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Abstract

Parametric curved shape surface schemes interpolating vertices and nor-
mals of a given triangular mesh with arbitrary topology are widely used in
computer graphics for gaming and real-time rendering due to their ability to
effectively represent any surface of arbitrary genus. In this context, continu-
ous curved shape surface schemes using only the information related to the
triangle corresponding to the patch under construction, emerged as attrac-
tive solutions responding to the requirements of resource-limited hardware
environments. In this paper we provide a unifying comparison of the local
parametric C0 curved shape schemes we are aware of, based on a reformu-
lation of their original constructions in terms of polynomial Bézier triangles.
With this reformulation we find a geometric interpretation of all the schemes
that allows us to analyse their strengths and shortcomings from a geometrical
point of view. Further, we compare the four schemes with respect to their
computational costs, their reproduction capabilities of analytic surfaces and
their response to different surface interrogation methods on arbitrary triangle
meshes with a low triangle count that actually occur in their real-world use.
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1. Introduction

Computer graphics used for gaming and realtime rendering is about shad-
ing and animating with triangle meshes. A large body of work has been
devoted to creating an increasing realism of the rendered surfaces. Shading
techniques like phong shading, normal mapping and reflection mapping are
commonly used to present cineastically looking surfaces. For animation [1],
models are applied with a suitable skeleton structure during rigging [2], and
then all triangle vertices can be moved according to this structure. Especially
in computer games, its highly elaborate art pipeline builds upon the triangle
mesh, which usually does not have stored neighbourhood information. Sev-
eral techniques have been leveraged for processing on programmable graphics
hardware recently [3, 4].

Continuous (C0) interpolant curved shape surface schemes emerged to
address specific requirements of the resource-limited hardware environments
and to offer smooth surfaces by visually enhancing the resulting C0 surface by
using as little information as possible. More precisely, the smallest amount
of information about neighbouring triangles has to be used in constructing
the patch, thus these schemes use only the positions and normals at the three
vertices of the triangle.

The interest in continuous surface patches comes primarily from saving
bus bandwidth for transfers to the graphics hardware. In most situations
exact geometric smoothness and continuity are not critical as long as the
surface appears to be smooth as a result of the shading technique.

The aim of this paper is to provide a unifying comparison of the existing
local parametric triangular curved shape C0 schemes we are aware of. The
paper is organized as follows. In section 2 we present four existing continuous
surface schemes briefly describing their original construction and presenting
a reformulation of every scheme in triangular Bézier patch form. This allows
us to discuss their geometric interpretations and compare them in full detail.
In section 3, we first analyse their computational costs (section 3.1), then we
compare the schemes by looking at the reproduction of analytic surfaces like
the sphere and the torus (section 3.2), and successively by looking at their
response to surface interrogation methods on arbitrary triangle meshes with
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a low triangle count, which actually occur in real-world use of these schemes
(section 3.3). Finally, in section 4 we briefly describe the use of separated
normal interpolation patches in the shading process and in section 5 we give
the conclusions of our study.

2. Continuous Surface Schemes

Triangular Bézier patches have been around since the birth of Computer
Aided Geometric Design. They were initially investigated by de Casteljau as
extensions of Bézier curves to surfaces. They are a simple geometric primi-
tive that can be used to interpolate scattered data while offering interactive
manipulation by its control points and local control of a surface.

The key idea behind the C0 curved shape schemes we are going to present
is that each original flat triangle of the input mesh can be replaced by a
curved shape, namely a parametric cubic or quadratic polynomial triangular
Bézier patch interpolating the three positions and normals of the vertices.
Therefore, the patch’s control net is constructed only by means of the point
and normal information at the vertices of the input mesh. According to
requirements explained above, no additional data beyond the positions and
normals of the triangle are used.

Let us denote the three triangle vertices by p0, p1, p2, the respective
unit normal vectors by n0, n1, n2, and the edge vectors by d1 = p1 − p0,
d2 = p2−p1, d3 = p0−p2, as shown in Figure 1. Additionally, we will refer

Figure 1: Notation for the vertices and respective normals of the input flat triangles.

to the tangent plane in pi, which is defined by ni, by τ i, i = 0, 1, 2.
Although each scheme uses its own formulation, for comparison purposes

we will describe all the schemes in the form of triangular Bézier patches and
we will analyse their geometrical interpretation.
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Using a triangular network of control points

bijk : i+ j + k = n, i, j, k > 0

and degree-n bivariate Bernstein polynomials

Bn
ijk(u, v, w) =

n!

i!j!k!
uivjwk, u+ v + w = 1,

a degree-n triangular Bézier patch is defined by

s(u, v, w) =
∑

i+j+k=n

bijkB
n
ijk(u, v, w). (1)

It maps a triangular domain D ⊂ R
2 to an affine space, typically R

3, where
u, v and w are the barycentric coordinates of a domain point relative to D.
See [5] for details on the properties of these patches.

Together with the schemes that we are going to present in the following
subsections, we would also like to cite [6, 7, 8, 9, 10] as interesting schemes
related to the interpolation problem we are considering. However, we are not
going to include them in our discussion because [6, 7] do not fit into the class
of analytically representable curved patches, [8, 9] use neighboring triangles
to construct cubic patches with approximate-G1 continuity and, although in
[10] Walton and Meek propose an interesting method leading to a G1 surface,
they make use of a blending type approach that results in a patch that is not
purely polynomial.

2.1. PN Triangles

Curved PN triangles by Vlachos et al. [11], in a certain sense, are the
pioneers in the study of parametric curved patches for C0 interpolation of
triangle meshes. The geometry of a PN triangle is defined by a cubic tri-
angular Bézier patch and the construction of its control points is based on
projections on the tangent planes at the vertices.

The scheme initially places the intermediate control points bijk in the po-
sitions (ip0+jp1+kp2)/3, leaving the three corner points unchanged. Then,
each bijk on the border is constructed by projecting the respective interme-
diate control point bijk into the plane defined by the nearest corner point
and the normal in that corner. For example, Figure 2 shows the construction
of b210.
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Figure 2: Construction of b210 in PN triangle’s scheme: projection of b210 = (2p0+p1)/3
into the tangent plane at p0.

Finally, the central control point b111 is constructed moving the corre-
sponding b111 halfway in the direction m − b111, where m is the average of
the six control points just computed on the border.

In formulas:

b300 = p0, b030 = p1, b003 = p2,

wij = (pj − pi) · ni, i, j ∈ {0, 1, 2}, i 6= j,

b210 =
1

3
(2p0 + p1 − w01n0), b120 =

1

3
(2p1 + p0 − w10n1),

b021 =
1

3
(2p1 + p2 − w12n1), b012 =

1

3
(2p2 + p1 − w21n2),

b102 =
1

3
(2p2 + p0 − w20n2), b201 =

1

3
(2p0 + p2 − w02n0),

m =
1

6
(b210 + b120 + b021 + b012 + b102 + b201),

b111 =
1

3
(p0 + p1 + p2),

b111 = m+
1

2
(m− b111).

As shown in [11], each boundary curve stays close to its edge, because its
control points constructed as above stay within a radius of l/6 of the edge,
where l is the length of the longest triangle edge. Further, the particular
choice for the central control point b111 is, among other things, based on
symmetry, see [12]. In this way, the curved patch provably remains close to
the flat triangle, preserving the shape and avoiding interference with other
curved triangles.

In [13] a reformulation of PN Triangles as a modified Nielson’s side-vertex
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triangular mesh interpolation scheme [14] can be found. Furthermore, the
two recent works [15, 16] propose, respectively, a new application of PN trian-
gles and add some improvements to the original construction. In particular,
in the former, the key idea is to assign to each mesh vertex a set of three
scalar tags that act as shape controllers, improving the surface geometry and
shading. The latter proposes the use of PN triangles on silhouettes.

2.2. Phong Tessellation

Phong tessellation [17] is a recent work based on the idea that a real-
time mesh refinement operator should be as efficient and simple as Phong
normal interpolation. The main concept behind the scheme is that around
each vertex the tangent plane defined by the vertex normal is the appropriate
local geometry.

The patch is constructed by direct evaluation of the point of barycentric
coordinates (u, v, w) in three simple steps. First, the barycentric combination
between the three triangle vertices is computed. Then, this point is projected
on the three tangent planes defined by the vertices and normals in input.
Finally, the final evaluation point s∗(u, v, w) is obtained by the barycentric
combination of these three projections.

Additionally, a shape factor α is proposed to interpolate between linear
(flat) and Phong tessellation, controlling the distance from the flat triangle.
Hence, the final surface can be written as:

sα(u, v, w) = (1− α)p(u, v, w) + αs∗(u, v, w),

where p(u, v, w) = up0 + vp1 + wp2 is simply the linear tessellation of the
triangle and s∗(u, v, w) is detailed below.

Phong tessellation is the only scheme with a parameter to regulate the
surface flatness. Unfortunately, this is a global parameter while sometimes
only some local parts of the surface need to be changed. It is also true that
Phong tessellation introduces such a parameter because usually the obtained
surface is too inflated, while the other schemes do not have an issue with
flatness and thus do not need a parameter. In [17], α = 3/4 is proposed
because this value experimentally provides convincing results in most of the
situations. In Figure 3 the surfaces constructed from a simple mesh for
different values of the parameter α show how this parameter controls the
shape of the final Phong surface.
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(a) α = 0 (b) α = 0.5 (c) α = 0.75 (d) α = 1

Figure 3: Surfaces constructed by Phong tessellation for different values of α.

Writing out the definition of Phong tessellation, we obtain that s∗(u, v, w)
is a quadratic patch with control points

b200 = p0, b110 =
1

2
[π0(p1) + π1(p0)],

b020 = p1, b011 =
1

2
[π1(p2) + π2(p1)],

b002 = p2, b101 =
1

2
[π2(p0) + π0(p2)].

where πi(pj) is the projection of pj on the tangent plane τi defined by ni

and pi (see Figure 4).

Figure 4: Projection of p1 into the tangent plane at p0 defined by n0.

This allows us to compute a reformulation of the Phong tessellation patch
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Figure 5: Geometric interpretation of the control point b110 in Phong tessellation.

sα(u, v, w) in quadratic Bézier triangle form with control points:

b200 = p0, b020 = p1, b002 = p2,

b110 =
1

2
(p0 + p1) + α

[

b110 −
1

2
(p0 + p1)

]

,

b011 =
1

2
(p1 + p2) + α

[

b011 −
1

2
(p1 + p2)

]

,

b101 =
1

2
(p0 + p2) + α

[

b101 −
1

2
(p0 + p2)

]

.

(2)

In this form Phong tessellation has a simple geometric interpretation: the
three control points b110, b011 and b101 are obtained by moving the middle-
edge point in the direction given by the average of the projections of the
edge corners, scaled by α. In Figure 5 the geometric interpretation of b110 is
shown.

Thanks to this clear geometric interpretation we found an interesting
relation between PN triangles and Phong Tessellation. Looking at the edge
d1, for example, we can compute the corresponding control point b110 for
Phong Tessellation with α = 1/3 and with simple algebraic calculus we prove
that

b
phong
110 =

1

2
(p0 + p1) +

1

3

[

1

2
(π0(p1) + π1(p0))−

1

2
(p0 + p1)

]

=

=
1

2
(p0 + p1) +

1

3

[

−
1

2
((p1 − p0) · n0)n0 −

1

2
((p0 − p1) · n1)n1

]

=

=
1

2
(p0 + p1) +

1

6
(p0 · n0 − p1 · n0)n0 −

1

6
(p0 · n1 − p1 · n1)n1 =

=
1

2
(bPN

210 + bPN
120 ).
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The control point for the quadratic Bézier triangle of Phong Tessellation with
α = 1/3 is the average of the two control points of PN triangles relative to
the same edge.

2.3. Nagata Triangles

The central idea in the scheme proposed by T. Nagata in [18] is quadratic
interpolation of a curved segment from the position and normal vectors at
the end-points, with the aid of generalized inverses (or pseudo-inverses).

More precisely, this scheme first replaces each edge of the planar triangle
with a curve orthogonal to the normals given at the end-points, then fills
the interior of the patch with a parametric quadratic surface reproducing the
modified boundaries. Central in the patch construction is a coefficient c1
(respectively c2, c3) that defines the boundary curve in the monomial form
x1(t) = p0 + (d1 − c1)t+ c1t

2 as concerns the edge given by d1, for example.
The analytical formula used for the generalized inverse A+ is

A+ = lim
α→0+

(A∗A+ αE)−1
A∗,

where A and A∗ are an arbitrary matrix and its transposed conjugate, re-
spectively, and E is the identity matrix of consistent dimension. This allows
to solve the system of equations with unknown c1.

The solution for the coefficient c1 related to the edge d1 results in

c1 =

{

∆d
1−∆c

ν + d
∆c
∆ν, c 6= ±1

0, c = ±1
(3)

where ν = n0+n1

2
and ∆ν = n0−n1

2
are the average and the deviation of the

unit normals, d = d1 · ν and ∆d = d1 ·∆ν their inner products with d1 and

∆c = n0 ·∆ν, c = n0 · n1 = 1− 2∆c.

The coefficient c1 is set to zero when n0 ·n1 = ±1 because obviously the two
denominators should not become zero.

Although the monomial form allows an easy and fast coefficients com-
putation (see computational costs in subsection 3.1), a triangular Bézier
formulation of the patch, which can be obtained by means of a change of
parametrization, allows a better geometrical insight. The three control points
b110, b101 and b011 are defined by moving the average of the vertices on an
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Figure 6: The intersection line L between the two tangent planes τ 0 and τ 1 (schematic
view).

Figure 7: Geometric interpretation of the middle-edge control point in Nagata’s scheme.
b110 is the point on the line L that minimizes the distance between the middle-edge point
1

2
(p0 + p1) and the line L.

edge halfway the direction given by the curvature coefficient related to that
edge:

b200 = p0, b110 =
1

2
(p0 + p1)−

1

2
c1,

b020 = p1, b011 =
1

2
(p1 + p2)−

1

2
c2,

b002 = p2, b101 =
1

2
(p0 + p2)−

1

2
c3.

In this formulation some easy calculations allow to show that the central
control point on one edge, for instance b110, is on the intersection line L
between the two tangent planes τ 0 and τ 1, i.e. L = τ 0 ∩ τ 1. Moreover, the
control point b110 is the point on that line L that minimizes the distance
between the middle-edge point 1

2
(p0+p1) and the line (see Figures 6 and 7).

Equation (3) defining the curvature coefficient c1 in Nagata’s scheme has
a stability problem that might strongly affect the surface.
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As pointed out before, in eq. (3) defining the curvature coefficient c1
there are two denominators that obviously should not become zero. This
happens when c = n0 ·n1 = ±1 or equivalently when ∆c = 0 or ∆c = 1, and
in these cases the curvature coefficient is set to be zero. This means that
when the angle between the two normals in the vertices of one edge is 0◦

or 180◦, the curvature coefficient cannot be calculated and it is set to zero,
leading the surface to be linear on that edge.

Looking at the geometric interpretation of Nagata’s patch, this stability
problem is even clearer. If the two tangent planes are parallel or nearly
parallel, their intersection line L goes to infinity and as a consequence the
middle-edge control point goes to infinity too, making the patch very inflated
on that edge because this minimum distance point can be spatially very far
away from the model edge.

One way to correct this problem is to use a threshold ǫ in the coefficient
definition (3), setting c1 to 0 if ∆c 6 ǫ or 1−∆c 6 ǫ (or equivalent conditions
on c). For instance, in Figure 8 we give an example of how the final surface
changes depending on the choice of ǫ.

In most of our experiments in section 3, the threshold ǫ must be set
quite high to have an acceptable result. This means that, depending on the
configuration of the normals, the intersection line L can be far away from the
plane of the triangle. But, with very regular meshes as for instance the torus
and the sphere (see subsection 3.2), surfaces with no artifacts can be obtained
with small ǫ thanks to symmetry and well-conditioned configurations.

2.4. NLSA Triangles

The last scheme we describe presents the construction of a curvilinear
mesh using quadratic curves with near least square acceleration (NLSA).
This scheme was proposed by Barrera et al. in [19]. It constructs a quadratic
surface using quadratic curves which are derived using vertex normals and
vertex points only, as Nagata’s scheme above, but with different minimiza-
tions.

Consider the edge with direction d1. The authors’ approach, after com-
putation of tangent vectors t0 ∈ τ0 and t1 ∈ τ1 from the normals n0 and
n1, first computes a curve q1(t) such that its derivative in p0 is equal to
the tangent t0 and the derivative in p1 is as close to the tangent t1 as the
least square minimization allows. Then, they compute a curve q2(t) with the
derivative equal to the tangent in p1 and optimized at p0. Finally, by taking
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(a) Planar triangular mesh. (b) ǫ = 0 (c) ǫ = 0.001

(d) ǫ = 0.01 (e) ǫ = 0.05 (f) ǫ = 0.5

Figure 8: Stability problem of Nagata’s scheme.

the average of q1(t) and q2(t), they get the near least square acceleration
second degree curve x1(t) which is close to optimal in both ends.

The curve q1(t) is computed by solving a system of two equations in the
unknowns α1 and β1 whose solution is

α1 =
t0 · t1
t0 · t0

and β1 =
d1 · t0
t0 · t1

, (4)

and analogously the curve q2(t) is computed by solving a system whose
solution is

α1 =
t0 · t1
t1 · t1

and β1 =
d1 · t1
t0 · t1

. (5)
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Figure 9: α1β1t0 is the projection of d1 on t0.

The same procedure can be repeated for the edges d2 and d3 to obtain the
curves x2(t) and x3(t) defined respectively by the parameters α2, β2, α2, β2

and α3, β3, α3, β3.
Having the three border curves in monomial form, it is easy to compute

their Bézier formulation. The three central control points, together with the
vertices, are then used as control net for a quadratic Bézier triangle. In
formulas:

b200 = p0, b110 =
1

2
(p0 + p1) +

1

4

(

α1β1t0 − α1β1t1
)

,

b020 = p1, b011 =
1

2
(p1 + p2) +

1

4

(

α2β2t1 − α2β2t2
)

,

b002 = p2, b101 =
1

2
(p0 + p2) +

1

4

(

α3β3t0 − α3β3t2
)

.

Note that α1β1t0 is just the projection of the edge vector d1 on t0. Similarly,
α1β1t1 is the projection of d1 on t1 (see Figure 9).

It means that NLSA triangles in Bézier formulation have a simple geo-
metric interpretation: the central control point on one edge is defined moving
the average of the two edge vertices in the direction given by the subtraction
of the projections of the edge on the tangents at the two vertices.

This subtraction results in the same direction as the one used in Phong
tessellation control points definition (see equation (2)). More precisely, by
using GramSchmidt process the tangents t0 = n1 − (n0 · n1)n0 and t1 =
(n0 · n1)n1 − n0 can be defined and substituted in equations (4) and (5).
This results in:

α1β1t0 =

(

d1 · t0
t0 · t0

)

t0 =

(

a− lb− c+ ld

t0 · t0

)

(n1 − ln0),

α1β1t1 =

(

d1 · t1
t1 · t1

)

t1 =

(

la− b− lc+ d

t1 · t1

)

(ln1 − n0),
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where a = p1 · n1, b = p1 · n0, c = p0 · n1, d = p0 · n0 and l = n0 · n1.
Therefore,

α1β1t0 − α1β1t1 = an1 − bn0 − cn1 + dn0

= π0(p1) + π1(p0)− (p0 + p1),

because t0 · t0 = t1 · t1 and (1−l2)
t0·t0

= 1, and thus

bNLSA
110 =

1

2
(p0 + p1) +

1

4

(

α1β1t0 − α1β1t1
)

=

=
1

2
(p0 + p1) +

1

2

(

1

2
(π0(p1) + π1(p0))−

1

2
(p0 + p1)

)

= b
phong(α= 1

2
)

110 .

The triangular patch obtained by the NLSA method is thus nothing else than
the Phong tessellation patch with α = 1

2
.

3. Comparison

We implemented all the schemes as an Autodesk Maya R© plug-in (MPx-

HwShaderNode), based on the plug-in from [20]. The Polygons part of Au-
todesk Maya R© is a classic polygonal modeller, and lots of low-level and
high-level functions are available for surface creation.

3.1. Computational costs

Before comparing the surface quality of the four schemes, we compare
their computational costs. We computed manually the number of scalar
additions and scalar multiplications required for evaluation of a point on
the cubic or quadratic Bézier triangle. Then, for the difference in practice,
we measured the time required for the tessellation on the CPU by using a
1000 triangles Bunny mesh, tessellating every triangle patch into 210 points
(tessellation factor f = 20). In the vertex shader on the GPU, we tessel-
lated the patch into 210 points (tessellation factor f = 20) and 1830 points
(tessellation factor f = 60), which are handled as OpenGL vertex buffer ob-
jects. As the shading is completely vertex shader-bound, we measured the
time for vertex shading and fragment shading together. These measurements
were performed in Maya 2008 on a MS Windows 7 (64bit) system with Intel
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P8700 (2.5 GHz) processor and NVidia Geforce 9600GT (512 MB) mobile
graphics with driver version 258.96.

Table 1 gives the required operations for the evaluation of a point on
the surface in the Bézier form, split into control points (cp) computation
and patch evaluation according to definition (1). We computed the same
values for the original construction given by the respective papers of Nagata
triangles and Phong tessellation (Table 2). Note that Phong tessellation in
their original construction makes use of a direct per-point computation; there
is no separate per-patch computation anymore.

Bézier form

Per-patch: Per-point:
Total

CPU GPU

cp construction evaluation f = 20 f = 20 f = 60
add mult add mult add mult ms ms ms

PN triangles 93 81 27 57 120 138 0.112 0.0068 0.054
Nagata triangles 72 87 15 27 87 114 0.071 0.0067 0.050
NLSA triangles 123 153 15 27 138 180 0.071 0.0068 0.054

Phong tessellation 57 45 15 27 72 72 0.070 0.0059 0.043

Table 1: Scalar additions and multiplications required by all the schemes to evaluate the
patch and time required for the tessellation on the CPU and on the GPU using the Bézier
form.

Original form
Per-patch Per-point Total

CPU GPU

f = 20 f = 20 f = 60
add mult add mult add mult ms ms ms

PN triangles 93 81 27 57 120 138 0.112 0.0068 0.054
Nagata triangles 54 69 21 21 75 90 0.054 0.0061 0.045
NLSA triangles 123 153 15 27 138 180 0.071 0.0068 0.054

Phong tessellation – – 30 36 30 36 0.094 0.0042 0.037

Table 2: Scalar additions and multiplications required by all the schemes to evaluate the
patch using the original construction proposed by their authors. Note that PN triangles
and NLSA triangles are originally defined in the Bézier form; we just repeat the numbers
from Table 1 for them.

In general, the evaluation of a surface point on the cubic patch is more
expensive than on a quadratic patch, which makes a difference for the scalar
CPU implementation (not using SIMD extensions). The tessellation time for
the cubic PN patch is larger than for any of the quadratic patches. Concern-
ing the difference between the Bézier formulation and the original formulation
on the CPU, Nagata triangles are the most efficient (19 fps) due to the for-
mulation in the canonical basis in u and v. In contrast, the combination
of construction and point evaluation into one step for Phong tessellation is
slower on the CPU as it needs to be done per surface point and requires

15



more operations than the evaluation of a quadratic Bézier triangle (15 adds,
27 mults). This combination into one step is especially beneficial for the
evaluation in the vertex shader of the GPU.

For the GPU evaluation, we compare the time differences for tessellation
factor f = 60. Interpolation in the vertex shader requires patch construction
and evaluation per surface point, so that the schemes with small total costs
(Phong tessellation and Nagata triangles) are advantageous. PN triangles
and NLSA triangles are the slowest due to the largest total costs among
all the schemes. Nagata triangles and Phong tessellation require less addi-
tions/multiplications in their original construction compared to the Bézier
form (Table 2), as argued in [17] and [18]. This results also in better timings
and framerates: 22 fps for Nagata triangles and 27 fps for Phong tessellation,
which become even more significant for larger tessellation factors.

3.2. Sphere and Torus Interpolation

In this section, we compare the behaviour of the four schemes with respect
to a known surface. We compare the signed distance between the analytic
surface (a sphere and a torus) and the piecewise parametric interpolants
computed by the schemes on a sampling of points and normals from that
surface. We are especially interested in the schemes behaviour when refining
the base mesh of the piecewise parametric surface.

The base mesh for the sphere is an icosahedron sampled from a sphere of
radius r. At any refinement step i it is refined by means of a 4-split division
of the triangles, which results in triangle meshes with 20 · 4i triangles, i.e.,
20 for i = 0, 80 for i = 1, 320 for i = 2, and 1280 triangles for i = 3.

The base mesh for the torus is generated by a subdivision of the bivariate
parameter domain [0, 2π) × [0, 2π) into j2 quadrangular regions. After the
refinement, the quadrangular mesh is triangulated adding the diagonals. This
results in 2 · j2 triangles at any refinement step j (j = 1, 2, 3, . . . ).

We measure the signed distance between the analytic surface and the
piecewise parametric interpolant along the patch normal for the refinement
steps i = 0, 1, 2, 3, in case of the sphere, and for j = 0, . . . , 19, in case of
the torus. Iterations i = 3 and j = 19, respectively, yield acceptable average
distance values.

Figure 10 shows the approximation behaviour of the average signed dis-
tance to the sphere with radius r = 1. For this radius, the Phong triangles
bend to the exterior, whereas the NLSA triangles and PN triangles are al-
ways interior to the sphere. The Nagata triangles (ǫ = 0) result in the best
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average distances, which is a consequence of reproducing the tangent planes
at the vertices for this degree-2 scheme. PN triangles also reproduce the
given tangent planes in the sphere points but, due to the general choice of
the control point b111, are less curved than the sphere.

Figure 11 shows the approximation behaviour of the average signed dis-
tance to a torus with radii r1 = 1 and r2 = 0.5. The behaviour of the different
schemes is qualitatively the same for the torus as for the sphere above. Again
Nagata triangles (ǫ = 0) result in the best average distance. Due to the gen-
eral choice of the control point b111, the PN triangles are less curved than
the original torus and consequently are always in the interior. The same is
true for NLSA triangles, while the contrary occurs for Phong tessellation.

Data in Table 3 confirm the following classification of the methods with
respect to their approximation behaviours: Nagata triangles perform best,
followed by PN triangles and NLSA triangles, whereas Phong tessellation
exhibits the worst approximation behaviour.

3.3. Arbitrary Triangle Meshes

In this section, we want to compare the surfaces constructed by the four
schemes on arbitrary triangle meshes with a low triangle count (1000− 3000
triangles) because similar meshes will occur in a real-world use of the schemes.

Table 4 gives detailed information about the meshes in our experiments.
As the vertex normals have strong influence on the constructed surfaces, the
table gives statistics on the angle cosine between the vertex normals and the
triangle normals. This is a rough measure for the curvedness of the triangular
patches. Additionally, the border curves are classified into convex, concave,
and inflection, by the directions of the two vertex normals relative to a plane
orthogonal to the edge (details in [11, 21]).

We analyse the surfaces from four meshes, Bunny, Monsterfrog, Vase and
RoundedCube, by using highlight lines and Gaussian curvature plots [22].
Bunny and Monsterfrog represent two arbitrary fine triangle meshes. The
remaining two meshes, Vase and RoundedCube, were chosen because they
exhibit certain special effects for some of the schemes. We use the exact

surface normals n(u, v) =
∂s

∂u
(u,v)× ∂s

∂v
(u,v)

‖ ∂s

∂u
(u,v)× ∂s

∂v
(u,v)‖

for computing the Gaussian cur-

vature. Table 5 contains the minimum, maximum and mean values, with

standard deviation defined as
√

1
n−1

∑n

k=1(xk − x)2, of the Gaussian curva-

ture computed on a dense sampling grid of 210 points per patch.
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Figure 10: Average signed distance of sphere interpolation depending on the refinement
step i. Top: approximation behaviour for i = 0, . . . , 3. Bottom: zoom on i = 2, 3.
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Figure 11: Average signed distance of torus interpolation depending on the refinement step
j. Top: approximation behaviour for j = 5, 10, 15, 17, 19. Bottom: zoom on j = 15, 17, 19.
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Name Step Mean Distance ± std dev Min,Max Distance

Sphere

i = 0

Phong 0.0153196 ± 0.00940232 [0, 0.0269864]
Nagata ǫ = 0 0.00287491 ± 0.00437559 [-0.00290352, 0.0131106]

NLSA -0.0373717 ± 0.0231368 [-0.0586981, 0]
PN -0.0318387 ± 0.0225525 [-0.0586009, 0]

i = 1

Phong 0.0157366 ± 0.00930732 [0, 0.0233265]
Nagata ǫ = 0 0.000301524 ± 0.000336243 [-7.21216e-5, 0.00125933]

NLSA -0.00329917 ± 0.00209737 [-0.00633496, 0]
PN -0.0028053 ± 0.00203187 [-0.00632477, 0]

i = 2

Phong 0.00503575 ± 0.00300305 [-5.96046e-8, 0.00815177]
Nagata ǫ = 0 2.07119e-5 ± 2.18946e-5 [-1.13249e-6, 8.9407e-5]

NLSA -0.000225536 ± 0.000143714 [-0.000468373, 0]
PN -0.000191595 ± 0.000139045 [-0.000467658, 0]

i = 3

Phong 0.00133509 ± 0.000797624 [-5.96046e-8, 0.00221264]
Nagata ǫ = 0 1.29748e-6 ± 1.37613e-6 [-1.78814e-7, 5.84126e-6]

NLSA -1.44418e-5 ± 9.19883e-6 [-3.06964e-5, 0]
PN -1.22342e-5 ± 8.88072e-6 [-3.05772e-5, 0]

Torus

j = 5

Phong -0.000754569 ± 0.0315128 [-0.111965, 0.0630175]
Nagata ǫ = 0 0.000922857 ± 0.0386565 [-0.112992, 0.0931029]

NLSA -0.0252151 ± 0.0498816 [-0.195886, 0.0383056]
PN -0.0210668 ± 0.0457862 [-0.195886, 0.0467965]

j = 10

Phong 0.00783327 ± 0.00929549 [-0.00958499, 0.0287549]
Nagata ǫ = 0 9.40043e-5 ± 0.00211594 [-0.00666818, 0.00601918]

NLSA -0.00217635 ± 0.0041617 [-0.0149165, 0.00385857]
PN -0.00181822 ± 0.00374165 [-0.0147308, 0.00398123]

j = 15

Phong 0.00440836 ± 0.00541819 [-0.00492978, 0.0166597]
Nagata ǫ = 0 1.57127e-5 ± 0.000580865 [-0.00252217, 0.00191915]

NLSA -0.000451227 ± 0.000939187 [-0.00340354, 0.00134289]
PN -0.000376097 ± 0.000814623 [-0.00340357, 0.00117016]

j = 17

Phong 0.00356666 ± 0.00441199 [-0.00393245, 0.0138325]
Nagata ǫ = 0 2.97925e-5 ± 0.00039676 [-0.00130969, 0.00172943]

NLSA -0.000275727 ± 0.000596803 [-0.00208876, 0.000976563]
PN -0.000229708 ± 0.000509889 [-0.00208879, 0.000768423]

j = 19

Phong 0.00293179 ± 0.00364289 [-0.0032014, 0.0115674]
Nagata ǫ = 0 6.28688e-6 ± 0.000270014 [-0.00122377, 0.000931621]

NLSA -0.000177753 ± 0.0004006 [-0.00135079, 0.000708401]
PN -0.000148038 ± 0.000337174 [-0.0013507, 0.000557363]

Table 3: Statistics of signed distances to sphere and torus surfaces: mean distance with

standard deviation (defined as
√

1

n−1

∑

n

k=1
(xk − x)2, xk being the distance values) and

minimum and maximum distance.
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Name #V/#E/#T
Mean Angle Normals

Min,Max Angle Normals #E convex/concave/inflection
± std dev

Bunny

502/1500/1000 0.911775± 0.11007 [0.00118579, 0.999985] 556/71/873

Monsterfrog

1308/3876/2584 0.867032± 0.131679 [-0.263223, 0.999968] 1602/233/2040

Vase

241/690/460 0.91861± 0.0825731 0.428546, 0.999982] 122/115/452

Rounded

Cube

30/84/56 0.812907± 0.136409 [0.688079, 1] 44/0/40

Sphere

r = 1.0

162/480/320 0.98479± 0.00113563 [0.982247, 0.985606] 320/0/160

Torus

r1 = 1.0

r2 = 0.5

100/300/200 0.927627± 0.0169889 [0.901404, 0.951429] 135/25/140

Table 4: Statistics of triangle meshes: number of vertices/edges/triangles, angle cosine be-
tween vertex and triangle normals (mean ± standard deviation, minimum and maximum),
number of convex, concave, inflection edges.
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Analysing these statistics we found that the mean and maximum values
of curvature for NLSA triangles are always smaller in the absolute value than
the respective mean and maximum values for Phong Tessellation, meaning
that the shape parameter, in a certain sense, controls also the curvature of
the constructed surface. Further, NLSA triangles have the lowest standard
deviation values of all the methods, meaning that the curvature is in general
nearby the average value and few points have strongly deviating curvatures.
Finally, in all the models there is a remarkable difference between the mini-
mum and maximum value of the curvature for Nagata triangles, confirming
that the stability problem deeply affects the resulting overall surface shape.

Additionally, in Table 6 we computed the angle cosine of the two normals
in the same point of the edge between two adjacent patches. Although the
C0 patch construction does not guarantee G1 continuity, this can be approx-
imately the case, indicated by a mean value close to 1. It can be seen in
a certain sense as a measure of “how far the patches are from having G1

continuity”. The average cosine angle is computed by sampling 20 points
along each edge.

In general, for all our examples, PN triangles give the best continuity, in
the sense that the mean angle cosine between the normals is the nearest to
1 with the least standard deviations (except for the sphere). For the Bunny,
Monsterfrog, Vase and RoundedCube models, in terms of G1 continuity per-
formance, PN triangles perform best, followed by Phong tessellation (rank
2), and NLSA triangles (rank 3). For these models Nagata triangles turn
out to be the worst, due to the use of the threshold ǫ to control the stability
problem which produces linear edges reducing considerably the mean values
of the cosine. But Nagata triangles are nearly optimal in the sphere and
torus, confirming the results obtained in section 3.2. Looking at minimum
and maximum values for these angles, note that almost in all situations there
exist points in which adjacent patches have the same normals (cos = 1), but
also that there are unwanted situations, especially in Bunny, Monsterfrog
and RoudedCube, where there are points in which the angles between the
normals are π (cos = −1 or nearby), meaning that there are points in which
the two normals are parallel but pointing in opposite directions.

In the following we analyse each model in detail. The Bunny mesh is
of moderate size (1000 triangles) with no degenerate normals, i.e., all nor-
mals point into the positive halfspace defined by the triangle. It has a large
fraction of inflection edges (58%), which results in patches of high curva-
ture magnitude for the PN patches. For Nagata triangles a fairly large value
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Name Mean Gaussian Curv ± std dev Min,Max Gaussian Curv

Bunny Phong -276.54 ± 7782.39 [-962065.0, 57399.7]
Bunny Nagata ǫ = 0.03 -23256.3 ± 2.4e+6 [-9.0e+8, 2.4e+8]

Bunny NLSA -28.1 ± 2709.6 [-50854.5, 28265.6]
Bunny PN -383.9 ± 7981.8 [-348286.0, 412429.0]

Monsterfrog Phong 0.177 ± 3.8 [-516.303, 186.17]
Monsterfrog Nagata ǫ = 0.01 -2.974 ± 412.0 [-174208, 48027.7]

Monsterfrog NLSA 0.109 ± 1.8 [-174.445, 90.0984]
Monsterfrog PN 0.141 ± 13.9 [-496.404, 8768.75]
Vase Phong -0.00171 ± 0.0132 [-0.350, 0.024]

Vase Nagata ǫ = 0.06 -0.02402 ± 0.7317 [-94.715, 0.012]
Vase NLSA -0.00053 ± 0.0052 [-0.049, 0.011]
Vase PN -0.00161 ± 0.0237 [-0.380, 0.547]

RoundedCube Phong 1.235 ± 0.690 [0.123, 2.538]
RoundedCube Nagata ǫ = 0 -1.766 ± 4.84 [-27.775, 1.653]

RoundedCube NLSA 0.550 ± 0.314 [0.091, 1.239]
RoundedCube PN 0.468 ± 0.938 [-1.093, 4.351]
Sphere Phong 2.032 ± 0.046 [1.847, 2.097]

Sphere Nagata ǫ = 0 0.972 ± 0.010 [0.933, 0.985]
Sphere NLSA 0.930 ± 0.010 [0.887, 0.945]
Sphere PN 0.950 ± 0.029 [0.900, 1.047]
Torus Phong -1.503 ± 3.310 [-9.476, 1.978]

Torus Nagata ǫ = 0 -0.412 ± 3.483 [-4.027, 92.277]
Torus NLSA -0.672 ± 1.544 [-3.901, 0.978]
Torus PN -0.638 ± 1.610 [-5.612, 2.894]

Table 5: Statistics on Gaussian curvature. The mean value for Gaussian curvature (mean
± standard deviation) and the minimum and maximum value measured from the surfaces.

ǫ = 0.03 has to be used, but still the resulting patches are exaggerately
curved. Looking at the shaded images in the first row in Figure 12, no
significative differences can be noticed between the four methods, but the
highlight line plots in the second row confirm that PN triangles have less dis-
continuous normals. The Gaussian curvature plots in the third row, instead,
show that, due to inflections introduced by the cubic patches on the inflec-
tion edges, the PN triangles curvature changes sign much more often than
that of the three quadratic schemes, which therefore, have bigger regions of
positive and negative curvature.
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ǫ = 0.03

ǫ = 0.03

ǫ = 0.03

ǫ = 0.03

Figure 12: Bunny in columns from left to right: Nagata, Phong, NLSA, PN triangles.
First row: shaded planar mesh; second row: shaded surfaces; third row: highlight lines;
fourth row: Gaussian curvature; fifth row: close-ups on silhouettes.
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Name Mean Angle Normals ± std dev Min,Max Angle Normals

Bunny Phong 0.959583 ± 0.0759962 [-0.474661, 1]
Bunny Nagata ǫ = 0.03 0.813598 ± 0.470506 [-1, 1]

Bunny NLSA 0.949725 ± 0.0989627 [0.0668511, 1]
Bunny PN 0.983522 ± 0.0454926 [0.0154815, 1]

Monsterfrog Phong 0.949468 ± 0.128726 [-0.999867, 1]
Monsterfrog Nagata ǫ = 0.01 0.822587 ± 0.950974 [-1, 1]

Monsterfrog NLSA 0.934331 ± 0.149359 [-0.999826, 1]
Monsterfrog PN 0.971483 ± 0.102529 [-1, 1]
Vase Phong 0.944903 ± 0.114099 [0.0978981, 1]

Vase Nagata ǫ = 0.06 0.796925 ± 0.44401 [-0.999999, 1]
Vase NLSA 0.936506 ± 0.143869 [-0.0187727, 1]
Vase PN 0.987425 ± 0.0318718 [0.684518, 1]

RoundedCube Phong 0.938795 ± 0.0550764 [0.796848, 0.980378]
RoundedCube Nagata ǫ = 0 0.67767 ± 0.457164 [-1, 1]

RoundedCube NLSA 0.880881 ± 0.153709 [0.525784, 0.987624]
RoundedCube PN 0.976669 ± 0.0390528 [0.843874, 1]
Sphere Phong 0.997072 ± 0.000765733 [0.995723, 0.99874]

Sphere Nagata ǫ = 0 0.999996 ± 3.27602e-6 [0.999988, 1]
Sphere NLSA 0.999979 ± 9.69038e-6 [0.999958, 1]
Sphere PN 0.999991 ± 6.6563e-6 [0.999975, 1]
Torus Phong 0.987918 ± 0.0157815 [0.915295, 0.999999]

Torus Nagata ǫ = 0 0.997556 ± 0.0086036 [0.938828, 1]
Torus NLSA 0.994738 ± 0.0067909 [0.969450, 1]
Torus PN 0.998873 ± 0.0018468 [0.989164, 1]

Table 6: Statistics on the mean of angle cosines between normals of adjacent patches
(mean ± standard deviation), and the minimum and the maximum angle cosine.

The Monsterfrog mesh is of larger size (2584 triangles) with a fraction
of 52% inflection edges. Unlike the Bunny mesh, there are some degenerate
normals at the frog’s teeth and in the tail. It is actually in these locations
that the tangent-plane continuity is violated the most, see Table 6.

On this fine base mesh, the difference between all the schemes gets smaller
with the exception of Nagata triangles, which need to cope with the stability
problems elucidated above in section 2.3.

The Vase model in Figure 14 is a modified cylinder, where the circle is
deformed into a star shape in the lower part. The original quadrangle mesh
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ǫ = 0.02

ǫ = 0.02

ǫ = 0.02

ǫ = 0.02

Figure 13: Monsterfrog in columns from left to right: Nagata, Phong, NLSA, PN triangles.
First row: shaded planar mesh; second row: shaded surfaces; third row: highlight lines;
fourth row: Gaussian curvature; fifth row: close-ups on silhouettes.

26



was triangulated by introducing one of the diagonals. For this special config-
uration, all of the degree-2 schemes generate fairly planar patches. Nagata
triangles require the largest threshold ǫ = 0.06 among all the models consid-
ered. PN triangles generate typical curvature patterns for the two triangles
adjacent to the diagonal edge: one has positive and the other one has negative
Gaussian curvature in vicinity of the edge. In Figure 15, we have reproduced
the different behaviors in the vicinity of a diagonal curve depending on the
normals configuration. A characterization of the qualitative shape of a planar
cubic Bézier curve is described in [23, 24]. Following this characterization,
only the cases 1. (no inflection point) and 3. (one inflection point) can occur
for PN triangles due to the way the edge control points are constructed by
the projection of interior points b210 = (2p0+p1)/3 and b120 = (p0+2p1)/3
into the tangent planes. When PN triangles have to deal with configurations
like in Figure 15 left or center, they can produce artifacts or ondulations due
to these inflections. For these configurations a solution could be the use of
PN-quads [25], although switching of triangles to quads is computationally
not very convenient and advantageous.

Finally, the RoundedCube mesh has 56 triangles of large size, which also
results in patches of large size. The cube corners are cut and the remain-
ing faces are triangulated into a fan with respect to an added center vertex.
For this highly symmetric base mesh the differences between the surfaces
constructed by the four schemes are clearly visible in Figure 16. The PN tri-
angles reproduce the tangent planes and also give good approximate tangent-
plane continuity along the triangle edges. NLSA and Phong triangles are not
enough curved and do not reproduce the tangent planes, which is evident
on this mesh. Nagata triangles, on the contrary, reproduce exactly all the
tangent planes in the corners but connect patches with curvature of different
sign. The corner caps have positive Gaussian curvature, the others have neg-
ative Gaussian curvature, which results in a bad approximate tangent-plane
continuity along edges.

Looking at the silhouette close ups of the above four models we observe the
following behaviour: Nagata triangles yields the bumpiest silhouette, Phong
and NLSA triangles exhibit small artifacts (where NLSA seems to be slightly
smoother) and PN triangles have the smoothest silhouette.
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ǫ = 0.06

ǫ = 0.06

ǫ = 0.06

ǫ = 0.06

Figure 14: Vase in columns from left to right: Nagata, Phong, NLSA, PN triangles. First
row: shaded planar mesh; second row: shaded surfaces; third row: highlight lines; fourth
row: Gaussian curvature; fifth row: close-ups on silhouettes.
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Figure 15: Different behaviors in the vicinity of a diagonal curve depending on the normals
configuration for PN triangles. Left: the diagonal has an inflection. Center and Right:
two different configurations with a convex diagonal curve, but only the patches on the
right are convex.

4. Separate normal interpolation patch

It is evident from the examples in the last section that C0 continuity is
not enough for providing the desired smooth appearance in applications.

Thus, as solution, an independent normal patch (usually linear or quadratic)
has been proposed together with the surface to improve the surface visual-
ization as a sort of normal smoothing. Using these normals in the shading
process, the surface appearance gives us the impression that it is smoother be-
cause curvature discontinuities are alleviated. We point out that in this way
the surface is simply enhanced in its visualization and not at all smoothed
in its geometry.

When an independent linear normal variation patch is used in a shading
process, the value of the normal at the parameter point (u, v, w) is simply
computed as the normalized average of the normal values at the vertices of
the triangle:

n(u, v, w) =
un0 + vn1 + wn2

‖un0 + vn1 + wn2‖
.

One problem with linearly varying normals, is that such a patch ignores
inflections in the geometry, as illustrated for instance in Figure 17 (bottom-
left). More details can be found in [21].

As a solution to this problem the option of a quadratic normal variation

patch is proposed by the authors of PN triangles [11] who took the idea
from [21]. A quadratic function n(u, v, w) is used to compute normals at the
evaluation points (u, v, w):

n(u, v, w) =
∑

i+j+k=2

nijku
ivjwk, w = 1− u− v, u, v, w > 0.
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ǫ = 0.0

ǫ = 0.0

ǫ = 0.0

ǫ = 0.0

Figure 16: RoundedCube in columns from left to right: Nagata, Phong, NLSA, PN tri-
angles. First row: shaded planar mesh; second row: shaded surfaces; third row: highlight
lines; fourth row: Gaussian curvature; fifth row: close-ups on silhouettes.
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Figure 17: Comparison between the configurations obtained from a linear and a quadratic
normal variation patch in two different cases. The dashed curve indicates the profile of
the surface that should be simulated. Left: linearly varying normals. Right: quadratically
varying normals.

Figure 18: Construction of the mid-edge normal coefficient n110 for quadratically varying
normals: the average of the end-normals is reflected across the plane perpendicular to the
edge.

The values of n(u, v, w) are then normalized and passed on to the shading
process. The choice of the mid-control normal from [11] is sketched in Figure
18.

In Figure 19 the four schemes are compared using three different normal
patches in the shading process. Also the Walton and Meek G1 scheme [10] is
included for a deeper comparison confirming the competitiveness of the C0

methods.
In the first row analytic normals are used, directly computed from the

patch as

n(u, v) =
∂s
∂u
(u, v)× ∂s

∂v
(u, v)

∥

∥

∂s
∂u
(u, v)× ∂s

∂v
(u, v)

∥

∥

.
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In this case we can analyse the real surface geometry as in the models of the
last section. The second and third row show the difference between linear
and quadratic normals, which give the impression of higher continuity in the
interior. Here the visual appearance of all the schemes is very similar and
differences in the geometry are only visible at the silhouette. Linear normal
patches result in more flat-appearing surfaces. For instance, compare the
transition from the mouth region towards the rest of the model.

Figure 20 shows close-ups on silhouettes from models in Figures 12, 13, 14
and 16 by using quadratic normal interpolation. Even if slightly attenuated,
the silhouette close-ups in Figures 19 and 20 confirm the observations of
subsection 3.3.

5. Conclusions

In this paper we made a comparison of local parametric C0 curved shape
schemes, based on a reformulation of their original constructions in terms of
polynomial Bézier triangles. The main emphasis of this comparison is to look
at the surface quality of the different schemes available. Related techniques
to improve the surface quality or the silhouette only (as the one in [26]) were
not taken into account, except for the use of a separated normal interpolation
patch briefly treated in section 4. The comparison comprises four different
schemes based on Bézier triangles: PN triangles that are of degree 3; Phong
triangles, NLSA triangles and Nagata triangles, all of degree 2.

Our reformulation in terms of triangular Bézier patches allows a geometric
interpretation of the control points defining the patches. In particular, for
Nagata triangles our geometric interpretation gives a very clear explanation
of the stability problem explained in section 2.3. Moreover, we found that a
NLSA triangles patch is equal to a Phong tessellation patch with α = 1

2
and

this result leads to two important observations. The first is that the Phong
tessellation patch with α = 1

2
minimizes the near least square acceleration.

This non-obvious result is readily seen from the NLSA triangles construction.
The second observation is related to computational costs. The cost of the
construction of NLSA triangles can be highly reduced by computing it using
the Phong tessellation method.

In fact, Phong tessellation is the least expensive in terms of computa-
tional costs, and PN triangles are more expensive in the time required for
the tessellation both on the CPU and GPU due to their higher degree. In
particular, for instanced tessellation on the GPU, the schemes with small
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(a) (b) (c) (d) (e)

Figure 19: A triangular head model rendered with different schemes and normals: (a)
Nagata triangles (ǫ = 0.04), (b) Phong tessellation, (c) NLSA triangles,(d) PN triangles
and (e) Walton-Meek triangles. First row: Analytic normals. Second row: Linear normals.
Third row: Quadratic normals. Fourth row: Side view with quadratic normals.
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ǫ = 0.03

ǫ = 0.02

ǫ = 0.06

ǫ = 0

Figure 20: Silhouettes close-ups in columns from left to right: Nagata, Phong, NLSA, PN
triangles with quadratic normal interpolation. First row: close-ups from Figure 12; second
row: close-ups from Figure 13; third row: close-ups from Figure 14; fourth row: close-ups
from Figure 16.

total costs (Phong tessellation and Nagata triangles) are advantageous. PN
triangles and NLSA triangles are the slowest.

From the geometric analysis we made, it also follows that PN triangles
and Nagata triangles are the only two schemes that exactly reproduce the
tangent planes given by the normals in input. This is an advantage in the ap-
proximation behaviour of these two schemes with respect to a known surface,
like the sphere and the torus treated in section 3.2. Nagata has in general the
best approximation behaviour, followed by PN triangles and NLSA triangles
methods which behave similarly, whereas Phong tessellation has the worst
approximation behaviour.

We have performed a wide range of experiments and statistics involving
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meshes with a low triangle count. Analysis on the Gaussian curvature val-
ues helped to investigate regularity of the surfaces in detail. By comparing
curvature values for NLSA triangles and Phong tessellation we found that
the shape parameter, in a certain sense, controls the curvature of the con-
structed surface. Moreover, we had a confirmation that the stability problem
in Nagata triangles deeply affects the resulting overall surface shape.

For real-world models the differences in terms of approximate G1 con-
tinuity between all the schemes are quite small, but our results permit the
following classification: PN triangles have the smallest angles of adjacent
tangent-planes along edges to neighbours, followed by Phong tessellation and
NLSA triangles methods. Nagata’s method suffers from stability problems
and performs worst for these real word examples. But for known analytic
surfaces, such as the sphere and the torus, Nagata outperforms the other
methods confirming its best approximation behaviour.

Regarding the silhouette we observed that PN triangles yield the smoothest
one followed by NLSA and Phong triangles (in this order) which exhibit small
artifacts, and Nagata triangles perform worst.

Based on the above comparison results a user thus has the means of
deciding which method best suites his/her specific application, in terms of
criteria such as computational cost, analytic surface reproduction, Gaussian
curvature behaviour and approximate G1 continuity.
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