptional regulation of genes encoding 

proteins of the PKA pathway and that mutational activation of the Ras 

pathway originates a distinguishable signature, in comparison with 

mutational activation of the other genes studied in this report. Such a 

distinguishable signature is particularly noticeable in melanoma cells, in 

which strong expression of a gene set encoding a complete functional PKA 

pathway module (ADCY3; PDE4B, PDE4D and PDE8A; AKAP12; 

PRKAR1A and PRKAR2B; PRKACB; CREM) is observed, suggesting a 

deregulated cAMP signaling. Moreover, analysis of expression values for 

PRKAR1A and PRKAR2B genes indicated the presence in melanoma cells 

of a high R1/R2 ratio, that has been associated to melanocyte proliferation 

(Mantovani et al., 2008). 

Promoter analysis: finding correlation between oncogenic pathway, 

transcriptional profiles and promoter regulation 

Genes involved in the same pathway or transcriptionally co-regulated are 

likely to share similar promoter features. To test this hypothesis in our 

model, the 15 groups previously established (see Figure 19), containing co-

regulated genes for each group, were used for promoter identification and 

analysis. Using a series of biocomputing procedures and statistical processes 

(see Methods and the Figure), we identified Transcription Factor Binding 

Sites (TFBSs) conserved within the promoters (operationally defined as 

regions spanning 500 nt upstream and 100 nt downstream from the 

transcription start site) of the 41 PKA pathway-encoding genes.  
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Figure 21: TFBS identification by using the enrichment as parameter. A) 

The panel shows for each TFBS, recognized as relevant (present in ≥ 70% of 

the promoters of 41 PKA pathway-encoding genes) the percentage of 

promoters in our collection that contain the motif as compared to Matrix 

Family Library on vertebrates. This percentage has been calculated by 

dividing the total number of promoters containing the motif (S) by the total 

number of promoters (T). Color-coding scheme on the right of the panel. B) 

Schematic representation of the TFBSs (color-coded as shown on the right of 

the panel) identified in the promoters of the 15 subgroups described in the 

text and in Figure 17. Each cartoon represents the promoter structure 

resulting from the average of the TFBS identified in ≥ 70% of the gene 

promoters for each subgroup. The asterisks on the bottom of the cartoon 

indicate the over-represented TFBS, as scored in panel A, for all the 41 PKA 

pathway-encoding genes. 

Genes were sorted in the 15 groups indicated in Figure 19B and 19C, and 

each group separately analyzed. In this first analysis (Figure 21A), each 

TFBS was scored as either absent or present, regardless of the number of 

copies present within a given promoter. This analysis permitted the 

identification of 30 TFBSs enriched in the promoters of the 41 PKA 

pathway-encoding genes whose frequency of occurrence i.e., the ratio 

between the promoters that contained the specified motif (S) and the 41 

promoters in our collection (T) was compared with the frequency of 

occurrence within vertebrate genomes (computed using the promoter Library 
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Matrix Family of vertebrates that comprises 260000 vertebrate promoters). 

Statistical analysis indicated that of these 30 TFBSs, 7 were over-represented 

(red color) and 9 under-represented (green color). The remaining showed the 

same frequency of occurrence found in the whole vertebrate genome 

collection. 

A consensus representation for the promoter structure of each subgroup of 

co-regulated genes was drawn by taking into account the 30 TFBSs present 

in at least 70% of the genes within each subgroup (Figure 21B). 

Surprisingly, the vast majority of these consensus promoters (13 out of 15) 

showed a common module (upper part, module), comprising 4 TFBSs: 

ETSF, MAZF, ZBPF and EGRF, 3 of which are over-represented in our 

collection (over-represented motifs are indicated by an asterisk at the bottom 

of the figure). This strongly suggests a functional implication of these 

TFBSs in expression of PKA pathway-encoding genes. Other interesting 

features indicated by this analysis include the identification of binding sites 

for PAX6 (indicated by red P) and ZF5F and NKXH (indicated by red Z and 

N respectively) only in consensus promoters of some genes within the 

normal or transformed group, respectively. 

Another feature that may be critical in the identification of enriched elements 

is the number of copies of a given TFBS within a promoter. In fact, it has 

been documented that the presence of multiple copies of cis-elements in 

promoters, particularly when clustered, makes transcriptional activation 

stronger (Ross et al., 2000; Wang et al., 2006).  
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Figure 22: Hierarchical clustering of TFBSs present in the promoters of 

the 41 PKA pathway-encoding genes, according to total number and 

frequency. Two-way (TBFS, column and expression subgroup, see Figure 

16, row) hierarchical clustering of the TFBS present within the promoters of 

the 41 PKA pathway-encoding genes. Clustering was run according to the 

total number of TBFS present in each group A) or to the frequency, i.e. the 

total number of a given TBFS divided by the number of promoters B). The 

color-coding scale is shown at the top of each panel. The distance function is 

based on Pearson correlation and complete linkage clustering. The two 

classes, corresponding to the main arms of the dendrogram, derived from 

clustering according to “Condition” are shown on the right of each 

dendrogram. 

For this reason, total number and frequency (number of each 

TFBS/promoter) of the 30 TFBSs previously identified, was scored within 

each of the 15 subgroups and classified by hierarchical clustering (Figure 
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22A and 22B, respectively). Analysis using both criteria confirmed the 

results reported in Figure 18: the presence in promoters of all subgroups of a 

TFBS module comprising ETSF, MAZF, ZBPF and EGRF. Clustering 

according to Regulation in Figure 20A show that all promoters of genes 

characterized by low expression transformed samples cluster together (class 

II). Promoters belonging to genes with strong expression in the Ras group 

cluster in a completely independent arm (lower part of the dendrogram), 

opposite to where cluster promoters belonging to genes with strong 

expression in the Normal group (class I). Additionally, clustering by 

frequency highlighted the specific enrichment of EKLF in genes with low 

expression. Clustering according to both criteria indicated that Normal 

samples clustered in a different way as compared to transformed samples 

(upper part of the dendrogram) and that the PI3K, Other Mutation and Not 

Tested samples were more interspersed along the dendrogram and confirmed 

that the Ras category showed a different promoter composition as compared 

to other categories, in keeping with the PCA analysis presented in Figure 16. 

Data mining for PKA pathway-related gene promoters 

As previously described, computational analysis of our promoter collection, 

permitted the identification of some TFBS that are able to characterize in a 

specific manner normal and transformed samples. To confirm some of our 

computational results, we interrogated several databases and searched in the 

literature for studies on promoter structure of PKA pathway-encoding genes. 

Experimental studies, using one or more molecular approaches including 

EMSA, Chromatin Immunoprecipitation and transactivation assay, have 

been found for 16 PKA pathway-encoding genes: PRKAR1A, PRKAR1B, 

PRKAR2B, PRKACA, AKAP1, AKAP8, AKAP9, AKAP10, AKAP12, 

ADCY8, ADCY9, PDE4B, PDE4C, PDE4D, CREB and CREM. This subset 

of genes was re-analyzed as described above and the obtained results were 

compared with literature data (Table 9). In total, 36 TFBSs have been 
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experimentally identified: 20 of these (i.e. 55%) have been predicted by our 

computational approach and for two genes alone (AKAP9 and PRKAKA), 

none of the experimentally identified sites was identified by the 

computational approach that overall identified a much higher number of sites 

compared to those retrieved from literature. The biological significance of 

the presence of the identified TFBS and of their relationship with oncogenic 

mutations, notably in the Ras pathway, is proposed below. 

Table 9 : Comparison between computational data and literature data. 

GeneName Computational data Literature data 

ADCY8 HOXF, ETSF, SORY  CREB 

ADCY9 

ZF5F, SP1F, ZBPF, MAZF, 

EKLF, EGRF, EBOX, CDEF, 

WHNF, AHRR, ETSF, HESF 

c-Myc/EBOX  

AKAP1 
MYOD, EKLF, MAZF, EGRF, 

ETSF, HOXF, AP1R, EBOX 
c-Myc/EBOX  

AKAP8 

SP1F, EKLF, ZBPF, EBOX, 

ZF5F, HIFF, MAZF, EGRF, 

ETSF, AHRR, CREB 

CREB 

AKAP9 

ZBPF, EGRF, EKLF, ETSF, 

HOXF, SP1F, MAZF, GLIF, 

HOMF, NKXH, CREB 

c-Myc/EBOX 

AKAP10 

ETSF, SP1F, HESF, EBOX, 

ZBPF, MAZF, MYBL, MYOD, 

AP4R, EGRF, CREB, MZF1 

c-Myc/EBOX  

AKAP12 EBOX, EGRF, SORY 
c-Myc/EBOX, 

SRF/SRFF 

CREB1 

SORY, SP1F, NFKB, ETSF, 

ZBPF, MYOD, EKLF, AP4R, 

MZF1, HICF 

Myc/EBOX, Sp1/SP1F, 

NFkB/NFKB 

CREM 

ZBPF, EGRF, SP1F, MAZF, 

EKLF, ETSF, CREB, WHNF, 

HESF, EBOX, MYBL, HIFF, 

AHRR 

CREB 

PDE4B 
ETSF, SORY, HOXF, ZBPF, 

HEAT, CREB 
CREB 

PDE4C 
ZBPF, ETSF, CREB, GLIF, 

MAZF 
Myc/EBOX, CREB 
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PDE4D 
SORY, HOXF, NKXH, ETSF, 

CREB, GATA, MYOD 
CREB 

PRKACA 

EKLF, ZBPF, EGRF, MZF1, 

NKXH, ETSF, MAZF, SORY, 

HOXF 

USF1/EBOX, 

USF2/EBOX 

PRKAR1A 

ETSF, CREB, ZBPF, EBOX, 

EGRF, SORY, GATA, MYBL, 

MYOD, HIFF, SP1F, HESF 

AP1/AP1F, AP2/AP2F,  

Sp1/SP1F, CREB,  

FOXC2, FOXD, FOXD2  

PRKAR1B 

EKLF, MAZF, HESF, PLAG, 

ZBPF, EBOX, EGRF, MYOD, 

MZF1, AHRR, ETSF, HIFF, 

SP1F, AP1F 

Jun/AP1F, p53/P53F, 

Oct-1/OCT1, Egr1/EGRF 

Pax1/PAX1  

PRKAR2B 

ZBPF, ZF5F, EGRF, EKLF, 

MAZF, HESF, SP1F, CREB, 

EBOX, ETSF, NF1F 

Sp1/SP1F, NF-1/NF1F, 

Myc/EBOX, CEBPbe-

ta/CEBP 

USF1, USF2/EBOX 

The table shows the transcriptional factor families identified by computa-

tional analysis and the transcriptional factors/transcriptional family identi-

fied by analysis of literature data. The factors identified by both analysis are 

shown in red. 

PKA type I regulatory subunit A (PRKAR1A) expression has been studied 

in different cellular models by analyzing its mRNA expression and by using 

its putative promoter region. In its promoter, binding sites for activator 

protein-1 and 2 (AP-1 and AP-2) and Sp1 (Solberg et al., 1997) have been 

identified. Moreover, a more recent work showed a direct activity of FOX 

family (FOXC2, D1 and D2) transcriptional factors members in the 

regulation of PRKAR1A expression both at transcriptional and at post-

transcriptional levels (Dahle et al., 2002a; Dahle et al., 2001). 

The promoter of PRKAR1B has been identified and studied in human and 

mouse: binding sites for Jun and p53 (human) and Oct-1, Egr1 and Pax1 

(mouse) have been found. These binding sites have been experimentally 

verified by Electrophoretic Mobility Shift Assay, functional analysis and 

Northern blot (Clegg et al., 1996; Clegg et al., 1994). 
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PRKAR2B promoter has been studied in particular in Sertoli cells (human). 

Some reports identified binding sites for Sp1, NF-1, Myc, C/EBPbeta, able 

to induce the PRKAR2B promoter, USF1 and USF2. Interestingly, 

overexpression of USF2, but not USF1, led to inhibition of both cAMP- and 

C/EBPbeta-mediated induction of PRKAR2B (Dahle et al., 2002b; Knutsen 

et al., 1997; Singh et al., 1994). 

The promoter of Protein kinase, cAMP-dependent, catalytic, alpha 

(PRKACA) has been identified both in humans and mouse, but little 

information has been produced for human promoter. Indeed, one paper 

describes the presence of binding sites for USF1 and USF2 transcription 

factors (Barradeau et al., 2001). 

AKAP1, AKAP9 and AKAP10 promoters contain binding sites for c-Myc as 

shown by computational analysis and ChIP experiments in several human 

cell lines (Fernandez et al., 2003; Li et al., 2003). Moreover, a single study 

indicates the presence in the promoter of AKAP12 of binding sites for 

Serum Response Factor transcriptional factors (Streb and Miano, 2005) and 

more recently for Myc. 

ADCY9 promoter contains binding sites for c-Myc as shown by an 

experimental approach (Mao et al., 2003). 

Several promoters of genes encoding phosphodiesterase proteins have been 

isolated and to some extent studied. All the studies have been performed on 

sequences of human promoters and in particular the PDE4B, PDE4C (both 

present in our collection of PKA pathway related genes), and PDE5A, 

PDE6A, PDE6B and PDE7A promoters (not present in our gene list) have 

been better characterized. In the PDE4B promoter, binding sites for CREB 

have been found (D'Sa et al., 2002). In PDE4C promoter, binding sites for 

Myc have been found (Li et al., 2003). In the PDE5A promoter, binding sites 

for Jun and AP-2 have been found (Lin et al., 2001a; Lin et al., 2001b); in 

PDE6A and PDE6B promoters, binding sites for Sp1 (Mohamed et al., 1998) 
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and Sp4 (Lerner et al., 2001; Lerner et al., 2002) respectively and in PDE7A 

promoter, Ets2 and NFkB1 binding sites (Torras-Llort and Azorin, 2003). 

The cyclic AMP response element (CRE)-binding protein CREB promoter 

has been identified in human, mouse and rat. Analysis done on human 

promoter, experimentally confirmed, identified binding site for c-Myc 

(Delfino and Walker, 1999) and Sp1 (Shell et al., 2002). Further information 

about such promoter has been produced in mouse and rat cells which 

allowed the identification of binding site for NfkB (Delfino and Walker, 

1999). 

An important regulative mechanism of the PKA pathway is feedback 

control. Indeed as well as the cAMP produced by Adenylyl Cyclases, 

activate PKA kinase activity, PKA is able to inhibit the pathway, activating 

by phosphorylation the Phosphodiesterases, which ultimately induce 

hydrolysis of cAMP switching off the pathway. Moreover a huge amount of 

data has been published regarding the ability of PKA to activate specific 

transcription factors by phosphorylation: cyclic AMP response element 

(CRE)-binding protein CREB, the cAMP response element modulator 

(CREM), the activating transcription factor 1 (ATF-1) and a repressor, ICER 

(inducible cAMP early repressor) (Mayr and Montminy, 2001) that, to a 

certain extent, has been shown to regulate PKA pathway-related genes 

transcription. Some of the promoters, already discussed above, have been 

shown to have CRE binding sites. Moreover, two interesting recent 

publications, have identified and characterized in different cellular contexts 

and by several approaches, through a genome-wide approach, target genes 

that are regulated by CREB (Impey et al., 2004). The authors have identified 

and proved by ChiP analysis (PRKAR1A, PDE7B) the presence of CRE site 

in PRKAR1A, in PDE7B, AKAP8, PDE4C and ADCY8. In the latter case 

they did not observe binding by Chip analysis, but another report has shown 

that its activation is mediated specifically via the canonical CRE site (Chao 
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et al., 2002). Binding sites for CREB1 have been found in PDE7A (Torras-

Llort and Azorin, 2003), PDE4D (Wang et al., 2003), CREM (Walker and 

Habener, 1996) and experimentally confirmed. Moreover analysis of the 

promoter of CREB gene showed the presence of several CRE binding sites 

(Meyer et al., 1993). 

Most of AP-1 (i.e. Jun), AP-2 and Sp1 transcription factors are involved in 

growth-related signal transduction pathways, among which Ras is a main 

actor, and their over-expression can have positive or negative effects on 

proliferation (Black et al., 2001; Maurer et al., 2007). Indeed Sp family has 

been shown to be regulated by post-translational mechanisms by Ras 

pathway (Pore et al., 2004) as well as Ets1 and Ets2 (Foulds et al., 2004) and 

NFkB (Finco and Baldwin, 1993). 

Egr-1 is an early responsive gene linked to mitogenic stimulation directly 

regulated by MAPK pathway (Wong et al., 2002). Moreover for Myc (Sears, 

2004), C/EBPbeta (Mo et al., 2004) and NF-1 (Nebl et al., 1994) a large 

amount of data about their correlation with Ras pathway has been reported. 

Each of these transcriptional factors has been associated with several cellular 

responses (proliferation, survival, apoptosis) and transformation as is the 

case of the PKA pathway as well. Therefore it is possible that mitogenic 

signal through Ras and the regulation of such transcription factors, 

modulates the expression of PKA pathway related genes. 

An important role, in the activation of the CREB family transcription factors, 

is played by stimuli which are able to induce their phosphorylation and 

consequently their activation. In fact as reviewed in (Meyer et al., 1993) not 

only the protein kinase A is involved in this function but also several growth 

factors (NGF, FGF, IGF-I, PDGF, EGF), survival signals and hypoxia that 

often activate the Ras pathway, pointing to an essential role of the latter 

pathway also in gene transcriptional regulation of PKA pathway-encoding 

genes by transcription factors of the CREB family. 
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5.2.2 Discussion 

By using a generalized workflow for data recovery and integration that 

combines accurate analysis of recovered data from several databases with 

the application of different statistical tests we have been able to correlate 

strong transcriptional repression of genes encoding proteins of the 

cAMP/PKA pathway in transformed samples of different genetic origin (i.e., 

bearing mutations in different pathways). This finding prompted us to 

compute consensus promoters, whose composition was specifically enriched 

for different transcription factor binding sites (TBFS). Comparison of TFBS 

computationally identified in the consensus promoters with TBFS 

experimentally identified by a variety of techniques, shows a good 

agreement. Indeed, by lowering the stringency used in the workflow, some 

of the TFBS missed by higher stringency analysis (false negatives) were 

recovered, in keeping with the notion that intersection of different data sets 

and/or techniques decreases both noise and the number of hits. 

The workflow we have followed is summarized in Figure 23 and 

detailed in Methods section. As the number of sites hosting curated 

transcriptional profiles increases, more and more data to be used as starting 

point become available. We used the GEO database to recover data from the 

NCI60 cell collection (cancer samples) and matching normal tissues and to 

which specific statistical tests (i.e. ANOVA, Hierarchical clustering) were 

applied. By using the COSMIC database, which gives information about the 

mutational status of the NCI60 collection, we could sort the NCI60 cell lines 

in 4 subgroups with mutational activation of genes encoding components of 

the Ras pathway, of the PI3K pathway, of other pathways or for which no 

information was available. Such a sorting allowed us to uncover an hitherto 

unrecognized oncogene-dependent pattern of regulation of 41 genes 

encoding components of the cAMP/PKA pathway (Figure 23B and 23C). 

The transcriptional profiles for transformed cells within one of the identified 
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subgroups may then be used as a new query to GEO database (green arrow), 

in order to correlate and confirm, i.e. in cancer tissues, the oncogene-

dependent pattern identified. 

Deregulation of transcriptional programs, such as that identified for 

PKA pathway-encoding genes, may be considered a direct consequence of a 

deregulated activity of transcription factors. The TRANSFAC database was 

used with a high stringency threshold, to identify the regulatory sequence in 

co-regulated genes with high confidence, improving the deduced linkages 

between transcription factors and the regulated genes. Using this approach, 

we demonstrated that in all PKA encoding genes TFBSs for ETS, MAZ, 

ZBP and EGR transcription factors are present (Figure 23D) and that 

specific subsets of TFBS are present in the normal and transformed samples. 

The number of TFBS identified by computational analysis was higher than 

those that could be retrieved from literature as experimentally determined. 

This observation was to some extent expected because of limited literature 

reference availability, complexity to retrieve data, difficulty to analyze data 

from several origins, and the lack of powerful data analysis and integration 

tools. Under these less-than-ideal conditions, a dedicated tool such as the 

TFBS database, can be extremely powerful, allowing predictions that are 

amenable to experimental verification, should this be necessary. As 

discussed above, most of the false-negatives that failed to be detected by our 

computational approaches could be recovered by appropriately lowering the 

stringency of analysis. 
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Figure 23: Flowchart of our web-based and statistical strategy used to 

elucidate the relation between PKA encoding genes transcriptional profiles 
and oncogenic mutations. A) Flow chart of our web-based and statistical 

strategy with indication of some of the databases (Source) used, the type of 

data analyzed (Input), the specific program and statistical test (Tool) used 

and the result obtained (Output). B) Graphical representation of the block 

diagram summarizing functional interconnections within the PKA pathway 

module with indication of the expression level (geometric mean) of each 

gene belonging to the network -Strong (red), Average (black) and Low 

(green)- as identified by our analysis both in normal (B, left) and 
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transformed samples (B, right). C) Boxplots of the expression of PKA 

pathway-encoding genes in normal (C, left) and transformed (C, right) 

samples, grouped for functional classes (ADCY: adenylyl cyclase; AKAP: A-

kinase anchor protein; PDE: phosphodiesterase; PRKACR: PKA regulatory 

subunit; PRKAC: PKA catalytic subunit). The represented value is the 

median. D) Schematic representation of the TFBSs (color-coded) identified 

in the promoters of PKA pathway-encoding genes of normal and 

transformed samples. Each cartoon represents the promoter structure 

resulting from the merge of the TFBS identified in ≥ 70% of the gene 

promoters of all normal samples and transformed samples. 

In Figure 23B transcriptional expression of PKA pathway encoding 

genes is color-mapped (geometric mean, Strong expression, red, Average 

expression, black and Low expression green) on a block diagram 

summarizing functional interconnections within the PKA pathway module. 

A general and balanced co-regulation of both positive and negative 

regulators of the cAMP/PKA pathway is apparent in both normal and 

transformed samples. Notably, in normal cells variability in expression is 

maximal for genes encoding the catalytic subunit of PKA. Because of the 

pleiotropic role of the PKA pathway (including stimulation of growth and 

differentiation in many cell types, such as somatotrophs, thyrocytes, 

melanocytes, ovarian follicular granulosa cells, keratinocytes, nervous, 

muscle and blood cells and adipocyte and the important role of such pathway 

in the regulation of the function of tissues as kidney, ovary, brain, and 

prostate), strong expression in normal tissues is expected (Cho-Chung, 1990; 

Mei et al., 2002). It should also be remembered that cross-talk between the 

PKA pathway and oncogene-mediated pathways can also take place at post-

transcriptional levels. For example, several Authors reported the ability of 

oncogenic and viral Ras proteins to either stimulate (Franks et al., 1987; 

Spina et al., 1993) or inhibit (Beckner et al., 1985; Levitzki et al., 1986) 

ADCY activity in different cell lines (thyroid, epithelial, kidney, fibroblast). 

Moreover an involvement of MAPK or PI3K pathways in the regulation of 

PDE activity has been reported, suggesting that mitogenic stimulation may 



 GeneChip analysis application to cancer knowledge 

117 

positively regulate PDE4 expression directly (Liu et al., 2000), confirming 

our transcriptional results, or by post-translational mechanisms in which 

p42(MAPK) phosphorylation activity has a relevant role in their regulation 

(Houslay and Baillie, 2003). Another important post-transcriptional 

mechanism that links Ras or PI3K pathways to cAMP/PKA pathway is the 

positive and negative control of CREB activity by a phosphorylation (Salas 

et al., 2003). Moreover, it has been reported that cAMP is able to induce 

proliferation rather than growth inhibition, in several tumors where 

oncogenic activation of B-Raf has been identified (i.e., melanoma and 

thyroid cancer) (Dumaz and Marais, 2005). Nevertheless, the general and 

coordinated down-regulation of essentially all genes of the pathway in 

transformed cells (as compared with normal tissues) suggests that at least 

one PKA-mediated function needs to be reduced substantially in order to 

express the transformed phenotype. Although at this stage it is too early to 

propose specific hypotheses, it is intriguing to remember that PKA has been 

ascribed a role in activating mitochondrial respiration and decreasing ROS 

production (Raha et al., 2002), thus effectively counteracting mitochondria 

dysfunction that is found associated with increased glycolysis (Warburg 

effect, (Chiaradonna et al., 2006a; Warburg, 1956)) in many cancer cells. On 

the other hand, a reduction in oxidative phosphorylation that will decrease 

ATP supply, as substrate of adenylate cyclase, may result in a decreased 

cAMP production without relevant changes in the level of the enzymes (and 

possibly therefore of their gene expression). 
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6. Identification of phylogenetic conserved 

characteristic of cancer cells by comparison analysis 

between mouse and human species.   

The mutations that cause cancer trigger thousands of perturbations in 

cell circuitry components, such as changes in gene expression levels. Animal 

models have proved to be useful experimental tools for identifying and 

characterizing such of these genetic factors. Such a comparative approach 

helps to identify factors that animals and man have in common and to 

elucidate the basic mechanism of tumorigenesis. More recently, gene 

expression profiling has attracted interest as a means of comparing the 

molecular features of tumors among different vertebrate species as dog, 

mouse and rat. For example, Sweet-Cordero et al. (Sweet-Cordero et al., 

2005) used comparative functional genomics to assess the molecular 

relationship of mouse models of KRAS2-mediated lung cancer or 

hepatocellular carcinoma to their human correlates. These studies reveal two 

important facts: (i) some animal models more closely recapitulate their 

corresponding human tumors than do others, which determines their relative 

comparative value, and (ii) the comparison of human cancer expression 

profiles with those found in valid animal tumor models can reveal previously 

unrecognized gene expression signatures. The mouse remains the animal 

model of choice for several reasons. The principal it is that mice and humans 

have roughly the same number of genes, and intracellular signaling pathways 

are highly conserved between the two species.  

Mouse models of cancer provide us with the ability to learn about tumor 

biology in complicated and dynamic physiological systems. Even though 

tumorigenesis in mice does not fully parallel that in humans, is it possible 

identify the signal coming from such a cross-species comparison would be 

analogous to the detection of conserved regulatory regions by comparative 
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genomics. In fact cross-species studies using genomic-based technologies 

have indicated the preservation of oncogene transcriptional signatures 

(Ellwood-Yen et al., 2003; Sweet-Cordero et al., 2005) or the synteny of 

tumor-associated copy number alterations (Hodgson et al., 2001; Maser et 

al., 2007; O'Hagan et al., 2002). Furthermore, comparison between mouse 

and human samples have demonstrated the conservation of somatic signature 

mutational events (Maser et al., 2007; O'Hagan et al., 2002), and have 

enabled the efficient identification of new oncogenes in human cancers 

(Menendez et al., 2009). 

In this chapter, we discuss the use of comparative analysis to advance in 

the cancer biology, in particular this analysis has been performed and 

described in two works: Comparative transcriptional analysis between a K-

ras mouse cell model of transformation and the NCI60 human cancer cells 

collection and Promoter Scan: Algorithm to detect over-represented TFBSs 

in the proximal promoter regions of co-regulated or co-classified. 

In the first work, in order to identify common gene expression 

signatures between a set of 60 human cancer cell lines (NCI-60 cell 

collection) and a mouse cell model of oncogenic K-ras dependent 

transformation, has been carried out a comprehensive transcriptomic 

analysis. All the microarray data have been first normalized by using the 

RMA procedure and then analyzed by using advanced multivariate statistical 

methods, such as ANOVA, PCA, clustering and pathway analysis tools (as 

described elsewhere in the thesis), to identify the differentially expressed 

genes and the pathways to which they are associated. By focusing on the 

similarities between the two species, we showed that between transformed 

mouse and human cell models, especially that depending on K-ras for 

transformation, exists a strong correlation at both transcriptional and 

pathway levels. These findings demonstrate the power of the comparative 

analysis as described here as a tool to identify cancer-specific gene 
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signatures. Our results further show that our mouse model can be used to 

study the human oncogenic process. 

In the work “Promoter Scan: Algorithm to detect over-represented 

Transcriptional Factor Binding Sites (TFBSs) in the proximal promoter 

regions of co-regulated or co-classified genes”, we presented a new 

algorithm that may give an important contribute in the important problem in 

understanding the complex nature of eukaryotic gene regulation. We 

describe a new and flexible framework for identification of common 

structure of regulatory elements inside the proximal promoter region of co-

regulated genes. The strength of this algorithm lies in two new parameters: 

the conservation and the physical characteristics of the putative transcription 

factors, that permit a strong reduction of predicted Transcriptional Factors 

(TFs) without reduction of the “true” TFs. 

6.1 Comparative transcriptional analysis between a K-ras mouse 

cell model of transformation and the NCI60 human cancer cells 

collection. 

The more of 22000 genes in the mammalian genome, acting 

combinatorial within individual cells, are able to create the extraordinarily 

complex organismic phenotypes of mammalian body. A central goal of 

twenty-first-century biology is to relate the functioning of this large 

repertoire of genes to organismic physiology, developmental biology, and 

disease development. In this way, the microarrays experiments permit us to 

look at overall and characterize the transcriptional profiles of tens of 

thousands of genes simultaneously, this technologies have been widely used 

in biomedical (Alon et al., 1999; Golub et al., 1999; van 't Veer et al., 2002) 

and comparative genomic studies (Bergmann et al., 2004; Lelandais et al., 

2006; Zhou and Gibson, 2004). 

The widespread application of DNA microarrays to cancer research is 

nothing less than astounding. In the short ten years history of this versatile 
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technology, hundreds of large-scale experiments have been done, generating 

global quantitative profiles of gene expression implicated in cancer cell 

growth, survival, progression, metastatic invasiveness and/or therapeutic 

resistance (Hanash, 2004; Rhodes and Chinnaiyan, 2005; Segal et al., 2005). 

The nature of cancer suggests that it is a disease of chaos, a breakdown of 

existing biological order within the body. More specially, the disorder 

observed in cancer appears to derive directly from malfunctioning of the 

controls that are normally responsible for determining when and where cells 

throughout the body will multiply. In general, cancer is a heterogeneous 

cellular disorder caused by the deregulation of many interacting cellular 

pathways that converge to generate tumor formation and growth.  

Known types and subtypes of cancer have been readily distinguished by 

their gene expression patterns, and more importantly, new molecular 

subtypes of cancer have been discovered that are associated with a host of 

tumor properties, including the propensity to metastasize and sensitivity or 

resistance to particular therapies. Although human cancers harbor hundreds 

of genetic alterations, only a subset of these alterations is likely to impact 

tumor initiation or maintenance. A new line of attack seeks to examine the 

cancer profile as a whole, often in the context of other cancer signatures or 

other types of genomic data. Such integrative approaches are capable of 

simplifying complex cancer signatures into co-ordinately regulated modules, 

transforming one-dimensional cancer signatures into multidimensional 

interaction networks and extracting regulatory mechanisms encoded in 

cancer gene expression. 

Comparative genomics adopts the assumption that important biological 

processes are often conserved across related species. Based on that, scientists 

use animal models to infer human physiological and genetic properties 

(Bedell et al., 1997a; Bedell et al., 1997b; Meuwissen and Berns, 2005; Sell, 

2003). Using microarray data, some theories on gene expression evolution 



GeneChip analysis application to cancer knowledge  

 

122 

across genomes have been suggested. For example, Khaitovich et al 

(Khaitovich et al., 2004) proposed that the majority of expression 

divergences between species are selectively neutral and are of no functional 

significance. The more of these studies deviated from the idea that genes 

should be expressed properly to conduct their functions and that basic 

biological processes are often conserved between related species. Jordan et 

al (Jordan et al., 2005) suggested that gene expression divergence among 

mammalian species is subject to the effects of purifying selective constraint, 

and it could also be substantially influenced by positive Darwinian selection. 

Liao and Zhang (Liao and Zhang, 2006a; Liao and Zhang, 2006b) found that 

the expression profile divergence for the majority of orthologous genes 

between humans and mice is significantly lower than expected under 

neutrality and is correlated with the coding sequence divergence. 

This study describes the development and application of genome-scale 

high-throughput methods in order to find frameworks, which can be used to 

investigate the expression data across genes and across platforms from 

human and mouse genomes. Here we describe the identification, by using 

several methods including multivariate statistical methods, such as ANOVA, 

PCA, and clustering and pathway analysis tools, of a nutshell of genes that 

can be considered a baseline matrix of transformation process, conserved 

between several type of cancer cells and between rodent and human cancer 

cells.  

6.1.1 Results 

Global analysis of human and mouse datasets 

Using the Affymetrix array technologies, expression profiles analysis has 

been performed starting from the dataset created for human and mouse 

collection data, divided into 3 categories: normal tissues ‘NT’, cancer 

‘CCL’ and immortalized ‘ICL’ cell lines (see Table 10).  
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Table 10: Human and mouse genechip data collection 

 Cancer Cell 

Lines 

(CCL) 

Immortalized Cell 

Lines (ICL) 

Normal Tissues 

(NT) 

 
N°  

GEO 

ID N°  GEO ID N°  GEO ID 

Breast (BR) 7 * 3 

GSM200612 

GSM200739 

GSM50033 

1 GSM44683 

Central 

Nervous 

System 

(CNS) 

6 * - - 3 

GSM18921 

GSM18922 

GSM44690 

Colon (CO) 7 * - - 1 GSM44680 

Lung (LC) 8 * 5 

GSM185872 

GSM427197 

GSM427198 

GSM427200 

GSM427201 

2 
GSM18949 

GSM44704 

Leukemia 

(LE) 
6 * - - 1 GSM18868 

Melanoma 

(ME) 
8 * 2 * 1 GSM44686 

Ovary (OV) 7 * - - 3 

GSM18997 

GSM18998 

GSM44674 

Prostate 

(PR) 
2 * - - 2 

GSM18958 

GSM44678 

Renal (RE) 8 * - - 1 GSM44675 

Mouse 

Embryo 

Fibroblasts  

(MEF) 

- - - - 2 
GSM160088 

GSM160104 

Mouse 

Model 
2 + 2 + - - 

* Data obtained from http://discover.nci.nih.gov/cellminer/home.do 

+ Data obtained from our lab. 

The first part of the analysis focused on identification of global differences 

among NT, CCL and ICL. In particular, by integrating the results of different 
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statistical tests, the global behavior of these 3 groups, both in human and 

mouse samples, have been identified. In order to describe the variability 

within the human and mouse sample sets, PCA analysis, using entire sample 

sets of array (composed by 22283 probe sets for human and 45101 for 

mouse), without filtering of noise data, has been used. In particular for 

human database the samples have been classified according to the Type of 

mutations -Class- (as identified in (Balestrieri et al., 2009)) and to the 

Tissues of origin. A three dimensional PCA plot of all expression data 

(accounting for 90% of variance) is shown in Figure 24A. 

 

Figure 24: Principle Component Analysis (PCA) of human and mouse 

samples across the entire sample set of array. A) and B) show the 

distribution on 3D space of CCL (green), NT (red) and ICL (blue), in human 

and mouse respectively. 

As shown in the figure, the hNT (red), the hICL (blue) and the hCCL (green) 

samples lay in different regions of the space and cluster separately. This 

result is more clearly observed in Figure 24A, where the bidimensional 

scatter plots between 2 components (PC1vsPC2, PC1vsPC3 and PC2vsPC3), 

show that PC1 (x-axis) separates the hNT from the hCCL in two markedly 

different portions of space, suggesting high differences in their gene 

expression values. However, the hICL samples occupy a larger portion of the 

available 2D space, suggesting high variability in gene expression for such 
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sample. PCA analysis, have been also applied to mouse data. In this case, the 

sample collections have been classified only by Type (MEF - mouse embryo 

fibroblasts- that represent normal tissue ‘mNT’, cancer ‘mCCL’ and 

immortalized ‘mICL’ cell lines). The three dimensional PCA plot of all 

expression data (accounting for 90% of variance), shown in Figure 24B, as 

well as the bidimensional scatter plots (Figure 25B), show that PC1 (x-axis) 

separate the mNT from the mCCL and mICL samples in two markedly 

different portions of space, suggesting high differences in their gene 

expression values. Moreover the PC2 is able to cluster mICL and mCCL in 

two different regions of spaces, suggesting a transcriptional rearrangement 

for the two samples.  

The similarity of the two PCA results demonstrated the ability of mouse 

models to recapitulate the global transcriptional behavior of human data. In 

particular, our data indicate that expression patterns across human and 

mouse Type are conserved and hence suggesting that mouse cancer cell lines 

may be a helpful representation model of human tumor cells in gene 

expression profile studies. Our findings agree with some other comparative 

studies that indicated a conservation of mammalian cancer diseases 

(Ellwood-Yen et al., 2003; Garcia-Escudero et al., 2010; Hood et al., 2004; 

Klein et al., 2007; Lee et al., 2004; Miller et al., 2004; Pritchard et al., 2009; 

Strand et al., 2007; Sweet-Cordero et al., 2005). Conservation of patterned 

gene expression in the mammalian cancer models is consistent with standard 

assumptions of biological uniformity justifying the use of model organisms.  
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Figure 25: Principle Component Analysis (PCA) of human and mouse 

samples across the entire sample set of array. A) and B) show the 

distribution on 2D space of CCL (green), NT (red) and ICL (blue), in human 

and mouse respectively, where the x- and y- axes show the range of 

variability of the two principle components (PC1 and PC2 or PC1 and PC3 

or PC2 and PC3). 

The first cross-species analysis 

To perform mouse-human comparison, orthologous probe sets on the two 

microarrays Affymetrix GeneChip, Mouse 430 2.0 (Mouse) and HGU133A 

(Human), have been initially found (see Methods). It was necessary to 

compare the expression on a gene-by-gene basis across the human and 

mouse arrays. This was complicated by the fact that genes are often 

represented by more than one probeset on each array. Genes were identified 

using the corresponding Affymetrix annotation and symbol on each array. 

Essential requirement for this procedure was that both human and mouse 

gene annotation and symbol had to be identical, since we consider this 

assumption as the only criteria to find the orthologous pairs. This procedure 

was performed at The NetAffx™ Analysis Center and permitted the 

identification of 43514 mouse probe sets (from a total of 45101 on Mouse 
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430 2.0 array) to one or more orthologous human probe sets on HG-U133A 

array (22283 probe sets). Using the same criteria, the 17331 human probe 

sets present in the HG-U133A array were mapped to one or more 

orthologous mouse probe sets. These two lists were submitted separately to 

flag and gene filtering. Such a procedure permitted the recognition of 10478 

human and 13382 mouse probe sets respectively. Altogether the probesets 

from both species concurred to the generation of a new list of 21606 mouse-

human orthologue probe sets (for a more extensive description, see 

Methods).  

 

Figure 26: SOM and hierarchical cluster analysis of mouse and human 

cancer cell lines. A) clustering analysis using the 21606 mouse-human 

orthologue probe sets from mouse and human samples classified by Type 

and B) by Mutations. Both are based on log ratios with a distance metric of 

(1-LRr
2
), where LRr

2
 is the squared Pearson correlation coefficient between 

the log ratios. 

Self Organizing Map (SOM) analysis and hierarchical clustering of CCL 

with mouse-human orthologue probe sets were performed. As shown in 

Figure 26A the human and mouse samples (composed of the same collection 

of probe sets) of the same Type (i.e., hCCL and mCCL) clustered in species-

independent manner in a narrow region. In addition, hierarchical cluster of 

all individual samples (Figure 26B) showed that the mouse cancer model 
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(green) clustered with human cell lines encompassing Ras mutation (i.e. 

CCRF-CEM, HL-60, MDA-MB231, ACHN etc).  

Cross-species analysis by altered genes and pathways. 

To identify those genes that had significant differences in the level of 

expression between CCL-NT comparisons ANOVA analysis was used. The 

analysis was performed using the 13382 mouse probesets and the 10478 

human probe sets separately; a p-value cut-off 0.02 and a fold change 

filtering (≥ +2 or ≤ -2). Furthermore, to minimize false-positive cases 

Benjamini-Hochberg multiple testing correction was applied (FDR ≤ 0.1). In 

order to select only one probe set for each gene in each species, the p-values 

obtained from the ANOVA analysis were used. In particular, we selected the 

probe sets with the lower p-value for both species (see Methods). 

Table 11: ANOVA analysis. The numbers on the table represent modulated 

genes in the CCL and NT comparison pairs. Up regulated genes have a fold 

change ≥ +2 and down regulated have a fold change value ≤ -2. 

 Total Gene UP DOWN 

mCCL/mNT 1905 1460 445 

hCCL/hNT 1774 1386 338 

Table 11 provides a summary of the significant genes differentially 

expressed for both human and mouse. As shown the total gene differentially 

expressed were similar between the two species and represent a statistical 

variation on expression of 14-16% of starting probesets. It is interesting to 

note the vast majority of differentially expressed genes are up-regulated 

more than down regulated. This observation can suggest that the 

transformation process, at least at transcriptional level, is an active 

mechanism. Starting from these genes (Total Gene in Table 11), obtained by 

ANOVA, we performed two analyses across species: the first based on 

pathway-specific and the second on fold change comparison. 
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Pathway identification by analysing the genes present in the comparisons 

CCL-NT (mouse and human), was performed by using GeneCodis tools. A 

hypergeometric test and a p-value cut-off 0.05 with FDR ≤ 0.05 were used as 

statistical parameters to define significantly changed pathways. This 

procedure predicted 98 and 78 changed pathways for mouse and human 

species respectively (data no show). Notably 56 pathways were found in 

both species, reported in Table 12, suggesting a good degree of similarity 

between the two models of transformation as compared to their normal 

counterparts. Moreover, 72% of the pathways identified in cancer mouse 

gene list were present also in cancer human data. 

Table 12: KEGG pathway. For each pathway is indicated the number of 

genes changed in the two species (Human and Mouse genes) and the p-value 

correct ≤ 0.05. Significance has been evaluated by hypergeometric 

distribution in both species. 

 
H  

genes 

M  

genes 

Human 

p-value* 

Mouse 

p-value* 

Pathways in cancer 46 71 8.66E-07 4.16E-20 

Focal adhesion 29 50 6.78E-05 4.49E-17 

Huntington's disease 51 44 7.23E-20 3.31E-14 

MAPK signaling pathway 30 54 3.39E-03 5.55E-14 

Prostate cancer 18 28 4.22E-05 3.93E-12 

Small cell lung cancer 13 26 6.10E-03 3.77E-11 

Oxidative phosphorylation 37 33 1.48E-14 5.22E-11 

Alzheimer's disease 40 37 2.00E-13 1.30E-09 

ErbB signaling pathway 11 24 3.86E-02 2.46E-09 

Endocytosis 21 38 1.28E-02 2.66E-09 

Chronic myeloid leukemia 12 22 6.66E-03 3.53E-09 

Cell cycle 54 28 2.53E-31 6.80E-09 

Nucleotide excision repair 17 16 3.64E-09 1.15E-08 

Neurotrophin signaling pathway 18 28 2.50E-03 1.28E-08 

Colorectal cancer 14 22 2.39E-03 4.54E-08 

Parkinson's disease 37 28 7.32E-15 5.49E-08 

Non-small cell lung cancer 8 17 3.86E-02 7.34E-08 

Renal cell carcinoma 10 19 2.71E-02 9.99E-08 

Purine metabolism 39 30 4.79E-13 1.06E-07 
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Glioma 12 18 1.89E-03 1.22E-07 

Melanoma 12 19 4.01E-03 1.46E-07 

Peroxisome 10 20 4.41E-02 1.68E-07 

Pyrimidine metabolism 27 22 1.23E-10 2.24E-07 

Regulation of actin cytoskeleton 31 34 3.28E-05 6.38E-07 

Axon guidance 15 25 3.15E-02 1.12E-06 

Ubiquitin mediated proteolysis 25 25 4.43E-06 1.98E-06 

Acute myeloid leukemia 8 15 4.43E-02 4.17E-06 

Wnt signaling pathway 20 25 3.44E-03 8.86E-06 

RNA polymerase 11 10 4.59E-06 9.00E-06 

Homologous recombination 10 10 2.77E-05 9.00E-06 

Spliceosome 59 22 2.92E-36 9.84E-06 

Mismatch repair 12 9 2.17E-08 1.04E-05 

DNA replication 22 11 8.61E-17 1.55E-05 

Proteasome 36 12 1.04E-34 2.00E-05 

Aldosterone-regulated sodium reabsor-

ption 9 12 3.37E-03 2.00E-05 

Fc gamma R-mediated phagocytosis 12 18 3.12E-02 3.01E-05 

p53 signaling pathway 18 15 9.18E-07 3.18E-05 

Progesterone-mediated oocyte matura-

tion 17 17 7.60E-05 3.24E-05 

Pyruvate metabolism 11 11 1.12E-04 5.21E-05 

Biosynthesis of unsaturated fatty acids 6 9 6.22E-03 5.58E-05 

Chemokine signaling pathway 20 26 2.93E-02 6.03E-05 

Citrate cycle (TCA cycle) 10 9 4.73E-05 1.70E-04 

ECM-receptor interaction 14 15 2.39E-03 2.18E-04 

Long-term potentiation 10 13 2.25E-02 4.43E-04 

Oocyte meiosis 27 17 3.60E-09 5.60E-04 

Long-term depression 11 13 9.86E-03 5.65E-04 

Amino  and nucleotide sugar metabolism 7 10 3.90E-02 5.66E-04 

Steroid biosynthesis 4 6 4.06E-02 7.99E-04 

Gap junction 13 14 8.78E-03 1.45E-03 

Bladder cancer 8 9 1.16E-02 1.66E-03 

Valine, leucine and isoleucine degrada-

tion 8 9 1.37E-02 3.22E-03 

Glutathione metabolism 12 9 7.13E-05 8.28E-03 

RNA degradation 22 9 1.15E-11 1.30E-02 

Terpenoid backbone biosynthesis 5 4 5.89E-03 1.61E-02 

Arginine and proline metabolism 9 8 1.33E-02 2.47E-02 

Base excision repair 12 6 3.88E-06 3.13E-02 
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To further detail the pathway analysis, the identification of significant 

pathways have been done by using up- and down-regulated genes 

respectively. As shown in Tables 13 and 14 several pathways were common 

and significantly different in both species in (CCL-NT) comparisons. In fact, 

in both species, we observed up regulation of pathways involved in RNA 

modifications and synthesis (Spliceosome, RNA degradation and RNA 

polymerase), protein degradation (Proteosome and Ubiquitin mediated 

proteolysis), cell cycle regulation (Cell cycle, DNA replication, 

Progesterone-mediated oocyte maturation and Oocyte meiosis), cellular 

metabolism (Oxidative Phosphorylation, Pyrimidine and Purine metabolism, 

TCA cycle, Pyruvate metabolism, Glutathione metabolism, Biosynthesis of 

unsaturated fatty acids, Terpenoid backbone biosynthesis, Amino sugar and 

Nucleotide sugar metabolism and steroid biosynthesis), DNA repair 

mechanisms (Nucleotide excision repair, Mismatch repair, Base excision 

repair, Homologous recombination and Non-homologous end-joining) and 

several disease-associated pathways (Huntington's disease, Parkinson's 

disease, Alzheimer's disease, Chronic myeloid leukemia, Small cell lung 

cancer and Prostate cancer). Altogether these pathways have been closely 

related to the onset and maintenance of transformed phenotype. In example 

changed metabolism has been observed in several cancer cells and tissues 

(Jezek et al., 2010); increased RNA and DNA synthesis (proliferative 

response) as well as deregulation of DNA repair mechanisms  also have been 

associated to tumorigenesis (Herzig and Christofori, 2002; Nagaraju and 

Scully, 2007; Somyajit et al., 2010) It is interesting to note that between the 

down-regulated pathways, many are involved in processes related to cell 

adhesion and migration and cell to cell crosstalk (i.e., Focal adhesion, ECM-

receptor interaction, Regulation of actin cytoskeleton. Gap junction, Axon 

guidance and Leukocyte transendothelial migration) suggesting an important 

role of these processes in tumorigenesis. In fact the central role of migration 

and invasion machineries for tumor metastasis has been showed in literature 
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(Cho and Klemke, 2000; Clark et al., 2007; Friedl and Wolf, 2003; Geho et 

al., 2005; Le Devedec et al., 2010; Pantel and Brakenhoff, 2004). 

Table 13: Up regulated pathways modulated in both species. 

  
n° genes 

human 
FDR 

human 
n° genes 

mouse 
FDR  

mouse 

  UP- regulated 

Spliceosome  58  4.83E-41 22  3.79E-07  

Proteasome  36  1.42E-38 12  2.23E-06  

Cell cycle  51  3.18E-33 17  1.45E-04  

Huntington's disease  48  6.07E-22 40  9.31E-15  

DNA replication  22  4.21E-19 11  1.90E-06  

Parkinson's disease  37  2.29E-18 27  1.78E-09  

Oxidative phosphorylation  37  4.81E-18 33  1.07E-13  

Alzheimer's disease  37  1.31E-14 34  1.38E-10  

RNA degradation  22  8.23E-14 8  1.01E-02  

Pyrimidine metabolism  27  3.92E-13 19  6.82E-07  

Purine metabolism  34  1.12E-12 22  1.47E-05  

Nucleotide excision repair  17  7.89E-11 16  5.76E-10  

Mismatch repair  12  1.31E-09 9  1.96E-06  

Oocyte meiosis  23  1.59E-08 14  1.21E-03  

Ubiquitin mediated proteolysis  25  4.33E-08 23  6.96E-07  

Base excision repair  12  2.64E-07 5  4.14E-02  

RNA polymerase  11  4.00E-07 9  1.09E-05  

Homologous recombination  10  2.90E-06 10  1.40E-06  

Citrate cycle (TCA cycle)  10  5.51E-06 9  3.29E-05  

Pyruvate metabolism  10  8.82E-05 10  4.20E-05  

Non-homologous end-joining  6  9.56E-05 3  3.97E-02  

Glutathione metabolism  10  2.47E-04 8  7.15E-03  

Progesterone-mediated oocyte 

maturation  14  2.70E-04 11  4.54E-03  

Biosynthesis of unsaturated fatty 

acids  6  2.32E-03 8  7.83E-05  

Terpenoid backbone biosynthesis  5  2.48E-03 4  7.78E-03  

Pathways in cancer  29  4.44E-03 45  5.88E-10  

Chronic myeloid leukemia  10  1.28E-02 15  7.93E-06  

Amino sugar and nucleotide sugar 

metabolism  7  1.90E-02 9  4.58E-04  

Small cell lung cancer  10  2.50E-02 17  1.69E-06  

Steroid biosynthesis  4  2.74E-02 6  2.52E-04  

Prostate cancer  10  3.40E-02 16  1.31E-05  
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Table 14: Down regulated pathways modulated in both species. 

  

n° genes 

human 

FDR 

human 

n° genes 

mouse 

FDR  

mouse 

 DOWN- regulated 

Focal adhesion  19 2.70E-09 22 5.98E-12 

Pathways in cancer  17 4.61E-05 26 3.88E-11 

Aldosterone-regulated sodium 

reabsorption  7 5.07E-05 6 2.53E-04 

ECM-receptor interaction  9 5.41E-05 10 5.48E-06 

Regulation of actin cytoskeleton  14 5.64E-05 12 3.18E-04 

MAPK signaling pathway  15 5.96E-05 12 1.94E-03 

Chemokine signaling pathway  12 1.51E-04 11 3.16E-04 

Vascular smooth muscle contraction 9 2.92E-04 6 1.87E-02 

Prostate cancer  8 3.03E-04 12 1.53E-07 

Gap junction  8 3.10E-04 5 2.30E-02 

Long-term depression  7 4.07E-04 5 1.11E-02 

Glioma 6 1.94E-03 5 7.42E-03 

Melanoma 6 2.97E-03 6 2.24E-03 

Neurotrophin signaling pathway  7 1.05E-02 6 2.50E-02 

Fc gamma R-mediated phagocytosis 6 1.17E-02 7 1.76E-03 

Axon guidance  7 1.18E-02 11 3.88E-05 

Endocytosis  8 1.71E-02 8 2.18E-02 

Leukocyte transendothelial 

migration  6 2.00E-02 8 1.41E-03 

Wnt signaling pathway  7 2.05E-02 6 4.82E-02 

Colorectal cancer  5 2.42E-02 8 2.65E-04 

GnRH signaling pathway  5 4.12E-02 6 8.76E-03 

Since pathway analysis have indicated a excellent degree of similarity 

between the two cancer cell models as compared to their normal 

counterparts, next we decided to use, for a further analysis of modified 

pathways, only the common genes between mouse and human and identified 

by ANOVA as described in Table 11. As shown in Figure 27 the common 

genes between human and mouse were 499. To reinforce the analysis we 

decided to select from the 499 genes (~ 28% of 1774 human DEGs, see 

Table 11) only the genes showing a fold change ≥ 2 and ≤ -2. The resulting 

lists were respectively composed of 403 genes with a similar trend of 

expression and of 96 genes with an opposite trend of expression (Figure 27).  
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Figure 27: Venn diagram of the total genes identified by ANOVA analysis 

(Table 11). The identification of the genes with a similar and opposite 

trends, both in up-and down-regulated classes of human and mouse samples, 

are indicated. 

The Gene Ontology was performed on these two lists separately using 

Anduril tools (Ovaska et al., 2010). In particular, the visualization of 

enriched GO terms (Biological Process, Molecular Function and Cellular 

Component) of the 403 and the 93 genes, by using a p-value cut-off of 0.05 

generated by Fisher's Exact Test, are shown in Figures 28 and 30 

respectively. In both Figures each box is representative of a single GO term 

and its color ranges from white (statistically not significant) to red (highly 

statistically significant). Moreover inside each box has been shown the 

numbers of genes that belong to the category (f) and its p-value (p). Since 

not all the genes have a GO terms, the (f) number is lower than the initial 

number used as in puts (403 and 93). The thickness of the arrows indicates 

the principal direction followed by the genes in the tree diagram. In other 

words bigger thickness indicate a great number of genes following that 

arrows and hence that GO term.  

≥ 2 fold

Human Mouse

34738 58

≤ -2 fold

Human Mouse
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4991275 1406
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Figure 28: Gene Ontology analysis of 403 genes that change between the 

two species. A) Biological Process, B) Molecular Function and C) Cellular 

Component. Enriched terms with p-value cut-off of 0.05. 

In Figure 28A is shown Biological Process. The 336 genes used as input 

identified two principal categories Cell metabolic process (~ 72% of 336 
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genes) and Primary metabolic process (~ 68% of 336 genes). Since from the 

top to the bottom of the tree diagram is possible observe an increase of the 

level of detail of GO term, we observed a significantly enrichment of the 

genes involved in RNA pre-processing (38 genes) and Generation of 

precursor metabolites and energy (28 genes). 

 

Figure 29: Protein-Protein Interaction enrichment analysis of the 403 

genes that have a similar values of fold change in the two species. 

Another additional method used to obtain an informative graphic 

visualization of the process in which the 403 genes common between the 

two species is implemented in GeneSpring program. This program construct 

an interaction graph where nodes represent proteins encoded by such genes 

and edges correspond to the link with their specific GO Biological Process, 

as extracted from GeneSpring database able to integrate different sources 

(see Method). The Figure 29 shows Biological Process interaction 

investigation that is a layout of 52 proteins (~13% of 403 genes identified), 

50 biological process and 141 PPI’s. Integrative analysis of the results 
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obtained, described in Figure 28A and 29, indicated that the 403 genes are 

involved in specific biological processes like Cell cycle, Cell proliferation 

and RNA metabolic processes.  

 

Figure 30: Gene Ontology analysis of 96 genes that change between the 

two species. A) Biological Process, B) Molecular Function and C) Cellular 

Component. Enriched terms with p-value cut-off of 0.05. 

Since 96 genes is a small sample for this type of analysis, we did not expect 

to find a lot of information. However 12 out of 85 genes for which was 

possible to identify a biological process and 9 out 87 genes for which a 

molecular function was known, were related to a post-translational 

mechanism that is protein phosphorylation (Figure 30A-B). The majority 

differences between human and mouse are DEGs involved into 

environmental information, cellular communication and transport of 
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membranous system. Also KEGG pathways investigation was performed 

(data no show) that confirming the involvement of these genes in pathway as 

Gap junction, Focal adhesion and Leukocyte transendothelial migration 

(pathways). 

Cross-species analysis from tissue to cancer cell lines, a nutshell of 

transformation 

The 403 genes that correspond to common deregulated genes in both hCCL-

hNT and in mCCL-mNT pair comparisons, thought to be essential for cancer 

development in all tumor cells analyzed, has been called Nutshell. In order to 

classify the Nutshell genes and identify group of genes able to discriminate 

between immortalization and transformation processes, the genes were 

divided in three categories by following criteria:  

Shell:    DEGi ~ mCCL vs mNT ∩ mICL-mNT ≠ mCCL-mICL 

Middle:  DEGi ~ mCCL vs mNT ∩ mCCL-mICL ∩ mICL-mNT 

Nut:    DEGi ~ mCCL vs mNT ∩ mCCL-mICL ≠ mICL-mNT 

The Shell contains genes that were found important to passages from normal 

tissues to immortalized cell lines (the immortalization passage). The Nut 

contains genes that were found important to passages from immortalized cell 

lines to cancer cell lines (the transformation passage). And the Middle 

contains genes important both in the immortalization and transformation 

passages. 

The results of CCL-ICL global comparison analysis indicated different 

distribution of fold change values on all chips. Therefore, in order not to lose 

significant information we have been use a distribution cut-off of 15% (of all 

probe set present on chip) to defined the significant values of fold changes 

for every classes (CCL, ICL and NT). Using this approaches we selected 253 

genes for the Shell, 123 for the Middle and 27 for the Nut, see Figure 31. 
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Figure 31: Hierarchical cluster of the 403 genes of Nutshell. In figure are 

shown the A) deregulated genes of the Shell, B) the deregulated genes of the 

Middle and C) the deregulated genes of the Nut. The fold change values are 

color-coded as follows: red, up regulation; yellow, no change; blue, down 

regulation. 

Another level of investigation involves a Protein-Protein Interactions (PPI’s) 

analyses that frequently are conserved through evolution. In order to 

extrapolate this information from the Nutshell, several data analysis 

programs were used, in particular the results have been obtained by using 

PINA (Wu et al., 2009) and GeneSpring (Rosenow et al., 2005) algorithms. 

Both tools were performed to use different database for the extrapolation of 

protein-protein interaction as IntAct, BIND, BioGRID, MINT ect and 

different parameters can be selected to filter out redundant protein 
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interactions (see Methods). Starting from these different criteria to filter 

redundant information, the integration of the results obtained with the two 

approaches was performed. 

The PINA analysis was performed by using 27 proteins as input list (Nut 

class). This analysis originated a layout of 590 proteins and 704 PPI’s 

network. The GeneSpring analysis was performed by using the 403 genes of 

the Nutshell collection as in put list. This analysis originated a layout of 103 

proteins and 142 PPI’s. The results of both analyses then were used to build 

a layout network of 119 proteins and 131 PPI’s networks (Figure 32A). 

In Figure 32A each protein was represented as a colored circle as follow:  

green color -Shell-, brown color -Middle- and red color -Nut-. To identify 

the most important nodes in the network, a social network analysis was used, 

in particular, these nodes were selected using two principal criteria: the 

number of direct connections had to be > 25 and, if deleted, had to cause the 

isolation of a part of the network (a “broker” role in the network).  In accord 

with both criteria 6 principal hubs were identified: HNRNPD, NONO, 

DHX9, CCND1, AHSA1 and PRPF4 (in Figure 32A  are represented as 

colored boxes (Nut -red- and Middle -brown-). 
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Figure 32: The predicted cancer circuit. A) a layout network of 119 proteins 

and 131 PPI’s networks. Green, brown and red circles are referred to Shell, 

Middle and Nut classes respectively and the colored boxes represent the 

hubs of the network. In B) has been shown a sub-network of the global 

network of (A) composed of 26 proteins and 40 PPI’s. The colored boxes 

represent fold change of mCCL-NT, mCCL-ICL and mICL-NT comparison 

pairs respectively. The fold change values are color-coded as follows: red, 

up regulation; yellow, no change; blue, down regulation. 
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Subsequently a sub-network were extrapolated using as parameter the more 

connected regions of the large interaction networks, it resulted on 26 

proteins and 40 PPIs. The Figure 32B represents this sub-networks with the 

fold change values of CCL-NT, CCL-ICL and ICL-NT comparison pairs. 

These important result can be useful to shed light on a specific pathway of 

transformation that represent the minimum baseline matrix of 

transformation, independently of the organism under study (mouse or 

human).  

6.1.2 Discussion 

Global analysis of human and mouse datasets 

The K-ras transformed mouse fibroblasts used as model of transformation, as 

indicated by this comparative analysis, well recapitulate the characteristics 

of different cancer human cells. In fact has shown by the comparative 

analysis performed by using several approaches (PCA, hierarchical 

clustering and Gene Ontology, Pathway and PPIs identification), many 

information recovered from the mouse model quite resemble that found in 

human models. In particular PCA analysis (accounting for 90% of variance 

in both species) show a whole transcriptome-scale similarities across species 

and samples. In fact, we could observe that the NT, ICL and CCL samples 

lay in different regions of the space and cluster separately, suggesting an 

high difference in their gene expression values. Moreover our data indicate 

that expression patterns across human and mouse are generally quite well 

conserved in classes NT, ICL and CCL, suggesting that the mouse cancer 

cell line may be a simpler and good model to study human tumors at least in 

terms of gene expression. Notable the mouse model of K-ras-dependent 

transformation has an enhanced similarity with human cancer cells harboring 

Ras mutations (i.e., CCRF-CEM, HL-60, MDA-MB231, ACHN, etc). This 

result was quite expected, but on the other hand, may indicate that the 

reduction of similarity between mouse and no K ras dependent human cancer 
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cells is the consequence of the different oncogenic mutations present in these 

human cancer cells. In fact, is well known that human cells to become 

transformed need to accumulate more mutations than mouse cells and that 

these mutations not always impinge Ras function. However the CCL-NT 

comparisons for both species have indicated that while both type of 

transformed cells are strikingly different from their normal counterparts, also 

indicated a strong similarity in terms of gene expression patterns between 

them. Notable, the vast majority of deregulated genes identified in the 

transformed cell lines were up regulated, suggesting that the transformation 

process induces a general increase of gene expression. This observation was 

confirmed also in the comparisons between ICL-NT, revealing that also 

immortalization induces a general increase of gene expression (data no 

show). 

The ability of mouse model to resemble human models has been strongly 

supported also by pathways analysis. In fact about 72% of the most 

statistically significant pathways overlapped between the two species.  

Cross-species analysis from tissue to cancer cell lines, a nutshell of 

transformation 

Our comparative analysis permitted also the identification of 403 common 

genes altered in all hCCL-hNT and mCCL-mNT comparison pairs. Such 

genes, namely Nutshell, represent the most significantly altered genes across 

all human tumor cells and across the two species. We have classified these 

genes in 3 categories, in order to model the flow of gene expression from 

normal tissues to immortalized cell lines and finally to cancer cell lines.  The 

underlined idea is that each step driving normal cells to immortalization and 

then to transformation can be characterized by some specific gene pattern. In 

this regard the three following categories has been recognized: Shell, genes 

important for the transition from a normal tissue to an immortalized cell line 

(253 genes); Nut, genes important for the transition from an immortalized 
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cell line to a cancer cell lines (27 genes); Middle, genes important for both 

transitions (123 genes). This classification direct us to consider the nutshell 

as the baseline matrix of transformation, independently on the system under 

study. Moreover using different approaches for information extrapolation as 

protein-protein interaction and GO enrichment etc, the information enclosed 

into the Nutshell was analyzed permitting the definition of a cancer circuit 

formed of 119 entities (proteins) and 131 interactions. Afterwards, using a 

social network analysis, we identified in this circuit 6 main hubs that 

revealed a sub-network (called minimum cancer circuit), composed of 26 

entities and 40 interactions. These hubs or crucial nodes are HNRNPD, 

NONO, DHX9, CCND1, AHSA1 and PRPF4.   

Interestingly, some of these genes have already been linked to  

tumorigenesis i.e. CCND1, but not always well studied i.e. HNRNPD (Fawal 

et al., 2006; Gouble et al., 2002), NONO (Salton et al., 2010) and DHX9 

(Zucchini et al., 2008).  Thence these genes can be considered a fruitful earth 

to future investigations in order to understand the genetic common baseline 

of cancers. 

6.2 Promoter Scan: Algorithm to detect over-represented TFBSs in 

the proximal promoter regions of co-regulated or co-classified. 

Among the most fascinating open questions in biology today are those 

associated with the global regulation of gene expression associated to the 

execution of the vast majority of cellular processes. The answers to some of 

these questions have been moved from few steps closer to realization with 

the advent to DNA hybridization microarrays. DNA microarrays generate 

large amounts of numerical data that give the possibility to monitor the 

mRNA expression levels of thousands of genes at same time point (Lockhart 

and Winzeler, 2000). For instance, a primary goal in the analysis of such 

large data sets is to find genes that have similar behavior under the same 

experimental conditions. Several clustering algorithms are available to group 
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genes that have a similar expression profile (Altman and Raychaudhuri, 

2001; De Smet et al., 2002; Eisen et al., 1998; Heyer et al., 1999; Tavazoie 

et al., 1999). Given a cluster of genes with highly similar expression profiles, 

we can search for the mechanism that is responsible for the coordinated 

behavior of the genes that belong to the cluster. We basically assume that co-

expression frequently arises from transcriptional co-regulation. As co-

regulated genes are known to share some similarities in their regulatory 

mechanism, possibly at transcriptional level, their promoter regions might 

contain some common motifs that are binding sites for transcriptional 

regulators (Brazma et al., 1998; Wolfsberg et al., 1999). The main difficult 

of this investigation is the identification of the TFBSs (or motifs) into a 

promoter region, that can be compared to the search of a needle in a haystack 

because these sites are short nucleotide sequences (typically 6-20 

nucleotides) inserted in the midst of a great amount of statistical noise (a 

typical input being one regulatory region of length 1000 bp upstream of each 

gene). To make matters worse, there is sequence variability among the 

binding sites of a given transcription factor, and the nature of the variability 

itself is not well understood. Over the past few years, several tools have 

become available for motif prediction as MotifSampler 

(http://bayesweb.wadsworth.org/gibbs/gibbs.html), AlignACE 

(http://arep.med.harvard.edu/mrnadata/mrnasoft.html), MEME 

(http://meme.sdsc.edu/) ect. A guidance to users regarding the accuracy of 

currently available tools in various settings is reviewed in (Tompa et al., 

2005). 

As previously mentioned, the basic problem of several promoter 

prediction algorithms is the high number of TFs and TFBSs identified. 

However, while the identification of a large number of TFBSs for a given TF 

into a promoter region permit a better estimation of its binding probabilities, 

on the other hand a high number may increase the noise into the promoter 
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prediction model. We approached the problem addressing mainly two aims. 

The first aim of our algorithm has been the reduction of the number of TFs 

predicted into a promoter region by identification of more biological relevant 

TFs. The second aim has been the set up of a procedure able to build a 

promoter model from a given set of genes. Our Promoter Scan algorithm, 

validated using a set of co-regulated genes extracted from literature data, 

shows that the number of predicted TFs may be decreased in accord with the 

increase of new combinatorial parameter namely Signal Transmission 

Intensity (STI), that permits a strong reduction of predicted TFs (noise) 

without reduction of the “true” TFs.  

6.2. 1 Results 

Promoter Scan Algorithm 

The algorithm is based on two well known discriminative concepts of 

transcription factors identification studies, that are the presence of multiple 

copies of a specific TF in a promoter region, often observed in higher 

organisms, and its phylogenetic conservation. Starting from these widely 

accepted assumptions, a goal of our work has been the development of an 

algorithm able to extrapolate from the complex landscape of predicted TFs 

an essential set of them necessary to the function of a composite proximal 

gene promoter region. Moreover, since exists a strong similarity between 

genome data of closely related organisms, we used a phylogenetic 

footprinting model, rather than relying on the vast intergenic wastelands, to 

significantly increase the sensitivity of our method of identification of 

putative TFs. In fact, given that has been shown that nucleotide variations 

within functional regions of a gene accumulate more slowly than variations 

in regions without sequence-specific function (Blanchette and Tompa, 2002; 

Monsieurs et al., 2006; Sumiyama et al., 2001; Van Hellemont et al., 2005; 

Woolfe et al., 2005), the comparison between sequences of homologous 

genes could help to identify their transcriptional regulatory DNA portions. 
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The underlining assumption is that the transcriptional control of homologous 

genes is under the control of similar and conserved mechanisms (McCue et 

al., 2002; McGuire et al., 2000; Wasserman et al., 2000). Given these 

statements, the algorithm has been implemented by hypothesizing that the 

regulation of homologous genes has been subjected to a stronger 

evolutionary pressure than the surrounding sequences, preserving their 

specific DNA sequence but not their relative position inside the promoter 

region. In addition, to avoid the difficult to have a good prediction model of 

long promoter sequences, the algorithm has been developed to identify TFs 

in a very close region surrounding the Transcriptional Starting Site (TSS), 

called proximal promoter region, spanning between -500bp to +199 bp. 

Finally, we have evaluated the ability of our algorithm to construct a 

statistical promoter structure model by using a set of co-regulated genes as 

compared to a great number of randomly selected genes. This comparative 

analysis strongly supported the validity of our approach.  

Algorithm implementation 

A) The Signal Transmission Intensity (STI) 

To start, ∀j where j identifies a human proximal promoter region, we have a 

vector of elements i (that represent each putative TF) and for each predicted 

TFi the probability Pi(j) is estimated on the basis of the relative frequency of 

occurrence of each TF in the promoter region considered. Then we define for 

each TFi on the promoter region 

$� �  qAz                                                                                          (Eqn.27) 

where mi is the number of occurrences of ith TF and M is the total number of 

TFBSs for each TF. Furthermore, we can define the Entropy of TFi as the 

probability of getting itself under a jth promoter region. That is  

Hi = Pilog2(Pi)                                                                                (Eqn.28) 
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We assume that the probability to binding of ith TFs is influenced by the 

presence of other TFs on the promoter region. In other words, we assume 

that the signal of specific motif for each TFs present in the proximal 

promoter region is determined also by the contribution of all TFBSs present 

on the promoter. In this way the entropy Hi gives a measure of the chaotic 

structure of the promoter (uncertainty or information). 

Moreover, we introduce a variable w which is the contribution of ith TFs to 

the structure complexity of a promoter of length L. In this way, we introduce 

the concept of Amplitude Transmission Intensity (ATI) by TFBS to its 

specific TF as 

V� �  log� {�qA |A } ~                                                                          (Eqn.29) 

where L is the length of promoter region in bp unit, m is the number of 

occurrences and l is the length of specific TFBS for each TFi in bp unit. In 

this way, we can assume that ATI(i) is a monotonic decreasing function of L 

if we consider ml(i) as constant 

LimL→∞ wi = 0                                                                                (Eqn.30) 

This means that the increase of the length of the promoter region induces a 

dispersion of the information and consequently a reduction of the 

information obtained by increasing the amount of noise within the promoter 

region where the TFi can be hidden. 

The variable ATI is used together with the variable Hi in order to define the 

intensity and the amplitude of the information of ith TF on promoter region j, 

with 

Ii = -wiHi                                                                                                                                            (Eqn.31) 

where I is called the Signal Transmission Intensity (STI). The new parameter 

STI, giving in the same time frequency (H) and amplitude (ATI) of 
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information, permits to evaluate the transmitter information of the TFi from 

the promoter region to the outside to guide TFs towards the promoter. 

B) Phylogenetic Source Conservation (PSC) 

In some circumstances, the only alignments between promoter regions may 

not be so informative, in fact the alignments may bear little relationship as 

compared to the underlying conserved configurations of TFs inside the 

promoters (Lenhard et al., 2003; Santini et al., 2003). Starting from this 

observation, we supposed that in the comparative procedure between 

homologous genes pairs, the alignment of sequences was less informative 

than the global conservation of the promoter structure. Therefore, we 

introduce a Phylogenetic Source Conservation (PSC) parameter that 

estimates how the information regarding a TFi obtained in a principal species 

(in our case human) is conserved in a reference species (in our case mouse). 

To this end, we recovered for every jth human promoter region a kth 

homologous promoter region from mouse and we computed the STI for the 

same ith TF in this species. The PSC is then calculated using the following 

formula: 

PSCi = 1-|Ih – Im|                                                                            (Eqn.32) 

where Ih and Im are the Signal Transmission Intensity obtained by ith TFs on 

proximal promoter region of human and mouse, respectively and PSC 

represents the Phylogenetic Source Conservation.  

C) The STI and PSC combination and the minimum transmitter 

information filtering 

The combination of the Signal Transmission Intensity (STI) and the 

Phylogenetic Score Conservation (PSC) gives the Evolutionary Transmitter 

Information (ETI) for every ith TF on structure of jth promoter region, and it 

is introduced by new variable β, as  

βi = PSCi*Ii                                                                                               (Eqn.33) 
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Then β(i) is a monotonic function of PSC and 

LimPSC→1 βi = Ii                                                                               (Eqn.34) 

The resulting vectors for each jth promoter region will be like 

Vj = {β1,β2, …, z} 

where z correspond to each TFs. In order to filter out the TFs with ETI close 

to a background of promoter sequences, we applied a cut-off to each element 

of Vj , assuming that the TFBSs showing a low ETI value do not drive their 

respective TFs to the promoter region. 

D) Promoter model identification 

A set of genes can be grouped into clusters according to their similar 

expression profile or their similar function (Hughes et al., 2000; Tavazoie et 

al., 1999). The identification of co-occurrence of TFs in a group of gene 

promoter regions is one of the fundamental steps to describe biological 

phenomena in a more accurate way. Several TF detection algorithms have 

been developed to discover overrepresented motifs in a set of co-expressed 

genes (for instance (Bailey and Elkan, 1995; Hertz and Stormo, 1999; 

Lawrence et al., 1993; Liu et al., 2001; Thijs et al., 2002; van Helden et al., 

1998; Workman and Stormo, 2000)). The rationale behind these 

methodologies is that a set of genes regulated by the same TF should contain 

a statistically overrepresentation of the binding motif for such a TF as 

compared to its occurrence in unrelated genes. By using our algorithm, we 

start from a list of co-regulated or co-classified genes (D) and for each 

proximal promoter region of this gene list we computed a global matrix 

� K � �βE 0 0βE β� β�0 0 β�
� 

where rows represent a vector V for the jth promoter region. Starting with 

this matrix we build a new vector that represents the promoter model 
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containing the total identified TFs present in all the promoter region of the 

set D, but with the constraint that each TF have to be present in at least 75% 

(co-occurrence percentage) of the promoter regions listed in D. The resulting 

TFs set is believed to participate in regulating gene transcription of the gene 

list D. The resulting representative promoter vector is then building as  

V(D) = ( 0  β� 0  β� β� β� …) 

where β represent a new STI calculated on all the promoter regions present 

in the list D.  

E) Permutation background control 

Since one or more predicted TFs in a promoter region could be only 

background noise and that the new STI value calculated for the ith TF could 

be close to the value of STI calculated for the entire genome (background), 

we performed a statistical test to estimate the significance of ith TF in the 

promoter region model V(D), by calculating the STI value for the same TF in 

a set of random promoter region models. In other words, we tested the 

hypothesis that the vth element of V(D) has a higher information (that is a 

higher STI value) in the V(D) model as compared to a random V’(D’) model. 

We tested a series of rearrangements by taking a set of random promoter 

regions from the human genome (V’, Background Set), with the same 

dimensional number of V. We have calculated the probability that we could 

observe an equal or greater β value if the predicted TF is selected randomly, 

given by 

V(D) = �1 Va(Y(  ��� �  �����0 Va(Y(  ���  �  ������ 
The p-value is calculated for V(D) = 1 by counting the number of cases in 

which the alternative hypothesis is true 

$�� �  ∑����                                                                         (Eqn.35) 
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where N is the number of comparisons observed and where a small p-value 

corresponds to a great statistical significance. We evaluated the biological 

relevance of each predicted TF using the p-value and constructing a new 

statistical promoter structure model with our approach. 

Promoter Scan validation by using a set of known gene promoter structure  

In the following paragraphs, we address the problem of the potential false 

positive TFBSs filtering by using ten different group of genes as test (Test 

Set), in which at least one TFBS for each group has been experimentally 

well characterized (i.e., by Electrophoresis Mobility Shift Assay, functional 

analysis and Northern blot). Then we give an overview of the output 

returned by the algorithm and the meaning of the resulting scores. Finally, 

we discuss the identification and validation of a promoter structure model for 

each group, in order to show the ability of Promoter Scan to build a 

statistical promoter structural model of a gene cluster in which the p-values 

generated by the algorithm as outcome are derived from the comparative 

analysis between the Test Set and a random set (Background Set).  

Table 14 shows the Test Set on which the algorithm has been used. 

Specifically, the test set comprises 10 groups of genes (namely ID and 

indicated with a roman number) with a variable dimension (N, number of 

genes considered for each group). In addition in Table 14 has been also 

indicated the TF common to all the genes of each group (Genes) and 

experimentally validated (TF known). The test set, selected in this manner, 

contained 228 human promoter gene regions. In order to estimate the 

sensibility of our algorithm, each group of the test set has been used to 

evaluate the systematic effect of potential TFs false positive (FP) reduction 

on the amount of true positive (TP) TFs. Afterward, to evaluate the 

significance of the predicted TFs in the Test Set, we applied the algorithm to 

a set of 1000 gene promoter regions taken randomly from the human 

genome (Background Set) as background (data not shown). Since the 
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algorithm works using also a phylogenetic score, for every human promoter 

region present in the Test Set and the Background Set, we identified the 

corresponding mouse homologous gene promoter region. Since many 

regulatory regions controlling transcription rate are proximal to the TSS, we 

retrieved in both homologous human and mouse promoter regions only the 

nucleotide sequences close to TSS. Specifically we analyzed the region 

between 500 bp upstream of the TSS and 199 bp downstream from it. This 

700 bp region, that can be a good estimation of the real proximal promoter 

region, being relatively small, permitted the prediction of a relative low 

number of TFBSs.  

As transcription binding sites collection, we took advantage of the JASPAR 

database (http://jaspar.genereg.net/) from which we recovered 79 human TFs 

and their relative binding sites (TFBSs). Subsequently, the human and 

homologous mouse promoter regions (corresponding to the 1228 promoters 

present in Test Set and Background Set) were submitted to MotifMatch 

algorithm implemented on Anduril framework (Ovaska et al., 2010) and the 

resulting matrix of occurrences (97012 elements) was used as input to 

further analysis with Promoter Scan algorithm. 

A) Selection of highly informative TFs 

MotifMatch algorithm analysis of the human promoter regions of Test Set, 

applied with default parameters, identified an average of ~ 51 predicted TFs 

for each promoter region on the total of 79 TFs used as input (35.5% of 

reduction). As previous described, we first evaluated the ability of our 

algorithm to reduce the potential false positives TFs. In particular, for each 

promoter region of the Test Set and Background Set, we calculated an ETI 

value for every TF present in the two Sets. This operation gave as results 

more than 60000 ETI values. From this list of ETI values have been selected 

and graphically represented only the ETI values corresponding to the 10 TFs 

(true TFs) shown in Table 15 (Test Set) as compared to Background Set. 
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Table 15: The Test Set database. For each group, are represented the name 

of Group (ID), the TF experimental validated (TF known), the number of 

promoter selected (N) and the name of the genes to which the promoter 

belong (Genes). 

 ID TF known N Genes 

 I AP1 20 

TNFAIP6 TIMP1 TGFB1 TFRC TFF1 

SPRR1B SPP1 SERPINB2 PENK OXTR NTS 

MTCH1 MMP9 MMP7 IVL GJA1 ETS1 CD80 

CCL5 CCL2 

 II CREB1 30 

MYST2 SPATA2 STAT3 FN1 MOG TIMP1 

DBH FOS IGFBP1 NPC1 POLD2 ADRB2 

POLB TGFB1 BRCA1 CFTR ERBB2 EXO1 

GNRH1 IFNG NR3C1 HPGD NF1 ODC1 

PPARA SLC5A5 ACHE CCND1 JUN 

PCDHB11 

 III ESR1 19 

APOE AVP CAD CCND1 CDKN1A CXCL12 

DFFB EGFR FOS GADD45A HOXA10 

HSPB1 IFNAR1 JUNB KRT19 LTF PELP1 

PPARG STAT5A 

 IV ETS1 30 

ANGPT2 ANPEP BMP4 BRCA2 CD4 CD79B 

CD8A CSF2 CSNK2A1 DNTT EGR1 ETV4 

GRPR HMOX1 IL12B IL3 IL5 LTB MMP3 

MPL NOS3 PRL SLC26A3 THBD TIMP1 

TNC TNF TNNC1 VWF WAS 

 V NFIC 30 

ADA ALAS1 ARG1 COL18A1 CSNK2A2 

CYP11A1 CYP1A2 CYP27B1 ELN GFAP 

GNRH1 GTF3C1 GUCY1B3 HMOX1 

HSD11B2 HSPA1A MBP NPY PCK2 PFKFB1 

PKLR PLAT POLD2 PRG2 SFTPB SFTPC 

SLC34A2 SMUG1 SPATA2 VWF 



 GeneChip analysis application to cancer knowledge 

155 

 VI NFKB 15 

PTX3 PDGFB MMP9 MAPK14 MAP3K8 

LTB ICAM1 HSD11B2 ELF3 CXCL1 

CSNK2A2 CSF3 CSF1 CD83 B2M 

 VII SP1 30 

ACACB ALDOA ALOX5 CAT CCND1 

CDKN2D COL18A1 COL7A1 CXCL1 EGFR 

ESR1 EXO1 FOSL1 GLP1R HNF4A HOOK2 

HSD17B1 HSPB1 KIT KRT16 MAT2A 

MMP14 MPG PAFAH1B1 PDHA1 POLB 

SLC5A1 STAR TGFB1 TNFRSF10B 

 VIII STAT1 10 
VIP PTGFR PRF1 IL6ST IL2RA IFNG FOS 

CCL2 BCL6 A2M 

 IX TFAP2A 35 

ACHE ADM ALPPL2 CALB2 CDKN1A 

CFTR CHGA CYP11A1 DBH ERBB2 FBLN1 

GFAP HK2 HMOX1 HOOK2 HSD17B1 

HSPA1A MAPT MCAM ME2 MPG MYC 

MYO6 PIM1 PLAT POLD2 PTGDS RGL3 

SLC19A1 SYT1 TALDO1 TH TIMP1 TIMP2 

TNPO1 

 X USF1 9 
APEX1 CALCA CEACAM5 CEL GCK 

HMOX1 IGF2R KCNN3 MYH9 

Figure 33 shows the curves obtained by using the ETI values of these 10 TFs 

for both Test Set (continuous line) and Background Set (dashed line). In 

particular, on the x-axis the TFs are ranked relatively to their ETI content 

increase, and on the y-axis are represented as ETI value. As shown in the 

Figure the true TFs of the Test Set have a higher discriminative curve profile 

as compared to Background Set curve profile. Indeed the Test Set curve 

permit to distinguish the true TFs from the noise data, represented by the 

curve of Background test, because already at 5% (see the box) of the Test 

Set curve the ETI values are higher than the Background Set (ratio ~ 15), 
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corresponding to a discriminatory value between 0.001-0.002. Such a 

discriminatory value was used as cut-off to discriminate between real TFs 

and noise. Cut-off application to our data give as result an average of ~ 33 

predicted TFs for each promoter region analyzed. In other terms our 

algorithm brings to a 57.7% reduction of the putative TFs (used as input), 

without loss of true positive TFs.  

 

Figure 33: Evolutionary Transmitter Information (ETI) distribution of 

true TFs in the Test Set (-) and in the Background Set (--). In the small box 

is shown the region of the graph between 0% and 5% in which the ETI value 

of Test Set is already higher than the Background Set (Ratio ~ 15). 

Taken together these results demonstrate that the our estimated ETI value is 

able to discriminate from the true TFs and noise data, in accord with the 

biological postulated evolutionary multi-copy effect of real TFs. Therefore 

the ETI is an accurate parameter value to eliminate false positive present 

also in the Background Set. 

A) Identification of statistical promoter structure model 

In this section, we evaluate the ability and stability of Promoter Scan 

algorithm to build a statistical promoter structural model for each group 

under study. Our algorithm has been implemented in a way that the user may 

decides the minimum ETI, the minimum number of sequences in which the 

searched TF has to be present and the number of permutation tests to 
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perform. We estimated that Promoter Scan works properly by using a cut-off 

≥ 0.001 for minimum ETI and the predicted TF have to be present in at least 

75% of the input gene list (minimum number of sequences).  

For each group, the output of the algorithm is a common pattern of TFs that 

is the structure of the promoter region model, filtered out by noise TFs. Such 

a promoter structure model, comprising only TF shared in at least 75% of 

initial input, is used to recalculate for each TFBS a new STI. The 

significance of these new scores is evaluated by 10000 permutation tests that 

will bring to a final output in which for each selected TF the algorithm 

reports a minimum, a maximum, the median and the mean of p-values 

collected after the permutation tests (Table 16, results obtained using the 

Group I of Table 15). In this example it is clearly shown as Promoter Scan is 

able to perform a strong reduction of initial input (~ 60% of the 79 human 

TFs present in our collection), value that can be further reduced by applying 

cut-off on the p-values.  

Table 16: The list of p-values obtained by application of Promoter Scan 

algorithm on Group I. The column “Potential TFs” represents the predicted 

TFs present in the promoter structure model. The other columns report the 

min, the max, the median and mean p-values obtained from the 10,000 

comparisons with the Background Set rearrangements. The experimental 

validated TF, AP1, present in all the promoter sequences of Group I is 

shown in italic. 

Potential TFs min max median mean 

AP1 0.000 0.000 0.000 0.000 

FOXC1 0.000 0.060 0.020 0.021 

GATA3 0.000 0.030 0.000 0.004 

NFATC2 0.000 0.020 0.000 0.001 

SOX10 0.000 0.020 0.000 0.002 

YY1 0.000 0.040 0.005 0.007 

FOXD1 0.010 0.110 0.060 0.058 

STAT1 0.010 0.120 0.060 0.061 

GATA2 0.020 0.140 0.060 0.062 

HLF 0.020 0.180 0.100 0.103 
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NR4A2 0.030 0.160 0.090 0.090 

SOX9 0.030 0.190 0.090 0.098 

FOXL1 0.040 0.220 0.120 0.123 

HOXA5 0.040 0.190 0.110 0.117 

Pax6 0.040 0.260 0.120 0.117 

SPIB 0.110 0.350 0.220 0.218 

REL 0.120 0.310 0.200 0.206 

ESR2 0.150 0.340 0.250 0.251 

SPI1 0.170 0.410 0.275 0.274 

SRY 0.170 0.350 0.230 0.241 

ETS1 0.190 0.480 0.295 0.291 

ELK1 0.280 0.490 0.385 0.385 

MZF1_1.4 0.330 0.540 0.425 0.426 

FOXA1 0.480 0.720 0.600 0.599 

ZNF354C 0.560 0.780 0.690 0.684 

BRCA1 0.600 0.800 0.670 0.674 

CREB1 0.620 0.810 0.730 0.722 

ESR1 0.760 0.940 0.850 0.851 

SP1 0.760 0.940 0.870 0.871 

MZF1_5.13 0.910 1.000 0.970 0.966 

NFIC 0.940 1.000 0.980 0.978 

TFAP2A 0.990 1.000 1.000 1.000 

In Table 17 we report the p-values obtained by applying Promoter Scan for 

the true TFs for each group present in the Test Set. As observed they range 

between 0-0.06. Based on these p-value range we decided that the predicted 

TFs can be considered as biological relevant if at least three of the four 

collected p-values (minimum, a maximum, the median and the mean) are ≤ 

0.05. Applying this criterion stringency, the most relevant TFs selected for 

every proximal promoter region are ranked between 2-8 (see Table 18) that 

means a reduction of about 90-97% of the initial TF human collection used 

as input. The application of these p-value cut-off caused the lost of STAT1 

transcription factor in the group VIII, indicating that less of 5% of real TFs 

has been filter out upon application of strong constraints.  
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Table 17: The list of p-value obtained by application of Promoter Scan 

algorithm on the complete list of Test Set. For each group (ID) are reported 

the TF experimental validated (TF known) and the resulting p-values for 

each of them. 

ID TF known min max median mean 

I AP1 0.000 0.000 0.000 0.000 

II CREB1 0.000 0.030 0.000 0.004 

III ESR1 0.000 0.020 0.000 0.001 

IV ETS1 0.000 0.050 0.010 0.013 

V NFIC 0.000 0.000 0.000 0.000 

VI NFKB 0.000 0.000 0.000 0.000 

VII SP1 0.000 0.000 0.000 0.000 

VIII STAT1 0.000 0.060 0.010 0.014 

IX TFAP2A 0.000 0.010 0.000 0.000 

X USF1 0.000 0.000 0.000 0.000 

In order to validate our approach we compared our computational identified 

TFs with that experimentally validated and published. In particular, as 

shown in Table 18, for each group of promoters described in Table 15 we 

identified several TFs. Such a comparative analysis indicated that some of 

our TFs were already identified in the same promoters (Table 18, indicated 

in bold), again confirming the strength of our approach.  

To further assess the specificity of our algorithm, we performed the 

complete procedure on a collection of 10 randomly groups of gene 

promoters (Random Set). In each of them no significant TFs have been 

identified, confirming the robustness of Promoter Scan to filter out the false 

positive data (noise). The results of application of Promoter Scan on Test Set 

indicate that the STI can contribute to the characterization of the promoter 

region of co-regulated genes as well co-classified genes. This contribution is 

mostly obtained through the substantial reduction of the overwhelming 

number of candidate TFs and the built of statistical promoter structure 

model. 
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Table 18: The list of TFs identified in the Test Sets. Each row represents 

the promoter structure model resulting by Promoter Scan algorithm (p-value 

cut-off 0.05). The transcriptional factors identified in literature 

(experimentally validated) and identified by Promoter Scan are shown in 

bold. 

ID 

TF known va-

lidated Potential new TFs 

I AP1 GATA3; NFATC2; SOX10; YY1 

II CREB1 ESR1; MZF1_1.4 

III ESR1 MZF1_1.4; SP1; ZNF354C 

IV ETS1 NFATC2; YY1 

V NFIC ESR1; ESR2; MZF1_1.4; SP1; ZNF354C 

VI NFKB MZF1_1.4; SP1 

VII SP1 
MZF1_1.4; MZF1_5.13; NFIC; TFAP2A; 

ZNF354C 

VIII - REL; YY1 

IX TFAP2A 
ESR1; MZF1_1.4; MZF1_5.13; NFIC; 

NHLH1; SP1; ZNF354C 

X USF1 ESR1; ESR2; NFIC; NR4A2 

6.2.2 Discussion 

The proposed algorithm enable to identify the most biological relevant 

TFs into a clusters of co-regulated or co-expressed gene promoters by using 

two new parameters, Signal Transmission Intensity (STI) and Phylogenetic 

Source Conservation (PSC). The work presented here provides a 

computational framework for the identification and the modeling of 

regulatory sequences present into a promoter on the bases of their 

conservation evolution. The two key aspects of this algorithm are: first, the 

ability to extrapolate the intrinsic information of each TF present into a 

promoter region and second, the modeling of the significance structure of 

proximal promoter. 

The complete workflow is shown in Figure 34: starting from a single 

proximal promoter region for each considered gene of the cluster, and a list 

of all its putative TFBSs, we may evaluate the transmitter information of 
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each TF computing the Signal Transmission Intensity (STI) that is given by 

the frequency (H) and the amplitude (ATI) of the information. The STI 

represents the intensity and the amplitude of the signal for each TF in a 

specific proximal promoter region, that in other word we can consider as the 

transmitter information of the TFs from the promoter to the outside (Step 1). 

Then for each human gene considered, we have to identify the mouse 

homologous. The STI value computed for the promoter region of the mouse 

homologous is compared to STI of human promoter in order to give to the 

human promoter a Phylogenetic Source Conservation (PSC) score (Step 2). 

Subsequently, the combination of the Signal Transmission Intensity (STI) 

value and the Phylogenetic Score Conservation (PSC) value, produces a new 

parameter namely Evolutionary Transmitter Information (ETI) value. This 

parameter introduces the first level of noise filtering for predicted TFs 

because it allow to the exclusion of TFs that are not perceived outside of 

promoter region. In the end, given a list of proximal promoter regions passed 

through the previous steps, we can select the hit TFs in the group of co-

classified or co-regulated genes, applying a permutation test against a 

random Background Set (step 3). Altogether these different steps permit to 

build a statistical promoter structure model that well describes the putative 

common promoter of the genes cluster considered in the analysis. 

In this work, we showed that our Promoter Scan algorithm is able to 

find overrepresented TFs in several well-described Test Sets of proximal 

promoter sequences. We focused on the influence of different parameters on 

the performance of the algorithm (i.e., ETI). The Promoter Scan algorithm 

has been validated by using 10 sets of promoter sequences in which one or 

more regulatory elements have been already experimentally validated by 

other authors. These Test Sets allowed us to quantify, up to a certain level of 

confidence, the performance of our algorithm. From a biological point of 

view, it is very interesting to note that the algorithm is able to find 
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statistically significant combinations of TFs in a group of co-expressed 

genes, reducing the number of candidate TFs and hence leading to a 

statistical promoter structure model. The results of this study may lead to a 

new strategy of promoter analysis that can be more useful for understanding 

of regulation of gene expression as compared to other algorithms having the 

same function. 

 

Figure 34: Flowchart of Promoter Scan algorithm. 
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7.1 Gene expression profiles comparative analysis of immortalized 

and K-Ras transformed mouse fibroblasts grown in different glucose 

availability. 

Experimental design 

In order to identify the transcription profiles of normal and transformed 

mouse fibroblasts grown with different initial glucose availabilities, we 

decided to modulate carbon metabolism by using two different initial 

glucose concentrations: high (25 mM) and low (1 mM). Cells were followed 

for at least 96 h, i.e. from the moment of seeding to when they either reached 

confluence or started to grow in multi strata or to die. The cells, to be used 

for the transcription analysis, were collected at 16 h from the initial seeding, 

time corresponding to the change of medium (25 and 1 mM glucose, 

indicated as T0). Then both cell lines, grown in 25 and 1 mM glucose, were 

collected at 24, 48 and 72 h and prepared for the transcriptional analysis as 

reported (see experimental design in Figure 12). 

Sample preparation and hybridization. 

cRNA was generated by using the Affymetrix One-Cycle Target Labeling 

and Control Reagent kit (Affymetrix Inc., Santa Clara, California, USA), 

following the manufacturer’s protocol. Total RNA was extracted from 

biological duplicate samples and analyzed using Affymetrix GeneChips 

(Mouse Genome 430 2.0 Array) to determine the global gene expression 

patterns. The Mouse Genome 430 2.0 Array contains more than 45000 probe 

sets including approximately over 34000 well-substantiated mouse genes. 

Chips were washed and scanned on the Affymetrix Complete GeneChip 

Instrument System and processed into CEL files.  

Normalization 

Data in the form of CEL files were background-subtracted and normalised 

with the Robust Multi-chip Average (RMA) pre-processing (Cope et al., 
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2004; Irizarry et al., 2003b) that includes global background adjustment and 

quantile normalization. After we performed normalization for baseline to 

median based in its measured levels of expression across experiments. 

Moreover CEL files were normalised using Affymetrix MAS 5.0 algorithm 

to obtain the flags data and to use it to filter the RMA normalised data. For 

each probeset were averaged across biological replicates using the 

expression intensities to obtain the replicates-combined probeset intensity. 

Note that, the normalization procedures are implemented in software 

GeneSpring GX 11.5 (http://www.chem.agilent.com/), all the arrays are used 

and no chip is discarded. 

Probeset selection and filtering 

A probeset selection algorithm was carried out to select a representative 

probeset for each gene, eliminating probesets that are annotated as cross-

hybridizing to transcripts from different genes. A probeset was selected if 

and only if: A) It was not Absent in all samples; B) it possessed an Entrez 

GeneID in the Affymetrix probeset annotation database; C) its probeset 

name did not contain ‘‘_x_’’ or ‘‘_s_’’ and if it had a unique Entrez GeneID, 

otherwise it was a transcript of two distinct genes; D) it was not a 

hypothetical or predicted or Rik or CDNA clone or cDNA sequence gene. 

This generated a list ~ 20000 probesets that constituted the genome-wide set. 

In ordered to remove genes that did not fluctuate with time in all samples 

which are often unexpressed/low expressed genes, only a log2 transformed 

fold change gene expression values of < 0.5, in at least one time point, are 

filter out. Moreover, in order to remove the replicate probes we referred to 

the values of T-test. The complete list of 9349 unique genes was used as 

working list. 
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Statistical and enrichment analysis 

The differential expression of these genes over time was analyzed for 

statistical significance by one-way ANOVA analysis with unequal variance 

(Welch). P-values were calculated for each gene over the time course of 

hours 0, 24, 48 and 72 by every time-course. The calculations were 

performed on the log2-fold change in gene expression for time n versus time 

0 for every time-course separately. To limit the detection of false positives, 

the p-values were adjusted by the Benjamini and Hochberg false-discovery- 

rate method with a cut-off of 0.001.  

From the results list of 1210 genes, the functional GO and KEGG pathways 

were selected by taking into account of its gene expression levels. The 

KEGG pathways and Gene Ontology enrichment analysis were identified as 

significantly altered by using a hypergeometric test and p-value cut-off 0.05 

and FDR ≤ 0.05. The results were displayed on Tables 1-3, and Figure 14.  

Protein-protein interaction analysis was performed using all genes and the 

corresponded proteins were then loaded into GeneSpring GX 11.5. The 

protein-protein interaction (PPI) network was assessed using a variety of 

databases that include: published literature abstracts using a proprietary 

Natural Language Processing (NLP) algorithm, the experimentally reported 

physical interactions data parsed from IntAct (www.ebi.ac.uk/intact) that 

includes data from other databases like BIND 

(http://bond.unleashedinformatics.com/) and MINT 

(http://mint.bio.uniroma2.it/mint/Welcome.do). The PPI network was then 

visualized using GeneSpring software. Results are displayed on Figure 14B. 
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7.2 Data recovery and integration from public databases uncovers 

transformation-specific transcriptional downregulation of cAMP-PKA 

pathway-encoding genes. 

Data recovery and normalization 

Gene expression data of NCI60 cell lines and normal tissues samples were 

downloaded from the Gene Expression Omnibus (GEO) at the National 

Center for Biotechnology Information (NCBI) website 

(http://www.ncbi.nlm.nih.gov/). In particular, gene expression profiles of 

NCI60 cell collection (cancer samples) were recovered from GEO database 

(GSE5949, (Wang et al., 2006)) in which the experimental data were 

obtained by using the Affymetrix HG-U95Av2 oligonucleotide array 

platform. For the analysis only results obtained by oligonucleotide arrays 

were considered, because this platform uses a different method to evaluate 

mRNA expression as compared to cDNA array platform. Therefore, also for 

normal tissue samples, the data used for the comparative analysis, were 

recovered from transcriptional profiles produced by using U95Av2 

oligonucleotide array (GSE96 (Su et al., 2002), GSE6731 (Wu et al., 2007) 

and GSE1402 (Barnes et al., 2004b)). 

A total of 81 transcriptional profiles encompassing cancer cell lines with 

nine histological origins and samples from six normal tissues were 

recovered. Further details can be found in the legends of Tables 4 and 5. All 

datasets were generated by downloading and processing CEL files. They 

were preprocessed using Robust Multichip Average (RMA) (Cope et al., 

2004; Irizarry et al., 2003b) and then transformed from log2 values to linear 

scale values, and normalized per gene to the median value of its level of 

expression across 81 samples, as implemented in GeneSpring GX 7.3.1 

(http://www.chem.agilent.com/). Note that, RMA implemented in 

GeneSpring GX 7.3.1, all the arrays are used and no chip is discarded. 



 Materials and Methods 

 

169 

Transformation-dependent, transcriptional remodeling of the PKA pathway-

encoding genes in 60 human cancer cell lines (NCI60) and 21 human 

normal tissues 

We identified and gathered the transcriptional profile for 41 genes encoding 

proteins involved in the PKA pathway (adenylyl cyclases -ADCY-, 

phosphodiesterases -PDE-, A-kinase anchor proteins -AKAP-, cAMP-

dependent transcriptional factors -TF-, PKA catalytic subunits -PRKAC- and 

PKA regulatory subunits -PRKACR-, Table 6). 

In order to identify specific variations in the expression pattern of the 

selected PKA pathway-related genes both in normal and transformed 

samples, different tools of analysis were used. 

Initially, the PKA pathway related genes expression profiles, observed in 

transformed samples as compared to normal samples, were evaluated by 

analysis of variance (ANOVA). Such statistical linear modeling procedure, 

that partitions the total variance into parts corresponding to various sources 

in the model (Fisher, 1925) have been successfully used to analyze 

microarray data (Kerr et al., 2000; Pavlidis and Noble, 2001). In order to 

model and test the hypothesis that the expression of genes of PKA pathway 

was different between normal tissues and transformed cell lines, the 

following comparisons were used: Expression of gene i (where i is i-esimo) 

of Normal Tissues vs. Transformed cell lines (Figure 17), and a p-value < 

0.05. 

The same data-set was then analyzed through unsupervised hierarchical 

clustering (Johnson, 1967) (as implemented in the GeneSpring platform). 

Two-way hierarchical clustering was performed on RMA-generated linear 

scale expression levels using the Pearson correlation coefficient as the 

measure of similarity and complete linkage clustering (Eisen et al., 1998). 

The results of this process are dendrograms, in which short branches connect 

very similar elements, and longer branches join elements with diminishing 
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degrees of similarity. The vectors used were sample - normal tissues and 

transformed cells- and expression of genes of PKA pathway-related genes 

and the arms were classified by different variables: Conditions and Tissues, 

(Figure 18). 

Analysis of mutational status of the NCI60 cell lines and correlation with 

tissue-specific PKA pathway gene regulation 

The 60 cell lines were sorted according to mutational status, using the 

information provided by Catalogue Of Somatic Mutations In Cancer 

(http://www.sanger.ac.uk/genetics/CGP/cosmic/). This database holds 

somatic mutation data and other information related to human cancer cell 

lines and tissues, and can be interrogated through a series of web pages to 

provide a graphical or tabular view of the data along with various export 

options. We could sort the NCI60 cell lines in 4 subgroups presenting 

mutational activation of genes encoding components of the Ras pathway, of 

the PI3K pathway, of other pathways or for which no information was 

available, (Table 7). 

In order to identify specific variations in the expression pattern of the PKA 

pathway-related genes in these 4 subgroups, different tools of analysis were 

used. 

We applied unsupervised Principal Component Analysis (PCA) (Joliffe and 

Morgan, 1992) to establish the interrelationships among the samples used in 

our study. PCA on the mean centered and scaling data was used to model the 

effects of oncogene-dependent transformation on the gene expression. The 

following comparisons were performed: Expression of gene of Normal 

Tissues vs. PI3K mutation cell lines; vs. Ras mutation cell lines; vs. Not 

Tested mutation cell lines; vs. Other Mutation cell lines. 

Also in this case, in order to model and test the hypothesis that the 

expression of genes of PKA pathway was different between normal tissues 
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and the four subgroups previously identified, we applied one-way ANOVA 

by using the following comparisons: Expression of gene i (where i is i-

esimo) of Normal Tissues vs. PI3K mutation cell lines; vs. Ras mutation cell 

lines; vs. Not Tested mutation cell lines; vs. Other Mutation cell lines, 

(Figure 19D), and a p-value < 0.05. 

The data-set of 41 genes was then analyzed through unsupervised 

hierarchical clustering (Pearson correlation coefficient and complete linkage 

clustering). The vectors used were sample - oncogene-dependent 

transformed cells - and expression of genes of PKA pathway-related genes. 

The results of this process are dendrograms, in which the arms were 

classified by different variables: Tissue, mutation and Pathway (Figure 20). 

Computational analysis of promoters of differentially regulated PKA 

pathway-encoding genes and identification of transcriptional factor binding 

sites 

In order to identify Transcriptional Factor Binding Sites (TFBS) present in 

promoters of co-regulated genes, the 41 PKA pathway-encoding genes were 

sorted, relative to their level of expression, in three groups: Strong (>1), 

Average (=1) and Low (<1), where 1 is the expression value calculated by 

RMA. Each groups was identified in each sample group, i.e., Normal 

Tissues, cell lines carrying mutation(s) in Ras pathway-encoding genes, cell 

lines carrying mutation(s) in PI3K pathway-encoding genes, cell lines 

carrying mutation(s) in other pathways, cell lines Not Tested for mutation, 

thus generating 15 subgroups. A TFBS was called present only when present 

in more than 70 % of promoters within each group. 

Proximal promoter regions - defined as 500 nt upstream and 100 nt 

downstream from the transcription start site (TSS), automatically assigned to 

genes on the basis of 5' cap-site databases integrated into promoter 

identification program - were identified using Eldorado (GEMS launcher, 

Genomatix) and the Genomatix Promoter Database (Frech et al., 1997). 
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TFBS in the promoter regions were identified by using ModelInspector and 

the Genomatix Promoter Database, comprising a total of 519 matrices from 

154 families (Matrix Family Library, on Vertebrates, Version 7.1, June 

2008). The Matrix Family Library is based on 260000 human, mouse, and 

rat promoter sequences, with an average length of 650bp. Analysis on the 41 

PKA pathway-encoding genes was performed with a threshold of 1.0 for the 

core similarity -that is reached only when the highest conserved bases of a 

matrix match exactly in the sequence- and a value of 0.85 for the Optimized 

matrix threshold (Cartharius et al., 2005). Optimized matrix threshold is the 

optimized value defined in a way that a minimum number of matches is 

found in non-regulatory test sequences. This value, when is higher than 0.80, 

permits the reduction of false positive matches. 

The total number and frequency (i.e., the ratio between the total number of 

TBFS and the number of promoters present within each subgroup) of each 

TFBS within each subgroup were calculated. The frequency of each TFBS 

called present in each of the 15 subgroups of PKA pathway-encoding genes 

was compared with the frequency of the same TFBS within the Matrix 

Family Library on Vertebrates. TFBS enrichment was scored based on p-

value generated by hypergeometric distribution and calculated with the 2-

tailed Fisher's exact test, implemented through the use of a 2 x 2 contingency 

table (Figure 21). 

In order to identify differences between the 15 groups a two-way 

hierarchical clustering (by using as vectors sample and TFBS) was applied 

by using the total number values and the frequency values of each TFBS 

identified in ≥ 70% of the promoters in each group. The total number value 

was transformed in the log2 and used in the hierarchical clustering by using 

the Pearson correlation coefficient as the measure of similarity and complete 

linkage clustering (Figure 22). 
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Promoter data mining 

To identify known transcription factor binding sites in the promoter 

sequences of PKA pathway-encoding genes, the annotated promoter and 

associated information have been retrieved from Transcriptional Regulatory 

Element Database (TRED) (Zhao et al., 2005) and from NCBI 

(http://www.ncbi.nlm.nih.gov/). Both web sites are freely accessible. The 

results have been shown in the Table 9. 

7.3 Comparative transcriptional analysis between a K-ras mouse 

cell model of transformation and the NCI60 human cancer cells 

collection. 

Data recovery and normalization 

Microarray datasets of human panel, composed of NCI60 cell lines (Ross et 

al., 2000; Scherf et al., 2000; Wang et al., 2006), immortalized cell lines and 

normal tissues, have been recovered from publicly accessible gene 

expression profile dataset (GEO) (Barrett et al., 2005; 

http://www.ncbi.nlm.nih.gov/geo/) or CellMiner database 

(http://discover.nci.nih.gov/cellminer/home.do). Microarray datasets of 

mouse panel, composed of MEF cells, immortalized and transformed cells, 

have been recovered from publicly accessible gene expression profile dataset 

(MEF) and data collected in our lab. Data collections are shown in Table 10. 

Mouse and human data were normalized separately. Data in the form of CEL 

files were background-subtracted and normalised with the Robust Multi-chip 

Average (RMA) pre-processing (Cope et al., 2004; Irizarry et al., 2003b) 

using the software GeneSpring GX 11 (Silicon Genetics) 

(http://www.chem.agilent.com/), RMA includes global background 

adjustment and quantile normalization (Allison et al., 2006; Irizarry et al., 

2003b). Representation for baseline to median based in its measured levels 

of expression across experiments was performed. Moreover CEL files were 
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normalised using Affymetrix MAS 5.0 algorithm to obtain the flags data 

which were used to filter the RMA normalised data. 

In this study, the samples have been classified in three ways: 1) Type: For 

human samples, primary normal tissues ‘hNT’, cancer ‘hCCL’ and 

immortalized ‘hICL’ cell lines; for mouse samples, Mouse Embryonic 

Fibroblasts ‘mNT’, cancer ‘mCCL’ and immortalized ‘mICL’ cell lines; 2) 

Tissue of origin, for human samples: Breast ‘BR’, CNS ‘CNS’, Colon ‘CO’, 

Lung ‘LC’, Leukemia ‘LE’, Melanoma ‘ME’, Ovary ‘OV’, Prostate ‘PR’ 

and Renal ‘RE’; 3) Mutation: mutations able to interfere with the Ras 

pathway ‘RAS’, mutations able to interfere with PI3K-Akt pathway ‘PI3K’, 

no somatic mutations interfering with the two above pathways ‘OTHER’, 

and somatic mutations interfering with the above pathways has not been 

searched ‘NOT TESTED’ (Balestrieri et al., 2009). 

Global analysis of human and mouse datasets 

Principal component analysis (PCA) (Joliffe and Morgan, 1992; 

Raychaudhuri et al., 2000) was performed with GeneSpring. By visualizing 

projections of these components in low-dimensional spaces, it is possible to 

observe the grouping of samples, reflecting underlying patterns in their gene 

expression profiles. PCA on the mean centered and scaling data of all probe 

set on array was used and the Type classification of samples was performed. 

The percentage of temporal variance captured by the first four temporal PCs 

was 100% in both species. Results are shown on Figures 24 and 25.  

Mouse-human gene orthologues: Probeset selection and Filtering 

To extract orthologue identities, the ENTREZ GENE database 

(http://www.ncbi.nlm.nih.gov/gene) was queried using mouse or human 

identities provided in the Affymetrix annotation. The Affymetrix GeneChip 

platforms contain the following number of probe set: Mouse 430 2.0 , 45101 

mouse array; U133A, 22283 human array. Between the mouse Mouse 430 
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2.0 and human U133A platforms, there can be found 43514 mouse-human 

orthologue pairs (18320 Human probe set and 23965 Mouse probe set). 

Affymetrix Web site (http://www.affymetrix.com) annotations for human 

HG-U133A and mouse MOUSE430_2 were downloaded from 

(http://www.affymetrix.com/products_services/arrays/specific/ht_hgu_133_a

p.affx#1_4) and 

(http://www.affymetrix.com/products_services/arrays/specific/mouse430_2.

affx#1_4) 

The mouse and human data were analyzed separately. A probeset selection 

algorithm was carried out to select a representative probeset for each gene, 

eliminating probesets that are annotated as cross-hybridizing to transcripts 

from different genes. In particular a probeset was rejected if expression 

value are too close to background; they hybridize with transcripts of two or 

more distinct genes; and they do not have a orthologue pairs. After this 

selection 10478 and 13382 probesets were obtained, respectively by human 

and mouse databases. These two lists were overlapped and a list of 21606 

mouse-human orthologue probe sets was obtained.  

The first cross-species analysis 

SOM Clustering (Kohonen, 1995; Vesanto, 1999; Vesanto and Alhoniemi, 

2000) is based on a divisive approach where the input, entities and/or 

conditions are partitioned into a fixed user defined number of clusters. An 

entity and/or condition is assigned to a node (winning node), on this grid 

based on the similarity of its reference vector and the expression vector of 

the entity and/or condition. When an entity and/or condition is assigned to a 

node, the reference vector is adjusted to become more similar to the assigned 

entity and/or condition. The reference vectors of the neighboring nodes are 

also adjusted similarly, but to a lesser extent. This process is repeated 

iteratively to achieve convergence, where no entity and/or condition changes 

its winning node. Thus, entity and/or condition with similar expression 
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vectors get assigned to partitions that are physically closer on the grid, 

thereby producing a topology that preserves the mapping from input space 

onto the grid. The obtained proto-clusters (nodes in the grid) were clustered 

using hierarchical clustering, to produce a dendrogram based on the 

proximity of the reference vectors, so a combination of both hierarchical 

clustering and SOM was performed with GeneSpring and used to interpret 

the results. SOM and Hierarchical cluster was performed to mouse and 

human samples classified by Type. To fed the SOM algorithms, 21606 

mouse-human orthologue probe sets were used. Result on Figure 26A. The 

chosen parameters were the followings: similarity measure: Pearson 

Cantered; max number of interaction 100; Grid Topology: Rectangular with 

rows 2 × columns 3; Initialization: 7 vectors; Neighborhood: Bubble; 

Learning Rate (α): 0.03. In Figure 26B the SOM analysis was performed 

with mouse and human samples, classified by Mutation. The chosen 

parameters were the followings: similarity measure: Pearson Absolute; max 

number of interaction 100; Grid Topology: Rectangular with rows 3 × 

columns 4; Initialization: 7 vectors; Neighborhood: Bubble; Learning Rate 

(α): 0.03. 

Cross-species analysis by altered pathways and altered genes 

The analysis of variance (ANOVA) was performed with GeneSpring. It is a 

statistical linear modeling procedure, that partitions the total variance into 

parts corresponding to various sources in the model (Fisher, 1993; Fisher, 

1925) have been successfully used to analyze microarray data (Coombes et 

al., 2002; Kerr et al., 2000; Pavlidis and Noble, 2001; Pritchard et al., 2001). 

In order to model and test the hypothesis of a differential gene expression 

between samples, the following comparisons were used in both species, 

separately: Expression of genei ~ CCL vs NT. ANOVA test was used and 

probe sets with a p-value ≤ 0.02 with FDR ≤ 0.1 and fold change ≥ +2 or ≤ -

2 were selected. To select only one-to-one probe set for gene the p-values 
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obtained were used. In particular, the probe sets with the lower p-value for 

both species were selected. The fold change values of these genes were used 

to compare across species. Results are displayed on Table 11.  

The pathway-specific analysis can be used to obtain a relatively 

comprehensive evaluation of the pathways to CCL-NT comparison across 

human and mouse species. KEGG pathways 

(http://www.genome.jp/kegg/pathway.html) whose use gene expression 

profile differed significantly in CCL-NT pair comparisons (resulting by 

ANOVA analysis) were identified using GeneCodis tools 

(http://genecodis.dacya.ucm.es/, ; Nogales-Cadenas et al., 2009). GeneCodis 

is a grid-based tool (web server application.) that integrates different sources 

of biological information to search for biological features (annotations) that 

frequently co-occur in a set of genes and rank them by statistical 

significance. Two different methods were used for identifying significantly 

altered pathways. First, were identified as significantly altered by performing 

a functional enrichment analysis on genes identified as significant by 

ANOVA analysis without other selection. The total list of genes has been 

given to feed the algorithm. A second method was applied to KEGG 

pathway genes in order to detect the shift of regulation of pathways, that 

were not detectable using a total genes. For this method, genes identified as 

significant by ANOVA analysis and their fold change values were used in 

order to obtained 2 different list: up regulated gene list and down regulated 

gene list. In this way, functional pathways were selected by taking into 

account of its gene expression levels. In the both ways the KEGG pathways 

were identified as significantly altered by using a hypergeometric test and p-

value cut-off 0.05 and FDR ≤ 0.05. These analyses were performed for 

mouse and human genes, separately. The overlapping altered pathways are 

displayed on Tables 12, 13 and 14.  
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The selected common genes that were significantly changed in both species 

subsequently were classified in two groups in relation if they had a similar 

behavior in human and mouse comparisons. These two groups (96 and 403 

genes) were used to compute enrichment on Gene Ontology terms, using as 

set of references the genome of human. Enrichment analysis was performed 

using Fisher's Exact Test that compares the observed frequency of each 

present GO term to the frequency in a reference set. The enrichment on GO 

was performed using the Anduril program and with p-value cut-off of 0.05. 

The program computes also Multiple Comparison Correction with different 

statistical tests. Visualization of enriched GO terms was created as networks 

for each GO ontology (see results on Figures 28 and 30).  

Genes of Nutshell were combined with the corresponding proteins. PPI’s 

analyses were performed in the first in order to observe a Biological Process 

rearrangements. Using all genes of Nutshell and the corresponded proteins 

were then loaded into GeneSpring GX 11 using the Human database. The 

protein-protein interaction (PPI) network was assessed using a variety of 

databases that include: published literature abstracts using a proprietary 

Natural Language Processing (NLP) algorithm, the experimentally reported 

physical interactions data parsed from IntAct (www.ebi.ac.uk/intact) that 

includes data from other databases like BIND 

(http://bond.unleashedinformatics.com/) ect. The PPI network was then 

visualized using GeneSpring software. The set of chosen parameters were 

the followings: Relations score ≥ 9; Relation Types: Biological Process; 

Entity local connectivity ≥ 2. Results are displayed on Figure 29. 

Cross-species analysis from normal tissue to cancer cell lines, a nutshell of 

transformation 

Hierarchical clustering is one of the simplest and widely used clustering 

techniques for analysis of gene expression data (Eisen et al., 1998; Johnson, 

1967). The method follows an agglomerative approach, where the most 



 Materials and Methods 

 

179 

similar expression profiles are joined together to form a group. These are 

further joined in a tree structure, until all data forms a single group. The 

dendrogram is the most intuitive view of the results of this clustering 

method, in which short branches connect very similar elements, and longer 

branches join elements with diminishing degrees of similarity. The 

hierarchical clustering shown in the Figure 31 was performed on fold change 

value obtained from mCCL-mNT, mCCL-mICL and mICL-mNT 

comparison pairs, using the Euclidian distance matrix as the measure of 

similarity and centroid linkage clustering.  

PPI’s analysis were performed in order to identified a direct interaction intra 

and inter genes. The genes of Nut (27 genes) and the corresponded proteins 

were then loaded into Protein Interaction Network Analysis (PINA) platform 

(http://csbi.ltdk.helsinki.fi/pina/, ; Wu et al., 2009). PINA is an integrated 

platform for protein interaction network construction, filtering, analysis, 

visualization and management. It integrates protein-protein interaction data 

from six public curate databases and builds a complete, non-redundant 

protein interaction dataset for six model organisms. Moreover, it provides a 

variety of built-in tools to filter and analyze the network for gaining insight 

into the network. At the same level of information analysis with 403 genes 

were performed using a GeneSpring database, in with more redundant 

information are filtered out. The resulting integration of these two 

approaches was a network of 119 nodes and 131 edges (see Figure 32A). 

From this network, sub-networks were extrapolated using the detects densely 

connected regions in large protein-protein interaction networks that 

represents the minimum pathway of interaction that link the principal hubs 

of the network. Results are displayed on Figure 32B. 
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7.4 Promoter Scan: Algorithm to detect over-represented TFBSs in 

the proximal promoter regions of co-regulated or co-classified genes. 

All programs used in this paper are implemented into Anduril framework 

(Ovaska et al., 2010). 

Data Collection 

We retrieved three different data set collections of promoter regions: Test 

Set, Background and Random Set. In particular, every sequence containing 

500 bp upstream and 199 bp downstream of the transcriptional starting point 

(TSS). This region of 700 bp represents the proximal promoter region. The 

gene chromosome location and its TSS are obtained from Ensemble database 

(http://www.ensembl.org/index.html) and the referent FASTA sequences is 

generated by EnsemblDNA component. 

Test Set 

This data set collection contain a total of 228 human promoter sequences as 

well the corresponding set of mouse homologues gene promoter regions. 

Each of these human genes promoter are characterized by exactly know of 

the capacity of at least one known regulatory element (TF) of bind the 

promoter region (for more detailed see Table 15).  

Background and Random Set 

The second data set of 1000 random human promoter sequences, are 

collected. For every of these genes, we identify a corresponding set of mouse 

homologues gene promoter regions. The total of human sequences and 

mouse sequences form sets called Background Set (2000 sequences). The 

promoter region genes in these sets are supposed to contain a normal 

distribution of TFs.  

The third data set is called Random Set and is composed by 456 human and 

mouse sequences, taken random on their genome, as Background Set. 
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Transcriptional Factors collection 

The transcription binding sites collection composed by 79 human TFs and 

their relative binding sites (TFBSs) were recovered from JASPAR database 

(http://jaspar.genereg.net/). 

Matrix of TFBS match occurrences 

All the promoter region sequences of different data set were submitted to 

MotifMatch component, that aligns the given motifs of transcriptional factor 

collection against the DNA sequences. The results were used as input of 

Promoter Scan algorithm. 
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As emphasized in the introduction, GeneChip technology allows the 

parallel and simultaneous detection of more than 30000 genes in cells. 

Although large genome-scale cDNA screens are powerful and efficient, they 

examine only one gene at a time, and will not uncover biological activities 

that often rely on multiple collaborating genes. Thus, GeneChip is one of the 

best high-throughput assay available for studying complex biological 

processes at a transcriptional level.  

The GeneChip technology in cancer research is useful for the 

identification of information about disease-associated molecular signatures 

derived from analysis of the expression of basically all genes, as well as in 

the diagnostic decision. Therapeutic investigation targeting of genes and 

their regulatory mechanism may be used to complete existing therapies to 

halt the development and progression of cancer. Nevertheless the 

development of new analytical methods for DNA microarray data is a 

critical step to increase the sensibility of this technology.  

The transition from the molecular level to the system level, promise to 

revolutionize our understanding of complex biological systems and provide 

new opportunities for practical application of such knowledge. The success 

of DNA technologies and the digital revolution brought about by the growth 

of the Internet have ensured that huge volumes of high-dimensional 

microarray expression data are now available. Data mining is an evolving 

and growing area of research and development. The problem is to mine 

useful information or patterns from the huge datasets. Microarrays provide a 

powerful basis to monitor the expression of tens of thousands of genes in 

order to identify mechanisms that govern the gene expression in an 

organism. The huge volume of such data, and their high dimensions, make 

gene expression data suitable candidates for the application of data mining 

functions. Therefore, it is expected that deeper computational integration of 

transcriptional data with other genome-wide findings, including -but not 
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limited to- proteomics, interactomics and metabolomics, will allow a better 

extraction of hidden information.  

In this regard, in this thesis I used different statistical and computational 

approaches, typical resources applied in several scientific fields as 

mathematics, physics, bioinformatics, and I tried to develop new ideas to 

integrate and extract information that could brought us much closer to 

understanding the behavior of a cancer cell model on different conditions of 

investigation. I propose that such data integration can be further applied to 

examine the topology of biological networks, to provide information on 

directionality of interactions, and create wiring diagrams that better depict 

the functional outcome of component-component relationships. Together, 

these strategies should facilitate a systems approach to modular biology. 

In the development of the current thesis I try to tackle this topic through 

four different works:  

1) Gene expression profiles comparative analysis of immortalized and 

K-Ras transformed mouse fibroblasts grown in different glucose 

availability; 

2) Data recovery and integration from public databases uncovers 

transformation-specific transcriptional downregulation of cAMP-

PKA pathway-encoding genes;  

3) Comparative transcriptional analysis between a K-ras mouse cell 

model of transformation and the NCI60 human cancer cells 

collection; 

4) Promoter Scan: Algorithm to detect over-represented TFBSs in the 

proximal promoter regions of co-regulated or co-classified genes. 

Since different biological conditions may have distinctive patterns of 

gene expressions, the identification of these patterns is the goal of 

microarray experiments. With this aim, in the first work of my thesis, I have 
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investigated the temporal effects of glucose shortage in normal and 

transformed mouse fibroblasts, by an high-throughput transcriptional 

analysis. This high-throughput gene expression analysis, conducted across 

the time by using several bioinformatic tools (hierarchical clustering, 

enrichment information analysis ect), it has allowed to elucidate the time-

dependent role of the differentially expressed genes. In particular, our 

analysis permitted to identify some specific pathways (e.g. Metabolism, Cell 

Cycle, Signal Transduction, Apoptosis ect) that are strongly dependent both 

to k-ras oncogene and glucose availability.  

During my thesis work, I have shown that gene expression analysis 

performed taking also in account gene function, interaction and regulation s 

is a helpful strategy to better understand where selective pressure is acting 

and the possible biological meaning it could have.  A good example of this 

idea is represented by the second work of my thesis. Here I described a 

bioinformatics workflow able to show that those genes involved in the 

cAMP-PKA pathway are the ones under K-ras transformation pressure.  

After several decades of cancer research, many details of the underlying 

mechanisms of cancer at the gene level and evolution conservation are still 

unclear.  In the third work, in order to identify differential expressed genes 

between normal tissues/cells and cancer cells and common to mouse and 

human models, I propose an integrative method based on the direct 

comparison of a large number of microarray datasets generated from nine 

different types of human cancer cell lines (NCI60 cell collection) and a K-

ras mouse model of transformation. The significant similarity identified 

between human and mouse models, both in terms of gene expression and 

pathway analysis, strongly support the use of cell/animal models to dissect 

human cancer. Importantly our analysis, permitted the identification of a 

restrict set of genes (Nutshell) of transformation that could be a key to open 

a potential door for further cancer research. 
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Working on scenarios as complete as possible (as metabolic networks, 

signaling cascades, biosynthetic pathways, transcriptional factor regulation, 

ect) is the best  line of attack to understand the development and progression 

of cancer. In the fourth work, I have developed and described a new 

algorithm that has the ability to identify the most significant transcriptional 

factor binding sites in the promoters of a cluster of co-regulated genes. The 

algorithm shows a good degree of sensitivity and specificity and the results 

demonstrate its effectiveness to reduce false positive data. In the future the 

algorithm will be refined and compared with other methods having similar 

scope.  

Altogether my results, obtained by bioinformatic approaches, 

demonstrate that the global delineation of complex cellular networks, will 

lead to a deeper knowledge of the complex cellular processes. This approach 

is the main core of the new field called Systems Biology. Although systems 

biology is in its infancy, it is already a vital part of modern biomedical 

research. Its potential benefits are enormous in both scientific and practical 

terms. Advances in the field will enable us to construct mechanistic models 

for the operation of the cellular systems, test and refine them using 

experimental approaches, and gradually witness the emergence of robust, 

dynamic, adapting, and developing systems from the information encoded in 

the genomes. Gaining such understanding will elucidate the causes of cancer 

development and survival, pointing the way to novel strategies for rational 

intervention in pathological conditions and the design of improved 

personalized drugs. 
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