
Università di Milano–Bicocca
Quaderni di Matematica

Alexandrov curvature of Kähler curves

Alessandro Ghigi

Quaderno n. 10/2008 (arxiv:math/0806.1831v1)



Stampato nel mese di giugno 2008

presso il Dipartimento di Matematica e Applicazioni,
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Abstract

We study the intrinsic geometry of a one-dimensional complex space pro-

vided with a Kähler metric in the sense of Grauert. We show that if κ is

an upper bound for the Gaussian curvature on the regular locus, then the

intrinsic metric has curvature ≤ κ in the sense of Alexandrov.
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1 Introduction

Let Ω be a domain in affine space Cn and let X ⊂ Ω be a one-dimensional
analytic subset. Denote by 〈 , 〉 the flat metric on Cn and by g the induced
Riemannian metric on the regular part Xreg of X . Define a distance on X by
setting d(x, y) equal to the infimum of the lengths of curves lying in X and
joining x to y. If X is smooth d is simply the Riemannian distance associated
to g. Gauss equation together with the Kähler property of g ensures that the
Gaussian curvature of g is nonpositive. What can be said if X contains singu-
larities? The purpose of the present paper is to show that the same statement

∗Partially supported by MIUR PRIN 2005 “Spazi di moduli e Teorie di Lie”.
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still holds provided Gaussian curvature is replaced by Alexandrov curvature.
Namely (X, d) is an inner metric space of nonpositive curvature in the sense of
Alexandrov.

More generally the following situation is considered. Let X be a one-
dimensional connected reduced complex space and let ω be a Kähler form on
X in the sense of Grauert [12]. The Kähler form ω and the complex structure
define a Riemannian metric g on Xreg. Use this g to compute the length of paths
in X and for x, y ∈ X define d(x, y) as the infimum of the lengths of paths in X
from x to y (see §2 for precise definitions). We refer to d as the intrinsic distance
of (X,ω). It turns out that d is an intrinsic distance on X inducing the original
topology. Our results can then be summarised in the following statement.

Theorem 8. Let X be a one-dimensional connected reduced complex space. Let
ω be a Kähler metric on X in the sense of Grauert and let d be the intrinsic
distance of (X,ω). If κ is an upper bound for the Gaussian curvature of g on
Xreg, then (X, d) is a metric space of curvature ≤ κ in the sense of Alexandrov.

The proof is delicate but rather elementary. The plot of the paper is the
following.

In §2 we recall the definition of Kähler forms on a singular space, define the
intrinsic distance in the one-dimensional case and prove some basic properties.
Many statements hold in more general situations, but we restrict from the be-
ginning to the one-dimensional case in order not to burden the presentation. At
the end we show that to investigate local problems one might restrict considera-
tion to the case in which X is a one-dimensional analytic subset in Cn provided
with a general Kähler metric. Appropriate conventions and notations are fixed
to be used in the study of this particular case under the additional hypothesis
that there is only one singularity which is (analytically) irreducible. This study
occupies §§3–6.

In §3 we consider differentiability properties of segments α : [0, L] → X .
Since X ⊂ Cn we can consider the tangent vector α(t) at least when α(t) ∈ Xreg.
The main point is a Hölder estimate for α̇ (Theorem 2). This is proved by ex-
pressing the second fundamental form of X ⊂ Cn in terms of the normalisation
map. Here is where the Kähler property is used. Next we make various observa-
tions regarding the asymptotic behaviour of the distance d and of the tangents
to segments close to a singular point.

In §4 we study regularity properties of segments through the normalisation.
This is useful to compute angles between the tangent vectors at a singular point.

§5 is the most technical section. We study uniqueness properties of geodesics
near the singular point. We construct a decreasing sequence of radii r1 > r2 >
r3 > r4 > r5 > r6 such that the geodesic balls centred at the singular point have
better and better uniqueness properties. As a first step (Prop. 9 and Theorem
3) we show that if two segments have the same endpoints then the singular
point lies in the interior of the closed curve formed by the segments. To prove
this we combine extrinsic and intrinsic information. The former amounts to the
Hölder estimate alluded to above and the finiteness of the area of X (Lelong
theorem). The latter is provided by Gauss–Bonnet and Rauch theorems. The
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Jordan separation theorem is used on several occasions. Th next step (Theorem
4) is to show that if two points sufficiently close to the singularity are joined by
two distinct segments one of them has to pass through the singular point. Here
the argument is based on the winding number and the fact that X is a ramified
covering of the disc.

In §6 we prove that sufficiently small balls centred at the singular point are
geodesically convex (Cor. 5). On the way we prove (using an idea from [17])
that the distance from a singular point is C1 in a (deleted) neighbourhood of
it. We establish various technical properties of segments emanating from the
singular point and the angle their tangent vectors form at the singular point.
In particular we study ”sectors” with vertex at the singular point (Lemma 25)
and establish their convexity (Theorem 5).

In §7 we recall the main concepts of the intrinsic geometry of metric spaces
in the sense of A.D. Alexandrov. Next, by combining the information on sectors
and angles collected before, we show that a sufficiently small ball centred at a
singular point is a CAT(κ)–space. This completes the proof of Theorem 8 in
the case of an irreducible singularity. The case of reducible singularities is dealt
with by reasoning as in Reshetnyak gluing theorem and invoking the result in
the irreducible case.

At the end of the paper we observe that the statement corresponding to
Theorem 8 with lower bounds on curvature instead of upper bounds is false. In
particular a Kähler curve (X, d) can have curvature bounded below in the sense
of Alexandrov only if X is smooth (Theorem 9).

Acknowledgements The author wishes to thank Prof. Giuseppe Savaré for
turning his attention to the Alexandrov notions of curvature and both him
and Prof. Gian Pietro Pirola for various interesting discussions on subjects
connected with this work. He also acknowledges generous support from MIUR
PRIN 2005 “Spazi di moduli e Teorie di Lie”.

2 Intrinsic distance

A Let X be complex curve, that is a one-dimensional reduced complex space.
By definition for any point x ∈ X there is an open neighbourhood U of x in
X , a domain Ω in some affine space Cn and a map τ : U → Ω that maps U
biholomorphically onto some one-dimensional analytic subset A ⊂ Ω. We call
the quadruple (U, τ, A,Ω) a chart around x.

Definition 1. A Kähler form on X is a Kähler form ω on Xreg with the fol-
lowing property: for any x ∈ Xsing there is are a chart (U, τ, A,Ω) around x
and a Kähler form ω′ on Ω such that τ∗ω′ = ω on U ∩Xreg. We call ω′ a local
extension of ω.

This definition is due to Grauert [12, §3.3]. A Kähler curve is a complex
curve with a fixed Kähler form. Let (X,ω) be a Kähler curve. Denote by J
the complex structure on Xreg. Then g(v, w) = ω(v, Jw) defines a Riemannian
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metric on Xreg. Denote by |v|g the norm of v ∈ TxXreg with respect to g. A
path α : [a, b] → X is of class C1 if τ ◦ α is C1 for any chart. For a piecewise
C1 path α the length is defined by

L(α) =

∫

α−1(Xreg)

|α̇(t)|gdt. (1)

Lemma 1. Let (U, τ, A,Ω) be a chart and ω′ a Kähler form on Ω extending ω,
with g′ the corresponding metric. If α : [a, b] → U is a piecewise C1 path and
β = τ ◦ γ, then

L(α) =

∫ b

a

|β̇(t)|g′dt (2)

Proof. Let E = α−1(Xreg), F = I \ E, B = F 0, D = ∂F . Then I = E ⊔ B ⊔
D. Since X has isolated singularities α and β are constant on the connected
components of F , so β̇ ≡ 0 on B. The set D is countable, so has zero measure.
Therefore

∫ b

a

|β̇|g′dt =

∫

E

|β̇|g′ =

∫

E

|α̇|g = L(α).

For x, y ∈ X set

d(x, y) = inf{L(α) : α piecewise C1 path in X with

α(0) = x, α(1) = y}. (3)

For r > 0 set also B(x, r) = {y ∈ X : d(x, y) < r}. Recall the following
fundamental result of  Lojasiewicz.

Theorem 1 ( Lojasiewicz, [16, §18, Prop. 3, p.97]). Let A be an analytic subset
in a domain Ω ⊂ C

n and z0 ∈ A. Then there are C > 0, µ ∈ (0, 1] and a
neighbourhood V of z0 in A such that for any z, z′ ∈ V there is a real analytic

path β : [0, 1] → A joining z to z′ with
∫ 1

0
|β̇|dt ≤ C|z − z′|µ. (Here | · | denotes

the Euclidean norm in Cn.)

Proposition 1. If (X,ω) is a connected Kähler curve, then d is a distance on
X inducing the original topology.

Proof. We start by showing that d(x, y) is finite for any (x, y) ∈ X ×X . If x
and y belong to the same connected component of Xreg this is obvious. Assume
that x ∈ Xsing. Let (U, τ, A,Ω) be a chart around x and ω′ a local extension of
ω. By restricting U we may assume that there is a constant C > 0 such that
C−1|dτ(v)| ≤ |v|g ≤ C|dτ(v)| for any v ∈ TUreg. If α : [a, b] → U is a piecewise
C1 curve and β = τ ◦α, then C−1L(β) ≤ L(α) ≤ CL(β), where the length of β
is computed with respect to the Euclidean norm. By  Lojasiewicz Theorem for
any point y ∈ U there is a piecewise C1 path α in A joining τ(x) to τ(y). Then
β = τ−1 ◦ α is a path in X joining x to y with L(β) ≤ C · L(α) < +∞ hence
d(x, y) < +∞ for all y ∈ U . Because the length functional L is additive with
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respect to the concatenation of paths, it follows that d(x, y) < +∞ for all y in
some irreducible component of X that passes through x. Since X is connected
this yields finiteness of d.

At this point one might apply the general machinery of [19, p.123ff] or [7,
p.26ff]. The class of piecewise C1 paths is closed under restriction, concatenation
andC1 reparametrisations. MoreoverL is invariant under C1 reparametrisation,
it is an additive function on the intervals and L(α

∣

∣[a,t]) is a continuous function
of t ∈ [a, b]. It follows that d is a distance on X .

Let V ⊂ X be an open set (for the original topology) and let x ∈ V .
Fix a chart (U, τ, A,Ω) around x and a local extension ω′. Denote by dΩ the
Riemannian distance of (Ω, ω′). Let U ′ be a neighbourhood of x with compact
closure in U ∩ V . Since τ(x) 6∈ τ(∂U ′), ε = dΩ

(

τ(x), τ(∂U ′)
)

> 0. If α : [a, b] →
X is a continuous path with α(a) = x and α(b) 6∈ U ′ set c = sup{t ∈ [a, b] :
α(t) ∈ U ′}. Then

L(α) ≥ L(α
∣

∣[a,c]) = L(τ ◦ α∣

∣[a,c]) ≥ dΩ

(

τ(x), τ(∂U ′)
)

= ε.

Hence B(x, ε) ⊂ U ′ ⊂ V . This shows that the metric topology is finer than the
original one.

Conversely we show that for any x ∈ X and δ > 0 the metric ball B(x, δ)
is open in the original topology. Let again (U, τ, A,Ω) be a chart around x and
let ω′ be a local extension and assume that there is a constant C > 0 such
that C−1|dτ(v)| ≤ |v|g ≤ C|dτ(v)| for any v ∈ TUreg. Thanks to  Lojasiewicz
Theorem by restricting U and Ω we can assume that for any z, z′ ∈ A there
is a C1 path joining z and z′ and having Euclidean length ≤ C′|z − z′|µ. For
x′ ∈ B(x, δ) put δ′ = µ

√

(δ − d(x, x′))/CC′ > 0. Then the set τ−1({z ∈ Ω :
|z−τ(x′)| < δ′}) is contained in B(x′, δ−d(x, x′)) ⊂ B(x, δ). Therefore B(x, δ)
is open in the original topology and the two topologies coincide.

Starting from the metric space (X, d) one can define a new length functional
Ld by the formula

Ld(γ) = sup

N
∑

i=1

d(γ(ti−1)γ(ti)) (4)

the supremum being over all partitions t0 < . . . < tN of the domain of γ. By
definition d(x, y) ≤ Ld(γ) for any continuous path joining x to y, while the
inequality Ld(γ) ≤ L(γ) holds for any piecewise C1 path. The distance d is
intrinsic if d(x, y) = inf{Ld(γ) : γ ∈ C([0, 1], X), γ(0) = x, γ(1) = y}.

Proposition 2. The distance d is intrinsic.

Proof. This is proved for general length structures in [7, Prop. 2.4.1 p.38].

Definition 2. We call d the intrinsic distance of the Kähler curve (X,ω).

For geodesics in the metric space (X, d) we adopt the following terminol-
ogy. A shortest path is a map γ : [a, b] → X such that Ld(γ) = d(γ(a), γ(b)).
Minimising geodesic is synonymous of shortest path. One can reparametrise a
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shortest path in such a way that d(γ(t), γ(t′)) = |t− t′| for any t, t′. In this case
we say that γ has unit speed. A segment is by definition a unit speed shortest
path. More generally, we say that γ is parametrised with constant speed c if
d(γ(t), γ(t′)) = |t − t′| for any t, t′. If I is any interval a path γ : I → X is a
geodesic if for any t ∈ I there is a compact neighbourhood [t0, t1] of t in I such
that γ

∣

∣[t0,t1] is a shortest path with constant speed.

Lemma 2 ( [7, Prop. 2.5.19 p.49]). If the ball B(x, r) is relatively compact in
X, for any y ∈ B(x, r) there is a segment from x to y.

(Xreg, g) is a (smooth) Riemann surface with a noncomplete smooth Kähler
metric. For x ∈ Xreg denote by UxX the unit sphere in TxX . Let UXreg =
⋃

x∈Xreg
UxX be the unit tangent bundle. We denote by (t, v) 7→ γv(t) the

geodesic flow: that is γv(t) = expx(tv) where x = π(v). Let U ⊂ R× TXreg be
the maximal domain of definition of the geodesic flow of (Xreg, g). It is an open
neighbourhood of {0}×TXreg in R×TXreg. Let D ⊂ TXreg denote the maximal
domain of definition of the exponential: D = {v ∈ TXreg : (1, v) ∈ U }. For
x ∈ Xreg set Dx = D ∩ TxX . Then Dx is the maximal domain of definition of
expx. Both D and Dx are open in TXreg and TxX respectively and the maps
exp : D → Xreg and expx : Dx → Xreg are defined and smooth. For v ∈ UxX
set

Tv = sup{t > 0 : tv ∈ Dx}. (5)

Denote by Bx(0, r) the ball in TxX with respect to gx.

Definition 3. For x ∈ Xreg the injectivity radius at x, denoted injx, is the
least upper bound of all δ > 0 such that Bx(0, δ) ⊂ Dx and expx

∣

∣Bx(0,δ) is a
diffeomorphism onto its image.

Lemma 3. For any x ∈ Xreg, injx ≤ d(x,Xsing).

Proof. Let γ : I → X be a piecewise C1 path in P joining x to some singular
point x0. For δ ∈ (0, injx) put Uδ = expx(Bx(0, δ)). Since Uδ ⊂ Xreg and x0 is
singular, there is some t ∈ I such that γ(t) ∈ ∂Uδ. Let t0 be the smallest such
number. Then γ

∣

∣[0,t0] is a path entirely contained in Xreg. It follows from Gauss

Lemma [11, Prop. 3.6, p.70] that L(γ
∣

∣[0,t0]) ≥ δ. Therefore also L(γ) ≥ δ. Since
γ, x0 and δ < injx are arbitrary we get d(x,Xsing) ≥ injx.

Lemma 4. Let x ∈ Xreg and y ∈ B(x, injx).

1. The intrinsic distance equals the Riemannian distance in (Xreg, g):

d(x, y) = inf{L(γ) : γ piecewise C1 path in Xreg

with γ(0) = x, γ(1) = y}. (6)

2. B(x, injx) = expx(Bx(0, injx)).

3. There is a unique segment joining x to y and it coincides with the min-
imising Riemannian geodesic in (Xreg, g) from x to y.
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4. A geodesic γ in (X, d) is smooth on γ−1(Xreg) and there ∇γ̇ γ̇ = 0.

Proof. It follows from the previous lemma and the hypothesis d(x, y) < injx
that paths passing through singular points do not contribute to the infimum
in (3). This proves (6). From this follows that y lies in expx(Bx(0, injx)). So
B(x, injx) ⊂ expx(Bx(0, injx)). The reverse implication is obvious. This proves
2. In particular y ∈ expx(Bx(0, injx)), so there are v ∈ UxX and r ∈ (0, injx)
such that y = expx rv. It follows from Gauss Lemma that the inf in (6) is
attained only on the path γ(t) = expx tv, t ∈ [0, r]. So L(γ) = d(x, y). But
d(x, y) ≤ Ld(γ) ≤ L(γ) so Ld(γ) = L(γ) and γ is a segment also in (X, d). We
have to prove that it is the unique one. Since d(x, y) < injx it follows from 2 that
any other segment α must lie in expx(Bx(0, injx)) ⊂ Xreg. If α is smooth we
can again apply Gauss Lemma. So it is enough to show that α is differentiable,
which will yield 4 at once. This is a local problem, so we just prove that α

∣

∣[0,t0]

is smooth for some t0 > 0. By Whitehead theorem [11, Prop. 4.2 p.76] there
is a neighbourhood W of x such that for any z ∈ W , W ⊂ B(z, injz). Let
t0 be small enough so that α([0, t0]) ⊂ W . Put x0 = α(t0) and let β be the
unique minimising Riemannian geodesic from x to x0. We already know that
L(β) = d(x, x0) = t0. For t ∈ (0, t0) let β1 and β2 be the unique Riemannian
geodesics from x to α(t) and from α(t) to x0 respectively. Both of them are also
shortest paths, by the above. Moreover

t0 = Ld(α) ≥ d(x, α(t)) + d(α(t), x0) = L(β1) + L(β2) ≥ L(β) = t0.

So L(β1 ∗ β2) = L(β1) + L(β2) = L(β). Since the concatenation β1 ∗ β2 is
piecewise smooth β1 ∗ β2 = β. This means that α(t) lies on β([0, t0]). Since t is
arbitrary we get α

∣

∣[0,t0] = β. In particular α is smooth.

Proposition 3. On piecewise C1 paths the functional Ld agrees with L.

Proof. The inequality Ld ≤ L is obvious from the definition of d. For the reverse
inequality consider a piecewise C1 path γ : [0, 1] → X and assume at first that
γ([0, 1]) ⊂ Xreg. Since Ld(γ) ≤ L(γ) <∞ the limit

lim
h→0

d(γ(t+ h), γ(t))

|h| .

exists for a.e. t ∈ [0, 1]. It is called metric derivative and denoted by |γ̇(t)|d. It
is an integrable function of t and

Ld(γ) =

∫ 1

0

|γ̇(t)|d dt.

(See [19, p.106-109] or [3, p.59ff].) So it is enough to check that |γ̇|d = |γ̇|g.
This is accomplished as follows. Put x = γ(t). For small h we can write
γ(t + h) = expx(z(h)) where z = z(h) is some C1 path in TxX with z(0) = 0
and and ż(0) = d(expx)0(ż(0)) = γ̇(t). Since d(γ(t+ h), γ(t)) = |z(h)|g

|γ̇(t)|d = lim
h→0

|z(h)|g
|h| = |ż(0)|g = |γ̇(t)|g .
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This proves that Ld = L for paths that do not meet Xsing. (There is a proof
for C1 Finsler manifolds due to Busemann and Mayer. It can be found in [8]
or at pp. 134-140 of Rinow’s book [19].) For a general path one can reason
as in Lemma 1: let E = γ−1(Xreg), F = I \ E, B = F 0, D = ∂F . Then
I = E ⊔B ⊔D. Since γ is constant on the connected components of F , if [a, b]
is one such component then Ld(γ[a,b] = L(γ[a,b]) = 0. The result follows from
additivity of both functionals.

Corollary 1. The functional L is lower semicontinuous on the set of piecewise
C1 paths with respect to the topology of pointwise convergence.

Proof. It easily follows from the definition that Ld is lower semicontinuous on
C0([0, 1], X) with respect to pointwise convergence [7, Prop. 2.3.4(iv)].

The construction of the intrinsic distance is local in the following sense.

Lemma 5. For any point x0 ∈ X and any neighbourhood U of x0 in X there is
a smaller neighbourhood U ′ ⊂ U such that for any x, y ∈ U ′ there is a segment γ
from x to y and any such segment is contained in U ′. In particular the intrinsic
distance of (X,ω) and that of (U, ω

∣

∣U ) coincide on U ′.

Proof. Let ε > 0 be such that B(x0, 4ε) is a compact subset of U . Put U ′ =
B(x, ε). If x, y ∈ U ′ then d(x, y) ≤ d(x, x0) + d(x0, y) < 2ε. By Lemma 2 since
B(x, 2ε) is compact there is a segment from x to y. Now if γ = γ(t) is any such
segment d(γ(t), x0) ≤ d(γ(t), x) + d(x, x0) ≤ L(γ) + d(x, x0) ≤ 3ε. So γ(t) lies
in U .

Corollary 2. Let (X,ω) be a Kähler curve and let d be the intrinsic distance.
If (U, τ, A,Ω) is a chart around x ∈ X and ω′ is a local extension of ω there is a
neighbourhood U ′ ⊂ U of x such that τ

∣

∣U ′ is a biholomorphic isometry between
(U ′, d) and τ(U ′) ⊂ A provided with the intrinsic distance obtained from ω′.

It follows that to study local properties of the metric spaces (X, d) it is
enough to consider the special case in which X is an analytic set in a domain
of C

n with the metric induced from some Kähler metric of the domain. This
situation, under the additional hypothesis that the singularity be analytically
irreducible, is the object of §§3–6, throughout which we will make the following
assumptions and use the following notation.

〈 , 〉 is the standard Hermitian product on Cn,
v · w = Re〈v, w〉 is the corresponding scalar product,
| · | is the corresponding norm.
Given two nonzero vectors v, w in a Euclidean space

∢(v, w) = arccos
v · w

|v| · |w|

is the unoriented angle between them.
Ω′ is an open polydisc centred at 0 ∈ Cn,
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A ⊂ Ω′ is an analytic curve,
ω is a smooth Kähler form on Ω′,
g is the corresponding Kähler metric,
gx is the value of g at x ∈ Ω′,
| · |g or | · |x denotes the corresponding norm,
g0 = 〈 , 〉,
Ω is an open subset of Ω′ with Ω ⊂⊂ Ω′,
X := A ∩ Ω,
d is the intrinsic distance of (X,ω

∣

∣X),
B(x, r) is the ball in (X, d),
B∗(x, r) = B(x, r) \ {0},
Bx(0, r) = {w ∈ TxX : |w|x < r}.
Xsing = {0},
X is analytically irreducible at 0,
m = mult0X is the multiplicity of X at 0,
K(x) is the Gaussian curvature of (Xreg, g) at x ∈ Xreg and

κ = sup
x∈Xreg

K(x). (7)

∆ = {z ∈ C : |z| < 1},
∆∗ = ∆ \ {0},
∆′ ⊂ C is an open subset containing ∆,
ϕ : ∆′ → X ′ is the normalisation map,
ϕ(∆) = X .
There is a holomorphic map ψ = (ψ1, . . . , ψn) : ∆′ → C

n such that

ϕ(z) = zmψ(z) ψ1(z) ≡ 1 ψj(0) = 0 j > 1. (8)

R : ∆′ → Cn is the holomorphic map defined by

R(z) :=
ψ(z) − ψ(0)

mz
+
ψ′(z)

m
(9)

ϕ′(z) = mzm−1(e1 + zR(z)) (10)

e1 = (1, 0, . . . , 0).
c0 > 0 is a constant such that

sup
∆

|ϕ′| ≤ c0 sup
∆

|R| ≤ c0 (11)

∀x ∈ Ω, ∀v ∈ C
n,

{

1
c0
|v| ≤ |v|x ≤ c0|v|

|v|x ≤ |v|(1 + c0|x|).
(12)

From (11) it follows that for any z ∈ ∆

|ϕ(z)| ≤ c0|z|. (13)
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π : Cn → C × {0} is the projection on the first coordinate,
u := π◦ϕ : ∆ → ∆ is the standardm : 1 ramified covering: u(z) = zm.
For θ0 ∈ R and α ∈ (0, π] put

S(θ0, α) = {ρeiθ : ρ ∈ (0, 1), |θ − θ0| < α} ⊂ ∆. (14)

Then

u−1
(

S(θ0, α)
)

=
m−1
⊔

j=0

S

(

θ0 + 2πj

m
,
α

m

)

(15)

and
uj := u

∣

∣

∣

S
(

θ0+2πj
m ,

α
m

) (16)

is a biholomorphism onto S(θ0, α). The Whitney tangent cone of X
at 0 is

C0X = C × {0} ⊂ C
n (17)

(see e.g. [9, p.122, p.80]).
If γ : [0, L] → X is a path, γ0(t) = γ(L− t).

3 Regularity of geodesics

Lemma 6 ([16, Lemma 1, p.86]). Let m be a positive integer and K > 0. Put
Z = {(a1, . . . , am, x) ∈ Cm+1 : xm +

∑m
j=1 ajx

m−j = 0, |aj| ≤ K}. Then there
is an M = M(m,K) > 0 with the following property. Let α(t) = (a(t), x(t)) be
a continuous path α : [0, 1] → Z and L > 0 such that |a(t) − a(t′)| ≤ L|t − t′|
for t, t′ ∈ [0, 1]. Then

|x(t) − x(t′)| ≤ML
1/m|t− t′|1/m ∀t, t′ ∈ [0, 1]. (18)

Proposition 4. There is a constant c1 > 1 such that for any z, z′ ∈ ∆

1

c1
d(ϕ(z), ϕ(z′)) ≤ |z − z′| ≤ c1d(ϕ(z), ϕ(z′))

1/m. (19)

Proof. Recall that Ω′ is a polydisc, say Ω′ = P (0)K,...,K and X is compactly
contained in Ω′. Let z, z′ ∈ ∆ and x = ϕ(z), x′ = ϕ(z′). For ε > 0 let γ : [0, 1] →
X be a piecewise C1 path with L := L(γ) < d(x, x′) + ε. We can assume that
γ has constant speed equal to L, so d(γ(t), γ(t′)) ≤ L|t − t′|. On the other
hand we trivially have |γ(t) − γ(t′)| ≤ d(γ(t), γ(t′)). Put am(t) = −π

(

γ(t)
)

,
x(t) = ϕ−1(γ(t)) and α(t) = (0, . . . , 0, am(t), x(t)). Then

am(t) = −π ◦ ϕ(x(t)) = −u(x(t)) = −xm(t) xm(t) + am(t) = 0

|am(t) − am(t′)| = |π(γ(t)) − π(γ(t′))| ≤
≤ |γ(t) − γ(t′)| ≤ d(γ(t), γ(t′)) ≤ L|t− t′|.

10



Therefore by Lemma 6 applied to α

|x(t) − x(t′)| ≤ML
1/m|t− t′|1/m.

For t = 0 and t = 1 we get

|z − z′| ≤ML
1/m ≤M

(

d(x, x′) + ε
)1/m

.

Letting ε→ 0 we get |z−z′| ≤Md(ϕ(z), ϕ(z′))
1/m. On the other hand it follows

from (11) that d(ϕ(z), ϕ(z′)) ≤ c0|z − z′|, so c1 = max{c0,M} works.

Corollary 3. For any r with 0 < r < c−m1

B(0, r) ⊂ ϕ(B(0, c1r
1/m)) ⊂ B(0, c21r

1/m). (20)

For x ∈ Xreg let (TxX)⊥ denote the orthogonal complement of TxX ⊂ Cn

with respect to the scalar product gx. If w ∈ Cn, w⊥ denotes the gx–orthogonal
projection of w on (TxX)⊥. Let Bx : TxX × TxX → (TxX)⊥ be the second
fundamental form of Xreg. Since g is Kähler and Xreg is a complex submanifold
Bx is complex linear. If v is a nonzero vector in TxX put

|Bx| =
|Bx(v, v)|x

|v|2x
. (21)

Since TxX is complex one-dimensional the choice of v is immaterial. Denoting by
KΩ(TxX) the sectional curvature of (Ω, g) on the 2-plane TxX , Gauss equation
yields

K(x) = KΩ(TxX) − 2|Bx|2. (22)

(See e.g. [15] p. 175-176.)

Proposition 5. There is a constant c2 such that

|Bϕ(z)| ≤
c2

|z|m−1
∀z ∈ ∆ (23)

|Bx| ≤
c2

d(x, 0)1−1/m
∀x ∈ Xreg. (24)

Proof. By (8) we have ϕ(z) = zmψ(z), so ϕ′(z) = zm−1v(z) where v(z) =
mψ(z) + zψ′(z). Since ϕ is a holomorphic immersion on ∆′ \ {0}, v(z) 6= 0
and Tϕ(z)X = Cϕ′(z) = Cv(z) for any z 6= 0. But also v(0) = me1 6= 0.
So v : ∆′ → Cm is continuous and nonvanishing, hence inf∆ |v|g > 0 and
sup∆ |v|g < +∞. Similarly sup∆ |v′|g < +∞. Let C be such that

inf
∆

|v|g ≥
1

C
sup
∆

|v|g ≤ C sup
∆

|v′|g ≤ C.

Then we have

Bϕ(z)(v(z), v(z)) =
1

zm−1
Bϕ(z)(ϕ

′(z), v(z)) =
1

zm−1

(

v′(z)
)⊥

∣

∣Bϕ(z)

∣

∣ =
|(v′(z))⊥|ϕ(z)

|z|m−1|v|2ϕ(z)

≤ |v′(z))|ϕ(z)

|z|m−1|v|2ϕ(z)

≤ C3

|z|m−1
. (25)
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This proves (23). For x ∈ Xreg let z = ϕ−1(x) and consider the path γ(t) =
ϕ(tz), t ∈ [0, 1]. Then

γ̇(t) = ϕ′(tz)z = (tz)m−1v(tz)z = zmtm−1v(tz)

|γ̇(t)|x = |z|mtm−1|v(tz)|x ≤ C|z|m

d(x, 0) ≤ L(γ) =

∫ 1

0

|γ̇(t)| dt ≤ C|z|m

|z| ≥ m

√

d(x, 0)

C
.

So (24) follows from (23).

Remark 1. The map v above is a holomorphic vector field along the map ϕ :
∆ → X. On the other hand the push forward of v to X, that is v ◦ϕ−1, is only
weakly holomorphic. In fact any holomorphic vector field on X has to vanish at
0 if X is singular [20, Thm. 3.2].

Lemma 7. If a, b ≥ 0 and s ∈ (0, 1) then |as − bs| ≤ |a− b|s.

Proof. Assume a ≥ b. The function η(x) = (b+x)s−xs belongs to C0([0,+∞))∩
C1((0,+∞)). Since s < 1, η′(x) = s[(b + x)s−1 − xs−1] ≤ 0. So η(a − b) =
as − (a− b)s ≤ bs.

Theorem 2. There is a constant c3 such that for any unit speed geodesic γ :
[0, L] → X with γ((0, L]) ⊂ Xreg we have

||γ̇||C0,1/m ≤ c3 (26)

Here the Hölder norm is computed using the Euclidean distance on Cn.

Proof. By 4 of Lemma 4 γ
∣

∣(0,L] is a Riemannian geodesic of Xreg. Hence the
acceleration γ̈(t) is orthogonal to Tγ(t)X with respect to the scalar product g.

So for t > 0, γ̈(t) =
(

γ̈(t)
)⊥

= Bγ(t)

(

γ̇(t), γ̇(t)
)

. Using (24), |γ̇| ≡ 1 and (12)
we get

|γ̈(t)| ≤ c0|γ̈(t)|x = c0
∣

∣Bγ(t)

(

γ̇(t), γ̇(t)
)∣

∣

x
= c0

∣

∣Bγ(t)

∣

∣ ≤ C

d(γ(t), 0)1−1/m

where C = c0c2. Set a := d(γ(0), 0) and β = 1 − 1/m. For t > 0 we have

d(γ(t), 0) ≥
∣

∣d(γ(t), γ(0)) − d(γ(0), 0)
∣

∣ = |t− a|

|γ̈(t)| ≤ C

|t− a|β . (27)

We claim that
|γ̇(t) − γ̇(s)| ≤ 2mC|t− s|1/m (28)
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for any pair of numbers s, t such that 0 < s ≤ t ≤ 1. Indeed

|γ̇(t) − γ̇(s)| ≤
∫ t

s

|γ̈(τ)|dτ ≤ C

∫ t

s

dτ

|τ − a|β = C
(

Ia(t) − Ia(s)
)

where we put Ia(t) =
∫ t

0 |τ − a|−βdτ . A simple computation shows that

Ia(t) − Ia(s) =











m
(

|s− a|1/m − |t− a|1/m
)

for 0 < s ≤ t ≤ a

m
(

|s− a|1/m + |t− a|1/m
)

for 0 < s ≤ a ≤ t

m
(

|t− a|1/m − |s− a|1/m
)

for a < s ≤ t

By Lemma 7

∣

∣

∣
|t− a|1/m − |s− a|1/m

∣

∣

∣
≤

∣

∣

∣
|t− a| − |s− a|

∣

∣

∣

1/m

≤ |t− s|1/m

so Ia(t) − Ia(s) ≤ m|t − s|1/m in the first and the last case. As for the middle
case, namely s ≤ a ≤ t, we have |s − a| ≤ |s − t| and |t − a| ≤ |t − s|, so
|s−a|1/m+|t−a|1/m ≤ 2|t−s|1/m. Therefore in any case Ia(t)−Ia(s) ≤ 2m|t−s|1/m

and this finally yields (28). This proves (26) with c3 = 2mC = 2mc0c2.

Corollary 4. Let γ : [0, L] → X be a segment with γ(0) = 0. Then γ is
differentiable at t = 0 and the map γ̇ : [0, L] → Cn is a Hölder continuous of
exponent 1/m.

Proof. Since shortest paths are injective γ((0, L]) ⊂ Xreg. So estimate (26)
holds. Therefore γ̇ is uniformly continuous on (0, L] and extends continuously
for t = 0. By the mean value theorem the extension for t = 0 is precisely the
derivative γ̇(0).

Lemma 8. For any ε > 0 there is a δ > 0 such that for any x ∈ B∗(0, δ) and
any v ∈ TxX

(1 − ε)|v| < |v|x < (1 + ε)|v| (29)

|π(v) − v| < ε|v| (30)

(1 − ε)|v| < |π(v)| < (1 + ε)|v|. (31)

Proof. (29) holds for x sufficiently close to 0 simply because g0 = 〈 , 〉. For the
second condition set

δ = εm
[

(c1(1 + c0)(1 + ε)
]−m

where c0 is the constant defined in (11). By Lemma 4 if x ∈ B(0, δ) and
z = ϕ−1(x) ∈ ∆

|z| < c1δ
1/m =

ε

(1 + c0)(1 + ε)
.

Therefore
|zR(z)| < ε

1 + ε
.
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(R is defined in (9).) It follows from (10) that TxX = C ·ϕ′(z) = C ·(e1+zR(z)),
so any v ∈ TxX is of the form v = λ(e1 + zR(z)) for some λ ∈ C. Then

|v| ≥ |λ| − |λzR(z)| ≥ |λ| − |ελ|
1 + ε

=
1

1 + ε
|λ| |λ| ≤ (1 + ε)|v|

|v − π(v)| = min
w∈C×{0}

|v − w| ≤ |v − λe1| = |λzR(z)| < |λ| ε

1 + ε
≤ ε|v|

∣

∣

∣

∣

|π(v)| − |v|
∣

∣

∣

∣

≤ |π(v) − v| < ε|v|.

Lemma 9. We have

lim inf
x, y → 0
x, y ∈ X

d(x, y)

|x− y| ≥ 1. (32)

Proof. Given ε > 0 let δ > 0 be such that (29) holds for any x ∈ B∗(0, δ)
and any v ∈ TxX . If x, y ∈ B∗(0, δ/3) and α : [0, L] → X is a segment, then
α([0, L]) ⊂ B(0, δ) and the set J = {t ∈ [0, L] : α(t) = 0} contains at most one
point. For t 6∈ J |α̇(t)|α(t) ≥ (1 − ε)|α̇(t)|. Integrating on [0, L] \ J yields

d(x, y) = L(α) ≥ (1 − ε)

∫ L

0

|α̇(t)|dt ≥ (1 − ε)|x− y|

d(x, y)

|x− y| ≥ 1 − ε.

Lemma 10. For any ε > 0 there is a δ > 0 such that for any x ∈ B∗(0, δ) and
any pair of nonzero vectors v, w ∈ TxX

|∢(π(v), π(w)) − ∢(v, w)| < ε.

(The angle is computed with respect to 〈 , 〉.)

Proof. The angle function ∢ : S2m−1 × S2m−1 → R is the Riemannian distance
for the standard metric on unit the sphere. In particular it is Lipschitz contin-
uous with respect to the Euclidean distance. So one can find ε1 > 0 with the
property that that

|u1 − u2| < ε1, |w1 − w2| < ε1 ⇒ |∢(u1, w1) − ∢(u2, w2)| < ε. (33)

We can assume ε1 < 1. Choose δ > 0 such that for x ∈ B∗(0, δ) and v ∈ TxX

|π(v) − v| < ε1
2
|v|.
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This is possible by Lemma 8. Moreover v 6= 0 ⇒ π(v) 6= 0, because ε1 < 1.
Then for two nonzero vectors v, w ∈ TxX , x ∈ B∗(0, δ)

∣

∣

∣

∣

v

|v| −
π(v)

|π(v)|

∣

∣

∣

∣

≤ 2|v − π(v)|
|v| < ε1

∣

∣

∣

∣

w

|w| −
π(w)

|π(w)|

∣

∣

∣

∣

< ε1.

Together with (33) this yields the result.

Lemma 11. For any ε > 0 there is a δ > 0 such that for any segment γ :
[0, L] → B(0, δ) with γ((0, L)) ⊂ Xreg and any s, s′ ∈ [0, L]

|γ̇(s) − γ̇(s′)| < ε ∢(γ̇(s), γ̇(s′)) < ε. (34)

(The angle is computed with respect to 〈 , 〉.)

Proof. Let ε1 > 0 be such that

|u− w| < ε1 ⇒ ∢(u,w) < ε ∀u,w ∈ S2m−1. (35)

Choose δ > 0 such that

m
√

2δ < min

{

ε1
2c0c3

,
ε

c3

}

.

If γ : [0, L] → B(0, δ) is a segment with γ((0, L)) ⊂ Xreg at most one of the
points γ(0) and γ(L) coincides with the origin. So the Hölder estimate (26)
holds for γ. Then

|γ̇(s) − γ̇(s′)| ≤ c3
m
√
L ≤ c3

m
√

2δ < ε.

This proves the first inequality. From (12) it follows that

1

|γ̇(s)| ≤ c0

so
∣

∣

∣

∣

γ̇(s)

|γ̇(s)| −
γ̇(s′)

|γ̇(s′)|

∣

∣

∣

∣

≤ 2|γ̇(s) − γ̇(s′)|
|γ̇(s)| ≤ 2c0c3

m
√

2δ < ε1.

Coupled with (35) this yields the second inequality.

Lemma 12. For any ε > 0 there is a δ > 0 such that for any segment γ :
[0, L] → B(0, δ) with γ((0, L)) ⊂ Xreg and any s, s′ ∈ [0, L]

∢(π(γ̇(s)), π(γ̇(s′))) < ε.

(The angle is computed with respect to 〈 , 〉.)
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Proof. Let ε1 > 0 be such that

|u− w| < ε1 ⇒ ∢(u,w) <
ε

3
∀u,w ∈ S2m−1. (36)

Let δ1 > 0 be such that for any x ∈ B∗(0, δ1) and any v ∈ TxX

|π(v) − v| < ε1|v|
c0

. (37)

Such a δ1 exists by Lemma 8. Next, by Lemma 11, there is δ2 > 0 such that for
any segment γ : [0, L] → B(0, δ2) with γ((0, L)) ⊂ Xreg and any s, s′ ∈ [0, L]

∢(γ̇(s), γ̇(s′)) <
ε

3
. (38)

Set δ = min{δ1, δ2}. If γ : [0, L] → B(0, δ) is a segment with γ((0, L)) ⊂ Xreg

and s ∈ [0, L], then by (37) and (12)

∣

∣π(γ̇(s)) − γ̇(s)
∣

∣ <
ε1|γ̇(s)|
c0

≤ ε1|γ̇(s)|γ(s) = ε1

so by (36)

∢
(

π(γ̇(s)), γ̇(s)
)

<
ε

3
.

Then using (38) we get for arbitrary s, s′ ∈ [0, L]

∢(π(γ̇(s)), π(γ̇(s′))) ≤
≤ ∢

(

π(γ̇(s)), γ̇(s)
)

+ ∢(γ̇(s), γ̇(s′)) + ∢
(

γ̇(s′), π(γ̇(s′))
)

< ε

as claimed.

4 Tangent vectors in the normalisation

In this section we study the regularity properties of the preimage in ∆ of seg-
ments in X .

Lemma 13. If γ : [0, L] → X is a segment with γ(0) = 0, the path ϕ−1 ◦ γ :
[0, L] → ∆ has finite length.

Proof. We know from Cor. 4 that γ̇(0) exists. By (17) γ̇(0) = (γ̇1(0), 0, . . . , 0)
and γ̇1(0) = eiθ0 for some θ0 ∈ [0, 2π). There is ε > 0 such that γ1((0, ε]) is
contained in the sector S(θ0, π) ⊂ ∆ defined in (14). We can write γ1(t) =
ρ(t)eiθ(t) for appropriate functions ρ, θ ∈ C1((0, ε]). Put β = ϕ−1 ◦ γ. β((0, t])
is contained in one of the connected components of ϕ−1S(θ0, π) hence by (15)
there is an integer k, 0 ≤ k ≤ m− 1, such that

β(t) = u−1
k (γ1(t)) = ρ

1/m(t)eiθ(t)/mξk (39)

16



where ξk = e2πk/m. Then

β̇ =
1

m
ρ

1/m−1(ρ′ + iθ′ρ)eiθ/mξk

|β̇| =
1

m
ρ

1/m−1
√

(ρ′)2 + i(θ′ρ)2 (40)

lim
t→0

ρ(t) = lim
t→0

|γ1(t)| = 0

lim
t→0

ρ(t)

t
= lim

t→0

∣

∣

∣

∣

γ1(t)

t

∣

∣

∣

∣

= |γ̇1(0)| = 1. (41)

If we put ρ(0) = 0 and ρ′(0) = 1, then ρ ∈ C1([0, ε]). Also

eiθ0 = γ̇1(0) = lim
t→0

γ1(t)

t
= lim
t→0

γ1(t)

ρ(t)
= lim

t→0
eiθ(t)

lim
t→0

θ(t) = θ0 + 2Nπ N ∈ Z.

Change θ by subtracting 2Nπ to it and put θ(0) = θ0. Then θ ∈ C0([0, ε]).

γ̇1 =
(

ρ′ + iρθ′
)

eiθ lim
t→0

γ̇1(t) = γ̇1(0) = eiθ(0)

=⇒ lim
t→0

ρ(t)θ′(t) = 0.

Since ρ′(0) = 1 and ρθ′ → 0, we get from (40) that |β̇| ≤ C1ρ
1/m−1 ≤ C2t

1/m−1.
Therefore L =

∫ ε

0
|β̇| < +∞ and β has finite length.

Definition 4. If γ : [0, L] → X is a unit speed geodesic with γ(0) = 0 denote by
γ : [0, L] → ∆ the arc-length reparametrisation of the path ϕ−1 ◦ γ : [0, L] → ∆
(with respect to the Euclidean metric on ∆).

Proposition 6. If γ : [0, L] → X is a unit speed geodesic with γ(0) = 0, then
γ ∈ C1([0, L]) and γ̇(0) = (γ̇(0)m, . . . , 0).

Proof. Put β = ϕ−1 ◦ γ. By the previous Lemma β has finite length. If we
set h(t) =

∫ t

0 |β̇(τ)|dτ then γ(s) = β(h−1(s)). It is clear that γ ∈ C0([0, L]) ∩
C1((0, L]), but we have to check that γ is continuously differentiable at s = 0.

This is not immediate since h′(0) = 0 and h is not a C1-diffeomorphism at
s = 0. So we compute the limit:

lim
s→0

γ(s)

s
= lim

t→0

γ(h(t))

h(t)
= lim

t→0

β(t)

h(t)
. (42)

Since β(0) = 0 and h(0) = 0 we may apply de L’Hôpital rule:

lim
s→0

γ(s)

s
= lim
t→0

β̇(t)

|β̇(t)|
= lim
t→0

ρ′ + iθ′ρ
√

(ρ′)2 + i(θ′ρ)2
eiθ/mξk = eiθ0/mξk. (43)

(Recall that ρ′(0) = 1 and θ′ρ→ 0.) This shows that γ is C1 up to s = 0. The
last assertion is immediate from (43).
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Lemma 14. Let α : [0, ε] → X and β : [0, ε] → X be segments with α(0) =
β(0) = 0. If ∢

(

α̇(0), β̇(0)
)

< π/m then

lim
t→0

d(α(t), β(t))

2t
= sin

∢(α̇(0), β̇(0))

2
< 1. (44)

In particular α∗β0 is not minimising on any subinterval of [−ε, ε] which contains
0 as an interior point.

Proof. By interchanging α and β if necessary, we can assume that α̇(0) = eiη1

and β(0) = eiη2 with 0 ≤ ηi < 2π and 0 ≤ η2 − η1 < π/m. According to

the previous Proposition α̇(0) = (α̇m(0), 0, . . . , 0) and β̇(0) = (β̇
m

(0), 0, . . . , 0).
Hence we can choose θi ∈ R such that

α̇(0) = (eiθ1 , 0, . . . , 0)

β̇(0) = (eiθ2 , 0, . . . , 0)

0 ≤ θ1 < 2π

0 ≤ θ2 − θ1 = ∢(α̇(0), β̇(0)) < π.

We start by showing that

lim
t→0

|β1(t) − α1(t)|
2t

= sin
∢(α̇(0), β̇(0))

2
. (45)

We can find continuous function ρα, ρβ , θα, θβ such that

α1(t) = ρα(t)eiθα(t)

β1(t) = ρβ(t)eiθβ(t)

θα(0) = θ1

θβ(0) = θ2.

And we know from (41) that ρα(0) = ρβ(0) = 0, ρ′α(0) = ρ′β(0) = 1. Therefore

lim
t→0

|β1(t) − α1(t)|
2t

= lim
t→0

1

2t

√

ρ2
α + ρ2

β − 2ραρβ cos(θβ − θα) =

=
1

2
lim
t→0

√

(ρα
t

)2

+
(ρβ
t

)2

− 2
ρα
t

ρβ
t

cos(θβ − θα) =

=
1

2

√

(ρ′α(0))2 + (ρ′β(0))2 − 2ρ′α(0)ρ′β(0) cos(θ2 − θ1) =

=
1

2

√

2 − 2 cos(θ2 − θ1) =

√

1 − cos(θ2 − θ1)

2
= sin

θ2 − θ1
2

.

Thus (45) is proved.
Next set θ0 = (θ1 + θ2)/2. Since θ2 − θ1 < π both α̇1(0) and β̇1(0) lie in the

sector S(θ0, π/2). By continuity there is δ1 > 0 such that

α1((0, δ1]) ∪ β1((0, δ1]) ⊂ S(θ0, π/2).

For j = 0, 1, . . . ,m− 1 set

Sj := S

(

θ0 + 2πj

m
,
π

2m

)

.
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Then u−1
(

S(θ0, π/2)
)

= ⊔m−1
j=0 Sj . Note that α1 = πα = πϕϕ−1α = uϕ−1α

and similarly β1 = uϕ−1β. Then ϕ−1α(t) ∈ u−1S(θ0, π/2) for t ∈ (0, δ1) and
by connectedness the image of ϕ−1 ◦ α must lie inside some component Sj .
Similarly the image of ϕ−1 ◦ β is entirely contained in some component Sk.
Since the sectors Sj and Sk are convex α̇(0) ∈ Sj and β̇(0) ∈ Sk as well. But

η2 − η1 ∈ (0, π/m) so α̇(0) and β̇(0) in the same component of u−1
(

S(θ0, π/2)
)

.
Hence Sk = Sj . The restriction

uj := u
∣

∣Sj : Sj → S(θ0, π/2).

is a biholomorphism and

ϕ−1α(t) = u−1
j (α1(t)) ϕ−1β(t) = u−1

j (β1(t)).

Fix t ∈ (0, δ1). Since S0 ⊂ C is a convex set the formula

λt(s) = u−1
j

(

(1 − s)α1(t) + sβ1(t)
)

defines a path λt : [0, 1] → ∆ and µt := ϕ ◦ λt : [0, 1] → X is a smooth path
from α(t) to β(t). Hence

d(α(t), β(t)) ≤ L(µt) =

∫ 1

0

∣

∣

∣

∣

dµt
ds

(s)

∣

∣

∣

∣

g

ds.

Differentiating (in s) the identity u
(

λt(s)
)

= (1 − s)α1(t) + sβ1(t) we get

d

ds
u
(

λt(s)
)

≡ β1(t) − α1(t).

On the other hand

d

ds
u
(

λt(s)
)

=
d

ds

(

λt(s)
)m

= mλm−1
t (s)

dλt
ds

(s)

dλt
ds

(s) =
β1(t) − α1(t)

mλm−1
t (s)

.

Using first (9) and (10) and next (12) and (11) we have

dµt
ds

(s) = (β1(t) − α1(t))
(

e1 + λt(s)R(λt(s))
)

∣

∣

∣

∣

dµt
ds

(s)

∣

∣

∣

∣

g

≤
∣

∣

∣

∣

dµt
ds

(s)

∣

∣

∣

∣

(1 + c0|µt(s)|)

≤ |β1(t) − α1(t)|(1 + c0|λt(s)|)(1 + c0|µt(s)|).

By (13) |µt(s)| ≤ c0|λt(s)| so

∣

∣

∣

∣

dµt
ds

(s)

∣

∣

∣

∣

g

≤ |β1(t) − α1(t)|
(

1 + (c0 + c20)|λt(s)| + c30|λt(s)|
)

.
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Moreover we have

|λt(s)|m = |u(λt(s))| = |(1 − s)α1(t) + sβ1(s)| ≤
≤ (1 − s)|α(t)| + s|β(t)| ≤
≤ (1 − s)d(0, α(t)) + s d(0, β(t)) = t

|λt(s)| ≤ t
1/m.

So there is a constant C > 0 such that

(c0 + c20)|λt(s)| + c30|λt(s)| ≤ Ct
1/m

∣

∣

∣

∣

dµt
ds

(s)

∣

∣

∣

∣

x

≤ |β1(t) − α1(t)|(1 + Ct
1/m)

d(α(t), β(t)) ≤ |β1(t) − α1(t)|(1 + Ct
1/m).

This yields the upper bound

lim sup
t→0

d(α(t), β(t))

2t
≤ lim

t→0

|β1(t) − α1(t)|(1 + Ct
1/m)

2t
= lim

t→0

|β1(t) − α1(t)|
2t

.

As for the lower bound, using (32) we have

lim inf
t→0

d(α(t), β(t))

2t
≥ lim inf

t→0

|α(t) − β(t)|
2t

· lim inf
t→0

d(α(t), β(t))

|α(t) − β(t)| ≥

≥ lim inf
t→0

|α(t) − β(t)|
2t

≥ lim
t→0

|α1(t) − β1(t)|
2t

.

Thus using (45) we finally compute the limit

lim
t→0

d(α(t), β(t))

2t
= lim

t→0

|β1(t) − α1(t)|
2t

= sin
∢(α̇(0), β̇(0))

2
.

Since ∢(α̇(0), β̇(0)) < π this completes the proof.

5 Uniqueness of geodesics

Lemma 15. Let γ1 : [0, L1] → X be a segment between two points x, y ∈ Xreg.
If γ2 : [0, L2] → X is a unit speed geodesic distinct from γ1 with γ2(0) = x and
γ2(t2) = y for some t2 ∈ (0, L2), then γ2 is not minimising beyond t2, that is
d(γ2(0), γ2(tt + ε) < t2 + ε for any ε > 0.

Proof. If γ2 were minimising on [0, t2 + ε], then t2 = L1, the concatenation
γ1 ∗ γ2

∣

∣[t2,t2+ε] would be a shortest path from x to γ2(t2 + ε) and therefore
would be smooth near t2. This would force γ1 = γ2.

In the following we will repeatedly make use of the following celebrated idea
of Klingenberg (see [13, Lemma 1] or [14, Lemma 2.1.11(iii)]).
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Lemma 16 (Klingenberg). Let x be a point in a Riemannian manifold (M, g)
and let v1, v2 ∈ UxM be two distinct unit vectors such that γv1 and γv2 be defined
and minimising on [0, T ]. Assume that γv1(T ) = γv2(T ), that γ̇v1(T )+ γ̇v2(T ) 6=
0 and that γvi(T ) is not a conjugate point of x along γvi . Then there are
vectors v′1, v

′
2 ∈ UxX arbitrarily close to v1 and v2 respectively and such that the

geodesics γv′i are minimising on [0, T ′] for some T ′ < T and γv′
1
(T ′) = γv′

2
(T ′).

Lemma 17. Let γ1, γ2 : [0, L] → X be segments with the same endpoints. If
0 6∈ γ2([0, L)) then γ1 ∗ γ0

2 is a simple closed curve.

Proof. Assume by contradiction that there are t1, t2 ∈ (0, L) such that γ1(t1) =
γ2(t2). Since x = γ2(0) and y = γ2(t2) are regular points Lemma 15 implies
that γ2 is not minimising on [0, L], contrary to the hypotheses.

Since X is a topological disc, by the Jordan separation theorem the interior
of a simple closed curve contained in X is well defined and is again a topological
disc. Fix on Xreg the orientation given by the complex structure. If α : [0, L] →
Xreg is a piecewise smooth simple closed path in X we say that it is positively
oriented if its interior lies on its left [10, p. 268]. If x ∈ Xreg and u, v ∈ TxX are
two linearly independent vectors we let ∢(u, v) denote the unoriented angle as
before, while ∢or(u, v) denotes the oriented angle, which is defined by ∢or(u, v) =
∢(u, v) if {u, v} is a positive basis of TxX and by ∢or(u, v) = −∢(u, v) otherwise.
Equivalently, if v = eiθu with θ ∈ (−π, π) then ∢or(u, v) = θ. If α : [0, L] → Xreg

is a positively oriented piecewise smooth simple closed path and t ∈ (0, L) is
a vertex that is not a cusp, the external angle at α(t) is defined as θext(t) =
∢or(α̇(t−), α̇(t+)), and the interior angle as θint(t) = π − θext. Note that
θext(t) ∈ (−π, π), while θint(t) ∈ (0, 2π) [10, p.266ff].

Lemma 18. There is r1 > 0 such that for any pair of segments γ1, γ2 : [0, L] →
B∗(0, r1) with the same endpoints γ̇1(0) 6= −γ̇2(0) and γ̇1(L) 6= −γ̇2(L). More-
over, if γ1 ∗ γ0

2 is positively oriented and 0 does not lie in its interior, then the
interior angles of γ1 ∗ γ0

2 at the two vertices are both smaller than π and

∢or

(

γ̇1(L), γ̇2(L)
)

< 0.

Proof. Using Lemma 11 we can find a δ > 0 with the following property: for
any segment γ : [0, L] → B(0, δ) with γ((0, L)) ⊂ Xreg we have

∢
(

γ̇(s), γ̇(s′)
)

<
π

2
(46)

for any s, s′ ∈ [0, L], the angle being computed with respect to the Hermitian
product 〈 , 〉. Let κ ∈ R be defined as in (7). By Wirtinger theorem [9, p.159]
ω is the volume form of g

∣

∣Xreg
. By Lelong theorem [9, p.173] analytic sets have

locally finite mass. Hence there is an r1 ∈ (0, δ) such that

vol
(

B(0, c21r
1/m

1 )
)

=

∫

B(0,c21r
1/m
1 )

ω <
π

1 + |κ|
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Here c1 is the constant in Prop. 4. Let γ1, γ2 : [0, L] → B∗(0, r1) be a pair
of segments with the same endpoints. Assume by contradiction that γ̇1(L) =
−γ̇2(L). Set α = γ1 ∗ γ0

2 and w = γ̇1(L) = −γ̇2(L). By (46)

∢
(

α̇(s), w
)

<
π

2
i.e. 〈α̇(s), w〉 > 0

for any s ∈ [0, 2L]. Hence

〈α(2L), w〉 − 〈α(0), w〉 =

∫ 2L

0

〈α̇(s), w〉ds > 0.

In particular we would get γ2(0) = α(2L) 6= α(0) = γ1(0) contrary to the
hypothesis that the endpoints coincide. This proves that γ̇1(L) 6= −γ̇2(L). The
same argument of course yields γ̇1(0) 6= −γ̇2(0) as well.

Next denote by V be the interior of α and assume that 0 6∈ V and that α is
positively oriented. By (20)

B(0, r1) ⊂ U := ϕ(B(0, c1r
1/m

1 )) ⊂ B(0, c21r
1/m

1 ).

Since U is a topological disc and ∂V ⊂ U , also V ⊂ U ⊂ B(0, c21r
1/m

1 ). Since
V ⊂ Xreg Gauss–Bonnet theorem applies and we get

θint(0) + θint(L) =

∫

V

Kω ≤ κ · vol
(

B(0, c21r
1/m

1 )
)

< π.

Thus θint(0), θint(L) ∈ [0, π). To prove the last assertion set θ = ∢or

(

γ̇1(L), γ̇2(L)
)

.
Since γ1 and γ2 are distinct geodesics θ 6= 0. It is easy to check that

θint(L) =

{

2π − θ if θ ∈ (0, π)

−θ if θ ∈ (−π, 0).

Since θint(L) ∈ (0, π), θ ∈ (−π, 0).

Let δ > 0 be such that B(0, δ) ⊂⊂ X . Put

r2 =
1

2
min

{

π√
κ
, δ, r1

}

where π/
√
κ = +∞ if κ ≤ 0.

Proposition 7. For any x ∈ B(0, r2), Bx
(

0, d(x, 0)
)

⊂ Dx, expx has no critical

points on Bx(0, r2) ∩ Dx and expxBx(0, d(x, 0)) = B
(

x, d(0, x)
)

.

Proof. Let x ∈ B(0, r2) and v ∈ UxX . Set r = d(x, 0) and let Tv be as in (5).
Assume by contradiction that Tv < r and set ε = (r − Tv)/2 > 0. For any
t ∈ [0, Tv)

d(γv(t), 0) ≤ d(γv(t), x) + d(x, 0) ≤ t+ r < 2r ≤ 2r2 ≤ δ

d(γv(t), 0) ≥ |d(γ(t), x) − d(x, 0)| ≥ r − t ≥ r − Tv > ε.

22



So γv([0, Tv)) is contained in Q := B(0, δ)\B(0, ε) and t 7→ γ̇v(t) is a trajectory
of the geodesic flow contained in the compact set {(y, w) ∈ TXreg : y ∈ Q, |w| =
1}. This contradicts the maximality of Tv. Therefore Tv ≥ r and Bx(0, r) ⊂ Dx.
Since K ≤ κ on Xreg and r2 ≤ π/

√
κ Rauch theorem [11, p.215] implies that

for any v ∈ UxX the geodesic γv has no conjugate points on [0,min{Tv, r2}).
Therefore expx is a local diffeomorphism on Bx(0, r2) ∩ Dx [11, p.114]. This
proves the second claim. The inclusion expxBx(0, r) ⊂ B(x, r) is obvious. On
the other hand if y ∈ B(x, r) let γ : [0, d(x, y)] → X be a segment from x
to y. By the triangle inequality γ is contained in Xreg so γ(t) = expx tv for
some v ∈ UxX . Then y = expx d(x, y)v ∈ expx B(0, r). This proves that
expxBx(0, r) = B(x, r).

For x ∈ B(0, r2) define cx : UxX → (0, r2] by

cx(v) = sup{t ∈ (0,min{Tv, r2}) : γv is minimising on [0, t]} (47)

and put č(x) = infUxX cx. If γv is a segment from x to 0 then cx(v) = d(x, 0), so
čx ≤ d(x, 0). In the next two lemmata we adapt to our situation arguments that
are classical in the study of the cut locus of a complete Riemannian manifold,
see e.g. [21, p.102]. For the reader’s convenience we provide all the details.

Lemma 19. Let x ∈ B(0, r2), v ∈ UxX and T ∈ (0,min{Tv, r2}). Then
T = cx(v) iff γv is minimising on [0, T ] and there is another segment γ 6= γv

between x and γv(T ). If d(x, 0) + d(0, γv(T )) > T then γ lies entirely in Xreg,
so γu = γ for some u ∈ UxX, u 6= v. In particular this happens if T < d(x, 0).

Proof. Put y = γv(T ) ∈ Xreg and assume T = cx(v). Then γv is minimising
on [0, t] for any t < T , so also on [0, T ]. Since it is not minimising after T , we
may choose a sequence tn ց T such that γv is never minimising on [0, tn]. Put
yn = γv(tn) and sn = d(x, yn). Then sn < tn and sn → T . Let γn : [0, sn] → X
be a segment from x to yn. By Ascoli-Arzelà Theorem and Cor. 1 we can extract
a subsequence converging to a segment γ : [0, L] → X from x to y. If γ = γv,
then γn is contained in Xreg for large n, so γn = γvn for some vn ∈ UxX and
vn → v. But then any neighbourhood of Tv in TxX contains a pair of distinct
points snvn 6= tnv that are mapped by expx to the same point yn ∈ Xreg. Since
Tv ∈ Bx(0, r2) ∩ Dx this contradicts Prop. 7. Therefore γ 6= γv. This proves
necessity of the condition. Sufficiency follows directly from Lemma 15. The
remaining assertions are trivial.

Lemma 20. For x ∈ B(0, r2) the function cx is lower semicontinuous. In
particular the minimum čx is attained.

Proof. Let vn ∈ UxX be a sequence such that vn → v. Set T := lim infn→∞ cx(vn).
We wish to prove that cx(v) ≤ T . If T = r2 this is obvious from the definition
(47). Assume instead that T < r2. Passing to a subsequence we can assume that
Tn := cx(vn) < r2 and Tn → T . By the theorem of Ascoli-Arzelà the segments
γvn

∣

∣[0,Tn] converge to a segment α : [0, T ] → X and α(t) = γv(t) for t ∈ [0, Tv).
If there is τ ∈ (0, T ] such that α(τ) = 0 then cx(v) ≤ Tv ≤ τ ≤ T and we
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are done. Otherwise α([0, T ]) ⊂ Xreg, so γv = α is minimising on [0, T ] and
T < Tv. For n large γvn([0, Tn] ⊂ Xreg as well. Hence cx(vn) < min{Tv, r2}. By
the previous lemma there are segments γn 6= γvn from x to γvn(Tn). Again by
the theorem of Ascoli-Arzelà we can assume, by passing to a subsequence, that
γn converge to a segment β from x to γv(T ). If β passes through 0 then β 6= γv

and T = cx(v) by the previous lemma. If β is contained in Xreg, the same is true
of γn for large n. Write γn = γun and extract a subsequence so that un → u.
Clearly β = γu. If u = v, any neighbourhood of Tv would contain two distinct
vectors Tnvn 6= Tnun with the same image through expx. Since T < r2 this
possibility is ruled out by Prop. 7. Therefore u 6= v and the previous lemma
implies that cx(v) = cx(u) = T .

Proposition 8. If x ∈ B(0, r2) then čx = injx = d(x, 0).

Proof. Let x ∈ B(0, r2) and r = d(x, 0). First of all we prove that expx is
injective on Bx(0, čx). In fact let w1, w2 ∈ Bx(0, čx) be such that expx(w1) =
expx(w2). Write wi = tivi with |vi| = 1. Since ti = |wi| < čx ≤ c(vi) the
geodesics γvi are minimising on [0, ti]. Therefore t1 = d(x, expx(wi)) = t2. If
v1 6= v2, Lemma 19 would imply that t1 = c(v1), but this is impossible since
t1 < čx. So v1 = v2 and w1 = w2. This proves that expx is injective on
B(0, čx). Next we prove that čx = r. We already know that čx ≤ r. Assume by
contradiction that T := čx < r. By Lemma 20 there are u 6= v ∈ UxX such that
γu(T ) = γv(T ). Since T < r Prop. 7 ensures that expx is a diffeomorphism on
appropriate neighbourhoods of Tu and Tv in TxX . By Lemma 16 we conclude
that γ̇u(T ) = −γ̇v(T ). But this is impossible by Lemma 18. Therefore čx = r
and expx is injective on Bx(0, r). Hence expx is a diffeomorphism of Bx(0, r)
onto B(x, r). In particular injx ≥ čx ≥ r. The reverse inequality is proven in
Lemma 3.

Proposition 9. There is r3 ∈ (0, r2/2) such that if α, β : [0, T ] → Xreg are
distinct segments with the same endpoints x, y ∈ B∗(0, r3), then 0 lies in the
interior of α ∗ β0.

Proof. Set

r3 =
( r2

2c21

)m

where c1 is the constant in (19). By (20)

B(0, r3) ⊂ U := ϕ(B(0, c1r
1/m

3 )) ⊂ B(0, c21r
1/m

3 ) ⊂ B(0, r2/2) (48)

and U is a topological disc. Let α and β be as above and set x = α(0) =
β(0), y = α(T ) = β(T ). Since x, y ∈ B(0, r3) ⊂ B(0, r2/2), α and β lie in
B(0, r2) ⊂ B(0, r1). By Lemma 17 α ∗ β0 is a simple closed curve. Denote by
V its interior and assume by contradiction that 0 6∈ V . Since ∂V ⊂ U also
V ⊂ U ⊂ B(0, r2/2) and diamV < r2. In particular T < r2. By interchanging
α and β we can assume that V lies on the left of α ∗ β0. Set u0 = α̇(0) ∈ UxX
and chose θ0 ∈ (0, 2π) so that β̇(0) = eiθ0u0. By hypothesis θ0 > 0. Denote
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by E the set of unit vectors v ∈ UxX of the form v = eiθu0 with θ ∈ [0, θ0]
and by intE the subset of those with θ ∈ (0, θ0). By Lemma 20 the function
cx has a minimum on E. We claim that the minimum point lies in intE. By

α

β γv1

γu1

x

y

γu2
.

(T’’)

y’’

γ.v2(T’’)

y’
.
β

α
.
(T)

(T)

Figure 1:

the hypotheses cx
(

α̇(0)
)

= cx
(

β̇(0)
)

= T < r2. Lemma 18 implies that θ0 < π

and ∢or

(

α̇(T ), β̇(T )
)

∈ (−π, 0) (see Fig. 1). By Klingenberg Lemma 16 there

are vectors u1 and v1 arbitrarily close to α̇(0) and β̇(0) respectively, such that
T ′ = cx(u1) = cx(v1) < T and γu1(T ′) = γv1(T ′). Since ∢or

(

α̇(T ), β̇(T )
)

∈
(−π, 0) the point y′ = γu1(T ′) = γv1(T ′) belongs to V . Therefore γu1(t) and
γv1(t) lie inside V for any t ∈ (0, T ′]: otherwise they would meet either α
or β at an interior point, which is forbidden by Lemma 15. This shows that
u1, v1 ∈ intE and that α̇(0) and β̇(0) are not local minima of cx

∣

∣E and that
the minimum of cx on E must be attained at some point u2 ∈ intE. Set
T ′′ = cx(u2) = minE cx and y′′ = γu2(T ′′). Since u2 ∈ intE and T ′′ < T , the
point y′′ belongs to V , so γu2(t) ∈ V for any t ∈ (0, T ′′] (use again Lemma
15). By Lemma 19 there is a segment γ 6= γu2 between x and y′′ and, again by
Lemma 15, it is contained in V as well. So γ = γv2 for some v2 ∈ intE and
cx(v2) = d(x, y′′) = cx(u2). Since y′′ ∈ V ⊂ B(0, r2/2) both γu2 and γv2 are
contained in B∗(0, r2) ⊂ B∗(0, r1). Hence by Lemma 18 γu2(T ′′) 6= −γv2(T ′′).
But then we can apply again Klingenberg lemma to get a pair of nearby vectors
with cx strictly smaller than T ′′. Since T ′′ is the minimum this yields the desired
contradiction.

Theorem 3. There is r4 ∈ (0, r3) such that for any x ∈ B(0, r4) there is a
unique segment from x to 0.

25



Proof. Set

r4 =
(r3
c21

)m

where c1 is the constant in (19). By (20)

B(0, r4) ⊂ U := ϕ(B(0, c1r
1/m

4 )) ⊂ B(0, c21r
1/m

4 ) ⊂ B(0, r3) (49)

and U is a topological disc. Fix x ∈ B(0, r4) and assume by contradiction that
there are two distinct segments α, β : [0, r] → X from x and 0. By Lemma 17
α ∗ β0 is a simple closed curve. Let V be the interior of α ∗ β0. Since ∂V ⊂ U
also V ⊂ U ⊂ B(0, r3) ⊂ B(0, r2/2). Assume that V lies on the left of α ∗ β0

and set u0 = α̇(0) ∈ UxX , β̇(0) = eiθ0u0 with θ0 ∈ (0, 2π). Denote by E be the
set of v ∈ UxX of the form v = eiθu0 with θ ∈ [0, θ0] and by intE the subset
of those with θ ∈ (0, θ0). If v ∈ intE then γv(t) ∈ V for small positive t. Set
r = d(x, 0). By Prop. 8 γv is defined and minimising on [0, r). Let [0, Tv) be
the maximal interval of definition of γv. If γv((0, Tv)) were not contained in
V , there would be a minimal time t0 such that γv(t0) ∈ α((0, L]) ∪ β((0, L]).
By Lemma 15 this would imply that t0 > cx(v), so there would be a point
y = γv(cx(v)) ∈ V that is reached by two distinct segments starting from x.
But this is impossible because of Prop. 9 because x, y ∈ B(0, r3). Therefore
γv((0, Tv)) has to be contained in V . This implies that cx(v) ≤ diamV < r2.
If cx(v) < Tv Lemma 19 would give again a pair of distinct segments with the
same endpoints x, γv(cx(v)) ∈ V ⊂ B(0, r3), thus contradicting Prop. 9. So
cx(v) = Tv. Now γv is minimising hence Lipschitz on [0, cx(v)) and therefore
extends continuously to [0, cx(v)]. The only possibility is that γv(cx(v)) = 0 and
cx(v) = d(x, 0) = r. Let S be the set of vectors v ∈ TxX of the form v = ρeiθv1
with ρ ∈ (0, r) and θ ∈ (0, θ0). We have just proved that the map

F : S → V F (w) =

{

expx(w) if |w| < r

0 if |w| = r

is continuous. Both S and V are topological discs, F (∂S) ⊂ ∂V and F
∣

∣∂S :
∂S → ∂V has degree 1 so it is not homotopic to a constant. Therefore F must
be onto, expx(S) = V and V ⊂ B(x, r). Now we look at our configuration of
geodesics from the point of view of ∆ as in §4. Set γ1 = α0 and γ2 = β0 and let
γ
i

: [0, Li] → ∆ be as in Def. 4. By Prop. 6 these γ
i

are C1 paths on [0, Li]. For
small s, each of them intersects the circle Zs = {z ∈ ∆ : |z| = s} at exactly one
point pi(s). Let ti(s) ∈ (0, r) be such that pi(s) = ϕ−1(γi(ti(s))). The functions
ti : [0, ε) → [0, r] are continuous, strictly decreasing in a neighbourhood of
0 and such that ti(0) = 0. Since γ1 and γ2 do not intersect except at their
endpoints p1(s) 6= p2(s). Therefore the circle Zs is cut by p1(s) and p2(s) in
exactly two arcs. One of them lies in ϕ−1(V ) the other outside of it. Denote
by βs : [0, 1] → ∆ a C1 parametrisation of the former. Then αs := ϕ ◦ βs is a
path of length L(αs) ≤ ||dϕ||∞L(βs) ≤ 2πc0s = Cs lying in expx(Bx(0, r)) and
connecting γ1(t1(s)) = expx((r−t1(s))u0) to γ2(t2(s)) = expx((r−t2(s))eiθ0u0).
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On the other hand

r < r2 ≤ π

2
√
κ

K ≤ κ on B(x, r) and expx is a diffeomorphism of Bx(0, r) ⊂ TxX onto B(x, r).
Therefore a classical corollary to Rauch theorem [11, Prop. 2.5 p.218] ensures
that L(αs) is bounded from below by some positive constant depending only on
θ0 and κ. This yields the contradiction and shows that the segments α and β
coincide.

Lemma 21. There is r5 ∈ (0, r4/3) such for any segment γ : [0, L] → B(0, 3r5)
with γ((0, L)) ⊂ Xreg and for any s, s ∈ [0, L]

∢(π(γ̇(s)), π(γ̇(s′))) <
π

8
. (50)

Proof. By Lemma 12 there is δ > 0 such that (50) holds for any segment γ :
[0, L] → B∗(0, δ). Set r5 = min{δ, r4/2}.

If γ : [a, b] → C∗ is a continuous path define its winding number by

W (γ) = Re

∫

γ

dz

z
. (51)

For a non-closed path W (γ) ∈ R. The winding number W (γ) depends only
on the homotopy class of γ with fixed endpoints. If γ(t) = ρ(t)e2πiθ(t) with
θ ∈ C0([a, b]) then

W (γ) = θ(b) − θ(a). (52)

Lemma 22. If γ : [0, L] → B∗(0, 3r5) is a segment then W (π ◦ γ) < 1.

Proof. Set α = π ◦ γ and write α(t) = ρ(t)ei2πθ(t) with θ ∈ C0([0, L]). Then
W (α) = θ(L) − θ(0). Assume by contradiction that W (α) ≥ 1. Pick t0 ∈ [0, L]
such that θ(t0) − θ(0) = 1 and let χ : [0, t0 + 1] → ∆ be defined by

χ(t) =

{

α(t) t ∈ [0, t0]

α(t0) + (t− t0)(α(0) − α(t0)) t ∈ [t0, t0 + 1].

The second piece of χ is a parametrisation of the segment from α(t0) to α(0).
Since θ(t0)−θ(0) = 1, χ is a loop that avoids the origin and has winding number
1, so its homotopy class is a generator of π1(∆∗, α(0)). Set

v =
α(0) − α(t0)

|α(0) − α(t0)|
u1(t) = χ(t) · v
u2(t) = χ(t) · Jv

(J is the complex structure on C.) Since W (χ) = 1 both functions u1 and u2

have positive maximum, so their maximum points t1 and t2 belong to (0, t0).
Therefore α̇(t2) = ±v, α̇(t1) = ±v and ∢(α̇(t1), α̇(t2)) ≥ π/2 (see Fig. 2).
But α is the projection of the segment γ. This contradicts (50) and proves the
lemma.
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Theorem 4. For any x, y ∈ B∗(0, r5) there is at most one segment from x to
y avoiding 0.

Proof. Let γ1, γ2 : [0, L] → X be two segments from x to y. Both γ1 and γ2

are contained in B(0, 3r5). Assume by contradiction that the two segments are
distinct and both lie in Xreg. By Lemma 17 γ = γ1 ∗ γ0

2 is a Jordan curve
and by Prop. 9 the origin lies in the interior of γ. Hence [γ] is a generator of
π1(Xreg, γ(0)). Set αi = π ◦ γi, α = π ◦ γ = α1 ∗ α0

2. Since π : Xreg → ∆∗ is
a degree m unramified covering, the loop α has winding number m. Therefore
either α1 or α0

2 has winding number at least 1. Nevertheless this is impossible
by Lemma 22.

6 Convexity

For x ∈ B∗(0, r5) denote by

γx : [0, d(0, x)] → X

the unique segment from 0 to x. Define three maps

F : B∗(0, r5) → S1 × {0} ⊂ C
n

F : B∗(0, r5) → S1

G : B∗(0, r5) × [0, 1] → X

F(x) = γ̇x(0)

F(x) = γ̇
x
(0)

G(x, t) = γx
(

td(0, x)
)

.

(53)

F takes values in S1 × {0} because C0X = C × {0} and gx = 〈 , 〉.
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Proposition 10. The maps F, F and G are continuous and F = (u◦F, 0, . . . , 0).

Proof. Assume xn → x and set γn = γxn . By Theorem 2 ||γ̇n||C0,1/m ≤ c3.
By the Ascoli-Arzelà theorem there is a subsequence, still denoted by γn, that
converges in the C1-topology to the unique segment γx from 0 to x. In par-
ticular F(x∗n) = γ̇n(0) → γ̇(0) = F(x). This shows that F is continuous.
That F = u ◦ F was already proved in Prop. 6. If γ̇(0) = (eiθ0 , . . . , 0),
pick t0 ∈ (0, d(x, 0)) sufficiently close to 0 that γ1(t0) ∈ S(θ0, π/2). De-
note by S1, . . . , Sm the connected components of u−1(S(θ0, π/2)) and assume
that ϕ−1γ(t0) ∈ Sj . Then ϕ−1γ((0, t0]) is entirely contained in Sj . Since
Sj is convex it follows that γ̇(0) ∈ Sj . As γn → γ uniformly and ϕ−1 is

Hölder (Prop. 4) also ϕ−1γn(t0) ∈ Sj and γ̇n(0) ∈ Sj for large n. The
map uj = u

∣

∣Sj : Sj → S is a homeomorphism and u(γ̇n(0)) = γ̇n1 (0) and

u(γ̇(0)) = γ̇1(0). Therefore γ̇n(0) = u−1
j γ̇n1 (0) → u−1

j γ̇1(0) = γ̇(0). This
proves that F is continuous. Finally, if xn → x and tn → t, by passing to
a subsequence we can assume that γn = γxn → γx uniformly. Then clearly
G(xn, tn) = γn

(

tnd(xn, 0)
)

→ γx
(

td(x, 0)
)

= G(x, t). This proves that the
third map G is continuous.

Proposition 11. For any pair of points x, y ∈ B∗(0, r5) with

∢(F(x),F(y)) <
π

m
(54)

there is a unique segment αx,y : [0, d(x, y)] → X such that αx,y(0) = x and
αx,y(d(x, y)) = y. This segment lies entirely in Xreg. If αx,y(t) = expx tv, then
d(x, y) < cx(v). Finally the map (x, y, t) 7→ αx,y(t) is continuous.

Proof. Since ∢(F(x),F(y)) < π/m it follows from Lemma 14 that the path
γx ∗ γ0

y is not minimising. If γ1 and γ2 were two distinct segments from x to y,
by Theorem 4 one of them, say γ1, would have to pass through 0. But then γ1

would coincide with γx∗γ0
y . This is absurd since γ1 is a segment. This proves the

first two assertions. Since r5 ≤ r3 ≤ r2/2, x ∈ B(0, r2) and d(x, y) < 2r5 < r2.
Thus the third assertion follows from the first and Lemma 19. The last fact
follows from uniqueness by a standard use of Ascoli-Arzelà lemma.

Proposition 12. The function d(0, ·) is C1 on B∗(0, r5). If x ∈ B∗(0, r5), the
gradient of d(0, ·) at x is γ̇x(d(0, x)).

Proof. For x and γ as above set L = d(0, x) and v = γ̇(L). Choose ε such that
0 < ε < min{L, r5 − L} and extend γ to [0, L + ε] by setting γ(t) = expx tv
for t ∈ (L,L + ε]. Then L + ε ≤ r5 ≤ r2. By Prop. 8 the path γ

∣

∣[δ,L+ε] is a
segment for every δ > 0, hence γ is the unique segment from 0 to γ(L+ ε). Set
x1 = γ(L − ε) and x2 = γ(L+ ε). Since ε = d(x1, x) = d(x2, x) < L = injx the
functions d(x1, ·) and d(x2, ·) are differentiable at x with gradients v and −v
respectively (see e.g. [21, Prop. 4.8, p.108]). So

d(x1, expxw) = d(x1, x) + gx(v, w) + o(|w|)
d(x2, expx w) = d(x2, x) − gx(v, w) + o(|w|).
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By the triangle inequality

d(0, expx w) ≤ d(0, x1) + d(x1, expx w) =

= d(0, x1) + d(x1, x) + gx(v, w) + o(|w|) =

= d(0, x) + gx(v, w) + o(|w|)
d(0, expx w) ≥ d(0, x2) − d(x2, expx w) =

= d(0, x2) −
[

d(x2, x) − gx(v, w) + o(|w|)
]

=

= d(0, x) + gx(v, w) + o(|w|)
|d(0, expx w) − d(0, x) − gx(v, w)| = o(|w|).

This proves that d(0, ·) is differentiable at x with gradient v. Next we show that
the gradient is continuous. Indeed if {xn} is a sequence converging to x ∈ Xreg

and γn are segments from 0 to xn, then by Theorem 2 and the theorem of
Ascoli and Arzelà there is a subsequence γ∗n that converges in the C1-topology
to the unique segment γ from 0 to x. In particular γ̇∗n(d(0, xn)) → γ̇(d(0, x)).
Therefore the vector field ∇d(0, ·) is continuous on B∗(0, r5).

We found the above argument for the differentiability of the distance function
in [17, Prop. 6].

Lemma 23. Let (M, g) be a Riemannian manifold with sectional curvature
bounded above by κ ∈ R. Let x and y be points of M that are connected by a
unique segment γ(t) = expx tv, v ∈ UxM so that γ(t0) = y and

t0 = d(x, y) < min
{

cx(v),
π

2
√
κ

}

where as usual
√
κ = +∞ if κ ≤ 0. Then the function d(x, ·) is smooth in a

neighbourhood of y and its Hessian at y is positive semi-definite.

Proof. This is a classical result in Riemannian geometry following from Rauch
comparison theorem. It is commonly stated with stronger (and cleaner) hy-
potheses, but the usual proof, found e.g. in [21, pp.151-153] goes through
without change with the above minimal assumptions. In fact expx is a dif-
feomorphism in a neighbourhood of v ∈ TxM , so d(x, ·) is smooth and one can
compute its derivatives using Jacobi fields. The result then follows from Lemma
4.10 p.109 and Lemma 2.9 p.153 in [21], especially eq. (2.16) p.153. Notice that
we are only interested in the first inequality in eq. (2.16) and this only depends
on the upper bounds for the sectional curvature of M .

Proposition 13. If α : [0, L] → B∗(0, r5) is a segment, the function d(0, α(·))
is convex on [0, L].

Proof. Pick s0 ∈ [0, L] and set x = α(s0) and xn = γx(1/n). Then F(xn) ≡ F(x)
since γxn is a piece of γx. Since F is continuous, there is an ε > 0 such that for
any s ∈ J := (s0 − ε, s0 + ε) ∩ [0, L]

∢(F(x),F(α(s))) <
π

m
.
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By Prop. 11 for any s ∈ J there is a unique segment αn,s : [0, d(xn, α(s))] →
Xreg, joining xn to α(s), it is of the form αn,s(t) = expxn

tvn,s and d(xn, α(s)) <
cxn(vn,s). So we can apply Lemma 23 to the effect that the function un =
d(xn, α(·)) is convex on J . Since un → d(0, α(·)) uniformly, also the function
d(0, α(·)) is convex on J . Since t0 is arbitrary and convexity is a local condition,
this proves convexity on the whole of [0, L] as well.

Corollary 5. For any r ∈ (0, r5) the ball B(0, r) is geodesically convex, that is:
any segment whose endpoints lie in B(0, r) is contained in B(0, r).

Proof. Let α : [0, L] → X be a segment with endpoints x, y ∈ B(0, r). If
α passes through the origin the assertion is obvious. Otherwise the function
u(t) = d(0, α(t)) is convex on [0, L] by Proposition 13. Since x, y ∈ B(0, r),
u(0) < r and u(L) < r so

u(t) ≤
(

1 − t

L

)

u(0) +
t

L
u(L) < r.

Therefore α(t) ∈ B(0, r) for any t ∈ [0, L].

Now choose a number r6 ∈ (0, r5) and set

C = {x ∈ X : d(0, x) = r6}. (55)

It follows from Proposition 12 that C is a smooth 1-dimensional submanifold
of Xreg. Since it is compact, it is diffeomorphic to S1. The interior of C is
B(0, r6) which is thus a topological disc. Let σ : R → C be a positively oriented
C1 periodic parametrisation of C of period 1. Since σ is positively oriented the
vector Jσ̇ points inside B(0, r6).

Lemma 24. The maps F ◦ σ and F ◦ σ are not constant.

Proof. Since F(x) = (u(F(x)), 0, . . . , 0) it is enough to prove that F ◦ σ is not
constant. Assume by contradiction that F(x) ≡ v for any x ∈ C. Since the
range of F is contained in C0(X), π ◦ F = F. Using (50) we get for x ∈ C,
s ∈ [0, r6]

∢
(

v, π(γ̇x(s)
)

≤ ∢(v,F(x)) + ∢(π(γ̇x(0)), π(γ̇x(s))) ≤ π

8
π(γ̇x(s)) · v > 0

π(x) · v = π(γx(r6)) · v =

∫ r6

0

π(γ̇x(s)) · v ds > 0.

Therefore π(C) = πσ([0, 1]) would be contained in the half-plane {z ∈ C : z ·v >
0} and π ◦σ∣

∣[0,1] would be null-homotopic in ∆∗. This is impossible since σ
∣

∣[0,1]

generates π1(Xreg, σ(0)) and π : Xreg → ∆∗ is an m : 1 covering.
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Definition 5. For t0, t1 ∈ R set

T = {se2πit ∈ C : s ∈ (0, 1), t ∈ (t0, t1)}
T = {se2πit ∈ C : s ∈ [0, 1], t ∈ [t0, t1]}

b : T → X b(seit) = G(σ(t), s) (56)

S(t0, t1) = b(T ) S[t0, t1] = b(T ). (57)

Since d(σ(t), 0) = r6 for any t ∈ R

b(seit) = γσ(t)(r6s).

Lemma 25. If t0 < t1 < t0 + 1 the map b is a homeomorphism of T onto
S[t0, t1], int S[t0, t1] = S(t0, t1) and

∂S[t0, t1] = σ([t0, t1]) ∪ Im γσ(t0) ∪ Im γσ(t1). (58)

Proof. Continuity of b follows from Proposition 10. We prove that it is injective.
Let se2πit, s′e2πit

′ ∈ T , be such that b(s2πit) = b(s′e2πit
′

) = y. If s = 0 then

y = γσ(t′)(r6s
′) = 0

so s′ = 0 as well and se2πit = s′e2πit
′

= 0. If s, s′ > 0, write x = σ(t), x′ = σ(t′).
Then

γx(r6s) = γx′(r6s
′) = y.

So r6s = d(0, y) = r6s
′ and s = s′. Moreover, from Theorem 3, we get γx(t) =

γx′(t) for t ∈ [0, d(y, 0)] and by the unique continuation of geodesics also for
t ∈ [d(y, 0), r6]. Hence x = γx(r6) = γx′(r6) = x′ and t = t′. This shows
that b is injective and therefore a homeomorphism of T onto its image b(T ).
Since T is homeomorphic to a closed disk, Brouwer theorem on the invariance
of the domain and of the boundary (see e.g. [18, p.205f]) implies that int b(T ) =
b(int T ) and ∂ b(T ) = b(T )−b(int T ) = b(∂T ) = σ([t0, t1])∪Im γσ(t0)∪Im γσ(t1).

Set p(t) = e2πit and let a a lifting of F ◦ σ:

R R

C S1

-a

?

σ

H
H

H
H

H
HHj

F◦σ

?

p

-
F

(59)

Lemma 26. The function a is monotone increasing and F(C) = S1.

Proof. Mark that we are not saying that a is strictly increasing. Let t0, t1 ∈ R

be such that t0 < t1 < t0 + 1. Set x0 = σ(t0), x1 = σ(t1), R = ϕ−1
(

S(t0, t1)
)

,
see (56). Since ϕ−1 is an orientation preserving homeomorphism of class C1
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outside the origin, it follows from Lemma 25 and Prop. 6 that R is a region of
∆ homeomorphic to a disk with piecewise C1 boundary

∂R = ϕ−1σ([t0, t1]) ∪ Im γ
σ(t0)

∪ Im γ
σ(t1)

.

Moreover R lies on the left of γ
σ(t0)

and on the right of γ
σ(t1)

and for t ∈ (t0, t1)

the path γ
σ(t)

lies inside R. Accordingly its tangent vector

γ̇
σ(t)

(0) = e2πia(t)

points inside R. Let ψ ∈ [0, 1) be such that F(x1) = e2πiψF(x0). Since
γ
σ(t0)

(0) = F(x0) and γ
σ(t1)

(0) = F(x1) the unit tangent vectors at 0 point-

ing inside R are exactly those of the form eiθγ
x0

(0) with θ ∈ [0, 2πψ]. So

a[t0, t1] ⊂
⊔

k∈Z

[a(t0) + k, a(t0) + ψ + k].

Since a is continuous, we have a[t0, t1] = [a(t0), a(t0) +ψ] and a(t1) = a(t0) +ψ.
This proves that a(t1) ≥ a(t0). It follows that a is increasing on the real line.
Since pa(1) = pa(0), there is k ∈ Z such that a(1) = a(0)+k. By the uniqueness
of the lifting a(t+ 1) = a(t) + k for any t ∈ R. k ≥ 0 because a is increasing. If
k = 0 then a would be constant on [0, 1] and so on the whole real line. But this is
not the case by Lemma 24. Therefore k > 0. It follows that F is surjective.

Lemma 27. If x ∈ B∗(0, r6) then

∢(π(x),F(x)) <
π

8
.

Proof. For x ∈ B∗(0, r6) set L = d(0, x) and let γx be as in (53). The set E =
{w ∈ C

∗ : ∢
(

w,F(x)
)

< π/8} is a convex cone. Since F(x) = γ̇x(0) = π(γ̇x(0)),
it follows from (50) that π(γ̇x(s)) ∈ E for any s ∈ [0, L]. Thus

π(x) =

∫ L

0

π(γ̇x(s))ds ∈ E.

Theorem 5. Let t0, t1 ∈ R be such that t0 < t1 and

a(t1) < a(t0) +
1

2m
.

Then for any x, y ∈ S[t0, t1] there is a unique segment joining x to y and it is
contained in S[t0, t1]. Therefore S(t0, t1) and S[t0, t1] are geodesically convex
subsets of (X, d).
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Proof. Since S(t0, t1) can be exhausted by sets of the form S[t0 + δ, t1− δ] with
(t1 − δ) − (t0 + δ) < 1/m it is enough to prove the convexity of S[t0, t1]. Let
x and y be points in S[t0, t1]. If either x = 0 or y = 0 the claim is immediate
from the definition of S[t0, t1]. Otherwise we can assume that

x = G(σ(t), s) = γσ(t)(r6s)

y = G(σ(t′), s′) = γσ(t′)(r6s
′)

t0 ≤ t ≤ t′ ≤ t1

s, s′ ∈ (0, 1].

Since a is monotone a(t0) ≤ a(t) ≤ a(t′) ≤ a(t1) and

∢
(

F(x),F(y)
)

= 2π|a(t) − a(t′)| ≤ 2π
(

a(t1) − a(t0)
)

<
π

m
.

It follows from Lemma 2 and Prop. 11 that there is a unique segment α : [0, L] →
X joining x to y (so L = d(x, y)). We need to prove that α([0, L]) ⊂ S[t0, t1].
Assume that it is not. Then α has to cross ∂S[t0, t1] at least twice. Since
d(0, x) < r6 and d(0, y) < r6, we have α([0, L]) ⊂ B(0, r6) by Corollary 5. It
follows from (58) that the set Imα ∩

(

Im γσ(t0) ∪ Im γσ(t1)

)

contains at least
two points. On the other hand α cannot cross the path γσ(ti) more than once:
otherwise by Theorem 4 it would coincide with some prolongation of γσ(ti). This
proves that α crosses each of the paths γσ(ti) exactly once. Define β : [0, 3] → X
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by

β(τ) =











γσ(t)

(

r6(s+ τ(1 − s))
)

if τ ∈ [0, 1]

σ(t+ (τ − 1)(t′ − t) if τ ∈ [1, 2]

γσ(t′)

(

r6(1 + (τ − 2)(s′ − 1))
)

if τ ∈ [2, 3].

Then ζ = β ∗ α0 is a simple closed curve, [ζ] is the positive generator of
π1(Xreg, x) and W (π ◦ ζ) = m. By Lemma 22 W (π ◦ α) < 1, so

W (π ◦ β) > m− 1 ≥ 1. (60)

Let τ ′ : [0, 3] → [t, t′] be the function

τ ′(τ) =











t if τ ∈ [0, 1]

t+ (τ − 1)(t′ − t) if τ ∈ [1, 2]

t′ if τ ∈ [2, 3].

Clearly F
(

β(τ)
)

= F
(

σ(τ ′(τ))
)

. By Lemma 27

∢
(

π ◦ β(τ),F(σ(τ ′(τ))
)

<
π

8

for any τ ∈ [0, 3]. Let t2 ∈ [t, t′] be such that

a(t2) =
a(t) + a(t′)

2

and set w = F(σ(t2)). Then for any τ ′ ∈ [t, t′]

|a(τ ′) − a(t2)| ≤ |a(t′) − a(t)|
2

≤ a(t1) − a(t0)

2
<

1

4m

so for τ ∈ [0, 3]

∢
(

π ◦ β(τ), w
)

≤ ∢
(

π ◦ β(τ),F(τ ′(τ))
)

+ ∢
(

F(τ ′(τ)), w
)

<

<
π

8
+ 2πm|a(τ ′) − a(t2)| < 5π

8
.

This shows that W (π◦β) ≤ 1, contradicting (60). Therefore α([0, L]) ⊂ B(0, r6)
as claimed.

7 Alexandrov curvature

In this section we will finally conclude the proof of Theorem 8. We start by
recalling the basic definitions related to upper curvature bounds for a metric
space in the sense of A.D.Alexandrov. Next we will come back to the setting
considered in §§3–6 and we will prove that B(0, r6) is a CAT(κ)–space (Thm.
7). Theorem 8 follows almost immediately from this.
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A thorough treatment of the intrinsic geometry of metric spaces, and espe-
cially of curvature bounds in the sense of Alexandr Danilovich Alexandrov can
be found in the books [2], [19], [1], [5], [4], [6], [7]. We mostly follow [6].

Let (X, d) denote an arbitrary metric space with intrinsic metric. Given two
segments α and β in X with α(0) = β(0) = x the Alexandrov (upper) angle is
defined as

∠x(α, β) = lim sup
t,t′→0

arccos
t2 + (t′)2 − d(α(t), β(t′))2

2tt′
. (61)

Fix κ ∈ R. Set Dκ = +∞ if κ ≤ 0 and Dk = π/
√
κ otherwise. Let M2

κ

denote the complete Riemannian surface with constant curvature κ. A triangle
T = ∆(xyz) in X is a triple of points x, y, z together with a choice of three
segments connecting them. A comparison triangle is a triangle T = ∆(x̄ȳz̄) in
M2
κ such that corresponding edges have equal length. We will occasionally let

T denote also the union of the edges.

Definition 6. We say that the angle condition holds for a triangle T in a
metric space, if the Alexandrov angle between any two edges of T is less or equal
than the angle at the corresponding vertex in a comparison triangle T in M2

κ. A
metric space (X, d) is called CAT(κ)–space if (1) the metric is intrinsic, (2) any
pair of points x, y ∈ X with d(x, y) < 2Dκ is connected by a segment and (3) the
angle condition holds for any triangle in X. A metric space has curvature ≤ κ
(in the sense of Alexandrov) if for every x ∈ X there is rx > 0 such that the ball
of centre x and radius rx endowed with the induced metric is a CAT(κ)–space.

Proposition 14. Let κ ∈ R and let (X, d) be a Dκ–geodesic metric space (this
means that any pair of points a distance less than Dκ apart are connected by a
segment). Then (X, d) is a CAT(κ)–space if and only if for any triangle T in
X with perimeter less than 2Dκ the following condition holds: for x, y ∈ T let
x̄ and ȳ denote the corresponding points on a comparison triangle in M2

κ; then
d(x, y) ≤ d(x̄, ȳ).

See [6, p.161].

Proposition 15. Let (M, g) be a Riemannian manifold with sectional curvature
bounded above by κ. Then M provided with the Riemannian distance is a metric
space of curvature ≤ κ in the sense of Alexandrov.

For a proof see e.g. [14, Thm. 2.7.6 p. 219] or [6, Thm. 1A.6 p.173]).

Proposition 16. Let (X, d) be a CAT(κ)–space and let α : [0, a] → X and
β : [0, b] → be two segments with α(0) = β(0) = x and ∠x(α, β) = π. Then
α0 ∗ β is a segment.

See [7, Prop. 9.1.17(4) p.313].

Lemma 28. Let (X, d) be a Dκ–geodesic space and let T = ∆(xy1y2) be triangle
with perimeter < 2Dκ and distinct vertices. Fix a point z on the segment from y1
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to y2 and a segment from x to z. In this way we get two triangles T1 = ∆(xy1z)
and T2 = ∆(xzy2) with a common edge. If the angle condition holds for both T1

and T2 then it also holds for T .

This is the gluing lemma of [6, p.199].

Proposition 17. Let (X, d) be a metric space of curvature ≤ κ. Assume that
for every pair of points x, y ∈ X with d(x, y) < Dκ there is a unique segment
αx,y which depends continuously on (x, y). Then X is a CAT(κ)–space.

See [6, Prop. 4.9 p.199].

Proposition 18. Let (X, d) be a CAT(κ)–space and let α and β be segments
with α(0) = β(0) = x. Then the lim sup in (61) is in fact a limit. Therefore

∠x(α, β) = lim
t→0

arccos
2t2 − d(α(t), β(t))2

2t2
= 2 lim

t→0
arcsin

d(α(t), β(t))

2t
. (62)

If (X, d) is a uniquely geodesic metric space we denote by [x, y] the segment
from x to y and by ∠x(y, z) the Alexandrov angle between the segments [x, y]
and [x, z].

Proposition 19. If (X, d) is a CAT(κ)–space the function (x, y, z) 7→ ∠x(y, z)
is upper semicontinuous on the set of triples (x, y, z) with d(x, y), d(x, z) < Dκ.
For fixed x the function (y, z) 7→ ∠x(y, z) is continuous.

See [6, pp.184-185].

Let us now come back to the setting and the notation of §§3–6. For t ∈ R

set

t+ = sup
{

τ > t : a(τ) < a(t) +
1

2m

}

t− = inf
{

τ < t : a(τ) > a(t) − 1

2m

}

.

Clearly

a(t±) = a(t) ± 1

2m
. (63)

From the monotonicity of a it follows that if t′′ < t < t′ then

a(t′) < a(t) +
1

2m
⇐⇒ t′ < t+

a(t′′) > a(t) − 1

2m
⇐⇒ t′′ > t−.

(64)

Proposition 20. For any t ∈ R the sectors S(t, t+) and S(t−, t) are geodesi-
cally convex subsets of (X, d). Moreover S(t, t+), S(t−, t), S[t, t+] and S[t−, t]
provided with the distance induced from (X, d) are CAT(κ)–spaces.
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Proof. We consider only S(t, t+) and S[t, t+]. If x0, x1 ∈ S(t, t+) then by (57)
xi = G(σ(ti), si) with ti ∈ (t, t+). Assume t0 < t1 and set

t′0 =
t0 + t

2
t′1 =

t1 + t+

2
.

Then t < t′0 < t0 < t1 < t′1 < t+ and

a(t′1) < a(t) +
1

2m
≤ a(t′0) +

1

2m
.

By Theorem 5 there is a unique segment from x0 to x1, and it is contained in
S(t′0, t

′
1) ⊂ S(t, t+). It follows that S(t, t+) is a geodesically convex subset of

(X, d). In particular S(t, t+) provided with the distance induced from (X, d) is
a geodesic metric space. By continuity the same holds for S[t, t+] = S(t, t+):
for any x0, x1 ∈ S[t, t+] there is at least one segment from x0 to x1 that is
contained in S[t, t+]. Moreover the induced distance on S(t, t+) coincides with
the Riemannian distance of the smooth Riemannian surface (S(t, t+), g

∣

∣

S(t,t+)),

whose Gaussian curvature is everywhere ≤ κ. Prop. 15 ensures that (S(t, t+), d)
is a metric space with curvature ≤ κ in the sense of Alexandrov. By Thm. 5 it
is uniquely geodesic and by Prop. 11 segments in S(t, t+) depend continuously
on the endpoints. Thus Prop. 17 ensures that (S(t, t+), d) is a CAT(κ)–space.
Since any triangle in S[t, t+] is a limit of triangles in S(t, t+) a continuity
argument applied to the condition in Prop. 14 yields that S[t, t+] is a CAT(κ)–
space too.

Proposition 21. If a(t1) < a(t0) + 1
2m then

∠0

(

γσ(t0), γσ(t1)

)

= 2πm
(

a(t1) − a(t0)
)

. (65)

Proof. Both γσ(t0) and γσ(t1) are segments contained in the CAT(κ)–space

S[t0, t
+
0 ]. By (62) and (44) their Alexandrov angle is

∠0

(

γσ(t0), γσ(t1)

)

= 2 lim
t→0

arcsin
d(γσ(t0)(t), γσ(t1)(t))

2t
=

= ∢
(

γ̇σ(t0)(0), γ̇σ(t1)(0)
)

= ∢(F(σ(t0)),F(σ(t1))).

Since F(σ(ti)) = e2πia(ti), F(σ(ti)) = (e2πmia(ti), 0, . . . , 0) and 2πm|a(t0) −
a(t1)| < π we get

∢(F(σ(t0)),F(σ(t1))) = 2πm
∣

∣a(t0) − a(t1)
∣

∣.

Proposition 22. For any t ∈ R both γσ(t) ∗γ0
σ(t+) and γσ(t) ∗γ0

σ(t−) are shortest
paths.

38



Proof. Consider the first path. Thanks to Props. 20 and 16 it is enough to show
that ∠0

(

γσ(t), γσ(t+)

)

= π. Indeed by Props. 19 and 21 and (63)

∠0

(

γσ(t), γσ(t+)

)

= lim
τ<t+, τ→t+

∠0

(

γσ(t), γσ(τ)

)

=

= lim
τ<t+, τ→t+

2πm
(

a(τ) − a(t)
)

= 2πm
(

a(t+) − a(t)
)

= π.

Now we are able to control uniqueness of geodesics in general.

Theorem 6. For any x, y ∈ B(0, r6) there is a unique segment αx,y from x to
y and it depends continuously on its endpoints. If x 6= 0 and y 6= 0 the segment
αx,y passes through 0 if and only if

∢
(

F(x),F(y)
)

≥ π

m
. (66)

Proof. If one of the points is 0 uniqueness is proved in Theorem 3. If x, y are
two distinct points in B∗(0, r6) by interchanging them if necessary we can write
them as

x = G(σ(t), s) y = G(σ(t′), s′)

with 0 ≤ t ≤ t′ < 1. We distinguish three cases according to the position of t′

with respect to t−, t, t+.
1. Assume first that t′ ∈ (t, t+). Then

a(t′) < a(t) +
1

2m
.

It follows from Theorem 5 that the segment is unique, is contained in S[t, t′] ⊂

x

σ(t)

σ(t’)

σ(t  )+

α( )τ

y

0

σ −(t  )

Figure 4:

S[t, t+] and does not pass through 0 because of Lemma 14.
2. If t′ > 1 + t− then

a(t) < a(t′ − 1) +
1

2m
.
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Since y = G(σ(t′−1), s′) the same argument proves that the segment is unique,
is contained in S[t−, t] and does not pass through 0.
3. Finally assume that t′ ∈ [t+, 1 + t−]. This condition is just a restatement
of (66). In this case it is enough to prove that any segment α from x to y
necessarily passes through the origin: Theorem 3 then yields α = γ0

x ∗ γy and in
particular uniqueness. Assume by contradiction that α does not pass through
0 (see Fig. 4). Then it has to cross either γσ(t+) or γσ(t−). Assume for example
that α(τ) = γσ(t+)(τ

′) for some τ ∈ [0, d(x, y)], τ ′ ∈ [0, r6]. By Prop. 22

γ0
x∗

(

γσ(t+)

∣

∣[0,τ ′]

)

is a segment. So α
∣

∣[0,τ ] and γ0
x∗

(

γσ(t+)

∣

∣[0,τ ′]

)

are two segments

contained in S[t, t+] with same endpoints. By Prop. 20 S[t, t+] is a CAT(κ)–
space, hence uniquely geodesic. Therefore α

∣

∣[0,τ ] and γ0
x ∗

(

γσ(t+)

∣

∣[0,τ ′]

)

must
coincide, contrary to the assumption that α does not pass through the origin.

Continuous dependence from the endpoints follows from uniqueness by Ascoli-
Arzelà theorem.

Theorem 7. The ball B(0, r6) provided with the distance induced from (X, d)
is a CAT(κ)–space.

Proof. We will show that any geodesic triangle T = ∆(xyz) contained in B(0, r6)
satisfies the angle condition, Def. 6. We distinguish various cases.
1. Suppose first that the origin is a vertex, say z = 0. If ∢

(

F(x),F(y)
)

< π/m
by interchanging if necessary x and y we can assume that x = G(σ(t), s) and
y = G(σ(t′), s′) with t ≤ t′ < t+. Then T ⊂ S[t, t′]. Since S[t, t′] is a CAT(κ)–
space, the angle condition holds for T .
2. If z = 0 and ∢

(

F(x),F(y)
)

≥ π/m, then αx,y = γ0
x ∗ γy by Theorem 6. So T

is degenerate and trivially satisfies the angle condition.
3. Next assume that 0 belongs to some edge but is not a vertex. Say 0 lies
on the edge [x, y]. By the above both triangles ∆(0xz) and ∆(0yz) satisfy the
angle condition. By Lemma 28 also T = ∆(xyz) does.
4. Assume now that 0 lies in the interior of T (of course a non-degenerate tri-
angle is a Jordan curve). Let α : [0, L] → Xreg be the segment [x, y] and let
βt : [0, 1] → X be a constant speed parametrisation of the segment from z to
α(t). Then

F : Q = [0, 1]2 → X H(t, s) = βt(s)

is a continuous map. Since F
∣

∣∂Q : ∂Q→ T is a degree one map F (Q) must fill
the interior of T . In particular there is t0 ∈ (0, L) such that βt0 passes through
0. Then we can apply the previous argument to both triangles ∆(xzα(t0)) and
∆(yzα(t0)). Applying again Lemma 28 we get that the angle condition holds
for T .
5. Finally consider the case in which 0 6∈ R, where R is the interior of T . Assume
that

∢
(

F(x),F(y)
)

≥ max
{

∢
(

F(x),F(z)
)

,∢
(

F(z),F(y)
)

}

. (67)
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Since 0 does not belong to R, in particular it does not lie on [x, y]. By Theorem
6 this implies

∢
(

F(x),F(y)
)

< π/m.

Write x = G(σ(t), s), y = G(σ(t′), s′) and z = G(σ(t′′), s′′). Then (67) reads

|a(t) − a(t′)| ≥ max
{

|a(t) − a(t′′)|, |a(t′′) − a(t′)|
}

.

By interchanging t and t′ (that is x and y) we can then assume that t ≤ t′′ ≤ t′ <
t+. We claim that R ⊂ S[t, t′]. Indeed if there is a point of R outside S[t, t′],
there must be some point w ∈ ∂R outside of S[t, t′]. But ∂R = [x, y]∪[y, z]∪[x, z]
and the three segments are contained in S[t, t′].

We are now finally ready to prove the main result of the paper.

Theorem 8. Let (X,ω) be a Kähler curve and let d be the intrinsic distance.
If κ is an upper bound for the Gaussian curvature of g on Xreg, then (X, d) is
a metric space of curvature ≤ κ in the sense of Alexandrov.

Proof. We need to prove that for any x0 ∈ X there is a geodesic ball centred
at x0 that is a CAT(κ)–space. If x0 ∈ Xreg this is well-known (Prop. 15). If
x0 is an analytically irreducible singular point (i.e. a single branch singularity),
thanks to Cor. 2 it is enough to consider the situation envisaged in §§3–6. In
this case the CAT(κ)–property of sufficiently small balls is what we have just
proven (Theorem 7). Finally we have to consider the case in which x0 is a
singular point and X is analytically reducible at x0. Let U be a neighbourhood
of x such that U = U1 ∪ · · · ∪ UN where Uj are the irreducible components of
U , x0 ∈ Uj for each j and the singular set of Uj contains at most x0. Denote
by dj the intrinsic distance of (Uj , ω

∣

∣Uj ). For r > 0 let B(x0, r) be the geodesic
ball in (X, d), as usual, and let Bj(r) be the geodesic ball of radius r centred at
x0 in the space (Uj , dj). By choosing r > 0 small enough we can assume that
any pair of points in B(x0, r) is joined by a segment in U . This follows from
Lemma 2. It is clear that Bj(r) ⊂ B(x0, r). On the other hand if x ∈ B(x0, r)
and α : [0, L] → U is a segment from x0 to x then α(t) 6= x0 for t > 0. So
α([0, L]) ⊂ Uj for some j. Since L(α) = d(0, x) < r it follows that x ∈ Bj(r)
and that dj(0, x) = d(0, x). This shows that

B(x0, r) = B1(r) ∪ · · · ∪ BN (r).

Moreover if j 6= k any segment joining x ∈ Bj(r) to y ∈ Bk(r) necessarily
passes through x0. Therefore

d(x, y) =

{

dj(x, y) if x, y ∈ Bj(r)

dj(x, 0) + dk(0, y) if x ∈ Bj(r), y ∈ Bk(r), j 6= k.
(68)

Since each Bj(r) is either smooth or analytically irreducible, by further decreas-
ing r we can assume that each Bj(r) is geodesically convex in (Uj, dj) and is a
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CAT(κ)–space with the distance dj . It follows from this and (68) that geodesic
segments are unique in B(x0, r). Let T = ∆(xyz) be a triangle in B(x0, r). If
the three points lie in the same Bj(r) the result follows from the CAT(κ)–space
property of Bj(r). If x ∈ B1(r) and y ∈ B2(r) and z ∈ B3(r), then the tri-
angle is a tree with three edges. All the angles vanish and the angle condition
is trivially satisfied. Finally assume that x, y ∈ B1(r) and z ∈ B2(r). Then
x0 ∈ [x, z]∩ [y, z], so the angle at z vanishes, while the angles at x and y are the
same as in T ′ = ∆(xy0). Since T ′ ⊂ B1(r) the angles in T ′ are smaller than the
ones in the comparison triangle T ′. But T is obtained by “straightening” T ′.
Thus it follows from Alexandrov lemma [7, Lemma 4.3.3 p.115] that the angle
condition holds for T too.

The argument in the last part of the proof is the same as in Reshetnyak
Theorem [7, p. 316]. Our case is the simplest possible one, since the spaces are
glued along a set that consists of a single point.

Theorem 9. If (X,ω) is a Kähler curve and x0 is a singular point, every
geodesic arriving at x0 branches into a continuum of different segments. In
particular as soon as Xsing 6= ∅, there is no κ ∈ R such that (X, d) be a metric
space of curvature ≥ κ (in the sense of Alexandrov).

Proof. Assume that B(x0, r) = B1(r) ∪ · · · ∪ BN (r) as above. If N = 1 the
singularity is analytically irreducible and the claim is already contained in The-
orem 6. If N > 1 fix x ∈ B1(r), x 6= x0. For any y ∈ B2(r) \ {x0} the segment
from x to y passes through x0. This proves that there infinitely many segments
prolonging the segment from x to x0. Since segments cannot branch in Alexan-
drov spaces with curvature bounded below it follows that no such bound can
hold on (X, d).

Remark 2. The point of the above result is that infXreg
K can in fact be finite

even when X contains singularities. For example consider X = {(x, y) ∈ C2 :
y2 = xn} with the Euclidean metric. A simple computation using (25) shows
that for n > 4 the Gaussian curvature is bounded near (0, 0). Nevertheless by
Thm. 9 there is no lower bound in the sense of Alexandrov.

Remark 3. In the case of an irreducible singularity it would be interesting to
understand if different segments starting at the singular point can have the same
initial tangent vector. If this were not the case the map a in (59) would be strictly
increasing and F

∣

∣C would be a homeomorphism of C onto S1×{0} ⊂ C0(X). Its
inverse would share many properties of the exponential map of a Riemannian
manifold. We leave the analysis of this problem for the future.
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