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Abstract This paper extends the scedasticity comparison among several groups
of observations, usually complying with the homoscedastic and the heteroscedastic
cases, in order to deal with data sets laying in an intermediate situation. As is well
known, homoscedasticity corresponds to equality in orientation, shape and size of the
group scatters. Here our attention is focused on two weaker requirements: scatters
with the same orientation, but with different shape and size, or scatters with the same
shape and size but different orientation. We introduce a multiple testing procedure
that takes into account each of the above conditions. This approach discloses a richer
information on the data underlying structure than the classical method only based on
homo/heteroscedasticity. At the same time, it allows a more parsimonious parame-
trization, whenever the patterned model is appropriate to describe the real data. The
new inferential methodology is then applied to some well-known data sets, chosen
in the multivariate literature, to show the real gain in using this more informative
approach. Finally, a wide simulation study illustrates and compares the performance
of the proposal using data sets with gradual departure from homoscedasticity.
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1 Introduction

In multivariate analysis it is customary to deal with covariance matrices referred to
several groups as different (heteroscedastic) if an overall test of equality (homosce-
dasticity test) states that they are not identical: in this case an unbiased version of
the likelihood ratio (LR) test, known as Box’s M-test, is commonly used, providing
both χ2- and F-approximations for the distribution of the LR statistic M under the
assumption of multivariate normality (see, e.g., Rencher 1998, pp. 138–140).

However, in many applications, data groups escape from matching with homosce-
dasticity and one can still observe some sort of common basic structure (the same
pattern) among covariance matrices. In contrast with the univariate case, in the mul-
tivariate setting the scatters may depart from equality in several different ways. Fol-
lowing the suggestions of Flury (1988), these different “ways” can be described by
using the eigenvalues and eigenvectors representation of the covariances, according to
the principal component analysis. Flury motivated his approach by recalling that, for
example, male and female turtles (Jolicoeur and Mosimann 1960), human and animal
bones (Jolicoeur 1963), genuine and forged bank notes (Flury and Riedwyl 1983), are
clear examples in which some sort of equality between eigenvectors is quite plausible
even if the usual homoscedasticity test suggests that the underlying population covari-
ance matrices are not identical in all groups. The same author defined the common
principal components (CPC) to summarize this situation.

On the other hand, Flury did not focus his attention on equality between eigenvalues,
a condition which could also have interesting practical implications, as underlined in
the following example. Clustering male and female blue crabs (Campbell and Mahon
1974) by a mixture model-based approach, Peel and McLachlan (2000) assumed that
the two group-conditional distributions were bivariate normal with a common covari-
ance matrix (see also McLachlan and Peel 2000, pp. 90–92) on the basis of the simul-
taneous test for multivariate normality and homoscedasticity proposed by Hawkins
(1981). As pointed out by the authors, in this case the homoscedasticity assumption
has a marked impact on the implied clustering of the data: indeed, the choice of
a homoscedastic model produces a larger misallocation rate than the unconstrained
model. Greselin and Ingrassia (2009, 2010) resolved this apparent contradiction by
weakening the constraints and requiring only covariance matrices with the same set
of (ordered) eigenvalues. From a geometrical point of view, this assumption means
that covariance matrices are related to ellipsoids of equal concentration with the same
size and shape. This particular condition is summarized by the authors through the
introduction of the concept of weak homoscedasticity.

Patterned covariance matrices were firstly introduced by Murtagh and Raftery
(1984) and systematically employed for Gaussian parsimonious clustering models in
Celeux and Govaert (1995). Here, Flury’s proposal and the above remarks are jointly
considered with the aim of providing a unified framework for a more informative
scedasticity comparison among groups.
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The rest of the paper is organized as follows. In Sect. 2 the concepts of homo-
metroscedasticity, denoting scatters with the same size and shape, and homotropo-
scedasticity, meaning scatters with the same orientation, are introduced. Their logical
intersection allows for a redefinition of homoscedasticity. In order to assess each of
these new conditions, two statistical procedures are introduced in Sect. 3. All these
“ingredients” are used in Sect. 4 to define an MTP (abbreviation of multiple testing pro-
cedure, a statistical method that is designed to take into account and properly control
the multiplicity effect through some combined joint measure of erroneous inferences;
Hochberg and Tamhane 1987, p. 2) that is more informative than the classical Box
M-test. Here, we propose a union-intersection MTP with control of the false discov-
ery exceedance (FDX; Van der Laan et al. 2004; Genovese and Wasserman 2006) by
augmentation and we will motivate our choice. In Sect. 5, some well-known data sets
in the multivariate literature are considered, to show real cases of homometroscedas-
ticy and homotroposcedasticity. The new inferential method is hence applied to the
same data, pointing out that it provides more information on the data underlying struc-
ture than the previous approach only based on homo/heteroscedasticity. In Sect. 6, we
present the results of a wide simulation study which has been carried out in order to
evaluate the performance of the proposed augmentation MTP. Concluding remarks
are finally given in Sect. 7.

2 Basic definitions

Suppose p variables are measured on statistical units arising from k ≥ 2 different
groups and let x

(h)
1 , . . . , x

(h)
nh denote nh independent observations, for the hth group,

drawn from a normal distribution with mean vector µh and covariance matrix !h ,
h = 1, . . . , k. The null hypothesis of homoscedasticity

H0 : !1 = · · · = !k = !, (1)

versus the alternative hypothesis of heteroscedasticity (at least two !h’s are unequal),
can be tested on the basis of the k independent samples, where ! denotes the unknown
common covariance matrix.

Let !h = "h#h"′
h be the spectral decomposition of the matrix !h , h = 1, . . . , k,

where #h = diag(λ
(h)
1 , . . . , λ

(h)
p ) is the diagonal matrix of the eigenvalues of !h sorted

in non-increasing order, i.e. λ
(h)
1 ≥ · · · ≥ λ

(h)
p > 0, and "h is the p × p orthogonal

matrix whose columns γ
(h)
1 , . . . , γ

(h)
p are the normalized eigenvectors of !h ordered

according to their eigenvalues; here, and in what follows, the prime denotes the trans-
pose of a matrix. The representation is unique (and we can call it canonical), provided
that we have distinct eigenvalues and non-null elements on the diagonal of #h . Note
also that the matrix "h is the rotation in p-space that realizes the transformation of
the data into their principal components. In line with Banfield and Raftery (1993), the
greatest eigenvalue λ

(h)
1 denotes the size of the ellipsoids of equal concentration, while

#h/λ
(h)
1 is their shape.
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The spectral decomposition induces the following consideration: if k covariance
matrices !h , h = 1, . . . , k, are equal to some !, as in (1), then they share both the
matrix of eigenvalues #, that is #1 = · · · = #k = #, and the matrix of orthonormal-
ized eigenvectors ", that is "1 = · · · = "k = ".

The condition #1 = · · · = #k = # means that the ellipsoids of equal concentration
referred to the k groups are equivalent to each other, up to some convenient rotation. In
other words, they have the same shape and the same size. In an attempt to conform to
the existing nomenclature, we will combine the three Greek words “hòmoios” (equal),
“mètron” (measure) and “skèdasis” (dispersion) in the following way:

Definition 1 (Homometroscedasticity) Let!1, . . . ,!k be k covariance matrices, each
with canonical spectral decomposition !h = "h#h"′

h . If #1 = · · · = #k = # the k
covariance matrices are said to be homometroscedastic.

Note that homoscedasticity is homometroscedasticity in the univariate case. More-
over, in case of spherical scatters, homometroscedasticity is not wholly meaningful
and it reduces only to equality in size.

On the other hand, k covariance matrices which share the same matrix of orthon-
ormalized eigenvectors " have ellipsoids of equal concentration with the same axes
orientation in p-space. In other words, they own the same ordered set of principal
components and hence their ellipsoids are congruent up to a suitable dilation/contrac-
tion (alteration in size) and/or “deformation” (alteration in shape). We will denote this
situation by using the Greek term “tròpos” (direction) in order to coin the following
notion:

Definition 2 (Homotroposcedasticity) Let !1, . . . ,!k be k covariance matrices, each
with canonical spectral decomposition !h = "h#h"′

h . If "1 = · · · = "k = " the k
covariance matrices are said to be homotroposcedastic.

In Fig. 1 examples of covariance matrices having different shape, size and orienta-
tion are given in terms of ellipsoids of equal concentration. In more detail, both Fig. 1a
and b represent covariance matrices that are homotroposcedastic but not homometros-
cedastic while Fig. 1c shows covariance matrices that are homometroscedastic but not
homotroposcedastic. Naturally, such considerations allow us to re-formulate homosce-
dasticity, in terms of matrices for which Definition 1 and Definition 2 simultaneously
hold. At the same time, such definitions represent two weaker conditions of similarity
among k covariance matrices, that is, intermediate cases between homoscedasticity
and heteroscedasticity.

3 Statistical tests for scedasticity analysis

In this section, in line with the more detailed approach to “scedasticity” given in
Sect. 2, some multiple statistical tests are proposed. Consider the null hypothesis of
homometroscedasticity

H#
0 : #1 = · · · = #k = #, (2)
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Fig. 1 Three different kinds of similarity between covariance matrices in terms of ellipses of equal con-
centration. The first two graphics are related to homotroposcedasticity while the last is connect to homo-
metroscedasticity. a Different shape, b different size, c different orientation

versus the alternative

H#
1 : #h $= #l for some h, l ∈ {1, . . . , k}, h $= l. (3)

Afterward, consider the null hypothesis of homotroposcedasticity

H"
0 : "1 = · · · = "k = ", (4)

versus the alternative

H"
1 : "h $= "l for some h, l ∈ {1, . . . , k}, h $= l. (5)

Thus, the homoscedasticity test in (1) can be re-expressed as follows

H0 : H#
0 ∩ H"

0 versus H1 : H#
1 ∪ H"

1 . (6)

Thus, H0 is accepted against the alternative if, and only if, both H#
0 and H"

0 are
accepted. Differently from a usual “direct” test of homoscedasticity, the present
approach shows its profitability whenever the null hypothesis in (6) is rejected; indeed,
the results for H#

0 and H"
0 permit us to investigate the nature of the departure from H0.

3.1 Testing homometroscedasticity

Let xh and Sh be respectively the sample mean vector and the unbiased sample covari-
ance matrix in the hth group, h = 1, . . . , k. Moreover, let Gh be the p × p orthog-
onal matrix whose columns are the normalized eigenvectors of Sh ordered by the
non-increasing sequence of the eigenvalues of Sh , h = 1, . . . , k. According to the
principal component (linear) transformation

123



F. Greselin et al.

x
(h)
i → y

(h)
i = G′

h

(
x

(h)
i − xh

)
, i = 1, . . . , nh,

the data y
(h)
1 , . . . , y

(h)
nh , h = 1, . . . , k, result uncorrelated, and their covariance matrix

Lh is the diagonal matrix containing the non-negative eigenvalues of Sh . Since the
assumption of multivariate normality holds, these components are also independent
and normally distributed. Based on these results, the null hypothesis in (2) can be
re-expressed as follows

H#
0 :

p⋂

j=1

H
λ j
0 , (7)

where

H
λ j
0 : λ

(1)
j = · · · = λ

(k)
j = λ j ,

and λ j is the unknown j th eigenvalue, common to the k groups. Hence, the mul-
tivariate test for homometroscedasticity has been reduced to an equivalent set of p
simultaneous Bartlett’s tests of univariate homoscedasticity (see Bartlett 1937) among
the k groups. Note that p simultaneous well known F-tests can be considered for the
special case k = 2. All these techniques are implemented in most statistical software
like the R libraries.

3.2 Testing homotroposcedasticity

Consider the spectral decomposition of !h , i.e. !h = "h#h"′
h . Under the null hypoth-

esis H"
0 given in (4), the p × p matrix " simultaneously diagonalizes all covariance

matrices and generates the eigenvalue matrices #h , h = 1, . . . , k. Thus the null
hypothesis (4) can be equivalently re-formulated as follows

H"
0 : "#h"′ = !h, h = 1, . . . , k. (8)

Under the assumption of multivariate normality, Flury (1984) derived the log-LR
statistics for testing the weaker null hypothesis of common principal components

HCPC
0 : "

˜
#h
˜

"
˜

′ = !h, h = 1, . . . , k, (9)

where "
˜

is a p× p orthonormalized matrix that simultaneously diagonalizes all covari-
ance matrices, and #h

˜
is one of the possible p! diagonal matrices of eigenvalues in the

hth group, h = 1, . . . , k. Note that, in contrast with the formulation (8), no canonical
ordering of the columns of "

˜
is specified here, since the rank order of the diagonal

elements of the #h
˜

is not necessarily the same for all groups. In order to apply Flury’s
proposal, the F–G algorithm, developed by Flury and Gautschi (1986) and coded in
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Fig. 2 Ellipses of equal concentration of two bivariate normal distributions, with the same principal axes
but with different orientation

FORTRAN by Flury and Constantine (1985), can be considered to estimate the sample
counterpart G

˜
of "

˜
(see Flury 1984). Under H CPC

0 , the following transformation

x
(h)
i → y

˜
(h)

i
= G

˜
′
(
x

(h)
i − xh

)
, i = 1, . . . , nh,

holds, where the data y
˜

(h)
1 , . . . , y

˜

(h)
nh , h = 1, . . . , k, are uncorrelated with diagonal

covariance matrix L
˜

h (the sample counterpart of #h
˜

). Under multivariate normality,
these components are also independent and normally distributed.

From a geometrical point of view, under H"
0 , the k ellipsoids of equal concen-

tration have the same orientation in p-space while, under HCPC
0 , they have only the

same principal axes. Figure 2 gives an example of ellipses of equal concentration with
different orientation, but with the same principal axes.

In the light of these considerations, and aiming at testing H"
0 , we require a further

statistical test to evaluate the null hypothesis

HR
0 :

{
the ranking of the eigenvalues λ

˜
(h)
1 , . . . ,λ

˜
(h)
p

of #h
˜

, h = 1, . . . , k, is the same for all the k groups
,

}

(10)

provided that HCPC
0 holds. In order to test HR

0 , a rank correlation test between k sets
of rankings (of length p) induced by the sequences λ

˜
(h)
1 , . . . , λ

˜
(h)
p , h = 1, . . . , k,

appears to be a natural way to assess perfect monotonic relationship between sets of
rankings. In practice, this solution is not good for two reasons. Firstly, information
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is sacrificed when interval/ratio data (eigenvalues could be considered as ratio data
since their positivity) are transformed into ordinal (rank-ordered) data. Secondly, the
null hypothesis in all rank correlation tests is “uncorrelation between sets of rankings”
(see, e.g., Sheskin 2000) since the distribution of the test statistic is known only in this
case.

In order to overcome these issues, let

A =





λ
˜
(1)
1 · · · λ

˜
(1)
j · · · λ

˜
(1)
p

...
...

...

λ
˜
(h)
1 · · · λ

˜
(h)
j · · · λ

˜
(h)
p

...
...

...

λ
˜
(k)
1 · · · λ

˜
(k)
j · · · λ

˜
(k)
p





be the k × p matrix composed by the k sequences of p eigenvalues, arranged by row.
Let λ

˜
(1)
[1] , . . . , λ˜

(1)
[p] be the sequence of the entries on the first row of A in non-increasing

order, that is, λ
˜
(1)
[1] ≥ · · · ≥ λ

˜
(1)
[p]. Permuting the columns of A according to the order

induced by λ
˜
(1)
[1] , . . . , λ˜

(1)
[p], we obtain

B =





λ
˜
(1)
[1] · · · λ

˜
(1)
[ j] · · · λ

˜
(1)
[p]

...
...

...

λ
˜
(h)
[1] · · · λ

˜
(h)
[ j] · · · λ

˜
(h)
[p]

...
...

...

λ
˜
(k)
[1] · · · λ

˜
(k)
[ j] · · · λ

˜
(k)
[p]





.

Thus, the null hypothesis HR
0 in (10) can be re-formulated as

HR
0 : λ

˜
(l)
[1] ≥ · · · ≥ λ

˜
(l)
[p], l = 2, . . . , k. (11)

For a fixed l ∈ {2, . . . , k}, the problem can be approached by means of p − 1 F-tests
for the null hypothesis

H (l),[ j]
0 : λ

˜
(l)
[ j−1] ≥ λ

˜
(l)
[ j], j = 2, . . . , p, (12)

that, simultaneously considered, lead to

H (l)
0 :

p⋂

j=2

H (l),[ j]
0 . (13)

Logically, the p − 1 tests in (12) require independence between the p variables in
the lth group, l = 2, . . . , k. Thus, they make sense only under HCPC

0 and multivariate
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normality in the lth group, l = 2, . . . , k. Also, the null hypothesis in (11) can be further
re-formulated as

H R
0 :

k⋂

l=2

H (l)
0 . (14)

Really, with the aim of testing H"
0 , we note again that all the hypotheses (10)–(14)

have been developed under HCPC
0 , and we can express this assumption by explicitly

rewriting the hypotheses (12) and (13) respectively as follows:

∗H (l),[ j]
0 : HCPC

0 ∩ H (l),[ j]
0 (15)

∗H (l)
0 : HCPC

0 ∩ H (l)
0 =

p⋂

j=2

∗H (l),[ j]
0 . (16)

Although it can be considered as trivial, it is important to note that, while H (l),[ j]
0 and

H (l)
0 have to be (conditionally) interpreted as “given” HCPC

0 , ∗H (l),[ j]
0 and ∗H (l)

0 have to
be meant, respectively, as H (l),[ j]

0 and H (l)
0 “jointly to” HCPC

0 . Thus, we can express
the null hypothesis H"

0 as

H"
0 : HCPC

0 ∩ HR
0 =

k⋂

l=2

∗H (l)
0 .

In Sect. 4.4 we will provide details for testing the hypotheses ∗H (l),[ j]
0 , l = 2, . . . , k

and j = 2, . . . , p, that are the building blocks to test H"
0 .

4 Scedasticity tests in the framework of multiple testing procedures

The reciprocal relationships among the null hypotheses introduced in the above sec-
tion are represented in Fig. 3, which describes also their hierarchical structure. Our
purpose is to make inference on H0, hence the decision should depend on some joint
measure of erroneous statements in the given set of inferences. According to the clas-
sical terminology for MTPs (see, e.g., Hochberg and Tamhane 1987; Shaffer 1995),
we can jointly consider all the hypotheses in the following set

H =
{

H0, H#
0 , H"

0 , HR
0 ,

{
H

λ j
0

}

j=1,...,p
,
{

∗H (l)
0

}

l=2,...,k
,
{

∗H (l),[ j]
0

}
l=2,...,k
j=2,...,p

}

,

as a finite family of inferences.
We said above that H is a hierarchy; this is true because at least an implication

relation holds between the hypotheses as, for instance, between H0 and H#
0 , where

H0 ⇒ H#
0 means H#

0 ⊆ H0 (see Hochberg and Tamhane 1987, p. 344). In this
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Fig. 3 Hierarchy among the null hypotheses in H

case H#
0 is said to be a component of H0 (Gabriel 1969). All the implications among

the null hypotheses are shown by moving from top to bottom of the tree in Fig. 3.
Hypotheses that do not have any component are referred to as minimal (represented
in oval boxes); all other hypotheses are referred to as non-minimal. In particular, the
hypothesis which is the intersection of all the hypotheses in the family (displayed in
the shadow box) is said to be the overall hypothesis.

4.1 Coherence and consonance for hierarchical families

Any MTP for a hierarchical family of hypotheses is generally required to possess two
logical consistency properties: coherence and consonance (Gabriel 1969). We recall
that a coherent MTP avoids the inconsistency of rejecting a hypothesis without also
rejecting all hypotheses implying it, and it is said to be consonant if, whenever any
non-minimal hypothesis is rejected, at least one of its components is also rejected. The
lack of consonance (referred to as dissonance), according to Hochberg and Tamhane
(1987), is not as serious a drawback as the lack of coherence (because of the nonsymme-
try in the interpretation of rejection and acceptance decisions in classical significance
testing). In our case, however, we believe that the practitioner cannot, for example, find
himself in the situation of rejecting H0 without having rejected at least one between
H#

0 or H"
0 .

Motivated by these considerations, we adopted the union-intersection (UI) proce-
dure. Indeed, it is the only one that guarantees both properties among the single-step
MTPs (for further details, see Hochberg and Tamhane 1987, pp. 47–50). The underly-
ing idea of a UI procedure for a hierarchical family, is to test all minimal hypotheses
and then to step up through the hierarchy of non-minimal hypotheses guaranteeing
coherence and consonance, without performing further tests.

4.2 The union-intersection procedure, for hierarchical families, via adjusted p-values

UI procedures can be described either by means of test statistics (see, e.g., Hochberg
and Tamhane 1987, pp. 47–50), or by adjusted p-values (Rosenthal and Rubin 1983),

123



Assessing the pattern of covariance matrices via an augmentation multiple testing procedure

Table 1 Outcomes in testing m
hypotheses

H0

Not rejected Rejected Total

H0
True N0|0 N1|0 M0

False N0|1 N1|1 M1
Total m − R R m

which are the natural counterpart, in the multiple testing framework, of the classical
p-values. The reasons for preferring adjusted p-values are the same as those for using
ordinary (unadjusted) p-values. In detail, they provide information about whether an
individual statistical hypothesis is significant or not (an adjusted p-value can be com-
pared directly with any chosen significance level α and if it is less than or equal to
α, the individual hypothesis is rejected), they indicate “how significant” the result
is (the smaller the adjusted p-value, the stronger the evidence against the individ-
ual null hypothesis), they are interpretable on the same scale as those for tests of
individual hypotheses, making comparison with single hypothesis testing easier (for
further details on their chief advantages, see Wright 1992; Shaffer 1995, pp. 567–568;
Westfall and Young 1993, pp. 11–12).

Roughly speaking, in the UI procedure for hierarchical families, p-values are ini-
tially computed for the minimal hypotheses and then they are modified (adjusted)
to take into account the multiplicity effect. The adjusted p-value for a non-minimal
hypothesis is then obtained as the smallest adjusted p-value associated with its mini-
mal components. It is straightforward to show that this method guarantees a coherent
and consonant MTP.

4.3 Choosing the error rate to control

To complete the description of the UI procedure to test H0, we need now to specify
how to obtain adjusted p-values of the minimal hypotheses. Such a choice is directly
connected with the error rate to control in a given MTP and this latter issue has gen-
erated a wide discussion in the literature. To give a brief description of the issue, we
have to compare what happens in the single test framework with respect to MTPs.

Consider a situation in which m tests have to be performed; in our case, m =
k (p − 1) + 1 is the number of minimal hypotheses to test. Suppose M0 of the m
hypotheses to be true, and M1 false. Table 1 shows the possible outcomes in this situ-
ation: R is the number of rejections, while N1|0 and N0|1 denote the exact (unknown)
number of committed errors.

In the usual (single) test setting, where m = 1 and N1|0 ∈ {0, 1}, one controls the
probability of a false rejection (Type I error) while looking for a procedure that possibly
minimizes the probability of observing a false negative (Type II error). Unfortunately,
in the multiple case, as m increases the number of false positives can explode. Thus,
adjustment of p-values arises as one has to look for other specific Type I error mea-
sures, still based on N1|0, that can serve as possible generalizations of the probability
of Type I error in the multiple testing context.
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All Type I error measures refer to probabilities that are conditioned on which mini-
mal hypotheses are true. Thus, the control of the error rate can be categorized as weak
if all the minimal hypotheses are supposed true (the so called “complete null”), and
strong when the Type I error measure is controlled for any of the 2m possible true/false
configurations among the m minimal hypotheses. Logically, the results of a weak con-
trolling procedure can be used only to imply that there is some false hypothesis among
the m, but do not allow the researcher to say which hypotheses are false. We choose
strong control on H0 to derive inferences on each hypothesis in H, in particular on
H#

0 and H"
0 , with the aim of obtaining a more informative MTP for H0 than the

standard approach given by the Box test.
The most classical multiple Type I error measure is the familywise error rate

(FWER), defined as P
(
N1|0 > 0

)
. Nevertheless, while FWER controlling meth-

ods are preferable in many situations, they can have low power in certain large
m applications. In response to the need of an error measure that would allow for
good power, in particular with large m, many modern Type I error rates are based
on the false discovery proportion (FDP), defined as N1|0/R if R > 0, and 0 if
R = 0 (see Benjamini 2010, for a brief discussion on the success of the FDP-based
error measures). Among them, the most important ones are the false discovery rate
(FDR), proposed by Benjamini and Hochberg (1995) and defined as the expecta-
tion of FDP, say E(FDP), and the more recent false discovery exceedance (FDX),
independently proposed by Van der Laan et al. (2004) and Genovese and Wasser-
man (2006), and defined as P (FDP > c), c ∈ (0, 1). It is worth recalling that
FDX-control at level α ensures also FDR-control at level α+ (1 − α) c (see Genovese
and Wasserman 2006), as both FDX and FDR are functionals of the same random
variable FDP. To find out more on the relations between these two error measures see
Farcomeni (2008, p. 351).

Roughly speaking, in FDX-control interest is taken in the tails of the distribution of
the FDP rather than in its central part. Hence FDX-control can be preferred when the
random variable FDP has a weak concentration on its mean, the FDR: this situation,
for instance, can be due to a high variance of the FDP and can be further affected by
dependence among the test statistics.

In our case, apart from the subset
{

H
λ j
0

}

j=1,...,p
⊂ H where independence between

the related test statistics holds, we do not know the dependence structure for the test
statistics of the other minimal hypotheses. Thus, we choose to control FDX in order
to prevent any situation of dependence.

4.4 FDX-control by augmentation MTPs

Among the procedures controlling FDX (for a detailed review on the different strate-
gies to control this and the other error rates above mentioned, see Farcomeni 2008),
we decided to adopt augmentation due to Van der Laan et al. (2004). This method
relies on the idea that relaxing FWER control will result in the rejection of at least
the same hypotheses. For this reason, the procedure starts, in a first step, by control-
ling the FWER and then, in a second step, it augments the number of the previously
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rejected hypotheses, denoted by rFWER, by an opportune additional number a (c, α) ∈
{0, 1, . . . , m − rFWER} (for more details, see Dudoit and van der Laan 2008, Chapter
6). The choice of this procedure is primarily justified by its robustness to dependence
if the FWER, in the first step, is controlled under general dependence and, secondly,
by its clear idea and its computational low cost. In these terms, there are two main
procedures controlling FWER under arbitrary dependence: the classical method of
Bonferroni (1936), and the slightly more complex, but much less conservative, method
of Holm (1979) that we have chosen to adopt.

In Holm’s procedure, the unadjusted p-values p1, . . . , pi , . . . , pm are ordered so
that p(1) ≤ · · · ≤ p(i) ≤ · · · ≤ p(m), and each p(i) is compared to α/(m − i + 1)

rather than to α/m as in the Bonferroni method. In other words, (m − i + 1)p(i),
i = 1, . . . , m is compared to α. Note that these values are not necessarily the adjusted
p-values for Holm’s procedure, since a logical property of “comonotonicity” with
p(1), . . . , p(i), . . . , p(m) has to be respected (see Wright 1992, that exemplifies this
issue). Thus, the ordered adjusted p-values pHolm

(i) for the Holm procedure can be
obtained as

pHolm
(i) = max

j=1,...,i

{
(m − j + 1) p( j)

}
, i = 1, . . . , m. (17)

These adjusted p-values are intentionally not truncated to 1 to emphasize the degree
of conservatism of the procedure. Note that Holm’s method is also adopted to obtain
the adjusted p-value ∗ p(l),[ j] for each minimal hypothesis ∗H (l),[ j]

0 , l = 2, . . . , k,
j = 2, . . . , p; here, the procedure is applied to pCPC and p(l),[ j] which are, respec-
tively, the p-values for HCPC

0 and H (l),[ j]
0 , in order to compute the adjusted Holm’s

p-values pHolm
CPC and pHolm

(l),[ j] according to (17). Then ∗ p(l),[ j] = min
{

pHolm
CPC , pHolm

(l),[ j]
}

.
Once rFWER hypotheses have been rejected by the Holm procedure, for a given

bound c ∈ (0, 1), they can be augmented by the additional number of rejections

a (c, α) = max
j=0,1,...,m−rFWER

{
j : j

j + rFWER
≤ c

}
. (18)

Logically, the a (c, α) hypotheses not yet rejected that have to be selected, are those
with most significant adjusted p-values in (17). Moreover, when no hypothesis is
rejected at the first step (something not uncommon for Holm’s procedure if m is large)
none will be at the second step for any c. On the other hand, if all the m hypotheses
are rejected in the first step, the augmentation procedure does not make sense. It is
interesting to note from (18) that, fixed the value of c, the greater is rFWER, the greater
is P (a (c, α) > 0).

From Eq. (18), the ordered adjusted p-values pAug
(i) for the augmentation FDX-con-

trolling procedure are given by

pAug
(i) = pHolm

(/(1−c)i0), i = 1, . . . , m, (19)

where the ceiling function /x0 denotes the least integer greater than or equal to x (see
Dudoit and van der Laan 2008, pp. 250–251). Thus, the ordered adjusted p-values
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in (19) are simply ic-shifted versions (up to a ceiling integer transformation) of the
ordered adjusted p-values in (17). Regarding the selection of an appropriate value of
c, it is generally chosen as a value in the interval (0, α) but, if one wants to extend
control also to FDR, the optimal value of c should be close to zero (see Farcomeni
2008, pp. 369–371).

5 Some applications to real data sets

This section pursues the double intent to exemplify and to analyze the augmentation
UI procedure described above. To this aim, some well-known examples in the mul-
tivariate literature will be used. The value c = 0.01 and a nominal level of 0.05 are
used hereafter for FDX-control, hence FDR-control at level 0.0595 is also obtained.

Calculations have been carried out using R; the R functions necessary to implement
all the proposed tests, the F–G algorithm, and the augmentation UI procedure with
both adjusted and unadjusted p-values are available from the authors upon request.
Finally, note that a preliminary Mardia’s test (Mardia 1985) is performed on each set
of data to check the underlying assumption of multivariate normality.

Example 1: Fisher’s iris data

This data set, undoubtedly the most popular in the multivariate literature, was first
published by Anderson (1935) and used by Fisher (1936) as an example of discrimi-
nant analysis. The sample is composed of n = 150 observations on nh = 50 flowers,
h = 1, 2, 3, from each of k = 3 species of iris: setosa, versicolor and virginica. The
p = 4 variables, measured in centimeters, are sepal length, sepal width, petal length,
and petal width. The matrix of scatterplots referred to the grouped-data is shown in
Fig. 4. Based on Mardia’s test, there is statistical evidence for multivariate normality
in each of the 3 groups.

A graphical inspection of Fig. 4 underlines that the covariance structure among
groups is different so that both homometroscedasticity and homotroposcedasticity
(and hence homoscedasticity) appears to be too strong for these data. To ascertain this
conjecture, the Box M-test with F-approximation has been applied; at any reasonable
significance level the null hypothesis of common covariance matrices is rejected, since
the p-value resulted lower than 10−30.

To investigate the nature of the deviation of the data from homoscedasticity, the
augmentation UI procedure has been performed. The testing hierarchy for the iris
data, along with the adjusted p-values for each hypothesis, is shown in Fig. 5. For
the minimal hypotheses we have chosen to show both the unadjusted p-values (in
round brackets) and the adjusted p-values computed according to (19); this way of
proceeding, in line with Westfall and Young (1993, p. 10), highlights their disparity.
For each non-minimal hypothesis, the adjusted p-values have been obtained according
to the UI procedure, as specified at the end of Sect. 4.2.

In detail, in Fig. 5 we have m = 10 minimal hypotheses of which p = 4 referred to
H#

0 and (k − 1) (p − 1) = 6 referred to H"
0 ; consequently, we have to compute the
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Fig. 4 Matrix of scatterplots of Fisher’s iris data

Fig. 5 Adjusted and unadjusted p-values (in round brackets) of the augmentation UI procedure, applied
on the iris data. The rejected hypotheses at the nominal level 0.05 are displayed in gray
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Table 2 Scheme of the various phases leading to ∗ p(l),[ j], l = 2, 3, j = 2, 3, 4

Phase p-value l = 2 l = 3

j = 2 j = 3 j = 4 j = 2 j = 3 j = 4

1 pCPC 4.33 × 10−9 4.33 × 10−9 4.33 × 10−9 4.33 × 10−9 4.33 × 10−9 4.33 × 10−9

p(l),[ j] 1.00000 0.14698 1.00000 1.00000 0.65809 0.78466

2 pHolm
CPC 8.66 × 10−9 8.66 × 10−9 8.66 × 10−9 8.66 × 10−9 8.66 × 10−9 8.66 × 10−9

pHolm
(l),[ j] 1.00000 0.14698 1.00000 1.00000 0.65809 0.78466

3 ∗ p(l),[ j] 8.66 × 10−9 8.66 × 10−9 8.66 × 10−9 8.66 × 10−9 8.66 × 10−9 8.66 × 10−9

same number of “minimal” p-values. Table 2 describes the phases of the Holm proce-
dure, leading to the 6 values of ∗ p(l),[ j], l = 2, 3, j = 2, 3, 4. The minimal p-values
referred to H#

0 are instead obtained by simultaneous Bartlett’s tests of univariate
homoscedasticity among the 3 groups, as described at the end of Sect. 3.1.

Once the p-values for all the minimal hypotheses have been computed, their
adjusted version in (17), for the first step of the augmentation procedure, has been
obtained following the phases sketched in Table 3. Here, according to the last row, the
adjusted (minimal) p-values are lower than the adopted nominal size; thus, at the end
of the first step, all the minimal hypotheses have been rejected. As rFWER = 10, the
augmentation procedure has no influence, so that pAug

(i) = pHolm
(i) , i = 1, . . . , 10. This

is the reason why the adjusted p-values in Fig. 5 agree with those obtained by Holm’s
procedure.

Finally, if we compare the p-value obtained by the Box test (which is lower than
10−30) with the significance of the UI procedure (8.66 × 10−8), we see that the latter
is more conservative. The inferential approach used in this example allows us to con-
clude that heteroscedasticity is fully verified, as the scatters in the three species differ
in orientation and in size and/or shape.

Example 2: Blue crabs

The crab data set of Campbell and Mahon (1974) on the genus Leptograpsus, which
has been analyzed further in Ripley (1996), is very popular in multivariate literature.

Here, following the setting of Peel and McLachlan (2000) (see also McLachlan and
Peel 2000, pp. 90–92), the attention is focused on the sample of n = 100 blue crabs,
there being n1 = 50 males (group 1) and n2 = 50 females (group 2), each specimen
having p = 2 measurements (in millimeters) on the rear width (RW) and the length
along the midline (CL) of the carapace. Mardia’s test suggests that it is reasonable to
assume that the two group-conditional distributions are bivariate normal. On the con-
trary Box’s M-test, with F-approximation, rejects homoscedasticity at any reasonable
significance level, because the p-value is 2.76 × 10−14.

In order to obtain more information about the nature of the observed heterosced-
asticity, the following considerations could be useful. In Fig. 6 the scatter plot of RW
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Fig. 6 Scatter plot of variables RW and CL for n1 = 50 males and n2 = 50 females blue crabs (circle
denotes male and multiple symbol female). The ellipses of equal (95%) concentration are also superimposed

versus CL, in both groups, is shown. Once we obtain the sample mean vectors and the
unbiased covariance matrices

x1 =
(

11.678
31.862

)
S1 =

(
4.296 14.460

14.460 51.071

)

x2 =
(

12.138
28.102

)
S2 =

(
5.947 14.253

14.253 35.042

) (20)

we can superimpose on the scatter plot in Fig. 6 the ellipses of equal (95%) concentra-
tion arising from a bivariate normal distribution with mean vector xh and covariance
matrix Sh , h = 1, 2. The principal component analysis of Sh , h = 1, 2, returns

L1 =
(

55.180 0
0 0.187

)
G1 =

(
0.273 −0.962
0.962 0.273

)

L2 =
(

40.861 0
0 0.129

)
G2 =

(
0.378 −0.926
0.926 0.378

)
.

(21)

Although the Box M-test points out heteroscedasticity, the scatter plot in Fig. 6 shows
strong similarity between size and shape of the two ellipses. This remark is confirmed
by applying the augmentation UI procedure graphically represented in Fig. 7.

Here, focusing attention on the hierarchy of the sub-family having H#
0 as overall

null hypothesis, we obtained an unadjusted p-value of 0.23091 for the comparison
between the variances associated with the first principal component in the two groups
(first diagonal element in Lh , h = 1, 2), and an unadjusted p-value of 0.19042 for the
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Fig. 7 Adjusted and unadjusted
p-values (in round brackets) of
the augmentation UI procedure,
applied on the crab data. The
rejected hypotheses at the
nominal level 0.05 are displayed
in gray

comparison between the variances associated with the second principal component in
the two groups (second diagonal element in Lh , h = 1, 2). Note that, being k = 2,
p = 2 simultaneous F-tests have been performed. Naturally, if at the chosen nominal
level the null hypothesis of homometroscedasticity is not rejected before adjustment,
it cannot be rejected after adjustment.

As regards the orientation of the two ellipses in Fig. 6, they show a slight differ-
ence in the directions of their main axes, reflected also in the values of the elements
along the diagonal in the sample eigenvalue matrices G1 and G2 given in (21). This
conjecture is confirmed in the hierarchy of the sub-family having H"

0 as overall null
hypothesis: due to a practically null unadjusted p-value associated with Flury’s test for
H CPC

0 (pCPC = 4.44 × 10−16), the null hypothesis of homotroposcedasticity (equal
orientation) is rejected at any reasonable significance level with an adjusted p-value
of 2.66 × 10−15. Naturally, for coherence, also the homoscedasticity hypothesis H0
is rejected with a lower significance with respect to the Box test.

Finally, regarding the augmentation procedure, it is interesting to note that in the
first step, 1 out of the 3 minimal hypotheses is rejected (rFWER = 1). The combination
between c = 0.01 and rFWER = 1 is too low to add further rejections, according to
(18), in the second step. In other words, a (c, α) = 0. Thus, also in this example,
pAug
(i) = pHolm

(i) , i = 1, . . . , 3.

Example 3: Genuine and forged bank notes

From Flury and Riedwyl (1983), and based on (Flury 1988, pp. 51–56), the following
p = 2 variables, measured (in millimeters) on former Swiss 1000-franc bank notes,
will be considered:

LEFT = width of bank note, measured on left side,

RIGHT = width of bank note, measured on right side.
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There are k = 2 groups of bills, genuine (group 1) and forged (group 2), each of them
consisting of nh = 100, h = 1, 2, observations. Mardia’s test suggests that it is rea-
sonable to assume bivariate normality for the group of forged bills, but it leaves some
doubt on the other one. Since Flury (1988) tacitly accepts the hypothesis of bivariate
normality in the group of genuine bills, we will retain it to hold from now on. On
the contrary Box’s M-test rejects homoscedasticity providing a p-value of 0.003 with
F-approximation.

In order to comprehend more deeply the nature of the presumed heteroscedasticy,
we begin by analyzing the two groups and obtaining their sample mean vectors and
unbiased covariance matrices

x1 =
(

129.943
129.722

)
S1 =

(
0.133 0.086
0.086 0.126

)

x2 =
(

130.300
130.193

)
S2 =

(
0.065 0.047
0.047 0.089

)
.

(22)

Figure 8 shows the scatter plots of the variables LEFT and RIGHT in both groups, as
well as the ellipses of equal (95%) concentration. Note that, unlike the example on
the blue crabs discussed above, the scatter plots for genuine and forged bank notes
are separately displayed in order to avoid a large overlapping between sample points.
Although Box’s M-test points out heteroscedasticity, a strong similarity between the
orientation of the two ellipses in Fig. 8a and b appears, while some difference in their
size emerges. As a first step, in order to confirm or discard this conjecture, the principal
component analysis of Sh , h = 1, 2,

L1 =
(

0.215 0
0 0.043

)
G1 =

(
0.721 −0.693
0.693 0.721

)

L2 =
(

0.125 0
0 0.029

)
G2 =

(
0.613 −0.790
0.790 0.613

) (23)

could be taken into account. Based on (23), but also according to the graphical repre-
sentation, the two sample matrices of eigenvalues L1 and L2 seem to differ while, on
the other hand, the sample eigenvector matrices G1 and G2 are very similar. Applying
the homometroscedasticity test, it provides raw (non-multiplicity corrected) p-values
of 0.00751 and 0.04059, respectively, for the equality of variances associated with
the first and the second principal components in the two groups (that is the first and
second diagonal element in Lh , h = 1, 2). After adjustment, these p-values become
0.02253 and 0.08119, respectively. Thus, at the chosen nominal level, Hλ1

0 is rejected
and, for coherence, also H#

0 and H0 are rejected. These results are all displayed in
Fig. 9.

As regards the conjecture on the equality between orientations, being the com-
ponent hypothesis ∗ H (2),[2]

0 of H"
0 not rejected before adjustment, for consonance,

homotroposcedasticiy is not rejected also after adjustment. Consequently, also in this
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Fig. 8 Scatter plots, and related ellipses of equal (95%) concentration, of variables LEFT and RIGHT in
two groups of Swiss bank notes. Coinciding points are marked by single symbol only. a Genuine, b forged

Fig. 9 Adjusted and unadjusted
p-values (in round brackets) of
the augmentation UI procedure,
applied on the genuine and
forged bank notes data. The
rejected hypotheses at the
nominal level 0.05 are displayed
in gray

case, homoscedasticity is rejected for coherence. Finally, regarding the augmentation
procedure, the same considerations stated at the end of Example 2 apply.

6 A simulation study

In the following, we present the results of a wide simulation study developed in order
to show the performance of the proposed augmentation UI procedure in different sit-
uations of gradual departure from homoscedasticity. As there are a lot of factors that
may be varied (the number of groups k, the dimension p of the observed variables,
the overall size of the sample n, the nominal level of the test, the size, shape, and
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orientation of the group scatters), some of them have been necessarily considered
fixed.

In more detail, two different scenarios of simulation have been considered. In the
first, data have been generated from k = 2 groups drawn from two bivariate normals
(p = 2) with mean vectors µ1 = µ2 = 0 and covariance matrices !1 and !2, respec-
tively. Small to moderately large sizes, n = 60, n = 150 and n = 300, have been
considered with n1 = n2 in all the three cases. Here, !1 has been randomly generated
and its spectral decomposition

!1 = "1#1"
′
1 =

(
γ

(1)
11 γ

(1)
12

γ
(1)
21 γ

(1)
22

) (
λ

(1)
1 0
0 λ

(1)
2

) (
γ

(1)
11 γ

(1)
12

γ
(1)
21 γ

(1)
22

)′
,

with λ
(1)
1 ≥ λ

(1)
2 , has been computed. In order to simulate different ways of gradual

departure from homoscedasticity, !2 has been defined by the following relation with
!1

!2 =
(

cos θ − sin θ

sin θ cos θ

)
"1

(
dλ

(1)
1 0

0 λ
(1)
2
d

) [(
cos θ − sin θ

sin θ cos θ

)
"1

]′
,

where
(

cos θ − sin θ

sin θ cos θ

)

is the rotation matrix of angle θ , and d ≥ 1 is a sort of “deformation” constant: if
d = 1, the concentration ellipsoids related to !1 and !2 are homometroscedastic;
the flattening of the concentration ellipsoids related to !2 increases in line with the
increase of d. Several values of θ and d have been considered: 8 values for θ (0, π/36,
π/18, π/12, π/6, π/4, π/3, π/2 in radiants, i.e., 0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 90◦

in degrees), and 5 values for d (1, 1.25, 1.5, 2 and 4). All combinations of these two
factors have been taken into consideration in the simulation.

The null hypotheses H0, H#
0 , and H"

0 —that we retain the principal vertices of the
hierarchy displayed in Fig. 3—have been assessed using the proposed augmentation
UI procedure. Regarding H0, Box’s M-test with F-approximation (labeled by Box in
Table 4) has been also taken into account for useful comparisons.

Table 4 displays the empirical power (rejection rates), with a nominal level of 0.05
and c = 0.01, calculated simulating 10000 samples for each of the 40 possible settings
and for each of the 3 values of n. The numerical results have been arranged in a sort of
8 × 5 block matrix (8 = number of θ values ×5 =number of d values), with blocks
of dimension 4 × 3 (4 = 3 + 1 = number of considered null hypotheses plus Box’s
M-test for H0 ×3 = number of n values). In more detail, homotroposcedasticity holds
in the first row of this block matrix, while homometroscedasticity holds in the first col-
umn. Consequently, the block of position (1, 1) is the only case of homoscedasticity;
a gradual departure from this situation is obtained moving in the South-East direction
in the matrix.
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Assessing the pattern of covariance matrices via an augmentation multiple testing procedure

In the second scenario, data have been generated from k = 2 groups drawn from
two trivariate normals (p = 3) with mean vectors µ1 = µ2 = 0 and covariance
matrices !1 and !2, respectively. The same sizes n = 60, n = 150 and n = 300,
have been considered with n1 = n2 = n3 in all the three cases. As before, !1 has
been randomly generated and its spectral decomposition has been obtained as follows

!1 = "1#1"
′
1 =




γ

(1)
11 γ

(1)
12 γ

(1)
13

γ
(1)
21 γ

(1)
22 γ

(1)
23

γ
(1)
31 γ

(1)
32 γ

(1)
33








λ

(1)
1 0 0
0 λ

(1)
2 0

0 0 λ
(1)
3









γ
(1)
11 γ

(1)
12 γ

(1)
13

γ
(1)
21 γ

(1)
22 γ

(1)
23

γ
(1)
31 γ

(1)
32 γ

(1)
33





′

,

with λ
(1)
1 ≥ λ

(1)
2 ≥ λ

(1)
3 . Further, !2 has been defined by the following relation with

!1

!2 =




cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ



 "1




dλ

(1)
1 0 0

0 λ
(1)
2 0

0 0 λ
(1)
3
d












cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ



"1




′

,

where



cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ





is one of the three possible 3 × 3 rotation matrices of angle θ . For the rest, the same
previous considerations, both on the simulation factors and on the structure of Table 5
with respect to Table 4, apply.

As expected, regarding the comparison between the two different ways of testing
homoscedasticity, the Box M-test is generally better, in terms of size and power, than
the test obtained by the union-intersection procedure, even if the differences in terms
of estimated power are not so remarkable; this is true in both the considered scenar-
ios. Note that the results on the Box M-test with χ2-approximation have not been
reported in Tables 4 and 5 simply because they coincide with those obtained by the
F-approximation. Moreover, all the tests are consistent and their power increases in
line with the degree of departure from their respective null hypotheses. Also, regard-
ing the proposed UI procedure for H0, it is worth recalling that strong control of the
error rate for the overall null hypothesis H0 guarantees control for all other implied
(component) hypotheses of the hierarchy, due to the consonance property.

7 Concluding remarks and discussion

When considering data sets coming from two or more multivariate normal distribu-
tions, the classical definition of homoscedasticity can be decomposed into two facets:
equality of the orientation of the components in character hyperspace as defined by the
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eigenvectors (here defined as homotroposcedasticity), and equality of the spread (var-
iance) of cases along the components as defined by the eigenvalues (here defined as
homometroscedasticity). The spectral decomposition of the covariance matrices rep-
resents some geometrical properties related to the underlying group distributions that
can be particularly useful in many fields, say, for example, for biometrical data. Thus,
instead of limiting the attention on the usual test for the hypothesis of equality of the
scatters, an augmentation UI procedure with control of the FDX has been introduced.
When homoscedasticity is rejected by the new inferential method, one can still take
advantage, for example to obtain a better parametrization, by the equality of shape and
size or by the equality in orientation of the group scatters, whenever one of them holds
true. We are firmly convinced that the appeal of this inferential procedure resides in
the fact that a more detailed statistical test is useful to disclose richer information, as
is acknowledged by the analysis of some real data sets and by a wide simulation study.
Nevertheless, further effort can be devoted to assess its performance by simulations
with different kinds of dependence among the underlying test statistics.

An interesting alternative is to apply the same augmentation UI procedure to each
of the two hierarchical sub-families having homotroposcedasticity, H"

0 , and homo-
metroscedasticity, H#

0 , as overall null hypotheses, providing two multiple testing
procedures to assess them. Logically, FDX-control would be hence guaranteed on
each hypothesis but not on the implying hypothesis H0 of homoscedasticity. Note
that, for the tests referred to homometroscedasticity, in which we have independence
among test statistics, one could improve the performance in the first step of the aug-
mentation procedure by substituting the Holm method with the Šidák-based procedure
introduced by Holland and Copenhaver (1987).

Naturally, the multiple testing procedure proposed in the present work reflects one
of the possible choices to cope with the multiplicity problem arising from the hierar-
chical family of hypotheses H. However, any other alternative method has to take into
account a threefold choice: the procedure (we have leaned towards the simple, coher-
ent and consonant UI), the type of error rate (we have chosen the FDX-control because
of its robustness to dependence), and the method used to control it (we have adopted
augmentation for its simplicity and validity under arbitrary dependence). For exam-
ple, as suggested by a referee, one could well prefer to employ closed multiple testing
procedures, described in Marcus et al. (1976), that are the most powerful procedures
in FWER-controlling (see Shaffer 1995, p. 568). Besides, one could lean towards a
step-down procedure that begins by testing H0 by means of Box’s M-test, and then
steps down through the hierarchy of implied minimal hypotheses. If H0 is not rejected,
then all of its implied hypotheses are retained without further tests; thus the minimal
hypotheses are tested if, and only if, H0 is rejected. Although this procedure is proba-
bly more powerful than our proposal (this comparison is in principle quite similar to
that described in Hochberg and Tamhane 1987, pp. 2–5, between the protected least
significant difference test and the Bonferroni procedure), it seems to present the draw-
back of giving only weak control of the error rate (under H0 only; see Shaffer 1995,
p. 566) and consonance may not hold.

Finally, an aspect requiring further study, as highlighted by a referee, is related to the
following consideration. The individual relevance (i.e. power) of H#

0 strongly depends
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on the dimension p and, moreover, it decreases when the number of groups k increases
(we recall that the number of minimal hypotheses to test is m = k (p − 1) + 1). A
similar comment applies for H0 and H"

0 . Hence, a source of possible improvement
arises by looking for recent inferential methods that, taking advantage of the hierar-
chical structure of the hypotheses, allows for a better distribution of α on the various
nodes of the tree (see, among others, Bretz et al. 2009; Burman et al. 2009; Goeman
and Finos 2010). Many of these inferential methods can be seen as special cases of
the sequential rejection principle of Goeman and Solari (2010), spurring us towards
further developments in this direction.
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and suggestions.

References

Anderson E (1935) The irises of the Gaspe peninsula. Bull Am Ir Soc 59:2–5
Banfield JD, Raftery AE (1993) Model-based gaussian and non-gaussian clustering. Biometrics 49(3):803–

821
Bartlett MS (1937) Properties of sufficiency and statistical tests. Proc R Stat Soc Lond Ser A Math Phys

Sci 160(901):268–282
Benjamini Y (2010) Discovering the false discovery rate. J R Stat Soc Ser B (Methodol) 72(4):405–416
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach

to multiple testing. J R Stat Soc Ser B (Methodol) 57(1):289–300
Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni dell’Istituto

Superiore di Scienze Economiche e Commerciali di Firenze 8(1):3–62
Bretz F, Maurer W, Brannath W, Posch M (2009) A graphical approach to sequentially rejective multiple

test procedures. Stat Med 28(4):586–604
Burman CF, Sonesson C, Guilbaud O (2009) A recycling framework for the construction of Bonferroni-

based multiple tests. Stat Med 28(5):739–761
Campbell NA, Mahon RJ (1974) A multivariate study of variation in two species of rock crab of genus

Leptograpsus. Aust J Zool 22(3):417–425
Celeux G, Govaert G (1995) Gaussian parsimonious clustering models. Pattern Recognit 28(5):781–793
Dudoit S, van der Laan MJ (2008) Multiple testing procedures with applications to genomics. Springer,

New York
Farcomeni A (2008) A review of modern multiple hypothesis testing, with particular attention to the false

discovery proportion. Stat Methods Med Res 17(4):347–388
Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188
Flury BN (1984) Common principal components in k groups. J Am Stat Assoc 79(388):892–898
Flury BN (1988) Common principal components and related multivariate models. Wiley, New York
Flury BN, Constantine G (1985) The F-G diagonalization algorithm. Appl Stat 35:177–183
Flury BN, Gautschi W (1986) An algorithm for simultaneous orthogonal transformation of several positive

definite matrices to nearly diagonal form. SIAM J Sci Stat Comput 7:169–184
Flury BN, Riedwyl H (1983) Angewandte multivariate statistik. Verlag Gustav Fischer, Jena
Gabriel KR (1969) Simultaneous test procedures–some theory of multiple comparisons. Ann Math Stat

40(1):224–250
Genovese CR, Wasserman L (2006) Exceedance control of the false discovery proportion. J Am Stat Assoc

101(476):1408–1417
Goeman J, Finos L (2010) The inheritance procedure: multiple testing of tree-structured hypotheses (unpub-

lished preprint dowloadable from http://www.msbi.nl/dnn/Default.aspx?tabid=202)
Goeman J, Solari A (2010) The sequential rejection principle of familywise error control. Ann Stat (to

appear)
Greselin F, Ingrassia S (2009) Weakly homoscedastic constraints for mixtures of t distributions. In: Fink A,

Lausen B, Seidel W, Ultsch A (eds) Advances in data analysis, data handling and business intelligence.
Springer, Berlin, pp 219–228

123

http://www.msbi.nl/dnn/Default.aspx?tabid=202


F. Greselin et al.

Greselin F, Ingrassia S (2010) Constrained monotone EM algorithms for mixtures of multivariate t distri-
butions. Stat Comput 20(1):9–22

Hawkins DM (1981) A new test for multivariate normality and homoscedasticity. Technometrics 23(1):
105–110

Hochberg Y, Tamhane AC (1987) Multiple comparison procedures. Wiley, New York
Holland BS, Copenhaver MDP (1987) An improved sequentially rejective Bonferroni test procedure. Bio-

metrics 43(2):417–423
Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70
Jolicoeur P (1963) The degree of generality of robustness in Martes Americana. Growth 27:1–27
Jolicoeur P, Mosimann J (1960) Size and shape variation in the painted turtle: a principal component anal-

ysis. Growth 24(4):339–354
Marcus R, Peritz E, Gabriel KR (1976) On closed testing procedures with special reference to ordered

analysis of variance. Biometrika 63(3):655–660
Mardia KV (1985) Mardia’s test of multinormality. In: Kotz S, Johnson NL (eds) Encyclopedia of statistical

sciences, vol 5. Wiley, New York, pp 217–221
McLachlan GJ, Peel D (2000) Finite mixture models. Wiley, New York
Murtagh F, Raftery A (1984) Fitting straight lines to point patterns. Pattern Recognit 17(5):479–483
Peel D, McLachlan GJ (2000) Robust mixture modelling using the t distribution. Stat Comput 10(4):339–

348
Rencher AC (1998) Multivariate statistical inference and applications. Wiley, New York
Ripley B (1996) Pattern recognition and neural network. Cambridge University Press, Cambridge
Rosenthal R, Rubin DB (1983) Ensemble adjusted p-values. Psychol Bull 94(3):540–541
Shaffer JP (1995) Multiple hypothesis testing. Ann Rev Psychol 46(1):561–584
Sheskin DJ (2000) Handbook of parametric and nonparametric statistical procedures. Chapman & Hall,

London
Van der Laan MJ, Duduoit S, Pollard KS (2004) Augmentation procedures for control of the generalized

family-wise error rate and tail probabilities for the proportion of false positives. Stat Appl Genet Mol
Biol 3(1):Article 15

Westfall PH, Young SS (1993) Resampling-based multiple testing: examples and methods for p-value
adjustment. Wiley, New York

Wright SP (1992) Adjusted p-values for simultaneous inference. Biometrics 48(4):1005–1013

123

Daniele
Typewritten Text

Daniele
Typewritten Text

Daniele
Typewritten Text

Daniele
Typewritten Text

Daniele
Typewritten Text


	Assessing the pattern of covariance matrices via an augmentation multiple testing procedure
	Abstract
	1 Introduction
	2 Basic definitions
	3 Statistical tests for scedasticity analysis
	3.1 Testing homometroscedasticity
	3.2 Testing homotroposcedasticity

	4 Scedasticity tests in the framework of multiple testing procedures
	4.1 Coherence and consonance for hierarchical families
	4.2 The union-intersection procedure, for hierarchical families, via adjusted p-values
	4.3 Choosing the error rate to control
	4.4 FDX-control by augmentation MTPs

	5 Some applications to real data sets
	6 A simulation study
	7 Concluding remarks and discussion
	Acknowledgments
	References


	-: 


