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Introduction

The goal of most scientific investigation is to uncover causal relationships.
Although many standard inferential procedures may be able to conclude that
an observed association between two variables is not simply due to chance,
they cannot in general say whether the relationship is causal. If two variables
are found to co-exist more often than an ordinary chance, then it is useful to
consider the correlation between these variables. The trouble is that, unless
they are properly controlled for, there could be other variables affecting
this relationship that the researchers do not know about. Researchers have
at their disposal a number of sophisticated statistical tools to control for
these, ranging from the relatively simple one, like multiple regression, to
the highly complex and involved one as the multi-level modeling. These
methods allow researchers to separate the effect of one variable from others,
thereby leaving them more confident in making assertions about the true
nature of the relationships they found. Still, even under the best analysis
circumstances, correlation is not the same as causation.

Causal inference attempts to uncover the generating structure of the
data and eliminate all non-causative explanations for an observed associ-
ation. An explicit introduction of the philosophy and approaches to cau-
sation was brought to the statistical literature in 1986 by Paul Holland,
although references to causal approaches exist in literature up to 60 years
before. The statistics literature originates in the analysis of epidemiology
randomized controlled experiments by Fisher (1925) and Neyman (1990).
Rubin (1973a,b, 1974, 1977, 1978), in a series of papers, formulated the now
dominant approach to the analysis of causal effects in observational studies.
He proposed the interpretation of causal statements as comparisons of so-
called potential outcomes: pairs of outcomes defined for the same unit given
different levels of exposure to the treatment. Parallel frameworks were inde-
pendently developed in psychometrics (Thurstone, 1927) and econometrics
(the potential outcome framework is already present in Haavelmo’s (1943)
work on simultaneous equation model and appear explicitly in labour market
setting by Roy (1951) and Quandt (1972)).

The concept of causality developed in econometrics and in the statistical
treatment effect literature is based on the notion of controlled variation that
means variation in treatment holding other factors constant. There are some
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authors that have considered a variety of ways in which probabilistic and
causal models can be represented in graphical form. Among them see Dawid
(2002) and Pearl (1995). There are other authors that use distinct notions of
causality. Granger (1969) and Sims (1972) used a notion of causality based
on prediction, Cartwright (2004) discussed a variety of definition from a
philosopher’s perspective. A useful distinction and a comparison among the
commonly invoked definition of causality can be found in Holland (1986)
and Lechner (2006), respectively. The recent theoretical literature has built
on combined features of earlier work in both statistics and econometrics
literature.

Even if the statistical and econometric literature starts from different
perspective, it studies the same central problem: evaluating the effects of
the exposure of a set of units to a program or treatment on some outcome
of interest. A program can be made by more and different treatments or by
different levels of the same treatment. The simplest case is the one where
there are only treatment and non-treatment. In such a case the members of
the population who take part in the program will be referred to as partici-
pants (or exposed, treated), while those who do not take part in the program
are non-participants (or non-exposed, non-treated). Members of the pop-
ulation can be assigned or self-assigned and can be denied or self-denied
the treatments according to the assignment mechanism that represents the
eligibility rule and the process that decide which units receive the treatment
and which do not. For example, an individual may or may not enrol in a
training program, may or may not receive a voucher, may or may not be
subject to a peculiar regulation. The key cognitive question is if participa-
tion to the program has any causal effect on the observed outcome of the
population members, where an outcome variable is an observable charac-
teristic or some particular measurement of the units of the population, on
which the intervention may or may not apply and may have an effect or
impact. The object of interest, the causal effect, is a comparison of the two
outcomes for the same unit when exposed, and when not exposed, to the
treatment. Most of the times this is not possible as only one of the outcomes
can be observable on the same unit. This involves a problem of missing val-
ues, also known as the “fundamental problem of causal inference” (Holland,
1986). In this context a central ingredient to the definition of causal effect is
the term “counterfactual”. Counterfactual does not need to be contrary to
certain facts, but it is just something hypothetical, imagined or nonfactual.
It represents all the possible outcomes that could be verified. For example,
in a cause relation between events, I can say the following counterfactual
statement: “if A had occurred, then B would have occurred”, even though
A in fact had not occurred. Thus, in order to evaluate the effect of the
treatment I need to compare distinct units receiving the different levels of
the treatment, or the same unit in different moments.

In a series of papers Heckman compares the economic and statistical
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Introduction

approach to policy analysis (Heckman, 2005, 2008, 2010) trying to build
a bridge between these approaches making the implicit economics of sta-
tistical approach explicit. In this way he extends the interpretability and
range of policy questions that these methods can answer. Heckman in his
last paper Heckman (2010) explains how these two approaches come out
from the perceived failure of econometric structural methods. In economics
evaluation of policy was based on “structural models” because the param-
eters of such models can answer a wide variety of policy questions. Many
studies about sensitivity of estimates of these models to assumptions about
functional forms and distributions on unobservables show the fragility of
these estimates. Among the papers that demonstrate that standard struc-
tural estimation methods applied to non experimental data cannot duplicate
the estimates obtained from a pre-program experiment, there is the one by
LaLonde (1986). This and other studies produced two different responses:
retreat to statistics away from the use of explicit economic models for the
so called “program evaluation approach” and development of a more robust
version of structural approach. In other words: statistical and economet-
ric approaches. The focus in the econometric literature is traditionally on
endogeneity, or self-selection, issues. Individuals who choose to enrol in a
training program are by definition different from those who choose not to
enrol. These differences, if they influence the response, may invalidate causal
comparisons of outcomes by treatment status, possibly even after adjusting
for observed covariates. Consequently, many of the initial theoretical studies
focused on the use of traditional methods for dealing with endogeneity, such
as fixed effect methods from panel data analyses and instrumental variables
methods. Econometrics literature uses semiparametric and nonparametric
literature to develop new estimators requiring fewer functional forms and
tries to figure out heterogeneity modelling the unobservable. The complex
computational method required to implement this approach makes it less
transparent, replication and sensitivity analysis more difficult. Angrist and
Pischke (2009) describes this approach as complex and not credible. In-
stead they are more favourable to the program evaluation approach, where
parameters of interests are defined as summary of the output of experimen-
tal intervention, rather than through clearly explicit models. In fact the
statistical literature abandons the economic choice theory, so the distinc-
tion between ex ante and ex post outcome and subjective and objective
evaluations.

I apply a dynamic version of causal model in the context of the labour
market, given that I have administrative panel data at my disposal. Dy-
namic models have been recently proposed in literature to face the fact that
a treatment or a policy may be evaluated dynamically on time. Furthermore
these models allow to control for unobserved heterogeneity and to estimate
state dependence. Having at disposal administrative panel data on both
Lombardy labour market and records of the graduates of three biggest Uni-
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versity of Milan, it is of great interest to use such models to study the impact
of the first “stable” job coherent with the university education on the future
job coherence. To the best of my knowledge there are no papers that focus
on job coherence. Moreover, most articles assume a permanent job as stable
and focus on the time to get it, given that subjects have a temporary job or
are unemployed (see for example Gagliarducci (2005); Bonnal et al. (1997);
Gritz (1993)). The global economic system has changed and with it business
and workers needs. People lose the certainty of a life-long lasting workplace
and a career that develops within a company with a known location and well
defined growing path. Given the increased instability of the market, a new
concept of work has arisen: the work path. In such a context the permanent
contract cannot be considered a stable one anymore (Bauer and Bender,
2004). From here rises the interest of defining the concept of stability and of
understanding what happens after getting a stable job. Furthermore, having
information also on university career allows to consider also the coherence
job in the definition of a good job.

The first part of the present work attempts to sum up reviews and discus-
sions about causal inference from the statistical and econometric literatures,
describing and comparing the two main approaches. In the first chapter an
introduction on the concept of causality and the main methods to make
causal inference without explicit models are presented. This represents a
review of the statistical literature following the principal surveys of Imbens
and Wooldridge (2009), Pearl (2010), Caliendo (2006), Angrist and Pischke
(2009), Rosenbaum (1995) and Pearl (2000). The second chapter focuses on
the econometric approach, or rather on methods to make causal inference
with explicit models with a comparison to the program evaluation approach.
The main features of this approach are described following the overview
of the important theoretical work by Heckman and his co-authors in the
econometric literature. The third chapter proposes a survey of the main
dynamic models used in the statistical and econometric literature following
the survey of Abbring and Heckman (2008) and Robins (Robins, 1989, 1997;
Robins et al., 2000; Gill and Robins, 2001). In the second part of my work
I attempted to use such models to study the labour market in Lombardy,
focusing on stability and job coherence with the university studies. Chapter
four introduces the labour market in Italy and describes the data at dis-
posal through descriptive analysis. Finally, in the last chapter I presented
the model used and the results about the impact of the first “stable” job
coherent with the university studies on the future job coherence.
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Chapter 1

Causation and potential
outcome approach

Many empirical questions in economics and other social sciences depend on
causal effects of programs or policies. In the last two decades, much research
has been done on the econometric and statistical analysis of the effects of
such programs or treatments. A first concept to clarify is the definition
of causation and its distinction from association. It is important to avoid
confusion between these two different concepts not to run into a fallacy.
The potential outcome framework is useful to give a definition of causality,
given that it is the base of causal inference. This framework is known in
literature as the Newman-Rubin approach or statistical approach. This
chapter synthesizes the main features of the potential outcome model and
the main parameters of interest considered in this literature. It illustrates
the principal techniques of causal inference based on the assumptions of
unconfoundedness and of unobservables without the explicit use of statistical
models. Among the model under the assumptions of unconfoundedness the
matching technique is analyzed, while among the model of unobservable the
instrumental variables, regression discontinuity design and difference-and-
difference methods are presented.

1.1 From association to causation

In the last decades lots of attention has turned on causality. It is a common
mistake to assume cause and effect for two variables simply because they
occur together. In such a way a statistical correlation is given a causal
interpretation. A known example in literature is the following. During the
1990s both religious attendance and illegal drug use were on the rise: it
would be erroneous to conclude that therefore, religious attendance causes
illegal drug use. It is also possible that drug use leads to an increase in
religious attendance, or that both drug use and religious attendance are
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CHAPTER 1. CAUSATION AND POTENTIAL OUTCOME APPROACH

increased by a third variable, such as an increase in societal unrest. It is
also possible that both variables are independent one from the other, and it
is a mere coincidence that they are both increasing at the same time. The
problem with assuming cause and effect from mere correlation is not that
a causal relationship is impossible; it is just that there are other variables
that must be considered and not ruled out a-priori.

To understand the cause-effect relation it is necessary to understand
the concept of association well, to avoid the confusion between them. An
association is said to exist between two variables when a change in one
variable coincides with a change in another. This is also called covariation
or correlation. An association may be positive or negative and may be
proportionate or disproportionate. There are various factors which may
explain why an association can be spurious:

• Chance may have affected results because of random variation in the
population. It could be that, by chance, the sample chosen it is rep-
resentative of a peculiar subpopulation. In that case, underestimation
or overestimation of the effect may occur.

• In some aspect of the design, or during the study, some systematic
errors or bias could be introduced into the results: Selection Bias and
Observable Bias. The former occurs if the study populations being
compared are not strictly comparable and the latter if non-comparable
information is obtained from each study group.

• A third, and most important, possibility is confounding. A confound-
ing is a variable that distorts the relationship between other two vari-
ables, because it is correlated with both of them. It can obscure the
relationship of interest of spuriously create one.

Furthermore association implies a symmetric relation between variables: if a
variable X is correlated with Y then also Y is correlated with X. A causal
relation has a defined direction: if X causes Y , it cannot be that also Y
causes X. To understand confounding, let us assume that a variable X is
correlated with a variable Y . X may not be a cause of Y but rather X and
Y may have a common cause Z, which accounts for their correlation. Or
X may be an effect of Y . Figure 1.1 shows these possibilities for the causal
basis for a correlation between the two variables.

It is very easy to make mistakes proving causality. This could have dis-
astrous consequences if the errors form the basis of public policy. This is
nothing new. Freedman (1999) describes one of the earliest attempts to
use regression models in the social sciences. Yule (1899) investigated the
causes of pauperism in England. Depending on local custom, paupers were
supported inside local poor-houses or outside. Yule used a regression model
to analyze his data and found that the change in pauperism was positively

6



1.1. FROM ASSOCIATION TO CAUSATION

Figure 1.1: Three forms of causation that produce a correlation between X
and Y

related to the change in the proportion treated outside poor-houses. He
then reported that welfare provided outside poor-houses created paupers.
A contemporary of Yule’s suggested that what Yule was seeing was instead
an example of confounding: those areas with more efficient administrations
were better at both building poor-houses and reducing poverty. That is,
if efficiency could be accounted for, there would be no association between
pauperism and the way aid was provided. Freedman notes that after spend-
ing much of the paper assigning parts of the change in pauperism to various
causes, Yule left himself out with his footnote : “Strictly speaking, for “due
to” read “associated with” ”. Cause and effect is established through an
experiment in which two groups participate at the same experience except
for a single factor. Any difference in outcome is then attributed to that
factor.

The purpose of an observational study is to elucidate cause-and-effect
relationships. The most familiar difficulty is that, since treatments were
not randomly assigned to experimental units, treated and control groups
may not be directly comparable. Even after adjustments have been made
for observed covariates, estimates of treatment effects can still be biased by
imbalances in unobserved covariates treatments.

1.1.1 An informal definition of causal effect

A simple example is now proposed to intuitively understand the definition
of causal effect. Let us consider a dichotomous treatment variable A that
assumes value 1 if the individual is treated and 0 otherwise. Let Y (1) be
the outcome variable that would have been observed under the treatment
(A = 1) and Y (0) be the outcome variable that would have been observed
under no treatment (A = 0). Intuitively it is possible to say that the treat-
ment as a causal effect is Y (1) ≠ Y (0).

From the observational data it is not possible to observe both Y (0) and
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CHAPTER 1. CAUSATION AND POTENTIAL OUTCOME APPROACH

Y (1) for the same subject. For each subject is observed only the treatment
level A and the observed outcome Y . The available data can be used to
define the conditional probability P (Y = 1∣A = 1) as the proportion of sub-
jects that have the outcome Y = 1 in the population of interest that receive
treatment A. When the proportion of subjects who have the outcome Y = 1
in the treated P (Y = 1∣A = 1) equals the number of subjects who have the
outcome Y = 1 in the untreated P (Y = 1∣A = 0), it is possible to say that
treatment A and outcome Y are independent. Independence is a symmetric
relation and implies that A is not associated with Y , or that A does not
predict Y . Some equivalent definitions of independence are:

• risk difference P (Y = 1∣A = 1) − P (Y = 1∣A = 0) = 0;

• risk ratio
P (Y = 1∣A = 1)
P (Y = 1∣A = 0)

= 1;

• odds ratio
P (Y = 1∣A = 1)/P (Y = 0∣A = 1)
P (Y = 1∣A = 0)/P (Y = 0∣A = 0)

= 1.

Treatment A and outcome Y are dependent if the above equations do not
hold. In such a case these measures quantify the strength of the association
between the two variables. It is possible to rewrite the measures of asso-
ciation in the population as E(Y ∣A = 1) ≠ E(Y ∣A = 0) given that the risk
equals the average in the population. Furthermore rewriting the association
in this way permits to apply the definitions to non dichotomous outcomes.

The key difference between association and causation is that while a
causal effect is defined as a comparison of the same subjects under different
actions, instead an association is defined as a comparison of different sub-
jects under different conditions. The risk P (Y = 1∣A = 1) is a conditional
probability in the subset of the population that have received the treatment.
In contrast the risk defined as P (Y (1)) is an unconditional (or marginal)
probability. It represents the risk of Y = 1 in the entire population. There-
fore, association is defined by a different risk in two disjoint populations
determined by the subject’s actual treatment value (A = 1,A = 0), whereas
causation is defined by a different risk in the entire population under two
different treatment values.

In general “association is not causation” and usually because those who
were treated and those who were untreated in the population must be differ-
ent in some sense. Causal inference requires data like the hypothetical data,
so the question is under which conditions real world data can be used for
causal inference. In the following paragraphs some methods are presented
to find causal effect based on the potential outcome approach without using
explicit models (the so called “statistical approach”). In the following chap-
ter there is instead a review of methods with explicit models (the so called
“econometric approach”).
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1.2. POTENTIAL OUTCOME APPROACH

1.2 Potential outcome approach

The potential outcome approach (POA) was labeled as the Rubin Causal
Model (RCM) by Holland in 1986 (Holland, 1986), but its origin goes back
to Cox (1972) and Neyman (1990). This approach is by now standard in
statistical literature. See Imbens and Wooldridge (2009) for a more detailed
review.

1.2.1 Definitions and main assumptions

All the examples used in this paper will deal with an economic context,
given that the application of Chapter 5 is on labour market. Let us start
with an example such as the analysis of a job training program. There is
information about N individuals. Some of them were enrolled and others
were not, either because they were ineligible or chose not to enroll. The
indicator used for the assignment is D(ω) to indicate whether individual
ω enrolled in the training program (D(ω) = 1) or not (D(ω) = 0). Let N0

and N1 denote the number of control and treated units, respectively. For
each unit it is also observed a K-dimensional column vector of covariates or
pre-treatment variable, X(ω), with X denoting the N ×K matrix with ω-th
row equal to X(ω)′ .

For individual ω, for ω = 1, . . . ,N , is postulated the existence of two
potential outcomes, denoted by Y (ω,0) and Y (ω,1). The first, Y (ω,0),
denotes the outcome that would be realized by individual ω if he or she did
not participate in the program (D(ω) = 0). Similarly, the second, Y (ω,1),
denotes the outcome that would be realized by individual ω if he or she
participated in the program (D(ω) = 1). Individual ω can participate or
not in the program, but not both, and thus only one of these two potential
outcomes can be realized. Prior to the assignment being determined, both
are potentially observable, hence the label potential outcomes. If individual
ω participates in the program Y (ω,1) will be realized and Y (ω,0) will ex
post be a counter-factual outcome. The realized outcome is denoted by Y (ω)
and with Y the N -vector with ω-th element equal to Y (ω). The preceding
discussion implies that

Y (ω) = Y (ω)D(ω) = Y (ω,0)(1 −D(ω)) + Y (ω,1)D(ω) =

=
⎧⎪⎪⎨⎪⎪⎩

Y (ω,0) if D(ω) = 0
Y (ω,1) if D(ω) = 1.

The distinction between the pair of potential outcome (Y (ω,0), Y (ω,1))
and the realized outcome Y (ω) is the hallmark of modern statistical and
econometric analyses of treatment effect.

The most common definition of the casual effect at the unit level is the
difference Y (ω,1) − Y (ω,0), but it is possible to consider also the ratio
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Y (ω,1)/Y (ω,0) or other functions.
Such definition does not require to take a stand on whether the effect is

constant or varies across the population. Furthermore, defining individual
specific treatment effect using potential outcomes does not require to assume
endogeneity or exogeneity of the assignment mechanism. By contrast, the
casual effects are more difficult to define in terms of the realized outcomes.
The regression function of realized outcome Y (ω) = α+τ+D(ω)+ε(ω) is then
interpreted as a structural equation with τ casual effect. Leaving unclear
whether the casual effect is constant or not, and what the property of the
unobserved component ε(ω) is. Considering also some covariates X(ω) and
supposing that the treatment effect is constant τ = Y (ω,1)−Y (ω,0) then the
regression function of realized outcome becomes Y (ω,0) = α+β′X(ω)+ε(ω).
The residual can be written as ε(ω) = Y (ω,0)−E[Y (ω,0)∣X(ω)]. It captures
the unobservable affecting the response in the absence of the treatment. The
observed outcome is instead defined as:

Y (ω) = (1 −D(ω)) ⋅ Y (ω,0) +D(ω) ⋅ Y (ω,1) = α + τ ⋅D(ω) + β
′

X(ω) + ε(ω).

The potential outcomes approach allows the researchers to first define the
casual effect of interest without considering probabilistic properties of the
outcomes or assignments.

Intuitively to individuate causal effects there should not be any “conta-
gion” between members of the target-population, either with regard to the
(self) allocation to the treatment state or to the outcome(s). Moreover, in
order to make comparisons, it would be necessary to observe both treated
and non-treated members and they should be sensibly comparable, that is,
they should not differ with respect to characteristics that affect both the
self(allocation) to the treatment state and the outcome, except for the fact
that some members are treated and some others are not.

In most of the literature it is assumed that the treatment received by
one unit does not affect outcomes for another unit. Only the level of the
treatment applied to the specific individual is assumed to potentially affect
outcome for that particular individual. In statistic literature this assump-
tion is referred to as the Stable-Unit-Value-Assumption (SUTVA, Rubin
(1978)). This means treatment and no treatment should be well defined,
and stable across units. Furthermore it embodies the crucial assumption
of no interactions between members of the target population, in the sense
that the treatment state and the outcome experienced by member is not
affected by the treatment state not by the outcome of any other member of
the population. Formally:

(Y (ω1,1), Y (ω1,0),D(ω1, )) á (Y (ω2,1), Y (ω2,0),D(ω2, )) for all ω1 ≠ ω2.

This lack of interaction assumption is very plausible in many biomedical
applications. However there are also many cases in which such assumption

10



1.2. POTENTIAL OUTCOME APPROACH

is not plausible. In economic applications, interaction between individuals
is a serious concern. One general solution to this problem is to redefine the
unit of interest. If the interaction between individuals is at an intermediate
level, say a local labor market, one can analyze the data using the local
labor market as the unit and changing the no-interaction assumption to
require the absence of interactions among local labor. Such aggregation is
likely to make the no-interaction assumption more plausible. An alternative
solution is to directly model the interactions. This involves specifying which
individuals interact with each other, and possible relative magnitudes of
these interactions (in some cases it may possible to assume that interactions
are limited to individuals well defined or interactions occur in broader groups
but decline in importance depending on some distance metric).

In many early studies it was assumed that the effect of a treatment was
constant, implying that the effect of various policies could be captured by
a single parameter. The essentially unlimited heterogeneity in the effects of
the treatment allowed for in the current literature implies that it is generally
not possible to capture the effects of all policies of interest in terms of a few
summary statistics. Most of the estimands are average treatment effects,
although some correspond to other features of the joined distribution of po-
tential outcomes. Most of the empirical literature has focused on estimation.
Much less attention has been devoted to testing hypotheses regarding the
properties or presence of treatment effects.

1.2.2 Main advantages

The definition of causal effect according to the potential outcome framework
of Rubin has several remarkable advantages (Imbens and Wooldridge, 2009;
Heckman and Vytlacil, 2007b):

• It allows one to define causal effects without making functional form
and/or distributional assumptions. Of particular importance in Ru-
bin’s approach is the relationship between treatment assignment and
the potential outcomes. The simplest case is when assignment to treat-
ment is randomized, and thus independent of covariates as well as the
potential outcomes. In such cases it is straightforward to obtain at-
tractive estimators for the average effect.

• The unit level causal effect is free to vary across units, it allows general
heterogeneity in the effect of the treatment: some population members
benefit more from the intervention, some others benefit less, some
others might even be damaged by the intervention.

• It links the analysis (or identification) of causal effects to explicit ma-
nipulations. Considering the two potential outcomes forces the analyst
to think about scenarios under which each outcome will be observed,
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that is considering the kinds of (randomized or natural) experiments
that could reveal the causal effects.

• Specifically, it does not rely on the way in which the treatment state is
determined (the treatment state might result from individual choices,
the external decision of an authority or the toss of a coin). Thus, it
separates the potential outcomes from the modeling of the assignment
mechanism. Modeling the realized outcomes is complicated by the
fact that it “collapses” the potential outcomes and the assignment
mechanism.

• It allows to formulate probabilistic assumptions in terms of potentially
observable variables, rather than in terms of unobserved components.
Many of the critical assumptions will be formulated as (conditional)
independence assumptions involving the potential outcomes. Models
specified in terms of realized outcomes often formulate the critical
assumptions in terms of errors in regression functions. In such way
a they implicitly bundle a number of assumptions, as functional form
and exogeneity, difficult to assess.

• It clarifies where the uncertainty in the estimators comes from. Even
if the entire population is observed casual effects will be uncertain
because for each unit at most one of the two potential outcomes is
observed.

1.2.3 Average treatment effects and other features of the
distribution of causal effects

The definition of causal effect is based on the difference of potential out-
comes for each member of the target-population. The unit level difference
by its very nature cannot be observed, as it involves a counter-factual out-
come. As a consequence, also the distribution of the causal effect, as well
as any summary measure of it (such as the population level causal effect),
cannot be observed. A possible solution is to focus on specific features of the
distribution of the causal effect in the target-population (or suitable subsets
of it), chiefly means, and on their identification and estimation.

The literature has largely focused on average effects of the treatment.
Since the expected value is a linear operator, to evaluate average treatment
effect (ATE) it is enough to observe E[Y (1)] and E[Y (0)]:

E[Y (ω,1) − Y (ω,0)] = E[Y (ω,1)] −E[Y (ω,0)].

Another popular estimand is the Average Treatment effect on the Treated
(ATT), the average over the subpopulation of treated units:

τatt = E[Y (ω,1) − Y (ω,0)∣D(ω) = 1].
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In many observational studies τatt is a more interesting estimand than the
overall average effect.

However, ATE and ATT are not observed, but the factual outcome can
be observed for the treated after treatment E[Y (1)∣D = 1] and for the
untreated after not receiving treatment E[Y (0)∣D = 0]. Subtracting and
adding, to the observed difference in means between treated and non-treated,
the counter-factual outcome for the treated units E[Y (0)∣D = 1], you get
the key identity:

E[Y (1)∣D = 1] −E[Y (0)∣D = 0] =

= E[Y (1)∣D = 1] −E[Y (0)∣D = 1]+E[Y (0)∣D = 1] −E[Y (0)∣D = 0].

The first term of the equation E[Y (1)∣D = 1] −E[Y (0)∣D = 1] represents
the Average Treatment effect on the Treated (ATT). It consists of the dif-
ference between the factual outcome for the treated after treatment, and
their counter-factual outcome (the outcome we would have observed for the
treated, had they not been exposed to treatment).

The second term E[Y (0)∣D = 1] −E[Y (0)∣D = 0] represents the selec-
tion bias. This is the outcome difference that would be observed between
participants and non-participants if the programme was not implemented,
and it depends on pre-existing differences between the two groups. That
is, this term captures outcome differences between participants and non-
participants that cannot be attributed to the programme.

The term E[Y (1)∣D = 1]−E[Y (0)∣D = 0] is the observed mean difference
between treated and non-treated, that is, between their factual outcomes,
respectively. It cannot be given a causal interpretation in general, as it
is the sum of mean differences that are solely induced by the programme
(the ATT) and mean differences that would have occurred even in the ab-
sence of the programme (the selection bias). Whether or not this term can
be given a causal interpretation crucially depends on having no selection
bias. Sadly enough, the selection bias comprises a term which is observ-
able, E[Y (0)∣D = 0], and a term which is not observable, E[Y (0)∣D = 1],
the latter involving a counter-factual outcome for participants. Thus, it
follows that without additional information/assumptions any causal conclu-
sion drawn from E[Y (1)∣D = 1] − E[Y (0)∣D = 0] is precluded because the
selection bias can not be measured.

In such case the probability to participate in the intervention depends
on a set of characteristics X of the population members or characteristics
that refer to the social context in which the intervention takes place. They
may be interpreted as the set of characteristics summarizing the selection
process, namely determining how the D = 0 and the D = 1 groups are
formed. This imply that the composition of the treatment and the no-
treatment groups with respect to the X in general depends on D because
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the selection process depends on X. It follows that if X is correlated to
Y (0), then E[Y (0)∣D = 1] ≠ E[Y (0)∣D = 0] because the two groups are not
equivalent with respect to X. The magnitude of the selection bias depends
on the selection process (or assignment mechanism), namely the set of rules
(known or unknown to the analyst) according to which some members of
the population are exposed to the intervention while some others are not.

If the effect of the treatment is constant Y (ω,1) − Y (ω,0) = τ , τcate,
τate and τatt are obviously identical. However, if there is heterogeneity in
the effect of the treatment, the estimands may all be different. If there is
heterogeneity, to estimate the sample average treatment effect τcate is more
precise than the population average treatment effect τate.

There are some cases in which it is difficult and uninteresting to consider
the effect for the comparison group. For example, in the setting of a volun-
tary program, those not enrolled will never be required to participate in the
program. In practice, there is typically little motivation for the focus on the
overall average effect or the average effect for treated. The overall average
effect would be the parameter of interest if the policy under consideration is
a mandatory exposure to the treatment versus complete elimination. Simi-
larly the average effect for the treated would be informative about the effect
of entirely eliminating the current program. In this case this suggests to fo-
cus on the average casual effect conditional on the covariates in a particular
sample:

τcate =
1
N

N

∑
ω=1

E[Y (ω,1) − Y (ω,0)∣X(ω)].

Other features of the distribution of causal effects

The linear operator property does not work with other important features
of the distribution of the causal effect. For example, it is not held for the
median (or any other percentile) of the causal effect

MED[Y (1) − Y (0)] ≠MED[Y (1)] −MED[Y (0)],

and for the variance:

var[Y (1) − Y (0)] = var[Y (1)] + var[Y (0)] − 2cov[Y (1), Y (0)].

This parameter is particularly useful, in that it describes how treatment
gains are distributed across population members. However, it can not be
measured, as it requires the joint observability of the potential outcomes,
which is precluded by definition.

An alternative class of estimands concerns quantile treatment effects:

τq = F −1
Y (1)(q) − F

−1
Y (0)(q)
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as the q-th quantile treatment effect. These quantile effects are defined as
differences between quantiles of the two marginal potential outcome distri-
butions, rather than as quantiles of the difference:

τ̃q = F−1
Y (1)−Y (0)(q).

The main reason to pay more attention on the first indicator is that τ̃q is in
general not identified without assumptions on the rank correlation between
the potential outcomes.

Testing

Most of the testing in applied work has focused on the null hypothesis that
the average effect of interest is zero. Because many of the commonly used
estimators for average treatment effects are asymptotically normally dis-
tributed with zero asymptotic bias, it follows that standard confidence in-
tervals can be used for testing such hypotheses. There are other interesting
hypotheses to consider, for example if there is any effect of the program,
that is whether distribution of Y (ω,1) differs from that of Y (ω,0). That
is equivalent to the hypotheses that all moments are identical in the two
groups.

In many cases, however, there are other null hypotheses of interest.
Crump et al. (2008) develop a test for the null hypotheses of zero average
effect conditional on the covariates:

H0 ∶ τ(x) = 0 ∀x against H0 ∶ τ(x) ≠ 0 for some x

and a test of a constant average effect conditional on the covariates:

H0 ∶ τ(x) = τate ∀x against H0 ∶ τ(x) ≠ τate for some x.

One may also be interested in testing the null hypothesis that the condi-
tional distribution of Y (ω,0) given X(ω) = x is the same as the conditional
distribution of Y (ω,1) given X(ω) = x. Under the hypothesis of uncon-
foundedness, this is equivalent to testing the null hypothesis that:

H0 ∶ Y (ω) áD(ω)∣X(ω)

against the alternative hypothesis that Y (ω) is not dependent on D(ω) given
X(ω).

A second set of questions concerns treatment effect heterogeneity. It
may be interesting to establish whether there are any subpopulations with
an average effect positive or different from zero, or whether there are any
subpopulations with an average effect exceeding some threshold. It may be
also interesting to test whether there is any evidence of heterogeneity in the
treatment effect by observable characteristics.
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Abadie (2002) studies tests about the equivalence of outcome distribu-
tions. Such tests are studied in the settings with randomized experiments
as well as settings with instrumental variables using Kolmogorov-Smirnov
type testing procedures.

1.2.4 Assignment mechanism

It is possible to distinguish three main classes of assignment mechanism: ran-
domized experiments, assignment mechanism with conditional independence
and assignment mechanism with some dependence on potential outcome.

In randomized experiments, the probability of assignment to treatment
does not vary with potential outcomes, and is a known function of the co-
variates. In this way the treatment state D can be assimilated to the toss
of a coin, it does not systematically depend on the potential outcomes or
any other characteristics. This implies that a randomized experiment is an
assignment mechanism that implies zero selection bias. The observable dif-
ference E[Y (1)∣D = 1] − E[Y (0)∣D = 0] gets equal to E[Y (1)] − E[Y (0)].
A randomized experiment corresponds to the assumptions of ceteris paribus
and full common support. The randomized experiment is as a sort of gold
standard with reference to the properties of the other identification strate-
gies which will be assessed. All these strategies aim at reproducing as closely
as possible the fundamental feature of an experimental design: having two
groups equivalent in all relevant respects but different with reference to the
probability of being exposed to the intervention.

The second class of assignment mechanism maintains the restriction that
the assignment probabilities do not depend on the potential outcomes, or:

D(ω) á (Y (ω,0), Y (ω,1), ) ∣X(ω),

where A á B∣C denotes conditional independence of A and B given C. How-
ever, in contrast to randomized experiments, the assignment probabilities
are no longer assumed to be a known function of the covariates. Rubin
(1990) refers to this assignment mechanism as unconfounded assignment,
but in literature there are various other labels as observables, exogeneity
and conditional independence. The selection bias arises in those instances
in which participation depends on characteristics X which are known on a
priori grounds to affect the outcome variable Y (0) and are unequally dis-
tributed between participants and non-participants. Whether or not this
characteristics are known and observable to the analyst is problem specific,
and crucially rests upon knowledge of the selection process. The more it is
known about factors determining selection process, the better it is possible
to control for it by conditioning on these factors, and thus draw credible
conclusions on the treatment effects. Drawing correct causal inference is
primarily about ingredients knowledge of the relevant characteristics of the
reference population members and the socio-economic context in which the

16



1.3. ESTIMATION AND INFERENCE UNDER UNCONFOUNDEDNESS

programme takes place, that is, knowledge of all the X that determine the
selection process, and availability of adequate data on them. Statistical
methods are a tool for checking the relevant assumptions, and a way to
make the most out of such ingredients to come out with robust inference
about program effects. A sufficient condition for the selection bias to van-
ish is to have the two treatment arms equally balanced with respect to all
those variables that are relevant for the outcome. This is the ceteris paribus
clause. Thus, any selection process that guarantees this condition will in
general allow to draw causal inference from the observable difference. This
is precisely the condition which combines CIA and common support.

The third class of assignment mechanism contains all remaining assign-
ment mechanism with some dependence on potential outcome. Many of
these create substantive problems for the analysis, for which there is no
general solution. In such cases a possibility consists to focus on estimands
that can be identified under weaker conditions than required for the average
treatment. In addition there are some methods that relax the unconfound-
edness assumption but do not replace it with additional assumptions. For
example, it is possible to relax the unconfoundedness assumptions in a lim-
ited way and investigate the sensitivity of the estimates to such violations
or to drop the unconfoundedness assumption entirely and establish bounds
on estimands of interest.

1.3 Estimation and inference under unconfound-
edness

As explained above, the mechanism of assignment of the program/treatment
assumes great importance. The most common assumption is that the as-
signment probabilities do not depend on the potential outcome, that is the
unconfoundedness assumptions. In the following paragraphs the main as-
sumptions to identify the effect under unconfoundedness are described, in
addition to the SUTVA condition presented in Section 1.2.1. Furthermore
the way to asses this assumption and the matching technique are presented.

1.3.1 Main assumptions

Methods for estimation of average treatment under unconfoundedness are
the most widely used in this literature. Unconfoundedness implies that we
have sufficiently rich set of predictors for the treatment indicator, contained
in the vector of covariates X(ω), such that adjusting for differences in these
covariates leads to valid estimates of casual effects. The main assumption is
unconfoundedness (also called Conditional Independence Assumption, CIA),
introduced by Rosenbaum and Rubin (1983):

D(ω) á (Y (ω,0), Y (ω,1)) ∣X(ω).
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This assumption is controversial, as it assumes that beyond the observed
covariates X(ω) there are no unobserved characteristics of the individual
associated both with the potential outcomes and the treatment. The as-
signment mechanism depends only on observables (motivation because this
assumption is also called selection on observable). Nevertheless, this kind
of assumptions is used routinely in multiple regression analysis. There is a
milder version relevant for causal inference on the treated. The assignment
of treatment state over the support of treated X1(ω) is independent of the
unobserved potential outcomes:

D(ω) á Y (ω,0)∣X(ω)

for every x such that P (D(ω) = 1∣X(ω)) > 0. The second assumptions used
to identify treatment effects is that for all possible values of the covariates,
there are both treated and control units. It is called (Full) common support
in econometric parlance (Heckman and co-authors) and replication or over-
lap in statistical parlance (Rubin co-authors). Replication implies variability
of the realized treatment arms, across units or over time. For example, if
the process that decides which units receive treatment and which receive
no treatment (or the assignment mechanism) depends on some observed
variables X, then the assumption formally becomes

0 < Pr(D(ω) = 1∣X(ω)) < 1,

for all x. It implies that the support of the conditional distribution of X(ω) ,
given D(ω) = 0, overlaps completely with that of the conditional distribution
of X(ω) given D(ω) = 1. That is, it requires a full common support for
treated and non-treated units. In Figure 1.2, Case(a) is showed as the
support for treated and non-treated is the same (X1 and X1, respectively).
If the important case when the analyst aims at investigating the mean causal
effect on the treated, the assumption is milder, and requires full common
support of X1 (D(ω) = 1) (as shown in Figure 1.2, Case(b)), that means:

Pr(D(ω) = 1∣X(ω)) < 1.

If the common support assumption holds partially, that is just for a sub-
set of values of X1, causal inference will be restricted to that subset(Figure
1.2, Case(c)). Otherwise stated, the analyst is forced “to compare only
comparable people”: those who share the same support. For example, in
Figure 1.3 the only comparable people are those for whom there is a con-
trol group, that means people who have a X’s value from 0.2 to 0.7. This
assumption entails also the notions of manipulability and discontinuity. A
programme can be assigned to some members of the target-population and
denied to other members (discontinuity across units) or it can be introduced
and canceled, or modified (discontinuity over time). See Figure 1.2, Case(d).
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Figure 1.2: Some graphical examples of the common support issue

Finally Figure 1.2, Case(e), shows the case in which there are no common
support. There is no overlap between the support of treated (X1) and un-
treated (X0). It is important to compare comparable people. Many non-
experimental evaluations identify the parameter of interest by comparing
observationally different persons using extrapolations based on inappropri-
ate functional forms imposed to make incomparable people comparable. A
major advantage of non-parametric methods (the potential outcome frame-
work) for solving the problem of selection is that, rigorously applied, they
force the analyst to compare only comparable people. It implies that the
support of the conditional distribution ofX(ω) givenD(ω) = 0 overlaps com-
pletely with that of the conditional distribution of X(ω) given D(ω) = 1.
With a random sample (D(ω),X(ω))Nω=1 we can estimate the propensity
score e(x) = Pr(D(ω) = 1∣X(ω)) and this can provide some guidance for
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Figure 1.3: A non-parametric method for matching treated (red) and non-
treated (blue)

determining whether the overlap assumptions hold. Common parametric
models, such as probit and logit, ensure that all estimated probabilities are
strictly between zero and one, and so examining the fitted probabilities from
such models can be misleading. The combination of these two assumptions,
unconfoundedness and overlap, was referred to by Rosenbaum and Rubin
(1983) as strong ignorability. There are various ways to establish identifi-
cation of various average treatment effects under strong ignorability. The
easiest one is to note that τ(x) ≡ E[Y (ω,1)−Y (ω,0)∣X(ω)] is identified for
x in the support of the covariates:

τ(x) = E[Y (ω,1) − Y (ω,0)∣X(ω)] =

= E[Y (ω,1)∣X(ω) = x] −E[Y (ω,0)∣X(ω)] =

= E[Y (ω,1)∣D(ω) = 1,X(ω) = x] −E[Y (ω,0)∣D(ω) = 0,X(ω)] =

= E[Y (ω)∣D(ω) = 1,X(ω) = x] −E[Y (ω)∣D(ω) = 0,X(ω)].

The third equality follows by the unconfoundedness E[Y (ω)(w)∣D(ω) =
d,X(ω)] that does not depend on d. By the overlap assumption, it is possible
to estimate both terms in the last line and identify τ(x). Identifying τ(x)
for all x it is possible to identify the expected value across the population
distribution of the covariates as, for example, τate = E[τ(X(ω))].
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Figure 1.4: Hypothetical experiment with two control groups

1.3.2 Assessing the unconfoundedness assumption

The unconfoundedness assumption is not testable, because the data are un-
informative about the distribution of Y (ω,0) for those who received the
active treatment and of Y (ω,1) for those receiving the control. Neverthe-
less, there are often indirect ways of assessing this assumption. The most
important of these were developed in Rosenbaum (1987) and Heckman and
Hotz (1989). Both methods rely on testing the null hypothesis that an aver-
age casual effect is zero, where the particular average casual effect is known
to equal zero. If the testing procedure rejects the null hypotheses, this is
interpreted as weakening the support for the unconfoundedness assumption.
These tests can be divided into two groups.

The first set of tests focuses on estimating the casual effect of a treat-
ment that is known not to have an effect. It relies on the presence of two
or more control groups. Supposing to have two potential control groups, for
example eligible non participants and ineligibles (Figure 1.4), it is possible
to estimate a pseudo average treatment effect by analyzing the data from
these two control groups as if one of them is the treatment group. In that
case the treatment effect is known to be zero, and statistical evidence of
a non-zero effect implies that at least one of the control groups is invalid.
Not-rejecting the test does not imply the unconfoundedness assumption is
valid, but not-rejection in the case where the two treatment control groups
could potentially have different biases makes it more plausible that the un-
confoundedness assumption holds. Alternatively one may use geographically
comparison group. Let G(ω) be an indicator variable denoting the member-
ship of the group, taking on three values, G(ω) ∈ {−1,0,1}. For units with
G(ω) = −1,0, the treatment indicator D(ω) = 0:

D(ω) = { 0 if G(ω) = −1,0
1 if G(ω) = 1
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Unconfoundedness only requires that Y (ω,0), Y (ω,1) á D(ω)∣X(ω), but it
is not testable. The focus is indeed on an implication of the stronger con-
ditional independence relation Y (ω,0), Y (ω,1) á G(ω)∣X(ω). This inde-
pendence condition implies the unconfoundedness and also implies testable
conditions:

Y (ω,0) á G(ω)∣X(ω),G(ω) ∈ {−1,0}⇐⇒ Y (ω) á G(ω)∣X(ω),G(ω) ∈ {−1,0}

Because this new condition is stronger than the unconfoundedness, the ques-
tion is whether there are interesting settings where the weaker condition
holds, but not the stronger condition. To discuss this question, it is use-
ful to consider two alternative conditions, both of which are implied by
Y (ω,0), Y (ω,1) á G(ω)∣X(ω):

Y (ω,0), Y (ω,0) áD(ω)∣X(ω),G(ω) ∈ {−1,1}

and

Y (ω,0), Y (ω,0) áD(ω)∣X(ω),G(ω) ∈ {0,1} .

For example, if the first condition holds the estimate of the average ca-
sual effect is done by invoking the unconfoundedness assumption using only
the first control group. It is difficult to envision a situation where uncon-
foundedness based on the two comparison group holds (Y (ω,0), Y (ω,1) á
D(ω)∣X(ω)), but it does not hold using only one of the two comparison
groups at the time. In practice, it seems likely that if unconfoundedness
holds then so will the stronger condition. The test consists in testing whether
there is a difference in average values of Y (ω) between the two control
groups, after adjusting for differences in X(ω):

E [E [Y (ω)∣G(ω) = −1,X(ω)] −E [Y (ω)∣G(ω) = 0,X(ω)]] = 0.

A second set of tests of unconfoundedness focuses on estimating the casual
effect of the treatment on a variable known to be unaffected by it, typi-
cally because its value is determined prior to the treatment itself. Such
variable can be time-invariant, but the most interesting case is in consid-
ering the treatment effect on a lagged outcome. If it is not zero, this im-
plies that the treated observations are distinct from the controls. If the
treatment is instead zero, it is more plausible that the unconfoundedness
assumption holds. Nevertheless if the variables used in the proxy test are
closely related to the outcome of interest, the test arguably has more power.
First partition the vector of covariates X(ω) into two parts, a pseudo out-
come, denoted by Xp(ω), and the remainder, denoted by X(ω)r, so that
X(ω) = (X(ω)p,X(ω)r). It is possible to consider the following modified
unconfoundedness condition, which requires conditioning only on the subset
of covariates X(ω)r:

Y (ω,0), Y (ω,0) áD(ω)∣X(ω)r.
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This is a stronger condition, indeed it is theoretically possible that con-
ditional on a subset of the covariates unconfoundedness holds, but at the
same time unconfoundedness does not hold conditional on the full set of co-
variates. In practice this situation is rare. Generally making subpopulation
more homogeneous in pretreatment variables tends to improve the plausibil-
ity of unconfoundedness. The modified unconfoundedness condition is not
testable, for the same reasons the original unconfoundedness assumption is
not testable. Nevertheless, if one has a proxy for either of the potential
outcomes, one can test independence for the proxy variable. In such case it
is possible to use as proxy variable the pseudo outcome X(ω)p. That is, we
view as a proxy for, say, Y (ω,0), and asses the modified unconfoundedness
by testing:

X(ω)p áD(ω)∣X(ω)r.

An example is where X(ω) contains multiple lagged measures of the out-
come. In such case, one can plausibly assess unconfoundedness by testing
whether:

Yi,−1 áD(ω)∣Yi,−2, . . . , Yi,−6

where Yi,−2, . . . , Yi,−6 are the lagged outcomes.

1.3.3 Methods based on propensity score: matching

A method widely used in literature is based on the propensity scores. Rosen-
baum and Rubin (1983) show that under unconfoundedness, independence
of potential outcomes and treatment indicators also holds after conditioning
solely on the propensity score e(x) = Pr(D(ω) = 1∣X(ω)):

D(ω) á (Y (ω,0), Y (ω,1)) ∣X(ω) Ô⇒D(ω) á (Y (ω,0), Y (ω,1)) ∣e(X(ω)).

For any binary variable D(ω), and any random vector X(ω), it is true that:

D(ω) áX(ω) ∣e(X(ω)).

Since under unconfoundedness all biases can be removed by adjusting for
difference covariates, this means that within subpopulation homogeneous in
the propensity score, covariates are independent of the treatment indicator
and there are no biases in comparing treated and control units. This result
can be exploited in a number of ways. Principally three of these have been
used in practice.

The first method simply uses the propensity score in place of the covari-
ates in regression analysis. Define :

vd(e) = E[Y (ω)∣D(ω) = d, e(X(ω)) = e].
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Unconfoundedness in combination with the Rosembaum and Rubin result
implies that vd(e) = E[Y (ω, d)∣e(X(ω)) = e]. It is possible, then, to estimate
vd(e) using kernel on propensity score, something which is greatly simplified
by the fact that propensity score is a scalar.

The second method is labeled blocking, subclassifications or stratifica-
tion. The idea is to partition the sample into strata by values of the propen-
sity score, and then analyze the data with each stratum as if the propensity
score were constant and the data could be interpreted as coming from a
completely randomized experiment.

The third method exploiting the propensity score is based on weight-
ing. Recall that τate = E[Y (ω,1)] − E[Y (ω,0)] and consider the two terms
separately. It is possible to demonstrate that weighting the treated popula-
tion by the inverse of the propensity score recovers the expectation of the
unconditional response under treatment:

E [D(ω) ⋅ Y (ω)
e(X(ω))

] = E [D(ω) ⋅ Y (ω,1)
e(X(ω))

] = E [E [D(ω) ⋅ Y (ω,1)
e(X(ω))

∣X(ω)]] =

= E [E(D(ω)∣X(ω)) ⋅E(Y (ω,1)∣X(ω))
e(X(ω))

] =

= E [e(X(ω)) ⋅E(Y (ω,1)∣X(ω))
e(X(ω))

] =

= E [E(Y (ω,1)∣X(ω))] = E [Y (ω,1)] .

The seqnarray* final inequalities follow by iterated expectations and the
third equality holds by unconfoundedness. A similar calculation shows
E [((1 −D(ω))Y (ω))/(1 − e(X(ω)))] = E [Y (ω,0)]. Then:

τate = E[Y (ω,1)] −E[Y (ω,0)] = E [D(ω) ⋅ Y (ω)
e(X(ω))

− (1 −D(ω))Y (ω)
(1 − e(X(ω))

] .

This result suggests the following estimator for τate:

τ̂weight =
1
N

N

∑
i=1

[D(ω) ⋅ Y (ω)
e(X(ω))

− (1 −D(ω))Y (ω)
1 − e(X(ω))

] .

This estimator, as a sample average from a random sample, is consistent for
τate and is

√
N asymptotically normally distributed. In practice, this is not a

feasible estimator because it depends on the propensity score function which
is rarely known. A surprising result is that, even if we know the propensity
score, the estimator does not achieve the efficiency bound. Estimating the
propensity score it is possible to achieve a more efficient estimator, asymp-
totically, than to know the propensity score. Replacing e(⋅) with a logistic
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sieve estimator it is possible to construct the inverse probability weighting
(IPW) estimator:

τ̂ipw =

N

∑
i=1

D(ω) ⋅ Y (ω)
ê(X(ω))

N

∑
i=1

D(ω)
ê(X(ω))

−

N

∑
i=1

(1 −D(ω)) ⋅ Y (ω)
1 − ê(X(ω))

N

∑
i=1

D(ω)
1 − ê(X(ω))

The blocking estimator can also be interpreted as a weighted estimator. A
particular concern with IPW estimators arise when covariates distributions
are substantially different from the two treatments groups, because some
values of the propensity score get close to zero or one. That arises the
problem of the model’s choice because alternative parametric models are
more different when the probabilities are so extreme. Moreover for units
with propensity score close to zero and one, the weights can be large, making
those units particularly influential in the estimates of the average treatment
effect, and thus making the estimator imprecise. This problem can be less
severe for the ATT parameter because propensity score values close to zero
play no role.

One of the most used methods that exploit the propensity score is Match-
ing. Matching estimators impute the missing potential outcomes using only
the outcomes of a few nearest neighbors of the opposite treatment group.
In that sense, matching is similar to non parametric kernel regression, with
the number of neighbors playing the role of the bandwidth in the kernel
regression (Figure 1.5). The difference between these two methods is that
the asymptotic distribution for matching estimators is derived conditional
on the implicit bandwidth, that is the number of neighbors, often fixed at a
small number. The implicit estimate µ̂d(x) is unbiased, but not consistent,
in contrast to the kernel estimators. Matching estimators have the two main
attractive features: the smoothing parameters are easily interpretable and
these estimators are easier to use than those estimators that require more
complex choices of smoothing parameters. This estimators have been ap-
plied in setting where the interest is in the average treatment effect for the
treated and where there is a large reservoir of potential controls. The set-
ting with many potential controls allows to match each treated unit to one
or more distinct controls, hence the label “matching without replacement”.
Given the matched pairs, the treatment effect within a pair is estimated as
the difference in outcomes, and the overall average as the average of the
within pair difference. Often to match units are used algorithms that se-
quentially match units. Most commonly the units are ordered by the value
of the propensity score with the highest propensity score units matched first.
Formally, given a sample (Y (ω),X(ω),D(ω))Nω=1, let Lm(ω) be the index
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Figure 1.5: Example of propensity score distribution and kernel estimation

satisfies DLm(ω) ≠D(ω). This is the m-th closest to unit i:

∑
ω′∶Dω′≠Dω

1{∥Xl −X(ω)∥ ≤ ∥XLm(ω) −X(ω)∥} =m

where 1{⋅} is the indicator function which equals 1 when the event inside
parenthesis is true and is zero otherwise. Definitely Lm(ω) is the index of
the unit in the opposite treatment group that is the m-th closest to unit ω
in term of distance measure based on the norm ∥⋅∥.

Let JM(ω) ⊂ 1, . . . ,N denote the set of index for the M matches for unit
ω ∶ JM(ω) = L1(ω),L2(ω), . . . ,LM(ω). Now impute the missing potential
outcomes as the average of the outcomes for the matches, by defining Ŷ (ω,0)
and Ŷ (ω,1) as

Ŷ (ω,0) = { Y (ω) if D(ω) = 0
1
M ∑j∈JM (ω) Yj if D(ω) = 1

Ŷ (ω,1) = {
1
M ∑j∈JM (ω) Yj if D(ω) = 0
Y (ω) if D(ω) = 1

The simple matching estimator discussed in Abadie and Imbens is then:

τ̂match =
1
N

N

∑
ω=1

(Ŷ (ω,1) − Ŷ (ω,0)).

Abadie and Imbens show that the bias of the estimator is of order O(N− 1
k ),

where K is the dimension of the covariates. Moreover they show also that
matching estimators are generally not efficient.
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1.4 Selection on unobservables

As described in Section 1.2.4 the assumption of unconfoundedness can be
relaxed or dropped. Often in practice it is difficult to observe all the variables
that can affect potential outcomes. The unconfoundedness condition is often
unrealistic, given the presence of some unobservable or unmeasurable factors
that affect the outcome. In literature there are different methods to solve
the problem and to take into account the unobservable variables. The main
approaches are listed below and the ones most used in practice are then
summarized in the next paragraphs.

One approach (Rosenbaum and Rubin, 1983; Rosenbaum, 1995) consists
of sensitivity analyses. Instead of completely relaxing the unconfounded-
ness assumption, sensitivity analyses investigate whether results obtained
maintaining this assumption can be changed substantially, or even over-
turned entirely, by modest violations of it. Violations of unconfoundedness
assumption are interpreted as evidence of the presence of unobserved co-
variates that are correlated, both with the potential outcome and with the
treatment indicator. The size of bias this violations of unconfoundedness
can induce depends on the strength of these correlations.

A second approach, developed by Manski (Manski, 1990, 1995, 2003,
2005, 2007) simply drops the unconfoundedness assumption. It consists
of bound analyses, where ranges of estimate consistent with the data and
the limited assumptions the researcher is willing to make, are derived and
estimated. Manski’s key insight is that even if in large samples one cannot
infer the exact value of the parameter, one may be able to rule out some
values that one could not a priori.

A third approach, instrumental variables, relies on the presence of addi-
tional treatments, the so-called instruments, that satisfy specific exogeneity
and exclusion restrictions (Imbens and Angrist, 1994; Angrist et al., 1996).

A fourth approach applies where overlap is completely absent because
the assignment is a deterministic function of covariates. Comparisons can be
made exploiting continuity of average outcomes as a function of covariates.
This approach is known in statistics as the regression discontinuity design
(Shadish et al., 2002; Cook, 2008; Hahn et al., 2001; Angrist et al., 1996),
but has recently been revived in the economics literature (Lee, 2001; Van der
Klaauw, 2008; Imbens and Lemieux, 2008).

A fifth approach, referred to as difference-in-difference (DID), relies on
the presence of additional data in the form of samples of treated and control
units before and after the treatment (Ashenfelter and Card, 1985; Abadie,
2005; Donald and Lang, 2007; Athey and Imbens, 2006).

In the following paragraphs the most used methods are summarized:
instrumental variable, regression discontinuity design and difference in dif-
ference (DID) methods.
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1.4.1 Instrumental variables

The focus will be in the part of the literature concerned with heterogeneous
effect and binary endogenous variable. Let Z(ω) denote the value of the
instrument for individual ω. Let D(ω,0) and D(ω,1) denote the level of
the treatment received if the instrument takes values 0 and 1 respectively.
Similarly, let Y (ω,0) and Y (ω,1) denote the potential outcome of interest.
The observed treatment is:

D(ω) =D(ω,0) ⋅ (1 −Z(ω)) +D(ω,1) ⋅Z(ω) = { D(ω,0) if Z(ω) = 0
D(ω,1) if Z(ω) = 1.

Exogeneity of the instrument is captured by the assumption that all poten-
tial outcomes are independent of the instrument:

(Y (ω,0), Y (ω,1),D(ω,0),D(ω,1)) á Z(ω).

This assumption captures two properties of the instrument. First, it cap-
tures random assignment of the instrument so that casual effects of the
instrument on the outcome and treatment received can be estimated consis-
tently. The second part of the assumption captures the exclusion restriction
that there is no direct effect of the instrument on the outcome.

Imbens and Angrist introduce a new concept, the compliance type of an
individual. The type of an individual describes the level of the treatment
that an individual would receive given each value of the instrument. It is
captured by the pair of values (D(ω,0),D(ω,1)). With both the treatment
and instrument binary there are four types of responses for the potential
treatment:

T (ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

never - taker if D(ω,0) =D(ω,1) = 0

complier if D(ω,0) = 0,D(ω,1) = 1

defier if D(ω,0) = 1,D(ω,1) = 0

always - taker if D(ω,0) =D(ω,1) = 1.

The labels never-taker, complier, defier and always-taker (Figure 1.6) refer
to the setting of a randomized experiment with noncompliance, where the
instrument is the random assignment to the treatment and the endogenous
regressor is an indicator for the actual receipt of the treatment. Compliers
are individuals who always comply with their treatment, that is, take the
treatment if assigned to it and not to take it if assigned to the control group.
One cannot infer from the observed data whether a particular individual is
a complier or not. It is important not to confuse compliers with individuals
who are observed to comply with the assignment they actually received
Z(ω) = D(ω). For such individuals it is unknown what they would have
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Figure 1.6: Instrumental variables: never-taker, complier, defier and always-
taker

done had their assignment been different, that is it is unknown the value of
D(ω)(1 −Z(ω)).

Imbens and Angrist then invoke an additional assumption they refer to
monotonicity. It requires that D(ω,1) ≥ D(ω,0) for all individuals, or that
increasing the level of the instrument does not decrease the level of the treat-
ment. This assumption is equivalent to ruling out the presence of defiers,
and it is therefore sometimes referred to as the no-defiance assumption.

Under the two assumptions - independence of all four potential outcomes
and the instrument, and monotonicity - Imbens and Agrist show that one
can identify the average effect of the treatment for the subpopulation of
compliers. Thus, only compliers are observed in both treatment groups,
so only for this group there is the chance of identifying the average treat-
ment effect. Clearly, one cannot identify the average effect of the treatment
for never-takers because they are never observed receiving the treatment.
Individuals with (Z(ω) = 1,D(ω) = 0) can only be never-takers for the
monotonicity assumption. Similarly, individuals with (Z(ω) = 0,D(ω) = 1)
can only be always-takers. Individuals with (Z(ω) = 0,D(ω) = 0) can be
either compliers or never-takers, so it is not possible to infer the type of
such individuals from the observed data alone. Similarly, individuals with
(Z(ω) = 1,D(ω) = 1) can be either compliers or always-takers.

The first step is to see if it is possible to infer the population propor-
tions of these three subpopulation shares Pt = P (T (ω) = t), for t ∈ {n, a, c}.
Considering the subpopulation of Z(ω) = 0. Within this subpopulation it
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is observed D(ω) = 1 only for always-takers. Hence the conditional prob-
ability of D(ω) = 1∣Z(ω) = 0 is equal to the conditional probability share
of always-takers Pa = Pr(D(ω) = 1∣Z(ω) = 0). Similarly, for never-takers
Pn = Pr(D(ω) = 0∣Z(ω) = 1). The population share of compliers is then
obtained by subtracting the population shares of never-takers and always-
takers from one Pc = 1 − Pn − Pa.

The second step uses the distribution of Y (ω)∣(Z(ω),D(ω)). The dis-
tribution of Y (ω)∣D(ω) = 0, T (ω) = n is inferred from the subpopulation
with (Z(ω),D(ω)) = (1,0) since all these individuals are known to be never-
takers. Then the distribution of Y (ω)∣Z(ω) = 0,D(ω) = 0 is a mixture of the
distribution of Y (ω)∣D(ω) = 0, T (ω) = n and Y (ω)∣D(ω) = 0, T (ω) = c, with
mixture probabilities equal to the relative population shares, Pn/(Pc + Pn)
and Pc/(Pc+Pn), respectively. The conditional distribution of Y (ω)∣D(ω) =
0, T (ω) = c is backed out from the population shares of the never-takers and
compliers and the distribution of Y (ω)∣D(ω) = 0, T (ω) = n. Similarly, it is
possible to infer the conditional distribution of Y (ω)∣D(ω) = 1, T (ω) = c.
The difference between the means of these conditional distribution is the
Local Average Treatment Effect (LATE):

τlate = E[Y (ω,1) − Y (ω,0)∣D(ω,0) = 0,D(ω,1) = 1] =

= E[Y (ω,1) − Y (ω,0)∣T (ω) = complier].

Imbens and Angrist show that LATE equals the standard instrumental vari-
ables estimand, the ratio of the covariance of Y (ω) and Z(ω) and the co-
variance of D(ω) and Z(ω):

τlate =
E[Y (ω)∣Z(ω) = 1] −E[Y (ω)∣Z(ω) = 0]
E[D(ω)∣Z(ω) = 1] −E[D(ω)∣Z(ω) = 0]

=

= E[Y (ω)(Z(ω) −E[Z(ω)])]
E[D(ω)(Z(ω) −E[Z(ω)])]

,

which can be estimated using two-stage-least-squares. The only quanti-
ties not consistently estimable are the average effects for never-takers and
always-takers.

1.4.2 Regression discontinuity design

The basic idea behind the Regression Discontinuity design (RD design) is
that the assignment to the treatment is determined, either completely or
partly, by the value of a predictor (the forcing variable X(ω)) being on ei-
ther side of a common threshold. This generated a discontinuity, sometimes
of size one, in the conditional probability of receiving the treatment as a
function of this particular predictor. The forcing variable is often itself as-
sociated with the potential outcome, but this association is assumed to be
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Figure 1.7: Discontinuity design: without and with treatment effect

smooth. As a result any discontinuity of the conditional distribution of the
outcome as a function of this covariate at the threshold is interpreted as
evidence of a casual effect of the treatment. This design often arises from
administrative decisions, where clear transparent rules are used for the al-
location of incentives for individuals to participate in a program. In the
Regression Discontinuity (RD) design , the assignment D(ω) is a determin-
istic function of one of the covariates, the forcing variable X(ω):

D(ω) = 1[X(ω) ≥ c],

where 1[⋅] is the indicator function. All units with a covariate value of at
least c are in the treatment group, and all units with a covariate value less
then c are in the control group. In the RD design the estimation is focused
on:

τsrd = E[Y (ω,1) − Y (ω,0)∣X(ω) = c] =

= E[Y (ω,1)∣X(ω) = c] −E[Y (ω,0)∣X(ω) = c].

By design there are no units with X(ω) = c for which it is observed
Y (ω,0). To estimate E[Y (ω)(w)∣X(ω) = c] without making functional form
assumptions, it is exploited the possibility of observing units with covariate
value arbitrary close to c. In order to justify this averaging it is made a
smoothness assumption that the two conditional expectations are continuous
in x. Under this assumption it is possible to write:

τsrd = limx↓cE[Y (ω)∣X(ω) = x] −E[Y (ω,1)∣X(ω) = c]+

− limx↑cE[Y (ω)∣X(ω) = x],
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where this expression uses the fact that D(ω) is a deterministic function
of X(ω). The statistical problem becomes one of estimating a regression
function non parametrically at a boundary point.

1.4.3 Difference-in-difference method

The simplest setting is one where outcomes are observed for units observed
in one of two groups, in one of the two time periods. Only units in one of the
two groups, in the second time period, are exposed to the treatment. There
are no units exposed to the treatment in the first period. The average
gain over time in the non-exposed (control) group is subtracted from the
gain over time in the exposed (treatment) group. This double differencing
removes biases in second period comparisons between the treatment and
control group that could be the result from permanent differences between
those groups, as well as biases from comparisons over time in the treatment
group that could be the result of time trends unrelated to the treatment.

The standard model for DID approach is that individual ω belongs to a
group, G(ω) ∈ {0,1} is observed in time period T (ω) ∈ {0,1}. The individual
ω’s group identity and time period can be treated as random variables. The
outcome for the individual ω in the absence of the intervention is:

Y (ω,0) = α + β ⋅ T (ω) + γ ⋅G(ω) + ε(ω),

with unknown parameter α, β and γ. The parameter β represents the time
component to both groups; γ represents a group specific, time-invariant
component; ε(ω) represents unobservable characteristics of the individual.
This term is assumed to be independent of the group indicator and have
the same distribution over time ε(ω) á (G(ω), T (ω)) and is normalized to
have mean zero. The equation for the outcome without the treatment is
combined with an equation for the outcome given the treatment: Y (ω,1) =
Y (ω,1) + τdid. The standard DID estimand is under this model equal:

τDID = E[Y (ω,1)] −E[Y (ω,0)] =

= (E[Y (ω)∣G(ω) = 1, T (ω) = 1] −E[Y (ω)∣G(ω) = 1, T (ω) = 0])+

− (E[Y (ω)∣G(ω) = 0, T (ω) = 1] −E[Y (ω)∣G(ω) = 0, T (ω) = 0]) .

It is possible to estimate τdid using least squares methods on the regression
function for the observed outcome:

Y (ω) = α + β1 ⋅ T (ω) + γ1 ⋅G(ω) + τdid ⋅D(ω) + ε(ω),

where the treatment indicator D(ω) is equal to the interaction of the group
and time indicators, I(ω) = T (ω) ⋅G(ω). The treatment effect is estimated
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through the coefficient on the interaction between the indicators for the
second time period and the treatment group:

τ̂did = (Y 11 − Y 10) − (Y 01 − Y 00) whith Y gt = ∑
ω∣G(ω)=g,T (ω)=t

Y (ω)/Ngt

where Y gt is the average outcome among units in group g and the time
period t.

Most of the recent econometric program evaluation literature has focused
on the case with a binary treatment. Much less is known about setting
with multi-valued, discrete or continuous treatments, that are common on
practice. For more details see Wooldridge and Imbens (2008).
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Chapter 2

The econometric approach to
causality

The econometric structural approach is another class of methods which have
been developed during the past decades to face the evaluation problem.
The formulation of such problem in economics dates back to Quandt’s work
(1958). In this chapter the main features of this approach are presented with
a comparison of the statistical approach described in the previous chap-
ter. The main difference compared to the statistical approach, is the use
of models to generate the counterfactual distribution. For this approach it
is important to model the preferences and choices of the agents in order
to infer both objective outcomes and subjective evaluation. A distinction
between anticipated and realized subjective and objective outcomes is also
developed. It also deals with the identification problem illustrating an ex-
ample of a prototypical model of treatment choice and outcome. Finally,
it reports a synthesis of the difference and of the points of contact between
this approach and the potential outcome approach. It is a summary of many
statistical and economical articles recently published aimed to read the con-
nections between the two approaches. Among them there are also recent
works by prime Nobel Heckman.

2.1 A model of hypotheticals

In the econometric tradition a model of the phenomena being studied has
to be fully articulated to define hypothetical or counterfactual states. The
definition of causality is a by-product of this model. Therefore ambiguity
in model specification implies ambiguity of counterfactuals and, hence, in
causality.

Opposition of economists toward statisticians starts by the fact that
statisticians give a definition of causality without a clear model of the phe-
nomenon studied, that is a model of counterfactuals. In economics a main
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Task Description Requirement

1 Defining the set of Hypotheticals or
counterfactuals

A well specified economic theory

2 Identifying causal parameters from
Hypothetical population data

Mathematical analysis or Set iden-
tification

3 Identifying causal parameters from
real data

Estimation and testing theory

Table 2.1: The three distinct tasks in the analysis of econometric causal
models

point is to produce a clear model of how the studied phenomena are gen-
erated or what mechanism selects the counterfactuals that are observed in
the real samples. Statisticians, on the contrary, want to model the effects
of causes without modeling the causes of effects (Holland, 1986). However
science is all about constructing models of the causes of effects. Heckman
and Vytlacil (2007b) identify three distinct central tasks in economics:

1. defining the set of counterfactuals/hypotheticals;

2. identifying causal models from hypothetical data of population distri-
bution (infinite samples without any sampling variation);

3. identifying causal model from real data, where sampling variability is
an issue (it considered the difference between empirical distribution
based on sampled data and population distribution generating the
data).

The first task consists in defining counterfactuals. It is an essential step
that arises from the need to represent the actual world trough models. These
models are not a description of the actual world, but they are representations
of empirical distribution that are used to make prediction about the actual
world. These models are description of hypothetical worlds obtained by
varying, hypothetically, the factors determining outcomes. The second task
is the inference in very large samples. This is an identification problem that
arises from the necessity to recover the distribution of counterfactual from
data that are free of any sampling variation. The third task is the inference
in practice. It is about recovering a given model of counterfactual from a
given set of data, where solutions can be found in the inference and testing
in real world data. The difference between the last two points arise from
the difference between empirical distribution based on samples data and
population distribution generating the data.

Some of the controversy surrounding counterfactuals and causal models
is sometimes due to the confusion of these three distinct problems. As-
sociating particular methods of estimation, like matching or instrumental
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variables, with the definition of causal parameters, runs to confuse three
distinct tasks: definition, identification and estimation.

2.1.1 Policy evaluation

The goal of the econometric literature is to understand the causes producing
the effects. In this way one can use the model to forecast the effect of new
policies never previously experienced, to calculate a variety of policy coun-
terfactuals. Furthermore one can use scientific theory to choose estimators
and interpret results.

In social science, a major use of causal analysis is directed toward an-
swering policies questions. Heckman identifies three main classes of policy
evaluation questions:

P1 evaluating the impact of historical (documented) interventions on out-
come including their impact in terms of the well-being of the treated
and society at large;

P2 forecasting the impacts (constructing the counterfactual states) of in-
terventions implemented in one environment in other environment,
including their impacts in terms of well-being;

P3 forecasting the impacts of interventions (constructing counterfactual
states associated with interventions) never historically experienced to
various environments, including their impacts in terms of well-being.

In this context impact means constructing and evaluating either individ-
ual level or population level counterfactuals. Well-being means ex ante or
ex post valuations of the outcomes obtained from the intervention.

Economists distinguish objective outcomes that can in principle be mea-
sured by all external observers from subjective outcomes that are the eval-
uations of the agents experiencing treatment. Objective outcomes are in-
trinsically ex post the treatment, while subjective outcomes can be ex ante
(anticipated) or ex post. Agents may also have ex ante evaluations of the
objective outcomes that may differ from their ex post evaluations.

The first problem, P1, is an internal validity problem, that is the problem
of identifying a given treatment parameter or a set of treatment parameters
in a given environment.

The second problem is helpful because most policy evaluation is designed
with an eye toward the future and toward informing decisions about new
policies and application of old policies to new environments, where the en-
vironment includes the characteristics of individuals and of the treatments.
Included in these interventions are policies described by generic character-
istics that are applied to different groups of people or in different time pe-
riods from those studied in implementations of the policies on which data
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are available. This is the problem of external validity : taking a treatment
parameter or a set of parameters estimated in one environment to another
environment.

Finally, the most ambitious problem is forecasting the effect of a new
policy, never experienced before. This problem requires one to use past
history to forecast the consequences of new policies.

2.1.2 Individual level treatment effect: definition and nota-
tion

The individual ω does not represent a single individual, but encompass all
individual’s features that affect the outcomes. The universe of all individu-
als’ types or agents is indicated with Ω and can be assumed to be Ω = [0,1]
(Heckman and Vytlacil, 2007a), with ω ∈ Ω.

The agent can be a household, a patient, a firm, a worker or a coun-
try. In advance of treatment, agents may not know the outcome but may
make forecasts about them. These forecasts may influence their decisions to
participate in the program or may influence the agents who make decisions
about whether or not an individual participates in the program. Selection
into the program based on actual or anticipated components of outcomes
gives rise to the selection problem in the evaluation literature.

Let S be the set of possible treatments with elements denoted by s. For
simplicity of exposition, let us assume that this set is the same for all ω and
that it is finite. For each ω, one obtains a collection of possible outcomes
given by Y (s,ω)s∈S . For example, if S = 0,1, there are two treatments, one
of which may be a no-treatment state (control).

The individual treatment effect for agent ω comparing outcomes of treat-
ment s with outcomes of treatment s′ is

Y (s,ω) − Y (s′, ω), s ≠ s′

for two elements s, s′ ∈ S. This is also called an individual level causal
effect. The causal effect is the Marshallian (1890) ceteris paribus change of
outcomes for an agent across states s and s′. Only s and s′ are varied. All
factor save one (the treatment) are held at a constant level. In such way
the change in the outcome is associated with the manipulation of the varied
factor (the treatment that changes from s to s′).

In econometrics, associated with each outcome, is also a valuation V
of it. These valuations can be private evaluation of the agents with utility
V (Y (s,ω), ω), or may also be the valuation placed on the outcome of each
person by another person, called the social planner, with preference VG.

The valuation depends on which treatment is assigned to or chosen by
the individual ω. The outcome is selected from the set of possible counter-
factuals of potential outcomes available for each person.
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The treatment assignment mechanism is a rule τ ∶ Ω → S which assigns
treatment to each individual ω. The collection of the possible assignment
rules is T where τ ∈ T and the consequences of the treatment are the outcome
Y (s,ω), s ∈ S and ω ∈ Ω. The policy selects individuals ω and specifies the
treatment s ∈ S received.

Under a more comprehensive definition of treatment, agents are assigned
incentives like taxes, subsidies and eligibility that affect their choices, but the
agents choose the treatment selected. Agent’s preferences, program delivery
systems and the like might all affect the choice of treatment.

In a more general setup it is specified a rule a to assign such constraints
or benefits b. The assignment rules a ∈ Amaps individuals ω into constraints
or benefits b ∈ B under different mechanisms a ∶ Ω → B as a deterministic
rule or random assignment. The last one adds a new source of randomness
to the environment that it is necessary to consider redefining Ω to include
it. Therefore it is possible to redefine the treatment assignment mechanism,
that is the choice rule used by the agent, τ ∶ Ω×A×B → S as a map taking
agent ω ∈ Ω facing constraints b ∈ B assigned by mechanism a ∈ A into a
treatment s ∈ S. Moreover a policy regime p ∈ P is a pair (a, τ) ∈ A×T that
maps agents denoted by ω into elements of s.

2.1.3 Policy invariance

Policy invariance is used to characterize outcomes without specifying how
those outcomes are obtained, ignoring features of the policy and choices
environment.

Economists (see Heckman and Vytlacil (2007b)) define policy invariance
through two aspects. The first aspect is that, for a given incentive b ∈ B the
mechanism a ∈ A (by which ω is assigned a b) and the incentive b ∈ B are
assumed to be irrelevant for the values of realized outcomes for each s that
is selected. Second, for a given s for agent ω, the mechanism τ , by which s
is assigned to the agent under assignment mechanism a ∈ A, is irrelevant for
the values assumed by realized outcomes. If one has to account for the effects
of incentives and assignment mechanisms on outcomes, one must work with
Y (s,ω, a, b, τ) instead of Y (s, τ). These two aspects can be translated in
the following invariance assumptions invoked in the literature.

The first invariance assumptions state that for the same treatment s and
agent ω, different constraint assignment mechanisms a and a′ and associated
constraint state assignments b and b′ produce the same outcome. For exam-
ple, they rule out the possibility that the act of randomization or the act of
pointing a gun at an agent to secure cooperation with planner intentions has
an effect on outcomes, given that the agent ends up in s. This is a strong
assumption.

The second invariance assumption is that for a fixed a and b, the out-
comes are the same, independent of the treatment assignment mechanism.
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It rules out, among other things, social interactions, contagion and general
equilibrium effects. Heckman (1992), Heckman and Smith (1998), Heckman
et al. (1999) and Heckman and Vytlacil (2007c) discuss evidence against this
assumption, and Heckman et al. (1998a,b,c) show how to relax it.

If treatment effects based on subjective evaluations are also considered,
as it is distinctive of the econometric approach, it is necessary to require
invariance assumptions for utilities, that states that utilities are not affected
by the mechanism of assignment of constraints. Heckman (1992), Heckman
et al. (1999) and Heckman and Vytlacil (2007c) present evidence against
this assumption.

Another invariance assumption rules out social interactions in both sub-
jective and objective outcomes. It is useful to distinguish invariance of
objective outcomes from invariance of subjective outcomes. Randomization
may affect subjective evaluations through its effect of adding uncertainty
into the decision process but it may not affect objective valuations. The
econometric approach models how assignment mechanisms and social inter-
actions affect choice and outcome equations rather than postulating a priori
that invariance.

2.1.4 The evaluation problem

The evaluation problem is an identification problem that arises in construct-
ing the counterfactual states and treatment assignment rules produced by
abstract models from population data. This is the second econometric task
identified in Table 2.1. As already underlined in Chapter 1, the analyst ob-
serves each agent ω in one of S possible states. Rarely the same person ω is
observed in distinct state s. One does not know the outcome of the agent in
other states that are not realized, and hence cannot directly form individual
level treatment effects. The states are mutually exclusive. Let D(s,ω) = 1
if we observe ω in state s. Then D(s′, ω) = 0 for s ≠ s′. Thus the analyst
cannot observe Y (s′, ω) for person ω if he observes Y (s,ω), s ≠ s′. Even
with large sampled and a valid randomization, some of the s ∈ S may not
be observed if one wants to evaluate new policies never experienced. With-
out further assumptions, constructing the counterfactual is impossible from
the data (Y (ω),D(ω)), ω ∈ Ω. The formulation of the evaluation problem
is known as Quandt’s switching regression model (Quandt, 1972, 1958) in
econometrics and is attributed in statistics to Neyman (1990) and Rubin
(1978).

In addition to this problem, there is the selection problem: the values of
Y (0) or Y (1) that are observed are not necessarily a random sample of the
potential Y (0) or Y (1) distribution.

The Roy model (Roy, 1951) and his generalizations in economics (see
Heckman and Smith (1998), Carneiro et al. (2003) and Cunha et al. (2007))
are a useful framework for policy evaluation. Roy considered an economy
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where agents face two possible outcome S = (0,1) and a particular selection
mechanism:

D(1, ω) = 1(Y (1, ω) > Y (0, ω)),

where “1” is an indicator function. The mechanics of selection process
depends on outcomes. Agents choose treatment with the expected highest
outcome, so the selection mechanism is not a randomization. In this case
there is a self-selection into treatment, so there is no independence between
assignment rule and outcome. On one hand this selection rule creates the
potential for selection bias. On the other hand the choice of treatment
provides also information on subjective evaluations of treatment which are
of independent interest in economics.

Statisticians attempts to create assignment rules so that D(s,ω) is ran-
dom with respect to outcome Y (s,ω). This means that the receipt treatment
is independent of the treatment outcome. They use different methods, like
matching and instrumental variables, to create such situations.

The evaluation problem is solved from econometricians and statisticians
in different ways. The econometric way consists in modelling Y (s,ω) ex-
plicitly in term of its determinant as specified by theory. This models are
called structural econometric analysis and entails describing the random
variables characterizing ω and carefully distinguish what agents know and
what the analyst knows. This approach also models D(s,ω) and the depen-
dence between Y (s,ω) and D(s,ω) produced from their variables in com-
mon. See Heckman and Honore (1990) and Heckman and Vytlacil (2001)
for a discussion of the Roy model that models this dependence. The goal
of the econometric literature, like the goal of all science, is to understand
the causes producing effects so that one can use empirical versions of the
models to forecast the effects of interventions never experienced before, to
calculate a variety of policy counterfactuals and to use scientific theory to
guide the choices of estimators and the interpretation of the evidence. These
activities require development of a more elaborate theory than is envisioned
in the current literature on causal inference in statistics.

Many causal models in statistics are designed to investigate the impact
of treatments on observed outcomes in a given environment. Explicit sci-
entific models try to explore the mechanisms producing the effects. In the
terminology of Holland (1986), the distinction is between understanding the
“effects of causes” (the goal of the treatment effect literature as a large
group of statisticians define it) or understanding the “causes of effects” (the
goal of the econometric literature building explicit models). For this reason
statisticians call this approach the “scientific approach” and are hostile to
it (see Holland (1986)).

A second way to solve the problem, common in the statistic literature,
is to estimate some population version of the individual treatment effect,
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often a mean, without modeling what factors give rise to the outcome or the
relationship between the outcomes and the mechanism selecting outcomes.
Following this avenue the agent valuations of outcomes are ignored. In fact,
the statistical treatment effect literature focuses exclusively on policy prob-
lem P1 for the subset of outcomes that is observed. The treatment effect
approach does not model the factors determining outcomes, it works solely
with outcomes without inputs, differently from the econometric approach
that uses data to generate counterfactual. In such a way they focus treat-
ment effects for policies actually experienced and provide no framework for
extrapolation of findings to new environments (problem P2) or for forecast-
ing new policies (problem P3).

2.1.5 Population level treatment parameters

Economists and statisticians often use the same set of population level treat-
ment parameters such as the average treatment effect (ATE), the treatment
on the treated (TT) and the treatment on the untreated (TUT) explained
in the previous chapter. In such way summary measures of outcomes are
considered, not analyzing determinants of outcomes. Furthermore this ap-
proach, the only one used in statistics, confines attention to the subset of
S that are observed states. Many other mean treatment parameters can be
defined depending on the choice of the conditioning set. Analogous defini-
tions can be given for median and other quantile versions of these parame-
ters (see Heckman et al. (1997), Abadie et al. (2002). Although means are
conventional, distributions of treatment parameters are also of considerable
interest.

Economists use different causal parameters for different policy problems.
It is of interest to evaluate the impact of marginal extensions (or contraction)
of a program or treatment regime. For example, the cost-benefit analysis is
conducted in terms of marginal gains and benefits. The effect of treatment
for people at the margin of indifference (EOTM) is calculated between the
best two possible choices available with respect to the personal preference
and choice-specific cost. This represents the mean gain to people indiffer-
ently between the best two options available. A generalization of this param-
eter is the Marginal Treatment Effect developed in Heckman and Vytlacil
(1999) Heckman and Vytlacil (2005) Heckman and Vytlacil (2007a).

Of special interest in policy analysis is the policy relevant treatment
effect (PRTE). It is the effect on aggregate outcomes of one policy regime
p ∈ P compared to the effect of another policy regime. Under invariance
assumptions and with p, p′ ∈ P

Ep[Y (s)] −Ep′[Y (s)].

Usually the elevation of population means as the primary causal pa-
rameters promotes randomization as an ideal estimation method. Mean

42



2.1. A MODEL OF HYPOTHETICALS

treatment effects are easily identified, assuming full compliance and no bias
arising from the randomization, thanks to the special mathematical prop-
erty of means. If one can identify the mean of Y (j) and the mean of Y (k)
from two different groups of agents, where j is the treatment and k is the
baseline or the control, one can form the average treatment effect for j com-
pared to k. The case for randomization is weaker if the analyst is interested
in other summary measures of the distribution, as median, quantiles or the
distribution itself. The answers to many interesting evaluation questions, in
fact, require knowledge of other features of the distribution of program.

It is also of economic interest to know:

• the proportion of people taking the program j with benefits from it rel-
ative to some alternative k, that is Pω(Y (j, ω) > Y (k,ω)∣D(j, ω) = 1).
This measure is used in determining how program gains are distributed
among participants;

• voting criterion : the proportion of the total population that benefits
from the program k compared to program j, that is Pω(Y (j, ω) >
Y (k,ω)). It measures the proportion of the entire population that
benefits from a program;

• selected quantiles of the impact distribution. It reveals the gains at
different percentiles of the impact distribution;

• the distribution of gains at selected base state values. This criterion
focuses on the distribution of impacts for subgroups of participants
with particular outcomes in the non participation state.

All of these measures require knowledge of features of the joint distribu-
tion of outcomes and not just the mean. Distribution of counterfactuals is
necessary. Heckman and Smith (1998), Carneiro et al. (2003), Carneiro et al.
(2001), Heckman and Navarro-Lozano (2004) Cunha et al. (2005) develop
different methods for identifying it.

2.1.6 Different information sets: ex post and ex ante evalu-
ation

Economic analysis account for uncertainty arising from the imperfect in-
formation of the agent. This uncertainty creates a distinction between ex
ante and ex post evaluation of both subjective and objective outcomes. Ex
ante and ex post distinction is essential to understanding behavior. Agent
choices are made in term of ex ante calculations while effect literature usu-
ally reports ex post return. Let Iω denote the information set available to
agent ω to evaluate policy j against k. Under an expected utility criterion,
agent ω prefers policy j over policy k if

E[R(Y (j, ω), ω)∣Iω] > E[R(Y (k,ω), ω)∣Iω].
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Ex post uncertainty arises because people do not know the outcome asso-
ciated with possible states not experienced yet and/or do not know some
outcomes. In advance of choosing an activity, agents may be uncertain
about the outcomes that will actually occur. They may also be uncertain
about the full costs they will bear. In general the agents’ information is
not the same as the analysts’, and they may not be nested. The agent
may know things in advance that the analyst may never discover. On the
other hand, the analyst, benefiting from hindsight, may know some infor-
mation that the agent does not know when he is making his choices. Let
IA be the information set confronting the agent at the time choices are
made before outcomes are realized. Agents can only imperfectly estimate
consequences of their choice. Ex ante agent’s evaluation are based on deter-
mined variables that are known to the econometrician and other variables
known to the agent but not to the econometrician. The econometrician may
in fact posses different information set IE . Choice probabilities computed
against one information set are not generally the same as those computed
against another information set. Carneiro et al. (2001, 2003), Cunha et al.
(2005, 2006) and Heckman and Navarro (2007) develop econometric meth-
ods for distinguishing ex ante from ex post evaluations of social programs.
See Abbring and Heckman (2007) for an extensive survey of this literature.
Heckman and Vytlacil (2007b) discuss the data needed to identify these
criteria, and present examples of Roy models and their extensions that al-
low for more general decision rules and imperfect information by agents.
They show how to use economic models to form treatment parameters.
A prototypical econometric model for policy evaluation is the generalized
Roy model developed in Cunha et al. (2005). A patient can be treated or
untreated with outcomes Y1(ω) and Y0(ω) (I will drop the ω notation to
simplify the notation) that is an index of well being of the patient. At any
point in time, a person can be either treated or untreated. The decision
to treat may be made on the basis of the expected outcomes E(Y1∣I) and
E(Y0∣I) and costs E(C ∣I) where the expectations are those of the relevant
decision maker. For example, if the agent is a hospital patient, then the
costs might be the pain and suffering and/or the direct medical costs. From
the point of view of the patient the expected utility or value of treatment
is E(Y1∣I) − E(C ∣I). The value of no treatment is E(Y0∣I). The expected
net value is E(Y1∣I) −E(C ∣I) −E(Y0∣I). For patients who pick a treatment
based on maximum gain D = 1[(E(Y1∣I) − E(C ∣I) − E(Y0∣I)) ≥ 0]. The ex
post treatment effect is Y1 − Y0 and the ex ante effect is E(Y1∣I) − E(Y0∣I).
The econometric approach models the dependence between observed Y =
DY1 + (1 − D)Y0 and D suggest alternative estimators to identify causal
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parameters. Commonly used specifications (Heckman, 2008) are:

Y1 =Xβ1 +U1

Y0 =Xβ0 +U0

C = Zγ +UC

where (X,Z) are observed by the analyst and (U1, U0, UC) are unobserved.
The agent may know more or less than the analyst. Econometric models

allow the agent to know more than the analyst and analyse agent selection
into treatment accounting for the asymmetry in knowledge between them
(matching assumes that, conditional on X and Z, D is independent of Y0,
Y1 and so assumes a lot of information is available to the analyst).

The most basic Roy model assumes that decision makers information
is perfect. There are no direct costs of treatment (γ = 0 and UC = 0),
the decision rule is D = 1(Y1 ≥ Y0) and assumes normality for (U0, U1).
These distribution and parametric assumptions are relaxed in the recent
econometric literature (see Heckman and Vytlacil (2007b) for a review).

The econometric approach makes the treatment assignment equation the
centerpiece of its focus and considers both objective and subjective valua-
tions as well as ex ante (E(Y1∣I),E(Y 0∣I),E(C ∣I)) and ex post outcomes
(Y1, Y0,C).

2.1.7 Generating counterfactual

The traditional model of econometrics is the “all causes” model. It writes
outcomes as a deterministic mapping of inputs to outputs:

y(s) = gs(x,us) (2.1)

where x and us are fixed variables specified, observable (x) and unobservable
(us), by the relevant economic theory. In general, there is no objective way to
choose these conditioning variables. Any argument for inclusion or exclusion
of variables has to be made by an appeal (implicit or explicit) to theory.
The role of the two types of variables is symmetric. This notation allows
for different unobservables us to affect different outcomes. All outcomes
are explained in a functional sense by the arguments of gs, the equation
maps admissible inputs into possible ex post outcomes. If one models the
ex post realizations of outcomes, it is entirely reasonable to invoke an all
causes model since the realizations are known (ex post) and all uncertainty
has been resolved. Implicit in the definition of a function is the requirement
that gs be stable or invariant to changes in its arguments, x and us. A deep
structural version of the equation above models the variation of the gs in
terms of s as a map constructed from generating characteristics qs, x and
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us into outcomes:

y(s) = gs(qs, x, us). (2.2)

The components qs provide the basis for generating the counterfactuals
across treatments from a base set of characteristics. This framework provides
the basis for solving policy problem P3 since new policies (or treatments)
are generated from common characteristics, and all policies are put on a
common basis. If a new policy is characterized by known transformations
of (qs, x, us) that lie in the domain of definition of g, policy forecasting
problem P3 can be solved. The argument of the maps gs and g are part
of the a priori specification of a causal model, then analysts may disagree
about appropriate arguments to include in these maps. In addition, model-
ing the us and its relationship with the corresponding unobservables in the
treatment choice equation is highly informative on the choice of appropriate
identification strategies.

These two models are sometimes called Marshallian causal functions.
Assuming that the components of (x,us) or (qs, x, us) are variation-free
(can be independently varied coordinate by coordinate), one may vary each
argument of these functions to get a ceteris paribus causal effect of the
argument on the outcome.

Some components may be variation-free while others are not. These
thought experiments are conducted for hypothetical variations. Varying
qs fixes different treatment levels. Variations in us among agents explain
why people with the same x characteristics respond differently to the same
treatment s. A treatment generally consists of a package of characteristics
and if one varies the package from qs to qs0 one gets different treatment
effects. Thus if uncertainty is a feature of the environment, these models
can be interpreted as ex post realizations of the counterfactual as uncertainty
is resolved.

Ex ante versions is represented with the ex ante expected value of Y (s,ω)
conditioning on the information set of the agent IA

E[Y (s,ω)∣IA] = E[gs(Q(s,ω),X(ω), U(s,ω))∣IA]

where Q(s,ω), X(s,ω), U(s,ω) are random variables generated from a dis-
tribution that depends on the agents information set indexed by IA. The
expectation might be computed using the information set of the relevant de-
cision maker (e.g. the parents in the case of the outcomes of the child) who
might not be the agent whose outcomes are measured. These random vari-
ables are drawn from agents subjective distribution, that may differ from the
distribution produced by reality if agent expectations are different from ob-
jective reality. In the presence of intrinsic uncertainty, the relevant decision
maker acts on E[Y (s,ω)∣IA] but the ex post counterfactual is

Y (s,ω) = E[Y (s,ω)∣IA] + ν(s,ω) (2.3)
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where ν(s,ω) satisfies E[ν(s,ω)∣IA] = 0. In this interpretation, the infor-
mation set of agent ω is part of the model specification but the realizations
come from a probability distribution, and the information set includes the
technology g.

This representation clarifies the distinction between deterministic ex post
outcomes and intrinsically random ex ante outcomes. Ex ante, there is
uncertainty at the agent level but ex post there is not. The realizations of
ν(s,ω) are ingredients of the ex post “all causes” model, but not part of the
subjective ex ante “all causes” model.

The ex ante treatment effect from the point of view of the agent for
treatment s and s′ is

E[Y (s,ω∣IA)] −E[Y (s′, ω∣IA)]

Abbring and Heckman (2007) survey econometric evaluation models ac-
counting for uncertainty.

The value of structural approach to the construction of counterfactuals
is that it explicitly models the unobservables and the sources of variability
among observationally identical people. It is the unobservable that gives
rise to selection bias. Analyst can also use choice theory to model the choice
of treatment to control for the selection bias.

These models derive from theory and the arguments of these functions
can be hypothetically manipulated to produce outcome. It is necessary to
be careful in distinguishing between theoretical relationship and empirical
relationship.

Data used to determine these functions may be limited in their sup-
port. In such way it is not possible to identify the theoretical relationships.
In addition, to this the component may not be variation-free even if they
are in the hypothetical support. A good example is the problem of multi-
collinearity. If the X in the sample is linearly dependent, it is not possible
to identify the Marshallian causal function with respect to variations in x
over the available support even if one can imagine hypothetically varying
the component of x over the domains of definition of the function.

In empirical data, one of the X, for example gender, may be perfectly
predictable by the other X. Holland (1988) claims that the causal effects
of gender is meaningless because analysts cannot “in principle” randomly
assign gender. The problem is that he conflates the empirical problem of
estimating it with a problem of theory of defining it. One can define the effect
even if one cannot identify it from the population sample data. For example,
with the local average treatment effect “LATE” parameter of Imbens and
Angrist (1994) the effect is defined by an instrument and conflates definition
and identification. The instrumental variables are used as surrogates for
randomization.
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2.2 Identification problem

A problem that must be solved if causal model has to be empirically opera-
tional is the identification problem. The act of defining a model is distinct
from the one of estimating it. The identification problem asks whether the-
oretical models have an empirical content in a hypothetical population or
in a real sample (problem 2 and 3 in Table 2.1). It is necessary to con-
sider what particular models within a set of admissible models, produced by
some theory for generating counterfactual, are consistent with a given set of
data. After identifying the object of interest, that could be only a feature
of the model (i.e. the average treatment effect) it is important to identify
the model consistent with the available information.

Estimators differ in the amount of knowledge they assume that the ana-
lyst has on agent’s decision. If the analyst has no access to all of the relevant
information that produces the dependence between outcome and treatment
rules, then he must use method to control for that unobserved component.
The dependence between outcome and choice is the source of selection bias.
Heckman and Vytlacil (2005) and Heckman and Navarro-Lozano (2004) de-
fine relevant information as information which, if available to the analyst,
would eliminate selection bias.

Common to all scientific models, there is the additional issue of how
to select the conditioning variables and how to deal with them if they are
endogenous. Furthermore there is the problem of lack of knowledge of func-
tional forms of the models. Different economic methods solve these problems
in different way. For a discussion of the problem identification see Heckman
(2005).

2.2.1 A prototypical model of treatment choice and outcome

To focus the discussion a benchmark econometric model of treatment choice
and treatment outcome is presented (see Heckman (2005)). For simplicity
a binary outcome is considered Y0, Y1.

Let V be a function (µV ) of observed W (by the econometrician) and
unobserved UV factors determining choice then the assignment mechanism
can be written as:

D = 1(V > 0).

Let potential outcomes be functions (µ0, µ1) of observed (X) and unobserved
outcome-specific variables (U0, U1). Assuming additive separability between
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factors and finite means of unobserved factors, it is possible to write:

V = µV (W,UV ) → V = µV (W ) +UV E(UV ) = 0

Y0 = µ0(X,U0) → Y0 = µ0(X) +U0 E(U0) = 0

Y1 = µ1(X,U1) → Y0 = µ1(X) +U1 E(U1) = 0

Supposing linearity in parameters the potential outcome equations can be
rewritten as:

Y0 = µ0(X) +U0 → Xβ0(C0) +U0

Y1 = µ1(X) +U1 → Xβ1(C1) +U1

(2.4)

where X represents the characteristics of persons and β depends on C1 and
C0,the characteristic of the program. These are linear in parameters versions
of Equation (2.1). The U1 and U0 are the unobservables arising from omitted
X,C1 and C0 components.

By modeling how β1 and β0 depend on C1 and C0 one can answer policy
question P-3 for new programs that offer new packages of C. A version of
the model most favorable to solving problem P-2 and P-3 is:

β0(C0) = ΛC
′

0

β1(C1) = ΛC
′

1

For each set of characteristics of a program one can model how outcomes
are expected to differ when the characteristics of the people participating
in them change (the X). Equations in (2.4) are in ex post all causes form.
When the agent information is present one can tale into account agent’s
uncertainty about X, βi, Ci and Ui using the ex ante version of outcomes
E(Y1∣I) and E(Y0∣I). Ex ante functions are defined in terms of variation
of I and are connected to ex post outcome by shock ν(s,ω) as in Equation
(2.3).

As explained in Section 2.1.6 agent chooses the treatment depending on
subjective valuation of the outcome, given the own information set. Let V
be the agent’s valuation of treatment:

V = E(Y1 − Y0 − (P1 − P0)∣I)

where Pi is the price of participating in treatment i and Pi = Zϕi + ηi.
Leaving Ci implicit and making the right substitution it is obtained:

V = E(Y1 − Y0 − (P1 − P0)∣I) =

= E(X(β1 − β0) −Z(ϕ1 − ϕ0) + (U1 +U0) − (η1 − η0))∣I).
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Let W = (X,Z) be the observed (by the econometrician)factors determining
choice and UW = (U1 − U0) − (η1 − η0) the unobserved factors ones. Let
γ = ((β1 − β0) − (ϕ1 − ϕ0)) be the vector of parameters, then the choice
equation can be represented as:

V = E(Wγ +UW ∣I)

with D = 1(V > 0) and where UV = UW ∣I. Let assume that both agent
and econometrician know W . The Roy model is a particular case with
parameters ϕ0 = ϕ1 = 0, η0 = η1 = 0.

The selection problem arises whenD is correlated with outcomes (Y0, Y1).
This happens if the observables or unobservable in (Y0, Y1) are correlated
with D. Thus there may be common observed or unobserved factors connec-
tion V and (Y0, Y1). IfD is not independent of (Y0, Y1), the observed (Y0, Y1)
are not randomly selected from the population distribution of (Y0, Y1). In
particular, in the Roy model, selection is based on Y0 and Y1, indeed D =
1(Y1 > Y0). Thus it is observed Y1 if Y1 > Y0 and Y0 if Y0 > Y1. If condition-
ing on W makes (Y0, Y1) independent of D, selection on observables is said
to characterize the selection process (see Heckman and Robb Jr (1985)). If
conditionals on W , (Y0, Y1) are not independent of D, then there is selec-
tion on unobservables. For the Roy model, Heckman and Honore (1990)
show that it is possible to identify the distribution of treatment (Y1 − Y0)
under certain conditions. Randomization can only identify the marginal
distribution of Y1 and Y0 and not the joint distribution of (Y1 − Y0).

2.3 Comparison

Tukey (1986) underlines that the econometric approach to policy evalua-
tion emphasizes the provisional nature of causal knowledge, because hu-
man knowledge advanced by developing theoretical models and testing them
against data. The models are inevitable provisional and depend on a pri-
ori assumption. Even randomization cannot answer all of relevant causal
questions.

Statisticians reject the notion of the provisional nature of causal knowl-
edge and look for an assumption free approach to causal inference. They are
motivated by the experiment as an ideal. They do not clearly specify the
mechanism determining how hypothetical counterfactuals are realized. They
do not model both the factors determining the outcome Y (s,ω), as econo-
metrics do in Equations (2.1) and (2.2), and the choice of which outcome
is selected. They focus only on outcomes, leaving the model for selection
outcomes only implicitly specified. The emphasis on randomization or its
surrogates, like matching or instrumental variables, rules out the identifica-
tion of counterfactuals from population or sample data by formal models.
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Since randomization is used to define the parameters of interest, this prac-
tice sometimes leads to the confusion that randomization is the only way,
or the best way, to identify causal parameters. Unlike the NeymanRubin
model, the econometric models do not start with the experiment as an ideal
but they start with well-posed, clearly articulated models for outcomes and
treatment choice where the unobservables that underlie the selection and
evaluation problem are made explicit. The hypothetical manipulations de-
fine the causal parameters of the model. Randomization is a metaphor and
not an ideal or “gold standard”.

Econometricians say that statistical models are incomplete for various
reasons. One reason is that they do not specify the sources of randomness
generating variability among agents, so the source of variability generating
Y (s,ω) as a random variable. In this way they do not specify why otherwise
observationally identical people make different choices and have different
outcomes given the same choice. Holland (1986, 1988) argues that it is an
advantage of the Rubin model that these features are not explicit.

They do not distinguish what is in the agents’ information set from what
is in the observing statisticians’ information set, although the distinction is
fundamental in justifying the properties of any estimator for solving selection
and evaluation problems. They do not distinguish uncertainty from the
point of view of the agent whose behavior is being analyzed from variability
as analyzed by the observing analyst.

They are also incomplete because they are recursive. They do not allow
for simultaneity in choices of outcomes of treatment that are at the heart
of game theory and models of social interactions. Since Haavelmo (1943),
econometricians have used simultaneous equations theory to define causality
in non-recursive models where causes are simultaneous and interdependent.
Heckman (2005) and Heckman and Vytlacil (2007b) present extensive dis-
cussions of simultaneous causality.

The econometric framework is explicit about how models of counterfac-
tuals are generated, the rules of assigning treatment, and the sources of
unobservables in treatment allocations and outcomes and their relationship.
Rather than leaving the rules governing selection of treatment implicit, the
econometric approach uses explicit relationships between the unobservables
in outcome and selection mechanisms to identify causal models from data
and to clarify the nature of identifying assumptions. It is the dependence
of unmeasured determinants of treatment choices with unmeasured determi-
nants of potential outcomes that gives rise to the selection bias in empirically
constructing counterfactual and treatment effect, even after conditioning on
the observables.

The treatment effect literature avoids many of the problems confronted
in the econometrics literature that builds explicit models of counterfactuals
and assignment mechanisms. This literature makes fewer statistical assump-
tions in terms of independence, functional form, exclusion restriction and

51



CHAPTER 2. THE ECONOMETRIC APPROACH TO CAUSALITY

distributional assumption. At the same time, it produces parameters that
are more limited in application. Without further assumptions, these param-
eters do not lend themselves to extrapolation out of sample or to accurate
forecasts impacts of other policies besides the ones being empirically inves-
tigated. At the same time, this literature is often unclear in stating what
economic questions are estimated parameters answers. Simplicity in estima-
tion is often accompanied by obscurity in interpretation. This approach does
not use information about basic behavioral parameters obtained from other
studies. When the components of treatments vary across studies, knowledge
does not accumulate across treatment effect studies.

The econometric models are criticized for the interpretability of the eco-
nomic frameworks and the parameters derived from them. At the same
time there are questions about the strong functional form, the exogeneity,
the support and exclusion assumptions used in classical versions of this lit-
erature, and the lack of robustness of empirical results. The arbitrariness
in the choice of parametric models motivates recent work in nonparametric
and semi-parametric econometrics.

The treatment effect approach does not model the factors determining
outcomes, it works solely with outcomes without inputs, differently from the
econometric approach that uses data to generate counterfactual. In such way
they focus treatment effects for policies actually experienced and provide no
framework for extrapolation of findings to new environments (problem P2)
or for forecasting new policies (problem P3). Forecasting the effects of new
policies is a central task of science, in fact econometricians model Y (s,ω)
in terms of characteristics of treatment, and of the treated. In this way
they facilitate comparisons of counterfactuals and derive causal effects across
studies where the composition of programs and treatment group members
may vary. It also facilitates the construction of counterfactuals on new
populations and for new policies.

Incorporating choice into the analysis of treatment effects is an essen-
tial and distinctive ingredient of the econometric approach to the evaluation
of social programs. The traditional treatment-control analysis in statistics
equates mechanisms a and τ . An assignment in that literature is an as-
signment to treatment, not an assignment of incentives or of eligibility for
treatment with the agent making treatment choices. In this notation, the
traditional approach has only one assignment mechanism and treats non-
compliance with it as a problem rather than as a source of information on
agent preferences, which is a central feature of the econometric approach
(Heckman and Smith, 1998). Thus, under full compliance a ∶ Ω → S, and
a = τ , where B = S.

The statistical approach does not model the treatment assignment rule
or its relationship to potential outcomes. The econometric approach makes
the treatment assignment equation the centerpiece of its focus and consid-
ers both objective and subjective valuations as well as ex ante (E(Y1∣I),
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E(Y 0∣I), E(C ∣I)) and ex post outcomes (Y1, Y0,C). The factors that lead
an agent to participate in treatment may be dependent on the factors affect-
ing outcomes. Modeling this dependence is a major source of information
used in the econometric approach to construct counterfactuals from real
data.

Economists distinguish objective and subjective outcomes, hence the sta-
tistical literature focuses exclusively on ex post objective outcomes. Indeed,
statisticians reason in terms of assignment mechanism, while economists rec-
ognize the agent preferences often governed by choice. Modeling this choice
process is a distinctive feature of the econometric approach. In econometrics
comparison across outcome can be made also in terms of personal utilities or
in terms of planner preferences. Utility function in fact produce subjective
valuations of outcomes by the agents being treated. Agent making decisions
about treatment may be only partially informed about realized payoffs at
the time they make decision, then it is interesting to model the distinction
between anticipated and realized outcomes.

Since statisticians do not develop choice equations or subjective eval-
uations, they do not consider the general invariance conditions for both
objective and subjective evaluations. Indeed Rubin (1986) invokes versions
of traditional econometric invariance assumptions and calls it SUTVA : Sta-
ble Unit Treatment Value Assumption. This assumption can be written in
the econometric notation as follows:

A-1 Y (s,ω, p, τ) = Y (s,ω, τ) that means no social interactions or general
equilibrium effects;

A-2 Y (s,ω, τ) = Y (s,ω) that means the outcome is the same no matter
what the choice of assignment mechanism.

The second condition rules out the phenomenon called randomization bias
by Heckman et al. (1999) where agent’s behavior is affected by the act
of participating in an experiment. Furthermore they discuss the evidence
against both assumptions. These assumptions represent strong limitations
and in recent work Heckman and Vytlacil (2005) relax them.

It is possible to summarize the main characteristics of the two approaches
below.

The Rubin model assumes:

R-1 Y (s,ω)s∈S , a set of counterfactuals defined for ex-post outcomes. It
does not analyze agent valuations of outcomes nor does it explicitly
specify treatment selection rules, except for contrasting randomization
with non randomization;

R-2 (A-1) Invariance of counterfactuals for objective outcomes to the mech-
anism of assignment within a policy regime;
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Newman-Rubin
framework

Structural
framework

Counterfactual for objective outcomes Yes Yes
Agent valuations of subjective outcomes No (choice mecha-

nism implicit)
Yes

Models for the causes of potential outcomes No Yes
Ex ante versus ex post counterfactuals No Yes
Treatment assignment rules that recognize the
voluntary nature of participation

No Yes

Social interaction, general equilibrium effects
and contagion

No (assumed away) Yes (modeled)

Internal validity (P1) Yes Yes
External validity (P2) No Yes
Forecasting effects of new policy (P3) No Yes
Distributional treatment effects No Yes
Analyzing relationship between outcomes and
choice equations

No (implicit) Yes (explicit)

Treatment of interdependence Recursive Recursive or
Simultaneous
system

Table 2.2: Comparison of the aspects of policy evaluation covered by the
Neyman-Rubin approach and the structural approach

R-3 (A-2) No social interactions or general equilibrium effects for objective
outcomes;

R-4 P1 is the only problem of interest;

R-5 Mean causal effects are the main object of interest;

R-6 There is no simultaneity in causal effects, i.e., outcomes cannot cause
one another.

The econometric approach considers a wider array of policy problems
than the statistical treatment effect approach. Its signature features are:

• Development of an explicit framework for outcomes Y (s,ω)s∈S , mea-
surements and the choice of outcomes where the role of unobservables
in creating selection problems and justifying estimators is explicitly
developed.

• The analysis of subjective evaluations of outcomes R(s,ω)s∈S , and the
use of choice and compliance data to infer them (way to introduce
agent decision making).

• The analysis of ex ante and ex post realizations and evaluations of
treatments. This analysis enables analysts to model and identify regret
and anticipation by agents (way to introduce agent decision making).
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• Development of models for identifying and evaluating entire distribu-
tions of treatment effects (ex ante and ex post) rather than just the
traditional mean parameters. These distributions enable analysts to
determine other parameter like the proportion of people who benefit
from treatment, a causal parameter not considered in the statistical
literature on treatment effects.

• Models for simultaneous causality.

• Definitions of parameters made without appeals to hypothetical ex-
perimental manipulations.

• Clarification of the need for invariance of parameters with respect to
different classes of manipulations to answer different classes of ques-
tions (P1-P3).

2.3.1 Reconciling the two literature

Structural model make the preferences and constraints explicit which given
individual decisions, that rule interaction among agents and the sources of
variability across agents. These feature facilitate finding answers to more
policy questions, absent in the program evaluation literature. In the sta-
tistical literature there is the absence of explicit model. Fewer assumptions
in term of exogeneity, functional form, exclusion and distributional assump-
tions than the standard structural estimation literature in econometrics are
attractive features of this approach. The greater simplicity of estimation
favours replicability, transparency and sensitivity analysis. Despite the re-
cent advances in the structural literature, fully-specified structural models
are often still hard to compute.

Heckman to reconcile these two literatures goes back to the Marschak’s
(1953) paper. Marschak noted that for many specific questions of policy
analysis, it is unnecessary to identify full structural models. In some sit-
uations the parameters required to forecast particular policy modifications
are represented by a combination of subsets of the structural parameters,
which are much easier to identify. They require fewer and weaker assump-
tions. For example, policy that only affects X may be forecast using reduced
forms, not knowing the full structure. Otherwise structural means parame-
ters invariant to classes of policy modifications can be used. Thus to forecast
other policies requires a partial knowledge of the system. Heckman called
this principle Marschak’s Maxim in honour of this insight and interpreted
the modern statistical literature as implicitly implementing this principle.
In such case the policy analyzed is the treatments and the goal of policy
analysis is restricted to evaluating policy in place (P1).

Population mean treatment parameters are often identified under weaker
conditions than the traditionally econometric analysis. To identify the aver-
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age treatment effect is only required E[Y (s,ω)∣X = x] −E[Y (s′, ω)∣X = x].
One does not have to know the full functional form of the generating gs
functions nor does X have to be exogenous. The treatment effects may, or
may not, be causal parameters depending on what else is assumed about the
model. Heckman (Heckman, 2005, 2010) considers identification conditions
that underlie matching and instrumental variable methods. Moreover he
discusses sources of unobservables, implicit assumptions about how unob-
servables are eliminated as source of selection problems, and the assumed
relationship between outcomes and choice equation. He uses economics to
interpret the parameter estimated and to make them useful for evaluating
a wider range of policies.
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Dynamic model

This chapter surveys the main dynamic models which are referred to longi-
tudinal and panel data. They have been recently proposed in the literature
to face the fact that a treatment or a policy may be evaluated dynamically
on time when such type of data are available. They allow to control unob-
served heterogeneity and to model changes in time. This chapter proposes
a survey of the main dynamic models. The importance of panel data and
the advantages of dynamic models are explained. The most used models
in literature are described under the main assumptions of dynamic uncon-
foundedness and of unobservables as for the static models described in the
previous chapters. The dynamic model with the assumption of dynamic
selection on observable represents the dynamic extension of the Newman-
Rubin potential outcome model summarized in the first chapter. Among
the models with the assumptions of selection on unobservable a model for
categorical outcome variable and continuous outcome variables is presented.
The former presents the dynamic binary model and the latter the duration
and event-history models.

3.1 Advantages of dynamic model

In the last decade panel data have become widely available. For a given in-
dividual multiple observations are available, also in different points in time.
Given this information a researcher is able to identify an otherwise unidenti-
fied model and simplify the computation and inference. Such data have sev-
eral major advantages over conventional cross-sectional or time-series data
sets. For example, they solve the problem arising in the presence of unob-
served variables that are correlated with explanatory observable variables.
By utilizing information on both the intertemporal dynamics and the indi-
viduality of the entities being investigated, one is better able to control in
a natural way for the effects of such variables. In policy context, it is ex-
pected that a policy can affect not only current outcomes, but also outcomes
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at other points in time. Also the same policy implemented at different time
periods may have different consequences. Having panel data on past pro-
gram participation, intermediate outcomes and covariates can be useful to
the assignment of programs and to the control of dynamic selection process.
The static framework provides a considerable simplification as compared to
a dynamic setting, but it does not account for attrition from the proposed
treatment while it is in operation. In some evaluation studies it may be possi-
ble to phrase the problem and organize data so that it fits the static setup or
by using ad hoc modification of the static causal framework. More often the
proper economic interpretation of parameters and identifying assumptions is
hard if a dynamic problem is framed as a static problem. Standard statisti-
cal approach may fail to estimate or test useful parameters. In epidemiology
and biostatistics similar problems are faced using counterfactual outcomes
explicitly in the dynamic setting in the analysis of the casual effects of com-
plex dynamic medical treatments on health outcomes. In such context the
main approach used is the dynamic versions of the potential outcome ap-
proach, suggested by Robins (1986) and developed in Robins (1989, 1997),
Gill and Robins (2001), and Lechner and Miquel (2010). These papers are
based on the so-called selection on observables assumption. Lechner (2004)
applies the framework to the labor market programs and Abbring (2008) ex-
tends the dynamic model including agent choice and subjective evaluations
(For a survey of these models see Abbring and Heckman (2008)). Expla-
nation of this model can be found in the following paragraphs. Often, in
econometric program evaluations selection on observables assumption is un-
likely to hold, because usually observational data are characterized by a lot
of heterogeneity among agents, not fully captured by the observed variables.
In a dynamic context, such unmeasured heterogeneity leads to violations of
that assumption. This is true even if the unmeasured variables do not af-
fect outcomes directly, because if agents are rational, forward-looking and
observe at least some of the unmeasured variables that the econometrician
does not, they will typically respond to these variables through their choice
of treatment and investment behavior. For the same reason, identification
based on instrumental variables is relatively hard to justify in dynamic mod-
els (Hansen and Sargent, 1980; Rosenzweig and Wolpin, 2000; Abbring and
Van den Berg, 2005). If the candidate instruments only vary across persons
but not over time for the same person, then they are not likely to be valid
instruments because they affect expectations and future choices and may
affect current potential outcomes. Instead of using instrumental variables
that vary only across persons, instruments based on unanticipated person-
specific shocks that affect treatment choices but not outcomes at each point
in time are required. The econometric literature is rooted on state depen-
dence and heterogeneity. Any history dependence of transition rates can be
explained both as true state dependence and as the result of unobserved het-
erogeneity that simultaneously affects the history and current transitions.
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This is a dynamic manifestation of the problem of drawing causal inference
from observational data.

3.1.1 State dependence, heterogeneity and initial condition

When the conditional probability of an individual staying in a state is a
function of past experience, two new issues arise: how to treat initial ob-
servation and how to distinguish true state dependence from spurious state
dependence. In much applied work usually initial conditions of relevant his-
tory of the process are assumed to be truly exogenous (Hsiao, 2003). This
means that initial conditions are fixed. Such hypothesis may be justifiable
only if disturbances that generate the process are serially independent or if
a new process is observed at the beginning of the sample. If the process has
been in process prior to the time it is observed, or if the disturbances of the
model are serially dependent, the initial conditions are not exogenous. For
example, the initial state cannot be assumed fixed in the presence of individ-
ual specific random effects. In this case the marginal distribution of initial
condition given the individual specific random effect has to be derived. This
is not so easy since the initial state is a function of unobserved past values.
For more details see Hsiao (2003). For what concerns state dependence, the
problem is to distinguish between true and spurious state dependence. Both
of them can explain why individuals who have experienced an event in the
past are more likely to experience that event in the future than individuals
who have not experienced the event. In fact there are two main opposite
explanations for this empirical regularity:

1. individuals are influenced by the experience of the event, preferences
or constraints relevant to future choice change. In such a case identical
individual who has not experienced the event will behave differently
in the future than an individual who has experienced the event;

2. individuals differ in certain unmeasured variables that influence their
probability of experiencing the event. If these variables are correlated
over time and are not controlled, previous experience may appear to
be a determinant of future experience. This happens because the pre-
vious experience is a proxy for temporally persistent unobservables
that determine the choice.

Heckman (Heckman, 1981) called the former true state dependence and the
latter case spurious state dependence. This problem is very similar to the
econometric problem of estimating a lag model in the presence of serial
correlation. In this case to account for heterogeneity the error term εit in
the model is decomposed as follows:

εit = αi + uit i = 1, . . . ,N t = 1, . . . , T,
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where uit is independently distributed over i with arbitrary serial correlation,
and αi is a subjective-specific variable and can be treated as a fixed constant
or as random. A model specification in which are considered past experiences
and the error term specified as above identifies three sources of persistence:

• serial correlation in the error term uit;

• unobserved heterogeneity αi;

• true state dependence given by lagged variables yi,t−1.

For further details see Heckman (1981), Hsiao (2003) and Bartolucci (2010)
Lagged variables capture the state dependence while the unobserved indi-
vidual effects (αi) controlled the serial correlation of errors. Conditional on
the individual effect αi, the error term uit should be serially uncorrelated.
On the contrary, if the error term uit remains serially correlated then past
yit contains information on uit and the problem becomes more complicated.
In most papers the heterogeneity is assumed to follow a continuous distri-
bution. The most commonly assumed distributions used are the Normal,
Lognormal and Gamma distribution [See Lancaster (1990)]. An important
limitation of this approach is that its estimation relies on an a priori as-
sumption about the shape of the distribution, which might lead to biased
estimates in cases where the underlying distribution has a substantially dif-
ferent shape from the assumed distribution (Heckman and Singer, 1984). An
alternative approach is to assume that the distribution is non-parametric,
where the distribution of parameters is represented by a finite number of
mass points. It is a discrete representation of heterogeneity, as the sup-
port of the distribution is discrete. This mass point approach can be seen
as closely related to the Latent Class model (LCM), also called the Finite
Mixture model (McLachlan and Peel, 2000), as it implies that the param-
eters influencing different individuals are associated with membership in a
distinct class or group.

3.2 Dynamic extension for the Newman-Rubin po-
tential outcome model

3.2.1 The notation

The dynamic policy evaluation problem can be formalized in a fashion sim-
ilar to the way in which the static problem is formalized.

The possible treatment assignment times are 1, . . . , T . The set S of treat-
ments considered is not restricted and it is allowed to the same treatment to
be assigned on multiple occasions. For expositional convenience, S is sup-
posed to be a finite discrete set. In general, the set of available treatments
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at each time t may depend on time t and on the history of treatments, out-
comes, and covariates. A dynamic policy p = (a, τ) ∈ A×T ≡ P is defined as
a dynamic constraint assignment rule a = {at}Tt=1 with a dynamic treatment

choice rule τ = {τt}Tt=1. I indicate the sequence of events until time t with
the apix t (for example atp = (ap(1), . . . , ap(t))), while the whole sequence
of event until T without apex (for example ap = (ap(1), . . . , ap(T ))). Agent,
policy’s planner and econometrician (or analyst), at time t under policy p,
have a different information set, respectively IA(t, p),IP (t, p),IE(t, p):

• each agent ω chooses treatment τt(ω, a) given determinants of con-
straints, future outcomes and the own preference components.

• planner assigns constraints to each agent using information based on
covariates and random variables under the planners control, as well as
past choices and realized outcomes.

• econometrician observes external covariates, not affected by the policy
p, Z of the assignment mechanism and X of the potential outcome.
The unobserved external covariates by the econometrician are indi-
cated with Ut, t = 1, . . . , T .

At each time t, each actor acts using the information about policy p at time
t present in his information set I(t, p). Furthermore it is assumed that the
information is not forgotten, so each agent improves his information over
time and I(t, p) ⊆ I(t + 1, p) for all t. It is also assumed that agents know
more than the planner at each time t, so that IP (t, p) ⊆ IA(t, p). Objective
outcomes associated with policies p are expressed as a vector of time-specific
outcomes Yp = (Yp(1), . . . , Yp(T ).

Extending the notation for the static case, the assignment of agents to
treatment it is denoted by sp(ω, t) = τt(ω, a). The shorthand stp is used
for the vector (sp(1), . . . , sp(t)) of treatments assigned up to and including
time t under policy p, and sp is used to indicate sTp . Treatment assignment
sp(t) is then a random variable that only depends on the agents informa-
tion. To make this dependence explicit, suppose that external covariates Z
and unobserved external covariates V1 that affect treatment assignment are
revealed to the agents at time 1. It follows that the information set of the
agent IA(1, p) at the different periods is:

• for t = 1 IA(1, p) = σ(Z,V1)

• for t ≥ 2 IA(t, p) = σ(Y t−1
p Z,V t).

The initial information set of the agents IA(1, p) includes only external
variables, so it does not depend on policy p. The ex post potential outcomes
corresponding to each treatment sequence s = (s(1), . . . , s(T )) are Y (t, s) =
yt(s,X,Ut) with t = 1, . . . , T .
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3.2.2 Assumptions

To simplify the notation, in the following text the dependence of outcomes
on observed covariates X is assumed implicit and all conditioning on X is
suppressed. A first assumption to the identification of effect in a dynamic
context is that there is no causal dependence of outcomes on future treat-
ment. That means:

NA for all t ≥ 1, Y (t, s) = Y (t, s
′

) for all s, s
′

such that st = (s
′

)t,

where st = (s(1), . . . , s(t)) and (s′)t = (s′(1), . . . , s′(t)). Abbring and Van den
Berg (2003b) and Abbring and Van den Berg (2003a) define this as a no-
anticipation condition (NA). It requires that outcomes at time t (and before)
be the same across policies that allocate the same treatment up to and in-
cluding t, even if they allocate different treatments after t. In the structural
econometric models this condition is trivially satisfied if all state variables
relevant to outcomes at time t are included as inputs in the outcome equa-
tions Y (t, s) = yt(s,Ut), t = 1, . . . , T .

Condition of NA implies that actual outcomes up to time t− 1 are equal
between two different policies p and p′ (Y t−1

p = Y t−1
p′ ), if the treatment history

coincide up to time t − 1 (st−1
p = st−1

p′ ). The treatment choice is then deter-
mined by the distributional properties of the constraint assignment rule a, as
the past and current constraints that were actually assigned to him and by
agent ω’s predictions of future constraints and outcomes. A forward-looking
agent will use observations of his covariates Z(ω) and Vt(ω) and past out-
comes Y t−1

p (ω) to infer his type ω and subsequently predict future external
determinants (Ut(ω), . . . , UT (ω)) of his outcomes and (Vt(ω), . . . , VT (ω)) of
his constraints and treatments. In turn, this information updating allows
agent to predict his future potential outcomes and, for a given policy, his
future constraints, treatments and realized outcomes. Justifying the (NA)
assumption requires specification of agent information about future treat-
ment and agent behavior in response to that information. Even though the
time t agent information about ω is the same under both policies, agents
may have different predictions of future constraints, treatments and out-
comes because the policies may differ in the future and agents know this.
(NA) requires potential outcomes to be determined externally, and not to be
affected by agent actions in response to different predictions of future con-
straints, treatments and outcomes. For this reason it is necessary to consider
also the effect of the information available to agents about the program and
policy. The analyst needs to control for the effect of agents’ information
modelling it.

To identify the dynamic treatment effects, Gill and Robins (2001) invoke
a dynamic version of the matching assumption (conditional independence)
which relies on sequential randomization (SR) for all treatment sequences s
and all t is:
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SR S(t) á (Y (t, s), . . . , Y (T , s)∣(Y t−1
p0 , St−1 = st−1, Z),

where the conditioning set (Y 0
p0 , S

0 = s0, Z) for t = 1 is Z. Equivalently,
S(t) á (Ut, . . . , UT )∣(Y

t−1
p0 , St−1, Z) for all t without further restricting the

data. Sequential randomization allows the Yp0(t) to be dynamic confounders
variables that are affected by past treatment and that affect future treat-
ment assignment. The sequence of conditioning information sets appearing
in the sequential randomization assumption represent the econometrician
information set:

• for t = 1 IE(1) = σ(Z)

• for t ≥ 2 IE(t) = σ(Y t−1
p0 , St−1, Z).

Furthermore it is supposed that IE(t) ⊆ IA(t, p0) for each t. If treatment
assignment is based on strictly more information than IE , so that agents
know strictly more than the econometrician and act on their superior infor-
mation, SR is likely to fail if that extra information also affects outcomes.
No anticipation and sequential randomization represent the identifying as-
sumptions. They are not testable because they do not restrict the factual
data (Gill and Robins, 2001).

3.2.3 Identification of causal effect: the g-computation for-
mula

The sequential randomization SR together with the no-anticipation condi-
tion (NA) represent the natural dynamic extension of the Neyman-Roy-
Rubin model for a static randomized experiment. Under such assumptions
and through the g-computation formula it is possible to sequentially identify
the causal effects of treatment from the distribution of the data (Yp0 , S,Z)
and construct the distribution of the potential outcomes Y (s) for any treat-
ment sequence s in the support of S. To explain the Robins (1997)’s g-
computation formula I will consider the case in which all variables are dis-
crete. No-anticipation condition (NA) ensures that potential outcomes for a
treatment sequence s equal outcomes under policy p0 (actual policy) up to
time t − 1 for agents with treatment history st−1 up to time t − 1. Formally,
Y t−1(s) = Y t−1

p0 on the set St−1 = st−1. Using this, sequential randomization
assumption SR can be rephrased in terms of potential outcomes: for all s
and t,

S(t) á (Y (t, s), . . . , Y (T , s)∣(Y t−1
s , St−1 = st−1, Z).

In turn, this implies that, for all s and t,

P (Y (t, s) = y(t)∣Y t−1
s = yt−1, St = st, Z) = P (Y (t, s) = y(t)∣Y t−1

s = yt−1, Z)
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where yt−1 = (y(1), . . . , y(t− 1)) and y = yT . From Bayes rule and the above
equation, it follows that:

P [Y (s) = y∣Z] = P [Y (1, s) = y(1)∣Z]
T

∏
t=2

P [Y (t, s) = y(t)∣Y t−1(s) = yt−1, Z] =

= P [Y (1, s) = y(1)∣S(1), Z]
T

∏
t=2

P [Y (t, s) = y(t)∣Y t−1(s) = yt−1, St = st, Z]

Invoking (NA), in particular Y (t, s) = Yp0(t) and Y t−1(s) = Y t−1
p0 on St = st,

produces

P [Y (s) = y∣Z) =

= P (Yp0(1) = y(1)∣S(1), Z]
T

∏
t=2

P [Yp0(t) = y(t)∣Y
t−1
p0 = yt−1, St = st, Z]

This is the version of Robins’s (1997) g-computation formula. From data
it is possible to sequentially identify each component on the left hand side
of the first expression, and hence identify the counterfactual distributions.
Matching on pretreatment covariates is a special case of the g-computation
approach in a static model. See Abbring (2008) for further details. An
alternative approach is to explicitly model and identify the evolution of the
unobservables.

3.3 The dynamic binary model and its extension

When the dependent variable Y is a discrete variable that represents a cat-
egory, from a set of mutually exclusive categories then logit, nested logit,
and probit models are used to model the relationship with one or more
independent variables X (see among others Agresti (2002)). Among the
statistical and econometric model for binary longitudinal data, the dynamic
logit model (Hsiao, 2003) is of particular interest and finds applications in
many fields as in the study of the labour market.

Let yit denote the binary response variable for subject i at occasion t,
with i = 1, . . . , n and t = 1, . . . , T and let xit be a corresponding vector
of strictly exogenous covariates. The dynamic logit model (Agresti, 1990)
assumes that:

log
p(yit = 1∣αi,xit, yi,t−1)
p(yit = 0∣αi,xit, yi,t−1)

= αi + x
′

itβ + yi,t−1γ

where αi is a subject-specific parameter which captures the unobserved co-
variates, β is a vector of regression coefficients for the covariates and γ is
the parameter of state dependence. This model is justified in econometric
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literature on the basis of the structural model proposed by Heckman (1981)
in term of a continuous latent random variable crossing a threshold. In such
case the discrete outcome y can be viewed as the unobserved counterpart of
a continuous latent (unobservable) variable y∗it:

y∗it = x′itβ + yi,t−1γ + εit, t = 1, . . . , T

The error term εit is assumed to be independent of x′it and over i and to
follow a logistic distribution. The observed variable can be written as:

yit = { 1 if y∗it > 0
0 if y∗it ≤ 0

Given that y is a categorical outcome variable with j = 1, . . . , J numbers
of levels (or categories), the marginal distribution of this variable may be
described by a set of J − 1 logits chosen from among four different types
according to characteristics of such categories: (Colombi and Forcina, 2001):

• local (l) : log[P (Y = j + 1)] − log[P (Y = j)]

• global (g) : log[P (Y > j)] − log[P (Y ≤ j)]

• continuation (c) : log[P (Y > j)] − log[P (Y = j)]

• reverse continuation (r) : log[P (Y = j + 1)] − log[P (Y ≤ j)].

Logit of type g and c are the most appropriate for ordered categorical re-
sponses. The global one can be used to construct logits of cumulative prob-
abilities. Given πj = P (Y = j) then:

logit[P (Y ≤ j)] = log
P (Y ≤ j)

1 − P (Y ≤ j)
= log

P (Y ≤ j)
P (Y > j)

= log
pi1 + . . . + pij
pij+1 + . . . + piJ

.

When there are more then one variable of interest and they are categor-
ical variables with more then two level extensions of this model has to be
used. Extension and application of this model can be found in Bartolucci
and Farcomeni (2009) and Bartolucci and Pennoni (2010).

Let r denote the number of categorical response variables observed at
each occasion and denote by yhit the h-th response variable for subject i
at occasion t, with h = 1, . . . , r, i = 1, . . . , n and t = 1, . . . , T . This variable
has lh categories indexed from 0 to lh − 1. Let yit denote the vector with
elements yhit and let p(yit∣αit,xit,yi,t−1) the conditional probabilities for
all possible configuration of yit arranged in order, where xit denote the co-
variates, yi,t−1 the lagged response and αit the time-varying random effects.
A model assumption that can be made is that yit is conditional independent
of yi0, . . . , yi,t−2, given xit, yi,t−1 and αit, t = 2, . . . , T . As an example consider
the case of three variables (r = 3) with 2, 3 and 3 levels (l1 = 1, l2 = 2, l3 = 3),
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respectively. Furthermore, the logit can be treated with logits of type local,
global and continuation, respectively. The logit can be then parametrized
as follows:

log
p(yhit = 1∣αit,xit,yi,t−1)
p(yhit = 0∣αit,xit,yi,t−1)

= α1it + x
′

itβ1 + y
′

i,t−1γ1

log
p(yhit ≥ z∣αit,xit,yi,t−1)
p(yhit < z∣αit,xit,yi,t−1)

= αz+1,it + x
′

itβ2 + y
′

i,t−1γ2 z = 1,2

log
p(yhit ≥ z∣αit,xit,yi,t−1)

p(yhit = z − 1∣αit,xit,yi,t−1)
= αz+3,it + x

′

itβ3 + y
′

i,t−1γ3 z = 1,2

Note that on one hand the regression coefficients for the covariates and those
for the lagged response variables are the same for both logits (z = 1,2) and
on the other hand the intercept αhit are specific to each variable category.
This is a standard practice in model for ordinal variable (McCullagh, 1980).
The latent process or heterogeneity αi1, . . . , αiT can be modeled in different
ways as explained in the previous paragraph.

3.4 Treatment effect in duration model

Let us consider two continuously-distributed random durations: S, the du-
ration of the time to treatment and Y , the outcome duration. Let Y (s) and
S(y) respectively be the potential outcome duration when the treatment
time is externally set to s and the potential treatment time resulting from
setting the outcome duration to y. It is assumed that ex ante heterogeneity
across agents is fully captured by observed covariates X and unobserved
covariates V , assumed to be external and temporally invariant. Treatment
causally affects the outcome duration through its hazard rate. The hazard
rate of Y (s) at time t for an agent with characteristics (X,V ) is denoted by
θY (t∣s,X,V ). Similarly, outcomes affect the treatment times through their
hazard θS(t∣y,X,V ). Without loss of generality, it is possible to partition
V into (VS , VY ) and assume that:

θY (t∣s,X,V ) = θY (t∣s,X,VY )

θS(t∣y,X,V ) = θS(t∣y,X,VS) (3.1)

Intuitively, VS and VY are the unobservables affecting, respectively, treat-
ment and outcome, and the joint distribution of (VS , VY ) is unrestricted. In
particular, VS and VY may have elements in common. The corresponding
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integrated hazard rates are:

ΘY (t∣s,X,VY ) = ∫
t

0
θY (u∣s,X,VY )du

ΘS(t∣y,X,VS) = ∫
t

0
θS(u∣y,X,VS)du (3.2)

For expositional convenience, it is assumed that these integrated hazards are
strictly increasing in t and that they diverge to ∞ as t→∞, so that the dura-
tion distributions are non-defective. Then, ΘS(t∣y,X,VS) and ΘY (t∣s,X,VY )
are unit exponential for all y, s ∈ R+. This implies the following model of
potential outcomes and treatments

Y (s) = y(s,X,VY , εY ) S(y) = s(y,X,VS , εS), (3.3)

for some unit exponential random variables εY and εS that are independent
of (X,V ), y = Θ−1

Y and s = Θ−1
S . The exponential errors εY and εS represent

the randomness in the transition process after conditioning on covariates X
and V and survival and are assumed to be independent εY á εS . In such
way Y (s) and S(y) are only dependent through the observed and unobserved
covariates (X,V ).

This conditional-independence assumption is weaker than the conditional-
independence assumption used in matching, because it allows for condition-
ing on the invariant unobservables V . It is also assumed a version of the
no-anticipation condition: for all t ∈ R+,

θY (t∣s,X,VY ) = θY (t∣s′,X,VY )

θS(t∣y,X,VS) = θS(t∣y′,X,VS) (3.4)

for all s, s′, y, y′ ∈ [t,∞).
This excludes effects of anticipation of the treatment on the outcome.

Similarly, there can be no anticipation effects of future outcomes on the
treatment time hazard. The no-anticipation assumption ensures that this
system has a unique solution (Y,S) by imposing a recursive structure on
the underlying transition processes. Together with a distribution G(⋅∣X)
of V ∣X, this gives a non-parametric structural model of the distribution of
(Y,S)∣X that embodies general simultaneous causal dependence of Y and
S, dependence of (Y,S) on observed covariates X, and general dependence
of the unobserved errors VY and VS .

There are two reasons for imposing further restrictions on this model.
Firstly, it is not identified from data on (Y,S,X). For each version of the
model with selection on unobservables and anticipation effects, there is an
observationally-equivalent model version that satisfies no-anticipation and
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conditional randomization. Secondly, even if its ensured nonparametric iden-
tification by assuming no-anticipation and conditional randomization, it is
possible to learn, at best, only about the average effects:

θY (t∣s,X) = E[θY (t∣s,X,VY )∣X,Y (s) ≥ t]

θS(t∣y,X) = E[θS(t∣y,X,VS)∣X,Y (s) ≥ t] (3.5)

Thus, it is possible to identify the distributions of Y (s)∣X and S(y)∣X.
These distributions do not control for unobserved covariates V , so they can
lead up to dynamic confounding selection effects (Abbring and Van den
Berg, 2005).

Abbring and Van den Berg study the model identifiability without ex-
clusion restrictions considering an extension of the multivariate Mixed Pro-
portional Hazard (MPH) model (Lancaster, 1990) in which the hazard rates
of Y (s)∣(X,V ) and S(y)∣(X,V ) are given by

θY (t∣s,X,V ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

λY (t)φY (X)VY if t ≤ s

λY (t)φY (X)δY (t, s,X)VY if t > s

and

θS(t∣y,X,V ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

λS(t)φS(X)VS if t ≤ y

λS(t)φS(X)δS(t, y,X)VS if t > y

respectively, and V = (VS , VY ) is distributed independently of X. The
baseline hazards λY ∶ R+ → (0,∞) and λS ∶ R+ → (0,∞) capture dura-
tion dependence of the individual transition rates. The integrated hazards
are ΛY (t) = ∫

t
0 λY (τ)dτ < ∞ and ΛS(t) = ∫

t
0 λS(τ)dτ < ∞ for all t ∈ R+.

The regressor functions φY ∶ X → (0,∞) and φS ∶ X → (0,∞) are as-
sumed to be continuous, with X ⊂ Rq being the support of X. In empirical
work, these functions are frequently specified as φY (x) = exp(x′βY ) and
φS(x) = exp(x′βS) for some parameter vectors βY and βS . The functions
δY and δS capture the causal effects. Note that δY (t, s,X) only enters
θY (t∣s,X,V ) at durations t > s, so that the model satisfies no anticipa-
tion of treatment assumption (NA). Similarly, it satisfies no anticipation of
outcomes and has a recursive causal structure as required by the no antici-
pation assumption. If δY = 1, treatment is ineffective; if δY is larger than 1,
it stochastically reduces the remaining outcome duration.

The MPH restriction on this model, however, is hard to justify from
economic theory, indeed the MPH model only results under strong assump-
tions (Heckman and Singer, 1986; Van den Berg, 2001). This model allows
δY and δS to depend on elapsed duration t, past endogenous events, and the
observed covariates X, but not on V . Abbring and Van den Berg (2003a)

68



3.4. TREATMENT EFFECT IN DURATION MODEL

also consider an alternative model that allows δY and δS to depend on un-
observables in a general way, but not on past endogenous events. They also
show that these models are non parametrically identified from single spell
data under the conditions for the identification of competing-risks models
based on the multivariate MPH model. The models can be parameterized
in a flexible way and estimated by maximum likelihood. Typical parameter-
izations involve linear-index structures for the regressor and causal effects, a
discrete distribution G, and piecewise-constant baseline hazards for λS and
λY . An empirical application can be found in Abbring et al. (2005).

3.4.1 Treatment effect in more general event history models

It is possible to place the causal duration models in the more general set-
ting of event-history models with state dependence and heterogeneity. A
way to do this is to follow Abbring and Heckman’s (2008) analysis of the
mixed semi-Markov model, that is also analogous to the frameworks of
Heckman and Singer (1986). The point of departure is a continuous-time
stochastic process assuming values in a finite set S at each point in time.
The realizations of this process are interpreted as agents event histories of
transitions between states in the state space S. Suppose that event histo-
ries start at real-valued random times T0 in an S-valued random state S0,
and that subsequent transitions occur at random times T1, T2, . . .such that
T0 < T1 < T2 < . . .. Let Sl be the random destination state of the transition
at Tl. Taking the sample paths of the event-history process to be right-
continuous, Sl is the state occupied in the interval [Tl, Tl+1). Suppose that
heterogeneity among agents is captured by vectors of time-constant observed
covariates X and unobserved covariates V . In this case, state dependence
in the event-history process for given individual characteristics X, V has a
causal interpretation.

A way to give a structure to such state dependence it is to assume that
the event-history process conditional on X,V is a time-homogeneous semi-
Markov process. Conditional on X,V the length of a spell in a state and
the destination state of the transition ending that spell depend only on the
past states through the current state. In the potential outcome notation:

(∆Tl, Sl) á (Ti, Si), i = 0, . . . , l − 1∣Sl−1,X,V

where ∆Tl = Tl − Tl−1 is the length of spell l. Also, the distribution of
(∆Tl, Sl)∣Sl−1,X,V does not depend on l. Note that, conditional on X,V ,
Sl, l ≥ 0 is a time-homogeneous Markov chain under these assumptions.

The event-history process conditional on observed covariates X only is a
mixed semi-Markov process. If V affects the initial state S0, or transitions
from it, subpopulations of agents in different states at some time t typically
have different distributions of the unobserved characteristics V . Therefore,
a comparison of the subsequent transitions in two such subpopulations does
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not only reflect state dependence, but also sorting of agents with different
unobserved characteristics into the different states they occupy at time t.
Abbring (2008); Abbring and Heckman (2007) discusses this model’s appli-
cation to program evaluation.
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Chapter 4

Labour market and available
data

This work attempts to investigate the dynamic impact of the first stable job
coherent with the university education on the future job coherence. That
is possible having at disposal administrative panel data on both Lombardy
labour market and Milan Universities education. Before proceeding by mod-
eling such a problem, a brief introduction of the nowadays labor market in
Italy is presented. In the last decade global economic system has changed
and with it also the concepts of job and stability. In this context it is of great
relevance to redefine the concept of a good job. Considering the Subsam-
ple of graduates it is of great interest the duration and the coherence of the
work experience with one’s own studies. In this chapter the available admin-
istrative data are described and descriptive statistics are presented for the
sample considered. Furthermore two subpopulations are taken into account:
the subsample of people with at least a long term coherent job and the sub-
sample of people with at least a stable job. Finally the main differences of
this Subsamples compared with the whole population are highlighted.

4.1 Labour market

4.1.1 Italian labour market today

One of the focal points of the nowadays labour market and of the intervention
of institutions can be found in the dialectic combination between two poles:

“On one hand the need for security and on the other the experience of
change. The need for security, that is a perspective for a long term job, as
working is planning the future, building something. The experience of the
risk of change, because techniques change, needs to be answered; change and
organizational contexts are constantly evolving ”(Marco Martini, 1998).

Finding a balance between these two divergent trends is a vital need
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for the harmonious development of the labor market. The global economic
system has changed considerably in recent decades facing strong pressures
like financing the economy, globalization, development of services and the
ever more massive and rapid adoption of innovations derived from ICT.
All this has undermined the Fordist productive system which dominated
the economic organization since the mid-nineteenth century. The economic
system is changing and with it business and workers needs.

On one hand, the unpredictability of the market and the increasing vari-
ability of demand put in a difficult position the original set of companies
which try to react reorganizing their own activities. On the other hand,
people lose the certainty of a life-long lasting workplace and a career that
develops within a company with a known location and well defined growing
path.

Given the rapid spread of temporary employment and the increased in-
stability of the market, a new concept is taking root, the work path, which
can take place in different sectors and positions and require very different
skills and knowledge also quite different one from the other. Certainty,
which was previously linked to the presence of stable, productive organiza-
tion, lacks in this new context of the labour market. In a situation like this
a strategic role is played by public, private and non-profit organizations,
dealing with employment services, which more and more often interpose
themselves in the process of matching job demands and job offers. Among
these, temporary employment agencies, able to meet the needs of business
flexibility. Work relationships become more flexible with the consequent
growth of “non standard” work types. This term typically refers to all types
of work that are not characterized by three components: full time engage-
ment, presence of a single employer and a permanent contract. In addition
to this, the workers, even those employed on a permanent contract, can no
longer expect to remain employed for a long period in the same company.
Technological and organizational change help, in fact, in significantly reduc-
ing the average length of employment relationships, even those standards,
and higher rates of total turnover in the labour market (Bauer and Bender,
2004).

4.1.2 A new concept of career

What has characterized the labour market in recent years is a substantial
increase of mobility at all levels. In the first place occupational mobility in-
creases, in the meaning of the transition from one job to another or from one
organization to another. Also professional mobility increases, as the transi-
tion from one professional position to another, and contractual mobility, as
the transition through various employment forms. Work paths then develop
through a consistent inter-sectoral mobility, because of which the workforce
can be called to change the field of activity several times during one’s career.
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Work experience also changes within the same organization. New strategies
for flexible management change position (employee, independent, co-worker,
etc..), length of the work relationship (permanent, fixed-in project, etc..),
commitment time (part-time, full time ), workplace (tele-work, etc..), and
remuneration as a fundamental part of an employment relationship, making
it more variable and personal and business results driven.

That is why career in the post-Fordist society undergoes radical changes.
In particular, we are witnessing what is called the transition from a linear
career model to a boudaryless career. The linear career typically develops
through professional advancement that occurs within one or two companies,
following a linear path of growth stages. The success of the organization
depends on the individual worker and is measured by the number of pro-
motions and the wage increase. The career without boundaries is instead
defined as “a sequence of job opportunities that develop beyond the bound-
aries of a single organizational context” (DeFillippi, 1996). Following this,
today it is almost unthinkable for people to focus exclusively on finding the
job that lasts a lifetime within the same organization and that guarantees
a slow and structured professional development. It is more likely for in-
dividuals to engage in a career path that can take place in very different
branches and positions, and that requires skills and knowledge rather far
apart. Given this context it is essential for an employee to be still able to
experience a career grow path over time developing both in terms of income
and professionalism. To be successful, people need to acquire knowledge and
skills usable in the market and no longer only within a single company.

4.1.3 The concept of stability

In the labor market literature (Booth et al., 2002) stability is expressed by
the type of job contract. Usually the main contract categories are permanent
employment, that is employment of unspecified duration, and fixed-term or
temporary employment, that ends automatically, without any prior termi-
nation procedure, on the date either when the contractual term expires or
when the contractually specified work is completed. This classification was
used, for example, by Bonnal et al. (1997) and Gagliarducci (2005). A more
detailed categorization implies to distinguish between fixed-term and tempo-
rary contract. A fixed-term contract is one which terminates on a specified
date or on the occurrence of an event which is certain to happen on a par-
ticular date. A temporary contract is normally used when no end date is
known and its termination is dependent on an event such as return from
sick leave or maternity leave, or completion of a job. Furthermore, usually,
a temporary contract has a shorter duration than fixed-term contract, and
it is got through the Work Temporary Agency (WTA). Along with a steady
growth of the temporary work, introduced in Italy in 1997 (Law 196 / 197),
over the past thirty years has also raised the interest in the role played by
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this form of employment in the labor market.
National and international literature attempt to study the effect of tem-

porary work on the work process. On one hand temporary job may be
preferable to an unemployment state, as it represents a good opportunity
to enter the labor market. On the other hand, accepting a temporary job
could have a negative effect on the future perspectives of career stabilization
and on levels of retention and motivation of employees. Temporary jobs can
represent “dead end” jobs with poor pay and prospects or “stepping stones”
to permanent employment in good jobs (Booth et al., 2002). Gagliarducci
(2005) selects a sample of individuals who enter the labour market via tem-
porary employment and follow them until they obtain a permanent contract.
He finds that the probability of moving from a temporary to a permanent
job increases with the duration of the contract, but decreases with repeated
temporary jobs and especially with interruptions. This suggests that it is
not temporary employment per se but the intermittence associated with it
that is detrimental to employment prospects. Güell and Petrongolo (2007),
using a duration model with competing risks of terminating into permanent
employment versus alternative states, find that conversion rates from tem-
porary to permanent jobs increase with tenure. Van den Berg et al. (2004)
investigates locking-in effects of temporary subsidized jobs using a natural
experiment that occurred in the Slovak labour market in the early 1990s.
He finds that if the subsidized job lasts too long, workers start reducing
their job search intensity. In addition to this, the idea of looking at re-
peated temporary contracts is not a new phenomenon. Booth et al. (2002)
study the effect of the number of temporary contracts held in the past on
current wages. Zijl et al. (2004) take into consideration the presence of mul-
tiple spells for identification purposes, finding that temporary jobs serve as
stepping-stones towards regular employment.

In general, national and international literature focus on the effect of
temporary contracts against permanent contracts. A Permanent contract
represents a target to achieve, the job of good quality. It is conceived as
an absorption state, synonymous of stability, but, as previously stated, it
does not always represent the final target to achieve. It is believed that a
permanent contract assures more certainties, social protection (maternity,
retirement, etc . . .), stability and continuity in the work experience. On
the other hand, contracts with temporary duration (fixed term contract,
temporary contract, Co.Co.Pro, etc . . .) are considered unstable because of
their shorter duration and less security. Actually it is not always true that
a permanent contract guarantees a priori a more stable work. As a fact,
in some European countries (UK, Scandinavian countries, Switzerland, etc
. . .), a low social protection leads to a very high frequency of interruptions
in permanent contracts, while in Italy we face a similar phenomenon due to
the presence of a big amount of little firms (less than 15 employees) that
often have a short life. Fabrizi (2009) analyzes the Italian workers’ careers
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from 1998 to 2004; he finds out that 11% of people that started working with
a permanent job, after 1, 3 or 6 years had their contracts changed into more
flexible ones. Furthermore, after 6 years from the entrance in the working
world, only the 46% of workers are still under a permanent contract. At
regional level, in Veneto, Accornero et al. (2000) shows that about 50% of
permanent contracts ends during the first year. Similar results can be found
in Lucidi and Raitano (2009). Of great interest is the province of Milan,
characterized by a high labor mobility. Mezzanzanica (2008) analyses the
contracts started from 2000 to 2007 and finds out that the average duration
of the permanent contracts is about 19 months. This duration is longer than
the average of temporary contracts, but not comparable with the duration
of the permanent contracts of the previous decade.

4.1.4 Research hypothesis

This evidence underlines how permanent contracts per se are no more a
meaning of stability and continuity. In this context it is better to define
stability in terms of other factors, regardless of the type of contract (Fabrizi,
2009). Following this direction an important factor is the contract duration:
stability has to be measured by the actual time worked and it has to be
associated with a longer work duration. It is so necessity to define again
which characteristics are peculiar of a good job. Considering the subsample
of people that get a degree, it is interesting to take into account both work
duration and work coherence related to one’s own studies. To the best of
my knowledge the majority of papers study the impact of the temporary (or
fixed-term) job(s) on the career, measuring the time to get a permanent job
(see for example Gagliarducci (2005); Bonnal et al. (1997); Gritz (1993)).
The latter is usually considered the target job, but as explained above the
permanent job is no more to be considered a point of arrival, given that its
duration can be also very short. Usually after the first permanent contract
other work experiences are observed. For this reason, with the data at hand
it is particularly important to investigate what happens after getting the
first long-term job. I call “stable” a job with a duration of at least 540
days (1 year and a half). This duration seems appropriate as it is longer
than the ordinary duration of two successive fixed-term contracts. As the
contract type is no more an appealing characteristic replaced by the effective
duration, in the subsample of people with a degree, the coherence with the
field of studies assumes a great relevance in order to define a good job.
To the best of my knowledge in literature there are no studies that deal
with the issue of work coherence. Scope of my work is indeed to study the
impact of coherence of the first stable job (as defined above) on the following
career. In this context lots of interesting questions arise. Can a coherent
long experience lead the subject up to have another coherent experience?
In other words, does a long enough experience with a certain coherence
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have an impact on the future coherence experience? Which variables have
a significant effect on the work coherence?

4.2 Data

The database for the analysis is provided by the Inter-University Research
Center on Public Services (CRISP) holding the following administrative
databases:

• the observatory of the Lombardy job market database supplying in-
formation relative to all the obligatory information given by the em-
ployer regarding public and private employees from January 1, 2000
to nowadays. For each subject it contains information regarding each
individual work experience described by the date of entry, duration
and cessation of employment, type of sector and qualification.

• the databases concerning graduates from three of the biggest universi-
ties of Milan reporting the marks received from individual exams and
the final graduation status and title of every student that obtained the
degree during the period between 2003 and 2008.

It is worth mentioning that access to databases of this nature is extremely
rare, even at an international level, because data come from administrative
sources and not from sample groups. Note that from the administrative
archives, the employment status of a subject is not available if he is: not em-
ployed, employed outside the Lombardy region, self-employed, or employed
in the public sector or with a coordinated and continued collaboration type
of contract.

In particular these datasets contain the following information:

• working relationship (contract start and end date, extension or trans-
formation date, contract type, qualification). With such information
it is possible to construct the sequence of events that represents the
worker career;

• worker (age, gender, domicile);

• worker’s firm (economic sector);

• university career (faculty, course of study, graduation mark, time to
get the degree and type of high school).

4.2.1 Sample considered

All the working relationships before the degree or with a duration of less
than 20 days have been eliminated from the database as not representative
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for the individual career. Contracts started before the degree and termi-
nated after the degree have been considered. The variable “Coherence”,
showing if there is coherence between the job qualification and one’s own
field of studies, has been constructed comparing the course of study with
the job qualification for each faculty. It is assigned value 1 when qualifica-
tion resulted coherent with the one explicitly expressed from the website of
each faculty, 0 otherwise. I chose the faculties for which the qualification
were more clear and objective for the construction of the coherence variable.
The faculties considered are:“Mathematical, Physical and Natural Sciences”
(MPNS), “Economics”, “Faculty of education”, “Psychology” and “Social
Sciences”. In order to minimize the initial sample heterogeneity, have been
selected only workers who, at the time of the degree, were aged between
21 and 35 (this restriction is common enough, see for example Gagliarducci
(2005)). The subjects analyzed are restricted to those who got the degree
between 2003 and 2005. In this way there are at least 4 years of work his-
tory after the degree to investigate on, given that the available data on their
subsequent work history is up to July 2010. To take into account the stu-
dents’“ability” the graduation mark is considered. A dichotomous variable is
constructed considering as skilled those students that got a graduation mark
equal to or higher than 106. This classification has been chosen because the
class 106-110 is the last one of ALMA LAUREA classification.

To simplify the result interpretation some variables have been reclassified
following the ALMA LAUREA classification:

• age at the degree reclassified in macro-classes: 20-21 years old,22, 23,
24, 25, 26, 27, 28, 29, 30-35 years old;

• type of high school reclassified in the few classes: secondary school
focusing on sciences, secondary school focusing on humanities, training
college, other.

After the cleaning procedure, the resulting subsample is formed by 94,464
working relationships referred to 25,871 people graduated in Milan and work-
ing in the Lombardy region.

Given that I want to study both stability and coherence I select two
particular subsamples from it. In both subsamples the treated are repre-
sented by people for whom I observe at least a coherent stable job after the
degree. I choose the first stable job observed. The two subsamples differ
for the control group. In one of them I consider the subset of people for
whom the longer work experience observed is coherent with one’s own stud-
ies. In this case the control group can be considered as a kind of different
treatment consisting in an unstable job with duration that can vary from 20
days to 539 days. With this subsample I can evaluate the effect of stability,
given that the two groups (treated and untreated) differ only for this char-
acteristic. Indeed the model used takes into account both observable and
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unobservable variables that can affect both treatment and outcome. The
second control group is formed by people for whom at least a stable job is
observed, but the first one stable job is incoherent with one’s own studies.
With this subsample I can evaluate the effect of coherence, given that the
two groups differ only for this characteristic.

The variable of interest is then the coherence associated with the work
experiences subsequent the treatment. It assumes the folloing values:

0 if the work coherence is unknown (in this case the subject cannot be
present in the dataset or the coherence value is missing, given that
there is no information on qualification at that time);

1 if the job qualification is incoherent with the field of study;

2 if the job qualification is coherent with the field of study.

Note that categories are ordered. This variable is considered in different
time istants: three months before the beginning of the reference job, six
and nine months after the end of it. The reference job is for treated the
first cohehrent stable job and for the two control groups considered, the
coherent unstable job and the inchoerent stable job, respectively. The other
information about the individual career is synthesized trough the variables
indicating the number of preceding and subsequent contracts. The former
represent also a proxy of the distance from the degree to the first coherent
stable job (the treatment).

4.2.2 Descriptive statistics

The purpose of this study is to evaluate the effect of the first stable job,
where a stable job is a working relationship lasting not less than 540 days
(1 year and a half) representing the treatment. This duration seems appro-
priate as it is longer than the ordinary duration of two successive fixed-term
contracts. For this reason I have to identify the treated individuals with at
least one stable job, who are 18,430 related to 72,100 work relationships.
Among these individuals only those having at least one work relationship
after the stable job were selected. This condition is necessary to study the
effect of the first stable job on careers. There are 11,012 individuals meet-
ing this characteristic related to 38,431 work relationships. Among these,
3,995 individuals had a job before the first stable one while for the remain-
ing 7,017 the stable job is the first after graduation. The control sample is
represented by workers with no stable job after graduation, which are 7,441
related to 22,364 work relationships. The covariates considered are: gender,
graduation age, graduation marks, type of high school (scientific, humani-
ties, etc . . . ), graduation program type (bachelor degree, master degree, old
system degree), faculty, number of work experiences preceding and following
the reference job. Individuals with at least one of these variables missing
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have been cut off as it is assumed the missing values are random (missing at
random). To apply the model all combinations of those variables have been
identified, associated with the respective number of individuals having these
characteristics. The number of combinations is equal to 14,292 related to
17,643 individuals. If I consider only combinations of individuals related to
more than one individual, the number of combinations falls down to 1,913
related to 5,264 individuals.

Table 4.1 gives descriptive statistics for the subsample which contains
5,264 individuals. The table shows that the number of graduates has in-

(a) Demographics variables

Variables %

Gender
Male 31.3
Female 68.6

Age
21-22 6.6
23 13.8
24 20.5
25 20.3
26 13.4
27 8.4
28 5.4
29 4.0
30-35 7.2

Maturity
Ss on sciences 28.5
Ss on humanities 14.5
Technical college 32.7
Other colleges 24.1

(b) Education variables

Variables %

Faculty
Economics 23.3
Psychology 12.3
Education 31.1
MPNS 23.4
Sociology 9.7

Type of degree
Bachelor’s degree 42.9
Master’s degree 11.1
Degree 45.8

Grade
Grade ≤ 106 68.3
Grade > 106 31.6

Year of degree
2003 13.8
2004 18.0
2005 22.1
2006 22.7
2007 23.2

Table 4.1: Demographics and Education variables

creased from 2003 to 2007. This is also due to an intrinsic feature of the
database, given that considered individuals come from the intersection of
the database of graduates and workers. Lately the database of workers has
become more comprehensive because it includes more contract types and
therefore the match between the two databases has led to a higher num-
ber of individuals. Among them 68.6% of individuals are females. This
is because, among the 5 right choices, 3 are female-dominated (Education,
Psychology and Social Sciences, Table 4.5), representing more than 50% of
the population. In fact, 31.1% of the individuals have a degree in Education,
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Bachelor’s degree Master’s degree Degree

Degree duration
missing 26.8 45.7 48.9
2 4.1 30.3 0.2
3 17.4 21.6 0.8
4 28.7 1.9 2.8
5 14.3 0.2 12.8
6 5.6 0.0 14.0
>6 2.5 0.0 19.8

Table 4.2: Degree duration for type of degree

Grade ≤ 106 Grade>106
% col % row % col % row

Gender
Male 36.2 78.9 20.8 21.0
Female 63.7 63.4 79.1 36.5

Type of degree
Bachelor’s degree 51.5 82.0 24.4 17.9
Master’s degree 6.2 38.5 21.6 61.4
Degree 42.1 62.8 53.8 37.1

Table 4.3: Descriptive statistics stratified for grade

12.3% in Psychology, 9.7% in Sociology, 23.4% in MPNS and 23.3% in Eco-
nomics. Unlike the expectations 32.7% of the graduates come from technical
and tertiary college and only 14.5% from the secondary school focusing on
humanities despite the fact that more than 50% of individuals have a degree
in humanistic field.

Most individuals (68.0%) are between 23 and 26 years old. Only 20.4%
of individuals graduate before turning 23 despite the fact that 42.9% of grad-
uates have a three-year degree. This shows that not everyone can graduate
on time. This is also shown in Table 4.2 on the degrees duration where it
is clear that the mode duration for a three-year degree is four years, for a
specialistics 2 years and for the old system degree it is 6 years. Graduated
with a graduation mark higher than 106 represent 31.6% of the considered
individuals. As shown in Table 4.3, with higher marks are those coming
from a specialistic degree, getting higher grades than the ones coming from
a three-year degree and the old system degree. As many as 61.4% of individ-
uals coming from master’s degrees scored a mark higher than 106, against
17.9% of the three-year degrees and 37.1% of the old system degrees.

As shown in Table 4.5 the faculties of Psychology, Sociology and Educa-
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Male Female

Age
21-23 5.5 7.1
23 12.1 14.6
24 17.4 21.9
25 19.7 20.6
26 15.2 12.5
27 9.9 7.8
28 6.5 4.9
29 4.8 3.6
30-35 8.4 6.7

Table 4.4: Distribution of age stratified for gender

Economics Psychology Education MPNS Sociology
% col % row % col % row % col % row % col % row % col % row

Gender
Male 48.2 35.8 14.3 5.6 11.7 11.6 55.4 41.4 17.4 5.3
Female 51.7 17.6 85.6 15.4 88.2 40.0 44.5 15.2 82.5 11.6

Grade
Grade ≤ 106 84.7 28.9 62.1 11.2 55.1 25.1 69.5 23.8 76.2 10.8
Grade>106 15.2 11.2 37.8 14.7 44.8 44.0 30.4 22.5 23.7 7.2

Course type
Ss on sciences 40.3 33.0 39.0 16.9 23.3 25.4 19.1 15.7 25.8 8.7
Ss on humanities 5.9 9.5 18.4 15.6 9.1 19.4 30.2 48.6 10.1 6.7
Technical college 47.2 33.7 21.9 8.2 34.3 32.6 19.8 14.1 37.6 11.1
Other colleges 6.4 6.2 20.5 10.5 33.2 42.7 30.7 29.8 26.4 10.6

Type of degree
Bachelor’s degree 46.7 25.4 27.8 8.0 36.8 26.6 43.2 23.5 72.3 16.3
Master’s degree 11.1 23.4 23.2 25.7 4.6 12.9 14.8 31.0 7.7 6.7
Degree 42.0 21.4 48.9 13.1 58.5 39.7 41.9 21.4 19.8 4.1

Table 4.5: Descriptive statistics stratified for faculty

tion have a percentage of females over 80%, while in the faculty of Economics
and MPNS the percentage of females is 51.7% and 44.5%, respectively. The
faculties for which I observe a greater number of graduates with higher marks
than the average are Education, with 44.8% of “skilled”, and Psychology,
with 37.8%, while faculties with lower numbers of “skilled” graduates are
Economics and Sociology. This may be mainly due to two factors. These
particularly high marks can be explained by the fact that these faculties are
those in which women are predominant. Females, in fact, tend to graduate
sooner (see Table 4.4) and with higher marks than males (see Table 4.3).
The lower marks for graduates in sociology may be due to the higher in-
cidence of three-year degrees, equivalent to 72.3% (see Table 4.5), over the
average values. In the average, in fact, 42.9% of individuals go for a three-
year degree, 11.1% for the master’s degree and 45.8% for the old system
degree (see Table4.0(b)).
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Work Variables %

Modality of work
Full time 63.2
Part-time 30.5
Undefined 6.1

Contract type
Temporary contract 14.8
Fixed term contract 54.1
Permanent contract 29.1
Undefined 1.8

Level
incoherent-medium level 29.1
coherent-medium level 5.3
incoherent-high level 10.4
coherent-high level 41.6
Undefined 13.4

Table 4.6: Work variables

Interesting results come out analyzing where the high school graduates
come from. In contrast to expectations, 47.2% of graduates in Economics,
34.3% of graduates in Education and 37.6% of graduates in Sociology come
from a technical or tertiary college. While 48.6% of individuals come from
humanities graduate in MPNS.

I can group workers states into three main categories: Permanent con-
tract (PC), Fixed-term contract (FC) and Temporary contract (TC). The
PC state includes workers employed under a Permanent contract, people
doing homework and apprenticeship. The Fixed-term contract includes
workers employed under a Fixed-term contract and Co.co.co (a contract
introduced in 1993 referred to particular project instead of a time-period).
Temporary contract includes “lavoro interinale” and people with “contratto
di inserimento” or training (a contract introduced in 1985 to provide people
between 16 and 32 years old with training opportunities). The Table 4.6
shows that most of the contracts are Fixed-term (54.1%), while 29.1% are
Permanent contracts and only 14.8% are Temporary contracts. Employ-
ment is spread between full time engagement, 63.2% and part-time 30.5%.
The last one includes horizontal and vertical part-time. Table 4.7 shows the
composition of the work category: most of permanent and temporary con-
tract are full-time (respectively 75.7% and 68.7%), while most of part-time
contracts are fixed-term (61%).

As expected males get more full-time and permanent jobs while females
get more part-time and fixed term job (see Table 4.8). Figure 4.1 presents

82



4.2. DATA

Full time Part-time
% col % row % col % row

Type of contract
Permanent contract 34.8 75.7 22.7 23.8
Fixed term contract 47.0 54.9 61.0 34.4
Temporary contract 16.1 68.7 14.1 29.1
Undefined 1.8 65.8 2.0 34.1

Table 4.7: Type of work variable stratified for modality of work (undefined
contract is omitted in the table)

Kaplan-Meier estimates for survival functions of durations stratified for each
type of contract. There curves show that the exit rate from permanent job is
lower than the exit rate from the temporary and fixed-term jobs. Looking at
the box-plot in Figure 4.2 the conclusion is the same: the median duration of
permanent contract is about 2 years (24 months), while the median duration
of fixed-term and temporary contract is about 6 and 10 months, respectively.
The median is used for comparison, because it is less affected by extreme
values.

The interquartile range underlies where 50% of the values fall: for tem-
porary contracts the interquartile range is about 2-18 months, that becames
wider for fixed-term contracts, 4-22 months, and much wider for permanent
contracts, 10-42 months. Besides that, permament contracts have a bigger
standard deviation suggesting a bigger variability compared with other type
of contract. The median value is not as high as to be defined a “permanent”
contract. Furthermore the minimum value assumed by this type of contract
is 20 days underlying a “short” duration for such contract. In most studies
PC is considered an absorption state, meaning that every spell after the

Male Female

Work modality
Full time 73.1 58.7
Part-time 20.4 35.1
Undefined 6.4 6.0

Type of contract
Permanent contract 35.4 26.2
Fixed term contract 44.1 58.7
Temporary contract 18.8 13.0
Undefined 1.5 1.9

Table 4.8: Work variable stratified for gender
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Figure 4.1: Duration - K-M Estimates

Figure 4.2: Boxplot per type of contract (duration expressed in months)
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transition to a PC does not have to be considered as it is quite occasional.
This analysis shows that it is not true. The high presence of “outliers” in the
box-plot in Figure 4.2 underlies the big right asymmetry of duration distri-
butions: there are many contracts with a short duration and few contracts
with a long duration. As explained above, the goodness of a job cannot be
described only by the type of contract. A good choice needs to consider
the real duration of a job, the coherence and the qualification level of the
considered job. Table 4.6 shows that 41.6% of the jobs are coherent with the
field of study and of high qualification suggesting that a high percentage of
graduated people gets a good job. On the other hand, there is also a high
percentage of jobs incoherent with the studies done and with a low-medium
qualification (29.1%).

Incoherent Coherent

21-22 8.1 6.6
23 15.8 14.8
24 20.1 22.4
25 19.4 21.4
26 13.0 12.4
27 8.0 8.0
28 5.3 5.5
29 3.7 3.1
30-35 6.1 5.4

Table 4.9: Incoherent variable stratified for age

Descriptive statistics in Table 4.9 show the linkage between job coher-
ence and age: worse jobs (incoherent) are concentrated more for younger
graduates and better jobs (coherence) for older graduates.

It’s worth noting the characteristics of the group for which can be ob-
served a job longer than 540 days without the ending date: the censored
group. This group can be considered the most stable as I do not know when
and if the work relationship will end. Comparing the characteristics of this
group with the average characteristics of the population, it can be noted
that there are more males and people coming from scientific faculties (Eco-
nomics and MPNS). There are, also, more people with grades below 106
and a higher number of students coming from scientific high schools and
technical institutes.

Subsamples considered: main differences with the whole sample

As explained before, I considered two subsamples of this population. The
first subpopulation is represented by people for whom the longer job experi-
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ence represents a coherent job. In such a case the “treatment” is represented
by having or not a stable job after the degree in the observation period.
Through this subsample I want to verify if a stable coherence work favours
a future coherence work compared with a non stable coherence work. The
second subpopulation is represented by people that have at least a stable
job: in this case the “treatment” is represented by the coherence of the
stable job.

The first subsample is made up of 1,966 people. This differs from the
entire sample because there are more males (32.7% vs. 31.3%) and therefore
more people from science faculties. 27.6% (vs. 23.3%) come from Economics
and 25.6% from Mathematical, Physical and Natural Sciences (vs. 23.4%).
There are more individuals who come from the old system (51% vs. 45.8%),
but despite this, the age at graduation is lower. The percentage of individu-
als with high grades get up, pointing out that perhaps there is a correlation
between skill and consistency in the future work. The treated group in this
case consists of those individuals who have a stable job (coherent), account-
ing for 72.6% of the sample. In this case, the treated group is characterized,
compared to controls, by more males, by more individuals graduated in Eco-
nomics coming from high schools and technical schools. Among the treated
there are fewer people who have received high grades. Among the controls
50% of the individuals got a degree in education.

The second subsample is formed by 2,538 people. It is characterized by
a males percentage (34,2% vs 31.3%) slightly higher than the whole sample.
There is no surprise, then, for a higher percentage of individuals studying
Economics and coming from a scientific and technical high school. As shown
in the previous tables, males are usually less clever than females, thus the
percentage of individuals with a graduation mark higher than 106 gets low
to 27% (vs 31,6%). Percentage of treated belonging to this subsample, hav-
ing a (stable) coherent job then, is 55.1%. There is no big difference between
treated group and the control group. Comparing the conditional distribu-
tions in the treatment group showed that the treated group compared with
controls has a slightly higher number of males, higher number of individuals
with high grades, fewer individuals from three-year degrees and more indi-
viduals from the Faculty of Mathematical, Physical and Natural Sciences.s
31,6%). Percentage of treated belonging to this subsample, having a (sta-
ble) coherent job then, is 55.1%. There is no big difference between treated
group and the control group. Comparing the conditional distributions in
the treatment group showed that the treated group compared with controls
has a slightly higher number of males, higher number of individuals with
high grades, fewer individuals from three-year degrees and more individuals
from the Faculty of Mathematical, Physical and Natural Sciences.
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Chapter 5

Effect of the first stable
coherent job: a dynamic
logit model approach

In this chapter I investigated the impact of a stable coherent work on the
future job coherence according to the empirical data illustrated in the pre-
vious chapter. First I want to present the chosen dynamic causal model
according to the nature of the response variable of interest. Such model
allows to estimate in a simple and efficient way the dynamic causal effect of
interest. It is characterized by the fact that the unobserved heterogeneity
is modeled by a discrete latent variable to avoid parametric assumptions.
The estimation method which is carried out through the EM algorithm is
explained in, as well as the way to compute standard errors for the model
parameters. The results are illustrated for the model fitted to the subsam-
ples of subjects described at the end of the previous chapter. For both
subsamples the treatment is represented by the first coherent stable job and
the response variable is the future job coherence. The two subsamples differ
for the control group. In the former the longer work experience observed
after the degree coherent with the university studies is considered. In such
way the effect studied is represented by stability, given that the two groups
(treated and control) differ only for the work experience length. Stability
has been defined in the previous chapter as a work experience of at least
540 days. In the latter the first stable experience after the degree incoherent
with university studies is taken into consideration. In this case the focus is
on the coherence effect.

5.1 The proposed model and its main assumptions

I am going to illustrate the chosen model for the analysis of the dynamic
effect and the main assumption underlying it. Given that the variable of in-
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terest coherence, has been defined as a categorical variable with more than
two levels, the dynamic logit model presented in Section 3.3 is used. In
particular, this model was used in Bartolucci and Pennoni (2010) in a sim-
ilar context of labour market histories. The categorical response variable
yit denotes the coherence associated to the work experience that is going
on in the instant t for the individual i, i = 1, . . . , n with t = 0, . . . , T − 1.
Three temporal instants are considered (T = 3) to analyze coherence trend
in time. For each individual i in the sample, I denoted by yi0 the coherent
job observed three months before the beginning of the treatment. Where
the treatment, as explained above, is the first stable job after the degree
coherent with the university studies: I denoted it by zi. I denoted by yi1
and yi2 the coherence job observed six and nine months after the end of this
job. The coherence variable assumes value 0, if the coherence job of the
individual is not observed in that particular instant, value 1, if the job is
incoherent and value 2, if the job is coherent with one’s own studies. It is
important to remember that coherence job of the individual is not observed
if the subject is not present in the dataset in that particular instant or if
the qualification is unknown for the work experience considered. These two
categories represent two distinct sets of information, but in such case they
have been considered together given that the distinction is not particularly
relevant to the interest of the study. Given the ordinal nature of the response
variable a model based on nested logit is used (see Section 3.3). Further-
more, given the three ordered categories of the coherence variable two logits
are constructed. The first one compares the probability of having a job with
a known coherence against the probability of having a job with an unknown
coherence. Thus comparing categories 0 against all the other categories. At
nested level, a cumulative logit model for the conditional probability of each
category larger than 0 is used. In this case there is only a nested logit. The
latter logit compares the probability of having a coherent job some months
after the treatment zi (6 and 9 months) against all the other categories. It
is the more interesting one, given that from it, it is possible to capture infor-
mation on the characteristics that lead up to a coherent work compared with
an incoherent one. The model takes into account the number of subjects
that share a particular level of the different observed covariates. The model
account for unobserved heterogeneity and state dependence by the inclusion
of subjective-specific intercepts and the lagged response variables among the
regressors. The unobserved heterogeneity is modeled by a discrete distribu-
tion with k point of supports. The points identify k latent classes in the
population and are represented by the random intercepts (see also Section
3.1.1). The model considers the first response variable yi0 as given, whereas
the distribution of yit, t = 1,2 is modeled through logits. In particular, yi1
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is modeled as follows:

log
p(yi1 > 0∣ci,xi1, yi0)
p(yi1 = 0∣ci,xi1, yi0)

= α1ci + x′i1β1 +
2

∑
j=1

dij0β1,j+1

log
p(yi1 > 1∣ci,xi1, yi0, yi1 > 0)
p(yi1 ≤ 1∣ci,xi1, yi0, yi1 > 0)

= α2ci + x′i1β2 +
2

∑
j=1

dij0β2,j+1

where:

• xi1 is the vector of exogenous covariates at the first occasion (t = 1);

• ci is the latent class of subject i;

• α1ci , α2ci are the subjective-specific intercepts that represent the sup-
port points associated to latent class c (c = 1, . . . , k);

• dij,t−1 is a dummy variable equal to 1 if the lagged response variable
yi,t−1 = j and 0 otherwise.

The probability of each latent class is denoted by πc. For what concerns the
distribution of yit, t = 2, it is assumed

log
p(yit > 0∣ci,xit, yi,t−1, zi)
p(yit = 0∣ci,xit, yi,t−1, zi)

= α1ci + x′itβ1 +
2

∑
j=1

dij,t−1β1,j+1 + ziγ1t

log
p(yit > 1∣ci,xit, yi,t−1, yit > 0, zi)
p(yit ≤ 1∣ci,xit, yi,t−1, yit > 0, zi)

= α2ci + x′itβ2 +
2

∑
j=1

dij,t−1β2,j+1 + ziγ2t

(5.1)

where the vector xit includes also time dummies. The parameters γ1t and
γ2t (t = 2) measure the dynamic effect of the treatment for each period.
They correspond to the logit difference of the probability of improving one’s
own career between subject receiving and not receiving the treatment while
all other factors remain constant. Finally for the binary variable zi, equal
to 1 if subject i has a stable job and to 0 otherwise, it is assumed:

log
p(zi = 1∣ci,xi1, yi0)
p(zi = 0∣ci,xi1, yi0)

= α3ci + x′i1δ1 +
2

∑
j=1

dij0δj+1

with α3ci , c = 1, . . . , k being the support points associated to the latent
classes; δ1 the parameters associated to the covariates that affect the prob-
ability to get the treatment and dij0 the parameter associated to the initial
period.

In the model presented above it is assumed that all observable factors
(represented by the covariates) and unobservable factors (represented by the
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random intercepts) affecting both the coherence job status and the choice of
the treatment are properly taken into account. Furthermore taking the sam-
ple of people from the flow of entrants in a particular state (that is people
that get the first stable job after the degree) also the NA (no anticipation)
assumption is satisfied (Section 3.4). Indeed I can assume that potential
outcomes are determined externally, and are not affected by subject actions
in response to different predictions of future outcomes, given that people do
not know if and when they will get a long-term job. Under such assumptions
a causal model in the sense of Abbring and Van den Berg (2003b) results.
Indeed, causal models for observational studies similar to the present one are
typically formulated following a potential outcome approach as illustrated
in Chapter 1. Here, the potential outcomes may be denoted by y

(1)
it and

y
(0)
it and, for every subject i and time occasion t, indicate the job’s coher-

ence if the treatment was or was not verified. It is worth noting that the
model presented above is equivalent to a model formulated on these poten-
tial outcomes through a similar parameterization. In a related context, the
equivalence between the two formulations is derived in Bartolucci (2010)
and Ten Have et al. (2003). The main assumption for this equivalence to
hold is that the potential outcomes are conditionally independent of zi given
the observed covariates and the random intercepts. An important aspect is
that the parameters γht in Equation (5.1) may be seen as suitable contrasts,
on the logit scale, between the probabilities of certain configurations of y(1)it
and y

(0)
it . This enforces their interpretation as causal parameters.

5.2 Estimation method through the maximum like-
lihood

Estimation of the parameters is based on the maximization of the log-
likelihood by the EM algorithm. The log-likelihood is:

`(θ) =∑
i

log[p(yi1, zi, yi2∣xi1,xi2, yi0)],

where θ denotes the vector of all parameters. As usual, the algorithm alter-
nates the E- and M- steps until convergence and it is based on the complete
data log-likelihood. On the basis of the dummy variable uic the latter may
be expressed as:

`∗(θ) =∑
i
∑
c

uiclog[p(yi1, zi, yi2∣c,xi1,xi2, yi0)πc] =

=∑
i
∑
c

uiclog[p(yi1∣c,xi1, yi0)] +∑
i
∑
c

uiclog[p(zi∣c,xi1, yi0)]+

+∑
i
∑
c

uiclog[p(yi2∣c,xi2, yi1, zi)] +∑
i
∑
c

uiclog(πc)

(5.2)
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where uic is equal to 1 if subject i belongs to latent class c and 0 otherwise.
At the E-step, the EM algorithm computes the conditional expected value
of uic, i = 1, . . . , n, c = 1, . . . , k, given the observed data and the current value
of the parameters. This expected value is denoted by ûic and is proportional
to:

p(yi1, zi, yi2∣c,xi1,xi2, yi0)πc.

The M-step consists of maximizing the expected value of the complete data
log-likelihood, obtained by substituting in Equation (5.2) each uic by the
corresponding expected value computed as above. In this way the parameter
estimates are updated. In particular, to update the probabilities of the latent
class there is an explicit solution given by πc = ∑i ûic/n, c = 1, . . . , k. For
the other parameters an algorithm to maximize the weighted log-likelihood
of a logistic model is needed. A crucial point is the initialization of the
EM algorithm. Different strategies may be used in order to overcome the
problem of multimodality of the likelihood. As usual, it is convenient to use
both deterministic and stochastic rules to choose the starting values and to
take, as maximum likelihood estimate of the parameters, θ̂ , the solution
that at convergence corresponds to the highest value of `(θ).

5.2.1 The EM algorithm

The EM algorithm is a broadly applicable algorithm that provides an iter-
ative procedure for computing MLE in situation where, for the absence of
some additional data, ML estimation would be straightforward. The name
EM comes from the 2 steps of the algorithm: an expectation step (E-step)
followed by a maximization step (M-step) (Dempster et al., 1977). The
Expectation-Maximization (EM) algorithm is a general approach to itera-
tive computation of maximum likelihood (ML) estimates when algorithms
such as the Newton-Raphson method may turn out to be more complicated.
In particular the EM is used when the observations can be viewed as incom-
plete data. Although a problem is not an incomplete-data one, there may
be much to be gained computationally by artificially formulating it as such
to facilitate ML estimation.

The actual observed data Y are considered as a subset of some not fully
observable complete data (Y,X). It is assumed the existence of a probability
density function f(x, y; θ) = L(θ) for the the joint distribution of X and Y
given a parameter value θ. Let f be a probability density function only
when considered a function of both x and y. While for a fixed value of y,
f is a positive integrable function. The observed data y are a realization
of the sample space Y. The corresponding x in the sample space X is not
observed directly, but only indirectly through y. It is assumed a many-to-
one mapping from X to Y and that x is known only to lie in X (y), the subset
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of X determined by the equation y = y(x). The likelihood of interest Lc(θ)
is written as the marginal of the higher dimensional function f(x, y∣θ):

Lc(θ) = g(y∣θ) = ∫
X (y)

f(x∣θ)dx

The EM algorithm finds the value of θ that maximizes L(θ) given an
observed y using the associated family Lc(θ). Then given the incomplete
data specification, there are many possible specifications of the complete
data function Lc(θ) that will generate L(θ). The estimate of θ is obtained
solving the incomplete-data likelihood equation:

δlogL(θ)
δθ

by proceeding iteratively in terms of the complete data log-likelihood func-
tion, logLc(θ). As it is unobservable, it is replaced by its conditional expec-
tation given y using the current fit of θ. Let θ0 be some initial value of θ.
Then on the first iteration, the E-step requires the calculation of:

Q(θ, θ0) = Eθ0[logLc(θ)∣y] = Eθ0[logf(x, θ)∣y]

The M-step requires the maximization of Q(θ, θ0) in respect of θ over the
parameter space Θ. A way θ1 is estimated so that:

Q(θ1, θ0) ≥ Q(θ, θ0)

for all θ ∈ Θ. The E- and M- steps are carried out again, but with θ0 replaced
by the current fit θ1. On the (k + 1)-th iteration, the E- and M-step are
defined as follows:

E-Step Calculate

Q(θ, θk) = Eθ0[logLc(θ)∣y]

M-Step Choose θk+1 to be any value of θ ∈ Θ that maximizes Q(θ, θk),
that is

Q(θk+1, θk) ≥ Q(θ, θk)

for all θ ∈ Θ.

The E- and M- steps are alternated repeatedly until the difference:

L(θk+1) −L(θk)

changes by an arbitrary small amount. Dempster et al. (1977) show that the
incomplete likelihood function L(θ) is not decreased after an EM iteration,
that means the EM is a monotone optimization algorithm:

L(θk+1) ≥ L(θk)
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Hence convergence must be obtained with a sequence of likelihood values
that are bounded above. It is not necessary to specify the exact mapping
from X and Y. All that is necessary is the specification of the complete
data vector x and the conditional density of X given the observed vector
y (the latter is needed to carry out the E-step). As the choice of complete
data vector x is not unique, it is chosen for computational convenience in
respect of carrying out the E-and M- step. When the complete data f(x, θ)
come from an exponential family Q(θ, θk), it is sufficiently simple to permit
to compute the Q(θ, θk) at a reasonable computational cost and to allow
a closed-from maximization. It is possible to prove that the observed log-
likelihood has increased after any EM step and that the algorithm converges
to a local maximum of this function. However, this local maximum cannot
be guaranteed to correspond to the global maximum since the likelihood may
be multimodal. As usual, this problem may be addressed by trying different
initializations of the algorithm and then choosing the parameter value which
at convergence gives the highest value of likelihood. In order to increase the
chance that the point at convergence is the global maximum, it is necessary
to properly initialize the algorithm. Typically, a multiple-try strategy is
adopted, which is based on combining a deterministic rule with one or more
random rules. The first is a simple rule, which leads to a reasonable guess
of the parameters obtained by fitting a simplified version of the adopted
model. Then, as maximum likelihood estimate of the parameters it is taken
the value corresponding to the highest log-likelihood at convergence of the
EM algorithm. However, some simulation studies show that the chance of
there being more than one local maximum is usually low when the number of
observations is large in comparison with the number of parameters and the
model assumed holds. The EM algorithm is very popular for the following
reasons:

• it is very simple to implement;

• the M-step equations are so simple that they can be solved even for
parameters that are subject to constraints;

• it is parametrization independent. Because the M-step is defined by a
maximization operation, it is independent of the way the parameters
are represented. Thus any invertible transformation of the parameter
vector θ leaves the EM recursion unchanged.

Although the EM algorithm has been successfully applied in a variety of
contexts, there are two issues that have led to some criticism. The First
concerns the fact that in certain situations its convergence can be quite slow.
This has resulted in the development of modified versions of the algorithm
as well as many simulation-based methods and other extensions of it (see Mc
Lachlan Krishana for extension, the property of the algorithm and propriety
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for convergence). However methods to accelerate the EM algorithm do tend
to sacrifice the simplicity ans stability proper of this algorithm. The second
issue concerns provision of standard errors. The EM algorithm does not
automatically provide an estimate of the covariance matrix of the MLE, as
do some other methods, such as Newton-type methods. In the following
paragraph different methods are proposed to estimate them.

5.3 Goodness of fit

5.3.1 Model selection

An important phase consists in the model selection. Any model is a simpli-
fication of reality. It should be, on one hand complex enough to fit the data
well and, on the other hand, it should be simple to interpret, smoothing
the data rather than overfitting them. A simple model that fits adequately
has the advantages of model parsimony. If a model has relatively little bias,
describing reality well, it tends to provide more accurate estimates of the
quantities of interest. Other criteria besides significance tests can help to
select a good model in terms of estimating quantities of interest. Usually the
most used criteria are the Bayesian Information Criteria or BIC (Schwarz,
1978) and the Akaike Information Criteria or AIC (Akaike, 1974). Akaike’s
Information Criterion (AIC) is defined as:

AIC = −2 × `(θ) + 2 × p,

where `(⋅) denotes the maximum log-likelihood, θ the vector of parameters,
p the number of estimated parameters in the log-likelihood. Increasing the
number of free parameters to be estimated improves the goodness of fit,
regardless of the number of parameters in the data generating process. Hence
AIC not only rewards goodness of fit, but also includes a penalty that is an
increasing function of the number of estimated parameters. This penalty
discourages overfitting. The preferred model is the one with the lowest AIC
value. The AIC methodology attempts to find the model that best explains
the data with a minimum of free parameters. The Bayesian Information
Criterion (BIC) is defined as:

BIC = −2 × `(θ) + p × log(n)

where `(⋅) denotes the maximum log-likelihood, θ the vector of parameters, p
the number of estimated parameters and n the sample size. The Bayesian In-
formation Criterion is also known as the Schwartz criterion. From Bayesian’s
point of view, this is an approximation of the integrated likelihood; from the
likelihood point of view, this is a negative function of log-likelihood at con-
vergence with a penalty of the number of parameters as a function of the
sample size. Consistent with the concept that larger log-likelihood value
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is better, smaller BIC value is better. In BIC, the penalty for additional
parameters is stronger than the AIC one.

In estimating the model, the number of mass points is decided in accor-
dance to the BIC value. As the number of parameters increases, the BIC
value decreases until it reaches the lowest level, then it starts to increase. In
practice, let us start by estimating a model with the lowest possible number
of mass points and then add one mass point each time, until the BIC value
starts to increase (Kamakura and Russell, 1989). To select the best model a
lot of possible criteria can be used. A discussion about the different criteria
can be found in Gaure and Røed (2007).

5.3.2 Testing parameter

As suggested by the recent statistical literature, see among others Agresti
(1990), there are mainly three standard ways to use the likelihood function to
test the significance of particular explanatory variables in a statistical model.
In the following one I briefly reviewed these methods to test parameters: the
Wald test, likelihood ratio test and the score statistics. The former is the
one used in my application.

The effects are typically tested in a familiar way, by creating a ratio of
the estimate to the estimate of the standard error:

θ̂

SE(θ̂)
.

The usual null hypothesis test is whether the coefficient is significantly dif-
ferent from zero. (θ = θ0 = 0). This kind of ratio is usually distributed as a
z or t. If significance is determined by the normal curve then z-test is often
referred to as a Wald’s test statistic (Wald, 1943). It consists in the ratio
of the parameter and his standard error (SE):

θ̂ − θ0
SE(θ̂)

.

This test has an approximate standard normal null distribution Z, so one
refers to the standard normal table to obtain one or two side p-values. Equiv-
alently, for the two side alternatives, z2 has a chi-squared null distribution
and the p-value is then the right-tailed chi-squared probability above the
observed value.

A second method is the likelihood ratio test. It used the likelihood
function through the ratio of two maximizations: L0, maximization of the
likelihood function without the variable (under the null hypothesis) and,
L1, maximization of the likelihood function with the variable. The ratio
L0/L1 of these two likelihood cannot exceed one. The latter is always at
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least as large as the former, since the former results from maximizing over
a restricted set of parameter values. (Wilks, 1935) showed that:

−2 log
L0

L1
= −2(`0 − `1), (5.3)

where `0 and `1 denote the maximized log-likelihood function. Using minus
twice its log is necessary to obtain a quantity whose distribution is known
and can therefore be used for hypothesis testing. The likelihood ratio test
can be seen again through the concept of deviance. The deviance (D) is the
likelihood-ratio statistic for testing the null hypothesis that the model holds
against the alternative that the more general saturated model holds:

D = −2 log [ likelihood of the fitted model
likelihood of the saturated model

] .

For purposes of assigning the significance of an independent variable the
value of D with and without the independent variable is compared:

D(model without the variable) −D(model with the variable).

This represents the change in D due to the inclusion of the independent
variable. Because the likelihood of the saturated model is common to both
values of D being differenced then the likelihood ratio test explained above
(Equation 5.3) is found. The likelihood ratio test compares the deviance of
two models by subtracting the smaller deviance (model with more parame-
ters) from the larger deviance (model with larger deviance). The difference
is a chi-square test with the number of degrees of freedom equal to the num-
ber of different parameters in the two models. Test of a single parameter
using the likelihood ratio test is asymptotically equivalent to the Wald test
(p-values should be halved in each case).

The third method uses the score statistics (Fisher and Rao) that is the
ratio of the score function evaluated in θ0 (H0 ∶ θ = θ0) to its null SE. This test
is based on the slope of the expected curvature of the log-likelihood function
logL(θ) at the null value θ0, since the score function is S(θ) = δ logL(θ)/δθ.
The score value tends to be larger in absolute value when the estimation of
the parameter θ is farther from the null hypothesis (θ = θ0 = 0). The variance
of the score function can be individuated by the Fisher Information:

V ar[S(θ)] = E[S(θ)2] −E[S] = E[S(θ)2] =

= E
⎡⎢⎢⎢⎢⎣
(δlogL(θ)

δθ
)

2⎤⎥⎥⎥⎥⎦
= −E [δ

2logL(θ)
δθ

] = i(θ)

evaluated at θ0. The standard error is [i(θ0)1/2]. Since the score statistics
has an approximate standard normal null distribution, then the chi-squared
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form of the score statistics can be written as follows:

[S(θ0)]2

i(θ0)
=

[δ logL(θ)
δθ

]
2

−E [δ
2 logL(θ)

δθ
]

where the partial derivatives are in respect to θ and evaluated at θ0. In the
multiparameter case, the score statistic is a quadratic form based on the
vector of partial derivatives of the log-likelihood compared with θ and the
inverse information matrix, both evaluated at the H0 estimates.

5.3.3 Standard Error

In the context of the model presented above a central problem is how to
compute the standard errors for the parameters of the model. As it is
known, one major shortcoming of the EM is that the observed information
matrix is not obtained as by-product of the algorithm, which is useful to get
an estimate of the precision of the estimated parameters. A basic result due
to Louis (1982) is that if the complete data have distribution in a regular
exponential family, the second derivative of the log-likelihood of the observed
data can be expressed entirely in terms of the complete data log-likelihood
or covariance matrix of the estimated parameters. Thus, the final point
concerns how to compute the information matrix. For this aim, several
methods have been proposed in the literature which exploit the results of
the EM algorithm (McLachlan and Peel, 2000). Usually the standard errors
of the estimates of the parameters are obtained approximating the covariance
matrix by the inverse of the observed information matrix I(θ̂, y), which is
defined as:

I(θ̂, y) = −( δ
δθ̂
`(θ̂, y))

2

.

One way to proceed is to directly evaluate I(θ̂, y) after the computation of
the MLE θ̂. However, analytical evaluation of the second order derivatives
of the log-likelihood may be difficult. To avoid this problem it is possible to
compute the observed information matrix for the incomplete data problem
in terms of the conditional moments of the score of the complete data log-
likelihood function, which is obtained as by-product of the EM algorithm.
The observed information matrix for the incomplete data problem I(θ, y)
can be expressed in the form:

I(θ, y) = Ic(θ, y) − covθ[Sc(Yc, θ)∣y] =

= Ic(θ, y) −Eθ[Sc(Yc, θ)STc (Yc, θ)∣y] + S(y, θ)ST (y, θ), (5.4)
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where S(Y, θ) and Sc(Yc, θ) denote the incomplete-data and complete-data
score statistics, respectively. Furthermore it can be shown that the latter
can be written as function of the former:

Sc(Y, θ) = Eθ [S(Y, θ)∣ y] = Eθ [
δlogLc(θ)

δθ
∣ y] .

where Lc(θ) denotes the complete-data log-likelihood function. The ob-
served information matrix I(θ̂) can be computed as:

I(θ̂) = Ic(θ̂, y) −Eθ[Sc(Yc, θ)STc (Yc, θ)∣y]θ=θ̂

since the last term in Equation (5.4) is zero as θ̂ satisfied S(y, θ) = 0. Another
information type method is based on the result that, in large sample from
regular model for which the log-likelihood is quadratic in the parameters,
the likelihood ratio test and Wald’s test for the significance of individual
parameters are equivalent. This means that the deviance change on omitting
the variable is equal to the square root of the ratio of the parameter estimates
to the standard error:

D(model without the variable)−D(model with the variable) = [ θ̂ − θ0
SE(θ̂)

]
2

.

The latter is equal to the square of the t-statistics. Thus the standard errors
can be calculated as the absolute value of the parameter estimate divided
by the square root of the deviance change:

SE(θ̂) = ∣θ∣
[D(model without the variable) −D(model with the variable)]1/2

.

This requires the fitting of a set of reduced models in which each variable is
omitted from the final version of the model. If the standard errors found by
an information-based approach are too unstable a bootstrap approach can
be used (Efron, 1981).

5.4 Results

The estimation procedure of the model consists in maximizing the log-
likelihood in respect to all the model and heterogeneity parameters repeat-
edly for alternative values of the number of latent classes (Heckman and
Singer, 1984). Let us start out with one latent class or support point of
the distribution (i.e. assuming absence of heterogeneity), and then expand
the model with new latent classes until the likelihood is not able to increase
any further (Gaure and Røed, 2007). The number of latent classes is cho-
sen according to the maximum likelihood which cannot be made any larger
by adding additional classes to the heterogeneity distribution. However to

98



5.4. RESULTS

choose the best model there are many information criteria that “punish”
parameter abundance as explained in the paragraph above. The one used
here is BIC. In this section results about the model are described for the
two subsamples presented above. In the following paragraph the subsample
of people who have the first stable job (the treated) or the longer job (the
control) coherent with one’s own studies are considered. While in the sub-
sequent one the subsample of people who have the first stable job coherent
with one’s own studies (the treated) are compared with people that have a
first stable job incoherent (control) with one’s own studies. In order to sim-
plify the reading of parameters associated to each category of each variable
considered in the model, categories and category of reference in the logit are
shown in Table 5.1.

Variable parameters categories category of reference

gender β⋅,2 female male
graduation mark β⋅,4 graduation mark ≥ 106 graduation mark < 106
high school β⋅,5 Ss on humanities Ss on sciences

β⋅,6 Technical college
β⋅,7 Other colleges

type of degree β⋅,8 Master’s degree Bachelor’s degree
β⋅,9 Degree

faculty β⋅,10 Psychology Economics
β⋅,11 Education
β⋅,12 MPNS
β⋅,13 Psychology

lag response β⋅2 yi,t−1=1 yi,t−1=0

β⋅3 yi,t−1=2 yi,t−1=0

Table 5.1: Categories of variables and category of reference in the logit
model

5.4.1 Subsample of people with a coherent job

Given the first subsample and according to the BIC I chose a model with
two latent classes, given that the maximum log-likelihood and the BIC val-
ues for a model with one, two and three latent classes are the ones reported
in Table 5.2. The number of parameters considered is 65. The parameter
estimates, with the SE and the T-test for the chosen model are reported
in Table 5.3. These estimates have been compared with estimates obtained
considering models with different number of latent classes: the estimates
don’t change a lot and the results are very similar. The unobserved hetero-
geneity is modeled by two latent classes with estimates probabilities equal
to 0.9036 and 0.0964, respectively. Given that two latent classes are consid-
ered, two random intercepts are estimated for each logit as shown in Table
5.3. Despite the high probability of belonging to the first latent class, the
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k `(θ) BIC

1 -2,923.6 6,170.5
2 -2,521.8 5,406.3
3 -2,542.8 5,487.8

Table 5.2: Log-likelihood and BIC values of the model with different number
of classes in the subsample of coherent people

second one seems to have a greater impact on the response variable. In both
logits the random intercept associated to the second latent class assumes a
higher value. The most interesting aspect is the value of the estimates of
the parameters γht, which measure the dynamic impact of the coherent sta-
ble job (the treatment). In particular most is referred to the second logit.
Given the structure of the coherence variable, it represents the comparison
between people with a coherent job against people with an incoherent job.
These estimates indicate that the treatment in the second logit has a sig-
nificant effect 9 months after the end of the treatment considered. This
means that people who have a coherent long term (“stable”) job have a high
probability to have another coherent job after 9 months. For what concerns
the parameters measuring the effect of the individual covariates on the re-
sponse variable, males have a greater probability to get a coherent work
(given that gender is a dummy variable that assumes value 1 for females
and 0 for males). From Table 5.3 it comes out also that graduation mark
has a positive significant impact on job’s coherence (given that this vari-
able assumes value 1 for graduation mark higher than 106 and 0 otherwise).
Having a Master’s degree or a degree of the old school system has a posi-
tive impact on future job coherence. Furthermore the faculties associated
to a higher probability to have a coherent stable job in the future are the
faculties of Education and Economics. An high number of past experiences
has a negative impact on the probability to get a coherent job. The higher
the number of not stable (shorter then 540 days) experiences before the first
stable job, the higher the probability to get a incoherent job. Having too
short experiences is not good for coherence. Gagliarducci (2005) has already
shown, in a more general context, that having lots of temporary jobs has
negative effects on the future occupation. Instead age and high school ed-
ucation do not have a significant impact on the future work coherence. A
strong state dependence is also observed since all the parameters associated
to the lagged responses are highly significant, indicating a strong persistence
on the working coherence.

From results in Table 5.4 it emerges that covariates that have a significant
effect on propensity to have a coherent stable job are gender, age at the
degree, high school education, type of degree, number of past experiences.
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First logit

Effects estimates s.e. t-statistic p-value

intercepts α11 3.131 - - -
α12 30.452 - - -

time dummies β1,1 0.708 0.108 6.533 0.000
gender β1,2 1.170 0.347 3.372 0.001
age β1,3 -0.981 0.149 -6.568 0.000
graduation mark β1,4 -0.023 0.034 -0.693 0.488
high school β1,5 -0.820 0.129 -6.380 0.000

β1,6 1.422 0.169 8.405 0.000
β1,7 0.513 0.128 4.010 0.000

type of degree β1,8 2.729 0.153 17.804 0.000
β1,9 -0.562 0.218 -2.579 0.010

faculty β1,10 1.456 0.139 10.507 0.000
β1,11 0.552 0.228 2.418 0.016
β1,12 2.309 0.167 13.858 0.000
β1,13 0.085 0.167 0.508 0.612

number of past experiences β1,14 -2.099 0.289 -7.265 0.000
lag response β12 7.750 0.082 94.629 0.000

β13 -0.341 0.152 -2.241 0.025
training γ12 -0.843 0.169 -4.980 0.000

Second Logit

intercepts α21 -1.765 - - -
α22 2.211 - - -

time dummies β2,1 -6.013 1.464 -4.106 0.000
gender β2,2 -1.736 1.027 -1.691 0.091
age β2,3 -1.099 0.934 -1.176 0.239
graduation mark β2,4 0.059 0.017 3.471 0.001
high school β2,5 0.170 0.353 0.480 0.631

β2,6 -0.681 0.435 -1.567 0.117
β2,7 -0.004 0.298 -0.012 0.991

type of degree β2,8 1.281 0.432 2.966 0.003
β2,9 2.307 0.956 2.412 0.016

faculty β2,10 -0.117 0.324 -0.362 0.717
β2,11 1.061 0.505 2.103 0.035
β2,12 -0.929 0.401 -2.315 0.021
β2,13 -1.420 0.513 -2.766 0.006

number of past experiences β2,14 -0.290 0.039 -7.377 0.000
lag response β22 1.519 0.230 6.620 0.000

β23 0.018 0.007 2.586 0.010
training γ22 2.976 0.761 3.910 0.000

Table 5.3: Estimates of the parameters for the conditional probability of
the response variable given the latent variables in the subsample of coherent
people (†minus average age)
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In particular, females have a higher propensity to have coherent stable job,
as well as subjects with higher graduation marks. People who got a degree at
a younger age and attended secondary school on humanities, have a higher
propensity score to get the treatment. Furthermore also the Bachelor’s
degree seems to have a positive impact on coherence against degree of the
new system. Finally the more favorable faculty for the job coherence seems
to be Economics.

Effects estimates s.e. t-statistic p-value

intercepts α31 1.674 - - -
α32 0.341 - - -

gender δ1,1 0.389 0.049 7.939 0.000
age δ1,2 -1.286 0.143 -9.018 0.000
graduation mark δ1,3 1.785 0.036 49.174 0.000
high school δ1,4 -0.109 0.118 -0.922 0.356

δ1,5 0.240 0.101 2.376 0.017
δ1,6 0.040 0.127 0.316 0.752

type of degree δ1,7 -0.667 0.143 -4.664 0.000
δ1,8 -0.035 0.183 -0.191 0.848

faculty δ1,9 -0.252 0.136 -1.849 0.064
δ1,10 -0.472 0.210 -2.248 0.025
δ1,11 -0.261 0.141 -1.858 0.063
δ1,12 -0.544 0.160 -3.394 0.001

number of experiences δ1,13 -0.670 0.313 -2.140 0.032
initial period δ2 -0.747 0.118 -6.321 0.000

δ3 0.799 0.154 5.185 0.000

Table 5.4: Estimates of the parameters for the conditional probability of
having a stable job given the latent variables in the subsample of coherent
people(†minus average age)

5.4.2 Subsample of people with a stable job

In this subsample people that have at least a stable job have been selected.
In such a case the treatment is represented by the coherence stable job, while
the control is represented by the stable but incoherent job. The estimates
of these models in Table 5.6 represent the comparison between these two
groups and show that having a long work experience incoherent with one’s
own studies can lead to give up a work coherent with one’s own studies. Also
in this case two latent classes are selected according to the BIC criteria.
These estimates have been compared with estimates obtained considering
models with different number of latent classes: the estimates don’t change
a lot and the results are very similar. The log-likelihood and the BIC values
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according to the number of classes are reported in Table 5.5. The estimates
probabilities of the two latent classes of the unobserved heterogeneity are
0.1076 and 0.8924, respectively. In this case the second latent class has the
higher probability. From Table 5.6 arouses that the two latent classes have
the same impact on the response variable in the first logit, while the second
latent class has a lower impact compared to the other one in the second
logit.

k `(θ) BIC

1 -4,215.7 8,880.0
2 -3,533.0 7,596.2
3 -3,713.0 7,915.4

Table 5.5: Log-likelihood and BIC values of the model with different number
of classes in the subsample of stable people

Among the estimates of the parameters γht, measuring the dynamic im-
pact of the treatment, the more significant parameters are the ones of the
second logit. This suggests that the probability of having a coherent stable
job after 9 months at the end of the treatment is greater for people who had
a coherent stable job.

For what concerns the parameters measuring the effects of the covari-
ates on the response variable, it is evident that males with higher gradua-
tion marks tend to have a greater probability to find a coherent stable job.
Among the different types of high schools, the one focused on sciences seems
to be better to get a coherent job than the one focused on humanities or the
tertiary college. Bachelor’s degree and faculties of Economics and Educa-
tion are associated to a higher probability to get a coherent job. This is an
awaited result given also the descriptive statistics. Also in this subsample,
a lower number of experiences has a positive effect on the future job coher-
ence and a strong state dependence is observed. There is no evidence of
a significant effect of graduation age compared to the previous subsample.
From Table 5.7 covariates that have a significant effect on the propensity
to have a coherent job are gender, graduation age and graduation mark. In
particular males have higher propensity, as well as younger subjects that get
a degree with a higher graduation mark. The only significant parameters
for the faculty and the type of degree are those associated to the faculty of
MNPS and to the degree of the old school system. They have a positive
impact on the propensity to get the treatment.

In conclusion I can state that this model allows to give a causal inter-
pretation to the treatment parameter given that observed and unobserved
variables are taken into account. The two models give pretty much the
same results, showing that both coherence and stability have an effect on
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First logit

Effects estimates s.e. t-statistic p-value

intercepts α11 5.160 - - -
α12 5.517 - - -

time dummies β1,1 0.777 0.122 6.351 0.000
gender β1,2 0.621 0.253 2.452 0.014
age β1,3 -1.576 0.140 -11.274 0.000
graduation mark β1,4 0.018 0.034 0.523 0.601
high school β1,5 1.189 0.141 8.432 0.000

β1,6 0.314 0.185 1.702 0.089
β1,7 -1.180 0.128 -9.206 0.000

type of degree β1,8 -1.056 0.174 -6.078 0.000
β1,9 -0.119 0.230 -0.519 0.604

faculty β1,10 0.568 0.141 4.016 0.000
β1,11 -1.836 0.220 -8.354 0.000
β1,12 0.412 0.167 2.474 0.013
β1,13 -0.432 0.163 -2.650 0.008

number of past experiences β1,14 0.469 0.235 1.995 0.046
lag response β12 -9.552 0.102 -93.736 0.000

β13 -1.149 0.830 -1.384 0.166
training γ12 0.423 0.578 0.732 0.464

Second Logit

intercepts α21 4.248 - - -
α22 -1.317 - - -

time dummies β2,1 -6.547 0.718 -9.123 0.000
gender β2,2 -2.365 0.725 -3.264 0.001
age β2,3 -0.028 0.168 -0.168 0.867
graduation mark β2,4 -0.112 0.039 -2.857 0.004
high school β2,5 -0.363 0.171 -2.127 0.033

β2,6 -1.180 0.526 -2.243 0.025
β2,7 -0.388 0.748 -0.518 0.604

type of degree β2,8 -1.612 0.212 -7.589 0.000
β2,9 -1.431 0.409 -3.503 0.000

faculty β2,10 -0.788 0.362 -2.177 0.029
β2,11 1.366 0.564 2.422 0.015
β2,12 -1.075 0.766 -1.403 0.161
β2,13 0.240 0.024 10.213 0.000

number of past experiences β2,14 -1.332 0.269 -4.959 0.000
lag response β22 -2.801 0.149 -18.799 0.000

β23 2.988 0.503 5.942 0.000
training γ22 0.877 0.314 2.792 0.005

Table 5.6: Estimates of the parameters for the conditional probability of
the response variable given the latent variables in the subsample of stable
people (†minus average age)
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Effects estimates s.e. t-statistic p-value

intercepts α31 -1.557 - - -
α32 -0.721 - - -

gender δ1,1 -2.046 0.337 -6.071 0.000
age δ1,2 -0.524 0.145 -3.614 0.000
graduation mark δ1,3 0.814 0.027 30.373 0.000
high school δ1,4 -0.070 0.104 -0.680 0.496

δ1,5 0.002 0.027 0.071 0.943
δ1,6 0.196 0.109 1.789 0.074

type of degree δ1,7 -0.053 0.144 -0.368 0.713
δ1,8 0.209 0.099 2.115 0.034

faculty δ1,9 0.236 0.132 1.794 0.073
δ1,10 0.154 0.164 0.938 0.348
δ1,11 0.460 0.108 4.275 0.000
δ1,12 -0.040 0.166 -0.242 0.809

number of past experiences δ1,13 0.134 0.122 1.104 0.270
initial period δ2 0.398 0.129 3.090 0.002

δ3 0.198 0.175 1.133 0.257

Table 5.7: Estimates of the parameters for the conditional probability of
having a coherent job given the latent variables in the subsample of stable
people (†minus average age)

the same direction. The models differ in the heterogeneity distribution. In
the first model the first latent class has the higher probability, equal more
or less to 90%. Moreover it has a lower impact on the response variable
compared with the second latent class. In the second model the situation is
reversed, it is the second latent class that has a higher probability of about
90%. In this case this latent class has the same impact on the response vari-
able for the first logit and a lower impact compared with the other latent
class for the second logit. From both models I can conclude that having a
stable job coherent with one’s own university degree has a positive causal
effect on the future coherence job in the long-term period. Furthermore, the
strong state dependence shows the significant impact of the past job coher-
ence. Following the results from both models, the main features that seem
to have a significant impact on coherence are the subject’s ability, measured
through the graduation mark, and the time distance from the degree, mea-
sured with the number of past experiences. As expected, faculties that lead
to a coherent job with a higher probability are the ones of Economics and
Education.
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The recent theoretical literature on program evaluation has built on a com-
bined features of earlier work in both the statistics and econometrics litera-
ture. Even if this literature starts from different perspectives, in both cases
the same central problem is studied: evaluate the effects of the exposure of
a set of units to a program or treatment on some outcome of interest. In
the last years lots of discussion has been done about the econometric struc-
tural approach and the statistical program evaluation approach. Structural
model makes the preferences and constraints explicit with given individual
decisions, that rule interaction among agents and the sources of variabil-
ity across agents. These features facilitate finding answers to more policy
questions, absent in the program evaluation literature. In the statistical lit-
erature there is the absence of explicit model. Fewer assumptions in terms of
exogeneity, functional form, exclusion and distributional assumptions than
the standard structural estimation literature in econometrics are attractive
features of this approach. The greater simplicity of estimation favours repli-
cability, transparency and sensitivity analysis. Despite the recent advances
in the structural literature, fully-specified structural models are often still
hard to compute. Heckman in his last paper tries to reconcile these two kinds
of literature. He recognizes that in some situations the parameters required
to forecast particular policy modifications are represented by a combination
of subsets of the structural parameters, which are much easier to identify.
They require fewer and weaker assumptions that can be bring back to the
modern statistical literature.

I applied a dynamic version of these models in the context of the labour
market, given that I had administrative panel data at my disposal. Dy-
namic models have been recently proposed in literature to face the fact that
a treatment or a policy may be evaluated dynamically on time. Furthermore
these models allow to control for unobserved heterogeneity and to estimate
state dependence. Having at disposal administrative panel data on both
Lombardy labour market and records of the graduates of three biggest Uni-
versity of Milan, I use such models to study the impact of the first “stable”
job coherent with the university studies on the future job coherence. To
the best of my knowledge there are no papers that focus on job coherence.
Moreover most articles focus on unemployment and temporary job and their
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effects on time duration or on probability to get a permanent contract. The
latter is considered a stable job, a point of arrival. However in the last
decade the concept of job and work stability has changed. The rapid spread
of temporary employment and the increased instability of the market has
aroused a new concept of work: the work path. Work relationships have
become more flexible and workers, even those employed on a permanent
contract, can no longer expect to remain employed for a long period in the
same company. In the last years, the average length of employment rela-
tionships has significantly been reduced with a consequent higher rate of
total turnover in the labour market. Nowadays a permanent contract can
have also a short duration, a duration shorter than a temporary contract.
Consequently after a permanent job another work path is present. It is of
great interest to study not only the path up to the permanent job, but also
the path subsequent to it. In this context the necessity arises to define which
characteristics are peculiar of a good job. For sure a long effective duration,
independently from the specific contract, and in the subsample of graduate
people, coherence with one’s own studies.

According with the above remarks I use a new definition of stable job
as: work experience with a duration of at least 540 days. I then consider the
coherence associated to that work experience evaluating the impact of the
future job coherence. The dataset at my disposal results from the joining
of two database: the observatory of the Lombardy job market database
from January 1, 2000 to nowadays and the database concerning graduates
from three of the biggest universities of Milan during the period between
2003 and 2008. From this resulting dataset I consider in particular the
sample of subjects younger than 35 years old at the degree and graduates
from the faculty of Economics, Mathematical, Physical and Natural Sciences
(MPNS), Education, Psychology and Social Sciences.
The scope of my study is to examine the impact of the first stable job
coherent with the university studies on the future job coherence. Given
the nature of the variable of interest, coherence, a dynamic logit causal
model has been performed. Given that I want to study both stability and
coherence I select two particular subsamples. In both subsamples the treated
are represented by people for whom I observe at least a stable job after the
degree. I choose the first stable job observed. The two subsamples differ for
the control group. In one of them I consider the subset of people for whom
the longer work experience observed is coherent with one’s own studies.
With this subsample I can evaluate the effect of stability, given that the two
groups (treated and untreated) differ only for this characteristic. Indeed the
model used takes into account both observable and unobservable variables
that can affect both treatment and outcome. The second control group is
formed by people for whom at least a stable job is observed, but the first
one stable job is incoherent with one’s own studies. With this subsample I
can evaluate the effect of coherence, given that the two groups differ only
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Conclusion

for this characteristic.
From the results obtained applying the model to the two sets of data

I can conclude that a stable job coherent with one’s own university degree
has a positive causal effect on the future coherence job in the long-term
period. Furthermore, the strong state dependence shows the significant
impact of the past job coherence. The main features that seem to have a
significant impact on coherence are the subject’s ability, measured through
the graduation mark, and the distance from the degree, measured with the
number of past experiences. As expected, faculties that lead to a coherent
job with a higher probability are the ones of Economics and Education.

Further development, given the type of information available, could con-
sist in exploiting a more complicated model that takes into account job
duration in a more explicit way. In such a case a duration or event-history
model can be used. Here to summarize the career some temporal instants
before and after the treatment have been taken into account. Therefore it is
considered the job coherence associated to the work experience in progress
in such instants. An alternative way to proceed is to focus on subsequent
work experiences and analyze the duration and coherence associated to each
of them. The resulting model will be more complicated compared with the
one used here, but less information will be lost. Furthermore in my work I
used coherence with the university studies to define a good job. A further
development could be to consider also the qualification level (skill) asso-
ciated to each work experience. The question that arises is if it is better
to get a coherent job with a low qualification or an incoherent job with a
high qualification. In such context the main variables to consider to define a
good job become three: duration, coherence and skill. Finally more faculties
and more universities can be considered. Comparing the same faculties for
different universities also the university effect can be performed.
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